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ABSTRACT 

Lewy body dementia, which includes dementia with Lewy bodies (DLB) and 

Parkinson’s disease dementia (PDD), is collectively the second most common 

neurodegenerative dementia and is pathologically characterized by α-synuclein positive 

cytoplasmic inclusions, with varying amounts of Aβ and tau aggregates in addition to 

synaptic loss. Clinical hallmarks include fluctuating and deteriorating cognition, 

hallucinations and parkinsonism. A dysfunctional ubiquitin proteasome system (UPS) may 

be a mediating factor of disease progression and of the development of α-synuclein 

aggregates. In the present study, protein expression of some key component subunits of the 

UPS and two of the three main proteolytic-like (chymotrypsin- and PGPH-) activities have 

been determined in the frontal cortex (Brodmann, BA9), the parietal cortex (BA40) and the 

anterior cingulate gyrus (BA24) of DLB, PDD, Alzheimer's disease (AD) and matched 

controls. Clinical and pathological data were available for the cases studied, with regard to 

the duration of dementia and parkinsonism, the Mini-Mental State Examination (MMSE) 

score, the Consortium to Establish a Registry for Alzheimer's Disease (CERAD) plaque, 

the Braak stage and the α-synuclein score. We hypothesised that cognitive decline and non-

cognitive symptoms were associated with the proteasome impairment as a consequence of 

synaptic dysfunction and increased protein aggregation in LBD and AD. To address the 

link between proteasome impairment, AD and LBD pathology, cognition decline and non-

cognitive symptoms, and the synaptic dysfunction, alteration of the proteasome 

components and activities have been investigated to identify clinical-pathological 

correlations. Our aim was to investigate possible relationships between a) decreased level 

of proteasome components and semi-quantitative scores of AD and LBD pathology in the 
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selected brain areas, b) proteasome dysfunction and the cognition function and non-

cognitive symptoms in LBD and AD and c) reduction of proteasome components and 

synaptic dysfunction. Due to the importance of the protein degradation pathways in the 

development of Lewy bodies and the evidence from our studies indicative of proteasome 

dysfunction, the lysosomal pathway was also examined. Two lysosomal markers were 

chosen for investigation: cathepsin D and lysosomal-associated membrane protein 1 

(LAMP1) and the same clinico-pathological correlations were applied for the lysosomal 

markers. The major finding of this project was the reduction in the RPT6 ATPase 19S 

regulatory subunit in DLB and AD; this reduction was associated with the decrease in 

proteasome activity and synaptic markers (PSD-95, ZnT3, synaptophysin and beta-III-

tubulin). Both reductions of RPT6 and decreases in proteasome activity predicted cognitive 

decline, depression and severity of amyloid-beta and tau pathology in the examined brain 

regions.  
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1.1 General overview: 

Lewy body diseases (LBD), which include Parkinson’s disease (PD), Parkinson’s 

disease dementia (PDD) and dementia with Lewy bodies (DLB), are pathologically 

characterized by the presence of abnormal inclusions called Lewy bodies (LBs), and the 

development of thread-like and thicker Lewy neurites (LNs) within the neurons. LBs and 

LNs are intraneuronal inclusion bodies with pathological aggregated and 

hyperphosphorylated α-synuclein  as their main component (Spillantini et al., 1997). This 

was determined after the discovery of a mutation in the α-synuclein gene (SNCA), which is 

a rare cause of familial PD (Polymeropoulos et al., 1997). The aggregation of α-synuclein 

inside the neurons is thought to be a key event in LB formation. The presence of LBs can 

occur in LBD alone or in combination with Alzheimer’s disease (AD) pathology (Howlett 

et al., 2014, Tsuboi and Dickson, 2005). In the case of PD, the presence of LBs throughout 

the brainstem accompanies the loss of dopaminergic neurons from the substantia nigra, 

which is considered to underlie the motor symptoms (Braak et al., 2004, Dauer and 

Przedborski, 2003, Jellinger, 2009). On the other hand, the widespread distribution of LBs 

in virtually every brain region in cases of LBD is likely to contribute to the variety of 

cognitive and behavioural symptoms present in these conditions, such as visual 

hallucinations, delusions, delusional misidentifications, anxiety, apathy, cognitive decline 

and fluctuating cognition, agitation and aggressive behaviours (Jellinger, 2009).  

In considering Lewy body dementia, cognitive impairment is the key presenting feature of 

DLB, while parkinsonism is the first feature of PDD (McKeith et al., 2004). As the disease 

progresses, it becomes clinically difficult to differentiate between DLB and PDD patients, 

both of whom will be characterised by cognitive impairment, psychiatric symptoms and 
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parkinsonian symptoms. They are also similar in their neuropathological characteristics: 

abundance of LN and LB in most brain regions and cortical extracellular Aβ plaques and 

neurofibrillary tangles (NFT) (McKeith, 2007). This is why most researchers use the “one 

year rule” to distinguish between PDD and LBD. According to the “one year rule”, when 

the motor symptoms have been present for one year or more before the onset of dementia, 

the diagnosis should be PDD (McKeith et al., 2005, McKeith et al., 1996). However, if the 

dementia and motor symptoms begin in the same year, or the cognitive symptoms start 

before the motor symptoms, then the diagnosis should be DLB (McKeith et al., 2005).  

The clinical features of LBD are associated with the affected areas of the brain. Most 

patients with LBD experience at least one or two behavioural symptoms during the course 

of their illness, which are a major cause of personal distress to the patients and those who 

care for them. In a study using a large number of PDD patients, 90% of these 537 PDD 

patients had at least one neuropsychiatric symptom, and 77% had two or more, with 

depression, apathy, anxiety and hallucinations being the most common (Aarsland et al., 

2007). Another study evaluated the behavioural and psychological symptoms in different 

stages of DLB, and it was found that anxiety, depression, apathy, agitation and sleep 

disorders were the most common symptoms and that these symptoms tended to 

progressively worsen over time (Borroni et al., 2008). Furthermore, patients with LBD 

experienced very high sensitivity to antipsychotic and anti-agitation medications (McKeith 

et al., 1992); therefore, an important un-met medical need in DLB is the management of the 

behavioural symptoms.  

The clinical characteristics  of DLB can be classified as the central, core, suggestive and 

supportive features with regard to the consequence criteria for the clinical and pathological 
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diagnosis of dementia with Lewy bodies (McKeith et al., 2005, McKeith et al., 1996). The 

central feature of DLB is ‘Dementia defined as progressive cognitive decline of sufficient 

magnitude to interfere with normal social or occupational function’; this can be 

accompanied by an increasing degree of memory loss and worsening attention, executive 

function and visuospatial function (McKeith et al., 2005). Cognitive decline with one of the 

three core features, ‘fluctuating cognition with pronounced variations in attention and 

alertness, recurrent visual hallucinations that are typically well formed and detailed, and 

spontaneous features of parkinsonism’ leads to the diagnosis of possible DLB (McKeith et 

al., 2005). If the patients experience two or more core features, the diagnosis of DLB is 

probable. The presence of one or more suggestive symptoms (REM sleep behaviour 

disorder, neuroleptic sensitivity and low dopamine transporter uptake in the basal ganglia) 

and ‘supportive’ features (see subsequent section on other symptoms) with the dementia 

and the core symptoms will also lead to the diagnosis of probable DLB (McKeith et al., 

2005). One or more suggestive symptoms without any of core features, the diagnosis of 

DLB is possible; however, the diagnosis of probable DLB cannot be made with the 

suggestive symptoms alone (McKeith et al., 2005). 
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1.2 Epidemiology 

DLB is the 2nd most common neurodegenerative dementia after AD. Clinically 

diagnosed DLB accounts for 10-20% of elderly dementia patients; this proportion is 

consistent with autopsy studies, which suggest that DLB accounts for approximately 15-

30% of dementias (Barker et al., 2002, Byrne et al., 1989, Perry et al., 1990d). In an 

epidemiological clinical study by Zaccai and colleagues, an estimate of the prevalence of 

DLB, depending on the case criteria, falls within the range of 0 to 5% in the general 

population, and between 0 and 30.5% of all dementia cases (Zaccai et al., 2005). The only 

estimate for DLB incidence is 0.1% per year for the general population and 3.2% per year 

for all new dementia cases (Zaccai et al., 2005). There are an estimated 100,000 cases in the 

UK (McKeith et al., 1999), and the prevalence of DLB is estimated to occur at 1% in the 

overall population of people over the age of 65 (McKeith et al., 1996). This percentage is 

reported to rise with age thus in those over 85 it represents approximately 22% of all 

dementia cases (Rahkonen et al., 2003, Shergill et al., 1994, Stevens et al., 2002). 

The difficulty in determining clear prevalence statistics for LBD is primarily the 

Lewy bodies - the hallmark of this disorder - due to their linkage with several forms of 

neurodegenerative disease, can make it very difficult to distinguish LBD from other 

conditions. One population-based autopsy study found that Lewy bodies were equally 

common in demented and non-demented individuals (Esiri et al., 2001). Another autopsy 

study investigated 248 cases (50-90 years of age), and Lewy bodies were found in 22 of 

those cases (7.7%), with 9 of them having cortical Lewy bodies. None of those 9 cases had 

dementia (Lindboe and Hansen, 1998). No classical epidemiological studies to investigate 

age and sex variation, or potential risk factors for DLB, have as of yet been reported
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1.3 Clinical features of Lewy body dementia 

1.3.1  Cognitive impairment 

Progressive cognitive decline is the central clinical diagnostic feature of DLB. The 

defect in cognitive dysfunction in DLB/PDD is normally characterized as impaired 

visuospatial skills, substantial attentional deficits and executive impairment (Aarsland et 

al., 2003, Dubois and Pillon, 1997, McKeith et al., 1996).  

Patients with DLB/PDD exhibit less memory impairment when compared to those with 

AD, but as the disease progresses, the memory impairment will become more developed 

(McKeith et al., 2005). These features are severe enough to impact normal social or 

occupational functions.  

The following characteristics can be used to differentiate between LBD and AD 

(Ballard et al., 2002). A person with DLB/PDD is likely to perform well on tests of verbal 

memory, but worse on visuospatial performance tasks and tests of attention than those with 

AD (Gnanalingham et al., 1997, Hansen et al., 1990, Noe et al., 2004). Visual-

constructional deficits may play an important role as a sensitive indicator for DLB, and in 

differentiating between different dementias. By comparing a pentagon drawing done by 

DLB and AD patients, it was found that the test had a sensitivity of 88% and a specificity 

of 59% in the diagnosis of DLB (Ala et al., 2001). A more recent study shows that DLB 

patients were significantly worse at pentagon drawing when compared with PD and AD 

individuals, but were not worse than patients with PDD (Cormack et al., 2004). The same 

results were found when the patients were asked to draw the face of a clock. The patients 
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with DLB/PDD did poorly on both the copy and draw part of the test, while AD patients 

did well on the copying part, but poor on the drawing part (Gnanalingham et al., 1996).  

Fluctuation in cognition (FC) is one of the core features of DLB (McKeith et al., 

2005), and has been described as an unprompted alteration in the level of arousal, cognition 

and attention (Ferman et al., 2004, McKeith et al., 2005). Irresistible daytime drowsiness, a 

decrease in the level of awareness, illogical or disorganized thinking and staring spells 

appear to be important features of arousal disturbance (Ferman et al., 2004, Walker et al., 

2000b).  

FC symptoms are usually evident on a day to day basis and may fluctuate within 

much shorter periods of time, from moments to hours (Walker et al., 2000a). 

Approximately 20% of people with AD (Escandon et al., 2010, Kolbeinsson and Jonsson, 

1993) and 35%-50% of people with vascular dementia (VaD) (Roman et al., 1993) exhibit a 

FC. In DLB, this symptom is increased up to 90%. It is associated with rapid changes 

between alertness and normal cognition, followed by confusion and an inability to pay 

attention or make decisions (Byrne et al., 1989, McKeith et al., 2005).  

 

1.3.2 Visual hallucination (VH) 

Visual hallucination (VH) is the second core feature for the diagnostic criteria of 

DLB/PDD, occurring in 60-80% of DLB patients (Aarsland et al., 2001a, Ballard et al., 

1999, Hirono et al., 1999), 54% of PDD cases (Aarsland et al., 2001a, Aarsland et al., 

2007) and 25% of PD patients (Aarsland et al., 1999, Aarsland et al., 2001c). It is generally 
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present from the early stages of illness and persists throughout the course of the disease 

(McKeith et al., 2005). VH is one of the prominent symptoms and represents an important 

tool for diagnosis and differentiating between DLB from AD (Auning et al., 2011, McKeith 

et al., 2005, Tiraboschi et al., 2006, Troster, 2008).   

VH usually occurs most days of the week in a complex form, typically manifesting 

in brightly coloured, three-dimensional images of animals and people (Ballard et al., 1996, 

McKeith et al., 1996). Hallucinations involving children, inanimate objects, fire, insects 

and birds can occur, but less frequently (Ballard et al., 1996, Ballard et al., 1997, McKeith 

et al., 1996). Visual hallucinations can be accompanied by auditory hallucinations such as 

speech or noise (Ballard et al., 1997).  

Deficits in function related to the visual system are normal in the elderly population; 

however, the coexistence of visual impairment may increase the susceptibility of DLB 

patients to VH. A recent study demonstrated poor visual attention to be an independent 

predictor of VH (Cagnin et al., 2013). Furthermore, patients with visual hallucinations 

complain of poor vision more often than patients without visual hallucinations (McShane et 

al., 1995). 

In LBD, the main factor that may contribute to visual hallucinations is the presence 

of LB pathology. Several studies linked the development of LB in the temporal lobe, 



 

 

9 

 

amygdala, transentorhinal region and frontal lobe with the presence of visual hallucinations 

(Gallagher et al., 2011, Harding et al., 2002, Papapetropoulos et al., 2006). Earlier onsets of 

visual hallucinations are also associated with limbic Lewy body in DLB (Ferman et al., 

2013). The presence of VH in DLB is suggested to be associated with deficits in choline 

acetyltransferase (ChAT). It has been found that there is a relationship between reduced 

levels of ChAT in the part of the visual association area (parahippocampal gyrus - BA36) and 

VH (Ballard et al., 2000b, Perry et al., 1990a). There is also a link between the induction of 

hallucinations and the start of anti-cholinergic therapies (McKeith et al., 2000). 

 

1.3.3 Parkinsonism: 

Parkinsonism has been classified as one of the three core features of DLB (McKeith 

et al., 2005, McKeith et al., 1996), and 40%-100% of DLB patients experience 

extrapyramidal signs at some stage of the disease (Gnanalingham et al., 1997, Louis et al., 

1997). These signs are similar to those seen in PD patients, such as bradykinesia, rigidity, 

postural instability and gait disturbance. The first consensus guidelines for the clinical and 

pathological diagnosis of DLB assumes that the extrapyramidal signs tend to be mild and 

symmetrical in DLB when compared to PD (McKeith et al., 1996). Many studies did not 

support this view, and found that extrapyramidal features in DLB are similar in severity in 

some aspects, such as resting tremors and abnormal posture, and more severe in other 

features, such as body bradykinesia, gait and rigidity, than in PD (Aarsland et al., 2001b). 
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Louis et al. had the same findings, but with smaller sample sizes (Louis et al., 1997). 

Another study showed that DLB patients had higher rigidity and a reduced tapping speed 

than PD patients, but less tremor dominance when compared to PD (Gnanalingham et al., 

1997). There was no difference presenting with resting tremors between PDD and DLB 

patients (Noe et al., 2004); although, in one study, resting tremors did not occur early in the 

disease, and were more common in PD (85%) than DLB (55.5%) (Louis et al., 1997). 

Another motor comparative study had the same view with respect to the resting tremor, and 

found it to be more evident in PD then DLB patients (82% vs. 67%, respectively) 

(Gnanalingham et al., 1997).  

In a more detailed comparative study done by Burn et al., it was found that postural-

instability gait difficulty was more common in PDD and DLB, then in PD (Burn et al., 

2003). The study also showed that the opposite was true with tremor dominance (Burn et 

al., 2003). The differences in the results between studies may depend on the cases used in 

the study, the stage of the disease, age and gender. In the end, parkinsonism is one of the 

core features, and DLB can be diagnosed without the presence of the extrapyramidal signs. 

 

1.3.4 Depression 

Consensus criteria for the clinical diagnosis of DLB and PDD listed depression as 

one of the supportive features in 2005 (McKeith et al., 2005). Studies show that the 

prevalence of depressive symptoms in DLB is higher than AD (73% vs. 56%), and similar 

to PD (Fritze et al., 2011b). A one-year follow-up study found that cognitive decline was 

associated with depression, and of those with depression at the time of the follow-up, 
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cognitive decline was higher in DLB than in AD patients (Fritze et al., 2011a). Another 

comprehensive study demonstrated that depression scores in DLB patients were twice as 

high as those for AD patients using the Geriatric Depression Scale scores (GDS) (Yamane 

et al., 2011). However, Caputo et al. failed to show consistent results with a large study 

involving 921 patients and found no difference in depression between AD and DLB 

(Caputo et al., 2008). 

Depression has been shown to be a risk factor for incidences of dementia including 

AD, VD and LBD (Andersen et al., 2005, Chen et al., 2008, Gatz et al., 2005, Hebert et al., 

2000, Saczynski et al., 2010). Two meta-analysis of the world literature found that a history 

of depression increases the risk of developing AD (Ownby et al., 2006) or dementia in 

general (Jorm, 2001).  In a population-based cohort, the relationship of depressive 

symptoms and dementia over long and short follow-up periods was monitored and the 

author concluded that late-life depressive symptoms are part of a dementia prodromal rather 

than an independent risk factor of dementia (Brommelhoff et al., 2009). Thus, depressive 

symptoms may be an early sign of dementia rather than a separate condition or a risk factor. 

The mechanism that links depression to dementia is not fully understood. It has 

been shown by a neuropathological study that the development of hippocampal plaque and 

tangle is associated with a history of depression compared to those without such a history 

(Rapp et al., 2006). Additional evidence showed that a high ratio of plasma Aβ 40 to Aβ 42 

was associated with depression and reduced cognition in a subset of depressed individuals 

(Sun et al., 2008). However, these results are inconclusive. Another study found that low 

Aβ42 was associated with depression (Sun et al., 2011), and no relationship Aβ42 and 
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depression has been also reported (Moon et al., 2011). A more recent study reported low 

Aβ42/Aβ40 and an APOE e4 allele had an increased risk for depression (Metti et al., 2013). 

Another factor that overlaps with dementia is related to the hormone cortisol. 

Hypercortisolemia is associated with depression as a result of stress (Byers and Yaffe, 

2011). A recent study in 80 AD patients indicated a significant association between high 

levels of plasma cortisol and AD (Zverova et al., 2013). The study supported the use of 

high plasma cortisol as biomarkers for AD with depressive symptoms as well as AD in the 

early stage of dementia development. 

In a positron emission tomography (PET) scan study, the gradual accumulation of 

β-amyloid (Aβ) peptides was observed with [11C] 6-OH-BTA-1 [Pittsburgh Compound-B] 

(PiB) in the brain of nine participants with remitted late-onset depression and mild 

cognitive impairment. Approximately 50% of participants showed PiB retention consistent 

with that found in AD (Butters et al., 2008). These findings also support the notion that 

depression is a prodromal marker for dementia. 

 

1.3.5 Delusions 

Delusions are also common in LBD and commonly reported as a supportive 

symptom of a diagnosis of DLB and PDD (McKeith et al., 2005). The amount of delusions 

was found to be higher in patients with DLB (57%-76%) than in patients with AD (45%) 

(Gauthier et al., 2010), PDD (29%-54%) and PD (7%-14%)  (Aarsland et al., 2001a). The 

content of these delusions is normally fixed, false and complex. Delusional mis-
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identification is the most common symptom of this type in people with dementia, followed 

by persecutory or paranoid delusions (Aarsland et al., 2001a, Simard et al., 2000). 

Delusional mis-identifications occur in 33% of DLB/PDD patients (Simard et al., 2000). 

Mistaking fictional events on television for reality occurs in 19%, Capgras syndrome (the 

belief that a family member has been substituted by an impostor) occurs in 10%, mis-

identification of the patient’s own self occurs in 9.5% and the delusion that the house is not 

one’s home occurs in 2.4% (Ballard et al., 1996).  

 

1.3.6 Rapid eye movement (REM) sleep behaviour disorder:  

Rapid eye movement (REM) sleep behaviour disorder (RBD) is termed a 

‘suggestive feature of DLB’ according to the 3rd report of the DLB consortium (McKeith et 

al., 2005). REM Sleep Behaviour Disorder (RBD) is characterized by a lack of normal 

muscle atonia during rapid eye movement sleep, and manifests as dream-enacting 

behaviour (Olson et al., 2000). The body movement during periods of REM sleep will be 

increased, depending on what the patient sees in their dreams, and the person will move, 

cry out, speak, push, kick or throw themselves out of the bed (Olson et al., 2000). There 

may be more pronounced confusion between the dream and waking reality when the person 

awakens.   

REM Sleep Behaviour Disorder is often associated in patients with LBD, DLB, 

PDD and PD or, in general, with synucleinopathies (Boeve et al., 2003, Boeve et al., 2001), 

and seems to be less frequent with non-synucleinopathies, such as AD or fronto-temporal 

dementia (Arnulf et al., 2005). It may also be present for years preceding the onset of 
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dementia and parkinsonism (Boeve et al., 2003). A recent study of 27 non-demented 

individuals with REM sleep behaviour disorder found that around 63% of patients 

developed DLB or PDD (Claassen et al., 2010) 

 

1.3.7 Apathy 

Apathy is a lack of interest, motivation, or interpersonal involvement in daily 

activities (Dujardin et al., 2007), and is one of the most common psychiatric symptoms in 

people with DLB, occurring in 56.1% of the patients compared to only 32.5% of those with 

AD (Bjoerke-Bertheussen et al., 2012). Recognising and directing treatment for such 

symptoms will decrease the risk of life disturbances for these patients, and stress for their 

caregivers.       

Many studies indicate that anxiety is one of the most prominent psychiatric 

symptoms featured in LBD. Up to 84% of DLB patients feel anxious (Rockwell et al., 

2000a), and 38% have anxiety at the onset of the disease (Ballard et al., 1999).  

 

1.3.8 Agitation and aggressive behaviour 

Agitation is defined as the “inappropriate verbal, vocal, or motor activity that is not 

explained by the needs or confusion of the individual’’ (Cohen-Mansfield et al., 1989). 

Agitated behaviours can manifest as physical vs. vocal/verbal and aggressive vs. Non-

aggressive. Examples of verbal aggression include cursing, making strange noises, 

screaming and verbal abuse, while verbal non-aggressive behaviour involves complaining, 

negativism, repeating words, sentences or questions and requests for attention or help. 
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Physical non-aggressive behaviours include wandering, hiding things, general restlessness, 

repetitive movements, trying to get to a different place and sometimes eating inappropriate 

things. Examples of physical aggressive behaviours include pushing, hurting oneself or 

others, kicking, biting, throwing things, scratching and hitting. 

Agitation and aggression is commonly seen in people with advanced dementia 

(Mega et al., 1996). Estimates of the prevalence of agitation and aggression in dementia 

vary immensely from 10% to 100%, probably due to bias introduced by the setting of the 

study and caregiver interviews (a common source of information on psychiatric symptoms) 

(Sachs, 2006). In a study of 408 nursing home residents, the occurrence of behavioural 

problems was reported in 93% of patients (Cohen-Mansfield et al., 1989). Furthermore, the 

prevalence of behavioural disturbance was reported to be 82% in a study of 647 nursing 

home residents in Australia (Brodaty et al., 2001). Jost and Grossberg reported agitation 

and aggression in 81% of 100 patients with autopsy-confirmed AD (Jost and Grossberg, 

1996). Burns et al. found that behavioural abnormalities were greater in those with more 

severe dementia. Out of a sample of 178 patients with AD, aggression was observed in 20% 

and wandering in 19% (Burns et al., 1990). 

Behavioural disturbances significantly impact the quality of life for patients and 

their caregivers, and are a major source of stress, discomfort and disquiet - more so than 

cognitive impairment (Ballard et al., 2000a, Coen et al., 1997, Schulz et al., 1995). 

Agitation and aggressive behaviour increase the risk of institutionalization and 

hospitalization (O'Donnell et al., 1992, Suh, 2004), or placement of a family member in a 

nursing home and, therefore, increase the cost of care. Over time, family members and 
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friends decrease their frequency of visits because they become embarrassed and do not 

know how to respond to these aggressive behaviours. Aggression is normally associated 

with delirium, depression and psychosis. Managing behavioural disturbances in LBD is 

problematic due to the high sensitivity to neuroleptics or antipsychotic agents. Severe 

neuroleptic sensitivity has now become one of the suggestive features. 

The assessment of agitated behaviour can be done using either Cohen-Mansfield 

Agitation Inventory (CMAI) (Cohen-Mansfield et al., 1989) or the Neuropsychiatric 

Inventory (NPI). The CMAI characterizes four different categories of unusual agitated 

behaviour, which can be verbally and physically aggressive or verbally and physically non-

aggressive (Cohen-Mansfield et al., 1989). In a comparison between these two scales, 

CMAI ratings of behavioural changes were shown to be more reliable than NPI (Zuidema 

et al., 2011). 

Anatomical and biochemical changes within the brain could be significant 

contributors to agitation and aggression. Studies of brain metabolism in AD patients 

suggest a relationship between agitation in AD and frontal and temporal lobe hypofunction 

rather than parietal hypometabolism (Sultzer et al., 1995). This relationship was supported 

by another study, which demonstrated the association of frontal lobe dysfunction in AD 

patients and the likelihood of these patients becoming agitated (Senanarong et al., 2004). A 

similar link was reported earlier in 2001 between frontal lobe dysfunction and agitation and 

aggression (Norton et al., 2001). A neuropathological study demonstrated a correlation 

between a high score of agitation and neurofibrillary tangle in orbitofrontal cortex and 

anterior cingulate cortex (Tekin et al., 2001). Neurochemistry studies indicated that a 
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reduction in the number of α1-adrenoceptors in the prefrontal cortex is associated with 

increased aggression in AD patients (Sharp et al., 2007). Animal studies have shown a 

reduction in gamma-aminobutyric acid (GABA) is associated with aggregation (Kalueff 

and Nutt, 1996). Little is known about the effect of a decrease in GABA activity in 

agitation and aggression in AD patients, but the treatment with anti-convulsants, such as 

carbamazepine and valproate, supports the relationship between GABA dysfunction and 

agitation (Gleason and Schneider, 1990, Lemke, 1995, Tariot et al., 1994). Furthermore, a 

decrease in cholinergic function contributes to aggression (Garcia-Alloza et al., 2005) and 

the defect in cholinergic neurotransmission may lead to agitation in AD patients 

(Cummings and Kaufer, 1996).  
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1.4 Genetic factors in Lewy body dementia  

DLB is typically considered to be a sporadic disorder. However, given that the 

clinical and pathological features of DLB and PDD overlap with each other and with other 

neurodegenerative disorders (PD and AD). This suggests that although DLB, PDD, PD and 

AD are distinct disorders, they could share genetic factors. Due to the similarity in the 

pathological and clinical features between Lewy body disorders, including DLB, PDD, and 

PD, many of the genes that may be involved in DLB and PDD are determined from studies 

of genes involved in PD. Indeed, genetics familial cases of DLB have been reported 

(Galvin et al., 2002, Tsuang et al., 2002, Tsuang et al., 2004). Kurz and colleagues 

conducted a systematic review into familial PDD and DLB and reported 24 families with a 

history of PD and dementia occurring in the same individuals, most had mutations in the 

SNCA gene, some in the gene encoding β-syn (Kurz et al., 2006).  Small number of reports 

suggesting the involvement of genetic factors known to be implicated in AD as risk factors 

for the development of DLB (Kobayashi et al., 2011, Pickering-Brown et al., 1994). In this 

section, several genes that have been found to be directly linked to PD and AD, and have a 

critical role in LBD, will be discussed.  

During the past decade, the discovery of a mutation in the α-synuclein (SNCA) gene 

added new knowledge to our understanding of the genetic factors influencing the 

pathogenesis of Lewy body disorders (Polymeropoulos et al., 1997), providing evidence for 

the genetic associations in both PD and DLB. Three point mutations have been identified. 

The first mutation, A53T, was identified in a large Italian-Greek family with autosomal 
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dominant familial Parkinson’s disease with LBs (Polymeropoulos et al., 1997). The second 

mutation, A30P, was later found in a small German family with Parkinson’s disease and 

cognitive impairment (Kruger et al., 1998). The third mutation, E46K, was found in a 

Spanish family, and linked with Lewy body dementia (Zarranz et al., 2004). Additional 

cases with the A53T mutation in DLB have been found with a family history of PD (Morfis 

and Cordato, 2006, Yamaguchi et al., 2005). After this discovery, the interest in α-

synuclein has increased, and it has been found to be the major component in Lewy bodies 

(Spillantini et al., 1997).  

Studies show that α-synuclein can increase membrane curvature causing smaller 

vesicles and tubules to form (Varkey et al., 2010). A30P and E46K mutations in α- 

synuclein reduce membrane curvature and so, by this mechanism, may behave as a brake 

on vesicle binding and neurotransmitter release and cause an accumulation of vesicles in 

synaptic terminal reserve pool (Auluck et al., 2010, Perlmutter et al., 2009). 

The duplication and triplication of the α-synuclein (SNCA) gene have been 

identified in several families (Fuchs et al., 2007, Singleton et al., 2003), and these 

multiplications cause the over-expression of mRNA and increases in the protein levels of α-

synuclein. It is believed that there is a gene dosage effect in the progression of the disease, 

and the families with SNCA gene duplications have two copies of the gene in one allele, 

with a 50% dose increase. They are affected in their fifties with slow clinical progression, 

compared to the families with triplication in the SNCA gene. The families with triplication 

have three copies in one allele, with a 100% dose increase, and these families are affected 

in their thirties with a severe clinical course, and more likely to exhibit dementia (reviewed 



 

 

20 

 

in Hardy et al., 2009) (Chartier-Harlin et al., 2004, Fuchs et al., 2007). Since the gene is 

dominant and the disease can be caused by duplication, it has been suggested that the 

mechanism of α-synuclein toxicity is related to its normal propensity to self-aggregate 

(reviewed in (Hardy et al., 2009). In addition, the point mutation may also increase the 

propensity of α-synuclein to aggregate by a factor of two, as the age onset of individuals 

with a point mutation in SNCA is similar to those with duplication (Hardy et al., 2009).  

A mutation in the genes encoding leucine-rich repeat kinase 2 (LRRK2) was 

discovered in 2004 in a series of families from the Basque Country in Spain, and has been 

linked to autosomal dominant PD (Paisan-Ruiz et al., 2004). Since the discovery, a number 

of mutations in the LRRK2 gene have been found (Paisan-Ruiz et al., 2004, Zimprich et al., 

2004). Mutations in LRRK2 are the greatest known genetic contributors to PD, with an 

estimate of 1-5% of PD cases having defects in this gene overall (Kumari and Tan, 2009), 

but up to 29% in the Ashkenazi Jewish and 37% (Ozelius et al., 2006) in the North African 

Arab populations (Lesage et al., 2006). LRRK2 encodes a large protein consisting of 2527 

amino acids with GTPase and kinase activity. The most common mutation in LRRK2 is the 

G2019S located in the kinase domain, suggesting the importance of the enzymatic activity 

of this protein in the disease process (Greggio et al., 2006). The occurrence of these 

mutations in Lewy body dementia is unclear, but pathologically, the G2019S mutation is 

associated with Lewy bodies and Lewy neurites (Wider et al., 2010), although other study 

do not support this observation (Gaig et al., 2009).  In contrast, three other mutations 

(R1441C, Y1699C and I2020T) are associated with nigral degeneration but not Lewy 

bodies (Taylor et al., 2006, Zimprich et al., 2004). 
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Glucocerebrosidase (GBA) is the gene mutated in Gaucher's disease, which is the 

most common lysosomal storage disorder, and also the most common inherited disorder in 

the Ashkenazi Jewish population (Beutler et al., 1993). It is caused by a deficiency in 

glucocerebrosidase, which is the enzyme that cleaves glucose from glucocerebroside to 

form acylsphingosine. The association of the GBA gene with PD was first recognised with 

the clinical finding that a small group of patients worldwide diagnosed with Gaucher's 

disease had developed Parkinsonism (Rosenbloom et al., 2011). Furthermore, relatives of 

the patients with Gaucher’s disease had been reported to be diagnosed with Parkinsonism 

(Goker-Alpan et al., 2004, Halperin et al., 2006). These findings suggest that the mutation 

in the GBA gene may be a high risk factor for PD and associated Lewy body disorders. 

Indeed a large number of studies show that the mutation in the GBA gene contributes to the 

development of both PD and DLB (Goker-Alpan et al., 2006). GBA-associated 

Parkinsonism is characterised clinically by Parkinsonism, a greater association with 

cognitive decline and dementia, and it tends to have an earlier onset of PD. The occurrence 

of the GBA mutation was found to be greater in DLB cases (present in 24% of cases) when 

compared to PD cases (present in 4% of cases) (Goker-Alpan et al., 2006). It is possible 

that this mutation in GBA may affect the processing of α-synuclein and thereby increase 

the susceptibility to DLB (Cullen et al., 2011).  

 

 

 

 



 

 

 

 

1.5 LB pathology

The pathology of LBD is characterised by t

proteinaceous inclusions called Lewy bodies (LB), Lewy neurites (LN), and pale bodies 

(PB) (Figure 1-1) (McKeith et al., 2005

LBs are spherical insoluble cytoplasmic inclusion bodies composed of a central 

aggregated mass of proteins surrounded by a halo of radiating fibrils that are approximately 

10 nm wide. LNs are elongated thread

2005). 

Figure 1-1: Neuropathology of LB

Neuropathology of LBD 

body: (a) large pale body; (b and d) a combination of pale body (arrows) and a small LB 

(arrowheads); (c) A thread

LB pathology 

The pathology of LBD is characterised by the presence of intraneuronal 

proteinaceous inclusions called Lewy bodies (LB), Lewy neurites (LN), and pale bodies 

McKeith et al., 2005, McKeith et al., 1996). 

LBs are spherical insoluble cytoplasmic inclusion bodies composed of a central 

aggregated mass of proteins surrounded by a halo of radiating fibrils that are approximately 

re elongated thread-like dystrophic axons and dendrites.

Neuropathology of LBD 

of LBD characterised by Lewy body, Lewy neurite 

body: (a) large pale body; (b and d) a combination of pale body (arrows) and a small LB 

(arrowheads); (c) A thread-like LN. (Modified from (Braak et al., 2003
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he presence of intraneuronal 

proteinaceous inclusions called Lewy bodies (LB), Lewy neurites (LN), and pale bodies 

LBs are spherical insoluble cytoplasmic inclusion bodies composed of a central 

aggregated mass of proteins surrounded by a halo of radiating fibrils that are approximately 

like dystrophic axons and dendrites. (McKeith et al., 

 

Lewy neurite aggregate and pale 

body: (a) large pale body; (b and d) a combination of pale body (arrows) and a small LB 

Braak et al., 2003))   
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Lewy bodies were named after their discovery by Frederick Lewy in 1912 in a 

patient with paralysis agitans, a condition that is now called Parkinson’s disease (PD) 

(Goedert et al., 2013, McKeith et al., 2005, McKeith et al., 1996). In 1961, Okazaki et al. 

provided the first description of cortical Lewy bodies and suggested their relationship to 

dementia (Okazaki et al., 1961). In 1984, Kosaka et al. reported abundant Lewy bodies in 

the cerebral cortical neurons of some patients with dementia. Proposing that these cases 

should be considered a new disease entity, they adopted the term “diffuse Lewy body 

disease” (Kosaka et al., 1984). Since then, many autopsied cases with dLBD have also been 

reported (Dickson et al., 1987, Hansen et al., 1990). Before the first international workshop 

and consortium on dementia with Lewy bodies, several researchers had proposed different 

terms to describe Lewy body dementia (McKeith et al., 1996). These include “diffuse Lewy 

body disease”, “Lewy-body dementia”, “senile dementia of the Lewy body type”, and 

“dementia associated with cortical Lewy bodies” (McKeith et al., 2004). DLB is now 

considered under the umbrella of Lewy body dementias (LBD), which include PD, PDD 

and DLB (McKeith, 2007, McKeith et al., 2005). 

LBs are composed of over 250 proteins the main component of which is the 

presynaptic protein α-synuclein (Kuusisto et al., 2003, Spillantini et al., 1997). α-synuclein 

is a member of the synuclein family of proteins (α, β, and γ) and is a soluble natively 

unfolded protein containing 140 amino acids  located in the presynaptic terminal. The 

precise physiological function of α-synuclein remains equivocal. However, α-synuclein 

plays an important role in regulating synaptic plasticity, binding fatty acids, regulating 
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dopaminergic and glutamatergic neurotransmission, in addition to functioning as a 

molecular chaperone (Abeliovich et al., 2000, Cabin et al., 2002, Liu et al., 2004, Yavich et 

al., 2004). The location of α-synuclein in the presynaptic terminal is thought to have a role 

in the complex assembly of soluble N-ethylmaleimide-sensitive fusion protein attachment 

protein receptors (SNARE) (Burre et al., 2010). α- synuclein drives the formation of the 

SNARE complex through a chaperone-like activity that involves binding to phospholipids 

and synaptobrevin-2.(Burre et al., 2010). 

Various factors are responsible for the mechanism of the toxic function of α-

synuclein, including the overexpression of α-synuclein and α-synuclein mutation, oxidative 

stress, mitochondrial dysfunction, excitotoxicity, impairment of the ubiquitin-proteasomal 

system, and autophagy dysfunction (Dauer and Przedborski, 2003) (Figure 1-2). These 

factors may cause a modification of α-synuclein that will result in its misfolding into 

pathogenic species of α‑synuclein (dimers, trimers and oligomers) that further assembly 

into insoluble fiber aggregates (protofibrils, other intermediates and amyloid fibrils) which 

serve as a building  blocks for Lewy bodies and Lewy neurites (Lee and Trojanowski, 

2006). 
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Figure 1-2: Factors responsible for the mechanism of α-synuclein modification 

Various factors responsible for the mechanism of the toxic function of α-synuclein: α-

synuclein mutation, oxidative stress, mitochondrial dysfunction, excitotoxicity, impairment 

of the ubiquitin-proteasomal system, and autophagy dysfunction. Figure taken from (Dauer 

and Przedborski, 2003). 
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LB pathology progresses in PD, it ascends from the brainstem in the early stages of 

the disease, moves through the limbic regions, and culminates in the cortex in the later 

stages of the disease (Braak et al., 2003). Braak developed the staging system of PD from a 

study of 110 cases (69 incidental and 41 clinically diagnosed PD patients). The staging 

system consisted of six stages. The first two pre-symptomatic stages referred to incidental 

LB disease, with the LB pathology process commencing in the lower brainstem in the 

dorsal motor nucleus of the vagus nerve (DMV), as well as in the anterior olfactory 

structures. Braak et al. proposed that the motor signs of the parkinsonian system appear 

when the synuclein pathology reaches Stage 3 (midbrain) and Stage 4 (limbic). It then 

eventually reaches the cerebral cortex in the last two stages, where it is associated with the 

cognitive impairment (Figure 1-3) (Braak et al., 2003). Some studies supported the Braak 

staging of α-synuclein pathology (Dickson et al., 2010, Jellinger, 2004, Parkkinen et al., 

2008), whereas other studies reported that the topographical spread of Lewy pathology in a 

number of PD cases did not follow the typical caudo-rostral (Attems and Jellinger, 2008, 

Beach et al., 2009, Kalaitzakis et al., 2008, Parkkinen et al., 2008), bringing the Braak 

Lewy body stages under increasing criticism. Furthermore, some of these studies described 

the presence of LB pathology in the substantia nigra without involvement of the medulla, 

which raised questions because in a subset of cases, there was an absence of pathology in 

this nucleus (Dickson et al., 2008). 
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Figure 1-3: Braak staging of Parkinson’s disease. 

Diagrams showing the progression of PD-related intraneuronal pathology through the brain 

according to the different Braak stages. The depth of colour correlates with the density of 

Lewy pathology. The white arrow indicates the gradual involvement of related structures. 
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Relevant abbr; dm, dorsal motor nucleus of the glossopharyngeal and vagal nerves; co, 

coeruleus–subcoeruleus complex; sn, substantia nigra; mc, anteromedial temporal 

mesocortex; fc, first order sensory association areas, premotor areas, as well as primary 

sensory and motor fields; hc, high order sensory association areas and prefrontal fields. 

Taken from Braak et al (Braak et al., 2003). 

 

According to the Braak stages of the α-synuclein pathology, topographic staging is 

the concept that with the increasing distribution and progression pattern of LBs pathology, 

there is a worsening of disease severity and a progression from motor symptoms to 

cognitive symptoms (Jellinger, 2008). This classification has been accepted and supported 

by several studies that reported a correlation between pathological findings and both 

clinical data and disease severity in PDD (Jellinger, 2008, Kovari et al., 2003, Mattila et al., 

2000, van den Berge et al., 2012).  This is generally accepted to be the case with PD and 

PDD patients. Classic parkinsonism does not appear until synuclein pathology reaches 

stage 3-4, when the substantia nigra is affected. Later, PD patients will develop dementia in 

Braak stages 5 or 6, with the involvement of the cerebral cortex (Aarsland et al., 2005a, 

Apaydin et al., 2002, Emre et al., 2007), In contrast, other studies reported no correlation 

between Braak LBs and the severity of the disease and dementia in PD (Beach et al., 2009, 

Halliday et al., 2008, Jellinger, 2008, Kalaitzakis et al., 2008). In fact, some studies 

reported that AD pathology, rather than the distribution of LBs, plays a significant role in 

the progression of dementia (Aarsland et al., 2004). Additionally, 30–55% of autopsies in 

elderly subjects without any neuropsychiatric symptoms showed the development of LB 
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pathology across multiple brain regions, which casts further doubt on the applicability of 

the original Braak staging to all cases of Lewy pathology (Jellinger, 2004, Leverenz et al., 

2008, Parkkinen et al., 2008).  

Until now, it has not been clear whether PDD and DLB are the same disease or 

different entities. In later stages of the disease, both PDD and DLB will have the same 

pathological features, especially in DLB patients who develop parkinsonism (Aarsland et 

al., 2004; Tsuboi and Dickson, 2005). Cortical Lewy pathology cannot be used to 

distinguish PDD from DLB (Harding and Halliday, 2001), but evidence has been reported 

to show subtle differences, particularly in AD pathology. Some studies reported that AD 

pathology is more likely to play a significant role in determining disease progression in 

DLB (Aarsland et al., 2004).  In fact, Weisman et al. went so far as to suggest that the 

presence of AD pathology determined diagnostic success, in that when AD pathology was 

high, it became much harder to distinguish DLB accurately (Weisman et al., 2007).  

The presence of cortical Lewy pathology in elderly patients without parkinsonism 

or dementia suggests a compensatory mechanism and that the formation of LB may in fact 

be neuroprotective instead of a primary cause of the disease. In addition, in an intense 

debate, many studies reported the presence of cortical Lewy bodies in non-demented PD 

patients, which revealed the relationship between LB pathology and cognitive impairment 

(Jellinger, 2009).  Jellinger et al. reported cortical Lewy pathology in non-demented PD 

patients and in elderly control subjects (Jellinger, 2009). Colosimo et al. reported multiple 

cases of clinical PD patients without dementia who, upon autopsy, were found to have 

extensive neocortical Lewy pathology consistent with that typically encountered in DLB 
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(Colosimo et al., 2003). Aho et al. found the presence of LB pathology in individuals who 

were cognitively unimpaired, (Aho et al., 2008), which was repeated by other studies 

(Parkkinen et al., 2008). The implication of these findings is that neocortical Lewy bodies 

are not necessarily the pathological correlate of dementia in PDD and DLB. Other factors 

may contribute to LB pathology and affect the development of symptoms. For example, 

glial and neuronal loss and other pathologies, such as tau and Aβ, play an important role 

(Jellinger, 2008, Parkkinen et al., 2008). 

The revised consensus of pathologic guidelines of DLB proposed two major aspects 

that should be considered in the pathology of DLB (McKeith et al., 2005). The first 

distinguishes DLB as having three phenotypes (brainstem, transitional/limbic and diffuse 

neocortical) by the semi-quantitative scoring of synuclein pathology in specific regions of 

the brain. Second, based on the various degrees of Alzheimer-related pathology, the clinical 

symptoms of DLB depend on the severity of LB pathology and are inversely related to AD 

pathology. Although the complex interaction between LB and AD pathology is not yet 

clear, some studies indicated that AD pathology triggers the formation of LB (Iseki et al., 

2003, Saito et al., 2004), and others reported that only Aβ enhanced the formation of LB 

(Pletnikova et al., 2005). The BrainNet Europe Consortium made recommendations 

regarding the immunohistochemical protocol and assessment criteria related to α-synuclein 

pathology, based on the assessment of α-synuclein-immunoreactivity in 13 defined 

neuroanatomical regions including: medulla with dorsal motor nucleus of vagus (dmV) and 

intermediate reticular zone (irx), pons with locus coeruleus (LC) and raphe (R), midbrain 

with substantia nigra (SN), basal forebrain with nucleus basalis of Meynert (nbM) and 

amygdala (AC), hippocampus with cornu Ammonis region 2 and temporo-occipital cortex 
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(CA2 and TOex), cingulate gyrus, temporal cortex, frontal cortex and parietal cortex 

(Alafuzoff et al., 2009a, Alafuzoff et al., 2008b). α-synuclein-immunoreactivity is assessed 

as being present or absent in conjunction with the type of lesions (i.e. LB or LN), 

(Alafuzoff et al., 2009a, Alafuzoff et al., 2008b) whereas Braak and McKeith staging 

protocols are semi-quantitavive (Braak et al., 2003, McKeith et al., 2005) 

 

1.6 AD pathology 

AD is the most common neurodegenerative disease. It is characterised clinically by 

progressive memory loss and cognitive impairment, leading to a gradual loss of all basic 

functions prior to death. These clinical features result from the gross atrophy of neurons 

and synapses in the cerebral cortex and certain subcortical regions (Masliah et al., 1990, 

Masliah et al., 1991, Scheff et al., 1990, Terry et al., 1991). Furthermore, a deficit in 

neurotransmitter systems, particularly the cholinergic system, and the loss of cortical and 

hippocampal choline acetyltransferase (ChAT) activity has been identified (Bowen et al., 

1976, Davies and Maloney, 1976), and correlated with dementia and cognitive impairment 

(Francis et al., 1999). 

The classical pathological hallmarks of AD are plaques formed principally of 

amyloid-beta (Aβ), and intracellular neurofibrillary tangles (NFT) composed of 

hyperphosphorylated tau (Crews and Masliah, 2010, Serrano-Pozo et al., 2011). 

Alzheimer’s type pathology is common in both DLB and PDD (Hansen et al., 1989, 

Kosaka et al., 1988, McKeith et al., 2005, Mrak and Griffin, 2007, Perry et al., 1990d), 

particularly  Aβ plaque (Tsuboi and Dickson, 2005), Some studies suggested a possible 
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interaction between Aβ peptide and α-synuclein (Jensen et al., 1997). The percentage of 

patients with high plaque counts is greater in DLB then in PDD (Harding and Halliday, 

2001). In addition, it has been reported that cognitive impairment in DLB is more likely to 

be related to Aβ (Aarsland et al., 2004). As previously mentioned, one aspect that should be 

considered in the pathological features of DLB, according to the revised consensus criteria, 

is the concurrent AD-related pathology (McKeith et al., 2005). 

A number of different pathological criteria have been developed in attempts to 

correlate pathological changes with disease progression in AD (Braak et al., 2006, Braak 

and Braak, 1991, Mirra et al., 1991, Montine et al., 2012). Braak and Braak described six 

stages based upon the occurrence and distribution of neurofibrillary tangle (NFT) and 

neuropil threads (NT) (Braak et al., 2006, Braak and Braak, 1991, Braak and Braak, 1997). 

NFTs and NPs develop slowly and symmetrically in both hemispheres, starting in the 

transentorhinal and entorhinal area before spreading to the hippocampus, the association 

cortices, and the rest of the cortex. Stage I is characterised by few NFTs and NPs in the 

transentorhinal region. In Stage II, the number of NFTs increases more prominently than in 

stage I, with beginning of entorhinal region involvement. Braak Stages I and II are both 

called the transentorhinal stage, but this stage is clinically silent. Stage III is characterized 

by the severe involvement of both the transentorhinal and the entorhinal regions and 

changes are now detectable in the hippocampus, proneocortex and some subcortical nuclei. 

In Stage IV, large numbers of “ghost tangles ’’, the remnants of intracellular NFTs where the 

neuron has disappeared (Ikeda et al., 1992), are present in both the transentorhinal and 

entorhinal regions. Moderate alterations occur in the hippocampal formation, in the 

temporal and pro-neocortical areas, and in a few subcortical nuclei. The mature neocortex 
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remains virtually free of neurofibrillary changes. The lesions that characterize stages III and 

IV are capable of producing the first clinically detectable functional deficits because the 

transfer of information between the sensory association fields, the higher-order components 

of the limbic system, and the prefrontal cortex is affected. The hallmark of stage V is the 

widespread devastation of the neocortex. All parts of the hippocampal formation are now 

involved: only the acoustic system, the primary motor field, primary sensory areas, and 

unimodal secondary fields remain uninvolved. In stage VI, lesions are visible even in the 

border areas of the primary regions. The end stages of AD are accompanied by cortical 

atrophy, a notable loss in brain weight, and severe dementia. 

The Consortium to Establish a Registry for Alzheimer’s Disease (CERAD) 

assessment is based on a combination of age-related NP scores in three neocortical regions 

(middle frontal gyrus, superior and middle temporal gyri, and inferior parietal lobule) and 

clinical history (Mirra et al., 1991). Plaque pathology is rated as sparse, moderate, or 

frequent. The highest value of the evolution is compared with the age of the patient in three 

age categories: less than 50, 50 to 75, and over 75. These scores are then integrated with 

clinical information regarding the presence or absence of dementia to reach the final 

diagnosis of AD, i.e., definite, probable or possible AD.  

A comparison of staining techniques and assessment criteria across the BrainNet 

Europe centres was conducted and concluded that use of antibodies against Aβ and 

hyperphosphorylated tau gave the highest reliability (Alafuzoff et al., 2008a, Alafuzoff et 

al., 2012, Alafuzoff et al., 2006, Alafuzoff et al., 2009b). Other schema proposed by the 

working group of the National Institutes of Health, the Reagan Institute of the Alzheimer 
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Association, and the National Institute of Aging (NIA–Reagan criteria), require the 

presence of both senile plaque and NFTs for recognition as a heterogeneous 

clinicopathological entity. Post-mortem examination alone can yield statements of the 

probability of an Alzheimer's diagnosis (Hyman and Trojanowski, 1997). The likelihood of 

AD diagnosis increases with the increased frequency of both neuritic plaques (using the 

scoring system currently used by CERAD) and NFTs in specified brain regions (using the 

staging system devised by Braak and Braak). The NIA–Reagan criteria are summarized in 

Table 1-1. 
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Table 1-1: National Institute of Aging (NIA)-Reagan criteria for Alzheimer’s disease 

CERADa senile plaque score Braak neurofibrillary tangle (NFTs) 

 NO NFT I-II III-IV V-VI 

Frequent senile plaque NOT AD Low Intermediate High 

Moderate senile plaque NOT AD Low Intermediate Intermediate 

Spare senile plaque NOT AD Low Low Low 

No Plaque NOT AD NOT AD NOT AD NOT AD 

 a Consortium to Establish a Registry for Alzheimer’s Disease 

In 2012, the National Institute on Aging and the Alzheimer's Association (NIA-AA) 

updated the 1997 guidelines to focus primarily on neuropathologic changes instead of 

clinical criteria (Montine et al., 2012). The guidelines recommend the “ABC” staging 

protocol for the neuropathologic changes of AD, based on three morphologic characteristics 

of the disease: A—the amyloid described by (Thal et al., 2002), B—the Braak 

neurofibrillary tangle (NFT) staging protocol (Braak and Braak, 1991), and C—the 

Consortium to Establish a Registry for AD neuritic plaque scoring system (Mirra et al., 

1991) (Table 1-2 and 1-3). 
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Table 1-2: AD Neuropathologic Change. Modified from (Montine et al., 2012) 

AD neuropathologic change should be ranked along three parameters 

(Amyloid, Braak, CERAD) to obtain an “ABC score”  

A. Aββββ plaque score (modified from Thal et al., 2002) 

A0: no Aβ or amyloid plaques 

A1: Thal phase 1 or 2 

A2: Thal phase 3 

A3: Thal phase 4 or 5 

B. NFT stage (modified from (Braak and Braak, 1991) 

B0: no NFTs 

B1: Braak stage I or II 

B2: Braak stage III or IV 

B3: Braak stage V or VI 

C. Neuritic plaque score (modified from Mirra et al., 1991) 

C0: no neuritic plaques 

C1: CERAD score sparse 

C2: CERAD score moderate 

C3: CERAD score frequent 

Reporting 

 “Alzheimer Disease Neuropathologic Changes: A1, B0, C0” or 

“Alzheimer Disease Neuropathologic Changes: A3, B3, C3” 

Using the system shown in Table 3, the ABC scores are transformed into one of 
four levels of AD neuropathologic change: None, Low, Intermediate or High. 
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Table 1-3: Level of AD neuropathologic change according to the revised National Institute of Aging (NIA)-Reagan criteria for 

Alzheimer’s disease (Montine et al., 2012)  

A:Aβ/amyloid plaque 

score (Thal phases)  

C: Neuritic plaque score (CERAD) Braak neurofibrillary tangle (NFTs) 

B0 or B1 (none or I/II) B3 (III-IV) B3 (V-VI) 

A0 (0) C0 (none) NOT NOT NOT 

A1 (1/2) C0 or C1 (none to sparse) Low Low Low 

C2 or C3 (moderate. To frequent) Low Intermediate Intermediate 

A2 (3) Any C Low Intermediate Intermediate 

A3 (4/5) C0 or C1 (none to sparse) Low Intermediate Intermediate 

C2 or C3 (moderate. To frequent) Low Intermediate High 

CERAD, Consortium to Establish a Registry for Alzheimer’s disease. 
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1.6.1  Aβ and Senile plaque 

Histological examinations of AD brain revealed extracellular spherical deposits of 

insoluble aggregated peptide β-amyloid fibrils (Aβ), which are referred to as senile or 

neuritic plaques (NP). Neuritic plaques are usually 10 and 200 mM in diameter. They have 

a dense core of Aβ, which was originally demonstrated by using the Bielschowsky silver 

impregnation technique by Alois Alzheimer in 1907 [reviewed by (Castellani et al., 2008, 

Castellani et al., 2010)]. This finding was confirmed by Divry in 1922 with Congo red 

staining [reviewed by (Castellani et al., 2010)]. The discovery that Congo red had a strong 

affinity for amyloid deposit that had enhanced birefringence after staining suggested that 

the amyloid deposit had an organised structure [reviewed by (Boller et al., 2007)]. 

However, the cross-β- β-pleated sheet was not discovered until Glenner et al. isolated Aβ 

from senile plaques (Glenner et al., 1971a, Glenner et al., 1971b) and later Kang et al. 

found Aβ to be a result of proteolytic cleavage of the amyloid precursor protein (APP) 

(Kang et al., 1987). Neuritic plaques are frequently associated with astrocyte, microglia and 

degenerated dystrophic neuritic processes (Mandybur and Chuirazzi, 1990). 

Multiple plaque subtypes have been described based on morphology: e.g. diffuse, 

focal or stellate. Plaques in AD are often accompanied by a corona of dystrophic cell 

processes, which are termed “neuritic” plaques [reviewed by (Duyckaerts et al., 2009)]. 

Diffuse plaques are morphologically diverse across different regions of the brain. They lack 

the compact fibrillar appearance of classical NPs, and they are not associated with glial 

responses or synaptic loss, neuritic dystrophy, or the pathogenesis of AD. They are 
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commonly found in elderly patients with intact cognitive function, suggesting that diffuse 

plaques may not be overtly toxic [reviewed by (Serrano-Pozo et al., 2011)]. Diffuse plaques 

are usually detected together with NPs, which suggested that they could mature from the 

diffuse type to the neuritic type (Joachim et al., 1989). 

 Plaque is formed when glycoprotein amyloid precursor protein (APP) cleavage 

products, Aβ, accumulates and is deposited as extracellular senile plaques in AD brain. 

Mutations in the gene encoding of APP indicated that Aβ might be central to the 

pathogenesis of AD (Selkoe, 2000). All known genetic mutations linked to familial AD and 

genetic risk factors for sporadic AD are associated with increased Aβ42 and Aβ40 (Tanzi 

and Bertram, 2005).   

APP undergoes proteolytic processing by one of two pathways: the amyloidogenic 

pathway, which leads to Aβ generation; and the anti-amyloidogenic pathway, which 

prevents Aβ generation (Haass et al., 2012). APP is cleaved within the amino terminus of 

the Aβ by membrane-associated metalloprotease α-secretase, resulting in the release of 

extracellular N-terminal fragment (APPsα) from the cell and preventing the formation of 

Aβ (Esch et al., 1990, Sisodia et al., 1990) and reviewed by (Findeis, 2007, Haass et al., 

2012, Selkoe, 2001). The remaining membrane-bound C-terminal fragment C83 might 

undergo further processing by γ-secretase, which liberates a γ-stub into the cytosol and 

leads to the secretion of p3 (Haass et al., 1993). In the amyloidogenic pathway, APP is first 

cleaved at the N-terminal region of the Aβ sequence by β-secretase, which is the enzyme 

known as BACE1 (β-site APP-cleaving enzyme), leading to the secretion of slightly shorter 

soluble N-terminus APPsβ and leaving C99 in the membrane (Haass, 2004). Subsequently, 
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γ-secretase cleavage of C99 produces C-terminal 50 residues of APP and Aβ peptide. γ-

Secretase is a multiprotein complex consisting of four individual proteins: presenilin 

(PSEN), nicastrin, Aph-1, and Pen-2 (Kaether et al., 2006).  

 

Figure 1-4: A diagram of amyloid precursor protein (APP) processing pathways 

(Carrillo-Mora et al., 2014). 

 

Aβ is a 4kD peptide consisting of 40–42 amino acid residues (Masters et al., 1985). 

Cleavage by β-secretase and γ-secretase produces a mix of peptide fragments comprised of 

39 to 43 amino acids, the common forms of which are 40 (Aβ40) and 42 (Aβ42) amino 

acids in length (Dong et al., 2012, Selkoe, 1994, Selkoe, 2001). Although both Aβ42 and 

Aβ40 are amyloidogenic and neurotoxic, Aβ42 is more prone to aggregation into 

protofibrils and fibril than Aβ40, this is because of the presence of two additional 
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hydrophobic amino acid residues (Dahlgren et al., 2002). Aβ42 is the major component of 

amyloid plaques in AD (Bernstein et al., 2009, Chen and Glabe, 2006). An elevated level of 

the Aβ42/Aβ40 ratio in the plasma was shown to correlate with familial forms of 

Alzheimer’s disease (Johnson et al., 2013). However, it is not known whether soluble Aβ or 

Aβ plaque mediate the activation of astrocytes and microglia and the injury to neurites and 

cell bodies in AD brain.  

The “amyloid cascade hypothesis” has been the focus of AD researchers during the 

last two decades (Dong et al., 2012). According to this hypothesis, aggregated Aβ leads to 

NFT formation, which in turn causes neuronal death. This progressive process manifests 

clinically as memory loss and other symptoms associated with dementia (Hardy and Allsop, 

1991, Selkoe, 1991). Many studies supported the hypothesis and that the actual Aβ is 

pathogenic: first, that neuritic plaques containing β-amyloid (Aβ) are its main component 

(Ghiso and Frangione, 2002); second, familial Alzheimer's mutations have a connection to 

the overexpression of Aβ (Tanzi and Bertram, 2005); and third, both in vivo and in vitro 

studies have shown that Aβ is toxic to neurons and reproduces the neuropathologic and 

behavioural alterations observed in patients with AD (Atwood et al., 2003). However, this 

hypothesis was recently challenged by several studies that demonstrated that Aβ not only 

exhibits neurotoxic properties but also has neuroprotective effects (Lee et al., 2007). 

Increased Aβ42 fraction, memory deficit, decreased spine density, and deficit in 

hippocampal neurotransmission were observed in Tg2576 mice expressing human APP 

before plaque deposition (Jacobsen et al., 2006). Neuronal loss within the hippocampus was 

reported in areas with and without amyloid aggregation in APP/PS-1 double-transgenic 

mice (Schmitz et al., 2004). The presence of substantial Aβ pathology in non-demented 
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controls also shed doubt upon Aβ pathology involvement in causing AD (Dickson et al., 

1992, Jellinger and Attems, 2012, Knopman et al., 2003). The poor correlation of plaques 

to clinical severity and neuronal loss has also been reported (Neve and Robakis, 1998).  

A recent version of the amyloid hypothesis stated that soluble Aβ oligomers 

contribute to the pathology of AD (Sheng et al., 2012). Several studies indicated that Aβ 

accumulated inside the cells and may cause neurotoxicity in AD (LaFerla et al., 2007). 

Intracellular Aβ was found to accumulate before plaque formation in different mouse 

models of AD and in human brain. Intracellular Aβ accumulation was reported in a PS1 

AD mouse model, which exhibit AD-like neurodegeneration without plaques (Chui et al., 

1999). All these evidence suggested that soluble Aβ initiates AD pathology.  

1.6.2 Neurofibrillary tangles 

NFTs are a major histopathological hallmark of AD. NFTs do not appear to be 

specific to AD as they are also seen in several other human neurodegenerative diseases, 

such as Parkinson’s disease, progressive supranuclear palsy (PSP), corticobasal 

degeneration (CBD), frontotemporal lobar degeneration (FTLD) (Apaydin et al., 2002, 

Braak et al., 2005). Although NFTs appear in many neurodegenerative diseases, in AD, 

they are a very important marker because of the strong correlation with cognitive 

dysfunction, synaptic dysfunction, and brain atrophy. Moreover, NFT density parallels the 

duration of AD and the severity of dementia (Arriagada et al., 1992a, Eckermann et al., 

2007, Takashima, 2009). 

NFTs form when tau protein becomes hyperphosphorylated and accumulates in the 

form of soluble tau aggregates and insoluble paired helical filaments (PHF) that often 
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occupy the cell body and extend into the apical dendrite [for review, see (Ballatore et al., 

2007)]. Other proteins in NFTs include ubiquitin (Love et al., 1988, Perry et al., 1987), 

cholinesterases (Mesulam and Asuncion Moran, 1987) and Aβ (Hyman et al., 1989), but 

tau is considered its critical constituent (Dong et al., 2012, Duan et al., 2012, Perl, 2010). 

Tau is a microtubule-associated protein. Under normal physiological conditions, because of 

its phosphorylation state, tau is involved in the assembly and stabilization of microtubules 

through the action of many kinases and phosphatases on the tau molecule (Kosik et al., 

1986, Mandelkow and Mandelkow, 1995, Mandelkow et al., 1995). In AD, abnormal 

hyperphosphorylated tau decreases its tubulin binding capacity, which leads to the 

detachment of tau from microtubules. Cytosolic concentration is then increased, promoting 

the disorganisation of microtubules, which then self-polymerize and aggregate in the form 

of PHFs and NFTs (Dong et al., 2012, Duan et al., 2012, Perl, 2010).  

Neurofibrillary lesions found in AD brains include NFTs in neuronal cell bodies, 

threads and dystrophic neurites in processes (Duyckaerts et al., 2009). However, NFTs 

survive the degeneration of tangle-bearing neurons and may be released into the 

extracellular space of the AD brain. These extracellular NFTs are referred to as “ghost 

tangles” (Ikeda et al., 1992). Consequently, tau pathology shows a regular, highly area-

specific spread throughout the brain during the progression of the disease, allowing its 

classification into the six Braak stages mentioned previously, based on tau pathology and 

its correlation with clinical severity (Braak and Braak, 1991).  

An increasing amount of evidence has suggested that tau pathology is induced by 

Aβ (Duyckaerts et al., 2009). In fact, a substantial accumulation of NFTs has been observed 
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in neurodegenerative diseases, such as fronto-temporal lobar degeneration (FTLD), without 

Aβ peptide accumulation (Hutton et al., 1998), whereas mutations of APP causing an 

increase in Aβ production initiated a pathway terminating in production of tau pathology 

(Goate, 2006, Goate et al., 1991, Goate and Hardy, 2012). The addition of Aβ to transgenic 

mice expressing a human isoform of tau was reported to increase the rate of tau 

phosphorylation and accumulation of NFTs (Gotz et al., 2001). Aβ oligomers promoted the 

phosphorylation of tau in primary cultures of hippocampus or in neuroblastoma cells (De 

Felice et al., 2008). Aβ was shown to increase phosphorylation and decrease its ability to 

bind microtubules (Busciglio et al., 1995). Ittner and Gotz indicated that tau 

hyperphosphorylation occurred in APP transgenic mice, and in tau transgenic mice there 

was no Aβ pathology (Ittner and Gotz, 2011). Although these studies suggested that tau 

pathology is downstream of Aβ plaque, Roberson et al., 2007, demonstrated that tau 

knockout mice was less susceptible to Aβ and experimentally induced seizures (Roberson 

et al., 2007).  Based upon these studies still the link between Aβ and tau pathologies 

remains one of the significant outstanding questions of AD research.  
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1.7 Neurotransmitter abnormalities 

1.7.1 The cholinergic system 

Accumulating evidence now indicates that cholinergic dysfunction is involved in 

the pathogenesis of Lewy body dementia. It has been reported that in DLB brains, there 

was a significant reduction in ChAT activity, particularly in the cerebral cortex, which was 

associated with cognitive impairment and hallucination (Ballard et al., 2000b, Perry et al., 

1990a, Perry et al., 1990b, Tiraboschi et al., 2002). Furthermore, ChAT activity was also 

reduced in the thalamus in cases with PDD (Ziabreva et al., 2006). In the neocortex, 

reduced choline acetyltransferase levels occurred earlier in the disease course in DLB than 

in AD, and it was independent of coexistent AD changes (Davis et al., 1999, Perry et al., 

1994, Tiraboschi et al., 2002). In addition, the significant loss of cholinergic 

pedunculopontine tegmental nuclei/laterodorsal tegmental nuclei neurons was reported in 

DLB brains (Schmeichel et al., 2008). Furthermore, elevated levels of both cholinergic 

nicotinic and muscarinic receptors were identified in DLB brain. Investigations of nicotinic 

receptor binding showed a reduction in nicotinic acetylcholine receptor (nAChRs) binding 

containing β2 and α4, in common with AD (Colloby et al., 2010, Court et al., 2000, Gotti et 

al., 2006, Perry et al., 1995, Perry et al., 1990c). The nAChRs deficit in DLB was found to 

be correlated with ChAT reduction in DLB (Reid et al., 2000). Increased nAChRs binding 

was also reported as occipital in DLB and was linked to hallucinations (O'Brien et al., 

2008). Recently, an imaging study showed that nicotinic α4 and β2 receptors correlated 

with cognitive progression in DLB and PDD (Colloby et al., 2010). Muscarinic 

acetylcholine receptors (mAChRs) and the muscarinic receptor subtypes (m1-m4) were also 

implicated in the pathophysiology of both DLB and PDD (Ballard et al., 2000b, Shiozaki et 
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al., 2001, Shiozaki et al., 1999).  The expression levels of mAChRs were varied in different 

brain regions, with a reduced total amount of mAChRs in DLB compared to the control 

(Ballard et al., 2000b, Shiozaki et al., 2001, Shiozaki et al., 1999). The muscarinic receptor 

subtypes of the m3 in the frontal cortex were significantly increased when the m4 receptor 

was significantly decreased in the temporal cortex, compared with the control specimens 

(Shiozaki et al., 1999). 

1.7.2 The dopaminergic system 

The involvement of the dopaminergic system in DLB and PDD has been considered 

as the main neuropathological hallmark in Parkinson’s disease is the loss of dopaminergic 

neurons in the substantia nigra pars compacta (SNpc). In DLB post-mortem studies 

reported reductions in dopamine levels in the rostral caudate nucleus (Perry et al., 1990b) 

and also in substantia nigra (SN) neurons in DLB (Perry et al., 1993). The reduction in 

dopamine D2 receptors was correlated with cognitive decline in the temporal cortex of 

DLB patients (Piggott et al., 2007). The densities of dopamine D1 and D2 receptors 

densities were reduced in DLB caudate putamen by 57% and 20%, respectively, compared 

to the controls, and dopamine levels were reduced by 72% in these patients (Piggott et al., 

1999).  
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1.7.3 Other neurotransmitter systems 

The significance of other neurotransmitter systems, such as the glutamatergic, 

serotonergic, and noradrenergic systems, have not been extensively studied in DLB. In 

addition, they have not been linked to the pathology of the disease or to clinical symptoms 

and progression. One study demonstrated that there was no change in the expression of the 

glutamate transporter, excitatory amino acid transporter 1 (EAAT1) in DLB, in contrast 

abnormal expression of EAAT1 was observed in cases showing Alzheimer-type 

neuropathology (Scott et al., 2002). However other studies have reported impairment in 

metabotropic glutamate receptors (mGluRs) transduction pathway with significant 

reduction of the expression levels of mGluR1 in cerebral cortex in DLB (Albasanz et al., 

2005). Furthermore reduction in glutamate receptor immunoreactivity in the hippocampus 

and entorhinal cortex of patient with Lewy body variant of AD has been also observed 

(Thorns et al., 1997). More research is needed to determine the possible role of 

glutamatergic systems in DLB using a range of markers  (Francis, 2003). 
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1.8 Treatment of LBD 

Currently, no specific drug has been identified for the treatment of Lewy body 

dementia. Neuroleptic or antipsychotic medications, which are often used to treat 

hallucinations, are known to exacerbate the extrapyramidal features of DLB. 

Approximately 50% of individuals with DLB elicit sensitivity to neuroleptic agents 

(Aarsland et al., 2005b, McKeith et al., 1992), and high frequencies were reported in both 

Parkinson's disease (27%) and PDD (39%) (Aarsland et al., 2005b). In contrast, severe 

neuroleptic sensitivity was not seen in patients with AD (Aarsland et al., 2005b). 

Quetiapine, which is often used for the treatment of agitation and other symptoms of 

psychosis, showed no effect on agitation or other psychosis and did not worsen 

parkinsonism (Kurlan et al., 2007). Randomized controlled trials comparing the effects of 

citalopram and risperidone in DLB and AD reported worsening psychotic symptoms in 

DLB patients (Culo et al., 2010). This finding suggests that antipsychotic medication for 

the treatment of Lewy body dementia cannot be considered the first choice in treating and 

managing psychotic symptoms, especially when they are not severe.   

Dopaminergic drugs, such as L-dopa, which is the main medication used in the 

treatment of motor symptoms in PD, are also often used to treat the motor symptoms in 

DLB. L-dopa has been shown to improve parkinsonian symptoms in DLB and PDD, but 

was less successful compared to the benefits in PD (Molloy et al., 2005). Molloy et al. 

demonstrated an improvement in neuropsychiatric score in PD and PDD (Molloy et al., 

2005).  The use of L-dopa is problematic because it has a deleterious effect on psychotic 

symptoms, such as hallucinations, hypersomnolence, and orthostatic hypotension 

(Mosimann and McKeith, 2003).  
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The N-methyl-D-aspartate (NMDA) antagonist memantine is approved for the 

treatment of cognitive symptoms in AD (McShane et al., 2006). There have been 

conflicting reports regarding memantine and psychiatric symptoms in DLB and PDD. 

Studies have reported both worsening and improvement in equal measures (Ridha et al., 

2005, Sabbagh et al., 2005). Ridha et al. described worsening psychotic symptoms, 

including visual hallucinations and delusions in three LBD patients, caused by memantine 

treatment (Ridha et al., 2005), whereas Sabbagh et al. reported the reduction of visual 

hallucinations and improvement in cognition (Sabbagh et al., 2005). Recently, three 

randomized control trials suggested that memantine might be potentially effective for the 

treatment of DLB but not PDD (Aarsland et al., 2009, Emre et al., 2010, Leroi et al., 2009). 

The first study, by Leroi et al., was a randomized, placebo-controlled trial of 25 patients 

with PDD over 22 weeks (Leroi et al., 2009). At the end of the drug treatment (week 16), 

there was no significant difference between the placebo-controlled and the memantine-drug 

groups according to an efficiency parameter: Mini-mental State Exam (MMSE), Dementia 

Rating Scale (DRS), Neuropsychiatric Inventory (NPI), and Unified Parkinson’s Disease 

Rating Scale (UPDRS). However, six weeks following the withdrawal of the drug, a greater 

number of participants treated with memantine deteriorated (p = 0.04), compared to 

patients treated with the placebo (Leroi et al., 2009). Second, Aarsland et al. conducted a 

double blind, placebo-controlled study over 22 weeks with 72 patients with mild to 

moderately severe DLB and PDD (Aarsland et al., 2009). The results demonstrated a 

moderate benefit to patients using the Clinical Global Impression of Change (CGIC) scale, 

with greater effects shown in the PDD group (Aarsland et al., 2009). The third and largest 

study was double blind, placebo-controlled, 22-week duration, with 199 (121 with PDD 
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and 78 with DLB) patients with mild to moderately severe PDD and DLB (Emre et al., 

2010). Emre’s study revealed that DLB group treated with memantine showed greater 

improvement according to the CGIC analysis, compared to the DLB placebo group. 

However, the difference was not significant in PDD (Emre et al., 2010). Furthermore, more 

patients on placebo group were deteriorated.  Similarly there was a significant improvement 

in neuropsychiatric outcomes (specifically in delusions, hallucinations, sleeping/night-time 

behaviour and appetite/eating disorder) in the memantine DLB group, compared to the 

placebo DLB group although the difference was not significant in the PDD group (Emre et 

al., 2010). The results of a cognitive test showed that none of the DLB or PDD patients 

showed any consistent effect with memantine treatment. The findings by Emre were 

contrasted with those by Aarsland et al., who demonstrated that memantine improved 

attention, executive function and global cognition, but no improvement with NPI score. In 

addition, Aarsland et al. found a more pronounced global benefit of memantine in PDD 

compared to DLB (Aarsland et al., 2009, Emre et al., 2010). These contrary findings make 

it very difficult to determine whether memantine is beneficial in DLB and/or PDD or not. 

Cholinesterase inhibitors, such as Exelon (rivastigmine), Aricept (donepezil) and 

Razadyne (galantamine), have been approved and licensed for the symptomatic treatment 

of patients with mild to moderate AD (Ballard et al., 2011, Farrimond et al., 2012, Pettenati 

et al., 2003). These drugs work by increasing the level of ACh in the brain by inhibiting or 

blocking the enzyme in charge of its breakdown, which is the job of acetylcholinesterase 

(AChE) (Francis et al., 1999). Several randomized, placebo controlled studies of 

rivastigmine, donepezil, and galantamine in AD showed a modest benefit in mild to 

moderate cases, and a few studies showed benefit in severe AD (Ballard et al., 2011). 
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Cholinesterase inhibitors showed moderate improved cognition and stabilized function, 

improved behavioral symptoms, improvements in mood (particularly apathy), delayed 

nursing home placement, maintained daily function and quality of life (Ballard et al., 2011, 

Birks, 2006, Birks et al., 2009, Wilkinson et al., 2009).  However, possible side effects, 

such as vomiting and diarrhoea, proved difficult for the patient (Potyk, 2005, Standridge, 

2004).  

In DLB, evidence of the involvement of cholinergic deficits prompted researchers to 

study the effects of cholinesterase inhibitors in DLB and PDD. However, there are still 

relatively few data on their use in both DLB and PDD. There have been only two placebo-

controlled randomised controlled trials of rivastigmine: one for DLB and one for PDD. 

Only one trial of donepezil has been conducted on PDD (Dubois et al., 2012, Emre et al., 

2004, McKeith et al., 2000). McKeith et al. showed a statistically and clinically significant 

improvement in neuropsychiatric symptoms in DLB patients, which was the primary 

outcome of the study, in addition to benefits in cognition and function (McKeith et al., 

2000). Following McKeith et al., a few open open-label studies were conducted to study the 

effects of cholinesterase inhibitors on PDD. Reading et al. studied the efficacy of 

rivastigmine in 12 PDD patients and reported an improvement in cognition measured by 

MMSE, as well as improvement in the neuropsychiatric symptoms measured by NPI 

(Reading et al., 2001). No changes were reported in motor symptoms. In contrast, Giladi et 

al. reported an increase in Unified Parkinson Disease Rating Scale (UDPRS) scores and a 

non-significant improvement after eight weeks of rivastigmine, and the results of an MMSE 

test showed significant improvement to attention. In addition, worsening cognitive 

measurement according to the Alzheimer’s Disease Assessment Scale (ADAS-cog) was 
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found throughout the study period (Giladi et al., 2003). Following these open label studies, 

a large randomized, placebo-controlled clinical trial with 410 PDD patients showed that 

rivastigmine significantly improved cognition function and neuropsychiatric symptoms, 

compared to the placebo group (Emre et al., 2004). However, patients treated with 

rivastigmine exhibited side effects, including parkinsonian symptoms, in addition to 

worsening of tremor and dizziness (Emre et al., 2004). The Emre study indicated that 

hallucinations and orthostatic hypotension were more common in the placebo group (Emre 

et al., 2004). Although the efficacy was modest, the results of the Emre study have led to 

the use of rivastigmine in PDD patients. The study was followed up by an open-label study, 

which reported that the beneficial effects observed during the first six months of the trial 

were largely maintained, and the safety profile was similar to that in the Emre study (Poewe 

et al., 2006). Wesnes et al. reported the benefits of rivastigmine in attention in PDD patients 

enrolled in Emre et al. (Wesnes et al., 2005).  

Only one large randomized, placebo-controlled clinical trial of donepezil has been 

conducted for PDD in 550 mild to moderate PDD patients over 24 weeks. This study found 

no significant differences in cognitive function measured by ADAS-cog in the activity of 

daily living scale and in the behavioural scale (Dubois et al., 2012). Adverse effects were 

more common in PDD patients treated with donepezil compared to patients treated with 

placebo, but they were mostly mild to moderate in severity.  

Based on the clinical trials conducted with AChEIs in PDD and DLB patients, the 

Cochrane review has identified rivastigmine as beneficial in the treatment of cognitive 

impairment in PDD (Maidment et al., 2006, Rolinski et al., 2012). Although there is a still a 
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debate regarding the efficacy of cholinesterase inhibitors in DLB and PDD, it is the most 

frequently used drug in the treatment of neuropsychiatric symptoms in these patients. In 

fact, rivastigmine has been approved and licensed for the treatment of PDD in Europe, the 

US, and elsewhere (Reingold et al., 2007).     
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1.9 The ubiquitin proteasome system  

The ubiquitin-proteasome system (UPS) is the major proteolytic pathway 

responsible for the clearance of short lived proteins, and is found in all eukaryotes and 

archaea and some bacteria (Dahlmann et al., 1989, Gille et al., 2003). UPS regulate most 

cellular processes, including: protein ‘‘quality control’’(Brodsky and McCracken, 1999), 

stress (Bregere et al., 2006, Mathew et al., 1998),  immune responses (Borissenko and 

Groll, 2007b, Kloetzel et al., 1999), cell cycle regulation (Takeuchi and Toh-e, 1997), 

deoxyribonucleic acid (DNA) repair (Bergink et al., 2006, Walters et al., 2003) and gene 

expression (Blagosklonny et al., 1996, Wu et al., 2000, Zimmermann et al., 2001). 

Proteasomes are also responsible for the degradation of misfolded and damaged proteins, 

which is essential for maintaining cellular homeostasis. The most common form of 

proteasome in eukaryotic cells is the 26S (S=Svedberg sedimentation coefficient) 

proteasome, consisting of two subcomplexes: the 20S ~700 kDa core particle (CP) 

sandwiched between two 19S regulatory particles (RP) (Glickman and Ciechanover, 2002). 

The 26S is a part of the main pathway, which is the ubiquitin proteasome system (UPS). 

Protein degradation by the UPS is a process that occurs in two discrete and successive 

steps: first, the covalent attachment of the poly-ubiquitin chain to the protein substrate is 

recognised by the 26S, and then it is degraded by the 26S proteasome complex (Glickman 

and Ciechanover, 2002). 
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1.9.1 Structure and components of the 26S proteasome 

1.9.1.1 The 20S core particle 

The 20S sub-complexes are cylinder-like structures, composed of 28 α and β 

subunits organized in four stacked rings, ∼150 Å X ∼120 Å in dimension (Groll et al., 

1997). Each of the two outer rings contains seven different α subunits, and each of the inner 

two rings contains seven different β subunits, resulting in a symmetrical structure: (α1 – 7)-

(β1 – 7)-(β1 – 7)-(α1 – 7) (Lowe et al., 1995) (Figure 1-4).  
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Figure 1-5: Model structure of the 26S and 20S proteasome. 

The 26S proteasome consists of a catalytic core, 20S, and a regulatory particle, 19S. The 

20S consists of 28 α and β subunits, organized in four stacked rings. Each of the inner two 

rings contains seven different β subunits. Three of the β subunits (β1, β2, and β5) in each β 

ring contain the proteolytic active sites where the proteolysis of the protein occurs. The two 

outer rings contain seven different α subunits that serve as anchors for the 19S (PA 700) 

that bind to form 26S. The 11S (PA 28) can also bind the 20S and activate the proteasome 

to degrade non-ubiquitinated protein in an ATP-independent manner. Figure taken from 

(McNaught et al., 2001).  
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Three of the β subunits (β1, β2, and β5) in each β-ring contain the proteolytic active 

sites where proteolysis occurs. These β subunits belong to the superfamily of N-terminal 

nucleophile (Ntn) hydrolases (Seemuller et al., 1995); these enzymes use the side chain of 

the amino-terminal residue as the nucleophile in the catalytic attack at the carbonyl carbon. 

In the proteasome, the nucleophile is threonine (Seemuller et al., 1995). The active sites of 

the 20S proteasome face the inner wall of the core particle, termed proteolytic chamber 

(Groll et al., 1997). Each of these three subunits has its own specificity: the β1 subunit has 

a peptidyl-glutamyl peptide-hydrolyzing (PGPH)-like activity site and cuts preferentially 

after acidic residues; the β2 subunit has a trypsin-like activity site and cuts mainly after 

basic residues; and the β5 subunit has a chymotrypsin-like activity site and cuts mainly 

after hydrophobic residues (Borissenko and Groll, 2007a, Dick et al., 1998). In response to 

Interferon-gamma (IFN-γ) induction, cells are able to produce immunoproteasomes, which 

replace the active β subunits β1, β2, and β5, with β1i also named low molecular weight 

protein 2 (LMP2), β2i multicatalytic endopeptidase complex-like 1 (MECL-1), and β5i low 

molecular weight protein 7 (LMP7), respectively (Yewdell, 2005). Immunoproteasomes 

play a critical role in immune defence, due to their ability to generate specific antigenic 

peptides produced following degradation displayed on major histocompatibility complex 

(MHC) class I molecules (Yewdell, 2005).  

The average size of the peptides generated by the proteasome are 8–12 residues 

(Kohler et al., 2001), but they could vary as much as 2–35 (Luciani et al., 2005). The vast 

majority of these products are further degraded into individual amino acids by cytosolic 

aminopeptidases, such as amino peptidases or tripeptidyl peptidase (TPPII) (Reits et al., 
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2004). However, a small portion of the peptides produced following degradation are used 

for antigen presentation by MHC class I molecules (Reits et al., 2004, York et al., 2003). 

In order for the target protein to be hydrolysed by the 20S proteolytic core, protein 

should enter the core particles, which are closed by the N-terminal tails of several α 

subunits (α-2, α-3, and α-4) to obstruct the entrance (Groll et al., 2000). The N-termini of 

the α-3 subunit play a critical role in the central channel sealing formation, as shown in the 

crystal structure of the CP (Groll et al., 2000). Deleting the N-terminal tail of the α-3 

subunit increases the peptidase activity of the CP by opening the gate of the catalytic core 

(Groll et al., 2000). Mild chemical treatment of the purified 20S proteasome with low levels 

of sodium dodecyl sulphate (SDS) induce a slight unfolding of the proteasome subunits, 

resulted in a significant increase of proteolytic activity causes by gate opening in the α-

ring.(Coux et al., 1996). In eukaryotes, entry of the substrate to the catalytic chamber can 

be controlled by binding to the 19S regulatory complex forming the 26S proteasome 

complex, which increases activity up to ten-fold (Adams et al., 1998, Glickman et al., 

1998b). 19S regulatory complex induces unfolding of the ubiquitinated substrate; and 

opens the gate, allowing entry of the substrate to the proteolytic core (Stadtmueller and 

Hill, 2011). The 19S activator can bind to one, or both ends of a 20S proteasome 

(Stadtmueller and Hill, 2011, Voges et al., 1999), resulting in rearrangement of the N-

terminal tails of the α subunits and opening the gate (Groll et al., 1997). There are other 

activators of the proteasome, such as interferon-induced 11S complex (PA28) (Stadtmueller 

and Hill, 2011).  
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1.9.1.2 The 19S regulatory particle   

The hydrolysis of peptide bonds and the proteolytic activity of the 26S is performed 

by the 20S CP, while substrate recognition and translocation is regulated by the 19S RP. 

The 19S RP has several roles in regulating ubiquitin-dependent proteasomal activity. The 

26S is ATPase dependent, and the 19S RP provides the ATP for the proteasome function. 

The 19S RP is responsible for the recognition of polyubiquitinated protein substrates, 

unfolding of the protein substrate, and translocation of the substrate to the PC (Figure 1-6) 

(Tomko and Hochstrasser, 2013). The 19S RP bind to the 20S PC to activate the 

proteasome and open the gate of the pore, which is normally closed by α subunits 

(Glickman and Ciechanover, 2002, Tanaka, 2009). 19S also generate monomeric ubiquitin 

in the deubiquitination step by cleaving the polyubiquitinated chain (Tanaka, 2009). 

The 19S can be subdivided into the “base” and the “lid”, which together consist of 

at least 17 subunits (Glickman et al., 1998a, Glickman et al., 1998b). The base of the 19S 

RP binds directly to the α subunits of 20S CP; and responsible for gate opening, activating 

the proteasome, and substrate unfolding, whereas the “lid” is involved in substrate 

recognition (Tomko and Hochstrasser, 2013). The base consists of nine subunits, including 

six ATPases, referred to as RP Triphosphatases (RPT) that form a heterohexameric ring 

(Tomko et al., 2010), and four RP Non-ATPases, these  including Rpn1 and Rpn2, and the 

ubiquitin receptors Rpn13and Rpn10 (Tomko and Hochstrasser, 2013). The lid consists of 

nine subunits (Rpn3, 5–9, 11, 12, and 15), of which just one, the deubiquitylase Rpn11, 

displays enzyme activity. 
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The ATPases belong to a family of chaperone-like ATPases known as the AAA 

family, which is an abbreviation for “ATPases associated with a variety of cellular 

activities” (Soto, 2003). The six ATPases are encoded by different genes; RPT2 (PSMC1), 

RPT1 (PSMC2), RPT5 (PSMC3), RPT3 (PSMC4), RPT6 (PSMC5), and RPT4 (PSMC6) 

genes (Takalo et al., 2013). These subunits share substantial sequence similarity; they all 

contain conserved 200 amino acid ATP-binding domains (Djuranovic et al., 2009, Lander 

et al., 2012, Zhang et al., 2009a). Each AAA domain contains Walker A and Walker B 

motifs required for ATP binding and hydrolysis respectively (Rubin et al., 1998). At the N-

terminus, RPT subunits also contain N-terminal coiled-coil (CC) domains, where the RPT-

RPT subunits hold each other, and a central oligonucleotide/oligosaccharide binding (OB) 

domain (Djuranovic et al., 2009, Lander et al., 2012, Zhang et al., 2009a). 

The six ATPases bind to the core particle (CP) through an interaction between C-

terminal hydrophobic-tyrosine-X (HbYX) motif of RPT2, RPT3, and RPT5 and the α 

subunits of the CP (Kohler et al., 2001, Rabl et al., 2008, Smith et al., 2007). During the 

regulatory particle (RP) assembly, RPT6 binds with high specificity to the α2α3 CP pocket 

through its HbYX motif (Park et al., 2013). When the lid complex joins the proteasome, the 

RPT6–CP bond is broken to accommodate stable binding of RPT2/3/5 in mature 

proteasomes (Park et al., 2013).  

There are about 14 non-ATPase subunits, each of which has a different structure 

and function. The functions of most of the non-ATPase subunits are still largely unknown 

(Ehlinger and Walters, 2013). The four non-ATPase subunits within the base subcomplex 

are the scaffolding proteins Rpn1 and Rpn2 and the ubiquitin receptors Rpn10 and Rpn13 
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(Glickman et al., 1998). Rpn1 and Rpn2 are the largest subunits at the proteasome; both 

contain proteasome/cyclosome (PC) repeats (Kajava, 2002). The PC repeats have been 

shown to interact with the N-terminal end of the  Rpt6/Rpt3 coiled-coil (CC) domains, 

while the Rpt1/Rpt2 CC pair appears to interact with Rpn1 (Beck et al., 2012). Both Rpn1 

and Rpn2 properly function as scaffolds for the assembly of the ATPase subunits (Pedersen 

and Heegaard, 2013). One of the most important functions of the 19S RP is recognition of 

the substrate by binding the poly-ubiquitin chain. Rpn10 was the first proteasome subunit 

found to function as a ubiquitin-binding protein (Fu et al., 1998).  

 

 

 

 

 

 



 

 

 

Figure 1-7: 19S proteasome functions
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1.9.2 Proteasome degradation pathway 

For recent reviews on the proteasome function, structure and pathway see (Jung and Grune, 

2012, Tanaka, 2009, Tomko and Hochstrasser, 2013). Ubiquitin (Ub) is a highly 

evolutionarily conserved, 76-amino-acid residue polypeptide (Weissman, 2001). Protein 

ubiquitination is an enzymatic, protein post-translational modification (PTM) that forms an 

isopeptide bond between the terminal glycine residue of the ubiquitin and lysine in the 

target protein. Ubiquitination of a protein is carried out by a set of three different enzymes: 

ubiquitin-activating enzyme (E1), ubiquitin-conjugating enzyme (E2), and ubiquitin ligase 

in an ATP-dependent manner (E3) (Pickart, 2001). In the first step, Ub becomes activated 

by the E1 enzyme producing a high-energy (Ub-E1) thiolester intermediate (Groettrup et 

al., 2008). The E2 enzyme then carries the activated Ub from E1 and catalyses its transfer 

to the next destination which is either E3 HECT (homologous to E6-AP terminus) ligase by 

forming a covalent (thiolester) bond between the ubiquitin and E3 before transferring it to 

the substrate, or by the direct transfer of Ub from the Ub-E2 complex without the addition 

of thiolester to a specific substrate protein via E3 RING (Really Interesting New Gene) as 

shown in (Figure 1-7) (Michelle et al., 2009). The E3 ligase sequentially elongates the Ub 

chain by attaching other Ub molecules on the Lys residue of the first Ub molecule and 

creating Ub-Ub isopeptide bond (Deshaies and Joazeiro, 2009). In some substrates, an 

additional enzyme, E4 (also called E4 ligases), a type of E3-like enzyme, catalyses chain 

extension (Hoppe, 2005, Koegl et al., 1999). There are seven Lys residues in Ub (K6, K11, 

K27, K29, K33, K48, and K63) (Pickart and Fushman, 2004). The polyubiquitin chain at 

K48 is the most common signal recognised by the 26S proteasome for protein degradation 

(Chau et al., 1989, Finley et al., 1994). Following the ubiquitination step, substrates are 



 

 

65 

 

delivered to the proteasome for degradation step (Hochstrasser, 1996). Rpn10 and Rpn13 

are the proteasome components that contain Ub binding domain and function as Ub 

receptors (Deveraux et al., 1994, Husnjak et al., 2008, Schreiner et al., 2008). Three other 

proteins, Rad23 (radiation gene 23), Dsk2 (dominant suppressor of Kar2) and Ddi1 (DNA 

damage molecule-1) contain both a UBL domain and a polyubiquitin-interacting ubiquitin-

associated (UBA) domain. These three proteins function as “shuttling” proteins that transfer 

polyubiquitylated protein substrates to the 26S proteasome (Welchman et al., 2005). After 

attachment of the substrate to the proteasome, a deubiquitination reaction takes place before 

substrate unfolding and degradation by the proteasome component Rpn11 (Verma et al., 

2002). Some substrates, however, do not require the attachment of Ub in order for 

degradation degraded by the proteasome (Shringarpure et al., 2003). Several substrates 

have recently been found to be Ub-independent, where the targeted role of Ub can be 

replaced by other protein or by signal in the sequence of the protein undergoing degradation 

(Finley, 2009, Orlowski and Wilk, 2003). 

 

 



 

 

 

Figure 1-8: Overview of protein degradation by the UPS. 
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substrate, which can be reused for another process. (The idea of the figure was taken from 

(Pagan et al., 2013) with adding both RING (A) and HECT (B) ligases not only RING as 

shown in the original figure) 

 

1.9.3 Role of UPS in regulating synaptic function 

In the central nervous system, communications between neurons take place at the 

synapse by a process called synaptic transmission reviewed by (Sudhof, 2004). The synapse 

consists of a presynaptic terminal, a synaptic cleft and a postsynaptic terminal. Synaptic 

transmission begins when the action potential travels down the presynaptic cell to the 

synapse. The depolarization causes the voltage gated calcium channel to open. Calcium 

diffuses into the presynaptic neurons and triggers synaptic vesicle exocytosis, enabling the 

vesicle to release neurotransmitters into the synaptic space. The released neurotransmitters 

bind to receptors on the postsynaptic neurons, thus enabling signalling to be transmitted 

towards the cell body of the postsynaptic neuron (Sudhof, 2004). In the last few years, a 

considerable amount of literature has been published on the role of UPS in regulating 

synaptic function. In synaptosomes fraction, acute depolarization in the presence of Ca2+ 

results in a global decrease in ubiquitin positive proteins as a specific result of 

deubiquitination, rather than of protein degradation, suggesting that UPS modifying 

presynaptic function through ubiquitination and protein turnover takes place as a result of 

synaptic activity (Chen et al., 2003). 

Evidence of the role of UPS in regulating synaptic function at the presynaptic 

terminal also comes from the fact that proteins involved in the synaptic vesicle cycle are 
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targeted at the proteasome for degradation. Examples of these proteins include 

synaptophysin, syntaxin and Rab3-interacting molecule 1α (RIM1α) (Chin et al., 2002, 

Wheeler et al., 2002, Yao et al., 2007). Synaptophysin is an integral membrane protein in 

synaptic transmission, implicated in neurotransmitter release. (Alder et al., 1995, Mullany 

and Lynch, 1998). Syntaxin is a presynaptic protein that plays a role in synaptic vesicle 

exocytosis. RIM1α functions to form a presynaptic scaffold that links synaptic vesicles with 

fusion machinery, priming vesicles for release. This function of RIM1α is controlled by a 

ubiquitin ligase F-box protein, SCRAPPER, which regulates the amount of RIM1α (Yao et 

al., 2007). SCRAPPER knockout mice exhibit impaired short-term synaptic plasticity due 

to an increase in the expression level of RIM1, suggesting that SCRAPPER regulates 

synaptic transmitter release (Yao et al., 2007). 

Inhibition of the UPS in drosophila neuro-muscular junction NMJ increases the 

level of Drosophila Uncoordinated Protein 13 (DUNC-13), leading to a strengthening of 

neurotransmission, compared to controls (Aravamudan et al., 1999). Increased synaptic 

transmission after inhibition of the proteasome may be due to DUNC-13 accumulation, as 

DUNC-13 is found to be ubiquitinated and accumulated at the presynaptic terminal, 

suggesting that DUNC-13, which is a critical protein for priming the synaptic vesicles, is a 

substrate for UPS (Aravamudan and Broadie, 2003). 

The regulatory role of the proteasome is also possible by controlling the size of the 

recycling pool of the synaptic vesicles. Thus, Willeumier et al. have found that, in cultured 

hippocampal neurons, acute inhibition of the proteasome results in an increase in the size of 

the recycling vesicle pool, whereas the rate of release is unaffected (Willeumier et al., 
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2006). Willeumier showed that this mechanism was independent of protein synthesis. 

These observations suggest that proteasomal degradation at the presynaptic terminal may 

act as a negative mechanism to perturb exocytotoxic activity (Willeumier et al., 2006).  

Many studies have indicated that the UPS regulates a variety of proteins that are 

involved in the postsynaptic response, including neurotransmitter receptors and 

postsynaptic density proteins (Hegde, 2010, Tai and Schuman, 2008, Yi and Ehlers, 2007). 

For example, PSD-95 is a postsynaptic protein involved in cellular scaffolding and 

regulating the localization of AMPA receptors (AMPARs) and NMDA receptors 

(NMDARs) (Schluter et al., 2006). PSD-95 provides a docking site for the AMPA receptor. 

In response to AMPA activity, PSD-95 undergoes ubiquitination by the E3 ligase Mdm2, 

and its removal from the synapse is mediated by the UPS in response to NMDARs 

activation. PSD-95 degradation leads to AMPA receptor internalisation and mutation or 

inhibition of the proteasome that blocks PSD-95 ubiquitination. Blocking the 

internalization of AMPARs can be induced by direct stimulation of NMDARs (Colledge et 

al., 2003). The stimulation of AMPA receptors leads to a decrease in dendritic PSD-95 in a 

proteasome-dependent manner, while the over-expression of PSD-95 inhibits AMPAR 

endocytosis (Bingol and Schuman, 2004). Several other proteins including both receptors 

and receptor-associated PSD proteins, in addition to PSD-95, such as glutamate receptor 

interacting protein 1 (GRIP1), protein interacting with C-kinase 1 (PICK1) and Spine-

associated RapGAP (SPAR), appear to be regulated by UPS (Lin and Man, 2013).  
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Taken together, these findings suggest that UPS is an essential component for the 

regulation of synaptic proteins. Impairment of the proteasome may play an important role 

in synaptic defects in adult brains under normal and diseased conditions.  

1.9.4 The UPS in neurodegenerative disorders 

Most neurodegenerative diseases are characterised by intracellular inclusion or 

extracellular aggregate in specific brain areas (Ross and Poirier, 2004, Soto, 2003). The 

pathological hallmarks of each neurodegenerative disorder consist of misfolded disease-

specific proteins within their aggregate, and they all share the common feature that these 

misfolded proteins yield a β-sheet structure that promotes the formation of amyloid fibril 

(Ross and Poirier, 2004, Soto, 2003). Amyloid fibrils are an assembly of soluble proteins 

misfolded into insoluble fibres which are normally resistant to proteolysis (Ross and 

Poirier, 2004, Soto, 2003). As a result of inefficient clearance of the misfolded proteins, 

more proteins aggregate and the size of the fibril grows, thereby promoting the 

development of an inclusion body around or inside the degenerating neurons (Ross and 

Poirier, 2004, Soto, 2003). The pathological hallmarks of Alzheimer's disease AD include 

extracellular senile plaques (SP), mainly consisting of β-amyloid (Aβ) (Glenner and Wong, 

1984, Glenner et al., 1984), and intracellular neurofibrillary tangles (NFTs), containing 

aggregated, hyperphosphorylated tau protein (Grundke-Iqbal et al., 1986). The typical 

hallmark of Lewy body dementia is the presence of Lewy bodies and Lewy neurites 

containing the small presynaptic protein α-synuclein (Spillantini et al., 1997). A further 

example of protein inclusions within neurodegenerative diseases are the formation of TAR 

DNA-binding protein (TDP-43) inclusions, observed in frontotemporal dementia (Goedert 

et al., 2012). Protein misfolding and its accumulation in these diseases might be the result 
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of different genetic mutations or environmental factors. Once aggregated protein develops 

in one cell, the misfolded protein might transfer between cells, functioning as a seed and 

spreading to other cells, or from one brain area to another (Guo and Lee, 2014, Masuda-

Suzukake et al., 2013, Polymenidou and Cleveland, 2011). Indeed, such a hypothesis may 

account for the spreading nature of these disorders, where typically pathology is seen early 

on in during the disease process in certain brain regions, eventually spreading and 

encompassing many other regions. Neurodegenerative disorders are now known under the 

umbrella category of “proteinopathies” of the central nervous system (CNS) (Golde and 

Miller, 2009). In many of these disorders, immunostaining in post-mortem brains revealed 

positive staining with anti-ubiquitin antibodies, which are signals for protein degradation 

by the proteasome (Leigh et al., 1991, Lennox et al., 1988, Lowe et al., 1988). These 

proteins were mostly tagged with the Ub for degradation, but for some reason were not 

efficiently removed, leading to their accumulation. UPS components have also been found 

to accumulate with LBs and other inclusions (Kwak et al., 1991, Lennox et al., 1989, 

Schlossmacher et al., 2002, Zhou et al., 2004). Proteasome activity decreases in post-

mortem brain tissue in both AD and DLB (Dahlmann, 2007). Several mutations in UPS 

genes are linked to neurodegenerative disorders (Yi and Ehlers, 2007). In the next section 

post-mortem brain studies, genetic studies and experimental studies support the 

involvement of UPS in pathogenesis of α-synucleinopathies will be discussed.   
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1.9.4.1 The UPS in pathogenesis of α-synucleinopathies 

1.9.4.1.1 The UPS in pathogenesis of α-synucleinopathies (studies on post-mortem brains) 

The majority of the studies presented in the next three sections investigate the 

impairment of the UPS in PD. Lewy body dementia is closely related to PD; both are 

currently demonstrated with the same α-synuclein pathology and diagnosed by the 

detection and quantification of Lewy bodies. Although there are not a lot of studies 

investigating the role of UPS dysfunction in LBD, studies in PD could conclude with 

supportive evidence to the role of UPS dysfunction in the pathogenesis of α-

synucleinopathies and Lewy body formation. In this section, the role of the UPS in α-

synucleinopathies in post-mortem brain studies will be discussed.    

Evidence from both post-mortem brain and experimental studies has indicated that 

the UPS has a pivotal role in the pathology of Lewy body dementia. As mentioned above, 

the degradation by UPS requires the formation of polyubiquitinated protein. Post-mortem 

studies have indicated the presence of ubiquitinated protein (Kuzuhara et al., 1988, Lennox 

et al., 1989) and UPS components, including proteasomal subunits, ubiquitin, parkin, 

ubiquitination and deubiquitination enzymes, and proteasome activators, within Lewy body 

inclusions (Kwak et al., 1991, Lennox et al., 1989, Schlossmacher et al., 2002, Zhou et al., 

2004). The presence of ubiquitinated protein and proteasome components indicates the 

failure of the UPS to clear unwanted protein, as the ubiquitin serves as a signal for 

proteasomal degradation. Co-localization of ubiquitin carboxy-terminal hydrolase L1 

(UCHL1), a deubiquitinating enzyme, has been detected in Lewy bodies (Yasuda et al., 

2009). UCHL1 mRNA and the expression level of UCHL1 protein have been found to be 
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reduced in the cerebral cortex and substantia nigra in DLB (Barrachina et al., 2006a). 

UCHL1 catalyze the hydrolysis of polymeric ubiqutin chains and its reduction may affect 

the level of free ubiqutin.  The E3 ubiquitin-ligase SIAH-1 is also a component of Lewy 

body inclusions (Liani et al., 2004). SIAH-1 interacts with synphilin-1 and promotes its 

polyubiquitination and degradation by the proteasome. Synphilin-1 is not a UPS 

component, but it can interact with the RPT5 subunit of the 19S RP and decrease 

proteasome function (Marx et al., 2007). Both RPT5 and synphilin-1 co-localize in LBs in 

PD (Marx et al., 2007).  

Significant reduction in all proteolytic active sites of the 20S subunit in the 

substantia nigra pars compacta (SNc) of patients with sporadic PD was first reported in 

2001, and subsequently further investigated (McNaught et al., 2003, McNaught and Jenner, 

2001, Tofaris et al., 2003). One year later, the same group reported a selective loss of the α-

subunit of the 20S proteasome in post-mortem studies in the substantia nigra in PD 

(McNaught et al., 2002c). A significant reduction was also found in the expression level of 

both 20S alpha-6 and alpha-4 in the substantia nigra in PD (Bukhatwa et al., 2010a). The 

loss of the 20S α-subunit causes the 20S/26S to become unstable, reduces the assemblage 

and binding with 19S and impairs proteolytic activity (Voges et al., 1999). Analysis of 

post-mortem cortical tissue indicated alterations in the level of α-subunit in the cingulate 

gyrus of DLB patients, which correlated with the duration and severity of cognitive 

impairment (MacInnes et al., 2008). 19S RP levels were found to be reduced in the SNc 

while expression was upregulated in other brain area (McNaught et al., 2003). Recent 

studies have also reported a reduction in the α-subunit of the 20S proteasome in the 

cingulate gyrus of patients with LBD (MacInnes et al., 2008). In the brains of PD patients, 
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perinuclear aggresome-like structures rich in 20S, 19S, and 11S subunits of the 26S 

proteasome subunits have been reported in relatively unaffected areas only, such as the 

ventral tegmental area and dorsal midbrain (Johnston et al., 1998, McNaught et al., 2003, 

Wigley et al., 1999).  

1.9.4.1.2 The UPS in pathogenesis of α-synucleinopathies (mutations of genes) 

Several genetic studies support the involvement of the UPS in the pathogenesis of 

α-synucleinopathies especially in PD by the discovery of mutations in two proteins (parkin 

and UCH-L1) directly involved in the UPS. Two of the PD genes; synucleins and DJ-1 

have been found to be candidate biomarker for Lewy body dementia. Mutation in Parkin 

and UCH-L1 are associated with familial early-onset PD and until now none of these 

mutations have been associated with LBD, although both proteins have been found to be 

components of cortical Lewy bodies (Ross and Poirier, 2004, Schlossmacher et al., 2002).  

PARK2 or parkin is the gene most commonly known to cause early-onset PD, 

encoding a 52kDa protein, 465 amino acids in length (Dale et al., 1992, Voges et al., 1999). 

Mutations in PARK2 account for approximately 50% of all autosomal recessive juvenile 

Parkinson’s disease (Dale et al., 1992, Lucking et al., 2000). To date, several mutations in 

parkin have been identified in early-onset Parkinsonism, including numerous point 

mutations and exonic rearrangements such as deletion, duplication and triplication 

reviewed in (Johnston et al., 1998). However mutations in this gene have been found in 

late-onset of PD. Parkin function as an E3 ubiquitin ligase protein (Shimura et al., 2000). 

Parkin can modulate the activity of the 26S proteasome by ubiquitination of the target 

protein for degradation. It has been shown that disruption of the ubiquitin–protein ligase 
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function of Parkin leads to a reduction in the degradation of the target protein by UPS, and 

resulted in protein accumulation that was selectively toxic to dopaminergic neurons 

(Hattori and Mizuno, 2004, Dale et al., 1992, Lucking et al., 2000). Parkin is involved in its 

own proteasome-dependent degradation as it has the ability to self-ubiquitinate. 

Furthermore, it has also been shown to promote the degradation of synaptic proteins such 

as synphillin-1(Chung et al., 2001).  Synphillin-1 is a protein known to interact with α-

synuclein. It has been implicated in the pathogenesis of both PD and DLB and was found to 

be present in LBs in PD and DLB patients (Iseki et al., 2002, Wakabayashi et al., 2000).      

PARK5 or UCH-L1 is a gene encoding ubiquitin carboxy-terminal hydrolase L1 

(UCH-L1). UCH-L1 is a neuronal protein consisting of 223 amino acids that processes the 

ubiquitin by its deubiquitinating activity (Wilkinson et al., 1989). The hydrolase activity of 

UCH-L1 is believed to facilitate the activity of the UPS by increasing the UB monomers in 

order to target the substrate to be degraded (Wilkinson, 2000). In addition to its hydrolase 

activity, UCH-L1 also has a ligase activity, which in turn has a role in stabilizing Ub 

monomers (Osaka et al., 2003). The link between mutations in UCH-L1and Parkinson’s 

disease was identified by the discovery of an I93M missense detected in two siblings of a 

German family with autosomal dominant familial PD  (Leroy et al., 1998). The I93M 

mutation was found to reduce the activity of the proteasome by 50% (Leroy et al., 1998). 

Although it is not clear whether the I93M mutation is a pathogenic mutation or a rare 

polymorphism, UCHL1 knock-out mice did not demonstrate any neurodegeneration in the 

substantia nigra although they did suffer from gracile axonal dystrophy (gad) (Liu et al., 

2002).  
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1.9.4.1.3 Role of UPS dysfunction in the pathogenesis of α-synucleinopathies 

(experimental studies) 

Experimentally, a range of experimental studies support the role of UPS 

dysfunction in α-synucleinopathies. Indeed many studies have documented the use of 

proteasome inhibitors to produce a model that displays many pathological features of α-

synucleinopathies including; formation of ubiquitinated cytoplasmic inclusions and 

apoptotic cell death (Ardley et al., 2003, McNaught et al., 2002a, Rideout et al., 2005, 

Rideout et al., 2001).  

Inhibition of proteasomal function using proteasome inhibitors, such as the naturally 

occurring compound lactacystin, in foetal rat ventral mesencephalic cultures (McNaught et 

al., 2002b, Rideout et al., 2005) and PC12 cells (Rideout et al., 2001),  induced cell death of 

dopaminergic neurons, and the formation of inclusion bodies that stained positive with α- 

synuclein and ubiquitin antibodies. A similar finding was observed when foetal rat ventral 

mesencephalic cultures were treated with ubiquitin aldehyde to inactivate ubiquitin 

hydrolases (McNaught et al., 2002b). As these studies used high doses of lactacystin (5–10 

µM for 24–48 hours), increased efforts to further understand what occurs in these cells 

during PD pathogenesis have been made, using lower doses of proteasome inhibitors. In 

those studies, chronic low-level proteasome inhibition using a different inhibitor (MG115 

;100nM) was induced for several weeks in neural SH-SY5Y cells that allows for the 

analysis of more subtle cellular and molecular alterations (Ding et al., 2003, Sullivan et al., 

2004). These studies found increased cytosolic protein oxidation and protein aggregation, 

decreases in the activity of complex I and complex II and increases in the production of 



 

 

77 

 

oxygen free radicals indicating alterations in mitochondrial homeostasis (Ding et al., 2003, 

Sullivan et al., 2004).  

The possibility of producing an in vivo model of PD using proteasome inhibitors is 

controversial; this is maybe due to the reproducibility of this model across different 

laboratories (Cook and Petrucelli, 2009, Lim and Tan, 2007). Stereotactic injections of the 

proteasome inhibitor lactacystin into the SNc of rats causes a degeneration of dopaminergic 

neurons and cytoplasmic accumulation of α-synuclein and progressive bradykinesia 

(McNaught et al., 2002a). McNaught et al extended their study and produced a rat model by 

systematic injections with either the naturally occurring proteasome inhibitor epoxomicin 

or the synthetic proteasome inhibitor (Z-lle-Glu(OtBu)-Ala-Leu-al [PSI]) over a period of 2 

weeks (McNaught and Olanow, 2004, McNaught and Olanow, 2006). The activity of the 

proteasome was reported to be reduced in the ventral midbrain, and lower brainstem. 

However, elevated proteasome activity was observed in the cerebral cortex, striatum, 

cerebellum, and spinal cord (McNaught and Olanow, 2004). These results suggest that the 

up-regulation of the proteasome activity was due to the compensatory mechanisms against 

proteasome interference in some, but not all, brain areas. Treated animals developed a 

progressive parkinsonism symptom with bradykinesia, rigidity, tremor (McNaught and 

Olanow, 2004). Furthermore, neurodegeneration was accompanied by the appearance of α-

synuclein and ubiquitin positive intracytoplasmic inclusions observed in locus coeruleus, 

dorsal motor nucleus of the vagus and substantia nigra (McNaught and Olanow, 2004). 

These data provide a novel PD model based on the inhibition of the proteasome system. 

Unfortunately, other studies have failed to replicate the technique they used to induce the 

neurodegeneration PD model (Bove et al., 2006, Kordower et al., 2006, Manning-Bog et 
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al., 2006) Only two groups so far have managed to reproduce the nigral pathology 

(Schapira et al., 2006, Zeng et al., 2006a), and only one detected any α-synuclein 

aggregates (Zeng et al., 2006a). Although Parkinson's disease has been a major focus of 

most studies, the contribution of UPS to the neuronal loss and α-synuclein pathology has 

been applied to DLB. A recent experimental observation has shown that direct injection of 

proteasome inhibitors into the rodent cholinergic forebrain neurons leads to loss of those 

neurons, accompanied by the development of cortical intra-neuronal α-synuclein aggregates 

(MacInnes et al., 2008).  

Bedford et al. reported that genetically disrupting the 26S proteasome subunit in 

mouse brain neurones causes neurodegeneration and development of Lewy body-like 

inclusions in these animals, providing a greater understanding of the link between 26S 

proteasome dysfunction and the development of α-synuclein neuropathology (Bedford et 

al., 2008). In their study, they generated knock-out mouse using the Cre/loxP system which 

genetically ablated one of the ATPase subunits from the 19S regulatory particle (RPT2) 

subunit only in forebrain, and thus, prevented the formation of the 26S proteasome, leaving 

the 20S proteasome subunit, which is ubiquitin-independent, unaffected (Bedford et al., 

2008). Interestingly, the same group recently generated the same mouse model lacking α-

synuclein and reported that α-synuclein was not essential for the formation of pale body-

like inclusions and neurodegeneration caused by 26S proteasomal depletion (Paine et al., 

2013). PB-like inclusions have been considered precursors of LBs (Dale et al., 1992). 

These data indicate that other additional factors may lead to proteasome impairment, which 

in turn may leads to the formation of α-synuclein inclusion. These data suggest a strong 

direct link between proteasome dysfunction and neuronal death. Our group examined the 
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impact of the proteasome inhibitor in primary neuronal cell cultures and found that a 

significant loss of synaptic proteins (β-III-tubulin, synaptophysin, and drebrin) occurred 

prior to neuronal death (Bajic et al., 2013). These data indicate an important role of the 

proteasome in synaptic function which may represent an early event in LBD.  

From all the evidence discussed so far, it is clear that UPS dysfunction plays a key 

role in neuronal degeneration and the formation of neuronal inclusion. Further study is 

required to investigate how the changes in the expression levels of different proteasome 

subunits can contribute in the impairment in motor and cognitive function. 

1.9.4.2 The Ubiquitin proteasome system in Alzheimer’s disease 

Growing evidence suggests an involvement of the UPS in the pathogenesis of AD. 

As with Lewy body aggregates, accumulation of Ub has been detected in both plaques and 

tangles (Lennox et al., 1988, Lowe et al., 1988, Mori et al., 1987). In addition to Ub, a 

mutant ubiquitin carrying a 19-amino acid C-terminal extension, ubiquitin-B+1 (UBB+1) 

has also been observed in AD lesions (van Leeuwen et al., 1998). UBB+1 arises from the 

molecular misreading of the Ub+1 gene, resulting in a transcriptional dinucleotide deletion 

(van Leeuwen et al., 1998). UBB+1 has been reported to inhibit the proteasome activity in 

a dose-dependent manner (van Tijn et al., 2007). It also blocks degradation by proteasome 

in the cell line (Lindsten et al., 2002), and has been suggested to contribute in mediating -

Aβ neurotoxicity (Song et al., 2003). 

Significant reduction in proteasome activity was reported in AD post-mortem brain 

tissue in the hippocampus, parahippocampal and middle temporal gyri, and in the inferior 

parietal lobule. The reduction in proteasome activity was observed to be associated with an 
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increased UBB conjugation and correlated with the reduction in synaptic proteins (Keck et 

al., 2003, Keller et al., 2000). Lopez and colleagues investigated the proteasome activity 

and also the enzymes involved in the ubiquitin pathway (E1 and E2) (Lopez Salon et al., 

2000). Lopez et al. indicated a significant reduction in the proteasome activity, particularly 

trypsin-like activity in the cytosol of AD brain tissue and a reduction in both E1 and E2 

enzymes (Lopez Salon et al., 2000). Furthermore, post-mortem expression profiling of 

proteasome subunits 20S α5 and 19S non-ATPase S1/Rpn2 was found to be down-

regulation in the amygdala and cingulate cortex, two brain regions affected early in AD 

(Loring et al., 2001). Proteasome post-mortem brain studies also revealed that the 19S 

regulatory subunit S6b/RPT3 was detected in neurofibrillary tangles in AD-affected brain 

areas and other taupathies (Fergusson et al., 1996).  

Further evidence indicating the dysfunction of the UPS is the accumulation of oxidized 

proteins (Forero et al., 2006, Zhu et al., 2007); these aggregates may further impair 

proteasome activity (Bence et al., 2001). Of these proteins UCH-L1, a de-ubiquitinated 

enzyme, is oxidized in AD and is down-regulated in specific brain regions of early AD 

cases (Choi et al., 2004). Moreover, UCH-L1 concentration was found to be inversely 

proportional to the number of tangles and its immunostaining associated with NFTs (Choi 

et al., 2004). An experimental study in transgenic mice overexpressing APP indicated that 

UCH-L1 rescues synaptic dysfunction in these mice and also in hippocampal slices treated 

with Aβ oligomers (Gong et al., 2006). 

  

 



 

 

81 

 

1.9.4.2.1 Association of UPS with Aβ pathology 

Several studies in the past few years have indicated a link between proteasome 

impairment, Aβ oligomers and the accumulation of Aβ (Almeida et al., 2006, Barelli et al., 

1997, Checler et al., 2000, Gregori et al., 1995, Gregori et al., 1997, Lopez Salon et al., 

2003, Marambaud et al., 1997, Oh et al., 2005, Tseng et al., 2008, Zhao and Yang, 2010). 

Previous in vitro studies revealed that binding of the Aβ protein to the 20S proteasome 

inhibits ubiquitin-dependent protein degradation and selectively inhibits the chymotrypsin-

like activity of the 20S proteasome (Gregori et al., 1995, Gregori et al., 1997). Furthermore, 

inhibition of the proteasome in cell culture induced Aβ production, exacerbated Aβ-

neurotoxicity (Barelli et al., 1997, Checler et al., 2000, Marambaud et al., 1997) and also 

caused a marked decrease in Aβ42 degradation (Lopez Salon et al., 2003). Accumulation of 

Aβ in APP mutant neurons has also been shown to inhibit the activities of the proteasome 

and de-ubiquitinating enzymes (Almeida et al., 2006). In addition, in these primary 

neurons, it has been shown that extracellular Aβ could enter the neurons and inhibit the 

proteasome (Oh et al., 2005). In the 3xTg-AD mice, dysfunction of proteasome activity was 

found to be correlated with Aβ oligomers, and inhibition of the proteasome in the pre-

pathological 3xTg-AD mice increased the Aβ oligomers level, which lead to Aβ 

accumulation (Tseng et al., 2008). Furthermore, Tseng et al. reported that Aβ 

immunotherapy in the 3xTg-AD mice decreased the Aβ oligomers level and reactivated the 

UPS (Tseng et al., 2008). Moreover, aggregated forms of Aβ42 are subject to proteasomal 

degradation and competitive substrates for the chymotrypsin-like activity of the human 20S 

proteasome (Zhao and Yang, 2010). All these evidences suggest a relationship between 
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proteasome dysfunction and Aβ accumulation and the pathogenesis of AD [reviewed by 

(Hong et al., 2014)], which, in turn, suggest the important role of the UPS  in Aβ pathology. 

1.9.4.2.2 The association of UPS with tau pathology 

Extensive evidence from in vivo and in vitro studies suggest a role of UPS in the tau 

degradation and aggregation (for review see (Lee et al., 2013). The first clue was derived 

from the fact that UB and ubiquitinated tau are components of NFTs and PHFs. PHFs were 

purified AD brain and post-translation modification was identified by mass spectrometry, 

which tau found to be ubiquitinated at lys-254, lys-311 and lys-353, as an early event in 

AD (Cripps et al., 2006) and the polyubiquitin chains was linked through lys-48, lys-11, 

and lys-6 of the ubiquitin molecules (Cripps et al., 2006). Ubiquitination through lys-48 is a 

signal for targeting the protein to be degraded by the proteasome (Glickman and 

Ciechanover, 2002). While Polyubiquitin chains linked by Lys-6 inhibit ubiquitin-

dependent proteolysis (Shang et al., 2005), and may favour formation of aggregates instead 

of tau clearance. Tau has been shown to be a substrate for both 20S and 26S proteasome 

(Lee et al., 2013). Incubation of recombinant tau with 20S proteasome in the presence and 

absence of proteasome inhibitors indicated a decrease in the length of tau protein. The 

degradation occurs in the absence of proteasome inhibitors (David et al., 2002). 

Furthermore, ubiquitinated tau has been found to be a substrate of the 26S proteasome in 

the presence of MgCl2 and ATP, and has also been found to inhibit the proteasome and 

lead to its accumulation (Zhang et al., 2005). Additionally, rat brain cortex extract, which 

contains all the component of the UPS and endogenous tau, was incubated with the 

proteasome activators MgCl2 and ATP. This resulted in the degradation not only of tau but 

also AD P-tau in vitro by 26S, which was blocked by applying proteasome inhibitors, such 
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as lactacystin. This provides further evidence that tau was degraded by proteasome (Zhang 

et al., 2005). Although there are a large number of reports claiming that tau degradation is 

catalysed by the proteasome, many other studies show that UPS may not be the initial 

pathway for tau degradation (Brown et al., 2005, Feuillette et al., 2005).  

In contrast, numerous studies of the contribution of the lysosomal pathway to tau 

degradation have suggested that tau is a lysosomal substrate. Inhibition of the lysosomal 

pathway delays the degradation of tau protein and enhances the formation of higher 

molecular species of tau (Wang et al., 2009, Zhang et al., 2009b). In contrast, lysosomal 

inducers enhance the clearance of abnormal tau and protect against its toxicity in 

Drosophila. Furthermore, the human tauopathy mouse model study showed that the 

lysosomal activators reduced the level of aggregated tau and demonstrated an effect in 

neuronal survival (Kruger et al., 2012, Schaeffer et al., 2012). Methylene blue has been 

observed to induce autophagy in tau transgenic mice and reduce the total phospho-tau level. 

It also has the ability to improve the cognitive performance in these mice (Congdon et al., 

2012, Hosokawa et al., 2012). 

The above studies indicated that tau is degraded by the UPS and the lysosomal 

pathway. Targeting the UPS for degradation may occur when tau is in excess and still 

soluble. Mono-ubiquitination tau and tau aggregates are likely to be degraded by the 

lysosomal pathway [review by (Lee et al., 2013)]. 
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1.10 Autophagy 

1.10.1 Overview  

Eukaryotic cells contain multiple proteolytic systems for protein degradation: the 

main two are the ubiquitin-proteasome system (UPS) and autophagy-lysosome pathway 

(ALP). Both pathways are responsible for regulating cellular protein turnover. UPS mainly 

degrades short-lived proteins while the lysosome pathway is involved in the degradation of 

long-lived protein and cellular organelles, which are too large for degradation via the UPS. 

Dysfunction of both pathways might contribute to the pathogenesis of a variety of 

neurodegenerative disorders. The lysosomal degradation pathway appears to play a 

fundamental role in neurodegenerative disorders such as Parkinson’s disease (Anglade et 

al., 1997, Cuervo et al., 2004, Spencer et al., 2009, Winslow et al., 2010, Xilouri et al., 

2009), Alzheimer’s disease (Boland et al., 2008, Cataldo et al., 2004, Nixon, 2007, Nixon 

et al., 2005, Pickford et al., 2008) and Huntington’s disease (Atwal and Truant, 2008, 

Martinez-Vicente et al., 2010, Petersen et al., 2001, Ravikumar et al., 2004). In Parkinson’s 

disease and related synucleinopathies, α-synuclein—the main component of Lewy bodies—

was degraded by both the UPS and ALP systems (Ebrahimi-Fakhari et al., 2011, Rott et al., 

2011, Rott et al., 2008, Webb et al., 2003). The mechanism recruited to maintain protein 

homeostasis depends on the protein burden (Ebrahimi-Fakhari et al., 2012). Under a normal 

turnover, monomeric α-synuclein can be degraded by both UPS and chaperone-mediated 

autophagy (CMA) (Vogiatzi et al., 2008, Webb et al., 2003). At early disease stages, excess 

levels of α-synuclein and aggregate species block both the UPS and CMA, at these stages, 

macroautophagy is up-regulated to degrade α-synuclein (Ebrahimi-Fakhari et al., 2011, 

Ebrahimi-Fakhari et al., 2012). In the late stage of the disease, α-synuclein inhibits 
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macroautophagy and lysosomal degradation (Ebrahimi-Fakhari et al., 2012). While the 

ALP and its relevance in neurodegeneration is presented in this section, the role of UPS in 

neurodegenerative disorders is discussed in detail in Section 1.9 of this chapter. 

1.10.2 The autophagy lysosomal pathway 

Autophagy is a catabolic process by which intracellular components are delivered to 

lysosomes for degradation by their resident hydrolases (Cuervo, 2004, Klionsky, 2005). 

The Autophagy Lysosomal Pathway is comprised of three distinct pathways based on the 

way the substrates reach the lysosomal lumen: macroautophagy, microautophagy and 

CMA. These are described below and summarised in (Figure 1-9). Also, for more details, 

the autophagy lysosomal pathway has been extensively described and reviewed by 

(Komatsu and Ichimura, 2008, Nixon, 2013, Ravikumar et al., 2010, Son et al., 2012, Yue 

et al., 2009, Zhang et al., 2009b). 

1.10.2.1 Macroautophagy  

Macroautophagy is a multi-step process commonly referred as autophagy or ‘‘self-

eating’’. It is a vacuolar degradation pathway in which cellular components, including 

proteins, membrane fragments and whole organelles such as mitochondria, are engulfed or 

sequestered by a double-membrane structure, which fuses around the substrate, producing 

autophagic vesicles referred as the autophagosome (Feng et al., 2014). These vesicles do 

not contain hydrolyses enzymes but receive them after fusing with the lysosome that 

contains hydrolytic enzyme-forming autophagolysosome, which is considered to be the 

characteristic component of autophagy. The hydrolytic enzymes then degrade the contents 

of the autophagolysosome, including the inner membrane (Feng et al., 2014). The 
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components are broken down into their constituent amino acids and fatty acids, which are 

then released into the cytoplasm and recycled. 

1.10.2.2 Microautophogy   

Microautophogy refers to a process in which a region of the cytosol-containing 

proteins to be degraded is captured through an invagination in the surface of the lysosomal 

membrane.  

1.10.2.3 Chaperone-Mediated Autophagy (CMA)  

CMA is a process in which the substrate proteins containing a specific motif are 

selectively recognized by a specific cytosolic chaperone protein, also known as a heatshock 

protein (Hsp), which plays an important role in CMA during substrate recognition, 

targeting, unfolding, and transporting (Arias and Cuervo, 2011, Cuervo, 2010, Dice, 2007). 

Hsp70 chaperones recognize the CMA-targeting motif (KFERQ motif) in the protein 

substrates and deliver them to the lysosomal surface (Chiang et al., 1989, Dice, 1990). At 

the lysosomal membrane, the substrate interacts with the cytosolic tail of lysosome-

associated membrane protein type 2A (LAMP-2A), which is a CMA receptor. LAMP-2A 

facilitates the transportation of the protein into the lysosomal lumen for degradation by the 

hydrolases (Cuervo and Dice, 1996). The resulting amino acid could be used for the 

synthesis of essential proteins. 
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Figure 1-9: Autophagy - the lysosomal system. 

The Autophagy Lysosomal Pathway is comprised of the following three fundamentally 

different types of autophagy processes, based on the way substrates reach the lysosomal 

lumen:  Macroautophagy is a double-membrane engulfed substrate, which forms the 

autophagosome, and is destined for degradation. The autophagosome fuses with the 

lysosome that contains the hydrolytic enzyme, forming autophagolysosome. The hydrolytic 

enzymes in the lysosome then degrade the content inside the autophagolysosome in 

addition to the double membrane. The components are broken down into their constituent 

amino acids and fatty acids, which are then released into the cytoplasm and recycled. 

Microautophagy refers to a process in which a region of the cytosol-containing proteins 

are degraded and captured through an invagination in the surface of the lysosomal 

membrane. Chaperone-Mediated Autophagy (CMA) is a process which involves the 

recognition of the cytosolic protein and its translocation across the lysosome membrane 

through the action of the cytosolic and lysosomal chaperone hsp70, and the lysosomal 

membrane protein LAMP-2A. Figure Taken from (Munz, 2011). 
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1.10.3 Dysfunction of the autophagy-lysosomal pathway in neurodegenerative 

disorders  

Several reports indicate the role of ALP in LBD. The first evidence supporting the 

involvement of lysosomal dysfunction in LBD is that macroautophagy and CMA degrade 

α-synuclein (Ebrahimi-Fakhari et al., 2011, Mak et al., 2010, Vogiatzi et al., 2008). 

Inhibition of CMA leads to an accumulation of soluble high molecular weight and the 

detergent-insoluble species of α-synuclein (Vogiatzi et al., 2008). This suggests that 

degradation of α-synuclein by CMA is crucial and its dysfunction may be one of the factors 

involved in synucleinopathies, such as Lewy body dementia. Importantly, it has been found 

that the A53T and A30P mutants of α-synuclein cannot be degraded by CMA. Instead, 

impaired CMA functions via a higher-binding affinity to the lysosomal receptor LAMP2a, 

preventing the movement of α-synuclein or other substrates into the lysosome (Cuervo et 

al., 2004). In addition to mutant α-synuclein, post-translational modifications of the wild-

type α-synuclein, including monoubiquitination of a-synuclein, also impact CMA 

degradation without affecting degradation of other substrates (Cuervo et al., 2004, 

Engelender, 2008). 

Overexpression of both wild-type and mutated α-synuclein also contributes to 

neuronal death through the inhibition of CMA-mediated degradation of myocyte specific 

enhancer factor 2D (MEF2D), a neuronal survival factor. MEF2D levels were increased in 

the brains of α-synuclein transgenic mice and patients with Parkinson's disease (Yang et al., 

2009). 
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Further evidence for the involvement of lysosomal dysfunction in LBD is that the 

degradation of α-synuclein by autophagy occurs via the lysosomal enzyme cathepsin D 

(Sevlever et al., 2008).  Cathepsin D is an aspartyl lysosomal protease, which mediates the 

degradation of aggregated and damaged proteins (Hasilik and Neufeld, 1980). Cathepsin D-

deficient mice grow normally for up to two weeks, but die at around 26 days of age from a 

combination of pathologies including intestinal necrosis and neurodegeneration, indicated 

the important role of cathepsin D in maintaining the function of the autophagy-lysosomal 

pathway (Koike et al., 2000). Deficiency of cathepsin D in transgenic mice also leads to the 

accumulation of a high molecular weight of α-synuclein species, but not monomeric, in 

neurons, despite the compensatory up-regulation of other lysosomal proteases, without the 

increase of α-synuclein mRNA expression (Qiao et al., 2008). In these mice, the 

proteasome activity decreased without affecting key factors of UPS. This suggests a link 

between these two pathways at the level of activity rather than a reduction of protein levels. 

Furthermore, cathepsin D overexpression reduced α-synuclein aggregation and shows a 

neuroprotective effect in dopaminergic cell lines and in Caenorhabditis elegans (Qiao et al., 

2008).  

It was also found that aggregated α-synuclein induced by phosphorylation of Ser129 

led to an increase in the activity of cathepsin D, which, when inhibited, caused a reduction 

in the formation of truncated species of α-synuclein, including oligomers and inclusions. 

This suggests that cathepsin D may play a role in generating toxic truncated species of α-

synuclein (Takahashi et al., 2007). 
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1.11 Hypothesis 

Neurodegenerative disorders share a common feature, which is the accumulation of 

misfolded proteins in the form of insoluble protein aggregates (both intra and extracellular) 

or intracellular inclusion bodies. Ubiquitin has been identified as a component of protein 

aggregates and inclusion bodies in many neurodegenerative disorders, suggesting that the 

impairment of the UPS is involved in the formation of these structures. As reviewed, LBD 

features Lewy bodies and aggregates of α-synuclein, tau and Aβ and therefore a role for the 

UPS has been widely suggested in pathogenesis. 

Defects in the 26/20S components of the UPS and synaptic dysfunction have 

been implicated in the pathogensis of several neurodegenerative disorders.  

Furthermore, previous studies by our research group have identified specific synaptic 

changes that appear to underly cognitive and non-cognitive symptoms of LBD. It was 

therefore hypothesized that cognitive decline and non-cognitive symptoms in LBD 

were associated with synaptic dysfunction consequent upon alterations of proteasome 

subunit expression, proteasome activity and increased protein aggregation. 

In order to evaluate the involvement of proteasome dysfunction, the aims of the 

study were as follows: 

• To investigate the expression level of the proteasome subunits (α3, α6 and RPT6), 

together with the proteasome activity in discrete brain regions of human post-

mortem brains from LBD and AD patients, and in controls using western blot and 

immunohistochemistry. 
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• To evaluate the relationship between alterations of the proteasome subunit and 

protease activities of the proteasome in LBD and AD. 

• To investigate whether alteration of the expression level of the proteasome subunit 

in different brain areas correlates with semi-quantitative scores of AD and LBD 

pathology. 

• To evaluate the relationship between proteasome dysfunction and the cognitive 

decline and non-cognitive symptoms in LBD and AD. 

• To determine if alteration in the expression level of the proteasome subunit 

correlates with pre- and/or postsynaptic markers. 

To further our knowledge on the second important proteolytic pathway that mediates 

protein degradation — the lysosomal pathway — also aimed to investigate the following:   

• Investigate the expression level of two lysosomal markers, cathepsin D and 

lysosomal-associated membrane protein 1 (LAMP1), in discrete brain regions of the 

human post-mortem brain from LBD and AD patients, and in controls using western 

blot. 

• Determine if there is a correlative relationship between the two major proteolytic 

pathways—the ubiquitin-proteasome pathway and the lysosomal pathway. 

• Investigate whether alteration of the expression level of the lysosomal markers in 

different brain areas correlated with semi-quantitative scores of AD and LBD 

pathology. 

• Evaluate the relationship between lysosomal markers and the cognitive decline and 

non-cognitive symptoms in LBD and AD. 
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• Determine if alteration in the expression level of the lysosomal markers correlated 

with either pre- or postsynaptic markers. 

Overall it was hoped that the results of thesae studies will provide greater insight into the 

mechanisms of pathogenesis of LBD, particularly in relation to emergence of synaptic 

pathology. Furthermore, such investigations may also identify novel targets for 

pharmacological intervention in LBD. 
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Chapter 2  Material & Methods 
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2.1 Subjects 

Post-mortem brain tissue was obtained from 130 cases: 55 with DLB, 34 with PDD, 

16 with AD and 25 normal controls matched for age, gender and post-mortem delay. Post-

mortem brain tissue was obtained from several sources, including University Hospital 

Stavanger (Norway), MRC Brain Bank at the Institute of Psychiatry, King’s College 

London, Newcastle Brain Tissue Resource and the Thomas Willis Oxford Brain Collection. 

From each case one brain hemisphere was frozen and one hemisphere was fixed in 

formaldehyde. After the cerebrum was sectioned and isolated by an expert, a 500 mg of 

frozen tissue from each brain area was placed individually into plastic bags, then labeled 

and sealed appropriately. All samples were stored at -70˚C for further analysis. Three brain 

areas were used for this study: the anterior cingulate gyrus (Brodmann area 24), the pre-

frontal cortex (Brodmann area 9) and the parietal cortex (Brodmann area 40).  

A variety of different clinical assessment scales were used on a regular basis for 

these cases before death, including evolution of cognitive defect and behavioural nature. 

The Mini-Mental State Examination (MMSE) (Folstein et al., 1975) was used to measure 

the severity of cognitive impairment several times upon the first assessment, upon the last 

interview before death and also to measure average decline/year. The MMSE scores ranged 

from 0-30. In this project, four categories of cognitive impairment were used for 

classification purposes as previously described (Whitfield et al., 2014b): ‘unimpaired 

cognition’ for clinical control cases, ‘mildly impaired cognition without dementia’ (score of 

25-30), ‘mildly impaired cognition with dementia’ (score of 17-24), ‘moderately impaired 

cognition’ (score of 10-16) and ‘severely impaired cognition’ (score of 9 or less). The 

classification into these categories is based on placing a third of the cases in each group 
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according to the MMSE score using the ‘cutoff’ scores of 9 and 16. But because there were 

a few cases with scores of 29 and 30, it was not preferable to add them to a category 

containing cases with a score of 17. This is why the category ‘mildly impaired cognition 

without dementia’ was included to accommodate any case with a score of 24 or above. 

Professors Clive Ballard and Dag Aarsland recommended using the same ‘cutoff’ levels 

found in published criteria (Boller et al., 2002, Reisberg et al., 1994).    

 

Individuals were categorised according to the duration and severity of each 

behavioural symptom: agitation, depression, hallucinations and persecution on a scale of 0 

to 3, where 0 was none (agitation, depression, hallucinations or persecution), 1 was 

intermittent and mild, 2 was moderate (intermittent but significant) and 3 was persistent 

and/or severe. For all individuals with dementia, scores from standardised tests or semi-

structured interviews were used to derive each behavioural symptom score; principally, this 

was the Neuropsychiatric Inventory (NPI) mood item (n = 41-58% of dementia cases). In 

some cases (n = 15), depression was measured with the Montgomery-Asberg Depression 

Rating Scale (MADRS) (Montgomery and Asberg, 1979) (n = 15-20% of dementia cases). 

The thresholds for MADRS were 15 and higher for a score of severe/persistent, 7-14 for a 

score of moderate and 6 or lower for a score of mild. For NPI, the thresholds were 7 or 

higher for a score of severe/persistent, 4-6 for a score of moderate and 3 or lower for a 

score of mild. However, in some instances, only Cambridge Mental Disorders of the 

Elderly Examination (CAMDEX) (Roth et al., 1986) scores were available (n = 15), which 

rate depression as absent, mild/moderate and severe. Summary of clinical assessment used 

in the prospective study of patients during the course of LBD and AD are described in 
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Table 2-1. I would like to express my thanks to Professors Clive Ballard and Dag Aarsland 

and Dr Julie Vallortigara for their significant contributions to the compilation and 

standardisation of this clinical data. 

Neuropathological assessment was performed according to standardised 

neuropathological scoring/grading systems, including Braak staging, Consortium to 

Establish a Registry for Alzheimer’s Disease (CERAD) scores, Newcastle/McKeith Criteria 

for Lewy body disease, National Institute on Aging - Alzheimer’s Association (NIA-AA) 

guidelines and phases of amyloid-β (Aβ) deposition (Aβ-phases) (Braak et al., 2006, 

McKeith et al., 2005, Mirra et al., 1991, Montine et al., 2012, Thal et al., 2002) For Braak 

staging were divided into 1 (mild) (Braak stages 0-II), 2 (moderate) (Braak stages III or IV) 

and 3 (severe) (Braak stages V or VI). CERAD guidelines involve a four-tiered semi-

quantitative scale representing cortical neuritic plaque (NP) density: 0 (none), 1 (mild), 2 

(moderate) and 3 (severe/frequent).  

Semi-quantitative assessments of Aβ, tau and α-synuclein pathology were 

conducted by neuropathologists blind to clinical diagnosis using a four-tiered scale: 0 

(none), 1 (mild), 2 (moderate) and 3 (severe/frequent) to score sections from each brain 

area according to published criteria (Alafuzoff et al., 2008a, Alafuzoff et al., 2009a). 

Labelling of Αβ plaques, phosphorylated-tau positive neurofibrillary tangles and α-

synuclein positive inclusions was undertaken by Dr David Howlett using standard protocols 

(Howlett et al., 2014). Primary antibodies added for detection of senile Aβ plaques, tau and 

α-synuclein sections were (Aβ, 1000 DAKO M0872; phosphorylated tau, AT8 

1:4000 Thermo Scientific MN1020; α-synuclein, NCL-SYN 1:30 Novacastra 

Laboratories). Semi-quantitative assessments of Aβ, tau and α-synuclein pathology were 
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conducted blind to clinical diagnosis, by neuropathologists (Dr Johannes Attems and Dr 

Tibor Hortobágyi). 

Control subjects were obtained from an autopsy series of cases without a history of 

psychiatric disorders and had never suffered from any neurological problems. The controls 

cases were cognitively normal. Neuropathological examinations were undertaken in all 

cases and none of the cases met CERAD criteria for AD, only mild age-associated 

neuropathological changes in some cases (e.g. neurofibrillary tangle, Braak stage < II). 

Information on medication history such as cholinesterase inhibitors, antidepressants, 

anti-manics, memantine, anxiolytics, hypnotics and anti-parkinsonians (L-DOPA) was 

available for some of the cases. Unfortunately, data was not available on the medication 

taken by the AD cases and certain DLB and PDD cases, making it impossible to reliably 

elucidate any effect on the proteins of interest by medication. The medication appendix 

table (Appendix IV) shows what data was available, from which it can be seen that 

medication was broadly similar across DLB and across PDD patients. 
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Table 2-1: Brief summary of clinical assessment used in the prospective study of patients 

during the course of LBD and AD. 

Assessment Describtion 

Mini Mental State 

Examination 

(MMSE) 

MMSE was developed in 1975 by Folstein (Folstein et al., 1975), 

as a screening tool to test cognitive function of older people. 

MMSE assesses function including attention, recall, language use, 

orientation and basic motor skills. It provides a total score that can 

place each individual on a scale cognitive function. Thirty is the 

maximum score that can be obtained with lower score indicating a 

greater degree of cognitive impairment. MMSE cannot be used for 

diagnosis different type of dementia in its own. MMSE does not 

test all areas of cognitive function for example; fluctuating 

cognition and visual hallucinations (McKeith et al., 

2005)(McKeith et al., 2005) and other factors may affect the 

MMSE score such as the education level and sensory deficit such 

as vision and hearing. However, despite development of more 

complex and sensitive tests, the MMSE is still appropriate and 

accurate for screening cognitive function and cited almost in every 

research project that attempts to report cognitive function.   

Neuropsychiatric 

Inventory (NPI) 

The Neuropsychiatric Inventory (NPI) is one of the most 

commonly used assessments of behavioural symptoms and 

disturbances in dementia. It is questionnaire that assesses twelve 

different behavioral and psychological disturbances including 

(hallucinations, delusions, agitation/aggression, dysphoria/ 

depressed mood, anxiety, irritability, disinhibition, euphoria, 

apathy, aberrant motor behaviour, sleep and night-time behaviour 

changes and appetite and eating changes symptoms). NPI also 

evaluates the impact of these symptoms on the caregiver. The 



 

 

99 

 

score is a multiplication of the intensity of the symptom by the 

frequency. Carers and caregivers represent a superior source of 

information on these symptoms to patients as patients are prone to 

forgetting symptoms; an issue that can be compounded by patients 

with severe dementia having difficulty in understanding relevant 

questions. Thus it is the carer who is asked to rate the severity and 

frequency of any of the listed behaviours which has occurred in the 

given time-frame, in addition to the degree of distress caused to the 

carer by the behaviour in question (Cummings, 1997, Cummings et 

al., 1994).  

Unified Parkinson’s 

Disease Rating scale 

The Unified Parkinson’s Disease Rating (UPDRS) scale is a 

widely used instrument for measuring severity of parkinsonian 

symptoms in clinical research and in practice. This scale is 

subdivided in four separate parts 1) mentation, behaviour and 

mood; 2) activities of daily living; 3) motor symptom; 4) 

complications of therapy. These are evaluated by interview. A total 

of 199 points are possible. 199 represents the worst (total) 

disability), and 0 corresponding no disability (Movement Disorder 

Society Task Force on Rating Scales for Parkinson's, 2003). 

Montgomery-Asberg 

Depression Rating 

Scale (MADRS) 

Montgomery –Asberg Depression Rating Scale (MADRS) was 

developed in the late 1970sby Montgomery and Asberg 

(Montgomery and Asberg, 1979) to measure the degree of severity 

of depressive symptoms among patient who have a diagnosis of 

depression, and particularly as a sensitive to the effects of 

antidepressant medications, primarily tricyclic antidepressants 

(TCAs). The MADRS has 10 items and uses a 0 to 6 severity scale, 

that is completed during a clinical interview. The following items 

are included in the MADRS: 1) Apparent sadness; 2) Reported 

sadness; 3) Inner tension; 4) Reduced sleep; 5) Reduced appetite; 



 

 

100 

 

6) Concentration difficulties; 7) Lassitude; 8) Inability to feel; 9) 

Pessimistic thoughts; 10) Suicidal thoughts. Higher scores 

reflecting more severe depressive symptoms. Ratings can be added 

to form an overall score (from 0 to 60). Snaith et al. proposed the 

following cut-offs: scores of 0-6 indicate an absence of symptoms; 

7-19 represent mild depression; 20-34 moderate; 35-60 indicate 

severe depression (Snaith et al., 1986). 

Cambridge Mental 

Disorders of the 

Elderly Examination 

(CAMDEX) 

CAMDEX is an instrument for the diagnosis of mental disorder in 

the elderly with special reference to the early detection of 

dementia. The CAMDEX includes three components: A structured 

clinical interview with the patient to obtain systematic information 

about the present state, past history and family history; a range of 

objective cognitive tests which constitute a mini-

neuropsychological battery; a structured interview with a relative 

or other informant to obtain independent information about the 

respondent's present state, past history and family history. The 

three components of the CAMDEX can be divided into eight 

sections, A to I.  After the clinical interview, the psychiatrist makes 

a diagnosis based on operational criteria that are described in the 

manual. The severity of dementia and depression is graded on a 

five-point scale. Scores can be derived to indicate organicity, 14 

from relative interview, and two from interview observations (Roth 

et al., 1986) 
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2.2 Tissue pH determination 

 It is well know that the pH may vary as a consequence of agonal state which 

significantly influences the biochemistry of brain tissue leading to hypoxia and an increase 

in brain tissue lactate (Paschen et al., 1987). Therefore, after thawing of each case of frozen 

tissue pH was determined at room temperature using the Orion 3-star Benchtop pH Meter 

(Leicestershire, UK) previously calibrated with two standards (pH 4.00 and pH 7.00). 

Briefly, brain homogenates were prepared from 100 mg of brain tissue from the grey matter 

of one of the three selected regions in 2 ml ddH2O and placed in Falcon tubes. The pH 

measurement was determined in triplicate for each individual sample. The pH is stable 

during storage (Alafuzoff and Winblad, 1993, Ravid et al., 1992), therefore the 

measurement were done once for each case.    

2.3 Western Blotting using human samples 

2.3.1 Preparation of human brain tissue homogenate  

Preparation of tissue for Western blotting was performed as previously described 

(Kirvell et al., 2006). Briefly, for each sample, cortical grey matter was dissected from 

white matter and meninges at 4°C. Approximately 300 mg of grey matter was homogenised 

in 6 ml ice cold buffer containing 50mM tris-HCL, 5mM EGTA, 10mM EDTA, ‘complete 

protease inhibitor cocktail tablets’ (Roche, 1 tablet per 50ml of buffer), and 2µg/ml 

pepstatin A dissolved in ethanol:DMSO 2:1 (Sigma). Homogenisation was performed using 

an IKA Ultra-Turrax mechanical probe (KIA Werke, Germany) until the liquid appeared 

homogenous resulting in a crude homogenate. The crude homogenates were aliquoted and 

immediately frozen on dry ice and stored at -70 °C until processed for immunoblotting.  
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2.3.2 Determining the protein concentration 

The total protein concentration in the crude homogenate was determined using the 

Bradford method assay (Bradford, 1976) using Coomassie Plus protein assay reagent 

(Thermo Scientific, USA) and measuring absorbance at 595 nm. Briefly, aliquots 

containing 1 ml of the crude homogenate was thawed to be prepared for Western blotting. 

10µl from each brain homogenate was then mixed with 490µl deionised H2O to be diluted 

1:50. A standard curve was obtained using bovine serum albumin (BSA) protein standard 

(Sigma-Aldrich, USA), with a final concentration of 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8 

and 2.0 mg/ml.  The protein content for both standards and brain samples were assessed in 

triplicate. 10 µl of both BSA standards and diluted brain samples were loaded on a 96-well 

plate (Nunc A/S, Denmark), and then 300 µl of Coomassie Blue reagent was pipetted to 

each well on the plate. A spectrophotometer reading was taken at 595 nm using a 

FlexStation 3 (Molecular Devices LTD, UK). The standard curve was generated as a linear 

regression between the protein concentration and the absorbance reading at 595 nm. The 

unknown protein concentration of samples was determined from the standard curve using 

Graph Pad Prism software version 5.0 (GraphPad Software Inc, USA). 

 

2.3.3 Semi-quantitative Western blotting 

Crude brain homogenate after protein determination  was diluted 1:4 with 5x sample 

buffer (Genscript MB01015), vortexed for 2 minutes, boiled for 5 minutes in a heat block 

and then stored at -20°C to be used for Western blotting (Kirvell et al., 2006). 
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TV200 twin-plate 20.5 x 10 cm (W x H) format mini-gel units were used (Scis-Plas, 

Cambridge, UK) to separate the proteins bands from PDD, DLB, AD and control brain 

homogenates. A twelve percent resolving gel mixture (9.87 ml ddH2O, 12 ml protogel, 

7.8 ml protogel buffer, 300 µl 10% ammonium persulfate (APS) and 30 µl 

Tetramethylethylenediamine (TEMED) (TEMED was added last because it tends to 

solidify the gel very quickly) was carefully poured in-between glass plates using 10 ml 

disposable pipettes.   

A stacking gel (12.2 ml ddH2O, 2.6 ml protogel, 5 ml stacking buffer, 200 µl 10% 

APS and 20 µl TEMED) mixture was added at the top of the resolving solid gel. A 

separation comb was inserted into the stacking gel and it was allowed to set for about 20 

min. The comb was then removed and the glass gasket containing the gels was placed in the 

tank and covered with a running buffer (0.025 M Tris–HCl, 0.2 M glycine and 0.05% 

SDS).  

Western blots were run in duplicate. On each gel, 20 µl of each human sample were 

loaded once onto each of the tandem gels. Brain homogenate with a unified protein 

concentration of 20µg from either a rat cortex or a human cortex was also used as an 

internal standard in each gel in triplicate. Human cortex was used only when detecting 

Proteasome 20S α6 subunit and cathepsin D due to the specificity of antibodies to human 

protein only. On each gel there were four lanes containing rat cortex, (these were always 

the second lane, 12th, 14th and the last lane) and 1.5µl of full range molecular weight marker 

(MWM, sigma) in the first and 13th lane. 

Gels were run at 160 V for about 90 min, the time at which the blue dye was noted 

as almost leaking out of the gel. The contents of the gel were transferred onto nitrocellulose 
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membranes (Hydrobond-C, Amersham) using electroblotting for mini and maxi gels (Scis-

Plas, Cambridge, UK) in a final transfer buffer concentration of 0.025 M Tris–HCl, 0.2 M 

glycine and 20% methanol at 60 V for 1.5 hrs. Non-specific binding sites were blocked by 

incubating the membrane for 1 h at 25 °C in 5% (w/v) dried skimmed milk (Marvel) 

dissolved in phosphate-buffered saline and tween (PBST), final concentrations were as 

follows: 0.14 M NaCl, 2.7 mM KCl, 6.5 mM Na2HPO4.2H2O, 1.5 mM KH2PO4, 1% 

tween). After blocking, the membranes were probed overnight at 4 °C with the appropriate 

primary antibody in 5% (w/v) dried skimmed milk (Marvel) PBST (see table for dilutions 

and more details on primary antibody). The membranes were normally washed three times 

for 5 min with PBST. After washing, the membranes were incubated with the relevant 

secondary antibodies, either a IRDye 680LT goat anti-Mouse IgG (Licor Biosciences), 

visible under the red channel, or a IRDye 800CW Donkey anti-Rabbit, visible under the 

green channel (Licor Biosciences) at dilutions of 1:5000 in 5% milk PBST for 1 hr at room 

temperature on the shaker. After incubation with secondary antibodies, the membranes 

were washed three times for 5 min each with PBST.  

All antibodies were optimized prior to use by loading gels with incremental 

amounts of protein (5 – 40μg) prepared from human grey matter of BA9 region. Signals 

from 20µg loaded protein fell within a linear range of detection at the recommended 

antibody dilution suggested by the suppliers (Table 2-2). Thus, 20µg total protein was 

loaded on the gel in all cases.  
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Table 2-2:  List of primary and secondary antibodies used for Western blotting. 

Antibody Species Dilution Supplier Secondary antibody 

Proteasome 20S α3 subunit, (MCP257) Mouse 
monoclonal 

1:2000 Enzo Life Sciences IRDye 680LT goat anti-Mouse 
IgG 

Proteasome 20S α6 subunit, (MCP20) Mouse 
monoclonal 

1:2000 Enzo Life Sciences IRDye 680LT goat anti-Mouse 
IgG 

Proteasome 19S ATPase subunit Rpt6, 

(p45-110) 

Mouse 
monoclonal 

1:2000 Enzo Life Sciences IRDye 680LT goat anti-Mouse 
IgG 

LAMP1 Rabbit polyclonal 1:2000 Abcam IRDye 680LT goat anti-Mouse 
IgG 

LAMP2 Rabbit polyclonal 1:2000 Abcam IRDye 800CW Donkey anti-
Rabbit 

Cathepsin D Goat polyclonal 1:2000 Santa Cruz IRDye 680LT rabbit anti-Goat 
IgG 
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2.3.4 Quantification of blots 

The density of the lanes and bands was quantified using LI-COR® Biosciences’ 

Odyssey® Infrared Imaging System, software version 3.0. The quantification values were 

expressed as a ratio of the integral of band density in a sample to standard rat or human 

brain homogenate, which was run on each blot as a positive control and for standardization 

purposes for each sample. An example of Western blot for α-6 and RPT6 are shown in 

(Figure 2-2 and 2-3)  

 

Figure 2-1: An example of a Western blot for α-6. 

 

 

Figure 2-2: An example of a Western blot for RPT6. 
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Rat cortex 
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cortex 
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2.4 Immunohistochemistry 

Paraffin wax-embedded tissue sections (7 µm thickness) selected from the anterior 

cingulate cortex (Brodmann area (BA) 24), the prefrontal cortex (BA 9) and the parietal 

cortex (BA40) were de-paraffinised using xylene and rehydrated in a graded ethanol series 

100%, 90% and 70%, and then washed in distilled water. The samples were then subjected 

to antigen retrieval by microwaving sections in 0.01 M citrate buffer, pH 6.0. Endogenous 

peroxidase activity was quenched by treating the sections with 0.3% hydrogen peroxide 

(from Sigma) in a PBS buffer for 30 min to avoid any non-specific reaction with di-amino-

benzidine (DAB) (Vector Laboratories). After washing with PBS (three times for 5 min), 

the sections were incubated with 20% normal goat or rabbit serum diluted in blocking 

solution containing 2% BSA, 0.3% Triton X-100 and 0.01 sodium azide for 30 min at room 

temperature to block non-specific binding. The sections then were incubated with the 

following primary antibodies in the blocking solutions overnight at 4 °C α-3 1:200 

(Enzolife), α-6 1:200 (Enzolife) or RPT6 1:200 (Enzolife). After washing three times with 

PBS (5 min each), the sections were incubated with biotinylated anti-rabbit or anti-mouse 

secondary antibody as appropriate for 60 min at room temperature. The sections were then 

rinsed three times with PBS (5 min each) and treated with avidin biotin-peroxidase 

complex (ABC) for 60 min. The immunoreactive signal was revealed by using the 

chromogen 3, 3’-diaminobenzidine tetrachloride (DAB). After washing in distilled water 

and then counter-staining with haematoxylin for 40 sec, sections were rinsed with PBS 

(three times for 5 min), dehydrated with graded concentrations of alcohol (70%, 90%, 

100%) and cover-slipped using depex (DPX; BDH) (Dorest, UK) as a mounting medium. 
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The optimal antibody concentration was chosen after a titration experiment for each 

antibody via IHC to choose the antibody dilution that gives the best staining with minimum 

background/non-specific binding.  

 

2.5 Measurement of proteasomal activity 

Chymotrypsin- and PGPH-like proteasomal enzyme activities were assayed in the 

anterior cingulate cortex (Brodmann area 24), the prefrontal cortex (Brodmann area 9) and 

the parietal cortex (BA40) using synthetic peptide substrates linked to the fluorometric 

aminomethylcoumarin (AMC). 

2.5.1 Preparation of brain tissue homogenate for proteasome assay 

The DLB, PDD, AD and control brain tissues were retrieved from –70 °C storage 

and immediately homogenised in an ice-cold proteolysis buffer (50 mM Tris-HCl, pH 7.4 

(containing 5 mM MgCl2, 5 mM ATP and 1 mM dithiothreitol) by ultra turrax for 30 sec. 

Homogenates were then centrifuged (allegra 64R centrifuge, Beckman) at 19,000 rpm for 

15 min at 4 ˚C. The resulting supernatants were placed on ice and used immediately to 

determine proteasome activity. Determination of total protein content in supernatants was 

assessed by the Bradford methods (as explained above). According to the protein 

concentration, each sample was diluted to 1 mg/ml protein concentration with 50 mM of 

Tris-HCl pH 7.4 proteasome assay buffer containing 5 mM MgCl2, 5 mM ATP, 1 mM 

dithiothreitol, 10% glycerol, 2 mM phenylmethylsulphonyl fluoride (PMSF), 5% protease 

inhibitor cocktail set III. 
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2.5.2 Proteasome enzyme activity assay 

Proteasome activity was assessed in post-mortem brain tissue using fluorogenic 

synthetic peptide substrates [for chymotrypsin-like activity, Suc-Leu-Leu-Val-Tyr-AMC; 

for PGPH-like activity, Z-Leu-Leu-Glu-AMC] as described previously (Zeng et al., 2005) 

The two catalytic activities were assessed by their ability to hydrolyse the fluorogenic 

substrates into highly fluorescent end-products 7-amino-4-methyl-coumarin (AMC). The 

resulting fluorescence by AMC cleaved from the substrate by the proteasome was then 

detected by a Devices plate reader at an emission wavelength of 355 nm and an excitation 

wavelength of 460 nm (Molecular Devices). Measurements were performed in 96 well 

plates (total volume 100 µl per well) and all samples were assayed in triplicate for both 

activities.  

 

In brief, brain lysates (100 µl per well) containing 1 mg/ml of protein were 

incubated with 5 mM chymotrypsin or 1 mM PGPH substrates for 60 min at 37 °C (Table 

2-3; (Zeng et al., 2005). In a separate well, lysates were also pre-incubated with 5 mM 

carbobenzoxyl-leucinyl-leucinyl-leucinal (MG-132; a final concentration of 50 µM for 

chymotrypsin-like activity) (Zeng et al., 2005) and 150 µM for PGPH-like activity, or 

100% DMSO for 30 min at room temperature (Table 2-3). The background fluorescence 

values obtained by incubating the lysates with the proteasome inhibitors were subtracted 

from activity values. Proteasomal activity rates are expressed as fluorescence units (FU)/mg 

protein/hour. The substrate hydrolysis was determined by measuring the fluorescence 

intensity of the AMC released using a FlexStation 3 (Molecular Devices LTD, UK). The 

specificity of the proteasomal assay was confirmed by the ability of the proteasome 



 

 

110 

 

inhibitor to nearly totally inhibit chymotrypsin-like and peptidylglutamyl-peptide hydrolase 

(PGPH)-like activities. 

 

Table 2-3: Proteasome inhibitor, substrate volumes and excitation/emission used for 

proteasome activity assay. 

 Chymotrypsin-like activity PGPH-like activity 

Blank Test Blank Test 

Sample 
solution 

(1mg/ml) 

100 µl 100 µl 100 µl 100 µl 

Proteasome 
inhibitor 

1 µl 

(5 mM MG-
132) 

1 µl DMSO 3 µl (5 mM 
MG-132) 

3 µl DMSO 

Incubation for 60 min at room temperature 

Proteasome 
substrate 

1 µl (5 mM 
substrate III) 

1 µl (5 mM 
substrate III) 

10 µl (1 
mM 

substrate  

II) 

10 µl (1 mM substrate II) 

Incubation for 60 min at 37 °C 

Excitation/E
mission 

380/460 380/460 380/460 380/460 
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2.5.3 Measurement of proteasome inhibition and dose-inhibition curve  

To measure proteasome inhibition in the presence of proteasome inhibitors, stock 

solutions of MG132 (5 mM dissolved in DMSO; Biomol International, Exeter, UK), 

AdaAhx3L3VS (0.5 mM dissolved in DMSO) and 1 mM lactacystin (Sigma-Aldrich, UK) 

were prepared and diluted with DMSO into different concentrations. Inhibition tests 

contained 100 µL standard human brain tissue (1 mg/ml protein content) and a range of 

different proteasome inhibitor concentrations (final concentrations are given in the result 

section for each inhibitor).  

2.5.4 Analysis of proteasomal enzyme activity 

Proteasomal enzyme activity was determined as an increase of fluorescence reaction 

products. Chymotrypsin-, trypsin- and PGPH-like proteasomal activity was inhibited by 

MG-132, and this reading was used as background fluorescence. The difference in the 

fluorescence intensity of AMC between the presence and absence of inhibitors was taken as 

proteasomal enzyme activity. 
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2.6 Statistical Analysis 

The quantification values were expressed as a ratio of integral of band density in a 

sample to standard rat brain homogenate, which was run on each blot for standardization 

purposes. Analysis of the data was carried out using SPSS version 20 (SPSS, Chicago, 

Illinois, USA). For each brain region, comparisons of the average expression levels of 

proteins were made between controls and subjects with AD, DLB and PDD. Initially, the 

normality of the data for each protein in each brain region was determined using the 

Shapiro–Wilk (SW) test; this test is the most appropriate for data size up to n-2000. Next, 

the relationships between the protein value and the demographic data (age at death, gender, 

post-mortem delay (PMD), brain tissue pH and years in storage) were determined using 

Spearman’s rank correlation. 

If there was any significant correlation with the demographic data, the protein 

values were subsequently expressed as residuals (unstandardized) created from the 

multivariable regression analysis to eliminate the confounding effect of the demographic 

variables (gender, post mortem delay, age at death and length of brain storage) on the 

protein values. Briefly, any demographic data found to be correlated with the protein value 

were entered into a regression analysis using the enter method, and the protein values were 

entered as dependent variables with the confounding demographic data variables as 

independent factors. If the demographic data variables were significant predictors for the 

protein value, then the unstandardized residual from this regression was saved and used as a 

dependent variable. If any of the demographic data variables were not significant 

predictors, they were removed from the analysis and the regression was redone without 

non-significant predictors. The residual variables can be either positive or negative values; 
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it was necessary to shift all values above 0, usually by adding 1 to all values from the 

proteins measured by semi-quantitative Western blot analysis. For the proteasome activity, 

only PGPH-like activity in BA40 was correlated with PMD. The negative values from the 

residual were up to about -4000; to shift all values above zero, 5000 was added to all values 

measured for PGPH-like activity in BA40. Multiple linear regressions were followed by 

transforming the residual protein values into a normal distribution. Because there were so 

many transformations, log10 and square root were attempted in the same order, but 

whenever possible, the same operation was used for all data sets in a brain. The differences 

in protein levels between groups were determined using one-way ANOVA and a 

Bonferroni post-hoc test or a Kruskal–Wallis ANOVA, followed by a Mann Whitney U test 

as appropriate, with a significance level of p < 0.05. Additional comparisons between 

protein levels and pathological or clinical scores were undertaken using a one-way 

ANOVA, a Kruskal-Wallis ANOVA or a Mann-Whitney U test and multiple linear 

regressions as appropriate. Relationships between the proteasome sub-unit and the synaptic 

proteins were determined by Pearson product moment (r) and Spearman rank correlation 

(Rs) with a significance level of p < 0.01. 
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Chapter 3  DEVELOPMENT OF PROTEASOME ASSAY 
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3.1 Introduction  

The proteasome is characterized by three main catalytic activities that differ in their 

specificities against peptide substrate (Orlowski, 1990, Rivett, 1989). The catalytic 

activities of the proteasome are located within the two-heptameric β rings. Three of the β 

subunits (β1, β2, and β5) in each β-ring contain the proteolytic active sites where the 

proteolysis of the protein occurs. β1 subunit has the PGPH-like activity site cuts 

preferentially after acidic residues, β2 subunit has the Trypsin-like activity site cuts mainly 

after basic residues and β5 subunit has chymotrypsin-like activity site responsible for 

cleaves after hydrophobic residues. Since the proteasome is involved in many important 

cellular processes, it is not surprising that alteration in the proteasome activity have been 

implicated in the pathogenesis of a number of diseases. These including: PD, AD diabetes, 

and a variety of cancer. In the last decade, the proteasome inhibitor Bortezomib (Velcade) 

was approved in 2003 for the treatment of multiple myeloma and mantle cell lymphoma 

and since open the way to for the validation of the ubiquitin-proteasome pathway as a 

potential therapeutic target for the treatment of human disease. 

In order to measure the proteolytic activity of the proteasome in cells or tissues, cell 

lysates or tissue homogenate are often incubated with fluorescently tagged substrates 

specific for the main components of the proteasome activity. These substrates are 

composed of three to four amino acid residues peptide with a fluorogenic reporter at the C 

terminus, most commonly, 7-amino-4methycoumarin (AMC), 2-naphtylamine (NA) and 4-

methoxy-2-naphtylamine (MNA). After incubation with tissues homogenate or cell lysates, 

the proteasome cleave the amide bond between the last amino acid and the fluorogenic 
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reporter releasing the fluorescence molecule. Therefore, the increase in fluorescence is 

proportional to the proteasome activity. Proteasome inhibitors such as lactacystin or 

MG132 are normally used to confirm the specificity of the proteasomal assay, by the ability 

of the proteasome inhibitor to inhibit the catalytic activities of the proteasome.   

As a part of this study to assess the activity of the proteasome in DLB, PDD and 

AD cases compare to controls, different methods were examined aimed at measuring the 

main catalytic activities of the proteasome. To choose which proteasome inhibitors could 

be used for the assay, the effect of different proteasome inhibitors on chymotrypsin-, 

trypsin- and PGPH-like proteasomal activity was examined. 

 

3.2 Development of the proteasome assay  

Fluorogenic peptide substrates were used to measure the proteasome activity. 

Initially, the crude homogenates prepared for the western blot (see above), stored at -70°C 

were used for the proteasome assay. Three samples only were used to test the assay. The 

crude homogenate of these three samples were centrifuged at 19,000 rpm for 15 minutes at 

4°C and diluted to 1 mg/ml protein concentration with proteasome assay buffer containing 

(5 mM MgCl2, 5 mM ATP, and 1 mM dithiothreitol, 2mM phenylmethylsulphonyl fluoride 

(PMSF), 5% protease inhibitor cocktail set III). Measurements were performed in 96 well 

plates (total volume 100 µl per well). Brain lysates (100 µl per well) containing 1mg/ml of 

protein were incubated with 2 µl (5mM trypsin substrate), 1µl (5mM chymotrypsin 

substrate) or 10 µl (1mM PGPH substrate) for 60min at 37°C. In a separate well brain 

lysates were pre-incubated with a range of different concentrations of PSI, 5mM 
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carbobenzoxyl-leucinyl-leucinyl-leucinal (MG-132; a final concentration of 50µM; (Zeng 

et al., 2005), 20µl (2.5mM adamantine-acetyl-(6-aminohexanoyl)3-(leucinyl)3-vinyl-

(methyl)-sulfone (AdaAhx3L3VS;), 10µl 1mM lactacystin or 100% DMSO for 30min at 

room. The resulting fluorescence by AMC cleaved from the substrate by the proteasome 

was then detected by a Devices plate reader at an emission wavelength of 355 nm and an 

excitation wavelength of 460 nm (Molecular Devices). The activities values did not show 

any different between the blank well (sample + proteasome inhibitor + substrate) and the 

test well (sample +substrate), also these values were very low, which suggested that the 

fluorogenic peptide substrates did not undergo the hydrolysis.  

The second attempt was to prepare the crude homogenate using 50mM Tris base 

lysis buffer (pH8.0) containing 1% Triton-X-100, 150mM sodium chloride, 5mM 

ethylenediaminetetraacetic acid (EDTA), 2mM phenylmethylsulphonyl fluoride (PMSF) 

and 5% protease inhibitor cocktail set III, followed by exactly the same method as above. 

This experiment was repeated several times with changing the condition of the samples, for 

example: using fresh and stored crude homogenate.  Again the activity values were very 

low. 

 Then ice-cold proteolysis buffer; 50 mM Tris-HCl, pH 7.4 containing  (5 mM 

MgCl2, 5 mM ATP, and 1 mM dithiothreitol, 2mM phenylmethylsulphonyl fluoride 

(PMSF), 5% protease inhibitor cocktail set III) was used to homogenise the brain tissue. 

Initially, samples were stored after homogenizations. In this condition, the activity values 

for both blank and test were low. Then the samples were homogenized, centrifuged, and 

stored at –20°C for further use. Again the activity values were low. The findings of this 

process concluded that the crude homogenate should be prepared on the same day of the 
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experiment, using freshly prepared ice-cold proteolysis buffer (the buffer should prepared 

at the same day of the experiment).   

  

3.3 Inhibition of the proteasome activities by MG-132 

To investigate the effect of MG-132 on chymotrypsin-, trypsin-, and PGPH-like 

proteasomal activities, a range of MG-132 concentrations (5,000, 1,000, 200, 100, 50, 25, 

12.5, 6.25, 3.12, 1.5 nM) were investigated and a concentration-response curve for 

determining inhibitory concentration (IC50) values was generated.  

MG-132 reduced chymotrypsin-, trypsin- and PHPG-like proteasomal activity in a 

concentration-dependent manner in human brain tissue. According to Figures 3-1, 3-2 and 

3-3, the inhibitory concentration 50 (IC50) for MG-123 on chymotrypsin-, trypsin- and 

PGPA-like activity were 23, 177 and 241 nM, respectively. Efficient inhibition by 90% was 

achieved by an MG-132 inhibitor concentration of 50 µM and 200 µM on chymotrypsin- 

and PGPH-like activity, respectively. Only partial inhibition of trypsin-like activity could 

be achieved using this protocol (Fig 3-2) and therefore only chymotrypsin-like and PGPH-

like proteasomal activities were measured using MG-123. 
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Figure 3-1: Concentration-response curves for the determination of IC50 values on 

chymotrypsin-like activity in standard human tissue.    

A range of MG-132 concentrations (5,000, 1,000, 200, 100, 50, 25, 12.5, 6.25, 3.12, 1.5 

nM) were used in standard human tissue to investigate the effect of MG-123 on 

chymotrypsin-like proteasomal activity. Levels of proteasome inhibition (%) were plotted 

against the logarithmic concentrations of the proteasome inhibitors to determine the IC50. 

The IC50 for MG-132 was 23 nM. 
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Figure 3-2: Concentration-response curves for the determination of IC50 values on 

trypsin-like activity in standard human tissue.  

A range of MG-132 concentrations (300, 150, 30, 6, 1.2, 0.240, 0.048, μM) were used in 

standard human tissue to investigate the effect of MG-132 on trypsin-like proteasomal 

activity. Levels of proteasome inhibition (%) were plotted against the logarithmic 

concentrations of the proteasome inhibitors to determine the IC50. The IC50 for MG-123 

was 241 nM. 
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Figure 3-3: Concentration-response curves for the determination of IC50 values on 

PGPH-like activity in standard human tissue. 

A range of MG-132 concentrations (100, 20, 4, 0.8, 0.160, 0.032, 0.0106 μM) were used in 

standard human tissue to investigate the effect of MG-132 on PGPH-like proteasomal 

activity. Levels of proteasome inhibition (%) were plotted against the logarithmic 

concentrations of the proteasome inhibitors to determine the IC50. The IC50 for MG-123 

was 177 nM. 

 

 

 

 

 

 

Effect of MG-132 on PGPH-like proteasomal activity

0 2 4 6
0

20

40

60

80

100

 LOGIC50 2.249

     IC50 177.3

Log [Concentration of MG-132] nM

R
e
s
p

o
n

s
e
 P

e
rc

e
n

t 
o

f 
C

o
n

tr
o

l



 

 

122 

 

3.4 Inhibition of the proteasome activities by proteasome inhibitor 

AdaAhx3L3VS 

In a second approach, the effect of the proteasome inhibitor AdaAhx3L3VS on both 

trypsin-like and PGPH-like activities was determined. The effect of MG-132 was more 

pronounced than the effect of AdaAhx3L3VS on both trypsin- and PHPG-like activity. For 

this reason, MG-132 was used to inhibit both chymotrypsin- and PHPG-like activity to 

measure the proteasome activity. AdaAhx3L3VS reduced the PGPH-like activity in human 

brain tissue by 83% when used at 100 µM concentration, compared to 96.1% when using 

the same amount of MG-132. The IC50 of PGPH-like activities was obtained at 31.6 µM 

AdaAhx3L3VS, compared to 177 nM MG-132 (Figure 3-4).  
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Figure 3-4: Concentration-response curves for the determination of IC50 values on 

PGPH-like proteasomal activities in standard human tissue.  

A range of AdaAhx3L3VS concentrations (100, 20, 4, 0.8, 0.160, 0.032, 0.0064, μM) were 

used in standard human tissue to investigate the effect of AdaAhx3L3VS on PGPH-like 

proteasomal activities. Levels of proteasome inhibition (%) were plotted against the 

logarithmic concentrations of the proteasome inhibitors to determine the IC50. The IC50 

for AdaAhx3L3VS was 31 μM. 

 

3.5  Inhibition of the proteasome activities by lactacystin 

Addition of lactacystin, a specific inhibitor of the 26S proteasome, at various 

concentrations in the standard human tissue was significantly less affected in both 

chymotrypsin-like activity and PGPA-like activity compared to trypsin-like activity. 

Lactacystin inhibited trypsin-like activity with an of IC50 4.5 μM. In contrast, much lower 
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doses of MG-132 were required to obtain 50% inhibition of the trypsin-like activity with 

IC50 241 nM (Figure 3-5)  

 

Figure 3-5: Dose-response curves for the determination of IC50 values on trypsin-like 

proteasomal activities in standard human tissue.  

A range of lactacystin concentrations (2,000, 666, 222, 74.07, 24.69, 8.23, 2.74, 0.244, 

0.061 μM) were used in standard human tissue to investigate the effect of lactacystin on 

trypsin-like proteasomal activities. Levels of proteasome inhibition (%) were plotted 

against the logarithmic concentrations of the proteasome inhibitors to determine the IC50. 

The IC50 for lactacystin was 4.5 μM. 
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3.6 Discussion  

The results illustrated some of the difficulties of measuring the activities of the 

proteasome and suggest that preparation of the tissue homogenate and the assay buffer 

should be carried out at the same day of the experiment.  

From the three selective inhibitors (MG-132, lactacystin and AdaAhx3L3VS), MG-

132 was able to maximally inhibit more than 90% of the chymotrypsin- and PGPA-like 

activity and was selected as background reading for the proteasome assay in this study. 

Two different concentrations were selected for each activity based on the concentration that 

inhibited more than 90% of each proteasomal activity and the most frequent used in 

published studies. The maximum inhibition for the trypsin-like activity was 70%, even 

when adding a very high concentration of MG-132. Therefore, the concentrations of MG-

132 were 5 μM, and 20 μM in the proteasomal enzyme activity assay for chymotrypsin- 

and PGPH-like proteasomal activities in this thesis. 

The inhibitory concentration 50 (IC50) of MG-132 for each enzyme activity was 

used as a standard in each plate for normalisation. This provides confidence as to the 

standardisation of the assay: any day-to-day variability could be controlled.  

Proteasomal enzyme activity was determined as an increase of fluorescence reaction 

products. Chymotrypsin- and PGPH-like proteasomal activity was inhibited by MG-132 
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and this reading was used as background fluorescence. The difference in the fluorescence 

intensity of AMC between the presence and absence of inhibitors was taken as proteasomal 

enzyme activity. Results illustrated that none of the three inhibitors used could completely 

inhibit the trypsin-like activity of the proteasome. For this reason, only two activities of the 

20S proteasomes [chymotrypsin-like, and peptidylglutamyl-peptide hydrolase (PGPH)-like 

activities] were analysed in this thesis. 
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Chapter 4  Characterisation of patient samples group and 

transformation of statistical data from semi-quantitative 

Western blotting protein values and proteasome activity 

measurement   
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4.1 Introduction 

As discussed previously in Chapter 2 Section 2.1, post-mortem brain tissue was 

obtained from several sources. It is very important for post-mortem human brain specimens 

to be of high quality and well characterised. Each autopsy sample is affected by a 

combination of demographic (age at death and gender) and post/ante -mortem factors 

(agonal state and PMD). Aging is associated with many changes in brain structure and 

function (Raz and Rodrigue, 2006). Gender-specific changes can be related to sex 

hormones (Kelly et al., 1999); such as testosterone or oestrogen, or to the expression of sex-

linked genes (Carruth et al., 2002).  

Tissue-specific information such as brain pH and PMI are as important as patient 

demographics. For post-mortem human brain research, brain pH is an important indicator 

for tissue quality (Monoranu et al., 2009, Stan et al., 2006), it can have serious consequence 

for genetic and biochemical measurement. For example some enzymes such as phosphate-

activated glutaminase and glutamic acid decarboxylase were correlated with tissue pH in 

agonal control cases and also the activity of these enzymes were reduced by in vitro 

acidification (Yates et al., 1990). In contrast, brain pH does not appear to significantly 

affect brain proteins or receptor binding (Harrison et al., 1995, Kornhuber et al., 1988). 

However, brain pH is a major factor for mRNA integrity (Kingsbury et al., 1995, Li et al., 

2004). Modification of brain pH may be the result of prolonged agonal states, leading to 

hypoxia and an increase in brain tissue lactate (Hardy et al., 1985).  

PMD can be defined as the time course between death of the patient and removal of 

tissue for study at autopsy. It is an important factor in studying post-mortem brain: although 
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many studies reported no relationship between PMD and mRNA quality and mRNA was 

reported to be stable for up to 24 hours  (Cummings et al., 2001, Heinrich et al., 2007, 

Miller et al., 2004, Schramm et al., 1999), Lipska showed a relationship between PMD and 

mRNA quality (Lipska et al., 2006).  

Since demographic and post-/ante-mortem factors may affect protein levels, 

controls, DLB, PDD and AD were matched as closely as possible for age, PMD and pH. In 

addition, any relationships found between protein measurements and demographics/post-

mortem factors were controlled for via the creation of unstandardized residuals. 

Clinicians generally use various tools and tests to assess and diagnose each 

dementia case. Diagnosis of DLB was made when cognitive impairment or hallucinations 

were present before or within one year of onset of parkinsonism.  Classification of PDD 

was made when parkinsonism preceded dementia by more than a year (McKeith et al., 

2005).  AD cases were selected on the basis of meeting the Consortium to Establish a 

Registry for Alzheimer’s Disease (CERAD) criteria for a diagnosis of probable or definite 

AD, DLB according to international consensus criteria (McKeith et al., 2005) and PDD 

according to Movement Disorders Society criteria (Emre et al., 2007). 

 

Assessment and measurement of cognitive function, behavioural changes and 

histopathological analysis are all important to help understand the disease process. The 

availability of all this information, in addition to the demographic nature and post-/ante-

mortem factors allowed the development of a large database that could be used for further 
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analysis (see Appendix I, II, III for demographic nature, post/ante -mortem factors, clinical 

and pathological semi-quantitative scores).  

4.2 Patient demographics  

Demographic variables for the study cohort are summarised in Table 4-1, and fully 

detailed on a case-by-case basis in the (Appendix I). There were no significant differences 

in PMD, tissue pH or gender between diagnostic groups. AD patients were significantly 

older at death (one-way ANOVA F(3;126) = 6.044, p = 0.001) than controls (p = 0.001) or 

patients with DLB (p = 0.008) or PDD (p = 0.001).  

Table 4-1: Patient demographic data. 

Data are means ± SD age in years; PMD = post-mortem delay; DLB = dementia with Lewy 

bodies; PDD = Parkinson’s disease dementia; AD = Alzheimer’s Disease. PMD and pH 

were not significantly different between the groups in the one-way analysis of variance 

(ANOVA) (P < 0.05) 

 

 

 

Diagnosis Gender (M/F) % Age at death 
(mean) 

PMD (mean 
hours) 

pH (mean) 

Control (25) 60/40 79.7 ± 7.6 39.1 ± 22.9 6.47 ± 0.28 

PDD (34) 53/47 79.9 ± 6.0 33.5 ± 15.6 6.44 ± 0.34 

DLB (55) 58/42 81.7 ± 6.5 41.3 ± 28.0 6.37 ± 0.41 

AD (16) 31/69 88.0 ± 7.8 34.9 ± 23.9 6.30 ± 0.33 
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4.3 Pathological and Clinical data 

4.3.1 Pathological data  

The average scores from semi-quantitative analysis of Aβ, tau and α-synuclein in 

BA9, BA24 and BA40 for PDD, DLB, AD and controls are shown in Table 4-2 and Figure 

4-1. The data are presented as means ± standard deviations. The control cases showed an 

absence of α-synuclein pathology. There was little, if any, tau pathology detected in some 

cases, while Aβ pathology was more common in all three cortical regions studied. PDD 

cases were characterised by both α-synuclein and Aβ pathology and by less tau pathology 

across all three brain regions. In DLB cases, the mean values for all three pathology scores 

were greater than PDD in all three cortical regions studied. AD cases showed severe plaque 

and tangle pathology in BA9 and BA40 but not in BA24, while α-synuclein pathology was 

sparse.   
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Table 4-2: Mean pathology scores for senile plaques, neurofibrillary tangles and α-

synuclein inclusions in three cortical areas in PDD, DLB, AD and control cases. 

Plaque BA9 n Plaque BA24 n Plaque BA40 n 

Control  0.35 ± 0.65   23 0.29 ± 0.78  21 0.39 ± 0.78  23 

PDD 1.39 ± 1.10  33 0.97 ± 0.83  34 1.23 ± 0.91  31 

DLB 1.68 ± 1.07  53 1.28 ± 1.07  50 1.47 ± 1.09  55 

AD 2.81 ± 0.54  16 1.47 ± 1.06  15 2.63 ± 0.72  16 

    

Tangles BA9 n Tangles BA24 n Tangles BA40 n 

Control  0.17 ± 0.39 23 0.10 ± 0.30 21 0.04 ± 0.21 23 

PDD 0.53 ± 0.61 32 0.53 ±0.63 34 0.48 ± 0.72 33 

DLB 0.93 ± 0.84 55 1.23 ± 1.02 52 0.98 ± 0.89 55 

AD 2.56 ± 0.51 16 1.44 ± 1.26 16 2.81 ± 0.40 16 

    

α-synuclein 

BA9 

n α-synuclein 

BA24 

n α-synuclein 

BA40  

n 

Control  0.00 23 0.00 21 0.00 20 

PDD 0.79 ± 1.06 34 1.85 ± 1.04 34 0.59 ± 1.77 34 

DLB 1.62 ± 1.05 52 2.28 ± 0.92 54 1.39 ± 0.98 54 

AD 0.13 ± 0.34 16 0.31 ± 0.70 16 0.13 ± 0.34 16 

Plaque, tangle and α-synuclein pathology were assessed on a semi-quantitative scale as 

described in Materials and Methods. Data are presented as means ± standard deviations 

from patient scores. Data taken from (Howlett et al., 2014). 

 



 

 

 

Figure 4-1: Average scores of semi quantitative analysis of pathology scores in control, 

PDD, DLB and AD brain
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4.3.2 Clinical data 

The Mini-Mental State Examination (MMSE) (Folstein et al., 1975) was used to 

measure the severity of cognitive impairment several times from the time of dementia 

diagnosis, usually over the 8 to 10 years prior to death (MMSE-decline). The MMSE scores 

ranged from 0-30. In this project, four categories of cognitive impairment were used for 

classification purposes: ‘unimpaired cognition’ for clinical control cases, ‘mildly impaired 

cognition without dementia’ (score of 25-30), ‘mildly impaired cognition with dementia’ 

(score of 17-24), ‘moderately impaired cognition’ (score of 10-16) and ‘severely impaired 

cognition’ (score of 9 or less). More details on classification into these categories can be 

seen on (Chapter 2, Section 2.1). 

Data were available for most of the dementia cases, but not for the controls. 

However clinical notes from all controls were examined in detail by the brain banks 

supplying tissue and confirmed that there was no evidence of cognitive impairment. As 

discussed previously in Chapter 2, Section 2.1, MMSE scores were divided into five 

categories (see also Whitfield et al 2014), and the control cases were deemed to have 

‘unimpaired cognition’ (See Chapter 2, Section 2.1 for further details). Table 4-3 and 

Figure 4-2 shows the distribution of cases among these cognitive impairment categories 

according to clinical diagnosis. More than 50% of the AD cases were classified as having 

severe cognitive impairment, whereas none had MCI. The rest of the AD cases were 

distributed between mild and moderate impairment. Among the PDD cases, 34% were 

classified with moderate and 37.5% with severe cognitive impairment. The majority of 

DLB cases were categorised as moderate, with a few cases of MCI (Figure 4-2). 
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Semi-quantitative analysis of behavioural data for agitation, depression, 

hallucinations and persecution are summarised in Table 4-4 and Figure 4-3 as means ± 

standard deviations. For all individuals with dementia, scores from standardised tests or 

semi-structured interviews were used to derive each behavioural symptom score; 

principally, this was the Neuropsychiatric Inventory (NPI) mood item on a scale of 0 to 3, 

where 0 was none, 1 was intermittent and mild, 2 was moderate (intermittent but 

significant) and 3 was persistent and/or severe. For depression, different tests were used as 

explained in Chapter 2 Section 2.1. Figure 4-3 illustrates that AD had relatively high mean 

scores for agitation compared to both DLB and PDD. Mean scores for depression were very 

low in DLB cases, as the majority of the cases were classified as mild, with only one case 

each of moderate and severe impairment. PDD and AD cases were distributed between 

different depression scoring groups, and the mean values for both PDD and AD differed 

significantly from those of DLB cases. Hallucination was more common in DLB and PDD 

cases than in the AD group. Mean scores for persecution did not differ significantly 

between the various dementia diagnostic groups. All dementias had significantly higher 

scores (depression, persecution, hallucination, and agitation) than control subjects. 

 

 

 

 

 

 

 



 

 

 

Table 4-3: Percentage of case

 control

control 100 

PDD 0 

DLB 0 

AD 0 

Total 100 
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The frequency of each cognitive impairment category within each clinical diagnostic group 

was calculated and represented graphically. For MMSE classification purposes (see section 

x) (Graphical presentation
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The frequency of each cognitive impairment category within each clinical diagnostic group 

was calculated and represented graphically. For MMSE classification purposes (see section 

ntation of the values in Table 4-3). 
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Table 4-4: Mean clinical scores for agitation, depression, persecution and hallucination 

in PDD, DLB, AD and control cases.

Agitation

control 0.0 ± 0.0

PDD 1.06 ± 1.11

DLB 0.88 ± 1.07

AD 1.6 ± 1.18
Agitation, depression, persecution and hallucination were assessed 

scale as described in Materials and Methods. Data are 

deviations. 

Figure 4-3: Mean scores for semi

control, PDD, DLB and AD brain

Agitation, depression, persecution and hallucination were assessed 

scoring scale (as described in Materials and Methods

diagnostic groups (Kruskal

Mann–Whitney U-test showed 
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15, p = 0.004). PDD and DLB subjects had significantly higher mean scores for 

hallucination compared to the AD group (Mann–Whitney U: p < 0.05). The mean values 

for agitation and persecution were not significantly different between the dementia groups 

(PDD, DLB and AD), whilst, as expected, all dementias had significantly higher agitation, 

depression, persecution, and hallucination scores than control subjects (n = 24, Mann–

Whitney U, p < 0.001) (Graphical presentation of the values in Table 4-4). 
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4.4 Transformation of data from semi-quantitative Western blotting 

protein values and proteasome activity measurement 

Prior to comparative analysis, all semi-quantitative Western blot scores were 

analysed for normality and (unstandardised) residuals calculated using linear regression. 

This had the effect of removing any effect of demographic data analysis (as explained in 

detail in Chapter 2 Section 2.6). All the values used in the comparative analysis and figures 

represent the final output after normality and the residual creation (see Appendix V, VI, 

VII, VIII for the initial protein quantification values, ratio and the final output). Some of 

these final residual variables contained negative values. To allow easy visual comparison of 

the data when depicted as scatter plots, the decision was taken to translate any variables that 

contained negative values by an amount sufficient to ensure the largest negative value 

became positive. An advantage of this is that the data points do not risk being obscured by 

their original spread across the x axis, and the mean bars do not fall on the X axis. To avoid 

any repetitive and complexity in the figure caption, the statistical transformation of semi-

quantitative Western blotting values for each protein and the proteasome activity in each 

brain region is explained in section 4.4.1. 
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4.4.1 Transformation of data from semi-quantitative Western blotting protein 

values for RPT6, α-3, α-6, LAMP1, cathepsin-D, and proteasome activity 

measurement in BA9 

Age at death and brain tissue pH significantly predicted RPT6 and α-3 values in 

BA9 (R2 = 0.032, beta = -0.178, p = 0.049 and R2 = 0.068, beta = -0.261, p = 0.003, 

respectively). Therefore, regression analysis was used to create a residual value 

(unstandardised) for RPT6 and α-3 to remove the effects of age at death and brain tissue 

pH. This was applied to all RPT6 and α-3 values from all cases. 

Only RPT6, α-3, LAMP1 and cathepsin D protein values in BA9 were not normally 

distributed. The protein values for RPT6, α-3, LAMP1 and cathepsin D were transformed 

by taking logarithms. 

LAMP1, α-6, cathepsin-D values, and chymotrypsin-like and PGPH-like activity 

were not correlated with any of the demographic data (age at death, gender, PMD, brain 

tissue pH and years in storage) and therefore no residuals were calculated.   
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Table 4-5: Correlations between biochemical and demographic data in BA9. 

BA9 Age at death Gender Brain tissue pH Post-mortem delay (PMD) 

RPT6 p<0.05 None (p>0.05) None (p>0.05) None (p>0.05) 

α-3 None (p>0.05) None (p>0.05) p<0.05 None (p>0.05) 

α-6 None (p>0.05) None (p>0.05) None (p>0.05) None (p>0.05) 

LAMP1 None (p>0.05) None (p>0.05) None (p>0.05) None (p>0.05) 

CathepsinD None (p>0.05) None (p>0.05) None (p>0.05) None (p>0.05) 

Chymotrypsin-like activity None (p>0.05) None (p>0.05) None (p>0.05) None (p>0.05) 

PGPH-like activity None (p>0.05) None (p>0.05) None (p>0.05) None (p>0.05) 

Spearman’s rank correlation was used to determine the effect of demographic factors (age at death and gender) and variables 

associated with the tissue donation process (pH, PMD and years in storage) on the protein values obtained from semi-quantitative 

Western blotting. 
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4.4.2 Transformation of data from semi-quantitative Western blotting protein 

values for RPT6, α-3, α-6, LAMP1, cathepsin-D, and proteasome activity 

measurement in BA40 

RPT6 values in BA40 were significantly correlated with gender, PMD and age at 

death. Only PMD and age at death significantly predicted RPT6 values in BA40 (R2 = 

0.141, beta = -0.201/-0.202, p = 0.049 and R2 = 0.068, beta = -0.261, p = 0.016/0.026). 

Therefore, regression analysis was used to create a residual value (unstandardised) for 

RPT6 in order to remove the effects of both PMD and age at death. 

Age at death significantly predicted α-6 values in BA40 (R2  = 0.037, beta = -0.192, 

p = 0.032);  regression analysis was used to create a residual value (unstandardised) for α-6 

in order to remove the effect of age at death. This was applied to all α-6 values from all 

cases. 

PMDs were also significantly predicted by PGPH-like activity values measured 

using a synthetic peptide substrate in BA40 (R2 = 0.137, beta = -0.37, p = 0.015). 

Regression analysis was used to create a residual value (unstandardised) for PGPH-like 

activity in order to remove the effect of PMD. This was applied to all PGPH-like activity 

values from all cases. The negative values from the residual were as low as -4000; to shift 

all data above zero, a value of 5000 was added to all measurements representing PGPH-like 

activity. 

LAMP1, α-3, cathepsin-D values and chymotrypsin-like activities did not correlate 

with any of the demographic data (age at death, gender, PMD, brain tissue pH and years in 

storage). 
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The protein values for RPT6, α-3 and LAMP1 and both activities (chymotrypsin- 

and PGPH-like activity) were transformed by taking logarithms. After taking the logarithms 

for chymotrypsin-like activity values, it was necessary to multiply all values by 500 to allow 

easy visual comparison of the data when comparing with other brain region BA9 and BA24. 

The range of the chymotrysin-like activity in BA9 and BA24 was around 500-1500 and in 

BA40 3.1-3.9 after the logarithms. By multiplying all the values from BA40 by 500 we will 

get the same range to BA9 and BA24.  
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Table 4-6: Correlations between biochemical and demographic data in BA40.   

BA40 Age at death Gender Brain tissue pH Post-mortem delay (PMD) 

RPT6 p<0.05 p<0.05 None (p>0.05) p<0.05 

α-3 None (p>0.05) None (p>0.05) None (p>0.05) None (p>0.05) 

α-6 p<0.05 None (p>0.05) None (p>0.05) None (p>0.05) 

LAMP1 None (p>0.05) None (p>0.05) None (p>0.05) None (p>0.05) 

Cathepsin D None (p>0.05) None (p>0.05) None (p>0.05) None (p>0.05) 

Chymotrypsin-like activity None (p>0.05) None (p>0.05) None (p>0.05) None (p>0.05) 

PGPH-like activity None (p>0.05) None (p>0.05) None (p>0.05) p<0.05 

Spearman’s rank correlation was used to determine the effect of demographic factors (age at death and gender) and variables 

associated with the tissue donation process (pH, PMD and years in storage) on the protein values obtained from semi-quantitative 

Western blotting. 
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4.4.3 Transformation of data from semi-quantitative Western blotting protein 

values for RPT6, α-3, α-6, LAMP1, cathepsin-D, and proteasome activity 

measurement in BA24 

PMDs significantly predicted RPT6 values in BA24 (R2 = 0.035, beta = -0.186, p = 

0.044). Therefore, regression analysis was used to create a residual value (unstandardised) 

for RPT6 in order to remove the effect of PMD. This was applied to all RPT6 values from 

all cases. Brain tissue pH significantly predicted α-3 values in BA24 and in BA9 (R2 = 

0.035, beta = -0.186, p = 0.044). Thus, regression analysis was used to create a residual 

value (unstandardised) for α-3 in order to remove the effect of brain tissue pH. α-6, 

LAMP1, cathepsin-D values and both chymotrypsin-like and PGPH-like activity did not 

correlate with any of the demographic data (age at death, gender, PMD, brain tissue pH and 

years in storage).  

RPT6 and α-6 were normalised by taking logarithms. Square root transformation 

was used for α-3 protein values because transforming using logarithm did not normalise the 

data. LAMP1, cathepsin-D and proteasome activity were normally distributed 
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Table 4-7: Correlations between biochemical and demographic data in BA24. 

BA24 Age at death Gender Brain tissue pH Post-mortem delay (PMD) 

RPT6 None (p>0.05) None (p>0.05) None (p>0.05) p<0.05 

α-3 None (p>0.05) None (p>0.05) p<0.05 None (p>0.05) 

α-6 None (p>0.05) None (p>0.05) None (p>0.05) None (p>0.05) 

LAMP1 None (p>0.05) None (p>0.05) None (p>0.05) None (p>0.05) 

Cathepsin D None (p>0.05) None (p>0.05) None (p>0.05) None (p>0.05) 

Chymotrypsin-like activity None (p>0.05) None (p>0.05) None (p>0.05) None (p>0.05) 

PGPH-like activity None (p>0.05) None (p>0.05) None (p>0.05) None (p>0.05) 

Spearman’s rank correlation was used to determine the effect of demographic factors (age at death and gender) and variables 

associated with the tissue donation process (pH, PMD and years in storage) on the protein values obtained from semi-quantitative 

Western blotting. 
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4.5 Discussion  

The use of post-mortem tissue has yielded many important insights into the 

pathology of different types of dementia. However the quality and handling of samples is a 

key consideration and can be a limiting factor in the success and value of biochemical 

research. To ensure the reliability of obtained data, all factors related directly or indirectly 

to the disease, to demography and to the quality of the tissue, such as post-mortem factors, 

should be documented analysed and taken into account at interpretation of datasets. 

All cases were prospectively assessed by experienced clinicians using validated 

clinical rating instrument. Diagnosis of DLB was made when the dementia and motor 

symptoms begin in the same year, or the cognitive symptoms started before the motor 

symptoms. Diagnosis of PDD was made when the motor symptoms had been present for 

one year or more before the onset of dementia (McKeith et al., 2005). AD cases were 

selected based on the Braak stage to which they were assigned by V/VI and the Consortium 

to Establish Registry criteria (CERAD) for Alzheimer’s disease diagnosis of probable or 

definite (Braak et al., 1998, Mirra et al., 1991), DLB according to international criteria 

(McKeith et al., 2005), PDD according Movement Disorder Society criteria (Emre et al., 

2007). Neuropathological assessment was performed according to standardised 

neuropathological scoring/grading systems, including Braak staging, Consortium to 

Establish a Registry for Alzheimer’s Disease (CERAD) scores, Newcastle/McKeith Criteria 

for Lewy body disease, National Institute on Aging - Alzheimer’s Association (NIA-AA) 

guidelines and phases of amyloid-β (Aβ) deposition (Aβ-phases) (Braak et al., 2006, 

McKeith et al., 2005, Mirra et al., 1991, Montine et al., 2012, Thal et al., 2002). For more 

details about the cohort see (Chapter 2 Section 2.1).  
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There were no significant differences in PMD, tissue pH or gender between 

diagnostic groups. AD patients were significantly older at death than controls or patients 

with DLB and PDD, which was due to the selection of AD cases with pure AD pathology 

in order to avoid overlap with the Lewy body pathology. Prior to comparative analysis, all 

values obtained from semi-quantitative Western blot were subjected to further 

transformation to remove any effect of demographic and post-mortem factors.  

As expected, the data indicated no significant tau or α-synuclein pathology among 

the control cases.  However, some of the control cases were categorised as having 

predominantly non-AD type diffuse plaques (without accompanying significant tau-

pathology), which could be related to the pathological effects of aging and did not justify 

the diagnosis of AD. Several previous studies reported pathological changes related to AD, 

PD or cerebrovascular disease (CVD) in post-mortem brain tissue from normal controls 

without any signs of cognitive impairment (Duyckaerts et al., 2009, Jellinger and Attems, 

2012, O'Brien et al., 2009). Although NFT (Nelson et al., 2012, Nelson et al., 2009, Nelson 

et al., 2007) and synapse loss (Scheff and Price, 1993, Scheff et al., 2007, Scheff et al., 

2006) are the best correlates for cognitive impairment, AD-related pathology has been 

reported in non-demented controls (Arriagada et al., 1992b, SantaCruz et al., 2011). Aβ 

pathology was found to be frequently with only minimal to mild neuritic changes 

corresponding to Braak tau stages 0–IV (SantaCruz et al., 2011).  

The distribution of α-synuclein inclusions and Aβ plaques in PDD cases were lower 

than DLB, which is consistent with previous reports of greater Lewy body pathology and 

Aβ plaques in the temporal lobe in DLB compared to PDD (Harding and Halliday, 2001). 
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In the latter study, NFTs were rare in both DLB and PDD  Studies have also suggested that 

DLB cases showed greater tendency than PDD for cortical Lewy body pathology (Iseki, 

2004, Richard et al., 2002), although an earlier study (employing small group numbers) 

reported the same degree of LB pathology in DLB and PDD (Harding and Halliday, 2001).  

In agreement with previous studies, DLB cases in the present study showed a degree 

of AD-related pathology in addition to α-synuclein pathologies. The level of AD pathology 

in DLB was found to be greater than that in PDD cases, which is in accordance with 

previous comparisons of AD-related pathology between DLB and PDD (Halliday et al., 

2011b, Jellinger and Attems, 2006). Dementia and cognitive decline in Lewy body 

dementia were found to be better correlates for AD-related pathology in comparison to α-

synuclein pathologies (Halliday et al., 2011a, Merdes et al., 2003). However, other studies 

found that cognitive function was associated with Lewy body pathology and was 

independent of amyloid and tau pathology in DLB (Horvath et al., 2013). 

The AD patients likewise showed severe plaque and tangle pathology, but a fairly 

sparse occurrence of Lewy bodies. This is due to the selection criteria, only AD cases with 

Braak V/VI where included to the study for comparative purposes.  

According to clinical criteria for diagnosis of dementia with Lewy bodies, 

hallucination is one of the core features. Individuals with DLB/PDD are much more likely 

than those with AD to experience visual hallucination (Tiraboschi et al., 2006, Bjoerke-

Bertheussen et al., 2012, McKeith et al., 2005) and, hallucination was more common in 

DLB/PDD compared to AD groups in the present study.   
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There is a debate as to the relative prevalence of depression in these dementias; 

studies show that the prevalence of depressive symptoms in DLB is higher than in AD 

(73% compared with 56%) and is similar to that of PD (Fritze et al., 2011b). The present 

results indicate that depression was more frequent in AD and PDD groups compared to 

DLB. This may reflect the small number of cases in each group compared to clinical 

studies. However, another comprehensive study on autopsy-confirmed diagnosis failed to 

show differences in depressive symptomatology between DLB and AD (Rockwell et al., 

2000b). 

With the exception of the AD group, most of the cases in each group were classified 

as having moderate and severe cognitive impairment, and all groups included some 

proportion of cases with mild cognitive impairment and MCI. In contrast, most cases in the 

AD group were categorised as having severe impairment and none were diagnosed with 

MCI. 
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Chapter 5  Expression levels of proteasome sub-units and 

proteasome activity in human post-mortem brain from 

people with DLB, PDD, AD and age-matched controls 
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5.1 Introduction  

The UPS is a cellular system responsible for removing and degradation unwanted 

proteins (a detailed overview of the UPS is presented in chapter 1 section 1.9). Dysfunction 

of the 26S proteasome has been increasingly recognised as playing a fundamental role in 

the pathogenesis of many neurodegenerative disorders (for review see (Dennissen et al., 

2012, Paul, 2008) and Chapter 1 Section 1.9.4 for more details on the implication of the 

UPS in neurodegenerative disorders). Neurodegenerative disorders share a common feature 

which is the accumulation of misfolded proteins in the form of insoluble protein aggregates 

or inclusion bodies. Each of these aggregates has a specific protein component depending 

on the disease, such as α-synuclein in Lewy bodies, the pathological hallmark of LBD. In 

addition, ubiquitin has been identified as a component of these inclusion bodies in many 

neurodegenerative disorders (Alves-Rodrigues et al., 1998), suggesting that the impairment 

of the UPS is involved in inclusion body formation, including Lewy bodies. 

Several lines of evidence support the involvement of the UPS in Lewy body 

diseases. Post-mortem studies of subjects with PD have shown a reduction in proteasomal 

activity in the substantia nigra (McNaught et al., 2003). Preliminary studies have also 

identified proteasomal abnormalities in PDD/DLB (MacInnes et al., 2008) however this 

requires confirmation in a larger group. Furthermore, experimentally, it is possible to 

inhibit proteasome activity, which leads to the accumulation of ubiquitinated proteins 

(Figueiredo-Pereira et al., 1994) and α-synuclein aggregation (Dyllick-Brenzinger et al., 

2010, Paxinou et al., 2001). Finally, aggregated α-synuclein may inhibit the UPS directly 

(Snyder et al., 2003). 
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Considering the current evidence, we aimed to investigate the expression level of 

the proteasome subunits and relevant proteasome activities in LBD and AD patients in 

comparison to controls. For this study, we had more than 130 available cases (DLB, PDD, 

AD, and controls), for which clinical and pathological data were available. Synaptic 

biochemistry data on zinc transporter 3, synaptophysin and synphilin were also available 

from other projects, undertaken by Dr Julie Vallortigara and Dr David Whitfield (both 

Wolfson CARD), who studied the same cases. Such data is included to explore the 

potential relationship between changes in proteasome function and components of the 

synaptic biochemistry (the role of the UPS in synaptic function is presented in Chapter 1 

Section 1.9.3.3). 

In order to establish a general overview of the proteasome in LBD, sub-units of 

different functions were chosen for investigation. This included two α sub-units (α3 and α6) 

of the 20S proteasome and one sub-unit from the 19S regulatory complex (RPT6). The α-

subunits define a gated channel leading into the proteolytic chamber (Groll et al., 2000, 

Groll et al., 1997). The centre of the 20S proteasome is closed by several α-subunits 

including (α2, α3 and α4) which block the access to the proteolytic chamber (Groll et al., 

2000). α-3 is one of the main subunits  involved in gating of the proteasome (Groll et al., 

2000). The gates of the proteasome remain closed without an activator (such as 19S 

regulator complex) and block the free access.  

RPT6 expression levels were considered important for investigation, since ATPase 

sub-units are essential for cellular survival; furthermore, the ATPase sub-units are 

hypothesized  to recognize the polyubiquitin degradation signal and to unfold the protein 

substrates for their degradation by the 20S core thereby controlling the access of substrates 
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to the proteolytic core (Braun et al., 1999, Lam et al., 2002). The 20S CP alone has a closed 

gate and requires an activator to regulate its protease activity. 

The key aspect of the present study was to find out if there was any alteration in 

proteasome subunits and activity between diagnostic groups by determining the level of α3, 

α6 and RPT6 together with the chymotrypsin- and PGPH-like activities of the proteasome.   

Expression levels of the proteasome sub-units in discrete brain regions of post-mortem 

human tissue from DLB, PDD and AD patients, compared to normal control subjects, were 

determined using semi-quantitative Western blotting. Analysis involved the use of primary 

antibodies to the 19S ATPase RPT6 proteasome sub-unit: 20S proteasome α6 sub-unit and 

20S proteasome α3 sub-unit. Immunohistochemistry was also performed to compare the 

anatomical distribution with the semi-quantitative Western blot results.  

The catalytic activities of the 20S proteasome were measured using fluorogenic 

substrates assay. Only two of three activities of the 20S proteasome were measured 

[chymotrypsin-like, and peptidylglutamyl-peptide hydrolase (PGPH)-like activities]. The 

trypsin-like activity was excluded from this study because none of the three inhibitors used 

could completely inhibit its activity. For this reason, only two activities of the 20S 

proteasomes were analysed in this thesis. 

 Chymotrypsin-like, and PGPH-like activities were analyzed using appropriate 

artificial substrates Suc-Leu-Leu-Val-Tyr-AMC and Z-Leu-Leu-Glu-AMC. Chymotrypsin- 

and PGPH- like activities of the 20S proteasome cleave proteins at hydrophobic and acidic 

residues, respectively. The specificity of the assay was indicated by the ability of MG-132, 
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a selective inhibitor of proteasomal function, to almost completely inhibit fluorescence 

change. 

Three brain regions were chosen for the study were the prefrontal cortex (Brodmann 

area 9), the anterior cingulate cortex (Brodmann area 24), and the parietal cortex 

(Brodmann area 40). BA9 was selected due to its proposed role in executive function and 

cognition decline (Fuster, 2001),  which is a cardinal symptom of DLB and PDD (McKeith 

et al., 2005). BA24 was selected for the early development of pathology encountered in this 

region in DLB and PDD (Alafuzoff et al., 2009a) whilst BA40 was selected because of its 

pathological predominance in AD as opposed to DLB and PDD (Alafuzoff et al., 2008a). 

Thus this region acted as a comparison between the relative contributions of AD pathology 

and Lewy body pathology. 
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5.2 Results  

5.2.1 Expression levels of proteasome sub-units in human post mortem brains of 

DLB, PDD, AD, and age-matched control 

5.2.1.1 Frontal cortex – Brodmann area 9 

5.2.1.1.1 Regulatory particles composed of ATPase (RPT6) proteasome sub-unit in BA9 

The expression levels of RPT6 in discrete brain regions of post-mortem human 

tissue from DLB, PDD and AD patients, compared to normal control subjects were 

determined using semi-quantitative Western blotting. Western blotting was perfomed using 

a specific antibody to RPT6. The antibody was a mouse monoclonal IgG (p45-110) 

recognised very distinct band at approximatly 48 kDa which is consisent with published 

size (Myeku and Figueiredo-Pereira, 2011) and data sheet from the supplier. 

A significant reduction in the regulatory particles (RPT6) proteasome sub-unit was 

seen in DLB (17%, p = 0.001), PDD (21%, p = 0.001) and AD (22%, p = 0.001) compared 

to the controls (one-way ANOVA, F = 24.303, d.f. = 3, 119; p = 0.001; Bonferroni post hoc 

test) (Figure 5-1). To provide additional confirmation and information regarding the spatial 

change of RPT6, representative selections of five cases from each diagnostic group were 

stained with anti-RPT6 (Figure 5-2: a, b, c and d). The high-magnification 

photomicrographs demonstrate a strong nuclear staining in control cases compared to those 

from PDD, DLB, and AD.  

 

 



 

 

 

Figure 5-1: 19S ATPase RPT6 proteasome sub
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Figure 5-2: Photomicrographs of RPT6 staining in the frontal cortex region of the post

mortem human brain from control and dementia cases.

The photomicrograph illustrates immunohistochemistry for RPT6 

post-mortem brain from control, PDD, DLB and 

strong nuclear stain for

represents 15 microns.

 

 

 

tomicrographs of RPT6 staining in the frontal cortex region of the post

mortem human brain from control and dementia cases. 

The photomicrograph illustrates immunohistochemistry for RPT6 

mortem brain from control, PDD, DLB and AD. The photomicrographs demonstrate a 

stain for the control cases compared to PDD, DLB, and AD.

microns. 
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tomicrographs of RPT6 staining in the frontal cortex region of the post-

The photomicrograph illustrates immunohistochemistry for RPT6 in the frontal cortex of 

The photomicrographs demonstrate a  

the control cases compared to PDD, DLB, and AD. Scale bar 
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5.2.1.1.2 Proteasome α-6 sub-unit 

The expression levels of proteasome 20S α6 subunit in discrete brain regions of 

post-mortem human tissue from DLB, PDD and AD patients, compared to normal control 

subjects were determined using semi-quantitative Western blotting. Western blotting was 

perfomed using specific antibody to the proteasome 20S α6 subunit. The antibody was a 

mouse monoclonal IgG (MCP20) that recognised a very distinct band at approximately 28 

kDa which is consisent with published size (Camargo et al., 2014) and data sheet from the 

supplier.  

There was no significant alteration in the level of 20S α-6 sub-unit in patients with 

DLB (1.24 ± 0.02, n = 49) or PDD (1.21 ± 0.03, n = 33) compared with the control. 

Likewise, there was no significant difference between PDD and DLB. Mean 20S α-6 sub-

unit levels were lower in AD compared to PDD (23%, p = 0.001), DLB (25%, p = 0.001) 

and controls (28%, p = 0.001) (Figure 5-3). 20S α-6 sub-unit immunostaining also confirms 

the Western blotting analysis, as the level of staining of the cytoplasm and nucleus was 

similar for all groups with the exception of the AD group (Figure 5-4). 

 

 

 

 



 

 

 

 

 

Figure 5-3: 20S α-6 proteasome sub

in PDD, DLB, AD, and control in frontal cortex (BA9).

A) Scatter plot of 20S 

quantitative Western blot

Statistical analysis was performed using One

= 0.001; Bonferroni post hoc te

group were significantly lower

= 49) and PDD (p = 0.001, n
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6 proteasome sub-unit values, from semi-quantitative Western blotting 

in PDD, DLB, AD, and control in frontal cortex (BA9). 

A) Scatter plot of 20S α-6 proteasome sub-unit relative intensity determined by s

quantitative Western blot analysis in DLB, PDD, AD, and age-matched control samples. 

Statistical analysis was performed using One-way ANOVA (F = 14.781, d.f. = 3 and 118

0.001; Bonferroni post hoc test): mean α-6 proteasome sub-unit

were significantly lower than those for control (p = 0.001, n

= 49) and PDD (p = 0.001, n = 33) groups. The horizontal bars within the data points in the 
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quantitative Western blotting 

relative intensity determined by semi-

matched control samples. 

(F = 14.781, d.f. = 3 and 118, p 

unit values for AD (n = 16) 

n = 24), DLB (p = 0.001, n 

. The horizontal bars within the data points in the 
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graphs represent the mean values. B) Representative Western blot showing levels of the 

20S α-6 proteasome sub

 

Figure 5-4: Photomicrographs of 

mortem human brain from control and dementia cases.

The photomicrograph illustrates immunohistochemistry for 

post-mortem brain from control, PDD, DLB and AD.

the level of cytoplasm a

AD group. Scale bar represents 

nt the mean values. B) Representative Western blot showing levels of the 

6 proteasome sub-unit in DLB, PDD, AD, and control. 

Photomicrographs of α-6 staining in the frontal cortex region 

mortem human brain from control and dementia cases. 

The photomicrograph illustrates immunohistochemistry for α-6

mortem brain from control, PDD, DLB and AD. The photom

the level of cytoplasm and nucleus staining was the same for all for groups

Scale bar represents 15 microns. 
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nt the mean values. B) Representative Western blot showing levels of the 

 

6 staining in the frontal cortex region of the post-

6 in the frontal cortex of 

The photomicrographs demonstrate 

nd nucleus staining was the same for all for groups and less for the 
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5.2.1.1.3 Proteasome α-3 sub-unit 

The expression levels of proteasome 20S α3 subunit in discrete brain regions of 

post-mortem human tissue from DLB, PDD and AD patients, compared to normal control 

subjects were determined using semi-quantitative Western blotting. Western blotting was 

perfomed using specific antibody to the proteasome 20S α3 subunit. The antibody was a 

mouse monoclonal IgG IgG (MCP257) recognised a very distinct band at approximately 29 

kDa which is consisent with published size (Wang et al., 2014) and data sheet from the 

supplier. 

There were no significant differences in the mean levels of 20S α-3 sub-unit 

between the patient groups compared to the controls according to the post hoc test (Figure 

5-5, p>0.05). However, mean 20S α-3 sub-unit levels in patients with DLB were 

significantly elevated by 11% compared to PDD (p = 0.001). 

 

 

 

 

 

 



 

 

 

Figure 5-5: 20S α-3 proteasome sub

in PDD, DLB, AD, a

A) Scatter plot of 20S 

quantitative Western blot

Statistical analysis was performed using One

0.001; Bonferroni post hoc test)

49) group were significantly higher than the 
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between control group in comparison to the dementia groups (DLB, PDD, AD) 

to the post hoc test. The horizontal bars within the data points in the graphs represent the 

mean values. B) Representative We
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3 proteasome sub-unit values, from semi-quantitative Western blotting 

in PDD, DLB, AD, and control in frontal cortex (BA9). 

A) Scatter plot of 20S α-3 proteasome sub-unit relative intensity determined by s

quantitative Western blot analysis in DLB, PDD, AD, and age-matched control samples. 

Statistical analysis was performed using One-way ANOVA (F = 5.81, d.f. = 3 and 119

0.001; Bonferroni post hoc test): mean α-3 proteasome sub-unit 

significantly higher than the PDD group (p = 0.001, n

reach the significant compare to the AD (p = 0.07, n = 33) group.

control group in comparison to the dementia groups (DLB, PDD, AD) 

The horizontal bars within the data points in the graphs represent the 

Representative Western blot showing levels of the 20S 
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Figure 5-6: Photomicrographs of 

mortem human brain from control and dementia cases.

The photomicrograph illustrates immunohistochemistry for 

post-mortem brain from control, PDD, DLB and AD.

the level of cytoplasm and nucleus staining was the same for all for groups

represents 15 microns.

 

 

 

: Photomicrographs of α-3 staining in the frontal cortex region of the post

mortem human brain from control and dementia cases. 

ograph illustrates immunohistochemistry for α-3

mortem brain from control, PDD, DLB and AD. The photom

the level of cytoplasm and nucleus staining was the same for all for groups

microns. 
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staining in the frontal cortex region of the post-

3 in the frontal cortex of 

The photomicrographs demonstrate 

the level of cytoplasm and nucleus staining was the same for all for groups. Scale bar 
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5.2.1.2 Parietal cortex—Brodmann area 40 

5.2.1.2.1 Regulatory particles composed of ATPase (RPT6) proteasome sub-units in BA40 

Significant reductions in regulatory particles (RPT6) proteasome sub-unit mean 

levels were seen in DLB (14%, p = 0.001, n = 52) and AD (23%, p = 0.001, n = 16) 

compared to the controls (n = 25) (one-way ANOVA, F = 16.33, d.f. = 3 and 121, p = 

0.001; Bonferroni post hoc test).  The post hoc test revealed that there was no difference 

between the control and PDD groups, but both control and PDD groups were significantly 

higher than DLB and AD groups. To provide additional confirmation and information 

regarding the spatial change of RPT6 representative sections of five cases from each 

diagnostic group were stained with anti-RPT6 (Figure 5-7: a, b, c and d). The high-

magnification photomicrographs demonstrate a strong nuclear stain for the control cases 

compared to PDD, DLB, and AD. The photomicrographs also illustrate that the weakest 

stain was in the AD group, which was consistent with the Western blotting analysis (Figure 

5-6). 
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Figure 5-7: 19S ATPase RPT6 proteasome sub-unit values, from semi-quantitative 

Western blotting in PDD, DLB, AD, and control in parietal cortex (BA40). 

A) Scatter plot of 19S ATPase RPT6 proteasome sub-unit relative intensity determined by 

semi-quantitative Western blot analysis in DLB, PDD, AD, and age-matched control 

samples. Statistical analysis was performed using One-way ANOVA (F = 16.333, d.f. = 3 

and 121, p = 0.001; Bonferroni post hoc test): mean RPT6 values for the control group (n = 

24) and PDD (n = 33) groups were significantly higher than DLB (p < 0.05, n = 52) and 

AD (p = 0.001, n = 16) groups. The horizontal bars within the data points in the graphs 

represent the mean values. B) Representative Western blot showing levels of the 19S 

ATPase RPT6 proteasome sub-unit in DLB, PDD, AD, and control. 
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Figure 5-8: Photomicrographs of RPT6 staining in the parietal co

the post-mortem human brain from control and dementia cases.

The photomicrograph illustrates immunohistochemistry for RPT6 in the parietal cortex 

(BA40) of post-mortem brain from control, PDD, DLB and AD. The photomicrographs 

demonstrate a strong nuclear stain for the control 

AD. Scale bar represents 

 

 

 

Photomicrographs of RPT6 staining in the parietal co

mortem human brain from control and dementia cases. 

The photomicrograph illustrates immunohistochemistry for RPT6 in the parietal cortex 

mortem brain from control, PDD, DLB and AD. The photomicrographs 

ate a strong nuclear stain for the control and PDD cases compared to

AD. Scale bar represents 15 microns. 
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Photomicrographs of RPT6 staining in the parietal cortex (BA40) region of 

 

The photomicrograph illustrates immunohistochemistry for RPT6 in the parietal cortex 

mortem brain from control, PDD, DLB and AD. The photomicrographs 

and PDD cases compared to DLB, and 
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5.2.1.2.2 Proteasome α-6 sub-unit 

No difference in expression level of α-6 was observed in the PDD, DLB, or AD 

groups compared with control subjects with mean (± SEM) relative intensity (1.04 ± 0.02, 

0.99 ± 0.02, 0.98 ± 0.01, and 0.98 ± 0.02 for the control, PDD, DLB, and AD, respectively) 

(Figure 5-8 and 5-9).  
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Figure 5-9: 20S α-6 proteasome sub-unit values, from semi-quantitative Western blotting 

in PDD, DLB, AD, and control in parietal cortex (BA40). 

A) Scatter plot of 20S α-6 proteasome sub-unit relative intensity determined by semi-

quantitative Western blot analysis in DLB, PDD, AD, and age-matched control samples. 

Statistical analysis was performed using One-way ANOVA (F = 1.138, d.f. = 3 and 122, p 

= 0.336; Bonferroni post hoc test): Statistical analysis confirmed there was no significant 

difference between diagnostic groups for α-6 values. The horizontal bars within the data 

points in the graphs represent the mean values. B) Representative Western blot showing 

levels of the 20S α-6 proteasome sub-unit in DLB, PDD, AD, and control 
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Figure 5-10: Photomicrographs of 

the post-mortem human brain from contro

The photomicrograph illustrates immunohistochemistry for 

(BA40) of post-mortem brain from control, PDD, DLB and AD. The photomicrographs 

demonstrate the level of cytoplasm and nucleus staining was the same f

Scale bar represents 15 microns

 

 

 

 

Photomicrographs of α-6 staining in the parietal cortex (BA40) region of 

mortem human brain from control and dementia cases. 

The photomicrograph illustrates immunohistochemistry for α-

mortem brain from control, PDD, DLB and AD. The photomicrographs 

demonstrate the level of cytoplasm and nucleus staining was the same f

15 microns. 
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6 staining in the parietal cortex (BA40) region of 

 

-6 in the parietal cortex 

mortem brain from control, PDD, DLB and AD. The photomicrographs 

demonstrate the level of cytoplasm and nucleus staining was the same for all for groups. 
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5.2.1.2.3 Proteasome α-3 sub-unit 

Statistical analysis indicated that the α-3 expression level was significantly up-

regulated in the parietal cortex in PDD (relative intensity 1.27 ± 0.02 n = 33) compared to 

the control subjects (1.12 ± 0.02, 11%, p = 0.012 n = 25), DLB (1.1 ± 0.01, 12%, p = 0.001, 

n = 53), and AD (1.16 ± 0.04, p = 0.016, n = 16) (one-way ANOVA, F = 10.49, d.f. = 3 and 

123, p = 0.001; Bonferroni post hoc test). The post hoc test revealed that there was no 

significant difference between the control and DLB/AD groups (p > 0.05) (Figure 5-11). 
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Figure 5-11: 20S α-3 proteasome sub-unit values, from semi-quantitative Western 

blotting in PDD, DLB, AD, and control in parietal cortex (BA40). 

A) Scatter plot of 20S α-3 proteasome sub-unit values relative intensity determined by 

semi-quantitative Western blot analysis in DLB, PDD, AD, and age-matched control 

samples. Statistical analysis was performed using One-way ANOVA (F = 10.49, d.f. = 3 

and 123, p = 0.001; Bonferroni post hoc test): mean α-3 values for the PDD (n = 33) group 

were significantly higher than the control (p = 0.001, n= 25), DLB (p = 0.001, n = 53) and 

AD (p = 0.004, n = 16) group. The horizontal bars within the data points in the graphs 

represent the mean values. B) Representative Western blot showing levels of the 20S α-3 

proteasome sub-unit in DLB, PDD, AD, and control. 
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Figure 5-12: Photomicrographs of 

the post-mortem human brain from control and dementia cases.

The photomicrograph illustrates immunoh

(BA40) of post-mortem brain from control, PDD, DLB and AD. 

demonstrate no conspicuous difference in the level of cytoplasmic and nuclear staining 

when comparing the experimental groups. Scal

 

 

 

Photomicrographs of α-3 staining in the parietal cortex (BA40) region of 

mortem human brain from control and dementia cases. 

The photomicrograph illustrates immunohistochemistry for α-

mortem brain from control, PDD, DLB and AD. 

demonstrate no conspicuous difference in the level of cytoplasmic and nuclear staining 

when comparing the experimental groups. Scale bar represents 15 
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3 staining in the parietal cortex (BA40) region of 

 

-3 in the parietal cortex 

mortem brain from control, PDD, DLB and AD. The photomicrographs 

demonstrate no conspicuous difference in the level of cytoplasmic and nuclear staining 

 microns. 
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5.2.1.3 Anterior cingulate Brodmann area 24 

5.2.1.3.1 Regulatory particles composed of ATPase (RPT6) proteasome sub-unit in BA24 

Significant reductions in regulatory particles (RPT6) proteasome sub-unit mean 

levels were seen in DLB (13%, p = 0.001, n = 46) and AD (13%, p = 0.001, n = 16) 

compared to the controls (n = 23) (one-way ANOVA F = 13.5, d.f. = 3 and 113, p = 0.001; 

Bonferroni post hoc test).  Mean RPT6 levels were significantly elevated in patients with 

PDD by 15%, p = 0.001 compared to AD and DLB groups. The post hoc test revealed that 

there was no significant difference between the control and PDD groups (p>0.05) (Figure 

5-12). 
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Figure 5-13: 19S ATPase RPT6 proteasome sub-unit values, from semi-quantitative 

Western blotting in PDD, DLB, AD, and control in cingulate cortex (BA24). 

A) Scatter plot of 19S ATPase RPT6 proteasome sub-unit relative intensity determined by 

semi-quantitative Western blot analysis in DLB, PDD, AD, and age-matched control 

samples. Statistical analysis was performed using One-way ANOVA (F = 13.56, d.f. = 3 

and 113, p = 0.001; Bonferroni post hoc test): mean RPT6 values for the control (n = 24) 

and PDD (n = 33) groups were significantly higher than DLB (p < 0.05, n = 52) and AD (p 

< 0.05, n = 16) groups. There was no difference between the control and PDD groups. The 

horizontal bars within the data points in the graphs represent the mean values. B) 

Representative Western blot showing levels of the 19S ATPase RPT6 proteasome sub-unit 

in DLB, PDD, AD, and control. 
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Figure 5-14: Photomicrographs

of the post-mortem human brain from control and dement

The photomicrograph illustrates immunohistochemistry for RPT6 

(BA24) of post-mortem brain from control, PDD, DLB and AD.

demonstrate a strong nuclear stain

Scale bar represents 15 microns

 

 

 

Photomicrographs of RPT6 staining in the cingulate cortex (BA24

human brain from control and dementia cases.

The photomicrograph illustrates immunohistochemistry for RPT6 

mortem brain from control, PDD, DLB and AD.

demonstrate a strong nuclear staining in the control as compared to DLB, and AD

15 microns. 
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cingulate cortex (BA24) region 

cases. 

The photomicrograph illustrates immunohistochemistry for RPT6 in the cingulate cortex 

mortem brain from control, PDD, DLB and AD. The photomicrographs 

compared to DLB, and AD cases. 
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5.2.1.3.2 Proteasome α-6 sub-unit 

Analysis of data indicated a significant up-regulation in the expression level of α-6 

sub-unit in both PDD (7%, p = 0.002, n = 33) and DLB (6%, p = 0.007, n = 48) compared 

to control (n = 23) (one-way ANOVA F = 5.221, d.f. = 3 and 116, p = 0.002; Bonferroni 

post hoc test). The post hoc test revealed that there was no difference between the control 

and AD groups (p > 0.05) (Figure 5-14). 
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Figure 5-15: 20S α-6 proteasome sub-unit values, from semi-quantitative Western 

blotting in PDD, DLB, AD, and control in cingulate cortex (BA24). 

Scatter plot of 20S α-6 proteasome sub-unit relative intensity determined by semi-

quantitative Western blot analysis in DLB, PDD, AD, and age-matched control samples. 

Statistical analysis was performed using One-way ANOVA (F = 5.221, d.f. = 3 and 119, p 

= 0.002; Bonferroni post hoc test): mean α-6 proteasome sub-unit for α-6 values for the 

DLB (n = 48) and PDD (n = 33) group were significantly higher than the AD group (p < 

0.05, n = 16) and the control (p < 0.05, n = 23) groups. The horizontal bars within the data 

points in the graphs represent the mean values. B) Representative Western blot showing 

levels of the 20S α-6 proteasome sub-unit in DLB, PDD, AD, and control. 
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Figure 5-16: Photomicrographs of 

the post-mortem human brain from control and dementia cases.

The photomicrograph illustrate

(BA24) of post-mortem brain from control, PDD, DLB and AD. 

demonstrate the level of cytoplasmic and nuclear staining was the same for all for groups. 

Scale bar represents 1

 

 

 

Photomicrographs of α-6 staining in the cingulate cortex (BA24) region of 

mortem human brain from control and dementia cases. 

The photomicrograph illustrates immunohistochemistry for α-6 in the cingulate cortex 

mortem brain from control, PDD, DLB and AD. 

demonstrate the level of cytoplasmic and nuclear staining was the same for all for groups. 

15 microns. 
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6 staining in the cingulate cortex (BA24) region of 

 

6 in the cingulate cortex 

mortem brain from control, PDD, DLB and AD. The photomicrographs 

demonstrate the level of cytoplasmic and nuclear staining was the same for all for groups. 
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5.2.1.3.3 Proteasome α-3 sub-unit 

Significant reductions in 20S α-3 sub-unit mean levels were seen in PDD (relative 

intensity 0.88 ± 0.02, n = 33) compared to the control (1.00 ± 0.01, 12%, p = 0.019, n = 

23), DLB (1.03 ± 0.02, 14%, p = 0.001, n = 48), and AD (1.11 ± 0.04, 9%, p = 0.001, n = 

16) groups (one-way ANOVA F = 10.43, d.f. = 3 and 116, p = 0.001; Bonferroni post hoc 

test). The post hoc test revealed that there was no difference between the control and DLB 

and AD groups (p > 0.05) (Figure 5-16). 
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Figure 5-17: 20S α-3 proteasome sub-unit values, from semi-quantitative Western 

blotting in PDD, DLB, AD, and control in cingulate cortex (BA24). 

Scatter plot of 20S α-3 proteasome sub-unit relative intensity determined by semi-

quantitative Western blot analysis in DLB, PDD, AD, and age-matched control samples. 

Statistical analysis was performed using One-way ANOVA (F = 10.43, d.f. = 3 and 116, p 

= 0.001; Bonferroni post hoc test): mean α-3 value for the PDD (n = 33) group were 

significantly lower than the control (p = 0.019, n = 23), DLB (p = 0.001, n = 48) and AD (p 

= 0.004, n = 16) group. The horizontal bars within the data points in the graphs represent 

the mean values. B) Representative Western blot showing levels of the 20S α-3 proteasome 

sub-unit in DLB, PDD, AD, and control.  
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5.2.2 Proteolytic activity of 20S proteasomes are selectively impaired in all three 

brain regions examined in PDD, DLB, and AD 

5.2.2.1 Patient demographic  

As detailed in Chapter 2 Section 2.5, around 10 cases from each group for each 

brain region were chosen depending on the sufficient available of the frozen tissue. In BA9, 

samples from 11 DLB, 12 PDD, 6 AD patients, and 9 controls were analysed (Table 5-1). 

One-way ANOVA and Bonferroni post-hoc test revealed that pH was significantly higher 

in PDD patients compared to AD patients (p = 0.023) one-way ANOVA, F = 3.52, d.f. = 3 

and 34, p = 0.025; Bonferroni post hoc test). The effect of pH was removed by 

(unstandardised) residuals calculated using linear regression as explained in detail in 

chapter 4 section 4.4. There were no significant differences between diagnostic groups for 

PMD and age at death p > 0.05.  

In BA40, Samples from 9 DLB, 10 PDD, 12 AD patients, and 13 controls were 

analysed (Table 5-1). One-way ANOVA and Bonferroni post-hoc test revealed that were no 

significant differences between diagnostic groups and any of the variables shown (age at 

death, PMD and pH). 

In BA24, Samples from 12 DLB, 9 PDD, 9 AD patients, and 13 controls were 

analysed (Table 5-1). One-way ANOVA and Bonferroni post-hoc test revealed that were no 

significant differences between diagnostic groups and any of the variables shown (age at 

death, PMD and pH). 

 



 

 

183 

 

Table 5-1: Patients’ demographics.   

 

Diagnosis 

Gender (M/F) 

% 

Age at death 

mean 

PMD (mean 

hours) 

pH 

(mean) 

BA9 Control (9) 56/44 80.8 ± 2.76 47.83 ± 5.15 6.52 ± 0.09 

 PDD (12) 50/50 80.08 ± 1.44 32.75 ± 4.91 6.68 ± 0.07 

 DLB (11) 64/36 83.81 ± 1.79 45.9 ± 8.78 6.42 ± 0.1 

 AD (6) 17/83 90.16 ± 4.64 25.95 ± 8.34 6.22 ± 0.1 

BA40 Control (13) 54/46 80.15 ± 1.93 35.96 ± 5.9 6.53 ± 0.07 

 PDD (10) 30/70 82.00 ± 1.5 30.7 ± 3.48 6.42 ± 0.06 

 DLB (9) 67/33 82.22 ± 2.65 59.7 ± 12.76 6.54 ± 0.07 

 AD (12) 25/75 87.92 ± 2.41 36.89 ± 6.54 6.31 ± 0.10 

 Control (13) 54/46 80.46 ± 2.09 35.07 ± 5.3 6.48 ± 0.07 

BA24 PDD (9) 33/67 81.56 ± 1.6 31.11 ± 3.89 6.49 ± 0.07 

 DLB (12) 67/33 80.83 ± 2.14 48.19 ± 10.58 6.52 ± 0.08 

 AD (9) 33/67 87.89 ± 1.98 29.21 ± 7.02 6.31 ± 0.09 

 

 

  

Data are means ± SD age in years; PMD = post-mortem delay; DLB = dementia with 

Lewy bodies; PDD = Parkinson’s disease dementia; AD = Alzheimer’s disease. 

BA9) PMD were not significantly different between the groups in the one-way 

analysis of variance (ANOVA) (P < 0.05). Age at death of AD patients was 

significantly higher than subjects with PDD (p=0.056) and pH was significantly 

higher in PDD patients compared to AD patients (p=0.023). BA40 and 24) Age at 

death, PMD and pH were not significantly different between the groups in the one-

way analysis of variance (ANOVA) (P < 0.05).   
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5.2.2.2 Assessment of PGPH-like proteasome activity 

PGPH-like activity was measured in BA9, BA40, and BA24 homogenates from 

PDD, DLB, AD, and normal control using Z-Leu-Leu-Glu-AMC synthetic peptide 

substrate, as described in Chapter 2 Section 2.5 and previously by (Zeng et al., 2005). All 

assays were performed in the absence and presence of the proteasome inhibitor, MG132.  

In BA9, a significant reduction in PGPH-like activity was seen in AD patients 

(7933 ± 273, n = 6) compared to the control (10342 ± 339, 23%, n = 9, p = 0.012) (one-way 

ANOVA, F = 3.816, d.f. = 3 and 34, p =0.019; Bonferroni post hoc test).  DLB (9118 ± 

371, 13%, n = 11) and PDD (9228 ± 533, 14%, n = 12) groups were lower compared to the 

control subjects, but the post hoc test revealed that there were no significant differences 

between the control and DLB or PDD groups (p > 0.05). 

In BA40, analysis of data indicated a significant reduction in PGPH-like activity in 

the AD (p = 0.001), DLB (p = 0.001), and PDD (p = 0.02) groups compared to controls. 

The reduction in AD, DLB and PDD was 45 %, 39 % and 29 % with a mean ± SEM value 

of 3741.8 ± 587.5, n = 11, 4133.7 ± 640, n = 10 and 4809 ± 240, n = 9 compared to 6862 ± 

253, n = 13 for the controls (Figure 5-17). The differences between the patients groups and 

the control were statistically different (one-way ANOVA, F = 10.263, d.f. = 3 and 42, p = 

0.001; Bonferroni post hoc test)  

In BA24, Analysis of data indicated a significant reduction in PGPH-like activity in 

DLB (28%, p = 0.013, n = 12), PDD (64%, p = 0.001, n = 9) and AD (62%, p = 0.001, n = 

9) groups compared to control subjects (one-way ANOVA, F = 23.087, d.f. = 3 and 39, p = 
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0.001; Bonferroni post hoc test). The reduction in PGPH-like activity in PDD (51%, p = 

0.002) and AD (47%, p = 0.004) was also significant different compared to DLB. 
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Figure 5-18: Analysis of PGPH-like 

activities in brain homogenates from 

BA9, BA40, and BA24 of DLB, 

PDD, AD, and controls.  

Scatter plots of PGPH-like activity 

measurement in BA9, BA40, and 

BA24 homogenates from DLB, PDD, 

AD, and normal control samples 

using the fluorogenic substrate assay. 

Activities are expressed as 

fluorescence units (FU)/mg 

protein/hour. A) PGPH-like activity 

measurement in BA9; PGPH-like 

activity was decreased only in AD 

patients (p = 0.012, n = 6) compared 

to the control (n = 9); DLB and PDD 

groups were lower compared to the 

control subjects, but there was no 

statistically significant difference 

between them. The ANOVA for 

PGPH-like activity measurement in 

BA9 (one-way ANOVA, F = 7.897, 

d.f. = 3 and 34, p = 0.001; Bonferroni 
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post hoc test). B) PGPH-like activity measurement in BA40; the differences between the 

patients groups (PDD, DLB and AD) and the control were statistically different (one-way 

ANOVA, F = 10.263, d.f. = 3 and 42, p = 0.001; Bonferroni post hoc test). The reduction in 

PGPH-like activity was higher in the AD group with a mean ± SEM value of 3741.8 ± 

587.5, 45 %, n = 11, compared to 1.28 ± 0.028, n = 24 for the controls. The reduction in 

both DLB and PDD were about 39% and 29 % with a mean ± SEM value of 4133.7 ± 640, 

n = 10 and 4809 ± 240, n = 9 compared to control. C) PGPH-like activity measurement in 

BA24; there was a significant difference between DLB (p = 0.013, n = 12), PDD (P = 

0.001, n = 9) and AD (P = 0.001, n = 9) compared to the control (n = 13) (one-way 

ANOVA, F = 23.087, d.f. = 3 and 39, p = 0.001; Bonferroni post hoc test). PGPH-like 

activity measurements were significant lower in both AD (p = 0.004, n = 9) and PDD (p = 

0.002, n = 9) compared to DLB subjects.  
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5.2.2.3 Assessment of chymotrypsin-like proteasome activity 

In BA9, chymotrypsin-like activity was significantly reduced in PDD (27%, p = 

0.004), DLB (24% p = 0.013), and AD (38%, p = 0.001), compared to control values (one-

way ANOVA, F = 7.897, d.f. = 3 and 34, p = 0.001; Bonferroni post hoc test) (Figure 5-

18). Chymotrypsin-like activity was lowest in the AD group compared to DLB and PDD; 

however, there were no significant differences among the three groups, PDD, DLB, or AD. 

In BA40 Analysis of data indicated a significant reduction in chymotrypsin-like activity in 

the AD, DLB, and PDD (1415.85 ± 9.9, n = 12, 1453.09 ± 11.77, n = 9 and 1436.88 ± 

20.61, n = 10) groups compared to the control groups (1568.53 ± 10.2, n = 13) (one-way 

ANOVA, F = 30.033, d.f. = 3 and 40, p = 0.001; Bonferroni post hoc test).  

In BA24, chymotrypsin-like activity was found to be significantly lower in PDD 

(878 ± 62, n = 9) and AD (906 ± 72, n = 9) samples compared to both control (1100 ± 39, n 

= 13) and DLB (1027± 23, n = 12) subjects (one-way ANOVA, F = 4.663, d.f. = 3 and 39, 

p = 0.007; Bonferroni post hoc test). 
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Figure 5-19: Analysis of chymotrypsin -

like activities in brain homogenates 

from BA9, BA40, and BA24 of DLB, 

PDD, AD, and controls.  

Scatter plots of chymotrypsin-like 

activity measurement in BA9, BA40, and 

BA24 homogenates from DLB, PDD, 

AD, and normal control samples using 

the fluorogenic substrate assay. Activities 

are expressed as fluorescence units 

(FU)/mg protein/hour. A) chymotrypsin-

like activity measurement in BA9; the 

activities values for the control group 

were significantly higher than the PDD (p 

= 0.004, n = 12), DLB (p = 0.013, n = 11) 

and AD (p = 0.001, n = 6) groups. The 

ANOVA for chymotrypsin-like activity 

measurement in BA9 (one-way ANOVA, 

F = 7.897, d.f. = 3 and 34, p = 0.001; 

Bonferroni post hoc test). B) 

chymotrypsin-like activity in BA40; the 

activities values for the control group (n 
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=13) were significantly higher than the PDD (p = 0.001, n = 10), DLB (p = 0.001, n = 9) 

and AD (p = 0.001, n = 12) groups. The ANOVA for chymotrypsin-like activity 

measurement in BA40 (one-way ANOVA, F = 30.033, d.f. = 3 and 40, p = 0.001; 

Bonferroni post hoc test) C) chymotrypsin-like activity measurement in BA24; there was a 

significant difference between the PDD (p = 0.015, n = 9) and AD (p = 0.044, n = 9) groups 

compared to the control (n = 13)(one-way ANOVA, F = 4.664, d.f. = 3 and 39, p = 0.007; 

Bonferroni post hoc test). 

5.2.3 Correlations between proteasome activity and expression level of RPT6 

subunit  

To test whether or not proteasome activity was associated with the protein levels of the 

proteasome subunits, Pearson and Spearman’s rank correlation was determined between 

PGPH- and chymotrypsin-like activities, which were measured using synthetic peptide 

substrate, and the semi-quantitative protein values of RPT6, α6, and α3, which were 

measured using Western blot. The proteasome regulatory particle RPT6 was the only 

subunit associated with proteasome activity. In BA9, significant positive correlations were 

found between RPT6 and both chymotrypsin-like activity (Rs .418, p = .009, n = 38) and 

PGPH-like activity (Rs .363, p = .025, n = 38). While in BA40, there was a significant 

positive correlation with only chymotrypsin-like activity (Rs .409, p = .006, n = 44) (Figure 

5-19). 



 

 

 

 

Figure 5-20: Correlations between proteasome activity and expressions

subunit. 

Scatterplots of correlations between the expression level of R

relative intensity, determined by semi

activity, measured using fluorogenic substrate assay in D

control samples: a) Significant positive correlations between R

activity in BA9 (Rs .418, p = .009, n = 38)

RPT6 and PGPH-like activity in BA9 (Rs .363, p =

correlations between R

44). 

 

 

 

 

 

Correlations between proteasome activity and expressions

Scatterplots of correlations between the expression level of R

determined by semi-quantitative Western blot analysis

measured using fluorogenic substrate assay in DLB, PDD, AD, and age

a) Significant positive correlations between RPT

activity in BA9 (Rs .418, p = .009, n = 38); b) significant positive correlations between 

like activity in BA9 (Rs .363, p = .025, n = 38); and

correlations between RPT6 and chymotrypsin-like activity in BA40 (Rs .409, p = .006, n = 
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Correlations between proteasome activity and expressions level of RPT6 

Scatterplots of correlations between the expression level of RPT6 proteasome subunit 

quantitative Western blot analysis, and proteasome 

LB, PDD, AD, and age-matched 

PT6 and chymotrypsin-like 

ignificant positive correlations between 

; and c) significant positive 

like activity in BA40 (Rs .409, p = .006, n = 
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Table 5-2: Summary of the results. 

  RPT6 α-3 α-6 Chymotrypsin-
like 

PGPH-like 

BA9 PDD ↓ → → → ↓ 
 DLB ↓ ↑ → → ↓ 
 AD ↓ → ↓ ↓ ↓ 
BA24 PDD → ↓ ↑ ↓ ↓ 
 DLB ↓ → ↑ ↓ ↓ 
 AD ↓ → → ↓ ↓ 
BA40 PDD → ↑ → ↓ ↓ 
 DLB ↓ → → ↓ → 
 AD ↓ → → ↓ ↓ 

Downward arrow (↓) indicated decreased, upward arrow (↑) indicated increased and right 

arrow (→) indicates unchanged. 

 

5.3 Discussion:  

These studies have shown a reduction in DLB, PDD and AD in a component protein 

(RPT6 ATPase 19S regulatory subunit) of proteasomes that is important in ridding the 

brain of damaged proteins and this reduction is related to the presence of more α-synuclein 

and AD pathology. Moreover, enzymatic activities related to proteasomes are down-

regulated in all three groups and associated with the reduced RPT6 level. 

5.3.1 Proteasome subunit expression  

The main finding of the present study was the reductions of the RPT6 ATPase 19S 

regulatory subunit in DLB and AD in the frontal lobe neocortical area BA9, anterior 

cingulate BA24 and temporal cortex BA40. In PDD, reduced reduction in RPT6 level was 

found only in BA9. Interestingly, the reduction in RPT6 levels was associated with changes 

in proteasome proteolytic activities. There were positive correlations between RPT6 levels 
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and both chymotrypsin- and PGPH-like activity in BA9 but only with chymotrypsin-like 

activity in BA40. Neither α-3 nor α-6 was correlated with any of the proteolytic activity 

measured in this study. α-3 and α-6 were found to be altered differently depending on the 

brain region and the diagnostic group. In BA 9, significant reduction in α-6 was found only 

in the AD group, whereas upregulation was found in the level of α-3 in DLB in comparison 

with the controls. In BA40, significant upregulation was found in the level of α-3 in PDD; 

in contrast, the α-6 level did not differ significantly between the diagnostic groups and the 

controls. In BA24, increases in the protein expression level of α-6 were found in both PDD 

and DLB but not AD compared to the control group, with reduction in the level of α-3 in 

PDD only. Moreover, analysis of the enzymatic activities revealed reduction in both 

chymotrypsin- and PGPH-like activity in DLB, PDD and AD compared to the controls. 

The significant reductions in RPT6 were more or less similar between DLB and AD 

in BA9 and 24, a greater reduction were observed in AD in BA40 compared to DLB ; in 

PDD, the reduction was significant only in BA9. RPT6 is one of the six ATPase subunits 

(RPT 1–6) of the 19S regulatory complex; it is a 45kDa subunit. Degradation of 

ubiquitinated substrate proteins by the 26S proteasome is dependent upon ATP (Rivett, 

1989), which binds to the six ATPase subunits of the 19S regulatory complex. All six of the 

ATPase subunits contain the same substantial main functional domains: an N-terminus 

coiled-coil domain important for formation of the 19S base, and a C-terminus ATPase 

domain that is involved in ATP-dependent substrate unfolding and 20S CP opening 

(Marques et al., 2009). These ATPases provide the energy necessary for the degradation of 

multi-ubiquitin conjugated proteins by the 26S proteasome, and it is also believed that 

ATPase subunits participate in the substrate-unfolding step of the degradation pathway 
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(Strickland et al., 2000). It has been shown previously that the 19S RPT6 expression level 

decreased while α-synuclein was increased in mouse PD-like models (Liu et al., 2008) and 

a study of 9 PD cases, 7 PDD and 9 controls revealed a decrease in the 19S RPT3/S6 

subunit in the inferior frontal gyri of PDD although the expression was similar in control 

and PD  (Wills et al., 2010). 

Calcium/calmodulin-dependent protein kinase II (CaMKII) and protein kinase A 

(PKA) have been shown to phosphorylate the proteasome regulatory subunit RPT6 at 

Serine-120 and stimulate the proteasome function in vitro (Djakovic et al., 2012, Djakovic 

et al., 2009, Zhang et al., 2007). Consistent with this, Jarome et al. showed that 

phosphorylation of RPT6 by CaMKII increased proteasome activity in vivo and proteasome 

activity was necessary for long-term memory function (Jarome and Helmstetter, 2013, 

Jarome et al., 2013). Another significant finding is that RPT6 phosphorylation enhances 

proteolysis by promoting the assembly of the 26S proteasome, and RPT6 

dephosphorylation promoted the dissociation of 26S into 19S and 20S components (Satoh 

et al., 2001). Previous studies in yeast have demonstrated that reductions in the expression 

of any single ATPase subunit are lethal, highlighting the importance and non-redundancy 

of these subunits in normal functioning of proteasomes (Rubin et al., 1998). Inactivation of 

the 19S regulatory particle (RPT2) subunit prevented the formation of the 26S proteasome, 

leaving the 20S proteasome subunit, which is ubiquitin-independent, unaffected (Bedford et 

al., 2008). Therefore, the reduction in RPT6 subunit expression identified in DLB, PDD 

and AD patients in three brain regions and the associated reduction in proteasome activity 

confirms and extends previous studies by demonstrating this phenomenon in the human 

brain and suggests that reduced subunit expression may directly lead to proteasome 
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impairment. The reason for the reduction in RPT6 ATPase subunit expression remains 

unexplained. However, it is possible that  the reduction could be related to oxidative stress; 

indeed, proteasome subunits were demonstrated to be sensitive to oxidative stress (Yang et 

al., 2007, Zeng et al., 2006b). RPT6 was decreased in DJ-1-deficient mice treated with 

Paraquat (Yang et al., 2007). Furthermore, Sun et al. reported that proteasome subunits 

(Rpt5, Rpn10 and Rpn2) can be cleaved by caspase-3 following caspase activation during 

apoptosis; associated with the cleavage of these subunits, they found decreased proteasome 

activity (Sun et al., 2004). 

The reduction of proteasome subunit α-3 in PDD subjects in the anterior cingulate 

(BA24) was demonstrated to be consistent with previous studies that have shown a 

selective loss of α-subunits within dopaminergic neurons of the substantia nigra of patients 

with PD (McNaught et al., 2003, McNaught et al., 2002c). However, 20S proteasome α-3 

subunits protein levels were upregulated in DLB and PDD in BA9 and BA 40 respectively. 

It has been reported that the core particle (CP) of the yeast proteasome was autoinhibited by 

the N-terminal tails of the outer (alpha) ring subunits (Groll et al., 2000). Upregulation of 

the 20S proteasome α-3 subunits protein levels may promote autoinhibition of the core 

particle by the N-terminal tails of the α-3 subunits. Upregulation of α-3 has not been 

reported before in post-mortem brain tissue, as most of the studies investigated the level of 

the 20S core α-subunits, not the individual subunits (α1-α-7). α-3 did not show any 

significant difference between AD compared to the control in BA9, BA24 and BA40. This 

suggests that there was no relationship between AD pathology and the alteration in α-3 

levels.  
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The level of the 20S proteasome α-6 subunits did not show any significant 

difference between PDD, DLB and the matched control within the frontal cortex (BA9) and 

the parietal cortex (BA40). The expression levels of the proteasome subunits α-6 were 

significantly increased in the anterior cingulate (BA24) in both DLB and PDD groups. This 

may suggest that the limbic BA24 region is affected earlier than the neocortical and 

increasing proteasome proteins levels may be one of the earliest processes that lead the 

compensatory mechanism to the formation of LBs. In contrast, another study has shown 

reduced α-subunit expression in the cortex of DLB patients (MacInnes et al., 2008) and also 

in PD SN (McNaught et al., 2002c). The variation in the expression levels between α-6 and 

α-3 in the same brain region for the same group suggests that each individual α-subunit is 

present in the cell at different rates. This suggests that the reduction found in the α-subunit 

in previous studies could result from changes in any of the α-subunits (α1−α7). On the basis 

of the current data, investigation of each individual subunit of proteasomes will provide 

more knowledge about the proteasome and will help in understanding the process that leads 

to the pathology of LB and AD by determining the subunit that most commonly associates 

with the impairment of proteasome function. To the best of our knowledge, this is the first 

study which aimed to investigate the expression level of the α3 and α6 proteasome subunits 

in LBD and AD. AD cases had significantly lower levels of the α-6 subunit in BA9. This 

suggests that there is a substantial relationship between the AD pathology and α-6 in this 

brain region. Considering the importance of α-subunits in proteasome stability, McNaught 

and colleagues have suggested that changes in the expression of α-subunits could cause 

proteasomes to become unstable, which may ultimately lead to the impairment of the 
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proteasome function (McNaught et al., 2002c). However, as there was no correlation 

between either α-3 or α-6 and any proteolytic activity, this explanation seems unlikely.  

Immunohistochemistry staining was undertaken to examine proteasome subunit expression 

in an anatomical context. Overall the preliminary studies confirmed the findings from 

Western blotting and provided more information about the localisation of the proteasome 

subunits within the cell. The 19S regulatory RPT6 subunit presents mainly in the nucleus, 

where α-3 and α-6 resulted in cytoplasmic and nuclear staining. The appearance of RPT6 

only in the nuclei is in agreement with other studies showing the presence of RPT6 and 

other ATPase subunits within the nuclei in non-diseased human and rat brains (Adori et al., 

2006, Russell et al., 1999b). The nuclear localisation of RPT6 is unexplained; it could be 

due to unassembled subunits or associated with the 19S complex or in consistency with 

other findings that some regulatory ATPases of the 19S complex function independently of 

proteolysis in nucleotide excision repair (Muratani and Tansey, 2003, Russell et al., 1999a). 

The observation that α-3 and α-6 of the 20S immunoreactivity are both nuclear and 

cytoplasmic is in agreement with previous studies on 20S  cellular localisation (Adori et al., 

2006, Mengual et al., 1996). In contrast, other studies have reported the appearance of α-4 

and α-6 only in the nuclei of tyrosine hydroxylase (TH)-positive cells in the SN (Bukhatwa 

et al., 2010b).  
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5.3.2 Proteolytic activity of 20S proteasomes 

Compared to control groups, reduction of proteasome catalytic activities and 

chymotrypsin- and PGPH-like activities were found in all three regions of BA9, BA24 and 

BA40, in DLB, PDD and AD patients. Surprisingly, there was a significant difference 

between the PDD and DLB groups only in BA24 in both chymotrypsin- and PGPH-like 

activities, with PDD patients having smaller mean values compared to the DLB subjects. 

The same finding was indicated by comparing the AD and DLB groups; the mean values 

for the AD group were significantly lower than for the DLB group. The cause of the 

distinct difference between DLB and PDD or DLB and AD is unknown, and although 

upregulation occurred in the expression level of α-6 in PDD and DLB and in α-3 in DLB 

and AD in BA24, there was no association between the α-subunits and proteasome activity. 

It has been reported in AD that reduction in proteasome activity was not associated with 

alteration in the proteasome α-subunit (Keller et al., 2000). The proteasome catalytic 

activity in AD brains was reported to be lower compared to controls (Keller et al., 2000, 

Lopez Salon et al., 2000). Keller and colleagues found a reduction in proteasome activity in 

the hippocampus, parahippocampal gyrus, superior and middle temporal gyri and inferior 

parietal lobule of AD patients compared with controls (Keller et al., 2000). Impairment of 

proteasome function was previously reported to occur specifically in the substantia nigra 

pars compacta (SNc) in PD brains (McNaught et al., 2003, McNaught and Jenner, 2001).   

It is possible that the reduction of proteasome activity is due to the decreased in the 

RPT6 level as there was a correlation between lower RPT6 protein levels and proteasome 

activity in BA9 and BA40 and due to the important role of RPT6 in promoting the activity 

of proteasomes. The reduction of the proteolytic activity could also arise from the 
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blockading of the entry pore to the 20S proteasome by protein aggregates, such as α-

synuclein, which may in turn impede degradation of this and other proteins 

(Emmanouilidou et al., 2010, Liu et al., 2005, Zhang et al., 2008). Inhibition of the 26S 

proteasome with soluble oligomeric species of mutant and wild-type α-synuclein in PC12 

cells has been demonstrated (Emmanouilidou et al., 2010). It is clear that these oligomers 

have to be degraded by the proteasomes, as they accumulate when proteasome function is 

inhibited. Proteasome inhibitors have been reported to induce α-synuclein aggregation and 

Lewy body-like inclusions, leading to neuronal loss among in vitro and in vivo models 

(Bedford et al., 2008). However, it is not clear whether the aggregation results from the 

impairment of the proteasomes or vice versa (Lansbury and Lashuel, 2006). Results from 

experimental studies have indicated that inhibition of the proteasomes causes the formation 

of aggregation (Bedford et al., 2008, McNaught et al., 2002b) and protein aggregation 

inhibits the proteasome activity (Emmanouilidou et al., 2010).    

 In view of the above, our data strongly suggest that the activation of the 

proteasomes may be a target to slow down the disease progression in DLB and PDD. 

Recently, Medina and his colleagues have found that methylene blue (MB) increases the 

clearance of Aβ in a mouse model of AD by increasing the proteasome activity (Medina et 

al., 2011). The effect of MB on α-synuclein aggregation remains to be determined, and it is 

strongly suggested that proteasome activation may reduce Lewy body formation
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5.4 Conclusion  

The present study has demonstrated that the activity of RPT6 ATPase 19S 

regulatory subunit protein levels of proteasomes in PDD/DLB and AD were decreased and 

correlated with proteasome activity. In contrast, the proteasome α-6 subunits were 

increased in the anterior cingulate and remain unchanged in the prefrontal and parietal 

cortex except for the AD group in BA9. Immunostaing did not indicate any abnormal 

accumulation of 26S proteasome subunits in BA9, BA40 and BA24. It will be very useful 

for a future study to use double staining of the proteasome subunits and the pathologic 

protein deposits (α-synuclein, Aβ, and tau) to detect any relationship and co-localiztion 

with both AD and LBs pathology. Further studies on the functions and interactions of the 

proteasome system subunits are needed to elaborate why proteasome α-3 and α-6 subunits 

show a parallel increase in some patient groups in single different areas of the brain (but not 

all), whereas RPT6 has an inverse pattern (i.e. decrease in the prefrontal, parietal cortex and 

in anterior cingulate). This may imply that selective (i.e. targeting specific subunits) 

inhibition and activation of subunits could have better therapeutic potential in LBDs rather 

than non-selective modification of the UPS activity. 
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Chapter 6 Expression levels of lysosomal proteins and cathepsin-

D activity in human post-mortem brains of DLB, PDD, AD 

and age-matched control 
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6.1 Introduction  

In the previous chapter, evidence was presented for a reduction in specific components of 

the proteasome system. Having examined the status of the proteasome in LBD it was now 

important to evaluate the lysosomal pathway.  

Two lysosomal markers, cathepsin D and lysosomal-associated membrane protein 1 

(LAMP1) were chosen for investigation. Cathepsin D is a member of a large hydrolytic 

enzyme family in the lysosome called cathepsins, derived from the Greek term meaning ‘to 

digest’ (Willstatter and Bamann, 1929). Cathepsin D is an aspartic protease, found in a high 

concentration within the lysosomes, and has a major role in apoptosis (Minarowska et al., 

2007). Cathepsin D has been found to be involved in degradation of beta-amyloid 

(Hamazaki, 1996, McDermott and Gibson, 1996). Cathepsin D cleaves α-synuclein in vitro 

and its deficiency results in increased α-synuclein accumulation (Qiao et al., 2008). For 

more details about lysosomal pathway and its relevance to synucleinopathies, also 

cathepsin D and its role in α-synuclein degradation see (Chapter 1 section 1.10). 

LAMP1 is one of the major components of the lysosome; it is a glycoprotein expressed 

extensively in the lysosomal membrane. LAMP1 is widely used as a lysosomal marker 

(Eskelinen, 2006, Kurzawa-Akanbi et al., 2012) and is found to be up-regulated in AD 

(Barrachina et al., 2006b) and down-regulated in PD (Chu et al., 2009, Dehay et al., 2010).   

In this chapter we aimed to: 1) Investigate the expression level of cathepsin D and LAMP1, 

in regions of the human post-mortem brain from LBD and AD patients, and in controls 

using Western blot. 2) Determine if there is a correlative relationship between the two 

major proteolytic pathways—the ubiquitin-proteasome pathway and the lysosomal 
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pathway. 3) Investigate whether alteration of the expression level of the lysosomal markers 

in different brain areas correlated with semi-quantitative scores of AD and LBD pathology. 
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6.2 Result  

6.2.1 Expression levels of lysosomal proteins in human post mortem brains of DLB, 

PDD, AD, and age-matched control 

6.2.1.1 Frontal cortex – Brodmann area 9 

6.2.1.1.1 LAMP1 expression 

The immunoblot analysis were done using anti-LAMP1 antibody as a marker for the 

lysosome. Anti-LAMP1 was a rabbit polyclonal IgG (ab24170) that recognised a band of 

about 120 kDa and used before by (Kren et al., 2009) 

No difference in expression level of LAMP1 was observed in the PDD, DLB, or AD groups 

compared with control subjects. Statistical analysis was performed using One-way 

ANOVA (F = 0.443, d.f. = 3 and 107, p = 0.723; Bonferroni post hoc test), results are 

shown in (Figure 6-1).  
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Figure 6-1: LAMP1 values, from semi-quantitative Western blotting in PDD, DLB, AD, 

and control in frontal cortex (BA9). 

Scatter plot of LAMP1 relative intensity determined by semi-quantitative Western blot 

analysis in DLB, PDD, AD, and age-matched control samples. Statistical analysis was 

performed using One-way ANOVA (F = 0.443, d.f. = 3 and 107, p = 0.723; Bonferroni post 

hoc test): Statistical analysis confirmed there was no significant difference between 

diagnostic groups for LAMP1values. The horizontal bars within the data points in the 

graphs represent the mean values. B) Representative Western blot showing levels of the 

LAMP1 in DLB, PDD, AD, and control. 
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Figure 6-2: Photomicrographs of LAMP1

post-mortem human brain from control and dementia cases.

The photomicrograph illustra

post-mortem brain from control, PDD, DLB and AD. The photomicrographs demonstrate 

the level of cytoplasm and nucleus staining was the same for all for g

represents 15 microns.

 

 

 

Photomicrographs of LAMP1 staining in the frontal cortex region of the 

mortem human brain from control and dementia cases. 

The photomicrograph illustrates immunohistochemistry for LAMP1

mortem brain from control, PDD, DLB and AD. The photomicrographs demonstrate 

the level of cytoplasm and nucleus staining was the same for all for g

represents 15 microns. 
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staining in the frontal cortex region of the 

tes immunohistochemistry for LAMP1 in the frontal cortex of 

mortem brain from control, PDD, DLB and AD. The photomicrographs demonstrate 

the level of cytoplasm and nucleus staining was the same for all for groups. Scale bar 
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6.2.1.1.2 Cathepsin D expression 

The immunoblot analysis were done using anti- cathepsin D as a marker for a major 

lysosomal enzyme involved in α-synuclein degradation by autophagy (Sevlever et al., 

2008). Anti-cathepsin D was a goat polyclonal IgG (sc-6486) that recognised a band of 

about 52 kDa and used before by (Fan et al., 2010)  

Cathepsin D expression was similar between individual cases and was not 

significantly altered across any of the diagnostic groups. Statistical analysis was performed 

using One-way ANOVA (F = 1.652, d.f. = 3 and 106, p = 0.182; Bonferroni post hoc test), 

result shown in (Figure 6-2).  
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Figure 6-3: cathepsin D values, from semi-quantitative Western blotting in PDD, DLB, 

AD, and control in frontal cortex (BA9). 

Scatter plot of cathepsin D relative intensity determined by semi-quantitative Western blot 

analysis in DLB, PDD, AD, and age-matched control samples. Statistical analysis was 

performed using One-way ANOVA (F = 1.652, d.f. = 3 and 106, p = 0.182; Bonferroni post 

hoc test): Statistical analysis confirmed there was no significant difference between 

diagnostic groups for cathepsin D values. The horizontal bars within the data points in the 

graphs represent the mean values. B) Representative Western blot showing levels of the 

cathepsin D in DLB, PDD, AD, and control. 
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Figure 6-4: Photomicrographs of 

post-mortem human brain from control and dementia cases.

The photomicrograph illustra

cortex of post-mortem brain from control, 

demonstrate the level of cytoplasm and nucleus staining was the same for all for

Scale bar represents 100 

 

 

 

omicrographs of cathepsin D staining in the frontal cortex region of the 

mortem human brain from control and dementia cases. 

The photomicrograph illustrates immunohistochemistry for cathepsin D in the frontal 

mortem brain from control, PDD, DLB and AD. The photomicrographs 

demonstrate the level of cytoplasm and nucleus staining was the same for all for

Scale bar represents 100 microns. 
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cathepsin D staining in the frontal cortex region of the 

cathepsin D in the frontal 

PDD, DLB and AD. The photomicrographs 

demonstrate the level of cytoplasm and nucleus staining was the same for all for groups. 
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6.2.1.2 Parietal cortex—Brodmann area 40 

6.2.1.2.1 LAMP1 

A significant reduction in LAMP1was seen in DLB (29%, p = 0.001, 0.814 ± 0.04, n = 43) 

compared to the controls (1.148 ± 0.04, n = 20) (one-way ANOVA, F = 6.24, d.f. = 3, 104; 

p = 0.001; Bonferroni post hoc test) (Figure 6-3). 

 

 

Figure 6-5: LAMP1 values, from semi-quantitative Western blotting in PDD, DLB, AD, 

and control in parietal cortex (BA40). 

A) Scatter plot of LAMP1 relative intensity determined by semi-quantitative Western blot 

analysis in DLB, PDD, AD, and age-matched control samples. Statistical analysis was 

performed using One-way ANOVA (F = 6.242, d.f. = 3 and 104, p = 0.001): mean LAMP1 

values for the control group (n = 20) were significantly higher than the DLB (p = 0.001, n = 
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43), and did not reach the significant compare to the PDD group (p = 0.

AD (p = 0.193, n = 16) groups

represent the mean values. 

DLB, PDD, AD, and control.

Figure 6-6: Photomicrographs of 

mortem human brain from control and dementia cases.

The photomicrograph illustra

(BA40) of post-mortem brai

demonstrate a strong staining in 

Scale bar represents 15 microns

43), and did not reach the significant compare to the PDD group (p = 0.

= 16) groups. The horizontal bars within the data points in the graphs 

represent the mean values. B) Representative Western blot showing levels of 

PDD, AD, and control. 

Photomicrographs of LAMP1 staining in parietal cortex (BA40)

mortem human brain from control and dementia cases. 

The photomicrograph illustrates immunohistochemistry for LAMP1 

mortem brain from control, PDD, DLB and AD. 

demonstrate a strong staining in DLB and PDD as compared to control

15 microns. 
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43), and did not reach the significant compare to the PDD group (p = 0.069, n = 30) and 

. The horizontal bars within the data points in the graphs 

Representative Western blot showing levels of LAMP1 in 

 

in parietal cortex (BA40) of the post-

LAMP1 in parietal cortex 

n from control, PDD, DLB and AD. The photomicrographs 

DLB and PDD as compared to control, and AD cases. 
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6.2.1.2.2 Cathepsin D 

There was no significant difference in the mean levels of cathepsin D between either DLB 

or AD patient groups compared to the controls according to the post hoc test (Figure 6-4, 

p>0.05). However, mean cathepsin D levels in patients with PDD were significantly 

elevated by 21% compared to AD (p = 0.009, n = 16) and by 20% compared to controls 

groups (p = 0.005 n = 22), ANOVA (F = 5.336, d.f. = 3 and 114, p = 0.002; Bonferroni post 

hoc test). 
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Figure 6-7: cathepsin D values, from semi-quantitative Western blotting in PDD, DLB, 

AD, and control in parietal cortex (BA40). 

A) Scatter plot of cathepsin D relative intensity determined by semi-quantitative Western 

blot analysis in DLB, PDD, AD, and age-matched control samples. Statistical analysis was 

performed using One-way ANOVA (F = 5.336, d.f. = 3 and 114, p = 0.002; Bonferroni post 

hoc test): mean cathepsin D values for the for the PDD (n = 27) group were significantly 

higher than the control (p = 0.005, n = 22), AD (p = 0.009, n = 16) group. The horizontal 

bars within the data points in the graphs represent the mean values. B) Representative 

Western blot showing levels of the cathepsin D in DLB, PDD, AD, and control. 
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Figure 6-8: Photomicrographs of cathepsin D staining in the

region of the post-mortem human brain from control and dementia cases.

The photomicrograph illustrates 

(BA40) of post-mortem brain from control, PDD, DLB and AD. The photom

demonstrate the level of staining was the same for all for

microns. 

 

 

: Photomicrographs of cathepsin D staining in the in parietal cortex (BA40). 

mortem human brain from control and dementia cases.

The photomicrograph illustrates immunohistochemistry for cathepsin D

mortem brain from control, PDD, DLB and AD. The photom

demonstrate the level of staining was the same for all for groups. Scale bar represents 100 
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in parietal cortex (BA40). 

mortem human brain from control and dementia cases. 

cathepsin D in parietal cortex 

mortem brain from control, PDD, DLB and AD. The photomicrographs 

groups. Scale bar represents 100 



 

 

215 

 

6.2.1.3 Anterior cingulate gyrus Brodmann area 24 

6.2.1.3.1 LAMP1 

Significant reduction in the lysosomal-associated membrane protein 1 (LAMP1) was seen 

in DLB (51%, p = 0.001, 0.331 ± 0.04) and PDD, (46%, p = 0.001, 0.362 ± 0.05) compared 

to the controls (0.679 ± 0.07) (one-way ANOVA, F = 8.149, d.f. = 3, 114; p = 0.001; 

Bonferroni post hoc test) (Figure 6-5). The post hoc test revealed that there was no 

significant difference between the control and AD groups (p > 0.05). 
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Figure 6-9: LAMP1 values, from semi-quantitative Western blotting in PDD, DLB, AD, 

and control in cingulate cortex (BA24). 

A) Scatter plot of LAMP1 relative intensity determined by semi-quantitative Western blot 

analysis in DLB, PDD, AD, and age-matched control samples. Statistical analysis was 

performed using One-way ANOVA (F = 8.149, d.f. = 3 and 114, p = 0.001): mean LAMP1 

values for the control group (n = 23) were significantly higher than the DLB (p = 0.001, n = 

33) and PDD groups (p = 0.001, n = 46). The horizontal bars within the data points in the 

graphs represent the mean values. B) Representative Western blot showing levels of 

LAMP1 in DLB, PDD, AD, and Control. 
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Figure 6-10: Photomicrographs of LAMP1

post-mortem human brain from control and dementia cases.

The photomicrograph illustr

(BA24) of post-mortem brain from control, PDD, DLB and AD. 

demonstrate the level of staining was the same for all for

microns. 

 

 

 

Photomicrographs of LAMP1 staining in in cingulate cortex (BA24

mortem human brain from control and dementia cases. 

The photomicrograph illustrates immunohistochemistry for LAMP1 

mortem brain from control, PDD, DLB and AD. 

the level of staining was the same for all for groups
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in cingulate cortex (BA24) of the 

tes immunohistochemistry for LAMP1 in cingulate cortex 

mortem brain from control, PDD, DLB and AD. The photomicrographs 

groups. Scale bar represents 15 
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6.2.2 Correlations between lysosomal markers and proteasome activities or 

proteasome subunits expression  

To test whether or not lysosomal markers are associated with proteasome activity 

and proteasome subunits expression, Pearson and Spearman’s rank correlation was 

determined between semi-quantitative protein values of LAMP1 and cathepsin D and 

between PGPH- and chymotrypsin-like activities. These activities were measured using 

synthetic peptide substrate and the semi-quantitative protein values of RPT6, α6 and α3, 

which were measured using a Western blot. There were no significant correlations between 

any of the protein levels or activities of the proteasome with any of the lysosomal markers 

measured in this study with P > 0.05.   
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6.2.3 Correlations between lysosomal markers and pathology scores  

To investigate whether the expression levels of the lysosomal markers in different 

brain areas were associated with semi-quantitative scores of AD and LBD pathology, linear 

regression analyses were conducted with the two predictors LAMP1 and cathepsin D as 

independent factors and semi-quantitative scores for Aβ staining (plaque pathology), 

phospho-tau staining (tangle pathology) and α-synuclein pathology (in forms of Lewy 

bodies and dystrophic lewy neurites) as dependent variables. The pathological data was 

based on the semi-quantitative (on a scale of 0 (none), 1 (mild), 2 (moderate) and 3 

(severe/frequent)) rating of IHC degree and distribution of plaque, tangle and α-synuclein 

immunostaining (for more details see Chapter 2 Section 2.2.2).  

Reductions in LAMP1 in BA24 (Figure 6-6) and BA40 (Figure 6-7) were 

associated with the α-synuclein pathology. No one relationship was detected with the tangle 

and plaque pathology. Analysis of variance (ANOVA) followed by Bonferroni post-hoc 

tests also indicated a significant difference between LAMP1 levels and α-synuclein scores 

in BA24 (one-way ANOVA F = 7.088, d.f. = 3 and 109, p = 0.001; Bonferroni post hoc 

test) (Figure 6-6) and BA40 (one-way ANOVA F = 4.5, d.f. = 3 and 108, p = 0.005; 

Bonferroni post hoc test) (Figure 6-7). 
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Model Summary 

Model R 
R 

Square 

Adjusted 
R 

Square 
Std. Error of 
the Estimate 

1 .353
a
 .125 .117 1.172 

 

ANOVA
a
 

      

Model   
Sum of 

Squares df 
Mean 

Square F Sig. 

1 Regression 
21.714 1 21.714 15.803 .000

b
 

  Residual 152.516 111 1.374     

  Total 174.230 112       

       Coefficients
a
 

Model 

Unstandardized 
Coefficients 

Standardized 
Coefficients 

t Sig. B Std. Error Beta 

1 (Constant) 
2.069 .183   11.282 .000 

LAMP1 -1.373 .345 -.353 -3.975 .000 
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 Figure 6-11: Relationship between expression levels of LAMP1 in BA24 and α-

synuclein score. 

 Linear regression analyses were conducted with the LAMP1. In the analyses, the semi-

quantitative α-synuclein were entered as dependent variables with LAMP1 values from 

semi-quantitative Western blotting in BA24 as independent factors. The α-synuclein scores 

in the dementia cases (DLB, PDD and AD) and control cases were significantly predicted 

by LAMP1 with (Beta = -0.353 and p = 0.001).  One-way ANOVA was performed to 

compare semi-quantitative Western blotting values of LAMP1 and α-synuclein scoring 

groups. The analysis indicated a significant difference between the group with α-synuclein 

of none and the group with a α-synuclein score of sparse (p = 0.014), moderate (p = 0.014), 

or severe (p = 0.001) (one-way ANOVA F = 6.433, d.f. = 3 and 114, p = 0.001; Bonferroni 

post hoc test). The horizontal bars within the data points represent the mean. 
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Model Summary 

Model R 
R 

Square 

Adjusted 
R 

Square 
Std. Error of 
the Estimate 

1 .304
a
 .092 .074 .972 

 

ANOVA
a
 

      

Model   
Sum of 
Squares df 

Mean 
Square F Sig. 

1 Regression 
9.634 2 4.817 5.094 .008

b
 

  Residual 94.560 100 .946     

  Total 104.194 102       

       Coefficients
a
 

Model 

Unstandardized 
Coefficients 

Standardized 
Coefficients 

t Sig. B Std. Error Beta 

1 (Constant) 
1.295 0.447   2.898 .005 

LAMP1 -.454 .143 -.304 -3.170 .002 

Cathepsin D -.009 .283 -.003 -.003 .974 
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 Figure 6-12: Relationship between expression levels of LAMP1 in BA40 and α-

synuclein score. 

 Linear regression analyses were conducted with the two predictors to develop a model for 

the best predictor α-synuclein in BA40. In the analyses, the semi-quantitative α-synuclein 

were entered as dependent variables with LAMP1 and cathepsin D values from semi-

quantitative Western blotting in BA40 as independent factors. The α-synuclein scores in the 

dementia cases (DLB, PDD and AD) and control cases were significantly predicted by 

LAMP1 with (Beta = -0.304 and p = 0.002).  One-way ANOVA was performed to compare 

semi-quantitative Western blotting values of LAMP1 and α-synuclein scoring groups. The 

analysis indicated a significant difference between the group with α-synuclein of none and 

the group with a score of severe (p = 0.026) (one-way ANOVA F = 4.5, d.f. = 3 and 108, p 

= 0.005; Bonferroni post hoc test). The horizontal bars within the data points represent the 

mean. 
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6.3 Discussion  

The main finding of the present study is that immunoreactivity for the lysosomal 

marker LAMP1 measured by Western blot was significantly decreased in BA24 and BA40 

in DLB and in BA24 in PDD groups. The mean values of LAMP1 in PDD groups in BA40 

was slightly decreased compared to the control, however, the results did not reach 

significance. Interestingly, these reductions were significantly associated with higher α-

synuclein scores but did not correlate with any of the AD pathology. The non-significant 

reduction in PDD groups in BA40 can be explained by the lower distribution of α-synuclein 

inclusions in PDD groups compared to DLB. These results match those observed in earlier 

studies by Chu et al. who found that LAMP1 immunoreactivity was significantly decreased 

within PD nigral neurons and the decrease was significantly greater in nigral neurons that 

contained α-synuclein inclusions (Chu et al., 2009). These latter findings confirm the 

association between the α-synuclein inclusions and the lysosomal degradation pathway. 

Accumulation of α-synuclein can be a result of α-synuclein overexpression, impairment of 

the protein clearance pathway or both. There is a growing body of evidence suggesting a 

link between high levels of α-synuclein and dysfunction of the lysosomal degradation 

pathway. Increases in wild-type α-synuclein levels inhibit macroautophagy and increase the 

accumulation of other autophagy substrates such as p62 and huntington (Furlong et al., 

2000, Winslow et al., 2010), in addition to α-synuclein abnormal aggregation and neuronal 

degeneration (Emmer et al., 2011, Outeiro et al., 2008, Zach et al., 2007). Aggregation of 

α-synuclein also has been shown to inhibit macroautophagy and the lysosomal degradation 

pathway and thereby impair the capacity of ALP to clear α-synuclein as well as other 

accumulated aggregation-prone proteins (Cuervo et al., 2004, Martinez-Vicente et al., 2008, 
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Snyder et al., 2003, Tanaka et al., 2001). Inhibition of the macroautophagy and the 

lysosomal degradation pathways enhances α-synuclein accumulation and aggregation (Rott 

et al., 2008). In contrast, autophagy activation facilitates the degradation of α-synuclein and 

neuroprotection (Spencer et al., 2009, Webb et al., 2003). Thus, the relationship between α-

synuclein over-expression/aggregation and autophagy lysosomal degradation pathway 

dysfunction leads to a vicious cycle, where increased α-synuclein production could block 

its clearence mechanism, while impairement of the lysosomal pathway could result in α-

synuclein accumulation and aggregation. In this study, no differences were found in 

LAMP1 protein levels in DLB and PDD in the frontal cortex (BA9). In PDD, BA9 was 

characterised by a relative scarcity of α-synuclein, while in DLB the distribution of α-

synuclein was more in BA24 and BA40 than in BA9. It seems that in BA9 the autophagy-

lysosomal pathway is still active after the impairment of the proteasome pathway in this 

region before it becomes inhibited by α-synuclein aggregation. 

Cathepsin D protein values for the PDD group were significantly higher than the 

control in the parietal cortex (BA40), while in DLB they were slightly increased. LAMP1 

protein values showed a significant reduction in DLB and a non-significant reduction in 

PDD. These results suggest that upregulation of cathepsin D serves as a compensatory 

mechanism for both proteasome dysfunction and other lysosomal defects and it is a 

response to protein accumulation and aggregation. Upregulation of cathepsin D has been 

reported in post-mortem brains in patients with AD (Cataldo et al., 1997). Few studies have 

investigated cathepsin D expression in LBD although a reduction  in the expression levels 

of the protein in patients with PD has been reported, with this downregulation being more 

severe in neurons that contain α-synuclein inclusion (Chu et al., 2009). A possible 
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explanation for this might be that the overexpression of cathepsin D in DLB and PDD is a 

compensatory mechanism in cortical pathogenesis. The temporary increase is followed by 

deficiency after the exhaustion of this compensatory mechanism. This is perhaps due to 

proteasome dysfunction and an increase in α-synuclein aggregation. If this hypothesis is 

correct, the next question is: does overexpression of cathepsin D mean that it is in its active 

form and able to degrade α-synuclein inclusion or not? If cathepsin D is not in its active 

form then it is likely that activation of cathepsin D represents a possible treatment option 

for Lewy body dementia. Future studies on cathepsin D activity are therefore 

recommended.    

There is a complementary relationship between the UPS and ALP. Inhibition of the 

proteasome activities has been previously reported to induce the autophagy-lysosomal 

pathway (Ding et al., 2007). In order to investigate the relationship between these two 

systems in this study, the expression level and the proteolytic activity of the proteasome 

were correlated with the protein levels LAMP1 and cathepsin D. As shown in the previous 

chapter (Chapter 5), there were reductions in the major proteasome proteolytic activities in 

the frontal, parietal and anterior cingulate cortices, which were related to reductions in the 

protein expression of the RPT6 ATPase 19S regulatory subunit of the proteasome. Changes 

in the lysosomal pathways did not correlate with either expression of the RPT6 ATPase 

19S regulatory subunit of the proteasome or the proteolytic activities. The reason for this is 

not clear; because there are nearly 100 lysosomal proteins involved in the structure and 

activities of this pathway, it may be caused by other lysosomal proteins that have a direct 

link with the UPS.    
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Chapter 7 Relationships between pathology score, clinical data, 

synaptic biochemistry and expression levels of proteasome 

subunits/ proteasome activity  
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7.1 Introduction  

Accumulation of ubiquitinated proteins and UPS-associated protein is a common 

feature in many neurodegenerative diseases. Currently it is unknown whether changes in 

proteasome function are driving synaptic changes, or if synaptic changes are driving 

proteasome dysfunction. However, it has become increasingly evident that the ubiquitin-

proteasome system targets several key synaptic proteins and plays an important role in 

neuronal growth and development, synaptic function and plasticity, and neuronal survival 

(Yi and Ehlers, 2007). Any changes in the proteasome might, therefore, alter synaptic 

proteins and participate directly or indirectly in the pathogenesis of neuronal dysfunction. 

The early symptoms of many neurodegenerative disorders are characterized by synaptic 

impairment (Bagetta et al., 2010, Mallucci, 2009, Marcello et al., 2012, Picconi et al., 

2012). Synaptic dysfunction play a central role in cognitive decline, as in AD among all the 

pathological changes in the brain, synapse loss is the strongest correlate of cognitive 

decline (DeKosky and Scheff, 1990, Terry et al., 1991). Given the role of the UPS in 

synaptic plasticity, the UPS may play a critical role in synaptic dysfunction that may 

underlie cognitive impairment in neurodegenerative diseases. Due to the plasticity of the 

synapses, they have the ability to regenerate after injury and hence mechanisms by which 

this occurs represent potential therapeutic strategies for the treatment of neurodegenerative 

diseases. This is a major factor as to why many researchers focus on the causes of synaptic 

dysfunction. Synaptic changes may also underlie the emergence of specific behaviours and 

mood disturbance. Ongoing work in our laboratory has highlighted relationships between 

mood and a zinc transporter (Whitfield et al., 2014a), zinc transporter and cognitive 

impairment (Whitfield et al., 2014b), and also between CAMKII and cognitive impairment 



 

 

229 

 

(Vallortigara et al., 2014). Therefore, we hypothesized that cognitive decline and non-

cognitive symptoms would be associated with the proteasome impairment as a consequence 

of synaptic dysfunction and increased protein aggregation in LBD and AD. In Chapter-5, 

evidence was presented for a reduction in specific components, especially RPT6 and 

activities of the proteasome system. To address the link between proteasome impairment, 

AD and LBD pathology, cognition decline and non-cognitive symptom, and the synaptic 

dysfunction, the reduction of RPT6 and the alteration of the other proteasome components 

and activities were investigated in order to identify clinico-pathological correlations. These 

include: 

1. Possible relationships between reduction of RPT6 and the alteration of the other 

proteasome components and semi-quantitative scores of AD and LBD pathology in 

different brain areas.  

2. Possible relationships between proteasome dysfunction and cognition and non-

cognitive symptom in LBD and AD.   

3. Possible relationships between reduction of RPT6 and synaptic dysfunction.  

The analysis of the relationships between non-cognitive symptoms, mood and 

proteasome markers were exploratory and unbiased as there were no compelling 

hypotheses linking them. It was therefore considered appropriate to set a level of 

statistical significance of 0.01 for rejection of the null hypothesis. It remains the case 

that all such associations are treated with caution because of the fact of multiple testing.  

Furthermore, due to the different regional patterns for the protein changes and the 
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linkage of particular behavioural symptoms to a specific brain area, each brain region 

was analysed separately.  

Clinical and pathological data for more than 130 cases of PDD, DLB and AD were 

available for this study. Semi-quantitative pathology scoring (plaques/Aβ pathology, 

tangle/tau pathology and α-synuclein) was conducted using the following scale:  0 (none), 1 

(mild), 2 (moderate) and 3 (severe/frequent) to score sections from BA9, BA24 and BA40. 

The cases were grouped by MMSE score as previously described (Whitfield et al., 2014b):- 

‘unimpaired cognition’ for clinical control cases, ‘mildly impaired cognition without 

dementia’ (score of 25–30), ‘mildly impaired cognition with dementia’ (score of 17–24), 

‘moderately impaired cognition’ (score of 10–16) and ‘severely impaired cognition’ (score 

of 9 or less). Individuals were categorized according to the duration and severity of the non-

cognitive symptoms, such as depression on a scale of 0 to 3 where 0 was no depression, 1 

was intermittent and mild depression, 2 was moderate (intermittent but significant) 

depression and 3 was persistent and/or severe depression (for more details on the clinical 

and pathological data see Chapter 2, Section 2.1). 

The relative levels of synaptic proteins (PSD-95, ZnT3, synaptophysin, beta-III-

tubulin and CAMKII) in BA9, BA24 and BA40 were measured by Dr David Whitfield and 

Dr Julie Vallortigara using quantitative Western blotting (Vallortigara et al., 2014, 

Whitfield et al., 2014a, Whitfield et al., 2014b). For full details of all synaptic proteins 

values from the Western blotting semi-quantifications, refer to the following tables in the 

Appendix: Table IX and X. For the differences in the relative levels of synaptic proteins 

between the diagnostic groups refer to Table XI in the Appendix. 
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7.2 Relationships between pathology scores and expression levels of 

proteasome sub-units and proteasome activity 

To investigate whether the expression levels of the proteasome sub-units in different 

brain areas correlated with semi-quantitative scores of AD and LBD pathology, linear 

regression analyses were conducted with the three predictors RPT6, α-3 and α-6 as 

independent factors and semi-quantitative scores for Aβ staining (plaque pathology), 

phospho-tau staining (tangle pathology) and α-synuclein staining/pathology as dependent 

variables. The pathological data were based on the semi-quantitative (on a scale of 0 

(none), 1 (mild), 2 (moderate) and 3 (severe/frequent)) rating of IHC degree and 

distribution of plaque, tangle and α-synuclein immunostaining (for more details see Chapter 

2 Section 2.1).  

7.2.1 Frontal cortex – Brodmann area 9 

7.2.1.1 Proteasome components  

Reductions in RPT6 were associated with the AD pathology. In three separate 

analyses (Figures 7-1, 7-2 and 7-3), tangle, plaque and α-synuclein pathology were entered 

as dependent variables with RPT6, α-3 and α-6 as independent factors. RPT6 was the best 

predictor for plaque scores and also predicted both tangle and α-synuclein pathology. The 

best predictor for the tangle score was α-6, and alpha 3 was the best for α-synuclein 

pathology.   

Analysis of variance (ANOVA) followed by Bonferroni post-hoc tests also 

indicated a significant difference between RPT6 levels and plaque scores (one-way 

ANOVA F = 2.9, d.f. = 3 and 114, p = 0.038; Bonferroni post hoc test), a significant 



 

 

232 

 

difference between RPT6 level and tangle score (one-way ANOVA F = 2.7, d.f. = 3 and 

115, p = 0.045; Bonferroni post hoc test); a significant difference between α-6 levels and 

tangle scores (one-way ANOVA F = 6,9, d.f. = 3 and 114, p = 0.001; Bonferroni post hoc 

test); and a significant difference between α-3 levels and α-synuclein scores (one-way 

ANOVA F = 6.433 d.f. = 3 and 114, p = 0.001; Bonferroni post hoc test). 
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Model Summary 

Model R 
R 

Square 

Adjusted 
R 

Square 
Std. Error of 
the Estimate 

1 .302
a
 .091 .067 1.160 

 

ANOVA
a
 

      

Model   
Sum of 
Squares df 

Mean 
Square F Sig. 

1 Regression 
15.202 3 5.067 3.769 .013

b
 

  Residual 151.943 113 1.345     

  Total 167.145 116       

       Coefficients
a
 

Model 

Unstandardized 
Coefficients 

Standardized 
Coefficients 

t Sig. B 
Std. 
Error Beta 

1 (Constant) 
4.433 1.031   4.302 .000 

α-3 -.277 .783 -.033 -.354 .724 

RPT6 -1.662 .723 -.213 -2.300 .023 

α-6  -.849 .527 -.154 -1.612 .110 
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Figure 7-1: Relationship between RPT6 expression levels in BA9 and plaque score. 

 Linear regression analyses were conducted with the three predictors to develop a model for 

the best predictor plaque score in BA9. In the analyses, the semi-quantitative plaque scores 

were entered as dependent variables with RPT6, α-3 and α-6 values from semi-quantitative 

Western blotting in BA9 as independent factors. Plaque scores in the dementia cases (DLB, 

PDD and AD) and control cases were significantly predicted by RPT6 with (Beta = -0.213 

and p = 0.023).  One-way ANOVA was performed to compare semi-quantitative Western 

blotting values of RPT6 and plaque scoring groups. The analysis indicated a significant 

difference between the group with a plaque score of none and the group with a score of 

severe (one-way ANOVA F = 2.9, d.f. = 3 and 114, p = 0.038; Bonferroni post hoc test). 

The horizontal bars within the data points represent the mean. 
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Model Summary 

Model R 
R 

Square 

Adjusted 
R 

Square 
Std. Error of 
the Estimate 

1 .404
a
 .163 .141 .908 

ANOVA
a
 

Model 
Sum of 
Squares df 

Mean 
Square F Sig. 

1 Regression 
18.343 3 6.114 7.418 .000

b
 

Residual 93.971 114 .824     

Total 112.314 117       

 

Coefficients
a
 

Model 

Unstandardized 
Coefficients 

Standardized 
Coefficients 

t Sig. B 
Std. 
Error Beta 

1 (Constant) 
2.773 .807   3.437 .001 

α-3 1.044 .607 .153 1.720 .088 

RPT6 -1.058 .567 -.165 -1.865 .065 

α-6  -1.525 .412 -.339 -3.701 .000 
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Figure 7-2: Relationship between α-6 expressions levels in BA9 and tangle score.  

Linear regression analyses were conducted with the three predictors to develop a model for 

the best predictor tangle score in BA9. In the analyses, the semi-quantitative tangle scores 

were entered as dependent variables with RPT6, α-3 and α-6 values from semi-quantitative 

Western blotting in BA9 as independent factors. Tangle scores in the dementia cases (DLB, 

PDD and AD) and control cases were significantly predicted by α-6 (Beta = -0.336 and p = 

0.001).  One-way ANOVA was performed to compare semi-quantitative Western blotting 

values of α-6 and tangle scoring groups. The analysis indicated a significant different 

between the group with a tangle score of none and the group with a score of severe (one-

way ANOVA F = 6,9, d.f. = 3 and 114, p = 0.001; Bonferroni post hoc test). The horizontal 

bars within the data points represent the mean. 

 



 

 

237 

 

 

Model Summary 

Model R 
R 

Square 

Adjusted 
R 

Square 
Std. Error of 
the Estimate 

1 .415
a
 .172 .150 .979 

ANOVA
a
 

Model 
Sum of 
Squares df 

Mean 
Square F Sig. 

1 Regression 
22.489 3 7.496 7.823 .000

b
 

Residual 108.280 113 .958     

Total 130.769 116       

 

Coefficients
a
 

Model 

Unstandardized 
Coefficients 

Standardized 
Coefficients 

t Sig. B 
Std. 
Error Beta 

1 (Constant) 
-.899 .876   -1.027 .307 

α-3 2.263 .657 .303 3.444 .001 

RPT6 -1.537 .598 -.226 -2.568 .012 

α-6  .904 .445 .183 2.030 .045 
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Figure 7-3: Relationship between expression levels of α-3 in BA9 and α-synuclein score. 

 Linear regression analyses were conducted with the three predictors to develop a model for 

the best predictor α-synuclein in BA9. In the analyses, the semi-quantitative α-synuclein 

were entered as dependent variables with RPT6, α-3 and α-6 values from semi-quantitative 

Western blotting in BA9 as independent factors. The α-synuclein scores in the dementia 

cases (DLB, PDD and AD) and control cases were significantly predicted by α-3 with (Beta 

= 0.303 and p = 0.001).  One-way ANOVA was performed to compare semi-quantitative 

Western blotting values of α-3 and α-synuclein scoring groups. The analysis indicated a 

significant difference between the group with α-synuclein of none and the group with a 

score of severe (one-way ANOVA F = 6.433, d.f. = 3 and 114, p = 0.001; Bonferroni post 

hoc test). The horizontal bars within the data points represent the mean. 
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7.2.1.2 Proteasome activity  

PGPH- and chymotrypsin-like activities were also associated with the AD 

pathologies in all three brain regions. Linear regression analyses were conducted with both 

predictors, PGPH- and chymotrypsin-like activities, to develop a model for the best 

predictor for each pathology score. In three separate analyses, tangle, plaque and α-

synuclein scores were entered as dependent variables with PGPH- and chymotrypsin-like 

activities as independent factors. Tangle scores were significantly predicted by 

chymotrypsin-like activity with (Beta = -0.440 and p = 0.011) (Figure 7-4). Plaque scores 

were predicted by PGPH-like activity, but the analysis did not reach the significant level 

(Beta = -0.331 and p = 0.08).   

Analysis of variance (ANOVA) followed by Bonferroni post-hoc tests also 

indicated a significant difference in chymotrypsin-like activity in different tangle scoring 

groups (one-way ANOVA F = 6.533, d.f. = 3 and 33, p = 0.001; Bonferroni post hoc test) 

(Figure 7-4) and a significant difference between PGPH-like activity in different plaque 

scoring groups (one-way ANOVA F = 4.279, d.f. = 3 and 33, p = 0.012; Bonferroni post 

hoc test) (Figure 7-5).  
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Model Summary 

  Model R R 
Square 

Adjusted 
R 

Square 

Std. Error of 
the Estimate 

  
1 

.607
a
 0.368 0.331 0.767 

    

  ANOVA
a
 

Model Sum of 
Squares 

df Mean 
Square 

F Sig. 

1 

Regression 

11.653 2 5.826 9.893 .000
b
 

Residual 
20.023 34 0.589     

Total 
31.676 36       

  

Coefficients
a
 

Model Unstandardized 
Coefficients 

Standardized 
Coefficients 

t Sig. 

B Std. 
Error 

Beta 

(Constant) 

3.834 0.82   4.676 0 

Chymotrypsin-
like 

-0.002 0.001 -0.44 -2.701 0.011 

PGPH-like 
0 0 -0.241 -1.476 0.149 
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Figure 7-4: Relationship between chymotrypsin-like activity in BA9 and tangle score. 

 Linear regression analyses were conducted with both predictors, chymotrypsin- and 

PGPH-like activities, to develop a model for the best predictor for tangle scores in BA9. In 

the analyses, the semi-quantitative tangle scores were entered as dependent variables with 

chymotrypsin-like and PGPH-like activities values measured using fluorogenic substrates 

assay in BA9 as independent factors. Tangle scores in the dementia cases (DLB, PDD and 

AD) and control cases were significantly predicted by chymotrypsin-like activity with 

(Beta = -0.44 and p = 0.011).  Analysis of variance (ANOVA) and Bonferroni post-hoc 

tests were performed to compare chymotrypsin-like activity and tangle scoring groups. 

ANOVA indicated a significant difference in chymotrypsin-like activity in different tangle 

scoring groups (one-way ANOVA F = 6.533, d.f. = 3 and 33, p = 0.001; Bonferroni post 

hoc test). The horizontal bars within the data points represent the mean. 
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Figure 7-5: Relationship between PGPH-like activity in BA9 and plaque score.  

Analysis of variance (ANOVA) and Bonferroni post-hoc tests were performed to compare 

PGPH-like activity and plaque scoring groups. ANOVA indicated a significant difference 

in PGPH-like activity between the none and severe groups (one-way ANOVA F = 4.279, 

d.f. = 3 and 33, p = 0.012; Bonferroni post hoc test). The horizontal bars within the data 

points represent the mean. 
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7.2.2 Parietal cortex—Brodmann area 40 

7.2.2.1 Proteasome components 

Analysis of the data in BA40 also indicated the association of proteasome 

dysfunction with the AD pathology. As with BA9, analyses were created to develop the 

best predictor using linear regression analysis. In three separate analyses, tangle, plaque and 

α-synuclein were entered as dependent variables with RPT6, α-3 and α-6 as independent 

factors. RPT6 was the best predictor for plaque (Figure 7-6) and tangle scores (Figure 7-7). 

Analysis of variance (ANOVA) and Bonferroni post-hoc tests also indicated a significant 

difference between RPT6 levels and plaque scores (one-way ANOVA F = 5.610, d.f. = 3 

and 116, p = 0.001; Bonferroni post hoc test) and significant difference between RPT6 

levels and tangle scores (one-way ANOVA F = 7.491, d.f. = 3 and 118, p = 0.001; 

Bonferroni post hoc test). 
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       Model Summary 

Model R 
R 

Square 

Adjusted 
R 

Square 
Std. Error of 
the Estimate 

1 

.357
a
 .127 .105 1.108 

 

ANOVA
a
 

      

Model   
Sum of 

Squares df 
Mean 

Square F Sig. 

1 Regression 
20.611 3 6.870 5.599 .001

b
 

  Residual 
141.120 115 1.227     

  Total 161.731 118       

       Coefficients
a
 

Model 

Unstandardized 
Coefficients 

Standardized 
Coefficients 

t Sig. B 
Std. 
Error Beta 

1 (Constant) 4.667 1.125   4.149 .000 

α-3 -.376 .688 -.049 -.547 .586 

RPT6 -2.434 .675 -.328 -3.604 .000 

α-6  -.498 .807 -.055 -.617 .538 
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Figure 7-6: Relationship between RPT6 expression levels in BA40 and plaque score 

Linear regression analyses were conducted with the three predictors to develop a model for 

the best predictor plaque score in BA40. In the analyses, the semi-quantitative plaque 

scores were entered as dependent variables with RPT6, α-3 and α-6 values from semi-

quantitative Western blotting in BA40 as independent factors. Plaque scores in dementia 

cases (DLB, PDD and AD) and control were significantly predicted by RPT6 with (Beta = -

0.328 and p = 0.001).  One-way ANOVA was performed to compare semi-quantitative 

Western blotting values of RPT6 and plaque scoring groups. The analysis indicated a 

significant difference between the group with a plaque score of none and the group with a 

score of severe (one-way ANOVA F = 5.610, d.f. = 3 and 116, p = 0.001; Bonferroni post 

hoc test). The horizontal bars within the data points represent the mean. 
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Model Summary 

  

Model R 
R 

Square 

Adjusted 
R 

Square 
Std. Error of 
the Estimate 

  1 .432
a
 .187 .166 .976 

   

  ANOVA
a
 

Model 
Sum of 
Squares df 

Mean 
Square F Sig. 

1 Regression 
25.657 3 8.552 8.973 .000

b
 

Residual 
111.517 117 .953     

Total 137.174 120       

 

Coefficients
a
 

Model 

Unstandardized 
Coefficients 

Standardized 
Coefficients 

t Sig. B 
Std. 
Error Beta 

1 (Constant) 
5.102 .988   5.162 .000 

α-3 -.586 .606 -.083 -.967 .336 

RPT6 -2.459 .593 -.361 -4.145 .000 

α-6  -1.118 .706 -.134 -1.585 .116 

 

N
on

e
M

ild

M
od

er
at

e

S
ev

er
e

0.0

0.5

1.0

1.5 **

Tangle score

R
P

T
6

R
e

la
ti

v
e

 b
a
n

d
 i
n

te
n

s
it

y

 



 

 

247 

 

Figure 7-7: Relationship between RPT6 expression levels in BA40 and tangle score 

Linear regression analyses were conducted with the three predictors to develop a model for 

the best predictor tangle score in BA40. In the analyses, the semi-quantitative tangle scores 

were entered as dependent variables with RPT6, α-3, and α-6 values from semi-quantitative 

Western blotting in BA40 as independent factors. Tangle scores in dementia cases (DLB, 

PDD and AD) and control were significantly predicted by RPT6 with (Beta = -0.361 and p 

= 0.001).  One-way ANOVA was performed to compare semi-quantitative Western blotting 

values of RPT6 and tangle scoring groups. The analysis indicated a significant difference 

between the group with a tangle score of none and the group with a score of severe (one-

way ANOVA F = 7.491, d.f. = 3 and 118, p = 0.001; Bonferroni post hoc test). The 

horizontal bars within the data points represent the mean. 
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7.2.2.2 Proteasome activity 

In the parietal cortex, chymotrypsin-like activity was associated with both plaque 

and tangle scores. Linear regression analyses were conducted with both predictors, PGPH- 

and chymotrypsin-like activities, to develop a model for the best predictor for each 

pathology score. In two separate analyses, tangle and plaque scores were entered as 

dependent variables with PGPH- and chymotrypsin-like activities as independent factors. 

Both tangle (Beta = -0.479, and p = 0.006) (Figure 7-8) and plaque scores were 

significantly predicted by chymotrypsin-like activity with (Beta = -0.587 and p = 0.002) 

(Figure 7-9).  

Analysis of variance (ANOVA) followed by Bonferroni post-hoc tests also 

indicated a significant difference in chymotrypsin-like activity in different plaque scoring 

groups (one-way ANOVA F = 8.921, d.f. = 3 and 38, p = 0.001; Bonferroni post hoc test) 

(Figure 7-8) and tangle scoring groups (one-way ANOVA F = 8.117, d.f. = 3 and 39, p = 

0.001; Bonferroni post hoc test) (Figure 7-9).  
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Model Summary 

Model R R Square 

Adjusted 
R 

Square 
Std. Error of 
the Estimate 

1 .552
a
 .305 .267 1.113 

 

ANOVA
a
 

      

Model   
Sum of 
Squares df 

Mean 
Square F Sig. 

1 Regression 20.097 2 10.048 8.117 .001
b
 

  Residual 45.803 37 1.238     

  Total 65.900 39       

       
Coefficients

a
 

Model   
Unstandardized 

Coefficients   
Standardized 
Coefficients t Sig. 

    B 
Std. 
Error Beta     

1 (Constant) 16.917 4.390   3.853 .000 

Chymotrypsin-
like 

-.011 .003 -.587 -3.310 .002 

PGPH-like 3.822E-05 .000 .058 .324 .747 
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Figure 7-8: Relationship between chymotrypsin-like activity in BA40 and plaque score 

Linear regression analyses were conducted with both predictors, chymotrypsin- and PGPH-

like activities to develop a model for the best predictor for plaque scores in BA40. In the 

analyses the semi-quantitative plaque scores were entered as dependent variables with 

chymotrypsin-like and PGPH-like activities values measured using fluorogenic substrates 

assay in BA40 as independent factors. Plaque scores in the dementia cases (DLB, PDD and 

AD) and control cases were significantly predicted by chymotrypsin-like activity with 

(Beta = -0.587 and p = 0.002).  Analysis of variance (ANOVA) and Bonferroni post-hoc 

tests were performed to compare chymotrypsin-like activity and plaque scoring groups. 

ANOVA indicated a significant difference in chymotrypsin-like activity in different plaque 

scoring groups (one-way ANOVA F = 8.921, d.f. = 3 and 38, p = 0.001; Bonferroni post 

hoc test). The horizontal bars within the data points represent the mean. 
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Model Summary 

Model R R Square 

Adjusted 
R 

Square 
Std. Error of 
the Estimate 

1 .551
a
 .303 .267 1.083 

 

ANOVA
a
 

      

Model   
Sum of 
Squares df 

Mean 
Square F Sig. 

1 Regression 19.422 2 9.711 8.278 .001
b
 

  Residual 44.578 38 1.173     

  Total 64.000 40       

       
Coefficients

a
 

Model 

Unstandardized 
Coefficients 

Standardized 
Coefficients 

t Sig. B 
Std. 
Error Beta 

1 (Constant) 13.134 3.758   3.495 .001 

Chymotrypsin-
like 

-.008 .003 -.479 -2.926 .006 

PGPH-like -7.418E-05 .000 -.114 -.695 .491 
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Figure 7-9: Relationship between chymotrypsin-like activity in BA40 and tangle score 

Linear regression analyses were conducted with both predictors, chymotrypsin- and PGPH-

like activities to develop a model for the best predictor for tangle scores in BA40. In the 

analyses the semi-quantitative tangle scores were entered as dependent variables with 

chymotrypsin-like and PGPH-like activities values measured using fluorogenic substrates 

assay in BA40 as independent factors. Tangle scores in dementia cases (DLB, PDD and 

AD) and control cases were significantly predicted by chymotrypsin-like activity with 

(Beta = -0.479 and p = 0.006).  Analysis of variance (ANOVA) and Bonferroni post-hoc 

tests were performed to compare chymotrypsin-like activity and tangle scoring groups. 

ANOVA indicated a significant difference in chymotrypsin-like activity in different tangle 

scoring groups (one-way ANOVA F = 8.117, d.f. = 3 and 39, p = 0.001; Bonferroni post 

hoc test). The horizontal bars within the data points represent the mean. 
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7.2.3 Anterior cingulate Brodmann area 24 

7.2.3.1 Proteasome component  

In all three-brain regions, the levels of RPT6 were always associated with AD 

pathology. In the anterior cingulate, analyses were created to develop the best predictor 

using linear regression analysis. In three separate analyses, tangle, plaque and α-synuclein 

were entered as dependent variables with RPT6, α-3 and α-6 as independent factors. RPT6 

was the best predictor for plaque and tangle scores (Figure 7-10 and 7-11), although 

analysis of variance (ANOVA) were not significant different between the RPT6 level in 

different scoring groups of both tangle and plaque. 
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Figure 7-10: Relationship between RPT6 expression levels in BA24 and plaque score. 

 Linear regression analyses were conducted with the three predictors to develop a model for 

the best predictor plaque score in BA24. In the analyses, the semi-quantitative plaque 

scores were entered as dependent variables with RPT6, α-3 and α-6 values from semi-

quantitative Western blotting in BA24 as independent factors. Plaque scores in dementia 

cases (DLB, PDD and AD) and control cases were significantly predicted by RPT6 with 

(Beta = -0.270 and p = 0.005).   

 

Model Summary 

Model R R Square 

Adjusted 
R 

Square 
Std. Error of 
the Estimate 

1 .365
a
 .133 .108 .952 

 

ANOVA
a
 

 

Model   
Sum of 
Squares df 

Mean 
Square F Sig. 

1 Regression 14.708 3 4.903 5.414 .002
b
 

  Residual 95.983 106 .905     

  Total 110.691 109       

       
Coefficients

a
 

Model   
Unstandardized 

Coefficients   
Standardized 
Coefficients t Sig. 

    B 
Std. 
Error Beta     

1 (Constant) 1.886 1.188   1.588 .115 

  α-3 1.267 .589 .208 2.153 .034 

  RPT6 -1.785 .628 -.270 -2.843 .005 

  α-6  -.449 1.122 -.039 -.400 .690 
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Figure 7-11: Relationship between RPT6 expression levels in BA24 and tangle score. 

 Linear regression analyses were conducted with the three predictors to develop a model for 

the best predictor tangle score in BA24. In the analyses, the semi-quantitative tangle scores 

were entered as dependent variables with RPT6, α-3 and α-6 values from semi-quantitative 

Western blotting in BA24 as independent factors. Tangle scores in dementia cases (DLB, 

PDD and AD) and control were significantly predicted by RPT6 with (Beta = -0.249 and p 

= 0.013).  

 

Model Summary 

Model R R Square 
Adjusted R 

Square 
Std. Error of 
the Estimate 

1 .321
a
 .103 .077 1.004 

 

ANOVA
a
 

      

Model   
Sum of 
Squares df 

Mean 
Square F Sig. 

1 Regression 
11.931 3 3.977 3.942 .010

b
 

  Residual 103.919 103 1.009     

  Total 115.850 106       

       
Coefficients

a
 

Model   
Unstandardized 

Coefficients   
Standardized 
Coefficients t Sig. 

    B Std. Error Beta     

1 (Constant) .647 1.257   .514 .608 

  α-3 .996 .630 .159 1.581 .117 

  RPT6 -1.682 .667 -.249 -2.523 .013 

  α-6  1.037 1.205 .088 .860 .392 
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7.2.4 Summary  

Specifically, the reductions in RPT6 and proteasome activities were found to be 

associated mostly with the semi-quantitative scores (0-3) for plaques, and neurofibrillary 

tangles. In BA9, 40 and 24, semi-quantitative scores for plaques were significantly 

predicted by RPT6 while tangle scores were significantly predicted by RPT6 in BA40 and 

24. α-synuclein semi-quantitative scores were significantly predicted by RPT6 in BA9 only. 

α-synuclein and tangle scores significantly predicted by α-3 and α-6 respectively in BA9 

only. The major contributor to these relationships would appear to be RPT6 and 

chymotrypsin-like activity with the AD pathology (plaque and tangle) (Table 7-1). 
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Table 7-1: Relationship between pathology scores in PDD, DLB and AD patients and 

expression levels of proteasome sub-units and proteasome activity. 

     BA9 

 

a-synuclein Plaques Tangles 

 

RPT6 -0.226 -0.213 -0.165 

 

Alpha6 0.183 -0.033 -0.339 

 

ALPHA3 0.303 -0.154 0.153 

 

chymotrypsin-like activity -0.071 -0.153 -0.44 

 

PGPH-LIKE activity -0.028 -0.331 -0.241 

     

     BA24 

 

a-synuclein Plaques Tangles 

 

RPT6 -0.157 -0.27 -0.249 

 

ALPHA6 0.154 0.208 0.159 

 

ALPHA3 -0.118 -0.039 0.088 

 

chymotrypsin-like activity -0.083 0.229 0.171 

 

PGPH-LIKE activity 0.051 -0.514 -0.288 

     

     BA40 

 

a-synuclein Plaques Tangles 

 

RPT6 0.068 -0.328 -0.361 

 

ALPHA6 -0.089 -0.049 -0.083 

 

ALPHA3 -0.146 -0.055 -0.134 

 

chymotrypsin-like activity -0.075 -0.587 -0.479 

 

PGPH-LIKE activity -0.216 0.058 -0.114 

Pathology scores predicted by proteasome sub-units level and proteasome activities 

indicated by the standardised regression coefficients (β). Values that are presented in bold 

italics indicate statistically significance (p<0.01) except for RPT6 and plaque score in BA9 

where p<0.05.  
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7.3 Relationships between clinical data and expression levels of 

proteasome subunits and proteasome activity 

Regression analyses were undertaken to examine the relationship between the 

protein levels and behavioural symptom scores. Regression analysis using the SPSS 

method “Enter” was performed using the values from semi-quantitative Western blotting 

for RPT6, α-3 and α-6 as independent factors, and each of the behavioural symptom scores 

as dependent factors. One-way ANOVA was also performed to compare the value of the 

best predictor protein for each behavioural symptom and scoring groups for that symptom. 

For each behavioural symptom, individuals were categorized according to the duration and 

severity of the symptom on a scale of 0–3 (for more details see Chapter 2, Section 2-1). The 

Mental State Examination (MMSE) was used to measure the severity of cognitive 

impairment. The classification purposes for MMSE are described in Chapter 2, Section 2-

1).  

7.3.1 Frontal cortex —Brodmann area 9 

7.3.1.1 Cognitive decline  

Linear regression revealed a significant negative association between cognitive 

decline and RPT6 with a high β value (-0.56, P = 0.001). Analysis of variance (ANOVA) 

followed by Bonferroni post-hoc tests also indicated a significant difference between the 

groups (one-way ANOVA F = 17.82, d.f. = 4 and 99, p = 0.001; Bonferroni post hoc test) 

(Figure 7-12). 

 Linear regression analyses were conducted with both predictors, chymotrypsin-like 

and PGPH-like activities, to develop a model for the best predictor for cognitive decline. In 
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the analyses, MMSE scores (after grouping the cases) were entered as dependent variables 

with chymotrypsin-like and PGPH-like activities measured using fluorogenic substrates 

assay in BA9 as independent factors. MMSE scores were significantly predicted by 

chymotrypsin-like activity (Beta = -0.416 and p = 0.035).   

One-way ANOVA was performed to compare chymotrypsin-like and PGPH-like 

activities and scoring groups for MMSE. The analysis indicated high chymotrypsin-like 

activity in the control cases compared to the cases with moderate (p = 0.014) and severe 

scores (p = 0.01) (one-way ANOVA F = 5.009, d.f. = 4 and 26, p = 0.004; Bonferroni post 

hoc test). Analysis of variance (ANOVA) followed by Bonferroni post-hoc tests also 

indicated a significant difference in PGPH-like activity between unimpaired cognition and 

moderate groups (one-way ANOVA F = 3.616, d.f. = 4 and 26, p = 0.004; Bonferroni post 

hoc test) (Figure 7-13). 
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Model Summary 

Model R R Square 

Adjusted 
R 

Square 
Std. Error of 
the Estimate 

1 .576
a
 .332 .312 1.25222 

 

ANOVA
a
 

Model   
Sum of 
Squares df 

Mean 
Square F Sig. 

1 Regression 
77.151 3 25.717 16.400 .000

b
 

  Residual 155.238 99 1.568     

  Total 232.388 102       

       

Coefficients
a
 

Model   
Unstandardized 

Coefficients   
Standardized 
Coefficients t Sig. 

    B 
Std. 
Error Beta     

1 (Constant) 
9.356 1.176   7.956 .000 

  α-3 -.719 .896 -.067 -.802 .424 

  RPT6 -5.270 .793 -.564 -6.647 .000 

  α-6  -.080 .594 -.012 -.134 .894 
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Figure 7-12: Relationship between RPT6 expression levels in BA9 and cognitive 

impairment based upon MMSE classification 

 Linear regression analyses were conducted with the three predictors to develop a model for 

the best predictor for cognitive impairment. In the analyses, MMSE scores (after grouping 

the cases) were entered as dependent variables with RPT6, α-3 and α-6 values from semi-

quantitative Western blotting in BA9 as independent factors. Cognitive impairment in the 

dementia cases (DLB, PDD and AD) and control cases was significantly predicted by RPT6 

with (Beta = -0.564 and p = 0.001).  One-way ANOVA was performed to compare semi-

quantitative Western blotting value of RPT6 and cognitive impairment groups. One-way 

ANOVA was performed to compare semi-quantitative Western blotting value of RPT6 and 

cognitive impairment groups. The cognitive impairment groups were: ‘unimpaired 

cognition for the clinical controls cases’; ‘mildly impaired cognition without dementia’ for 

any case with the score 24 or above; ‘mildly impaired cognition without dementia’ = 25–

30; ‘mildly impaired cognition with dementia’ = 17–24; ‘moderately impaired cognition’ = 

10–16 and ‘severely impaired cognition’ #  9 or less. The analysis indicated high levels of 

RPT6 in the cases with unimpaired cognition compared to the other groups (one-way 

ANOVA F = 17.82, d.f. = 4 and 99, p = 0.001; Bonferroni post hoc test). The horizontal 

bars within the data points represent the mean. 
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Figure 7-13: Relationship between chymotrypsin- and PGPH-like activities in BA9 and 

cognitive impairment based upon MMSE classification  

One-way ANOVA was performed to compare the chymotrypsin- and PGPH-like activities 

and cognitive impairment groups. The cognitive impairment groups were: ‘unimpaired 

cognition’ for the clinical control cases; ‘mildly impaired cognition without dementia’ for 

any case with scores of 24 or above; ‘mildly impaired cognition without dementia’ = 25–

30; ‘mildly impaired cognition with dementia’ = 17–24; ‘moderately impaired cognition’ = 

10–16 and ‘severely impaired cognition’ #  9 or less. The analysis indicated high 

chymotrypsin-like activity in the control cases compared to the cases with moderate (p = 

0.014) and severe scores (p = 0.01) (one-way ANOVA F = 5.009, d.f. = 4 and 26, p = 

0.004; Bonferroni post hoc test). The difference in PGPH-like activity between cognitive 

impairment groups was significantly different between unimpaired cognition and moderate 

groups (one-way ANOVA F = 3.616, d.f. = 4 and 26, p = 0.004; Bonferroni post hoc test). 

The horizontal bars within the data points represent the mean. 
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7.3.1.2 Depression  

Regression analyses were conducted using the values from semi-quantitative 

Western blotting for RPT6, α-3 and α-6 as independent factors and depression scores as 

dependent factors. A score of zero was assumed all the control cases in the analysis for any 

non-cognitive symptom, as there is no evidence of any neurological or psychiatric disease 

for these cases. RPT6 level was found to be significantly associated with severity of 

depression (the output of the regression analysis is shown in Figure 7-14). One-way 

ANOVA was also performed to compare the RPT6 values in BA9 from semi-quantitative 

Western blotting and scoring groups for depression. The analysis did not indicate a high 

significance level of p<0.01; however, higher level of RPT6 was noted in cases with no 

depression compared to the cases with severe depression (p = 0.04) (one-way ANOVA, F = 

3.451, d.f. = 3 and 94, p = 0.02; Bonferroni post hoc test).  
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Figure 7-14: Relationship between RPT6 expression levels in BA9 and depression score 

 Linear regression analyses were conducted with the three predictors to develop a model for 

the best predictor for depression. In the analyses, depression scores were entered as 

dependent variables with RPT6, α-3 and α-6 values from semi-quantitative Western 

blotting in BA9 as independent factors. Depression in the dementia cases (DLB, PDD and 

AD) and controls was significantly predicted by RPT6 (Beta = -0.275 and p = 0.007).  

 

 

Model Summary 

Model R 
R 

Square 

Adjusted 
R 

Square 
Std. Error of 
the Estimate 

1 .380
a
 .145 .117 1.000 

 

ANOVA
a
 

Model   
Sum of 
Squares df 

Mean 
Square F Sig. 

1 Regression 
15.726 3 5.242 5.245 .002

b
 

  Residual 92.954 93 1.000     

  Total 108.680 96       

       Coefficients
a
 

Model 

Unstandardized 
Coefficients 

Standardized 
Coefficients 

t Sig. B 
Std. 
Error Beta 

1 (Constant) 
4.336 .963   4.504 .000 

α-3 -.866 .768 -.110 -1.127 .263 

RPT6 -1.809 .661 -.275 -2.739 .007 

α-6  -.686 .486 -.142 -1.413 .161 
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7.3.1.3 Persecution  

Linear regression analyses were also conducted with the three predictors to develop 

a model for the best predictor for the persecution symptom. In the analyses, persecution 

was entered as dependent variables with RPT6, α-3 and α-6 as independent factors. 

Reduction of RPT6 was significantly associated with persecution (the output of the 

regression analysis is shown in (Figure 7-15). One-way ANOVA was also performed to 

compare RPT6 values in BA9 from semi-quantitative Western blotting and scoring groups 

for persecution. The analysis also did not reach a high significance level of p < 0.01 (one-

way ANOVA, F = 5.552, d.f. = 3 and 89, p = 0.02; Bonferroni post hoc test). 
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Figure 7-15: Relationship between RPT6 expression levels in BA9 and persecution score 

 Linear regression analyses were conducted with the three predictors to develop a model for 

identification of the best predictor for persecution. In the analyses, persecution scores were 

entered as dependent variables with RPT6, α-3, and α-6 values from semi-quantitative 

Western blotting in BA9 as independent factors. Persecution in the dementia cases (DLB, 

PDD and AD) and the controls was significantly predicted by RPT6 with (Beta = -0.363 

and p = 0.001).  

 

Model Summary 

Model R R Square 

Adjusted 
R 

Square 
Std. Error of 
the Estimate 

1 .365
a
 .133 .104 .973 

 

ANOVA
a
 

Model   
Sum of 
Squares df 

Mean 
Square F Sig. 

1 Regression 
12.835 3 4.278 4.516 .005

b
 

  Residual 83.372 88 .947     

  Total 96.207 91       

       

Coefficients
a
 

Model   
Unstandardized 

Coefficients   
Standardized 
Coefficients t Sig. 

    B 
Std. 
Error Beta     

1 (Constant) 
2.689 .960   2.801 .006 

  α-3 .530 .760 .071 .698 .487 

  RPT6 -2.279 .653 -.363 -3.490 .001 

  α-6  -.108 .475 -.024 -.227 .821 
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7.3.2 Parietal cortex—Brodmann area 40 

7.3.2.1 Cognitive decline  

Linear regression also revealed a significant negative association between cognitive 

decline and RPT6 in BA40 with β value (-.441, P = 0.001). Analysis of variance (ANOVA) 

followed by Bonferroni post-hoc tests also indicated a significant difference between the 

groups (one-way ANOVA F = 6.472, d.f. = 4 and 102, p = 0.001; Bonferroni post hoc test) 

(Figure 7-16). 

Linear regression analyses were conducted with both predictors, chymotrypsin-like 

and PGPH-like activities, to develop a model for finding the best predictor of cognitive 

decline. In the analyses, MMSE scores (after grouping the cases) were entered as dependent 

variables with chymotrypsin-like and PGPH-like activities measured using fluorogenic 

substrates assay in BA40 as independent factors. MMSE scores were significantly predicted 

by chymotrypsin-like activity with (Beta = -0.724 and p = 0.001).   

One-way ANOVA was performed to compare chymotrypsin-like and PGPH-like 

activities and scoring groups for MMSE. The analysis indicated high chymotrypsin-like 

activity in the control cases compared to the cases with MCI (p = 0.001), mild (p = 0.001), 

moderate (p = 0.001) and severe scores (p = 0.001) (one-way ANOVA F = 21.845, d.f. = 4 

and 37, p = 0.001; Bonferroni post hoc test). Analysis of variance (ANOVA) followed by 

Bonferroni post-hoc tests also indicated high PGPH-like activity in the control cases 

compared to the cases with MCI (p = 0.02), mild (p = 0.001), moderate (p = 0.001) and 

severe scores (p = 0.034) (one-way ANOVA F = 8.851, d.f. = 4 and 35, p = 0.001; 

Bonferroni post hoc test) (Figure 7-17). 
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Model Summary 

Model R 
R 

Square 

Adjusted 
R 

Square 
Std. Error of 
the Estimate 

1 .446
a
 .199 .176 1.38713 

ANOVA
a
 

Model 
Sum of 
Squares df 

Mean 
Square F Sig. 

1 Regression 
48.805 3 16.268 8.455 .000

b
 

Residual 196.261 102 1.924     

Total 245.066 105       

 

Coefficients
a
 

Model 

Unstandardized 
Coefficients 

Standardized 
Coefficients 

t Sig. B 
Std. 
Error Beta 

1 (Constant) 
7.410 1.536   4.823 .000 

α-3 1.025 .890 .105 1.152 .252 

RPT6 -4.371 .910 -.441 -4.805 .000 

α-6  -1.046 1.068 -.087 -.979 .330 
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Figure 7-16: Relationship between RPT6 expression levels in BA40 and cognitive 

impairment based on MMSE classification  

Linear regression analyses were conducted with the three predictors to develop a model for 

the best predictor for cognitive impairment. In the analyses, MMSE scores (after grouping 

the cases) were entered as dependent variables with RPT6, α-3 and α-6 values from semi-

quantitative Western blotting in BA40 as independent factors. Cognitive impairment in the 

dementia cases (DLB, PDD and AD) and the control cases was significantly predicted by 

RPT6 with (Beta = -0.441 and p = 0.001).  One-way ANOVA was performed to compare 

semi-quantitative Western blotting values of RPT6 and the cognitive impairment groups. 

The cognitive impairment groups were: ‘unimpaired cognition’ for the clinical control 

cases; ‘mildly impaired cognition without dementia’ cases with scores 24 or above; ‘mildly 

impaired cognition without dementia’ = 25–30; ‘mildly impaired cognition with dementia’ 

= 17–24; ‘moderately impaired cognition’ = 10–16 and ‘severely impaired cognition’ #  9 

or less. The analysis indicated high levels of RPT6 in cases with unimpaired cognition 

compared to the other groups (one-way ANOVA F = 6.472, d.f. = 4 and 102, p = 0.001; 

Bonferroni post hoc test). The horizontal bars within the data points represent the mean. 

 

 

 

 

 



 

 

270 

 

 

 

Figure 7-17: Relationship between chymotrypsin- and PGPH-like activities in BA40 and 

cognitive impairment based on MMSE classification 

One-way ANOVA was performed to compare chymotrypsin- and PGPH-like activities and 

cognitive impairment groups. The cognitive impairment groups were: ‘unimpaired 

cognition’ for the clinical control cases; ‘mildly impaired cognition without dementia’ for 

cases with scores 24 or above; ‘mildly impaired cognition without dementia’ = 25–30; 

‘mildly impaired cognition with dementia’ = 17–24; ‘moderately impaired cognition’ = 10–

16 and ‘severely impaired cognition’ = 9 or less. The analysis indicated high chymotrypsin-

like activity in the control cases compared to the cases with MCI (p = 0.001), mild (p = 

0.001), moderate (p = 0.001) and severe scores (p = 0.001) (one-way ANOVA F = 21.845, 

d.f. = 4 and 37, p = 0.001; Bonferroni post hoc test). The difference in PGPH-like activity 

between the cognitive impairment groups was significantly different between unimpaired 

cognition cases compared to cases with MCI (p = 0.02), mild (p = 0.001), moderate (p = 

0.001) and severe scores (p = 0.034) (one-way ANOVA F = 8.851, d.f. = 4 and 35, p = 
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0.001; Bonferroni post hoc test). The horizontal bars within the data points represent the 

mean. 

7.3.2.2 Persecution  

Regression analyses were also conducted with the following predictor variables: 

RPT6, α-3 and α-6 in BA40 with the semi-scoring for persecution. A significant model 

emerged (F3,89 = 3.058, p = 0.032, adjusted R square = 0.063). RPT6 was the only 

significant variable with a β value (-.289 and p = .007) (Figure 7-18), although analysis of 

variance (ANOVA) was not significant (one-way ANOVA F = 2.185, d.f. = 3 and 89, p = 

0.095; Bonferroni post hoc test). Persecution scores were significantly predicted by RPT6 

values in both brain regions BA9 and 40. Linear regression analyses were conducted with 

RPT6 expression level in BA9 and 40 and persecution scores to investigate in which brain 

region, reduction of RPT6 is best predicting persecution scores. Persecution scores were 

significantly predicted by RPT6 expression level in BA9 with (Beta = -0.27 and p = 0.018).  
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Figure 7-18: Relationship between RPT6 expression levels in BA40 and persecution 

score. 

 Linear regression analyses were conducted with the three predictors to develop a model for 

the best predictor for persecution. In the analyses, persecution scores were entered as 

dependent variables with RPT6, α-3 and α-6 values from semi-quantitative Western 

blotting in BA40 as independent factors. Persecution in the dementia cases (DLB, PDD and 

AD) and the controls was significantly predicted by RPT6 with (Beta = -0.289 and p = 

0.007).   

Model Summary 

Model R 
R 

Square 

Adjusted 
R 

Square 
Std. Error of 
the Estimate 

1 .306
a
 .093 .063 .967 

ANOVA
a
 

Model 
Sum of 
Squares df 

Mean 
Square F Sig. 

1 Regression 
8.579 3 2.860 3.058 .032

b
 

Residual 83.228 89 .935     

Total 91.806 92       

 

Coefficients
a
 

Model 

Unstandardized 
Coefficients 

Standardized 
Coefficients 

t Sig. B 
Std. 
Error Beta 

1 (Constant) 
1.003 1.061   .946 .347 

α-3 1.231 .686 .188 1.795 .076 

RPT6 -1.809 .661 -.289 -2.736 .007 

α-6  .061 .781 .008 .078 .938 
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7.3.3 Anterior cingulate Brodmann area 24 

7.3.3.1 Cognitive decline  

MMSE scores were also predicted by RPT level in BA24, as in the case of BA40 

and BA9, but in BA24 MMSE scores were also predicted by α-6 the output of the 

regression analysis is shown in (Figure 7-19). Due to the significant relationship between 

RPT6 level and MMSE scores in BA9, 40 and 24, Linear regression analyses were 

conducted with RPT6 expression level in BA9, 40 and 24 and MMSE score to investigate 

in which brain region, reduction of RPT6 is best predicting MMSE scores. MMSE scores 

were significantly predicted by RPT6 expression level in BA9 and 40 with a higher beta 

value in BA9 (Beta = -0.448 and p = 0.001).  

Linear regression analyses were conducted with both predictors, chymotrypsin-like 

and PGPH-like activities, to develop a model for the best predictor for cognitive decline. In 

the analyses, MMSE scores (after grouping the cases) were entered as dependent variables 

with chymotrypsin-like and PGPH-like activities measured using fluorogenic substrates 

assay in BA24 as independent factors. MMSE scores were significantly predicted by 

PGPH-like activity with (Beta = -0.596 and p = 0.001) (Figure 7-19).   

One-way ANOVA was performed to compare chymotrypsin-like and PGPH-like 

activities and scoring groups for MMSE. There was no significant different in 

chymotrypsin-like activity in the control cases compared to all other groups. Analysis of 

variance (ANOVA) followed by Bonferroni post-hoc tests indicated high PGPH-like 

activity in the control cases compared to the cases with MCI (p = 0.03), mild (p = 0.024), 
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moderate (p = 0.001) and severe scores (p = 0.001) (one-way ANOVA F = 9.839, d.f. = 4 

and 35, p = 0.001; Bonferroni post hoc test) (Figure 7-20). 
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Figure 7-19: Relationship between RPT6 and α-6 expression levels in BA24 and 

cognitive impairment based on MMSE classification 

Linear regression analyses were conducted with the three predictors to develop a model for 

the best predictor for cognitive impairment. In the analyses, MMSE scores (after grouping 

the cases) were entered as dependent variables with RPT6, α-3 and α-6 values from semi-

quantitative Western blotting in BA24 as independent factors. Cognitive impairment in the 

dementia cases (DLB, PDD and AD) and the control cases was significantly predicted by 

RPT6 with (Beta = -0.269 and p = 0.008) and α-6 (Beta = 0.331 and p = 0.002).  

Model Summary 

Model R 
R 

Square 

Adjusted 
R 

Square 
Std. Error of 
the Estimate 

1 .373
a
 .139 .113 1.44060 

ANOVA
a
 

Model 
Sum of 
Squares df 

Mean 
Square F Sig. 

1 Regression 
32.554 3 10.851 5.229 .002

b
 

Residual 201.308 97 2.075     

Total 233.861 100       

 

Coefficients
a
 

Model 

Unstandardized 
Coefficients 

Standardized 
Coefficients 

t Sig. B 
Std. 
Error Beta 

1 (Constant) 
.642 1.961   .328 .744 

α-3 -.550 1.058 -.055 -.520 .604 

RPT6 -2.741 1.013 -.269 -2.705 .008 

α-6  .5.695 1.773 .331 3.213 .002 
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Figure 7-20: Relationship between chymotrypsin- and PGPH-like activities in BA24 and 

cognitive impairment based on MMSE classification.  

One-way ANOVA was performed to compare chymotrypsin- and PGPH-like activities and 

cognitive impairment groups. The cognitive impairment groups were: ‘unimpaired 

cognition’ for the clinical control cases; ‘mildly impaired cognition without dementia’ for 

cases with scores 24 or above; ‘mildly impaired cognition without dementia’ = 25–30; 

‘mildly impaired cognition with dementia’ = 17–24; ‘moderately impaired cognition’ = 10–

16 and ‘severely impaired cognition’ = 9 or less. There was no significant difference in 

chymotrypsin-like activity in the control cases compared to all other groups. The difference 

in PGPH-like activity between cognitive impairment groups was significantly different 

between unimpaired cognition cases and the cases with MCI (p = 0.03), mild (p = 0.024), 

moderate (p = 0.001) and severe scores (p = 0.001) (one-way ANOVA F = 9.839, d.f. = 4 

and 35, p = 0.001; Bonferroni post hoc test). The horizontal bars within the data points 

represent the mean. 
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7.3.3.2 Depression  

The expression level of the proteasome sub-units in BA24 did not associate with 

any non-cognitive behaviours, but this was not the case with the proteasome activity. 

Regression analyses were conducted with the following predictor variables: PGPH-like 

activity and chymotrypsin like activity in BA24, with the semi-scoring for depression. A 

significant model emerged (F2,34 = 4.892, p = 0.002, adjusted R square = 0.258). 

Depression scores were significantly predicted by PGPH-like activity β value (-.526 and p 

= .007), analysis of variance (ANOVA) was significant (one-way ANOVA F = 8.786, d.f. = 

3 and 33, p = 0.001), but with Bonferroni post hoc the difference in PGPH-like activity 

between were between depression absent and mild (p = 0.001) and did not reach the 

significant level p < 0.01 with intermittent (p = 0.038) and persistent (p = 0.087). 

7.3.4 Summary  

Having identified the relationship between the proteasome components and the 

underlying clinical pathology, we subsequently evaluated the relationship between 

proteasome dysfunction and cognition function and non-cognitive behaviours in LBD and 

AD. In BA9, 40 and 24, a significant relationship was found between RPT6 and MMSE 

scores. These data lead to further studies to investigate in which brain region the reduction 

in RPT6 values were more associated with MMSE scores. We discovered that RPT6 

expression level in BA9 was the best predictor for MMSE scores (Beta = -0.448 and p = 

0.001). In BA9 and BA40 MMSE scores were predicted by chymotrypsin-like activity, 

while in BA 24 by PGPH-like activity. As the analysis of the relationships between non-

cognitive behaviours and mood and proteasome markers were exploratory and unbiased 
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since there were no compelling hypotheses linking them, a high significance level of 

p<0.01 was set. Persecution was significantly predicted by RPT6 expression in both brain 

regions BA9 and BA40 and PGPH-like activity in BA40 only. Depression was significantly 

predicted by RPT6 expression in BA9 and PGPH-like activity in BA24. However, both 

with persecution and depression scores, ANOVA did not reach the significance level at p < 

0.01 
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Table 7-2:  Relationships between clinical data and expression levels of proteasome sub-

units and proteasome activity. 

     BA9 

 

MMSE Depression Persecution 

 

RPT6 -0.564** -0.275** -0.363** 

 

ALPHA6 -0.012 0.142 -0.024 

 

ALPHA3 0.067 -0.110 0.071 

 

chymotrypsin-like activity -0.416* -0.508* -0.067 

 

PGPH-LIKE activity -0.269 0.116 -0.173 

     

     BA24 

 

MMSE Depression Persecution 

 

RPT6 -0.269** -0.048 -0.148 

 

ALPHA6 0.331** 0.19 0.054 

 

ALPHA3 -0.054 -0.237 0.017 

 

chymotrypsin-like activity -0.022 -0.033 -0.052 

 

PGPH-LIKE activity -0.596** -0.526** -0.418* 

     

     BA40 

 

MMSE Depression Persecution 

 

RPT6 -0.441** -0.201 -0.289** 

 

ALPHA6 -0.087 -0.002 -0.008 

 

ALPHA3 -0.105 0.218 0.188 

 

chymotrypsin-like activity -0.724** -0.227 -0.036 

 

PGPH-LIKE activity -0.044 -0.398* -0.550** 

MMSE, depression and persecution predicted by proteasome sub-units levels and 

proteasome activities indicated by the standardised regression coefficients (β).  

Values that are presented in bold italics with** indicate statistically significant (p<0.01) 

and the values with with * indicate statistically significant (p<0.05) differences. 
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7.4 Relationships between synaptic biochemistry and expression levels of 

proteasome subunits and proteasome activity 

Measurements of synaptic markers and proteins associated with various synaptic 

processes, such as PSD-95, ZnT3, synaptophysin and beta-III-tubulin measurements were 

available (measured by Dr David Whitfield) (Whitfield et al., 2014a, Whitfield et al., 

2014b). Measurements of SNARE proteins such as munc18a and CAMKII were also 

available (measured by Dr Julie Vallortigara) (For full details of all values refer to 

Appendix table IX and X Synaptic proteins values from semi-quantification of Western 

blotting and to appendix tables XI for the differences in relative levels of proteins between 

diagnostic groups). The measurements were done using the same methods discussed in the 

Materials and Methods sections. To test whether synaptic dysfunction was associated with 

proteasomal impairment, Pearson and Spearman’s rank correlations were determined 

between the synaptic protein measured by semi-quantitative Western blot in each brain 

region and the proteasomal sub-unit. The synaptic and SNARE proteins which correlated 

with any of the proteasome component at a significant level p < 0.01 were entered into a 

regression analysis (using the enter method in SPSS) to determine if they were significant 

predictors of the proteasome sub-unit to which the correlation occurred. The proteasome 

regulatory particle subunit RPT6 was the only sub-unit which correlated with synaptic 

and/or SNARE proteins across the three brain regions.   
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7.4.1 Frontal cortex – Brodmann area 9 

In BA9 significant positive correlations were found between RPT6 and PSD95 (Rs 

.255, p = .008, n = 107), ZnT3 (Rs .356, p = .001, n = 110), and total CaMKII (Rs .255, p = 

.005, n = 122) (Figure 7-21 a, b, c,). Multiple linear regression analysis was conducted with 

the three predictors (PSD95, ZnT3, and total CaMKII) to develop a model for the best 

predicting RPT6 sub-unit. In the analysis PSD95, ZnT3, and total CaMKII were entered as 

independent factors and RPT6 as dependent variables. The ANOVA for the model was 

significant (p = 0.001, Rsq = 0.176) and RPT6 values from semi-quantitative Western 

blotting in BA9 was significantly predicted by ZnT3 (Beta = 0.240, p = 0.023) and total 

CaMKII (Beta = 0.248, p = 0.019) (Figure 7-21). 
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Model Summary 

Model R 
R 

Square Adjusted R Square 
Std. Error of the 

Estimate 

1 
.419

a
 .176 .148 .14004 

ANOVA
a
 

Model 
Sum of 
Squares df Mean Square F Sig. 

1 Regression .372 3 .124 6.328 .001
b
 

Residual 1.745 89 .020     

Total 2.118 92       

Coefficients
a
 

Model 

Unstandardized Coefficients 
Standardized 
Coefficients 

t Sig. B Std. Error Beta 

1 (Constant) .949 .067   14.267 .000 

ZnT3 BA9 .155 .067 .240 2.311 .023 

PSD95 BA9 
-.097 .065 -.143 -1.483 .142 

total CaMKII 
.125 .052 .248 2.393 .019 
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Figure 7-21: Relationships between expression of protesome sub-unit and synaptic 

proteins.  

Pearson correlation was determined between the synaptic proteins (measured by semi-

quantitative Western blot) and the proteasomal sub-units in BA9. Significant positive 

correlations were found between RPT6 and a) PSD95 (Rs .255, p = .008, n = 107), b) ZnT3 

(Rs .356, p = .001, n = 110), and c) total CaMKII (Rs .255, p = .005, n = 122). Multiple 

linear regression analysis was conducted with the three predictors (PSD95, ZnT3, and total 

CaMKII) to develop a model for the best predicting RPT6 sub-unit. In the analysis PSD95, 

ZnT3, and total CaMKII were entered as independent factors and RPT6 as dependent 

variables. The ANOVA for the model was significant (p = 0.001, Rsq = 0.176) and RPT6 

values from semi-quantitative Western blotting in BA9 was significantly predicted by ZnT3 

(Beta = 0.240, p = 0.023) and total CaMKII (Beta = 0.248, p = 0.019) 

 

7.4.2 Parietal cortex—Brodmann area 40 

In BA40 significant positive correlations were found between RPT6 and PSD95 (Rs 

.286, p = .006, n = 90), ZnT3 (Rs .299, p = .006, n = 121), SPP (Rs .319, p = .002 n = 95), 

Munc18 (Rs .377, p = .001 n = 121), phospho-CaMKII (Rs .294, p = .001, n = 117) and 

Beta-3 Tubulin (Rs .347, p = .001, n = 98) (Figure 7-22  a, b, c, d, f, e). Multiple linear 

regression analysis was conducted with the 6 predictors (PSD95, ZnT3, Munc18, SPP, 

Beta-3 Tubulin and phospho CaMKII) to develop a model for the best predicting RPT6 

sub-unit. In the analysis, PSD95, ZnT3, Munc18, SPP, Beta-3 Tubulin and phospho-

CaMKII were entered as independent factors and RPT6 as dependent variables. The 
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ANOVA for the model was significant (p = 0.001, Rsq = 0.176) and RPT6 values from 

semi-quantitative Western blotting in BA40 was significantly predicted by ZnT3 (Beta = 

0.367, p = 0.003), SPP (Beta = 0.303, p = 0.033) and phospho-CaMKII (Beta = 0.265, p = 

0.027) (Figure 7-22). 
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Figure 7-22: Relationships between expression of protesome sub-unit and synaptic 

proteins.  

Pearson correlation was determined between the synaptic protein and the proteasomal sub-

unit in BA40, as measured by semi-quantitative Western blot. Significant positive 

correlations were found between RPT6 and PSD95 (Rs .286, p = .006, n = 90), ZnT3 (Rs 

.299, p = .006, n = 121), SPP (Rs .319, p = .002 n = 95), Munc18 (Rs .377, p = .001 n = 

Model Summary 

Model R 
R 

Square 

Adjusted 
R 

Square 
Std. Error of 
the Estimate 

1 .715
a
 .511 .442 .11917 

ANOVA
a
 

Model 
Sum of 
Squares df 

Mean 
Square F Sig. 

1 Regression .637 6 .106 7.478 .000
b
 

Residual .611 43 .014     

Total 1.248 49       

Coefficients
a
 

Model 

Unstandardized 
Coefficients 

Standardized 
Coefficients 

t Sig. B 
Std. 
Error Beta 

1 (Constant) .614 .092   6.689 .000 

PSD95_40 -.075 .049 -.206 -1.528 .134 

ZnT3_40 .208 .067 .367 3.113 .003 

Munc18 BA40 .128 .097 .162 1.319 .194 

Synaptophysin 
BA40 

.202 .092 .303 2.199 .033 

Beta3Tubulin 
BA40 

.088 .066 .179 1.328 .191 

phosphoCaMKII 
BA40 

.023 .010 .265 2.290 .027 
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121), phospho CaMKII (Rs .294, p = .001, n = 117) and Beta-3 Tubulin (Rs .347, p = .001, 

n = 98). Multiple linear regression analysis was conducted with the 6 predictors (PSD95, 

ZnT3, Munc18, SPP, Beta-3 Tubulin and phospho CaMKII) to develop a model for best 

predicting the RPT6 sub-unit. In the analysis, PSD95, ZnT3, Munc18, SPP, Beta-3 Tubulin 

and phospho CaMKII were entered as independent factors and RPT6 as dependent 

variables. The ANOVA for the model was significant (p = 0.001, Rsq = 0.176) and RPT6 

values from semi-quantitative Western blotting in BA40 was significantly predicted by 

ZnT3 (Beta = 0.367, p = 0.003), SPP (Beta = 0.303, p = 0.033) and phospho CaMKII (Beta 

= 0.265, p = 0.027). 

7.4.3 Anterior cingulate Brodmann area 24 

In BA24 there was no significant correlation between RPT6 and any synaptic or SNARE 

proteins.  
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7.4.4 Summary 

Since synaptic biochemistry data were available for these cases, a secondary 

exploratory analysis was perform to study the relationship between changes in proteasome 

function and components of the synaptic biochemistry. This helped to understand the 

relationship between the proteasome impairment, synaptic dysfunction, pathology score 

and cognitive decline. The results indicated a relationship between the reduction of RPT6 

and the synaptic dysfunction. In BA9 significant positive correlations were found between 

RPT6 and PSD95, ZnT3, and total CaMKII. PSD95 and ZnT3 were also positively 

correlated with RPT6 in BA40. Significant positive correlations were found between RPT6 

and SPP, Munc18, phospho-CaMKII, and Beta-3 Tubulin. 

7.5 Discussion 

7.5.1 Association between proteasome dysfunction and LBs/AD semi-quantitative 

pathology scores 

The main findings of this study was that in BA24 and BA40, tangle and plaque 

scores inversely predicted RPT6 values, whereas in BA9, RPT6 values were predicted by 

α-synuclein and plaque scores. Subunit α-3 and α-6 expression were predicted by α-

synuclein and tangle scores respectively, in BA9 only, whereas in BA24 and BA40, α-3 and 

α-6 had no associations with any of the semi-quantitative scores for AD and LBs pathology. 

In all three brain regions, RPT6 values had an inverse relationship with tangle and plaque 

scores (RPT6 values were decreased with higher tangle and plaque scores). RPT6 values 

also had a positive relationship with both activities measured in this project: chymotrypsin-

like activity and PGPH-like activity (RPT6 values were decreased with low proteasome 
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activity) (Chapter 5 Section 5.2.3). Furthermore, chymotrypsin-like activity and PGPH-like 

activity were both inversely associated with AD pathology suggesting that there is a link 

between the regulatory particles subunit RPT6, proteasome activity and this aspect of the 

pathology of the disease. 

It is possible that changes in RPT6 is the primary event in proteasome impairment. 

The observed reduction in proteasome activity may arise, therefore, as a result of lower 

RPT6 expression, which has been shown in previous studies to regulate proteasome 

function following phosphorylation at Serine-120 by Calcium/calmodulin-dependent 

protein kinase II (CaMKII) (Djakovic et al., 2012, Djakovic et al., 2009). Inhibition of 

CaMKII significantly decreases RPT6 phosphorylation and also proteasome activity 

(Jarome et al., 2013), indicating the important role of RPT6 in proteasome function and 

supporting the link between reduced RPT6 observed in this study and the reduction in 

proteasome activity. It is also possible that protein aggregates may block the entry pore to 

the 20S proteasome resulting in a reduction of proteasome proteolytic activity. This 

hypothesis is supported by evidence that degradation of proteins by the proteasome may be 

prevented by α-synuclein (Emmanouilidou et al., 2010, Lindersson et al., 2004, Liu et al., 

2005, Zhang et al., 2008), tau (Keck et al., 2003) and Aβ (Almeida et al., 2006, Lopez 

Salon et al., 2003, Oh et al., 2005, Tseng et al., 2008). If this latter explanation is correct, it 

is unclear why aggregations would lead to a corresponding reduction in RPT6.  

In this study, the association between semi-quantitive α-synuclein pathology score 

and the reduction of RPT6 values were observed only in BA9, and there were no similar 

associations observed in any other brain regions. Recent studies have demonstrated that 
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some soluble oligomeric species of mutant and wild-type α-synuclein inhibit the 26S 

proteasome in PC12 cells (Emmanouilidou et al., 2010). Emmanoulidou et al. revealed that 

decreased activation of the proteasome by oligomeric α-synuclein did not affect the 

expression level of the proteasome subunits (β1, β2 and β5 subunits) or the assembly of the 

26S proteasome (Emmanouilidou et al., 2010). Furthermore, a small amount of 19S RPT6 

ATPase bound to α-synuclein was detected, suggesting that localization of particular 

species of oligomeric α-synuclein impaired proteasome function by reducing the number of 

the substrates that normally interact with the 19S ATPase ring or by preventing the 

unfolding and degradation of other substrates (Emmanouilidou et al., 2010). Interestingly, 

pharmacological dissociation of oligomeric α-synuclein from the proteasome restored the 

proteasome function and reduced the level of polyubiquitinated protein (Emmanouilidou et 

al., 2010). These results agree with the findings of other studies, in which soluble α-

synuclein protofibrils selectively inhibited the ubiquitin-independent proteasomal 

degradation of unfolded proteins and ubiquitin-dependent proteasomal degradation of 

folded proteins (Zhang et al., 2008). Zhang et al. also demonstrated that α-synuclein 

protofibrils bound both 26S proteasome and its substrates, preventing the degradation of the 

substrates by the proteasome, which may result in the accumulation of these proteins 

(Zhang et al., 2008). Further work is required to elucidate the exact sequence of events 

regarding RPT6/PS activity changes. 

One unanticipated finding was the upregulation of α-3 values in BA9 and BA40 in 

DLB and PDD, respectively. The reason for this is not clear, but it may linked to auto-

inhibition of the core particle of the proteasome that arises by N-terminal tails of the (α-3, 

α-4 and α-2) subunits, as mentioned previously in Chapter 1 Section 1.9.1.1 and as 
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discussed in Chapter 5 Section 5.3.1. Supporting this hypothesis, there was a positive 

relationship between upregulation of α-3 expression level in BA9 and α-synuclein score (α-

3 values were increased with higher α-synuclein scores; the prediction was of a direct 

nature). The upregulation of α-3 was evident in DLB but not in PDD or AD, perhaps due to 

the absence of severe BA9 α-synuclein pathology in both PDD and AD cases. In contrast, 

the upregulation of α-3 in PDD in BA40 was not associated with either α-synuclein or AD 

pathology. Therefore, an increase in the α-3 subunit values in PDD and DLB may be a 

compensatory mechanism to alleviate the effects of pathological factors after the brain 

region has become affected by α-synucleinopathy. 

The association of proteasome dysfunction with tau pathology was observed in 

BA9, BA24 and BA40. There were inverse relationships between the proteasome activity 

and tangle score as well as between RPT6 and tangle scores. Furthermore, α-6 values also 

had an inverse relationship with tangle scores. These findings are not surprising and are 

supported by previous research that links UPS with tau pathology in AD (review by (Lee et 

al., 2013) (explained in more detail in Chapter 1 Section 1.9.3.3.2). Tau is a substrate of the 

proteasome (David et al., 2002, Shimura et al., 2004, Wang and Mandelkow, 2012), and 

proteasome inhibition prevents the degradation of tau and results in its accumulation (Babu 

et al., 2005). Degradation of native unfolded tau was also shown to be catalysed by 

ubiquitin-independent 20S proteasome (David et al., 2002, Grune et al., 2010). Moreover, 

proteasome activity was found to be responsible for removing early tau pathology in the 

triple transgenic mouse model of AD (3xTg-AD) after treatment with Aβ immunotherapy 

(Oddo et al., 2004).  
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Dysfunction of the UPS has been implicated in Aβ pathology; as with α-synuclein 

and tau, Aβ was found to be a substrate of the proteasome, and inhibition of the proteasome 

prevented Aβ degradation (Lopez Salon et al., 2003, Tseng et al., 2008). There was an 

inverse relationship between plaque score and the reduction in RPT6 in BA9, 24 and 40. In 

addition, the same relationship is observed with PGPH-like activity in BA24 and with 

chymotrypsin-like activity in BA40. Thus, the present study confirms that Aβ pathology is 

associated with proteasome impairment although the detailed mechanisms underpinning 

this impairment remain unclear. 

In summary, the main role of the UPS is the removal of damaged soluble proteins. 

LBD and AD both involve the accumulation of specific proteins, forming an aggregates 

with strong immunoreactivity to antibodies against ubiquitin (Lennox et al., 1988, Lowe et 

al., 1988, Mori et al., 1987), suggesting the important role of UPS in both LBD and AD. 

Previous studies have demonstrated that the main components of each of these aggregate—

α-synuclein (Bennett et al., 1999), tau (David et al., 2002, Shimura et al., 2004, Wang and 

Mandelkow, 2012) and Aβ (Lopez Salon et al., 2003)—can be degraded by the proteasome. 

Furthermore, inhibition of the proteasome in tissue culture by proteasome inhibitors such as 

lactacystin or MG132 increased the aggregation and cytotoxicity of α-synuclein (Tanaka et 

al., 2001), tau (Babu et al., 2005) and Aβ (Lopez Salon et al., 2003). The results of the 

current study support a possible relationship between the reduction of RPT6 and the 

alteration of the other proteasome components on the one hand and semi-quantitative scores 

of AD and LBD pathology in different brain areas. 

7.5.2 Association between proteasome dysfunction and clinical data 
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The purpose of this study was to assess the relationship between cognitive decline, 

non-cognitive symptoms and proteasome impairment. It was hypothesised that cognitive 

decline and non-cognitive symptoms would be associated with proteasome impairment as a 

consequence of synaptic dysfunction and increased protein aggregation in LBD and AD. In 

the previous sections, the relationship between the reduction of RPT6 and the alteration of 

the other proteasome components and semi-quantitative scores of AD and LBD pathology 

in different brain areas was reported. In this study, for the first time, the association 

between the reduction of RPT6 in addition to the proteolytic activity of the proteasome and 

cognitive decline and non-cognitive symptoms has been demonstrated.  

 RPT6 values in BA9, BA24 and BA40 predicted the cognitive impairment 

categories based upon MMSE scores. In BA9, control cases had high RPT6 values 

compared to all the other cognitive impairment categories, even in cases with high MMSE 

scores (the MCI group with scores ranging from 24 to 30). There was no significant 

difference between the nonsignificantly different cognitive impairment categories (MCI, 

mild, moderate and severe), but they all differed from the control group. This suggests that 

the reduction in the RPT6 levels appears to occur at a very early stage of dementia 

development, specifically in the BA9 region. This relationship is consistent with many 

evidences accumulated to date that cognitive and executive function are mediated by the 

prefrontal cortex (Cato et al., 2004, Funahashi, 2006, Smith and Jonides, 1999, Zhang et al., 

2013). In BA40, the reduction in RPT6 was observed in all the cognitive impairment 

categories but it was significant only in the moderate and severe groups compared with the 

control group. This suggests that, after an initial decline in cognitive impairment, there 

were further significant reductions in the late stage of the disease. While there was no 



 

 

294 

 

significant difference seen in the ANOVA test between any of the cognitive impairment 

categories group compared to the control group, in BA24, regression analysis showed that 

RPT6 predicted cognitive impairment. This result suggests that the reduction in RPT6 in 

BA9 and BA40 has a greater impact on cognitive impairment than those seen in BA24. 

Regarding the proteolytic activity, in BA9 and BA40, the MMSE scores were predicted by 

chymotrypsin-like activity, while in BA24 the scores were predicted by PGPH-like activity. 

In reviewing the literature, no previous data was found on the association between 

proteasome dysfunction and cognitive decline/non-cognitive symptoms. 

Dysfunction of the 20S/26S has been linked to different neurodegenerative diseases 

(Reviewed by (Dennissen et al., 2012, Paul, 2008) and Chapter 1 Section 1.9.4 for more 

details on the implication of the UPS in neurodegenerative disorders). Furthermore, there is 

a role for the UPS  in various types of synaptic plasticity (Reviewed by (Hegde, 2010) and 

also Chapter 1 Section 1.9.3), it is not clear how proteasome impairment, specifically 

reduction in RPT6, could result in cognitive decline. Recently CaMKII, which plays an 

essential role in long-term synaptic plasticity and cognitive function (Giese et al., 1998, 

Miyamoto, 2006), has been shown to mediate proteasome activity and act as a scaffold to 

recruit proteasomes to dendritic spines and regulate its activity by phosphorylation of the 

RPT6 subunits (Bingol et al., 2010). Activation of NMDA receptors has been shown to 

induce this movement of the proteasome to the dendritic spine compartment (Bingol and 

Schuman, 2006). NMDA function can be positively regulated by CaMKII phosphorylation 

and also by interaction with Zn2+. Consistent with this, the present study found a positive 

relationship between CaMKII and RPT6 expression levels in BA9 and in BA40; thus, with 

the decreased levels of RPT6 there was also a decrease in the protein levels of CaMKII.  
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Reductions in CaMKII affects signalling pathways, including phosphorylation of RPT6, 

and thus the proteasome activity, which could in turn impair synaptic plasticity and also 

contribute to cognitive dysfunction. Or it could the opposite direction; synaptic loss leads to 

decreased NMDA receptors, decreased CaMKII and hence decreased proteasome activity. 

Furthermore, the BA9 RPT6 values predicted the semi-quantitative depression and 

persecution scores in an inverse manner, such that the cases with higher depression or 

persecution scores had lower RPT6 levels. Persecution was also predicted by the RPT6 

values in BA40. It should be noted that the control cases were added to the analysis under 

the assumption that they did not have clinical depression or persecution (for more details on 

the clinical and pathological data for the control cases see Chapter 2, Section 2.1). 

Persecution and depression were also significantly predicted by PGPH-like activity in 

BA40 and BA24, respectively. The significant association between the RPT6 values and 

the depression semi-quantitative scores in individuals with DLB, PDD and AD was 

observed only in the prefrontal cortex (BA9). The same association has been reported 

between ZnT3 and depression in the same brain region and in the same cohort, and also 

between cognitive function and depression (Whitfield et al., 2014a). This relationship was 

not observed in either the BA24 or the BA40. Furthermore, this relationship is consistent 

with previous studies that have linked depressive symptoms to the prefrontal cortex 

(Khundakar et al, 2009a, Khundakar et al 2009b). ZnT3 plays an important role in 

sequestration of Zn2+ in vesicles and empty their contents into the synaptic cleft. Reduced 

ZnT3 corresponds to a loss of regulation of synaptic Zn2+. Zn2+dyshomeostasis has been 

linked to depression, and many studies (Grieger et al 2009, Van Kempen et al 1985, Yang 

et al 2005, Maes 1994, Siwek 2010), but not all studies, (Irmisch 2010, Narang 1991, 
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Crayton 2007), have suggested that depression might be associated with lower zinc 

concentrations. Zn2+ also plays an essential role in the deubiquitination step and in the 

whole proteolytic degradation cycle (Yao and Cohen, 2002). Furthermore, Zn2+can induce 

an extensive structural rearrangement of the Drosophila 26 S proteasome, that, in the 

presence of Zn2+, disassembles into regulatory particles and catalytic particles, a process 

that is fully reversible by removing Zn2+ (Kiss et al., 2005). Several questions remain 

unanswered. Does the downregulation of ZnT3 reported in this cohort (Whitfield et al., 

2014a, Whitfield et al., 2014b) have an impact on proteasome dysfunction by reducing the 

Zn2+ concentration, which may be implicated in the role that UPS plays in synaptic function 

and, hence, the molecular pathophysiology of depression? Or, is the proteasome 

dysfunction  responsible for regulating ZnT3 and, due to its dysfunction, this resulted in the 

reduction of  the expression level of ZnT3, leading to a reduction of the Zn2+ concentration, 

which is implicated in the pathophysiology of depression (Swardfager et al 2013). 

 

7.5.3 Association between proteasome dysfunction and synaptic proteins 

The present study was designed to determine the relationship between dysfunction 

of synaptic proteins and proteasome impairment. As mentioned in Chapter 1, Section 1.9.3, 

there is evidence on the role of UPS in regulating synaptic function; thus, the correlation 

between different synaptic proteins and the proteasome component was not surprising. The 

most interesting finding was the relationship between RPT6 and ZnT3, PSD95 and 

CaMKII, which was observed in both BA9 and BA40. Correlation analysis, revealed that 

there was positive correlation between RPT6 protein levels and each of these synaptic 
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proteins (ZnT3, PSD95 and CaMKII), such that cases with higher synaptic proteins levels 

had higher RPT6 levels (For full details of all values refer to appendix table IX and X 

Synaptic proteins values from semi-quantification of Western blotting and to appendix 

tables XI for the differences in relative levels of proteins between diagnostic groups). 

 In the previous section 7.4.2, the relationship among RPT6, ZnT3, cognitive 

impairment and depression suggested a new hypothesis where the dysfunction of the UPS 

could be a result of an alteration in ionic Zn2+ concentration due to dysregulation of zinc 

transporters, such as ZnT3. Other studies have also implicated alterations in Zn2+ 

homeostasis and lysosomal activity (Hancock et al 2014). The association between ZnT3 

and UPS is probably related to synaptic dysfunction, as proteasome dysfunction was also 

associated with the reduction of PSD95. A decrease in zinc could cause a reduction in 

PSD95, and this has been shown previously by (Grabrucker et al., 2011). Interestingly, the 

reduction of PSD95 also predicted the cognitive impairment in the prefrontal cortex in the 

present cohort (Whitfield et al., 2014b), suggesting that there is a strong link between a loss 

of ZnT3, a reduction in post-synaptic scaffolding PSD95 protein levels, proteasome 

dysfunction and cognitive deficits. 

The role of CaMKII increased RPT6 phosphorylation and thus has been showed to 

regulate the proteasome function in vitro and in vivo (Djakovic et al., 2012, Djakovic et al., 

2009, Jarome et al., 2013). In this study, we confirmed the relationship between CaMKII 

and RPT6 in subjects with PDD, DLB and AD. Reduction in CaMKII has been reported in 

our cohort, and this reduction was associated with a high plaque score (Vallortigara et al., 

2014). As previously mentioned in section (7.4.2), reduction in CaMKII may affect 
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signalling pathways including phosphorylation of RPT6 and thus proteasome activity 

which could in turn impair synaptic plasticity and also contribute to cognitive dysfunction. 

These results provide further support to our hypothesis that cognitive decline and 

non-cognitive symptoms would be associated with proteasome impairment as a 

consequence of synaptic dysfunction and increased protein aggregation in LBD and AD. 

Further research should be undertaken to investigate whether activation of the UPS could 

result in increases in ZnT3 transport activity, PSD95 protein levels, CaMKII activity and of 

NMDAR activity, and whether targeting ZnT3/CaMKII to increase proteasome activity 

may act as a pharmacological intervention in LBD.  

In conclusion, our results indicated reductions in the key proteasome component 

RPT6 and proteasome activity in BA9, 24, and 40. These reductions were associated with 

cognitive decline, non-cognitive symptoms, protein aggregate and synaptic dysfunction. 

These data suggested that that enhancement of the UPS could be a therapeutic target for 

treating DLB, PDD and AD. Increasing the proteasome activity could be done by 

modulating Zn2+ or by activating CaMKII.   

7.6 Summary  

• Decreases in RPT6 and proteasome activities were found to be associated 

with the semi-quantitative scores for plaques and neurofibrillary tangles in 

BA9, 24, and 40. 

• Semi-quantitative plaque scores were significantly predicted by RPT6 in 

BA9, 40 and 24 and by chymotrypsin-like activity in BA40. 
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• Semi-quantitative tangle scores were significantly predicted by RPT6 in 

BA40 and 24 and by chymotrypsin-like activity in BA9 and 40. 

• Semi-quantitative α-synuclein scores were significantly predicted by RPT6 

in BA9 only.  

• Cognitive impairment was significantly predicted by RPT6 in BA9, 40 and 

24 and by chymotrypsin-like activity in BA9 and 40.   

• Persecution was significantly predicted by RPT6 expression in both BA9 

and BA40 and PGPH-like activity in BA40 only. 

• Depression was significantly predicted by RPT6 expression in BA9 and 

PGPH-like activity in BA24.  

• Significant positive correlations were found among RPT6 and PSD95, 

ZnT3, and total CaMKII respectively, in both BA9 and BA40. 
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Chapter 8  General discussion 
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The aim of this thesis was to characterise the components of the UPS. Since 

disruption of the UPS appears to play a key role in DLB pathogenesis and could cause 

synaptic dysfunction, it was hypothesised, that cognitive decline and non cognitive 

symptoms in LBD were associated with synaptic dysfunction consequent upon alterations 

of proteasome subunit expression, proteasome activity and increased protein aggregation. 

Upon examination of the 26/20S components in selected brain regions, proteasome 

impairment was evident, including a reduction in the expression level of the RPT6 ATPase 

19S regulatory subunit and a reduction in both chymotrypsin-like and PGPH-like 

proteasome activity in DLB, PDD and AD groups in all three selected brain regions: BA9, 

BA24 and BA40 (the results are summarised in Table 8-1).  

A further aim of this thesis was to evaluate the second important degradation 

pathway, the lysosomal pathway, using the same cohort. Two lysosomal markers, cathepsin 

D and lysosomal-associated membrane protein 1 (LAMP1), were assessed in BA9, 24 and 

40 (the results are summarised in Table 8-1).  
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Table 8-1: Summary of the results. 

  RPT6 α-3 α-6 Chymotrypsin-
like 

PGPH-like Cathepsin D LAMP1 

BA9 PDD ↓ → → → ↓ → → 
 DLB ↓ ↑ → → ↓ → → 
 AD ↓ → ↓ ↓ ↓ → → 
BA24 PDD → ↓ ↑ ↓ ↓ - ↓ 
 DLB ↓ → ↑ ↓ ↓ - ↓ 
 AD ↓ → → ↓ ↓ - → 
BA40 PDD → ↑ → ↓ ↓ ↑ → 
 DLB ↓ → → ↓ → → ↓ 
 AD ↓ → → ↓ ↓ → → 

Downward arrow (↓) indicated decreased, upward arrow (↑) indicated increased and right 

arrow (→) indicates unchanged. 

The 26S proteasome is the major eukaryotic ATP-dependent protease that forms the 

proteolytic component of the UPS. The UPS is the key pathway for the degradation of α-

synuclein (Alvarez-Castelao and Castano, 2011, Bennett et al., 1999, Ebrahimi-Fakhari et 

al., 2011, Ebrahimi-Fakhari et al., 2012, Tofaris et al., 2001), and other proteins that 

contribute to neurodegenerative diseases, such as Aβ, (Lopez Salon et al., 2003) and tau 

(David et al., 2002). Over the past decade, considerable evidence has addressed the role of 

UPS dysfunction in many neurodegenerative diseases such as AD (Riederer et al., 2011, 

Upadhya and Hegde, 2007), Huntington’s disease (Schipper-Krom et al., 2012), PD and 

DLB (McNaught et al., 2003, McNaught et al., 2002a, McNaught et al., 2002b, McNaught 

and Olanow, 2009, McNaught et al., 2002c, McNaught and Jenner, 2001, McNaught and 

Olanow, 2006, McNaught et al., 2001). Furthermore, the important role that UPS plays in 

protein degradation and in processes specific to neurons, such as synaptic function and 

synaptic plasticity (Yi and Ehlers, 2007), has led to the hypothesis that alteration in the 

proteasome subunits or proteolytic activity in LBD may increase the severity of the cortical 
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pathology, such as cortical Lewy bodies and Lewy neurites, loss of cortical synapses and 

synaptic dysfunction, in addition to manifesting in the clinical phenotype of the disease. 

The results of this study offer substantial support for the dysfunction of the 26S 

proteasome in LBD. The significant reduction in the expression level of RPT6 and both 

chymotrypsin-like and PGPH-like proteasome activity were associated with AD pathology 

in each brain region. A significant correlation was also found between RPT6 expression 

levels and the reduction in proteasome activity. Both RPT6 expression levels and overall 

proteasome activity were found to be associated with cognitive decline. This was supported 

by the observation that there was a strong link between RPT6 expression levels and the 

reduction in post- and pre-synaptic proteins PSD-95 and ZnT3. Both PSD-95 and ZnT3 

were correlated with cognitive decline in this cohort (Whitfield et al., 2014a, Whitfield et 

al., 2014b). Thus, it could be suggested that proteasome impairment may result from 

synaptic dysfunction since the proteasome function in DLB, PDD and AD cases was 

impaired and correlated with a reduction in the synaptic proteins. Synaptic dysfunction has 

been linked to Aβ and tau pathology. One study found a positive correlation between both 

PSD95 and synaptophysin and soluble Aβ40 and Aβ42 (Shinohara et al., 2013)(Shinohara 

et al., 2013). Furthermore, decreases in pre-and post-synaptic terminal density have 

recently been reported in a mouse model of tau pathology (Garringer et al., 2013). Our 

group found a relationship between pathology and synaptic proteins, such as SPP, PSD95 

and ZnT3 (Whitfield et al., 2014a, Whitfield et al., 2014b), as well as a relationship 

between proteasome impairment and the same synaptic proteins, PSD95 and ZnT3.    
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Table 8-2: Summary of the relationships between expression levels of the proteasome sub-units and proteasome activity with 

clinical symptoms, pathology and synaptic biochemistry. 

       pathology score clinical data synaptic biochemistry 

BA9 

 

a-synuclein Plaques Tangles MMSE Depression Persecution ZnT3 PSD95 CaMKII 

 

RPT6 -0.226 -0.213 -0.165 -0.564** -0.275** -0.363** .356** .255** .255** 

 

Alpha6 0.183 -0.033 -0.339 -0.012 0.142 -0.024 .133 0.060 .246** 

 

ALPHA3 0.303 -0.154 0.153 0.067 -0.110 0.071 -.015 0.080 .262** 

 

chymotrypsin-like 

activity -0.071 -0.153 -0.44 -0.416* -0.508* -0.067 .429* .217 .153 

 

PGPH-LIKE activity -0.028 -0.331 -0.241 -0.269 0.116 -0.173 .385* .287 .082 

     

      

BA24 

 

a-synuclein Plaques Tangles MMSE Depression Persecution ZnT3 PSD95 CaMKII 

 

RPT6 -0.157 -0.27 -0.249 -0.269** -0.048 -0.148 .027 -.284 -.030 

 

ALPHA6 0.154 0.208 0.159 0.331** 0.19 0.054 -.023 0.088 .116 

 

ALPHA3 -0.118 -0.039 0.088 -0.054 -0.237 0.017 -.053 .248 .170 

 

chymotrypsin-like 

activity -0.083 0.229 0.171 -0.022 -0.033 -0.052 .256 -.108 -.271 

 

PGPH-LIKE activity 0.051 -0.514 -0.288 -0.596** -0.526** -0.418* .295 -.057 -.245 

     

      

BA40 

 

a-synuclein Plaques Tangles MMSE Depression Persecution ZnT3 PSD95 CaMKII 

 

RPT6 0.068 -0.328 -0.361 -0.441** -0.201 -0.289** .224* .172 .217* 

 

ALPHA6 -0.089 -0.049 -0.083 -0.087 -0.002 -0.008 -.056 -.080 -.009 

 

ALPHA3 -0.146 -0.055 -0.134 -0.105 0.218 0.188 .153 .146 .189 

 

chymotrypsin-like 

activity -0.075 -0.587 -0.479 -0.724** -0.227 -0.036 
-.131 .117 -.068 

 

PGPH-LIKE activity -0.216 0.058 -0.114 -0.044 -0.398* -0.550** .040 -.094 -.053 
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Pathology scores, MMSE, depression and persecution predicted by proteasome sub-units level and proteasome activities 

indicated by the standardised regression coefficients (β). Values that are presented in bold italics with** indicate statistically 

significant (p<0.01) and the values without bold italics and with * indicate statistically significant (p<0.05) differences.  

Synaptic protein correlated with proteasome sub-units level and proteasome activities indicated by Pearson Correlation 

Coefficient (r). Values that are presented in bold italics with** indicate statistically significant (p<0.01) and the values with bold 

italics with * indicate statistically significant (p<0.05) differences. 
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The observed correlation between proteasome impairment and AD pathology also 

supports the hypothesis that proteasome dysfunction may result from protein aggregation. It 

has recently been shown that Aβ accumulation directly inhibits proteasome activity (Tseng 

et al., 2008). Consequently, proteasome inhibition may further exacerbate other 

pathological proteins, such as tau and α-synuclein, by reducing protein degradation, 

resulting in more protein accumulation and further proteasome impairment (Tseng et al., 

2008). The mechanism could also be reversed: proteasome impairment could cause both 

synaptic dysfunction and protein aggregation. Impairment of the UPS has been reported to 

cause cell death, resulting from impaired degradation and protein accumulation. Previous 

studies have demonstrated the importance of the UPS for normal cellular functioning 

(Bergink et al., 2006, Borissenko and Groll, 2007b, Bregere et al., 2006, Brodsky and 

McCracken, 1999, Zimmermann et al., 2001). Furthermore, numerous studies have reported 

that proteasome impairment is a pathological feature of several neurodegenerative diseases, 

and that in vitro and in vivo inhibition of proteasomes induces pathological features 

resembling those found in PD and LBD (McNaught et al., 2003, McNaught et al., 2002a, 

McNaught et al., 2002b, McNaught and Olanow, 2009, McNaught et al., 2002c, McNaught 

and Jenner, 2001, McNaught and Olanow, 2006, McNaught et al., 2001) .  

 

On the basis of the present study, it is not possible to determine which of the three 

mechanisms, synaptic dysfunction, protein aggregation and proteasome impairment, comes 

first, merely the fact that they are related. Is it the synaptic dysfunction that causes 

proteasome dysfunction leading to protein aggregates? Is synaptic dysfunction the primary 
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cause of protein aggregation leading to proteasome dysfunction? Or, is proteasome 

dysfunction the primary cause of protein aggregate leading to synaptic dysfunction? This is 

currently a matter of considerable debate. Under physiological conditions, α-synuclein 

exists in an unfolded monomeric form or as an α-helical structure bound to lipid 

membranes (Davidson et al., 1998, Weinreb et al., 1996). Whereas under pathological 

conditions, α-synuclein monomers undergo misfolding and aggregate into small oligomers 

that further aggregate into higher-order structures forming protofibril β−sheets 

(Bandopadhyay and de Belleroche, 2010, Conway et al., 1998, El-Agnaf et al., 1998, 

Hashimoto et al., 1999). Misfolded α-synuclein is degraded by both the UPS and the ALP, 

specifically the CMA pathway, in addition to chaperone-mediated refolding (Ebrahimi-

Fakhari et al., 2011, Ebrahimi-Fakhari et al., 2012). The formation of these oligomer 

species and protofibril β−sheet structures leads to primary failure of both the degradation 

pathways in the UPS and the CMA (Ebrahimi-Fakhari et al., 2011, Ebrahimi-Fakhari et al., 

2012). Furthermore, overexpression of monomeric α-synuclein can also block the UPS 

(Ebrahimi-Fakhari et al., 2011, Ebrahimi-Fakhari et al., 2012). At this stage, the 

macroautophagy is upregulated to degrade α-synuclein oligomers and protofibril β−sheets 

(Ebrahimi-Fakhari et al., 2011, Ebrahimi-Fakhari et al., 2012). Uncontrolled accumulation 

of α-synuclein leads to further conformational changes of the β−sheet structure to form 

fibril structures (Caughey and Lansbury, 2003), which are the main component of Lewy 

bodies and Lewy neurites. The formation of fibril structures impairs the macroautophagy 

and the lysosomal pathway (Ebrahimi-Fakhari et al., 2011, Ebrahimi-Fakhari et al., 2012). 

Therefore misfolded synuclein leads to a sequential inhibition of both cellular pathways 

involved in synuclein degradation, starting with impairment of the UPS and progressing to 



 

 

 

encompass inhibition of macroautophagy. 

or the ALP will increase the rate of the 

of oligomers, protofibril 

could cause protein aggregation in either of the pathways and/or impair the protein 

degradation pathways (Figure 8

Figure 8-1: Accumulation of 

Accumulation of misfolded proteins is likely to be a key event in neurodegeneration. 

Impairment of lysosomal and proteasomal protein

dysfunction. Misfolded proteins linked to synaptic, proteasome and lysosome dysfunction 

(Figure adapted from

encompass inhibition of macroautophagy. In the opposite direction, impairment of the UPS 

ease the rate of the misfolding of α-synuclein

protofibril β−sheets and fibrils. In yet another direction

could cause protein aggregation in either of the pathways and/or impair the protein 

degradation pathways (Figure 8-1). 

ccumulation of α-synuclein and the possibility of its toxicity

Accumulation of misfolded proteins is likely to be a key event in neurodegeneration. 

Impairment of lysosomal and proteasomal protein-degradation pathways linked to synaptic 

dysfunction. Misfolded proteins linked to synaptic, proteasome and lysosome dysfunction 

(Figure adapted from (Bandopadhyay and de Belleroche, 2010, Engelender, 2012
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In the opposite direction, impairment of the UPS 

synuclein, leading to the formation 

In yet another direction, synaptic dysfunction 

could cause protein aggregation in either of the pathways and/or impair the protein 

 

synuclein and the possibility of its toxicity. 

Accumulation of misfolded proteins is likely to be a key event in neurodegeneration. 

degradation pathways linked to synaptic 

dysfunction. Misfolded proteins linked to synaptic, proteasome and lysosome dysfunction 

Engelender, 2012)) 
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Since it would appear that each of these mechanisms could be the primary cause of 

neurodegenerative diseases and they are strongly linked together and to cognitive decline 

and other clinical features, then targeting any of these processes for therapeutic therapies 

could provide potential benefits for the treatment of neurodegenerative diseases and they 

may also have an effect on the other mechanisms.  

In addition to proteasome dysfunction, this study also found a reduction in the 

expression level of LAMP1 in the anterior cingulate in PDD and DLB and in the parietal 

cortex in DLB. In both brain regions, the reduction in LAMP1 was associated with α-

synuclein pathology. A defect in the lysosomal pathway could further exacerbate α-

synuclein pathology and result in greater inhibition to both the lysosomal and proteasomal 

pathways due to a reduction in the proteolysis of α-synuclein (Ebrahimi-Fakhari et al., 

2011, Ebrahimi-Fakhari et al., 2012). It is unknown whether the reduction of LAMP1 is 

one of the primary dysfunctions of the lysosomal pathway and whether or not LAMP1 

reduction will lead to further reductions in the other components or if this reduction is a 

direct consequence of LB pathology. To better understand the role that the lysosomal 

pathway plays in DLB, further studies are needed by investigating other lysosomal markers 

as well as cathepsin D activity and the activity of other lysosomal proteases.  

In view of the above, our data strongly suggest that proteasome activation may be a 

target for slowing down the disease progression in DLB and PDD. Recently Medina et al. 

(2011) have found that methylene blue (MB), a member of the phenothiazine family, 

increases the clearance of Aβ and rescues early cognitive deficit in a mouse model of AD 
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by increasing the proteasome activity (Medina et al., 2011).  In addition, preventing α-

synuclein aggregation by either activating the proteasomes and/or by using heat shock 

proteins could be an obvious target, such as the case with the use of Melittin for the 

treatment of Amyotrophic lateral sclerosis (ASL). Melittin, a component of bee venom that 

is comprised of 26 amino acids, reduced α-synuclein misfolding and increased proteasomal 

activity and the expression of heat shock protein 70 in the brain stem and spinal cord of 

ALS mice (Yang et al., 2011). Oral administration of 3H-1,2-dithiole-3-thione (D3T), a 

potential cancer chemopreventive agent, has been demonstrated to enhance proteolytic 

activity of the UPS by increasing the expression of the 26S proteasome subunits (β5, β6, 

β7) and the proteasome activities in various tissues of mice, including some brain regions 

such as the cerebral cortex and hippocampus (Kwak et al., 2007). Recently, sulforaphane 

(SFN), a naturally occurring isothiocyanate, was shown to enhance both proteasomal and 

autophagic activities in the brain and peripheral tissues of mice. In addition, treatment of 

cells expressing mutant huntingtin with SFN displayed reduced toxicity in both non-

neuronal and neuronal cell cultures (Liu et al., 2014). Furthermore, Cabreiro and colleagues 

have demonstrated that zinc supplementation in healthy elderly people promotes an 

increase in proteasome activity and repair protein degradation systems in peripheral blood 

lymphocytes (Cabreiro et al., 2008). The effect of MB, Melittin, D3T and SEF on α-

synuclein aggregation in Lewy body diseases remains to be determined. Based on 

promising results from a phase II clinical trial testing MB as a potential therapeutic agent 

for AD, where treated patients showed significantly improved cognitive functions after six 

months of MB administration compared to patients that received the placebo (Gura, 2008), 

MB may achieve the same beneficial result in LBD and it may play an important role in 
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preventing neurodegenerative diseases. Melittin and SEF are naturally occurring 

compounds that are safe after oral administration and they both have neuroprotective 

effects; moreover, they both appear to play an important role in preventing 

neurodegenerative diseases.  

The strengths of this study are the large number of cases, our access to all the 

clinical and behavioural data and the number of projects undertaken on the same cohort, 

which provide chemical information on synaptic functions in addition to pathological and 

clinical data. Furthermore, this study examined three brain regions and compared the results 

from each of the regions separately to determine whether the biochemical changes are 

specific to a particular brain area or if all of the regions have the same alteration. However, 

despite these advantages, there are also a number of limitations regarding the use of post-

mortem tissues which need to be taken into consideration, since these factors may have 

significant consequences for the outcome of the study. These include, ante-mortem factors 

such as medication history, the medication treatments for each individual patient were 

lacking, making it difficult to match the samples and to identify the association between the 

results and the medication treatments for these cases or to identify whether or not the 

medication had a considerable effect on the outcome. Post-mortem factors, including post-

mortem delay, and the handling and storage of tissue are further problems that also should 

be addressed when performing studies with post-mortem tissue reviewed in (Hynd et al., 

2003) . Furthermore, alteration of brain tissue pH, as a consequence of agonal state can 

affect sample quality for genetic and biochemical measurements. These factors were taken 

into consideration when planning the studies in this thesis. Post-/ante-mortem factors for 

controls, DLB, PDD and AD were matched as closely as possible for PMD and PH. In 
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addition, any relationships found between protein measurements and demographics/post-

mortem factors were controlled for via the creation of unstandardized residuals. A further 

limitation of this study is that it applied a statistical approach using different statistical tests 

and, because of the high number of tests, there is a possibility of a false positive result. 

In conclusion, the present study has demonstrated that, in PDD, DLB and AD, the 

activity of the RPT6 ATPase 19S regulatory subunit of the proteasome is decreased and 

inversely correlated with AD pathology in the prefrontal cortex, anterior cingulate and 

parietal cortex. The reduction is also associated with cognitive decline and other clinical 

features, such as depression and persecution. In contrast, the proteasome α-6 subunit is 

increased in the anterior cingulate in PDD and DLB and remains unchanged in the 

prefrontal cortex and parietal cortex. The changes in the proteasome α-3 subunits in BA9 

were elevated in DLB; in PDD, they were elevated in BA40. Although this study observed 

a number of interesting proteasome alterations and provided evidence for impairment in the 

26S proteasome in different brain areas in LBD, the molecular mechanisms of such changes 

are unclear. Considerably more work will need to be done to determine the functional 

consequences and potential causes of these alterations identified in these post mortem 

studies. It is also unclear why proteasome RPT6 was reduced and why it may be linked to 

different mechanisms such as synaptic dysfunction and protein aggregation, as this was not 

found to be the case with the α-3 and α-6 subunits. It is recommended that experimental 

research be undertaken to establish that whether the biochemical changes observed in this 

study will reflect both in vivo and in vitro studies. Furthermore, pharmacological studies 

targeting specific subunits and the activation of specific subunits could have better 

therapeutic potential in LBDs rather than non-selective modification of the UPS activity. 
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        Appendix I: Demographic and confounding variables.  
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A011/06 Control 2 82 43 6.37 - - 0 frequent - - - 

A047/02 Control 2 87 21 6 0 0 0 none - - - 

A048/09 Control 1 81 42 6.73 1 1 0 - - - - 

A049/03 Control 1 79 34 6.28 - - - - - - - 

A063/10 Control 2 90 74 6.57 - 1 - - - - - 

A133/95 Control 1 85 48 7.02 - - - - - - - 

A134/00 Control 1 86 6 6.78 2 1 0 none 0 - - 

A136/10 Control 2 89 65 6.43 2 1 0 none - - - 

A153/01 Control 1 71 5 6.42 0 0 0 none 0 - - 

A170/00 Control 2 68 9 6.61 0 0 0 none 0 - - 

A185/04 Control 1 80 48 6.57 4 2 1 sparse 0 - - 

A219/97 Control 2 76 63 6.04 0 0 0 none 0 - - 

A223/96 Control 1 80 11 6.72 0 0 0 none 0 - - 

A239/95 Control 2 79 38 6.48 3 2 1 sparse 0 - - 

A283/96 Control 1 77 29 6.52 1 1 0 none 0 - - 

A308/09 Control 1 66 52 6.66 - - - - - - - 

A31/96 Control 1 70 45 6.8 0 0 0 none 0 - - 

A316/95 Control 1 80 35 6.44 1 1 0 none 0 - - 

A320/94 Control 1 77 96 6.59 - - 9 - - - - 

A33/96 Control 2 96 72 6.1 2 1 0 none 0 - - 

A346/95 Control 1 85 16 6.16 4 2 1 sparse 0 - - 

A359/08 Control 2 80 22 6.5 - - - - - - - 

A401/97 Control 1 85 42 6.05 3 2 0 none 0 - - 

A61/96 Control 1 65 29 6.84 0 0 0 none 0 - - 

A94/95 Control 2 80 31 6.15 1 1 0 none 0 - - 

20020080 PDD 1 70 17 6.19 2 1 0 none 6 5 12 

20030004 PDD 2 69 46 6.63 2 1 0 none 11 10 10 

20030103 PDD 2 73 30 5.83 4 2 1 sparse 16 4 10 

20030111 PDD 1 81 40 5.95 2 1 0 none 11 8 9 

20030134 PDD 1 75 40 6.46 3 2 1 sparse 19 2 4 

20040022 PDD 1 79 30 6.78 3 2 1 sparse 15 9 14 



 

 

ii 

 

C
a

se ID
 

D
ia

g
n

o
sis 

G
en

d
er 

A
g

e 

P
M

D
 

P
H

 

B
ra

a
k

 sta
g

e 

C
o

d
ed

 B
ra

a
k

 

C
E

R
A

D
 co

d
e
d

 

C
E

R
A

D
 

cL
B

 sco
re

 

Y
ea

rs o
f d

em
en

tia
 

Y
ea

rs o
f P

D
 

20040076 PDD 1 76 17 6.45 2 1 0 none 12 7 11 

20040105 PDD 1 68 11 6.15 5 3 3 frequent 18 6 8 

20050096 PDD 1 73 31 5.83 0 0 0 none 8 5 23 

20050099 PDD 1 89 64 5.99 3 2 1 sparse 9 3 16 

A143/00 PDD 2 89 54 6.08 2 1 0 none 0     

ST01/01 PDD 2 83 24 6.63 - 1 2 moderate 11 4 19 

ST02/01 PDD 1 83 37 6.45 - 1 0 none 6 1 15 

ST03/01 PDD 1 75 36 6.31 - 1 1 sparse 14 1 13 

ST04/01 PDD 2 85   6.81 - 2 3 frequent 18 4 8 

ST09/02 PDD 1 79 72 6.8 - 3 3 frequent 3 1 9 

ST10/02 PDD 1 82 24 6.44 - 1 1 sparse 12 1 4 

ST11/02 PDD 2 73 60 6.68 2 1 1 sparse - - - 

ST12/02 PDD 2 80 28 6.34 - 1 0 none 3 1 6 

ST13/02 PDD 2 81 28 6.85 2 1 1 sparse - - - 

ST14/02 PDD 1 78 24 6.48 3 2 2 moderate - - - 

ST15/02 PDD 2 88 72 5.9 2 1 0 none - - - 

ST16/02 PDD 1 80 26 6.58 2 1 0 none - - - 

ST17/02 PDD 1 72 9 6.9 1 1 0 none - - - 

ST18/02 PDD 1 79 30 6.8 - 1 1 sparse 2 5 16 

ST19/02 PDD 2 84 27 6.18 - 1 0 none 6 - 6 

ST20/02 PDD 2 85 36 6.36 - 1 2 moderate 20 2 16 

ST21/03 PDD 2 83 24 6.45 - 1 3 frequent 15 2 26 

ST22/02 PDD 2 75 24 7.19 - 1 3 frequent 6 2 7 

ST23/03 PDD 2 82 33 6.74 - 1 2 moderate 14 2 14 

ST24/03 PDD 1 88 24 6.49 - 2 1 sparse - 6 15 

ST25/04 PDD 2 86 24 6.3 2 1 1 sparse - 7 21 

ST29/04 PDD 2 88 32 6.15 - 2 1 sparse - - - 

ST30/04 PDD 1 86 32 6.73 - 0 0   - - - 

27  7/82 DLB 2 87 13 6.36 5/6 3 3 frequent - 6 0 

36  7/81 DLB 1 85 19 6.19 5/6 3 3 frequent - 10 4 

51  7/96 DLB 1 82 80 6.44 5/6 3 3 frequent - 3 0 

52  1/13 DLB 1 82 29 6.21 3/4 2 2 moderate - 7 1 

55  2/25 DLB 1 81 38 6.7 3/4 2 1 sparse - 9 24 
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106  5/56 DLB 2 88 34 6.81 3/4 2 2 moderate - 0 0 

20030007 DLB 2 88 16 5.92 3 2 2 moderate 11 8 4 

20030113 DLB 1 77 65 6 3 2 1 sparse 17 5 5 

20040034 DLB 2 75 64 5.68 6 3 3 frequent 20 3 2 

20040085 DLB 1 77 29 5.73 2 1 2 moderate 18 3 2 

20050030 DLB 2 91 84 5.76 5 3 3 frequent 6 7 3 

20050040 DLB 2 75 78 5.97 6 3 3 frequent 16 5 3 

20060025 DLB 1 76 13 5.96 2 1 1 sparse 14 8 7 

20070009 DLB 1 74 42 5.62 4 2 1 sparse 10 8 3 

20070105 DLB 1 71 8 5.73 2 1 1 sparse 19 7 7 

20080083 DLB 2 80 17 5.71 5 3 3 frequent 19 8 6 

20100575 DLB 1 77 46 5.93 3 2 0 none 10 11 7 

333  1/8  DLB 2 87 24 6.15 5/6 3 3 frequent - 99 99 

367  4/67 DLB 2 92 96 6.45 3/4 2 2 moderate - 14 0 

383  5/58 DLB 2 92 60 5.99 1/2 1 1 sparse - 3 0 

436  2/99 DLB 1 76 70 6.23 1/2 1 3 frequent - 7 5 

439      DLB 1 75 76 6.9 3/4 2 2 moderate - 4 3 

470      DLB 1 84 74 6.5 3/4 2 3 frequent - 4 2 

475      DLB 2 85 38 6.35 3/4 2 3 frequent - 2 1 

495      DLB 1 86 115 6.72 3/4 2 2 moderate - 6 3 

550  2/21 DLB 1 77 57 6.86 5/6 3 0 none - 1 1 

745  4/63 DLB 2 76 96 6.53 1/2 1 3 frequent - 10 10 

A014/07 DLB 1 74 20 6.85 - 3 0 frequent 18 - 0 

A028/10 DLB 1 81 85 6.56 - 2 0 moderate 14 - - 

A035/08 DLB 2 83 14 6.2 - 2 0 sparse 18 - - 

A040/10 DLB 2 87 33 6.13 - 1 0 none 12 - - 

A046/07 DLB 1 76 53 6.52 - 2 0 moderate 9 - - 

A053/09 DLB 1 91 45 6.2 5 3 3 frequent 10 - - 

A055/09 DLB 2 87 30 6.31 5 3 3 frequent 13 - - 

A072/09 DLB 2 92 56 6.73 5 3 3 frequent 12 - - 

A084/09 DLB 2 85 31 5.91 5 3 3 frequent   - - 

A092/07 DLB 1 88 17 6.47 6 3 3 frequent 18 - - 

A109/01 DLB 1 65 5 6.63 3 2 1 sparse 19 9 7 
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A148/08 DLB 2 84 13 6.09 4 2 2 moderate 11 - - 

A162/07 DLB 1 80 25 7.32 3 2 1 sparse 7 - - 

A190/03 DLB 1 83 38 6.24 3 2 1 sparse 16 - - 

A196/09 DLB 2 80 28 6.61 4 2 1 sparse 20 - - 

A204/07 DLB 1 74 18 6.71 2 1 0 none 9 - - 

A229/05 DLB 1 79 4 6.89 3 2 1 sparse 15 - - 

A231/06 DLB 2 70 22 6.89 3 2 2 moderate 9 - - 

A249/06 DLB 1 83 4 6.75 4 2 2 moderate 14 3 - 

A273/05 DLB 1 86 8 5.87 2 1 1 sparse 11 4 - 

A304/06 DLB 2 92 55 6.59 3 2 1 sparse 15 9 - 

A335/08 DLB 1 79 12 6.78 1 1 0 none 0 - - 

A336/99 DLB 1 69 21 7.31 3 2 1 sparse 14 3 - 

C1007  DLB 1 82 55 6.75 1/2 1 0 none - 6 9 

ST26/04 DLB 1 90 48 6.46 5 3 3 frequent - 4 - 

ST27/04 DLB 1 80 84 6.54 5 3 3 frequent - 7 - 

ST28/04 DLB 2 88   6.57 3 2 2 moderate - 8 - 

ST32/05 DLB 2 88 24 6.07 6 3 2 moderate - 10 - 

A071/09 AD 1 80 10 6.33 6 3 - - - 9 0 

A108/09 AD 2 84 24 6.74 4 2 - - - 8 0 

A120/09 AD 2 85 79 6.31 6 3 - - - 16 0 

A147/10 AD 2 85 20 5.91 6 3 - - - 13 0 

A216/09 AD 2 88 44 5.95 5 3 - - - 7 0 

A267/09 AD 2 90 74 5.98 5 3 - - - 8 0 

A349/08 AD 2 86 14 6.56 6 3 - - - 8 0 

A350/09 AD 2 98 24 6.38 4 2 2 moderate - 11 0 

A37/09 AD 1 88 29 6.5 6 3 - - - 12 0 

A371/08 AD 1 82 70 7.14 4 2 - - - 9 0 

A38/11 AD 2 72 67 5.97 6 3 - - - 9 0 

A61/09 AD 2 103 12 6.37 5 3 - - - 13 0 

A7/10 AD 2 84 30 6.05 6 3 - - - 8 0 

A76/09 AD 1 97 18 6.18 5 3 3 frequent - 12 0 

A8/10 AD 2 98 25 6.05 6 3 - - - 11 0 

A92/09 AD 1 88 17 6.45 6 3 3 frequent - 7 0 
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Appendix II: NPI and MMSE values and semi-quantitative scores. 
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A011/06 Control - - - 1 0 0 0 0 

A047/02 Control - - - 1 0 0 0 0 

A048/09 Control - - - 1 0 0 0 0 

A049/03 Control - - - 1 0 0 0 0 

A063/10 Control - - - 1 0 0 0 0 

A133/95 Control - - - 1 0 0 0 0 

A134/00 Control - - - 1 0 0 0 0 

A136/10 Control - - - 1 0 0 0 0 

A153/01 Control - - - 1 0 0 0 0 

A170/00 Control - - - 1 0 0 0 0 

A185/04 Control - - - 1 0 0 0 0 

A219/97 Control - - - 1 0 0 0 0 

A223/96 Control - - - 1 0 0 0 0 

A239/95 Control - - - 1 0 0 0 0 

A283/96 Control - - - 1 0 0 0 0 

A308/09 Control - - - 1 0 0 0 0 

A31/96 Control - - - 1 0 0 0 0 

A316/95 Control - - - 1 0 0 0 0 

A320/94 Control - - - 1 0 0 0 0 

A33/96 Control - - - 1 0 0 0 0 

A346/95 Control - - - 1 0 0 0 0 

A359/08 Control - - - 1 0 0 0 0 

A401/97 Control - - - 1 0 0 0 0 

A61/96 Control - - - 1 0 0 0 0 

A94/95 Control - - - 1 0 0 0 0 

20020080 PDD 25 16 1.8 4 1 2 1 0 

20030004 PDD 19 19 0 3 2 1 0 0 

20030103 PDD 27 5 5.5 5 1 0 3 0 

20030111 PDD 21 6 1.9 5 1 0 0 0 

20030134 PDD 27 17 5 3 2 0 0 2 
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20040022 PDD 20 0 2.2 5 2 0 1 0 

20040076 PDD 16 0 2.3 5 2 1 0 1 

20040105 PDD 22 9 2.2 5 3 2 3 3 

20050096 PDD 17 19 0 3 3 1 2 1 

20050099 PDD 23 4 6.3 5 0 2 3 3 

A143/00 PDD -     9 0 0 0 0 

ST01/01 PDD - 12 2.1 4 1 0 1 0 

ST02/01 PDD - 16 0.5 4 1 2 2 0 

ST03/01 PDD - 16 1.5 4 2 2 0 2 

ST04/01 PDD - 2 3.4 5 0 0 0 3 

ST09/02 PDD - 9 2.5 5 2 0 2 1 

ST10/02 PDD - 20 1 3 0 1 2 3 

ST11/02 PDD - 25 0.3 2 3 2 1 2 

ST12/02 PDD - 29 0 2 0 0 0 0 

ST13/02 PDD - 26 0.2 2 1 1 1 1 

ST14/02 PDD - 5 2.4 5 0 1 1 0 

ST15/02 PDD - 13 3.8 4 2 0 3 2 

ST16/02 PDD - 20 1.1 3 0 2 0 0 

ST17/02 PDD - 27 -0.6 2 1 1 2 1 

ST18/02 PDD - 10 1.8 4 3 3 3 2 

ST19/02 PDD -   0 9 9 9 9 9 

ST20/02 PDD - 3 3.3 5 0 0 3 1 

ST21/03 PDD - 14 2.8 4 2 2 0 1 

ST22/02 PDD - 12 2 4 2 2 2 0 

ST23/03 PDD - 6 2.4 5 0 0 1 0 

ST24/03 PDD - 15 3.3 4 2 0 1 2 

ST25/04 PDD - 11 2.3 4 1 0 1 1 

ST29/04 PDD - 3 2.3 5 0 0 3 3 

ST30/04 PDD - 16 1.4 4 1 0 1 0 

27  7/82 DLB 24 11 3.7 4 1 9 0 9 

36  7/81 DLB 3 0 1 5 0 0 0 0 

51  7/96 DLB 12 6 4 5 0 0 0 0 

52  1/13 DLB 21 9 2.7 5 2 9 0 9 

55  2/25 DLB 28 27 0 2 0 0 1 1 

106  5/56 DLB 29 30 0 2 0 0 0 0 

20030007 DLB 21 18 1.5 3 3 1 1 2 

20030113 DLB 20 12 4 4 1 1 1 1 

20040034 DLB 14 6 4 5 3 3 1 2 
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20040085 DLB 10 88 6 9 2 1 1 2 

20050030 DLB 25 88 1 9 2 2 1 0 

20050040 DLB 19 15 4 4 0 0 1 0 

20060025 DLB 17 88 5 9 3 1 1 2 

20070009 DLB 26 12 3.5 4 3 2 2 0 

20070105 DLB 23 1 3.67 5 3 3 1 2 

20080083 DLB 11 88 88 9 2 2 0 3 

20100575 DLB 23 12 2.2 4 1 0 1 2 

333  1/8  DLB 21 17 0.42 3 0 9 0 9 

367  4/67 DLB 27 10 1.8 4 1 9 0 9 

383  5/58 DLB 14 14 -1 4 2 9 9 9 

436  2/99 DLB 22 16 2.2 4 0 1 0 0 

439      DLB 23 15 5.3 4 2 0 0 0 

470      DLB 23 18 3.3 3 1 0 0 0 

475      DLB 22 7 15 5 0 2 0 0 

495      DLB 5 7 0 5 0 1 1 1 

550  2/21 DLB 23 16 7 4 0 0 0 0 

745  4/63 DLB 14 14 14 4 2 9 0 9 

A014/07 DLB 25 24 0.5 3 9 9 9 9 

A028/10 DLB 30 10 6.67 4 9 9 9 9 

A035/08 DLB 29     9 9 9 9 9 

A040/10 DLB       9 9 9 9 9 

A046/07 DLB 21 18 0.75 3 9 9 9 9 

A053/09 DLB       9 9 9 9 9 

A055/09 DLB 25 0 8.33 5 9 9 9 9 

A072/09 DLB       9 9 9 9 9 

A084/09 DLB       9 9 9 9 9 

A092/07 DLB       9 9 9 9 9 

A109/01 DLB 27 12 7.5 4 9 9 9 9 

A148/08 DLB 24 18 3 3 9 9 9 9 

A162/07 DLB 30 30 0 2 9 9 9 9 

A190/03 DLB       9 9 9 9 9 

A196/09 DLB       9 9 9 9 9 

A204/07 DLB 29 0 2.64 5 9 9 9 9 

A229/05 DLB 18 11 7 4 9 9 9 9 

A231/06 DLB       9 9 9 9 9 

A249/06 DLB   7 88 5 9 9 9 9 

A273/05 DLB 29 29 0 2 9 9 9 9 
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A304/06 DLB 26     9 9 9 9 9 

A335/08 DLB       9 9 9 9 9 

A336/99 DLB 28 20 88 3 9 9 9 9 

C1007 
01/176 DLB 30 25 2.5 2 0 2 0 0 

ST26/04 DLB 17   88 9 9 9 9 9 

ST27/04 DLB 22 18 88 3 3 0 0 0 

ST28/04 DLB 27 20 88 3 0 3 3 3 

ST32/05 DLB 99   88 9 9 9 9 9 

A071/09 AD 23 8 15 5 0 2 1 0 

A108/09 AD 22 0 5.5 5 0 0 0 0 

A120/09 AD 10 0 5 5 0 3 3 2 

A147/10 AD 21 0 5.25 5 0 0 2 2 

A216/09 AD 25 16 3 4 1 2 3 0 

A267/09 AD 11 13 88 4 0 0 3 2 

A349/08 AD 21 3 4.5 5 0 0 2 3 

A350/09 AD 20 15 2.5 4 2 3 3 3 

A37/09 AD 22 17 1 3 2 0 0 1 

A371/08 AD 21 17 1.33 3 1 2 2 3 

A38/11 AD 10 0 5 5 0 3 2 3 

A61/09 AD     88 9 9 9 9 9 

A7/10 AD 12 6 1 5 0 2 0 1 

A76/09 AD 16 15 0.25 4 0 0 1 0 

A8/10 AD 10 0 2.5 5 0 2 2 2 

A92/09 AD 20 19 1 3 0 0 0 2 
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       Appendix III: Semi-quantitative pathology scores. 
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A011/06 Control 0 0 0 0 0 0 0 0 0 0 0 0 

A047/02 Control 0 0 0 0 0 0 0 0 0 0 0 0 

A048/09 Control 0 0 1 0 0 0 0 0 0 0 0 0 

A049/03 Control 0 0 0 0 0 0 0 0 0 0 0 0 

A063/10 Control 0 2 2 0 1 1 1 0 0 0 - 0 

A133/95 Control - - - - - - - - - - - - 

A134/00 Control 0 0 0 0 0 0 3 0 0 0 - 0 

A136/10 Control 2 0 3 3 0 0 1 0 0 0 - - 

A153/01 Control 0 0 0 0 0 0 0 0 0 0 0 0 

A170/00 Control 0 0 0 0 0 0 0 0 0 0 0 0 

A185/04 Control 1 - 1 2 0 - 0 0 0 - 0 0 

A219/97 Control 0 0 0 0 0 0 0 0 0 0 - - 

A223/96 Control 0 0 0 0 0 0 0 0 0 0 0 0 

A239/95 Control 1 3 1 1 1 1 1 1 0 0 0 0 

A283/96 Control 0 0 0 0 0 0 0 0 0 0 0 0 

A308/09 Control 1 0 1 1 0 0 0 0 0 0 - 0 

A31/96 Control 0 - 0 0 0 - 0 0 0 - 0 0 

A316/95 Control 2 0 2 1 1 0 0 0 0 0 0 0 

A320/94 Control - - - - - - - - - - - - 

A33/96 Control 0 0 0 0 0 0 0 0 0 0 - - 

A346/95 Control 1 1 1 1 0 0 0 0 0 0 0 0 

A359/08 Control 0 0 0 0 0 0 0 0 0 0 0 0 

A401/97 Control 0 0 1 0 1 0 1 0 0 0 - 0 

A61/96 Control 0 0 0 0 0 0 0 0 0 0 0 0 

A94/95 Control 0 0 0 0 0 0 0 0 0 0 0 0 

20020080 PDD 0 0 1 0 - 0 0 - 1 0 1 1 

20030004 PDD 1 0 0 0 0 1 1 0 1 3 1 1 

20030103 PDD 3 2 2 - 1 1 0 0 2 3 1 1 

20030111 PDD 2 1 1 1 0 1 0 0 1 3 2 0 

20030134 PDD 2 2 1 1 1 2 1 1 2 3 1 1 

20040022 PDD 3 1 - - 1 1 2 1 1 3 1 1 

20040076 PDD 2 1 1 2 0 1 1 1 1 1 2 2 

20040105 PDD 2 3 2 2 2 2 2 2 1 2 2 3 
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20050096 PDD 1 3 1 1 1 2 0 0 1 2 2 1 

20050099 PDD 0 1 1 2 1 1 1 1 2 2 1 1 

A143/00 PDD 1 1 1 1 1 0 1 1 0 1 0 0 

ST01/01 PDD 3 0 1 2 1 0 1 1 1 1 2 1 

ST02/01 PDD 0 0 0 0 1 0 0 0 0 2 1 1 

ST03/01 PDD 1 0 0 1 0 0 0 0 1 3 2 0 

ST04/01 PDD 3 3 1 3 1 1 1 0 2 3 2 0 

ST09/02 PDD 1 2 - 2 0 0 0 0 0 1 1 0 

ST10/02 PDD 1 1 0 0 0 0 0 1 1 3 1 0 

ST11/02 PDD 0 0 1 1 0 0 0 1 0 2 1 0 

ST12/02 PDD 0 0 - 0 1 0 0 0 0 1 1 0 

ST13/02 PDD 1 1 1 1 0 0 1 0 1 2 1 0 

ST14/02 PDD 0 1 1 1 1 1 1 1 1 3 0 0 

ST15/02 PDD 0 0 0 0 0 0 0 0 0 2 1 1 

ST16/02 PDD 0 0 0 0 0 0 0 0 0 2 0 0 

ST17/02 PDD 2 3 1 3 0 0 0 1 0 1 0 0 

ST18/02 PDD 3 2 1 0 0 1 0 0 0 0 0 0 

ST19/02 PDD 1 1 0 1 0 0 0 0 0 0 0 0 

ST20/02 PDD 2 1 1 3 1 1 0 1 2 2 2 1 

ST21/03 PDD 3 1 1 3 0 0 0 0 0 2 0 0 

ST22/02 PDD 3 0 1 3 1 0 0 0 0 1 0 0 

ST23/03 PDD 3 1 1 2 0 0 1 1 1 1 0 1 

ST24/03 PDD 2 1 1 1 1 0 1 1 3 3 3 2 

ST25/04 PDD - 0 0 - - 1 0 0 0 0 0 0 

ST29/04 PDD 0 0 0 0 0 0 0 0 1 3 0 0 

ST30/04 PDD 0 0 0 1 1 1 0 1 0 2 0 1 

27  7/82 DLB 2 - 3 3 1 - 2 1 0 3 3 2 

36  7/81 DLB 3 - 3 2 1 - 2 1 2 3 3 2 

51  7/96 DLB 3 - 3 3 3 - 3 3 1 3 3 0 

52  1/13 DLB 1 0 2 2 0 0 0 0 2 2 3 2 

55  2/25 DLB 1 1 1 1 1 2 0 1 1 3 1 0 

106  5/56 DLB 2 3 2 1 1 3 1 0 0 2 0 0 

20030007 DLB - 2 1 2 0 1 1 0 3 3 1 1 

20030113 DLB 3 3 1 1 0 1 0 1 2 - 2 2 
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20040034 DLB - 1 1 3 3 3 2 3 - 3 2 3 

20040085 DLB 2 2 2 1 1 1 2 2 2 2 2 1 

20050030 DLB 2 3 2 3 2 3 1 2 1 1 0 1 

20050040 DLB 0 0 0 0 2 1 2 1 2 2 - 2 

20060025 DLB 2 2 2 1 1 1 1 1 1 3 1 1 

20070009 DLB 2 1 1 1 1 1 1 1 1 2 1 1 

20070105 DLB 2 2 3 3 1 2 1 1 2 3 2 2 

20080083 DLB 2 - 1 1 2 2 3 2 2 3 3 1 

20100575 DLB 0 0 0 0 0 1 0 1 1 2 1 1 

333  1/8  DLB 3 1 3 3 2 2 1 1 0 2 0 0 

367  4/67 DLB 1 2 2 1 0 2 1 0 0 2 1 1 

383  5/58 DLB 1 0 0 0 0 0 0 0 0 2 1 0 

436  2/99 DLB 0 0 0 0 0 0 0 0 1 2 1 0 

439      DLB 1 2 2 2 1 2 1 0 3 3 3 3 

470      DLB 3 0 3 3 1 0 1 1 1 3 2 1 

475      DLB 1 2 3 1 0 1 1 1 0 2 3 1 

495      DLB 2 1 2 2 1 1 1 1 1 3 2 1 

550  2/21 DLB 3 3 3 2 1 3 2 1 1 3 2 1 

745  4/63 DLB 0 - 0 0 0 0 0 0 2 3 2 1 

A014/07 DLB 3 3 3 3 3 3 3 3 3 3 3 3 

A028/10 DLB 1 0 3 0 1 1 1 1 2 3 2 2 

A035/08 DLB 3 3 1 3 1 1 1 2 3 3 3 3 

A040/10 DLB 2 2 2 3 1 1 1 1 3 2 2 2 

A046/07 DLB 2 0 2 0 0 0 1 0 2 2 2 2 

A053/09 DLB 3 2 3 2 1 3 3 2 0 0 0 0 

A055/09 DLB 3 3 3 3 2 3 3 2 3 3 2 3 

A072/09 DLB 1 1 3 1 1 2 2 1 1 3 2 2 

A084/09 DLB 2 3 3 2 1 3 2 3 2 3 2 1 

A092/07 DLB 3 1 3 3 1 2 3 1 3 2 3 3 

A109/01 DLB 2 0 1 1 1 0 1 0 3 3 3 3 

A148/08 DLB 3 1 2 1 1 1 1 1 1 3 1 1 

A162/07 DLB 3 0 1 2 0 1 3 0 1 1 0 0 

A190/03 DLB 0 2 1 1 1 1 1 1 3 1 2 2 

A196/09 DLB 1 1 3 1 1 2 3 1 3 3 3 3 
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A204/07 DLB 0 0 0 0 0 0 0 0 2 2 1 2 

A229/05 DLB 0 1 2 0 1 0 1 1 3 2 3 3 

A231/06 DLB 2 2 2 2 1 1 1 1 - 1 1 1 

A249/06 DLB 1 1 1 1 0 1 1 0 2 3 3 1 

A273/05 DLB 3 2 3 3 0 0 0 0 2 3 0 1 

A304/06 DLB 1 1 1 1 1 0 1 1 3 3 3 1 

A335/08 DLB 1 0 1 0 0 0 1 0 0 0 0 0 

A336/99 DLB 1 0 1 1 1 0 1 1 3 3 3 2 

C1007 
01/176 DLB 0 0 0 0 0 1 0 0 1 3 1 1 

ST26/04 DLB 1 1 1 2 1 1 2 0 - 0 - - 

ST27/04 DLB 2 2 1 1 1 1 2 1 2 2 3 1 

ST28/04 DLB 0 0 1 0 0 0 0 1 0 0 0 0 

ST32/05 DLB 3 1 1 2 3 2 3 3 1 1 0 1 

A071/09 AD 3 1 3 3 3 0 3 3 0 0 0 0 

A108/09 AD 3 1 3 3 2 1 3 3 0 0 0 0 

A120/09 AD 3 3 3 3 3 3 3 3 0 0 1 0 

A147/10 AD 3 2 3 3 3 1 3 3 1 0 - 0 

A216/09 AD 3 2 3 3 3 3 3 3 0 0 0 0 

A267/09 AD 3 - 3 3 3 1 3 3 0 0 0 0 

A349/08 AD 3 1 3 3 2 1 1 2 0 0 0 0 

A350/09 AD 1 0 1 1 2 0 2 2 0 0 0 0 

A37/09 AD 3 0 3 3 2 0 3 3 0 0 0 0 

A371/08 AD 3 1 3 2 2 0 3 3 0 0 0 0 

A38/11 AD 3 3 3 3 3 3 3 3 0 2 0 0 

A61/09 AD 3 3 3 3 2 2 3 3 0 0 0 0 

A7/10 AD 3 1 2 3 3 3 3 3 0 1 1 1 

A76/09 AD 3 2 3 2 3 2 3 3 1 2 1 1 

A8/10 AD 3 2 3 1 2 3 3 2 0 0 0 0 

A92/09 AD 2 0 3 3 3 0 3 3 0 0 0 0 
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   Appendix IV: Medication details according to clinical diagnosis. 

Control 

 Medication 

classification 

according to 

BNF coding (first 

medication) 

Medication 

classification 

according to BNF 

coding (second 

medication if 

applicable) 

Medication 

classification 

according to BNF 

coding (3rd 

medication etc) 

Medication 

classification 

according to BNF 

coding (4th etc) 

Medication 

classification 

according to 

BNF coding (5th 

etc) 

N 
Valid 0 0 0 0 0 

Missing 25 25 25 25 25 

  

PDD 

 Medication 

classification 

according to 

BNF coding (first 

medication) 

Medication 

classification 

according to BNF 

coding (second 

medication if 

applicable) 

Medication 

classification 

according to BNF 

coding (3rd 

medication etc) 

Medication 

classification 

according to BNF 

coding (4th etc) 

Medication 

classification 

according to 

BNF coding (5th 

etc) 

N 
Valid 31 21 13 5 2 

Missing 3 13 21 29 32 



 

 

i 

 

 

 

Medication classification according to BNF coding (first medication) 

 Frequency Percent Valid Percent Cumulative 

Percent 

Valid 

donezepil 8 23.5 25.8 25.8 

anti-parkinsonism 23 67.6 74.2 100.0 

Total 31 91.2 100.0  

Missi

ng 
System 

3 8.8   

Total 34 100.0   

 

Medication classification according to BNF coding (second medication if applicable) 

 Frequency Percent Valid Percent Cumulative 

Percent 

Valid 

donezepil 1 2.9 4.8 4.8 

anti-muscarinic for PD 1 2.9 4.8 9.5 

anti-parkinsonism 8 23.5 38.1 47.6 

anti-depressant 9 26.5 42.9 90.5 

anti-psychotic drugs 2 5.9 9.5 100.0 

Total 21 61.8 100.0  

Missi

ng 
System 

13 38.2   

Total 34 100.0   

 

 

 

 

 

 



 

 

ii 

 

 

 

 

Medication classification according to BNF coding (3rd medication etc) 

 Frequency Percent Valid Percent Cumulative 

Percent 

Valid 

anti-depressant 6 17.6 46.2 46.2 

anti-psychotic drugs 3 8.8 23.1 69.2 

anxiolytic 2 5.9 15.4 84.6 

hypnotic 2 5.9 15.4 100.0 

Total 13 38.2 100.0  

Missi

ng 
System 

21 61.8   

Total 34 100.0   

 

 

Medication classification 

according to BNF coding 

(4th etc) 

 Frequency Percent Valid Percent Cumulative 

Percent 

Valid 

anti-psychotic drugs 3 8.8 60.0 60.0 

hypnotic 2 5.9 40.0 100.0 

Total 5 14.7 100.0  

Missi

ng 
System 

29 85.3   

Total 34 100.0   

 



 

 

iii 

 

 

 

 

Medication classification according to BNF coding (5th etc) 

 Frequency Percent Valid Percent Cumulative 

Percent 

Valid hypnotic 2 5.9 100.0 100.0 

Missi

ng 
System 

32 94.1   

Total 34 100.0   

 

 

DLB 

 Medication 

classification 

according to 

BNF coding 

(first 

medication) 

Medication 

classification 

according to 

BNF coding 

(second 

medication if 

applicable) 

Medication 

classification 

according to 

BNF coding 

(3rd medication 

etc) 

Medication 

classification 

according to 

BNF coding 

(4th etc) 

Medication 

classification 

according to 

BNF coding 

(5th etc) 

N 
Valid 38 27 11 3 1 

Missing 17 28 44 52 54 

 

 

 

 

 

 

 

 

 



 

 

iv 

 

Medication classification according to BNF coding (first medication) 

 Frequency Percent Valid Percent Cumulative 

Percent 

Valid 

9.00 1 1.8 2.6 2.6 

Tacrine 4 7.3 10.5 13.2 

donezepil 11 20.0 28.9 42.1 

anti-muscarinic for PD 2 3.6 5.3 47.4 

anti-parkinsonism 7 12.7 18.4 65.8 

anti-depressant 3 5.5 7.9 73.7 

anti-psychotic drugs 6 10.9 15.8 89.5 

anxiolytic 2 3.6 5.3 94.7 

hypnotic 2 3.6 5.3 100.0 

Total 38 69.1 100.0  

Missi

ng 
System 

17 30.9   

Total 55 100.0   

 

 

 

 

 

 

 

 

 

 

 

 



 

 

v 

 

Medication classification according to BNF coding (3rd medication etc) 

 Frequency Percent Valid Percent Cumulative 

Percent 

Valid 

59.00 1 1.8 9.1 9.1 

Tacrine 1 1.8 9.1 18.2 

Ginkgo 1 1.8 9.1 27.3 

anti-parkinsonism 1 1.8 9.1 36.4 

anti-depressant 2 3.6 18.2 54.5 

82.00 1 1.8 9.1 63.6 

anxiolytic 3 5.5 27.3 90.9 

hypnotic 1 1.8 9.1 100.0 

Total 11 20.0 100.0  

Missing System 44 80.0   

Total 55 100.0   

 

Medication classification according to BNF coding (4th etc) 

 Frequency Percent Valid Percent Cumulative 

Percent 

Valid 

memantine 1 1.8 33.3 33.3 

anti-depressant 1 1.8 33.3 66.7 

hypnotic 1 1.8 33.3 100.0 

Total 3 5.5 100.0  

Missing System 52 94.5   

Total 55 100.0   
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Medication classification according to BNF coding (5th etc) 

 Frequency Percent Valid Percent Cumulative 

Percent 

Valid anti-muscarinic for PD 1 1.8 100.0 100.0 

Missing System 54 98.2   

Total 55 100.0   
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Appendix V: Proteasome subunits (α3, α6 and RPT6) protein values from semi-

quantification of Western blotting and data transformation in BA9. 
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A011/06 Control 0.71 -0.4 0.58 -0.23 0.77 1.3 0.9 0.27 1.27 0.1 1.1 

A047/02 Control 0.73 -0.5 0.5 -0.3 0.7 1 1 0.4 1.4 0.14 1.14 

A048/09 Control 0.97 -0.1 0.95 -0.02 0.98 1.1 1 0.29 1.29 0.11 1.11 

A049/03 Control 1.03 -0.1 0.88 -0.06 0.94 1.4 1.1 0.4 1.4 0.15 1.15 

A063/10 Control 0.98 -0.1 0.91 -0.04 0.96 1.2 0.6 0.03 1.03 0.01 1.01 

A133/95 Control 1.05 0.11 1.11 0.05 1.05 1.3 0.7 0.08 1.08 0.03 1.03 

A134/00 Control 1.5 0.49 1.49 0.17 1.17 1.3 1.1 0.42 1.42 0.15 1.15 

A136/10 Control 1.11 0 1 0 1 1.5 1.4 0.75 1.75 0.24 1.24 

A153/01 Control 0.93 -0.2 0.82 -0.09 0.91 1.3 0.9 0.16 1.16 0.06 1.06 

A170/00 Control 1.04 -0 0.98 -0.01 0.99 1.3 0.9 0.19 1.19 0.08 1.08 

A185/04 Control 1.03 -0 0.96 -0.02 0.98 1.3 1 0.35 1.35 0.13 1.13 

A219/97 Control 0.9 -0.3 0.68 -0.17 0.83 1.2 1.2 0.51 1.51 0.18 1.18 

A223/96 Control 1.33 0.3 1.3 0.12 1.12 1.5 1 0.35 1.35 0.13 1.13 

A239/95 Control 1.07 -0 0.98 -0.01 0.99 1.2 1 0.28 1.28 0.11 1.11 

A283/96 Control 1.25 0.17 1.17 0.07 1.07 1 1 0.28 1.28 0.11 1.11 

A308/09 Control 1.13 0.09 1.09 0.04 1.04 1.4 1.2 0.43 1.43 0.16 1.16 

A31/96 Control 0.95 -0.1 0.95 -0.02 0.98 1.5 0.9 0.19 1.19 0.08 1.08 

A316/95 Control 1.28 0.17 1.17 0.07 1.07 1.3 1.3 0.59 1.59 0.2 1.2 

A320/94 Control 0.91 -0.2 0.85 -0.07 0.93 1.5 0.5 -0.17 0.83 -0.08 0.92 

A33/96 Control 0.87 -0.3 0.67 -0.18 0.82 1.4 1 0.46 1.46 0.16 1.16 

A346/95 Control 0.81 -0.4 0.62 -0.21 0.79 1.2 1 0.35 1.35 0.13 1.13 

A359/08 Control 0.91 -0.2 0.82 -0.09 0.91 1.2 1.2 0.57 1.57 0.2 1.2 

A401/97 Control 1.43 0.21 1.21 0.08 1.08 1.4 1 0.35 1.35 0.13 1.13 

A94/95 Control 1.2 0.01 1.01 0 1 1.2 0.8 0.12 1.12 0.05 1.05 

20020080 PDD 0.74 -0.4 0.56 -0.25 0.75 1.3 0.5 -0.27 0.73 -0.13 0.87 

20030004 PDD 0.98 -0.1 0.93 -0.03 0.97 1.1 0.5 -0.2 0.8 -0.1 0.9 

20030103 PDD 1.14 -0.1 0.86 -0.07 0.93 0.9 0.5 -0.17 0.83 -0.08 0.92 

20030134 PDD 0.76 -0.3 0.66 -0.18 0.82 0.8 0.6 -0.07 0.93 -0.03 0.97 

20040022 PDD 0.74 -0.3 0.73 -0.14 0.86 1.1 0.7 -0.01 0.99 -0.01 0.99 

20040076 PDD 1.81 0.71 1.71 0.23 1.23 1.2 0.6 -0.12 0.88 -0.06 0.94 
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20040105 PDD 1.76 0.57 1.57 0.2 1.2 1 0.7 -0.01 0.99 0 1 

20050096 PDD 1.54 0.26 1.26 0.1 1.1 1 0.6 -0.11 0.89 -0.05 0.95 

20050099 PDD 1.72 0.49 1.49 0.17 1.17 1.1 0.3 -0.27 0.73 -0.14 0.86 

A143/00 PDD 1.12 -0.1 0.91 -0.04 0.96 1.2 0.7 0.11 1.11 0.04 1.04 

ST01/01 PDD 0.95 -0.1 0.9 -0.05 0.95 1.7 0.8 0.12 1.12 0.05 1.05 

ST02/01 PDD 0.93 -0.2 0.83 -0.08 0.92 1.7 0.8 0.1 1.1 0.04 1.04 

ST03/01 PDD 0.74 -0.4 0.6 -0.22 0.78 1.4 0.7 0.04 1.04 0.02 1.02 

ST04/01 PDD 0.61 -0.4 0.61 -0.22 0.78 1.4 0.7 0.09 1.09 0.04 1.04 

ST09/02 PDD 0.71 -0.3 0.71 -0.15 0.85 1.4 0.7 0.04 1.04 0.02 1.02 

ST10/02 PDD 0.9 -0.2 0.79 -0.1 0.9 1 0.8 0.13 1.13 0.05 1.05 

ST11/02 PDD 0.96 -0.1 0.92 -0.03 0.97 1.4 0.8 0.05 1.05 0.02 1.02 

ST12/02 PDD 1.4 0.27 1.26 0.1 1.1 1.1 0.7 0.02 1.02 0.01 1.01 

ST13/02 PDD 0.76 -0.2 0.77 -0.11 0.89 1.1 0.7 0.02 1.02 0.01 1.01 

ST14/02 PDD 1.89 0.8 1.8 0.25 1.25 1.4 0.6 -0.07 0.93 -0.03 0.97 

ST15/02 PDD 0.67 -0.6 0.41 -0.39 0.61 0.9 0.4 -0.27 0.73 -0.14 0.86 

ST16/02 PDD 0.97 -0.1 0.9 -0.04 0.96 1.3 0.4 -0.27 0.73 -0.13 0.87 

ST17/02 PDD 0.69 -0.3 0.72 -0.15 0.85 1.1 0.4 -0.29 0.71 -0.15 0.85 

ST18/02 PDD 0.38 -0.6 0.38 -0.42 0.58 1.4 0.4 -0.24 0.76 -0.12 0.88 

ST19/02 PDD 0.64 -0.5 0.46 -0.34 0.66 1.2 0.5 -0.17 0.83 -0.08 0.92 

ST20/02 PDD 0.86 -0.3 0.73 -0.14 0.86 1.3 0.4 -0.21 0.79 -0.1 0.9 

ST21/03 PDD 0.6 -0.5 0.5 -0.3 0.7 1.1 0.4 -0.3 0.7 -0.15 0.85 

ST22/02 PDD 0.7 -0.2 0.81 -0.09 0.91 1.3 0.4 -0.27 0.73 -0.13 0.87 

ST23/03 PDD 0.73 -0.3 0.71 -0.15 0.85 1.5 0.5 -0.17 0.83 -0.08 0.92 

ST24/03 PDD 0.7 -0.4 0.61 -0.22 0.78 1.5 0.5 -0.09 0.91 -0.04 0.96 

ST25/04 PDD 1.39 0.24 1.24 0.09 1.09 1.4 0.3 -0.3 0.7 -0.16 0.84 

ST29/04 PDD 0.48 -0.7 0.29 -0.54 0.46 1.1 0.4 -0.22 0.78 -0.11 0.89 

ST30/04 PDD 1.2 0.18 1.18 0.07 1.07 1.1 0.4 -0.28 0.72 -0.14 0.86 

27  7/82 DLB 0.79 -0.3 0.66 -0.18 0.82 1.2 0.6 -0.03 0.98 -0.01 0.99 

51  7/96 DLB 0.68 -0.4 0.57 -0.24 0.76 1.2 0.6 -0.08 0.92 -0.04 0.96 

52  1/13 DLB 0.72 -0.5 0.55 -0.26 0.74 1.1 0.7 0.04 1.04 0.02 1.02 

55  2/25 DLB 1.69 0.66 1.66 0.22 1.22 1.1 0.7 -0.01 0.99 0 1 

106  5/56 DLB 0.88 -0.1 0.88 -0.06 0.94   0.3 -0.33 0.67 -0.17 0.83 

20030007 DLB 2.15 0.89 1.89 0.28 1.28 1.1 0.8 0.18 1.18 0.07 1.07 
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20030113 DLB 1.31 0.08 1.08 0.03 1.03 1.3 0.7 -0.02 0.98 -0.01 0.99 

20040034 DLB 1.53 0.2 1.2 0.08 1.08 1.3 0.7 -0.02 0.98 -0.01 0.99 

20040085 DLB 1.26 -0.1 0.95 -0.02 0.98 1.1 0.5 -0.21 0.79 -0.1 0.9 

20050030 DLB 1.77 0.47 1.47 0.17 1.17 1.4 0.7 0.05 1.05 0.02 1.02 

20050040 DLB 1.06 -0.2 0.82 -0.09 0.91 1.2 0.6 -0.09 0.91 -0.04 0.96 

20070009 DLB 0.92 -0.4 0.58 -0.24 0.76 1.1 0.8 0.07 1.07 0.03 1.03 

20070105 DLB 1.57 0.26 1.26 0.1 1.1 1.2 1.1 0.36 1.36 0.13 1.13 

20080083 DLB 1.67 0.35 1.35 0.13 1.13 1.7 0.7 0.06 1.06 0.03 1.03 

20100575 DLB 1.3 0.05 1.05 0.02 1.02 1.5 1.2 0.49 1.49 0.17 1.17 

333  1/8  DLB 0.89 -0.3 0.7 -0.15 0.85 1.1 0.6 -0.04 0.97 -0.02 0.98 

367  4/67 DLB 0.78 -0.3 0.68 -0.17 0.83 1 0.4 -0.18 0.82 -0.08 0.92 

383  5/58 DLB 1.09 -0.1 0.85 -0.07 0.93 1.4 0.7 0.08 1.08 0.04 1.04 

436  2/99 DLB 1.41 0.24 1.24 0.09 1.09 1.1 0.7 0.04 1.04 0.02 1.02 

439      DLB 1.27 0.3 1.3 0.11 1.11 1.5 0.8 0.05 1.05 0.02 1.02 

470      DLB 0.92 -0.2 0.83 -0.08 0.92 0.8 0.6 -0.02 0.98 -0.01 0.99 

475      DLB 0.73 -0.4 0.6 -0.22 0.78 1.1 0.4 -0.27 0.73 -0.13 0.87 

495      DLB 0.69 -0.3 0.67 -0.18 0.82 1.4 0.4 -0.23 0.77 -0.11 0.89 

550  2/21 DLB 0.79 -0.2 0.8 -0.09 0.91 1.4 0.6 -0.04 0.96 -0.02 0.98 

745  4/63 DLB 0.91 -0.2 0.83 -0.08 0.92 1.2 0.4 -0.31 0.69 -0.16 0.84 

A014/07 DLB 0.98 -0 0.99 0 1 1.3 0.5 -0.16 0.84 -0.08 0.92 

A028/10 DLB 1.19 0.12 1.12 0.05 1.05 1 0.4 -0.24 0.76 -0.12 0.88 

A035/08 DLB 1.49 0.31 1.31 0.12 1.12 1.2 0.8 0.14 1.14 0.06 1.06 

A040/10 DLB 1.02 -0.2 0.83 -0.08 0.92 1.1 0.7 0.05 1.05 0.02 1.02 

A046/07 DLB 1.51 0.43 1.43 0.15 1.15 1.4 0.5 -0.17 0.83 -0.08 0.92 

A053/09 DLB 1.18 0 1 0 1 1.3 0.5 -0.07 0.93 -0.03 0.97 

A055/09 DLB 1.83 0.69 1.69 0.23 1.23 1.7 0.8 0.13 1.13 0.05 1.05 

A072/09 DLB 1.7 0.68 1.68 0.22 1.22 1.3 0.5 -0.06 0.94 -0.02 0.98 

A084/09 DLB 1.43 0.17 1.17 0.07 1.07 1.4 0.5 -0.19 0.81 -0.09 0.91 

A092/07 DLB 1.65 0.55 1.55 0.19 1.19 1.4 0.6 0 1 0 1 

A109/01 DLB 1.23 0.18 1.18 0.07 1.07 1.3 0.6 -0.18 0.82 -0.08 0.92 

A190/03 DLB 0.97 -0.2 0.81 -0.09 0.91 1.4 0.6 -0.04 0.96 -0.02 0.98 

A196/09 DLB 1.49 0.43 1.43 0.16 1.16 1.3 0.6 -0.05 0.95 -0.02 0.98 

A204/07 DLB 1.73 0.7 1.7 0.23 1.23 1.3 0.3 -0.36 0.64 -0.2 0.8 
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A229/05 DLB 1.34 0.36 1.36 0.13 1.13 1.3 0.6 -0.1 0.9 -0.05 0.95 

A231/06 DLB 1.15 0.17 1.17 0.07 1.07 1.1 0.5 -0.19 0.81 -0.09 0.91 

A273/05 DLB 2.3 1.03 2.03 0.31 1.31 1.3 0.5 -0.17 0.83 -0.08 0.92 

A304/06 DLB 1.63 0.57 1.57 0.2 1.2 1.2 0.5 -0.1 0.9 -0.04 0.96 

A335/08 DLB 1 -0 0.99 0 1 1 1.3 0.63 1.63 0.21 1.21 

A336/99 DLB 0.58 -0.3 0.72 -0.14 0.86 0.9 0.7 -0.02 0.98 -0.01 0.99 

01/176 DLB 1.85 0.83 1.83 0.26 1.26 1 0.4 -0.25 0.75 -0.13 0.87 

ST26/04 DLB 1.99 0.89 1.89 0.28 1.28 1.7 0.6 -0.01 0.99 0 1 

ST27/04 DLB 2.15 1.07 2.07 0.32 1.32 1.6 0.4 -0.25 0.75 -0.12 0.88 

ST28/04 DLB 0.89 -0.2 0.82 -0.09 0.91 1.6 0.5 -0.15 0.85 -0.07 0.93 

ST32/05 DLB 1.2 -0 0.99 -0.01 0.99 0.9 0.5 -0.08 0.92 -0.04 0.96 

A071/09 AD 0.88 -0.3 0.74 -0.13 0.87 0.7 0.4 -0.27 0.73 -0.13 0.87 

A108/09 AD 0.89 -0.1 0.87 -0.06 0.94 1.1 0.5 -0.12 0.88 -0.05 0.95 

A120/09 AD 1.27 0.13 1.13 0.05 1.05 1 0.6 -0.04 0.96 -0.02 0.98 

A147/10 AD 0.93 -0.3 0.67 -0.17 0.83 1 0.4 -0.28 0.72 -0.14 0.86 

A216/09 AD 0.75 -0.5 0.5 -0.3 0.7 0.7 0.5 -0.1 0.9 -0.05 0.95 

A267/09 AD 1.05 -0.2 0.81 -0.09 0.91 1 0.6 0.03 1.03 0.01 1.01 

A349/08 AD 0.8 -0.3 0.73 -0.14 0.86 0.9 0.6 -0.08 0.92 -0.04 0.96 

A350/09 AD 0.87 -0.3 0.75 -0.13 0.87 1 0.6 -0.01 0.99 0 1 

A37/09 AD 0.9 -0.2 0.81 -0.09 0.91 0.8 0.6 -0.04 0.96 -0.02 0.98 

A371/08 AD 0.74 -0.2 0.84 -0.08 0.92 0.8 0.4 -0.24 0.76 -0.12 0.88 

A38/11 AD 1.26 0.02 1.02 0.01 1.01 0.8 0.6 -0.16 0.84 -0.08 0.92 

A61/09 AD 0.93 -0.2 0.8 -0.09 0.91 1.1 0.5 -0.06 0.94 -0.03 0.97 

A7/10 AD 1.16 -0.1 0.94 -0.03 0.97 1 0.2 -0.48 0.52 -0.28 0.72 

A76/09 AD 1.23 0.05 1.05 0.02 1.02 1 0.6 -0.01 0.99 0 1 

A8/10 AD 1.44 0.22 1.22 0.09 1.09 1.1 0.6 0.07 1.07 0.03 1.03 

A92/09 AD 0.93 -0.2 0.83 -0.08 0.92 0.8 0.7 0.1 1.1 0.04 1.04 
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Appendix VI: Proteasome subunits (α3, α6 and RPT6) protein values from semi-

quantification of Western blotting and data transformation in BA24. 
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A011/06 Control 0.83 -0.23 0.8 0.88 0.85 -0.1 0.93 0.8 0.07 1.07 0.03 1.03 

A048/09 Control 1.16 0.22 1.2 1.11 1.21 0.1 1.08 0.79 0.05 1.05 0.02 1.02 

A049/03 Control 1.06 -0.04 1 0.98 0.99 0 1 0.71 -0.05 0.95 -0.02 0.98 

A063/10 Control 1.07 0.08 1.1 1.04 0.99 0 1 0.71 0.05 1.05 0.02 1.02 

A133/95 Control 0.92 0.09 1.1 1.04 1.18 0.1 1.07 0.91 0.18 1.18 0.07 1.07 

A134/00 Control 1.06 0.14 1.1 1.07 0.74 -0.1 0.87 0.63 -0.19 0.81 -0.09 0.91 

A136/10 Control 1.04 -0 1 1 1.25 0.1 1.1 0.95 0.27 1.27 0.1 1.1 

A153/01 Control 1.05 0 1 1 1.28 0.1 1.11 0.86 0.04 1.04 0.02 1.02 

A170/00 Control 0.94 -0.04 1 0.98 0.96 -0 0.98 1.35 0.54 1.54 0.19 1.19 

A185/04 Control 0.8 -0.19 0.8 0.9 1.03 0 1.01 0.76 0.04 1.04 0.02 1.02 

A223/96 Control 1.05 0.11 1.1 1.05 1.04 0 1.02 0.75 -0.06 0.94 -0.03 0.97 

A239/95 Control 0.78 -0.24 0.8 0.87 0.75 -0.1 0.88 0.71 -0.04 0.96 -0.02 0.98 

A283/96 Control 1.49 0.48 1.5 1.22 0.98 -0 0.99 0.92 0.15 1.15 0.06 1.06 

A308/09 Control 1.11 0.15 1.2 1.07 1.02 0 1.01 0.54 -0.17 0.83 -0.08 0.92 

A31/96 Control 0.7 -0.21 0.8 0.89 0.87 -0.1 0.94 0.78 0.05 1.05 0.02 1.02 

A316/95 Control 0.83 -0.21 0.8 0.89 1.05 0 1.02 0.69 -0.06 0.94 -0.03 0.97 

A320/94 Control 1.02 0.03 1 1.02 1.08 0 1.03 0.62 0.01 1.01 0 1 

A33/96 Control 1.04 -0.12 0.9 0.94 0.77 -0.1 0.89 0.59 -0.08 0.92 -0.04 0.96 

A346/95 Control 1.02 -0.12 0.9 0.94 1.02 0 1.01 1.26 0.46 1.46 0.17 1.17 

A359/08 Control 0.75 -0.27 0.7 0.86 0.75 -0.1 0.88 0.89 0.11 1.11 0.04 1.04 

A401/97 Control 0.9 -0.28 0.7 0.85 1 0 1 1.81 1.07 2.07 0.32 1.32 

A61/96 Control 0.89 -0.01 1 1 1.09 0 1.04 1.14 0.37 1.37 0.14 1.14 

A94/95 Control 0.98 -0.16 0.8 0.91 1.03 0 1.01 0.63 -0.13 0.87 -0.06 0.94 

20020080 PDD 0.95 -0.18 0.8 0.91 1.35 0.1 1.13 0.71 -0.08 0.92 -0.04 0.96 

20030004 PDD 0.96 -0.01 1 0.99 0.96 -0 0.98 0.88 0.15 1.15 0.06 1.06 

20030103 PDD 1.1 -0.16 0.8 0.92 1.35 0.1 1.13 0.8 0.04 1.04 0.02 1.02 

20030111 PDD 1.25 0.03 1 1.02 0.99 0 1 0.83 0.09 1.09 0.04 1.04 

20030134 PDD 0.74 -0.29 0.7 0.84 0.89 -0.1 0.95 0.82 0.08 1.08 0.03 1.03 
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20040022 PDD 0.62 -0.3 0.7 0.84 0.75 -0.1 0.88 0.42 -0.34 0.66 -0.18 0.82 

20040076 PDD 0.76 -0.28 0.7 0.85 1.28 0.1 1.11 0.51 -0.28 0.72 -0.14 0.86 

20040105 PDD 1.65 0.51 1.5 1.23 1.56 0.2 1.19 0.8 -0.01 0.99 0 1 

20050096 PDD 1.07 -0.19 0.8 0.9 1.35 0.1 1.13 0.83 0.07 1.07 0.03 1.03 

20050099 PDD 0.84 -0.36 0.6 0.8 1.04 0 1.02 0.53 -0.16 0.84 -0.07 0.93 

ST01/01 PDD 0.51 -0.46 0.5 0.73 0.97 -0 0.99 0.76 -0.02 0.98 -0.01 0.99 

ST02/01 PDD 0.55 -0.48 0.5 0.72 1.04 0 1.02 0.77 0.02 1.02 0.01 1.01 

ST03/01 PDD 0.69 -0.4 0.6 0.78 1.18 0.1 1.07 0.77 0.02 1.02 0.01 1.01 

ST04/01 PDD 0.51 -0.4 0.6 0.78 1.11 0.1 1.05         

ST09/02 PDD 0.57 -0.34 0.7 0.81 1.12 0.1 1.05 0.75 0.08 1.08 0.03 1.03 

ST10/02 PDD 0.67 -0.37 0.6 0.8 1.28 0.1 1.11 0.81 0.03 1.03 0.01 1.01 

ST11/02 PDD 0.49 -0.46 0.5 0.73 1.13 0.1 1.05 0.75 0.05 1.05 0.02 1.02 

ST12/02 PDD 0.48 -0.6 0.4 0.64 1.21 0.1 1.08 1.16 0.39 1.39 0.14 1.14 

ST13/02 PDD 0.69 -0.2 0.8 0.89 1.29 0.1 1.11 0.83 0.06 1.06 0.03 1.03 

ST14/02 PDD 1.01 -0.01 1 0.99 1.68 0.2 1.23 1.03 0.25 1.25 0.1 1.1 

ST15/02 PDD 0.48 -0.75 0.3 0.5 0.65 -0.2 0.81 0.88 0.21 1.21 0.08 1.08 

ST16/02 PDD 0.58 -0.41 0.6 0.77 1.11 0.1 1.05 0.94 0.17 1.17 0.07 1.07 

ST17/02 PDD 1.12 0.24 1.2 1.12 1.47 0.2 1.17 0.79 -0.02 0.98 -0.01 0.99 

ST18/02 PDD 0.72 -0.19 0.8 0.9 1.22 0.1 1.09 1.28 0.52 1.52 0.18 1.18 

ST19/02 PDD 0.91 -0.22 0.8 0.88 1.53 0.2 1.18 1 0.23 1.23 0.09 1.09 

ST20/02 PDD 0.63 -0.44 0.6 0.75 1.23 0.1 1.09 1.11 0.36 1.36 0.13 1.13 

ST21/03 PDD 1.21 0.17 1.2 1.08 1.82 0.3 1.26 1.69 0.91 1.91 0.28 1.28 

ST22/02 PDD 0.59 -0.18 0.8 0.91 0.99 0 1 1.02 0.24 1.24 0.09 1.09 

ST23/03 PDD 0.82 -0.11 0.9 0.94 1.33 0.1 1.12 1.58 0.82 1.82 0.26 1.26 

ST24/03 PDD 0.58 -0.44 0.6 0.75 1.04 0 1.02 1.69 0.91 1.91 0.28 1.28 

ST25/04 PDD 0.73 -0.36 0.6 0.8 1.41 0.2 1.15 0.94 0.16 1.16 0.07 1.07 

ST29/04 PDD 0.87 -0.27 0.7 0.85 1.75 0.2 1.24 1.09 0.33 1.33 0.12 1.12 

ST30/04 PDD 0.6 -0.34 0.7 0.81 1.33 0.1 1.12 1.19 0.43 1.43 0.16 1.16 

27  7/82 DLB 1.06 -0.01 1 1 1.24 0.1 1.09 0.42 -0.38 0.62 -0.21 0.79 

36  7/81 DLB 1.79 0.66 1.7 1.29 1.47 0.2 1.17 0.39 -0.4 0.6 -0.22 0.78 

51  7/96 DLB 1.12 0.08 1.1 1.04 1.36 0.1 1.13 0.56 -0.09 0.91 -0.04 0.96 

52  1/13 DLB 1.41 0.29 1.3 1.14 1.28 0.1 1.11 0.64 -0.13 0.87 -0.06 0.94 
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55  2/25 DLB 1.62 0.67 1.7 1.29 1.46 0.2 1.16 0.87 0.12 1.12 0.05 1.05 

106  5/56 DLB 1.1 0.19 1.2 1.09 1.45 0.2 1.16 0.46 -0.3 0.7 -0.15 0.85 

20030007 DLB 1.9 0.67 1.7 1.29 1.11 0.1 1.05 0.57 -0.23 0.77 -0.11 0.89 

20030113 DLB 2.29 1.09 2.1 1.45 1.47 0.2 1.17 0.47 -0.21 0.79 -0.1 0.9 

20040034 DLB 1.07 -0.24 0.8 0.87 0.82 -0.1 0.91 0.63 -0.06 0.94 -0.03 0.97 

20040085 DLB 0.98 -0.31 0.7 0.83 0.88 -0.1 0.94 0.56 -0.21 0.79 -0.1 0.9 

20050030 DLB 1.4 0.12 1.1 1.06 1.13 0.1 1.05 0.49 -0.15 0.85 -0.07 0.93 

20050040 DLB 1.97 0.76 1.8 1.33 1.76 0.3 1.25 0.99 0.34 1.34 0.13 1.13 

20060025 DLB 1.32 0.11 1.1 1.05 0.78 -0.1 0.89 0.52 -0.28 0.72 -0.14 0.86 

20070009 DLB 1.31 -0.02 1 0.99 1.33 0.1 1.12 0.73 -0.01 0.99 0 1 

20070105 DLB 1.44 0.15 1.2 1.07 1.07 0 1.03 0.67 -0.14 0.86 -0.07 0.93 

20080083 DLB 1.65 0.35 1.4 1.16 0.86 -0.1 0.93 0.75 -0.04 0.96 -0.02 0.98 

20100575 DLB 2.1 0.88 1.9 1.37 1.2 0.1 1.08 1.04 0.31 1.31 0.12 1.12 

333  1/8  DLB 1.42 0.28 1.3 1.13 1.38 0.1 1.14 0.48 -0.3 0.7 -0.15 0.85 

367  4/67 DLB 1.2 0.16 1.2 1.08 0.97 -0 0.99 0.48 -0.13 0.87 -0.06 0.94 

383  5/58 DLB 0.94 -0.26 0.7 0.86 1.2 0.1 1.08 0.26 -0.44 0.56 -0.25 0.75 

436  2/99 DLB 1.17 0.06 1.1 1.03 1.23 0.1 1.09 0.33 -0.34 0.66 -0.18 0.82 

439      DLB 1.97 1.1 2.1 1.45 1.18 0.1 1.07 0.57 -0.09 0.91 -0.04 0.96 

470      DLB 0.82 -0.2 0.8 0.9 1.08 0 1.03 0.54 -0.12 0.88 -0.06 0.94 

475      DLB 1.34 0.27 1.3 1.13 1.13 0.1 1.05 0.46 -0.29 0.71 -0.15 0.85 

495      DLB 1.25 0.31 1.3 1.15 0.8 -0.1 0.9 0.45 -0.12 0.88 -0.06 0.94 

550  2/21 DLB 1.34 0.45 1.5 1.2 1.34 0.1 1.13 0.7 -0 1 0 1 

745  4/63 DLB 1.29 0.28 1.3 1.13 1.12 0.1 1.05 0.51 -0.1 0.9 -0.05 0.95 

A028/10 DLB 0.74 -0.26 0.7 0.86 0.98 -0 0.99 0.46 -0.18 0.82 -0.09 0.91 

A040/10 DLB 0.31 -0.84 0.2 0.4 1.02 0 1.01 0.82 0.06 1.06 0.03 1.03 

A053/09 DLB 1.05 -0.08 0.9 0.96 1.13 0.1 1.05 0.48 -0.25 0.75 -0.13 0.87 

A055/09 DLB 1.32 0.23 1.2 1.11 1.01 0 1 0.4 -0.36 0.64 -0.2 0.8 

A072/09 DLB 0.63 -0.31 0.7 0.83 1.1 0 1.04 1.16 0.45 1.45 0.16 1.16 

A084/09 DLB 0.43 -0.8 0.2 0.45 0.87 -0.1 0.94 0.23 -0.53 0.47 -0.33 0.67 

A109/01 DLB 0.79 -0.18 0.8 0.91 1.44 0.2 1.16 0.82 -0 1 0 1 

A148/08 DLB 0.81 -0.36 0.6 0.8 1.01 0 1 0.49 -0.31 0.69 -0.16 0.84 

A162/07 DLB 0.59 -0.13 0.9 0.93 0.88 -0.1 0.94 0.49 -0.29 0.71 -0.15 0.85 
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A196/09 DLB 1.35 0.37 1.4 1.17 0.99 0 1 0.48 -0.29 0.71 -0.15 0.85 

A204/07 DLB 1.02 0.08 1.1 1.04 1.38 0.1 1.14 0.78 -0.01 0.99 -0.01 0.99 

A231/06 DLB 1.06 0.18 1.2 1.09 1.34 0.1 1.13 0.74 -0.04 0.96 -0.02 0.98 

A249/06 DLB 1.16 0.23 1.2 1.11 1.13 0.1 1.05 0.66 -0.16 0.84 -0.08 0.92 

A273/05 DLB 0.98 -0.26 0.7 0.86 1.16 0.1 1.06 0.68 -0.13 0.87 -0.06 0.94 

A304/06 DLB 0.86 -0.13 0.9 0.94 1.21 0.1 1.08 0.55 -0.16 0.84 -0.07 0.93 

A335/08 DLB 0.92 0 1 1 1.27 0.1 1.1 0.59 -0.21 0.79 -0.1 0.9 

01/176 DLB 0.9 -0.03 1 0.99 1.2 0.1 1.08         

ST26/04 DLB 0.79 -0.24 0.8 0.87 1.22 0.1 1.09 0.95 0.23 1.23 0.09 1.09 

ST27/04 DLB 0.79 -0.21 0.8 0.89 1.53 0.2 1.18 0.78 0.14 1.14 0.06 1.06 

ST28/04 DLB 0.83 -0.16 0.8 0.92 1.6 0.2 1.2         

ST32/05 DLB 0.49 -0.68 0.3 0.56 1.08 0 1.03 0.62 -0.16 0.84 -0.07 0.93 

A071/09 AD 1.05 -0.03 1 0.99 1.07 0 1.03 0.53 -0.28 0.72 -0.14 0.86 

A108/09 AD 1.25 0.32 1.3 1.15 1.12 0.1 1.05 0.53 -0.25 0.75 -0.12 0.88 

A120/09 AD 1.88 0.79 1.8 1.34 1.14 0.1 1.06 0.49 -0.16 0.84 -0.08 0.92 

A147/10 AD 1.43 0.2 1.2 1.1 1.35 0.1 1.13 0.51 -0.28 0.72 -0.14 0.86 

A216/09 AD 0.54 -0.68 0.3 0.57 0.83 -0.1 0.92 0.39 -0.34 0.66 -0.18 0.82 

A267/09 AD 1.36 0.16 1.2 1.08 1.28 0.1 1.11 0.52 -0.14 0.86 -0.07 0.93 

A349/08 AD 0.91 -0.09 0.9 0.96 0.91 -0 0.96 0.45 -0.35 0.65 -0.19 0.81 

A350/09 AD 1.25 0.19 1.2 1.09 1.07 0 1.03 0.58 -0.2 0.8 -0.1 0.9 

A37/09 AD 1.58 0.56 1.6 1.25 1.31 0.1 1.12 0.84 0.07 1.07 0.03 1.03 

A371/08 AD 1.03 0.24 1.2 1.11 1.16 0.1 1.06 0.71 0.04 1.04 0.02 1.02 

A38/11 AD 1.54 0.33 1.3 1.15 0.9 -0.1 0.95 0.65 -0.03 0.97 -0.01 0.99 

A61/09 AD 2.02 0.96 2 1.4 1.31 0.1 1.12 0.64 -0.16 0.84 -0.08 0.92 

A7/10 AD 1.99 0.81 1.8 1.35 1.33 0.1 1.12 0.58 -0.18 0.82 -0.09 0.91 

A76/09 AD 0.99 -0.14 0.9 0.93 0.93 -0 0.97 0.69 -0.1 0.9 -0.05 0.95 

A8/10 AD 2.34 1.16 2.2 1.47 1.19 0.1 1.08 0.61 -0.17 0.83 -0.08 0.92 

A92/09 AD 0.97 -0.07 0.9 0.97 0.94 -0 0.97 0.94 0.15 1.15 0.06 1.06 

 

 



 

 

xv 

 

Appendix VII: Proteasome subunits (α3, α6 and RPT6) protein values from semi-

quantification of Western blotting and data transformation in BA40. 
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A011/06 Control 1.09 0.04 1.04 1.28 0.177 1.18 1.01 0.19 1.19 0.08 1.08 

A047/02 Control 1.3 0.11 1.11 1.34 0.254 1.25 0.4 -0.43 0.57 -0.24 0.76 

A048/09 Control 1.23 0.09 1.09 1.34 0.234 1.23 1.9 1.06 2.06 0.31 1.31 

A049/03 Control 0.98 -0.01 0.99 1.06 -0.05 0.95 1.59 0.7 1.7 0.23 1.23 

A063/10 Control 0.81 -0.09 0.91 1.01 -0.07 0.93 0.87 0.26 1.26 0.1 1.1 

A133/95 Control 0.81 -0.09 0.91 1.1 0.007 1.01 0.4 -0.36 0.64 -0.2 0.8 

A134/00 Control 1.17 0.07 1.07 1.29 0.201 1.2 1.2 0.31 1.31 0.12 1.12 

A136/10 Control 1.35 0.13 1.13 1.29 0.211 1.21 1.02 0.36 1.36 0.13 1.13 

A153/01 Control 1.8 0.26 1.26 1.16 0.019 1.02 0.8 -0.29 0.71 -0.15 0.85 

A170/00 Control 1.56 0.19 1.19 0.98 -0.17 0.83 1.1 -0.01 0.99 -0.01 0.99 

A185/04 Control 1.88 0.27 1.27 1.05 -0.06 0.94 1.05 0.22 1.22 0.09 1.09 

A219/97 Control 1.77 0.25 1.25 1.05 -0.07 0.93 1.2 0.37 1.37 0.14 1.14 

A223/96 Control 2.44 0.39 1.39 1.07 -0.04 0.96 1.18 0.23 1.23 0.09 1.09 

A239/95 Control 1.79 0.25 1.25 1.06 -0.05 0.95 1.6 0.73 1.73 0.24 1.24 

A283/96 Control 1.29 0.11 1.11 1.05 -0.07 0.93 1.6 0.67 1.67 0.22 1.22 

A308/09 Control 1.22 0.09 1.09 1.48 0.322 1.32 1.01 0.01 1.01 0.01 1.01 

A31/96 Control 1.19 0.08 1.08 1.03 -0.11 0.89 1.1 0.13 1.13 0.05 1.05 

A316/95 Control 1.67 0.22 1.22 1.12 0.01 1.01 1.37 0.5 1.5 0.18 1.18 

A320/94 Control 1.67 0.22 1.22 1.16 0.04 1.04 0.92 0.21 1.21 0.08 1.08 

A33/96 Control 1.54 0.19 1.19 1.22 0.165 1.16 1.3 0.76 1.76 0.24 1.24 

A346/95 Control 1.31 0.12 1.12 1.09 -0 1 1.17 0.3 1.3 0.11 1.11 

A359/08 Control 0.82 -0.09 0.91 0.97 -0.14 0.86 1.35 0.44 1.44 0.16 1.16 

A401/97 Control 1.45 0.16 1.16 1.23 0.137 1.14 1.29 0.51 1.51 0.18 1.18 

A61/96 Control 1.44 0.16 1.16 1.03 -0.13 0.87 1.19 0.1 1.1 0.04 1.04 

A94/95 Control 1.27 0.1 1.1 1.31 0.2 1.2 0.93 0.04 1.04 0.02 1.02 

20020080 PDD 1.82 0.26 1.26 0.96 -0.18 0.82 1.2 0.14 1.14 0.06 1.06 

20030004 PDD 1.71 0.23 1.23 1.01 -0.14 0.86 1.02 0.04 1.04 0.02 1.02 

20030103 PDD 1.7 0.23 1.23 1.12 -0.01 0.99 0.8 -0.18 0.82 -0.09 0.91 

20030111 PDD 0.82 -0.09 0.91 1.15 0.044 1.04 0.81 -0.03 0.97 -0.01 0.99 
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20030134 PDD 1.72 0.24 1.24 0.86 -0.27 0.73 1.04 0.12 1.12 0.05 1.05 

20040022 PDD 1.55 0.19 1.19 1.01 -0.1 0.9 1.13 0.23 1.23 0.09 1.09 

20040076 PDD 1.68 0.23 1.23 1.11 -0.01 0.99 1.2 0.22 1.22 0.09 1.09 

20040105 PDD 1.44 0.16 1.16 1.1 -0.05 0.95 1.02 -0.09 0.91 -0.04 0.96 

20050096 PDD 1.81 0.26 1.26 1.37 0.236 1.24 1.11 0.13 1.13 0.05 1.05 

20050099 PDD 1.72 0.24 1.24 1.14 0.061 1.06 1.05 0.39 1.39 0.14 1.14 

ST01/01 PDD 1.17 0.07 1.07 1.12 0.02 1.02 1.53 0.66 1.66 0.22 1.22 

ST02/01 PDD 1.84 0.26 1.26 1.26 0.16 1.16 1.2 0.37 1.37 0.14 1.14 

ST03/01 PDD 1.85 0.27 1.27 1.23 0.103 1.1 1.17 0.24 1.24 0.09 1.09 

ST04/01 PDD 1.97 0.29 1.29 1.16 0.067 1.07 0.74       

ST09/02 PDD 1.45 0.16 1.16 1.21 0.097 1.1 0.82 0.06 1.06 0.02 1.02 

ST10/02 PDD 3.3 0.52 1.52 1.3 0.197 1.2 1.21 0.33 1.33 0.12 1.12 

ST11/02 PDD 2.8 0.45 1.45 1.33 0.196 1.2 1.07 0.19 1.19 0.08 1.08 

ST12/02 PDD 2.6 0.41 1.41 1.23 0.12 1.12 1.16 0.27 1.27 0.1 1.1 

ST13/02 PDD 2.47 0.39 1.39 1.07 -0.04 0.96 0.79 -0.09 0.91 -0.04 0.96 

ST14/02 PDD 2.17 0.34 1.34 1.09 -0.03 0.97 0.81 -0.12 0.88 -0.06 0.94 

ST15/02 PDD 1.96 0.29 1.29 1.05 -0.03 0.97 1.15 0.5 1.5 0.18 1.18 

ST16/02 PDD 2.55 0.41 1.41 1.3 0.19 1.19 1.33 0.43 1.43 0.15 1.15 

ST17/02 PDD 1.75 0.24 1.24 1.18 0.043 1.04 0.7 -0.36 0.64 -0.19 0.81 

ST18/02 PDD 2.1 0.32 1.32 1.32 0.207 1.21 1.3 0.4 1.4 0.15 1.15 

ST19/02 PDD 1.85 0.27 1.27 0.83 -0.27 0.73 0.94 0.09 1.09 0.04 1.04 

ST20/02 PDD 2.63 0.42 1.42 1.08 -0.01 0.99 0.33 -0.47 0.53 -0.28 0.72 

ST21/03 PDD 3.45 0.54 1.54 1.01 -0.09 0.91 0.41 -0.46 0.54 -0.27 0.73 

ST22/02 PDD 2.37 0.37 1.37 1.09 -0.04 0.96 0.82 -0.15 0.85 -0.07 0.93 

ST23/03 PDD 2.03 0.31 1.31 1.01 -0.1 0.9 0.75 -0.1 0.9 -0.05 0.95 

ST24/03 PDD 1.41 0.15 1.15 0.92 -0.16 0.84 1.28 0.48 1.48 0.17 1.17 

ST25/04 PDD 1.59 0.2 1.2 0.86 -0.23 0.77 0.88 0.05 1.05 0.02 1.02 

ST29/04 PDD 1.62 0.21 1.21 1.01 -0.07 0.93 0.86 0.08 1.08 0.03 1.03 

ST30/04 PDD 1.34 0.13 1.13 1.14 0.051 1.05 0.94 0.14 1.14 0.06 1.06 

27  7/82 DLB 0.6 -0.22 0.78 1.19 0.104 1.1 0.58 -0.27 0.73 -0.14 0.86 

36  7/81 DLB 1.23 0.09 1.09 1.19 0.097 1.1 0.72 -0.14 0.86 -0.07 0.93 

51  7/96 DLB 0.65 -0.19 0.81 0.91 -0.19 0.81 0.37 -0.33 0.67 -0.17 0.83 

52  1/13 DLB 0.78 -0.11 0.89 1.22 0.117 1.12 0.55 -0.32 0.68 -0.16 0.84 
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106  5/56 DLB 0.57 -0.24 0.76 0.91 -0.17 0.83 0.26 -0.51 0.49 -0.31 0.69 

20030007 DLB 1.62 0.21 1.21 1.2 0.117 1.12 0.64 -0.19 0.81 -0.09 0.91 

20030113 DLB 1.52 0.18 1.18 1.01 -0.11 0.89 0.57 -0.24 0.76 -0.12 0.88 

20040034 DLB 1.23 0.09 1.09 1.12 -0.01 0.99 0.45 -0.39 0.61 -0.22 0.78 

20040085 DLB 0.99 0 1 0.92 -0.2 0.8 0.37 -0.56 0.44 -0.36 0.64 

20050030 DLB 0.92 -0.04 0.96 0.95 -0.12 0.88 0.3 -0.27 0.73 -0.14 0.86 

20050040 DLB 1.19 0.08 1.08 1.26 0.133 1.13 0.53 -0.26 0.74 -0.13 0.87 

20060025 DLB 1.12 0.05 1.05 1.05 -0.07 0.93 0.59 -0.41 0.59 -0.23 0.77 

20070009 DLB 1.14 0.06 1.06 1.24 0.11 1.11 0.59 -0.34 0.66 -0.18 0.82 

20070105 DLB 1.64 0.21 1.21 1.04 -0.1 0.9 0.93 -0.15 0.85 -0.07 0.93 

20080083 DLB 1.51 0.18 1.18 1.27 0.16 1.16 1.17 0.24 1.24 0.09 1.09 

20100575 DLB 1.39 0.14 1.14 1.26 0.14 1.14 0.93 0.06 1.06 0.02 1.02 

333  1/8  DLB 0.71 -0.15 0.85 1.27 0.184 1.18 0.44 -0.38 0.62 -0.21 0.79 

367  4/67 DLB 1.03 0.01 1.01 1.14 0.071 1.07 0.53 0.01 1.01 0.01 1.01 

383  5/58 DLB 2.17 0.34 1.34 0.93 -0.14 0.86 0.43 -0.2 0.8 -0.1 0.9 

436  2/99 DLB 1.77 0.25 1.25 1.21 0.087 1.09 0.42 -0.39 0.61 -0.21 0.79 

439      DLB 1.01 0 1 1.25 0.123 1.12 0.54 -0.26 0.74 -0.13 0.87 

470      DLB 0.91 -0.04 0.96 0.94 -0.16 0.84 0.62 -0.07 0.93 -0.03 0.97 

475      DLB 1.08 0.03 1.03 0.84 -0.25 0.75 0.29 -0.51 0.49 -0.31 0.69 

495      DLB 1.58 0.2 1.2 1.04 -0.05 0.95 0.65 0.12 1.12 0.05 1.05 

550  2/21 DLB 1.3 0.11 1.11 1.05 -0.07 0.93 0.48 -0.36 0.64 -0.19 0.81 

745  4/63 DLB 1.74 0.24 1.24 1.13 0.007 1.01 0.68 -0.04 0.96 -0.02 0.98 

A014/07 DLB 1.06 0.03 1.03 1.15 0.02 1.02 1.2 0.2 1.2 0.08 1.08 

A028/10 DLB 1.61 0.21 1.21 1.19 0.084 1.08 0.67 -0.02 0.98 -0.01 0.99 

A035/08 DLB 1.66 0.22 1.22 1.09 -0.01 0.99 1.41 0.51 1.51 0.18 1.18 

A040/10 DLB 1.15 0.06 1.06 1.12 0.034 1.03 0.88 0.09 1.09 0.04 1.04 

A046/07 DLB 2.07 0.32 1.32 1.08 -0.04 0.96 1.13 0.27 1.27 0.1 1.1 

A053/09 DLB 1 0 1 1.04 -0.03 0.97 0.69 -0.01 0.99 0 1 

A055/09 DLB 1.11 0.05 1.05 1.08 -0.01 0.99 0.99 0.19 1.19 0.08 1.08 

A072/09 DLB 1.54 0.19 1.19 1.06 -0.01 0.99 0.81 0.16 1.16 0.07 1.07 

A084/09 DLB 0.93 -0.03 0.97 0.92 -0.17 0.83 0.53 -0.29 0.71 -0.15 0.85 

A092/07 DLB 1.73 0.24 1.24 1.07 -0.01 0.99 1.2 0.37 1.37 0.14 1.14 

A109/01 DLB 1.81 0.26 1.26 1.12 -0.04 0.96 1.92 0.76 1.76 0.24 1.24 
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A148/08 DLB 2.12 0.33 1.33     1.4 0.51 1.51 0.18 1.18 

A162/07 DLB 1.55 0.19 1.19 1.07 -0.04 0.96 1.41 0.51 1.51 0.18 1.18 

A196/09 DLB 1.44 0.16 1.16 0.99 -0.12 0.88 0.63 -0.26 0.74 -0.13 0.87 

A204/07 DLB 1.16 0.06 1.06 1.13 -0 1 0.51 -0.5 0.5 -0.3 0.7 

A229/05 DLB 0.92 -0.04 0.96 1.04 -0.07 0.93 0.9 -0.09 0.91 -0.04 0.96 

A231/06 DLB 1.31 0.12 1.12 1.09 -0.05 0.95 0.43 -0.61 0.39 -0.41 0.59 

A249/06 DLB 1.84 0.26 1.26 1.2 0.1 1.1 0.94 0 1 0 1 

A273/05 DLB 2.02 0.31 1.31 0.93 -0.16 0.84 1.21 0.33 1.33 0.12 1.12 

A304/06 DLB 1.04 0.02 1.02 1.03 -0.04 0.96 0.76 0.11 1.11 0.04 1.04 

A335/08 DLB 1.65 0.22 1.22 1.24 0.127 1.13 0.59 -0.37 0.63 -0.2 0.8 

A336/99 DLB 1.37 0.14 1.14 0.99 -0.16 0.84 0.76 -0.3 0.7 -0.15 0.85 

01/176 DLB 1.8 0.26 1.26 1.08 -0.02 0.98 0.51 -0.27 0.73 -0.14 0.86 

ST26/04 DLB 1.54 0.19 1.19 1.31 0.234 1.23 0.62 -0.08 0.92 -0.04 0.96 

ST27/04 DLB 1.36 0.13 1.13 1.03 -0.08 0.92 0.36 -0.35 0.65 -0.19 0.81 

ST28/04 DLB 1.57 0.2 1.2 1.16 0.077 1.08 0.39       

ST32/05 DLB 1.18 0.07 1.07 1.01 -0.07 0.93 0.44 -0.36 0.64 -0.2 0.8 

A071/09 AD 0.82 -0.09 0.91 1.12 0.01 1.01 0.39 -0.56 0.44 -0.36 0.64 

A108/09 AD 2.9 0.46 1.46 1.25 0.154 1.15 0.47 -0.38 0.62 -0.21 0.79 

A120/09 AD 1.68 0.23 1.23 1.05 -0.04 0.96 0.43 -0.23 0.77 -0.11 0.89 

A147/10 AD 0.98 -0.01 0.99 1.07 -0.02 0.98 0.39 -0.47 0.53 -0.27 0.73 

A216/09 AD 0.77 -0.11 0.89 1.01 -0.07 0.93 0.34 -0.4 0.6 -0.22 0.78 

A267/09 AD 1.38 0.14 1.14 1.11 0.034 1.03 0.38 -0.23 0.77 -0.12 0.88 

A349/08 AD 1.16 0.06 1.06 1.2 0.111 1.11 0.38 -0.48 0.52 -0.29 0.71 

A350/09 AD 1.32 0.12 1.12 0.76 -0.29 0.71 0.37 -0.31 0.69 -0.16 0.84 

A37/09 AD 2.05 0.31 1.31 0.86 -0.22 0.78 0.67 -0.12 0.88 -0.05 0.95 

A371/08 AD 1.19 0.08 1.08 1.19 0.087 1.09 0.56 -0.17 0.83 -0.08 0.92 

A38/11 AD 1.03 0.01 1.01 1.16 0.023 1.02 0.52 -0.35 0.65 -0.19 0.81 

A61/09 AD 2.6 0.41 1.41 0.95 -0.08 0.92 0.63 -0.02 0.98 -0.01 0.99 

A7/10 AD 1.24 0.09 1.09 1.05 -0.05 0.95 0.51 -0.33 0.67 -0.17 0.83 

A76/09 AD 2.21 0.34 1.34 0.96 -0.09 0.91 0.68 -0.03 0.97 -0.01 0.99 

A8/10 AD 1.5 0.18 1.18 1.13 0.082 1.08 0.37 -0.3 0.7 -0.16 0.84 

A92/09 AD 1.93 0.29 1.29 1.15 0.067 1.07 0.38 -0.45 0.55 -0.26 0.74 
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Appendix VIII: Proteasome activity (Chymotrypsin- and PGPH-like) values and data transformation in BA9, 24, and 40. 
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A011/06 Control 1411.16 10451.58 956.45 11996.35 1690.46 3.23 1614 13187.42 2589.714 7589.71 

A047/02 Control 1049.2 10235.04     1105.23 3.04 1521.73 13758.39 2515.194 7515.19 

A048/09 Control         1655.33 3.22 1609.44 11745.59 1117.861 6117.86 

A049/03 Control 1279.92 10649.68 1244.74 11495.17 1586.43 3.2 1600.21 13418.17 2550.266 7550.27 

A063/10 Control 1023.67 9907.71     1342.19 3.13 1563.91 12601.68 2934.688 7934.69 

A133/95 Control 1285.56 12174.51 936.6 10531.32 1545.05 3.19 1594.47 13022.49 2574.9 7574.9 

A134/00 Control     965.69 12590.52             

A136/10 Control 922.66 11498.87     1644.64 3.22 1608.04 12453.22 2516.021 7516.02 

A153/01 Control         1209.98 3.08 1541.39 13104.83 1366.266 6366.27 

A170/00 Control     1020.59 12103.82 1414.49 3.15 1575.3 13841.36 2222.886 7222.89 

A185/04 Control 877.26 10009.69 1133.8 10804.81 1123.49 3.05 1525.28 12677.57 2229.986 7229.99 

A223/96 Control     975.81 8423.81 1475.67 3.17 1584.5 11753.45 195.0181 5195.02 

A239/95 Control     1203.51 9486.33             

A308/09 Control 889.05 9115.89 1329.87 12795.43             
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A31/96 Control 1320.11 9041.1     1042.6 3.02 1509.06 11300.52 762.865 5762.87 

A33/96 Control     950.17 11980.33             

A359/08 Control     1304.6 9578.57 1222.28 3.09 1543.58 11868.39 640.2093 5640.21 

A401/97 Control     1147.7 13171.55             

A94/95 Control     1136.97 13076.41             

ST03/01 PDD     1063.9 7857.18 819.94 2.91 1456.89 10265.87 -541.992 4458.01 

ST09/02 PDD 844.13 9254.07                 

ST10/02 PDD     810.35 5561.55 891.78 2.95 1475.13 10475.13 -693.01 4306.99 

ST11/02 PDD 910.4 10889.12 738.73 5324.24 779.13 2.89 1445.81 9789.65 -297.67 4702.33 

ST12/02 PDD 398.21 7513.81     829.62 2.92 1459.44 9649.38 -1398.67 3601.33 

ST13/02 PDD 1156.8 11801.32 823.31 5018.37 761.7 2.88 1440.89       

ST16/02 PDD 1011.42 10793.14                 

ST17/02 PDD 706.72 9615.57                 

ST18/02 PDD 866.22 9461.33                 

ST19/02 PDD     1290.88 9746.8 1063.83 3.03 1513.44 11469.21 391.1383 5391.14 

ST20/02 PDD 617.06 9192.51                 

ST21/03 PDD 993.72 5528.42 799.55 5501.17 946.97 2.98 1488.17 11581.67 413.5384 5413.54 
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ST22/02 PDD 606.61 7059.4                 

ST23/03 PDD     807.36 6832.13             

ST24/03 PDD 997.37 11149.51 885.54 5718.82 463.83 2.67 1333.18 10543.21 -624.921 4375.08 

ST25/04 PDD     684.8 5708.18 414.39 2.62 1308.7 12141.52 973.3819 5973.38 

ST29/04 PDD         784.07 2.89 1447.18 10991.71 63.76024 5063.76 

ST30/04 PDD 607.29 8478.47                 

27  7/82 DLB     1021.03 10714.08 723.67 2.86 1429.77 8640.11 -2858.28 2141.72 

51  7/96 DLB     1073.31 8828.99 915.96 2.96 1480.94 11952.05 2465.188 7465.19 

20050030 DLB 618.11 8439.51                 

333  1/8  DLB     873.5 9869.44 629.91 2.8 1399.64 8992.88 -2175.26 2824.74 

367  4/67 DLB     1133.52 8776.83 866.75 2.94 1468.95 10280.27 1273.778 6273.78 

439      DLB     1000.21 7621.03 769.69 2.89 1443.16 10080.93 473.9831 5473.98 

470      DLB 810.69 8324.2     647.75 2.81 1405.7 7158.9 -2508.1 2491.9 

495      DLB     1076.4 9748.85 855.67 2.93 1466.15 6306.68 -2129.38 2870.62 

A046/07 DLB     1000.1 8877.25             

A084/09 DLB     1162.52 11226.73       12387.1 1429.126 6429.13 

A092/07 DLB 821.34 7087.77                 
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A109/01 DLB     914.37 9640.51 985.08 2.99 1496.74 9390.1 -2348.47 2651.53 

A204/07 DLB     1020.65 10594.28             

A231/06 DLB 738.99 8923.14                 

A249/06 DLB                     

A273/05 DLB 1047.66 9928.5                 

A335/08 DLB     1005.68 4956.74             

01/176 DLB 697.75 8677.71 1049.36 9847.48 941.05 2.97 1486.81 7952.81 -2284.62 2715.38 

ST26/04 DLB 825.2 10233.99                 

ST27/04 DLB 906.4 9652.27                 

ST28/04 DLB 1037.72 11320.05                 

A071/09 AD     906.46 5323.28             

A108/09 AD     883.4 6637.67 589 2.77 1385.06 12098.82 945.7008 5945.7 

A120/09 AD     520.31 3730.27 581.61 2.76 1382.32 6161.52 -3355.36 1644.64 

A147/10 AD 503.35 8613.79 1057.33 6823.37 539.98 2.73 1366.19 10432.02 -842.695 4157.31 

A216/09 AD     1353.27 7586.81 809.05 2.91 1453.99 6117.23 -4450.45 549.55 

A349/08 AD 765.99 7756.23 834.1 5878.03             

A350/09 AD 547.14 6830.32 841.9 6867.46 606.58 2.78 1391.44 7756.34 -3411.8 1588.2 
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A37/09 AD     898.82 6410.09 770.23 2.89 1443.31 10270.4 -747.624 4252.38 

A371/08 AD         626.33 2.8 1398.4 6961.39 -2825.69 2174.31 

A38/11 AD 773.78 7909.09     709.08 2.85 1425.35 11283.16 1406.009 6406.01 

A61/09 AD 859.1 8659.96     757.32 2.88 1439.64 11037.95 -481.454 4518.55 

A7/10 AD         730.35 2.86 1431.77 11348 360.0032 5360 

A76/09 AD 672.63 7829.48 861.1 5397.72             

A8/10 AD         905.84 2.96 1478.53 10702.06 -436.049 4563.95 

A92/09 AD         614.51 2.79 1394.26       
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Appendix IX: Synaptic Protein values from semi-quantification of Western blotting. 
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A011/06 Control 0.63 0.9 0.75 0.8 0 0.8 1.8 0.4   0.09 0.4 2.3 

A047/02 Control 0.9 1 0.86 0.7           0.17 0.6 3.34 

A048/09 Control 1.26 0.3 1.25 3.5   1.4 1.5 0.1 0.4 0.12     

A049/03 Control 1.3 0.8 0.94 3.4 1 1.1 2.1 0.2 0.53 0.23 0.5 2.08 

A063/10 Control 0.95 0.3 0.79 2.8 1 0.4 3.5 0.6 0.23 0.05 0.3 1.77 

A133/95 Control 0.55 0.4 0.84 2.1 0 0.4 2.5 0.6 0.04 0.3 0.4 1.54 

A134/00 Control 0.65 2.2 1.39 5.2 0 0.5 2.3 0.2 0.98   0.8 5.97 

A136/10 Control 1.73 0.7 1.7 5 0 1.3 3.7 1.4 1.01 0.71 1.3 3.43 

A153/01 Control 0.38 1 1.39 4.5 1 0.5 2.5 0.7 2.01 0.49 1.1 6.69 

A170/00 Control 0.29 2.3 1.07 3.9 0 0.3 2.3 0.3 0.98 0.23 0.7 5.04 

A185/04 Control 0.25 1.3 0.54 3.4   0.4 2.3 0.5 0.82 1.12 0.6 6.01 

A219/97 Control 0.08 0.1 0.18 0.6         0.85 0.61 0.9 3.59 

A223/96 Control 0.51 0.8 0.69 2.7   0.3 1.3 1.1 2 0.53 1.2 3.47 

A239/95 Control 0.36 0.7 0.82 2.4 0 0.3 1.4 0.4 0.87 1.3 0.8 2.86 

A283/96 Control 0.31 0.7 1.03 1.8 0 0.5 1.5 0.6 0.82 0.43 0.8 2.72 

A308/09 Control 1.24 0.7 1.51 4.4   0.9 1.5 0.2 0.25 0.16 0.5 2.88 

A31/96 Control 0.77 1.8 1.52 3.9 1 0.4 1.5 0.3 0.83 0.41 1 4.51 

A316/95 Control 0.74 0.4 1.3 3.1 1 0.2 1.5 0.5 1.28 3.68 1.4 4.16 

A320/94 Control 0.59 0.4 1.05 5   0.4 1.7 0.3 0.64   0.5 7.49 

A33/96 Control 0.26 0.2 0.8 3.9 0 0.3 0.9 0.6 0.37 0.46 0.8 6.88 

A346/95 Control 0.59 0.6 0.96 3.8 0 0.3 1 0.1 0.83 0.48 0.9 6.54 

A359/08 Control 1.44 0.7 1.49 2.6     1.3 0.6 0.56 0.1 0.2 2.14 

A401/97 Control 0.73 1.6 0.74 3.4 0 0.1 0.8 0.2 0.69 0.47 3.2 5.97 

A61/96 Control         0   1.2 0.1 0.9 1.3 0.6 3.81 

A94/95 Control 0.8 0.9 1 3.1 1 0.4 1.6 0.5 1.05   0.3 1.51 

20020080 PDD 0.45 0.4 0.85 2.2 1 0.4 2.8 1.3 1.24 0.71 1.1 5.21 

20030004 PDD 0.51 0.3 0.77 3.9 1 0.5 2.1 0.5 0.78 0.53 1 11 

20030103 PDD 0.24 0.2 0.7 2.3 1 0.5 3.5 0.9 0.71       
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20030111 PDD         0 0.3 1.2 0.4 0.27 0.16 0.5 1.79 

20030134 PDD 0.22 0.3 1.01 1.3 0 0.4 1.1 0.5 1.11 0.4 1 4.73 

20040022 PDD 0.37 0.3 1.2 0.9 0 0.3 1.3 0.3   0.75 0.5 2.51 

20040076 PDD 0.44 0.9 0.28 1.9 2 0.6 1.1 0.5   0.48 1 2.78 

20040105 PDD 0.25 0.5 0.33 2.2 2 0.6 3.5 1.3   0.29 0.9 3.26 

20050096 PDD 0.22 0.5 0.6 1.9 1 0.4 1.8 1.2 1.02 0.99 1 3.16 

20050099 PDD 0.5 0.3 0.91 2.2 1 0.3 0.9 0.5 0.5 0.19 0.6 2.08 

A143/00 PDD 0.2 0.4 0.85 3.1                 

ST01/01 PDD 0.29 0.6 1.31 1.3 0 0.5 1.5 0.7 0.41 0.18 0.4 1.98 

ST02/01 PDD 0.29 0.4 0.58 2.1 1 0.5 2.4 0.8 0.95 0.27     

ST03/01 PDD 0.57 0.3 0.75 2.2 0 0.2 1.5 0.4 0.59 0.45 0.5 4.94 

ST04/01 PDD 0.34 0.5 0.82 2.2 0 0.4 3 0.6   0.22 0.5 4.47 

ST09/02 PDD 0.33 0.4 0.92 2.5 0 0.2 1.3 0.3 0.3 0.34 0.5 6.21 

ST10/02 PDD 0.29 0.5 0.42 1.6 0 0.2 1.9 0.6 1.08 0.79     

ST11/02 PDD 0.31 0.5 0.33 1.6 0 0.2 1.4 0.5 0.93 0.37 0.9 2.61 

ST12/02 PDD   0.4 0.68 2.4 1 0.5 2.8 0.8 1.22 0.18 1 6.14 

ST13/02 PDD 0.41 0.2 0.82 2.5 0 0.4 1.3 0.5 0.61 0.45 0.8 3.56 

ST14/02 PDD 0.09 0.4 0.54 2.1 1 0.1 2.2 0.8   0.09 0.4 2.1 

ST15/02 PDD 0.09 0.4 0.21 1 0 0.1 0.9 0.3 0.48 0.06 0.4 3.02 

ST16/02 PDD 0.52 0.5 0.89 2.9 1 0.4 2.4 0.8 0.45 0.31 0.8 4.21 

ST17/02 PDD 0.31 0.7 0.67 2.5 1 0.3 2.6 0.5 1.06 0.36 0.8 5.08 

ST18/02 PDD 0.17 0.4 0.44 1.9 0 0.7 2.6 0.7 1.5 0.87 1 4.29 

ST19/02 PDD 0.13 0.3     0 0.3 0.6 0.3 1.4 0.49 1 3.02 

ST20/02 PDD 0.29 1 1.03 2.1 0 0.4 1.1 0.5 1.27 0.29 0.9 1.98 

ST21/03 PDD 0.12 0.2 0.52 1.4 1 0.2 2.3 0.6 1.15 0.17 0.7 3.12 

ST22/02 PDD 0.41   0.93 2.8 0 0.5 0.3 0.3 1.21 0.43 0.9 2.48 

ST23/03 PDD 0.59 0.3 0.4 2.6 0 0.4 1.3 0.5 0.43 0.33 0.8 5.59 

ST24/03 PDD   0.4 0.49 2.8 1 0.3 2 0.5   0.24 1 4.65 

ST25/04 PDD 0.2 0.4 0.53 1.9 0 0.4 1.4 0.7 0.86   1 4.15 

ST29/04 PDD 0.14 0.3 0.25 0.9 1 0.7 2.3 1.1 1.09 0.55 1.2 4.19 

ST30/04 PDD 0.17 0.2 0.68 1.6 0 0.2 1.9 0.8 0.81 0.4 0.6 3.17 
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27  7/82 DLB 0.19 0.4 0.95 3.5 0 0.2 1.6 0.5 0.68 0.48 0.8 3.99 

36  7/81 DLB         1 0.2 1.1       0.7 2.28 

51  7/96 DLB 0.17 0.2 0.83 2.6 1 0.5 2.3 1.5 0.44 0.19 0.6 2.84 

52  1/13 DLB 0.32 0.7 0.97 3.1 1 0.3 2.5 0.8 0.83 0.26 0.7 3.08 

55  2/25 DLB 0.19 0.3 0.66 2.5 1 0.5 2.3 1.9         

106  5/56 DLB 0.36 0.9 1.14 2.9 2 0.5 2.6 0.9 0.1 0.13 0.3 2.3 

20030007 DLB 0.26 0.7 1.18 1.7 0 0.4 2.3 0.8 0.55 0.37 0.9 2.9 

20030113 DLB 0.33 0.2 0.85 2.1 1 0.3 2.3 1.9 0.63 0.18 0.7 2.23 

20040034 DLB 0.21 0.4 0.85 2.5 0 0.1 1.9 1 0.33 0.14 1 3.64 

20040085 DLB 0.37 0.4 0.97 2.6 0 0.2 1.7 1.1 0.26 0.2 0.5 2.58 

20050030 DLB 0.25 0.5 0.95 2.3 0 0.1 0.8 1.5 0.27 0.08 0.8 2.67 

20050040 DLB 0.23 0.3 0.75 2.2 1 0.3 1.1 1.4 0.24 0.13 0.8 3.34 

20060025 DLB         1   1.5 0.8 0.81 0.35 0.9 3.19 

20070009 DLB 0.37 0.4 1.25 2.4 1 0.3 1.4 1 0.4 0.17 0.8 2.19 

20070105 DLB 0.34 0.9 0.81 2.8 1 0.2 2.1 0.7 0.95 0.32 0.8 2.8 

20080083 DLB 0.48 0.5 1.3 3.7 0 0.3 2.2 1 0.47 0.29     

20100575 DLB 0.55 0.3 0.84 3.3 0 0.4 2.7 0.8 0.36 0.26 0.5 3.47 

333  1/8  DLB 0.2 0.7 1.21 2.5 0 0.2 1.3 0.6 0.27 0.19 0.6 2.52 

367  4/67 DLB 0.2 0.3 0.87 3 0 0.1 1.9 0.7 0.72 0.15 0.7 2.11 

383  5/58 DLB 0.34 0.8 1.17 3 1 0.3 2 0.6 0.53 0.31 0.6 1.93 

436  2/99 DLB 0.47 0.7 1.03 3.3 1 0.4 1.8 1 0.73 0.5 0.8 3.09 

439      DLB 0.51   1.1 4.1 0 0.3 3.3 0.8 0.36 0.15 0.4 1.82 

470      DLB 0.18 0.3 0.75 2.9   0.3 2.4 0.7 0.57 0.31 0.6 3.17 

475      DLB 0.3 0.4 0.93 2.8   0.1 1.3 0.6   0.09 0.4 1.63 

495      DLB 0.57 0.3 1.04 3.2 0 0.2 1.7 0.8 0.69 0.18 0.6 2.68 

550  2/21 DLB 0.37 0.3 0.93 1.9 1 0.2 1.3 1.2 0.43 0.24 0.6 2.25 

745  4/63 DLB 0.5 0.4 0.91 2.7 0 0.3 2.7 1.2 0.69 0.31 0.8 2.78 

A014/07 DLB 0.55 0.6 1.2 5.2             0.5 1.88 

A028/10 DLB     0.73 3.5     0.7 0.2     0.6 2.11 

A035/08 DLB 0.49 0.8 0.86 3.3 1           0.6 1.53 

A040/10 DLB     0.87 2.9     1.1 0.3     0.5 1.45 
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A046/07 DLB   0.5 1.15 4.9         1.36 0.39 2 4.25 

A053/09 DLB   0.2 0.76 3.2     2.6 0.7     0.2 2.06 

A055/09 DLB 0.92 0.3 1.08 3.5     1.7 0.4     0.2 1.69 

A072/09 DLB     0.85 2.9     0.7 0.2     0.3 1.12 

A084/09 DLB 1.06 0.7 0.97 4.1     1.2 0.3     1.1 4.26 

A092/07 DLB 0.47 0.6 0.91 2.9 1           1 5.12 

A109/01 DLB 0.56 0.8 1.28 3.3 1   2.5 0.7     1.1 3.61 

A148/08 DLB           0.3 0.5 0.4   0.26     

A162/07 DLB             1 0.2   0.33     

A190/03 DLB 0.48 0.5 1 5 1               

A196/09 DLB   0.7 0.99 4.8     1.1 0.5     0.8 2.05 

A204/07 DLB 0.45 0.7 1.63 4.6 1 0.9 2.7 1.2     1.1 3.02 

A229/05 DLB 0.49 0.7 1 3.3 1           1.8 4.8 

A231/06 DLB 0.17 0.2 0.39 1 0   1.9 1     0.4 2.35 

A249/06 DLB           1 2.7 1.3   0.41     

A273/05 DLB 0.61 0.9 1.23 2.9 1   3.9 0.8 1.12 0.18 1 4.25 

A304/06 DLB 0.54 0.6 1.35 3.2 1   2.1 1.2     1.3 3.64 

A335/08 DLB 0.35 0.6 1.29 2.8 1 0.4 1.2 0.7   0.3 1.2 4.22 

A336/99 DLB 0.4 0.4 0.43 0.9         0.54 0.32 0.8 1.74 

01/176 DLB 0.12 0.3 0.77 2.9 1 0.4 2.7 1.4 1.21 0.29 0.8 2.02 

ST26/04 DLB 0.52 0.9 1.31 3.7 0 0.2 3.1 0.8   0.35 1.1 4.02 

ST27/04 DLB 0.39 0.4 1.3 3.5 1 0.9 3.1 1.3 0.2 0.42 1.1 3.46 

ST28/04 DLB 0.27 0.4 0.73 2.9 0 0.6 3 1.4 0.26   0.4 2.22 

ST32/05 DLB 0.17 0.4 0.76 1.2 0 0.2 1 0.4 0.37 0.11 0.5 2.24 

A071/09 AD 0.69 0.5 0.77 3 1 0.7 1.5 0.7 0.22 0.08 0.1 1.05 

A108/09 AD 0.48 0.5 0.53 0.5 0 0.5 1.9 0.4 0.55 0.38 0.6 2.48 

A120/09 AD 0.34   0.72 0.7 0 0.1 1.3 0.3 0.38 0.17 0.6 2.82 

A147/10 AD 0.16 0.7 0.65 0.6 1 0.1 1.2 0.6 0.28 0.23 0.6 1.65 

A216/09 AD 0.22   1.01 2.8 0 0.3 1 0.6   0.07 0.5 2.05 

A267/09 AD 0.13 0.3 1.06 2.2 1 0.1 1.1 0.7 0.37   0.5 2.19 

A349/08 AD 0.23 0.3 0.82 2.9 1 0.2 0.9 0.9 0.32 0.28 0.2 2.3 
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A350/09 AD 0.45 0.4 1.19 1.8   0.5 1.9 1.1   0.38 0.8 3.34 

A37/09 AD 0.5 1.1 0.97 3 2 0.5 1.4 1.1     1 3.61 

A371/08 AD 0.52 0.3 0.57 0.6 0 0.5 1.2 0.9 0.29 0.33 0.4 2.07 

A38/11 AD 0.18 0.7 0.95 1.9 1 0.2 0.7 0.4 0.32 0.29 0.4 1.73 

A61/09 AD 0.44 0.7 0.63 0.7 1 0.1 0.8 0.9   0.47 0.8 3.2 

A7/10 AD 0.51 0.9 0.66 0.6 1 0.3 1.4 0.6   0.17 0.6 1.82 

A76/09 AD 0.77 1.1 0.6 0.6 1 0.3 1.9 0.8 0.9 0.56 1 3.64 

A8/10 AD 0.29   0.73 0.6   0.3 1.5 1 0.5 0.19 0.5 2.31 

A92/09 AD 0.58 1.3 1.02 3.7 1 0.7 1.2 0.7   0.33 1.2 4.56 
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Appendix X: Residual and normalised synaptic protein values. 
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A011/06 Control 0.292 0.3 0.75 -1.49 0.65 0.395 0.62 0.11   -0.5 

A047/02 Control 0.447 0.2 0.86 -1.61           -0.28 

A048/09 Control 0.484 -0.2 1.25 0.62   0.55 0.3 -0.13 -0.175 -0.37 

A049/03 Control 0.498 0.2 0.94 0.53 0.99 0.536 0.42 0.066 -0.106 -0.11 

A063/10 Control 0.471 -0.1 0.79 0.46 0.73 0.087 0.76 0.625 -0.223 -0.67 

A133/95 Control 0.124 -0.1 0.84 -0.79 0.66 -0.07 0.76 0.224 -0.588 0.04 

A134/00 Control 0.197 0.5 1.39 2.28 0.51 0.126 0.39 0.153 0.0635   

A136/10 Control 0.731 0.2 1.7 2.62 0.63 0.664 1.17 0.688 0.2727 0.46 

A153/01 Control -0.04 0.2 1.39 1.61 0.84 0.07 0.85 0.204 0.488 0.14 

A170/00 Control -0.04 0.5 1.07 1.52 0.49 -0.23 0.56 0.268 0.0734 -0.18 

A185/04 Control -0.22 0.5 0.54 0.47   -0 0.7 0.145 0.1173 0.61 

A219/97 Control -0.6   0.18 -1.77         0.1831 0.39 

A223/96 Control 0.091 0.1 0.69 -0.23   -0.12 1.03 -0.21 0.5043 0.19 

A239/95 Control 0.049 0.2 0.82 0.06 0.48 -0.04 0.66 -0.08 0.1116 0.65 

A283/96 Control -0.12 0.1 1.03 -1.08 0.66 0.1 0.79 -0.12 0.0548 0.14 

A308/09 Control 0.477 0.2 1.51 1.5   0.23 0.46 -0.14 -0.275 -0.22 

A31/96 Control 0.27 0.6 1.52 1.05 0.73 -0.12 0.51 -0.14 0.113 0.17 

A316/95 Control 0.253 -0.1 1.3 0.22 0.85 -0.16 0.72 -0.14 0.3004 1.09 

A320/94 Control 0.155 0.1 1.05 2.16   0.023 0.51 -0.07 0.1698   

A33/96 Control -0.09 -0.2 0.8 1.55 0.66 0.111 0.78 -0.31 -0.101 0.29 

A346/95 Control 0.155 0 0.96 0.88 0.41 0.069 0.28 -0.36 0.0175 0.16 

A359/08 Control 0.651 0.1 1.49 0.3     0.8 -0.1 -0.125 -0.51 

A401/97 Control 0.247 0.5 0.74 0.47 0.47 -0.31 0.39 -0.47 0.0227 0.22 

A61/96 Control         0.49   0.37 -0.26 0.098 0.62 
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A94/95 Control 0.396 0.2 1 0.75 0.92 0.154 0.7 0.016 0.1806   

20020080 PDD 0.037 -0.1 0.85 -0.67 0.81 -0 1.12 0.321 0.2233 0.33 

20030004 PDD 0.201 -0.2 0.77 1.55 0.71 -0 0.7 0.207 0.0884 0.28 

20030103 PDD -0.13 -0.4 0.7 -0.05 0.88 0.271 0.95 0.626 -0.005   

20030111 PDD         0.52 0.122 0.65 -0.29 -0.295 -0.26 

20030134 PDD -0.27 -0.2 1.01 -1.61 0.62 -0.04 0.68 -0.31   0.14 

20040022 PDD -0.05 -0.2 1.2 -2.01 0.69 -0.1 0.53 -0.23   0.39 

20040076 PDD 0.027 0.2 0.28 -0.97 1.26 0.186 0.74 -0.31   0.16 

20040105 PDD -0.22 -0.1 0.33 -0.69 1.22 0.218 1.14 0.511   -0.08 

20050096 PDD -0.27 -0 0.6 -1 0.93 0.14 1.08 -0.03 0.1658 0.51 

20050099 PDD 0.083 -0.2 0.91 -0.73 0.81 0.068 0.71 -0.43 -0.028 -0.12 

A143/00 PDD -0.21 -0.1 0.85 0.8             

ST01/01 PDD -0.04 0 1.31 -1.02 0.42 0.169 0.85 -0.01 -0.227 -0.25 

ST02/01 PDD -0.15 -0.1 0.58 -0.8 0.77 0.165 0.89 0.185 0.1503 -0.04 

ST03/01 PDD 0.14 -0.3 0.75 -0.72 0.4 -0.31 0.62 -0.15 -0.06 0.18 

ST04/01 PDD 0.025   0.82 -0.12 0.67 -0.05 0.77 0.477     

ST09/02 PDD -0.1 0 0.92 -0.37 0.2 -0.32 0.56 -0.22 -0.162 0.16 

ST10/02 PDD -0.15 -0.1 0.42 -1.32 0.37 -0.2 0.78 0.026 0.1721 0.4 

ST11/02 PDD -0.02 0.1 0.33 -0.76 0.6 -0.36 0.71 -0.08 0.2157 0.16 

ST12/02 PDD   -0.2 0.68 0.04 0.79 0.206 0.89 0.411 0.2505 -0.24 

ST13/02 PDD 0.106 -0.5 0.82 0.13 0.58 -0.02 0.71 -0.11 -0.073 0.16 

ST14/02 PDD -0.66 -0.2 0.54 -0.76 0.85 -0.42 0.88 0.118   -0.55 

ST15/02 PDD -0.55 0 0.21 -1.34 0.32 -0.33 0.53 -0.3 -0.016 -0.6 

ST16/02 PDD 0.1 -0 0.89 -0.02 0.73 0.028 0.89 0.194 -0.19 -0.01 

ST17/02 PDD -0.12 0.1 0.67 -0.34 0.75 -0.29 0.71 0.243 0.113 0.01 

ST18/02 PDD -0.39 -0.1 0.44 -0.95 0.65 0.218 0.83 0.253 0.3773 0.45 

ST19/02 PDD -0.39 -0.3     0.56 0.026 0.52 -0.46 0.3259 0.2 
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ST20/02 PDD -0.04 0.3 1.03 -0.21 0.66 0.079 0.67 -0.18 0.2993 -0.01 

ST21/03 PDD -0.43 -0.6 0.52 -0.98 0.73 -0.17 0.76 0.262 0.2052 -0.27 

ST22/02 PDD 0.106   0.93 0.49 0.46 -0.09 0.53 -0.73 0.2328 0.13 

ST23/03 PDD 0.264 -0.3 0.4 0.3 0.5 0.041 0.69 -0.12 -0.182 0.04 

ST24/03 PDD   -0.1 0.49 -0.12 1.11 -0.01 0.7 0.049   -0.12 

ST25/04 PDD -0.21 -0.1 0.53 -0.45 0.7 0.092 0.84 -0.06 0.0602   

ST29/04 PDD -0.36 -0.2 0.25 -1.48 0.72 0.416 1.05 0.275 0.2032 0.26 

ST30/04 PDD -0.39 -0.5 0.68 -1.27 0.26 -0.24 0.9 0.013 0.0592 0.12 

27  7/82 DLB -0.23 -0.2 0.95 1.17 0.62 -0.29 0.74 0.026 -0.079 0.15 

36  7/81 DLB         1.02 -0.15   -0.34     

51  7/96 DLB -0.39 -0.3 0.83 -0.31 0.77 0.212 1.23 0.137 -0.02 -0.07 

52  1/13 DLB -0.11 0.1 0.97 0.23 0.71 0.059 0.87 0.229 0.0603 -0.07 

55  2/25 DLB -0.34 -0.2 0.66 -0.39 1.03 0.134 1.36 0.157     

106  5/56 DLB 0.049 0.2 1.14 0.55 1.48 0.135 0.92 0.375 -0.518 -0.36 

20030007 DLB -0.09 0.1 1.18 -0.68 0.67 0.209 0.89 0.28 -0.152 0.04 

20030113 DLB -0.1 -0.4 0.85 -0.74 0.74 -0.04 1.38 0.154 0.0615 -0.14 

20040034 DLB -0.18 0 0.85 0.13 0.56 -0.37 1.02 0.126 -0.161 -0.25 

20040085 DLB -0.05 -0.2 0.97 -0.24 0.55 -0.07 1.03 -0.05 -0.341 -0.19 

20050030 DLB -0.11 0.1 0.95 0.01 0.66 -0.15 1.23 -0.38 -0.15 -0.44 

20050040 DLB -0.15 -0.1 0.75 -0.12 0.75 -0.03 1.16 -0.19 -0.2 -0.24 

20060025 DLB         0.84   0.87 -0.12 -0.003 0.01 

20070009 DLB -0.05 -0.1 1.25 -0.5 1 0.098 1.01 -0.2 -0.175 -0.22 

20070105 DLB -0.08 0.1 0.81 -0.06 0.72 -0.06 0.86 0.085 0.0549 -0.04 

20080083 DLB 0.174 -0 1.3 1.33 0.62 0.106 1.01 0.233 -0.205 -0.06 

20100575 DLB 0.124 -0.3 0.84 0.4 0.54 0.21 0.88 0.284 -0.195 -0.03 

333  1/8  DLB -0.21 0.1 1.21 0.21 0.7 -0.23 0.77 -0.1 -0.348 -0.22 

367  4/67 DLB -0.21 -0 0.87 0.68 0.57 -0.37 0.86 0.117 0.2183 -0.13 
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383  5/58 DLB 0.025 0.3 1.17 0.64 0.88 0.075 0.8 0.167 -0.021 0.09 

436  2/99 DLB 0.056 0.3 1.03 0.44 0.9 0.079 1.01 -0.03 0.1386 0.32 

439      DLB 0.091   1.1 1.18 0.51 -0.22 0.88 0.443 -0.096 -0.19 

470      DLB -0.36 -0.1 0.75 0.05   -0 0.81 0.194 0.0524 0.12 

475      DLB -0.03 -0.1 0.93 0.44   -0.39 0.77 -0.09   -0.51 

495      DLB 0.14 0.1 1.04 0.32 0.62 -0.31 0.9 -0.07 0.263 -0 

550  2/21 DLB -0.05 -0.1 0.93 -1.01 0.71 -0.31 1.09 -0.22 -0.103 -0.03 

745  4/63 DLB 0.192 0.1 0.91 0.34 0.55 -0.09 1.11 0.401 0.2004 0.18 

A014/07 DLB 0.124 0 1.2 2.28             

A028/10 DLB     0.73 0.58     0.47 -0.5     

A035/08 DLB 0.183 0.1 0.86 0.98 0.79           

A040/10 DLB     0.87 0.58     0.5 -0.2     

A046/07 DLB   0 1.15 2         0.3945 0.17 

A053/09 DLB   -0.3 0.76 0.32     0.82 0.235     

A055/09 DLB 0.457 -0.2 1.08 1.16     0.6 0.052     

A072/09 DLB     0.85 0.57     0.38 -0.39     

A084/09 DLB 0.518 0.1 0.97 1.75     0.54 -0.13     

A092/07 DLB 0.056 -0 0.91 -0.03 0.72           

A109/01 DLB 0.132 0.1 1.28 0.45 1.03   0.85 0.215     

A148/08 DLB           0.021 0.62 -0.55   -0.12 

A162/07 DLB             0.43 -0.39   0.02 

A190/03 DLB 0.065 0 1 2.11 0.93           

A196/09 DLB   0.1 0.99 2.5     0.72 -0.2     

A204/07 DLB 0.037 0.1 1.63 1.71 1.1 0.279 1.09 0.274     

A229/05 DLB 0.074 0 1 0.4 0.79           

A231/06 DLB -0.28 -0.5 0.39 -1.35 0.59   0.99 0.126     

A249/06 DLB           0.413 1.15 0.279   0.06 
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A273/05 DLB 0.169 0.1 1.23 0.02 0.76   0.89 0.618 0.1385 -0.29 

A304/06 DLB 0.226 0.2 1.35 0.89 0.79   1.1 0.197     

A335/08 DLB -0.07 0 1.29 -0.12 0.72 -0.09 0.85 -0.26   -0.06 

A336/99 DLB -0.01 -0.2 0.43 -1.96         -0.142 -0.01 

01/176 DLB -0.54 -0.1 0.77 -0.01 0.73 -0.01 1.19 0.263 0.3348 0.04 

ST26/04 DLB 0.1 0.3 1.31 0.79 0.65 -0.21 0.91 0.392   0.11 

ST27/04 DLB -0.03 0 1.3 0.6 0.99 0.365 1.14 0.398 -0.223 0.28 

ST28/04 DLB -0.08   0.73 0.6 0.62 0.269 1.16 0.498     

ST32/05 DLB -0.28 -0.1 0.76 -1.18 0.47 -0.05 0.6 -0.25 -0.259 -0.46 

A071/09 AD 0.223 -0.1 0.77 0.13 0.76 0.319 0.85 -0.13 -0.444 -0.64 

A108/09 AD 0.174 -0 0.53 -1.84 0.58 0.13 0.67 0.138 -0.124 0.08 

A120/09 AD 0.025   0.72 -1.63 0.66 -0.51 0.59 -0.11 -0.07 -0.12 

A147/10 AD -0.3 0.1 0.65 -1.7 0.95 -0.58 0.8 -0.15 -0.35 -0.15 

A216/09 AD -0.16   1.01 0.44 0.67 0.162 0.76 -0.23   -0.6 

A267/09 AD -0.39 -0.1 1.06 -0.11 0.84 -0.43 0.81 -0.18 -0.094   

A349/08 AD -0.15 -0.3 0.82 0.6 0.9 -0.2 0.92 -0.32 -0.334 -0.08 

A350/09 AD 0.146 -0.1 1.19 -0.54   0.336 1.03 0.128   0.08 

A37/09 AD 0.083 0.3 0.97 0.08 1.39 0.163 1.04 -0.2     

A371/08 AD 0.1 -0.1 0.57 -2.3 0.66 -0.03 0.95 -0.28 -0.177 0.14 

A38/11 AD -0.25 0.2 0.95 -0.42 1.04 -0.24 0.63 -0.38 -0.16 0.08 

A61/09 AD 0.137 0 0.63 -1.65 0.91 -0.49 0.95 -0.38   0.14 

A7/10 AD 0.201 0.2 0.66 -1.73 1.08 -0 0.77 -0.06   -0.26 

A76/09 AD 0.27 0.3 0.6 -2.24 0.82 0.128 0.88 0.022 0.0618 0.23 

A8/10 AD -0.04   0.73 -1.72   0.106 0.98 -0.02 -0.157 -0.22 

A92/09 AD 0.147 0.3 1.02 0.77 0.96 0.375 0.83 -0.27   -0 

 



 

 

xxxiv 

 

Appendix XI: Differences in the relative levels of synaptic proteins between the 

diagnostic groups. 

 

BA9 BA24 BA40 

   N Mean N Mean N Mean 

PSD95 Control 24 .8692 17 .6571 23 .8235 

PDD 32 .4100 33 .6742 27 .8678 

DLB 46 .5061 40 .7600 31 .5603 

AD 13 .6762 14 .8729 10 .4130 

Total 115 .5743 104 .7312 91 .7019 

ZnT3 Control 24 .7213 21 .0982 22 .6109 

PDD 31 .3052 33 -.0155 31 .3981 

DLB 44 .3925 35 -.0224 36 .2594 

AD 16 .4056 16 -.0478 14 .2807 

Total 115 .4394 105 .0000 103 .3791 

Total 
CaMKII  

Control 24 1.0254 23 .4501 24 .8250 

PDD 32 .6784 33 .6282 30 .7883 

DLB 50 .9816 47 .8715 49 .7561 

AD 16 .8050 16 .7239 16 .6098 

Total 122 .8875 119 .7027 119 .7584 

Phospho 
CaMKII  

Control 24 2.9993 23 .7479 24 4.0302 

PDD 32 1.9507 33 .7549 30 3.9167 

DLB 50 2.8902 48 .7979 49 2.7881 

AD 16 1.6301 16 .5992 16 2.5499 

Total 122 2.5000 120 .7500 119 3.2911 
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BA9 BA24 BA40 

  df F Sig. df F Sig. df F Sig. 

PSD95 

Between Groups 3 9.922 .000 3 3.789 .013 3 6.440 .001 

Within Groups 111     100     87     

Total 114     103     90     

ZnT3 

Between Groups 3 14.007 .000 3 1.537 .209 3 4.078 .009 

Within Groups 111     101     99     

Total 114     104     102     

Total 
CaMKII 

Between Groups 3 10.856 .000 3 8.462 .000 3 1.094 .355 

Within Groups 118     115     115     

Total 121     118     118     

Phospho 
CaMKII 

Between Groups 3 12.790 .000 3 2.072 .108 3 7.559 .000 

Within Groups 118     116     115     

Total 121     119     118     
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Bonferroni 

    BA9 BA24 BA40 

Dependent Variable Sig. Sig. Sig. 

PSD95 Control PDD .000 1.000 1.000 

DLB .000 .587 .059 

AD .571 .036 .022 

ZnT3 Control PDD .000 .552 .312 

  DLB .000 .426 .007 

  AD .001 .415 .087 

Total CaMKII Control PDD .000 .353 1.000 

DLB 1.000 .000 1.000 

AD .080 .095 .517 

PhosphoCaMKII Control PDD .001 1.000 1.000 

DLB 1.000 1.000 .004 

AD .000 .607 .010 
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