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Abstract

Disturbed hemodynamic conditions are often related to pathologies of the cardiovascular system.
Phase-contrast Magnetic Resonance Imaging (MRI) provides a non-invasive technique for the
assessment of time-resolved blood velocity vector fields within arbitrary imaging volumes.
Besides velocity vector field information, parameters related to turbulence can be calculated with
advanced multi-point velocity encoding schemes. However, long scan times are currently the

main barrier for the acceptance of the method in a clinical setting.

The following work presents data-driven MRI reconstruction algorithms for undersampled

measurements with the focus on accurate flow quantification and visualization.

An extension of an auto-calibrated parallel imaging reconstruction framework for arbitrary k-
space trajectories is proposed. The exploitation of temporal correlations as present in time-
resolved data demonstrates further advances of scan time reduction when assessing mean
velocity and turbulent kinetic energy. While most prior knowledge imposed in advanced MR
image reconstruction is designed to work on magnitude images or assumes smooth background
phase behavior, dedicated provisions are required for image reconstruction of phase-contrast
MRI data. To this end, it is proposed to incorporate the divergence-free condition of blood flow
into a separate magnitude and phase reconstruction framework for improving the accuracy of
image reconstruction of blood velocity vector fields. To address respiratory motion artifacts,
retrospective non-rigid respiratory motion correction incorporated into an iterative parallel
imaging reconstruction algorithm is proposed. Furthermore, optimized k-t sampling patterns are
derived for combined parallel imaging- and compressed sensing-based scan acceleration. Finally,
the dynamic parallel imaging technique is applied to study blood flow and turbulence patterns in

a relevant patient population with congenital heart disease.

Keywords: Magnetic Resonance Imaging, blood flow, multi-point phase-contrast, turbulent
kinetic energy, auto-calibration, parallel imaging, dynamic imaging, non-Cartesian sampling,

motion correction, compressed sensing, phase regularization, vector field divergence
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Chapter 1

Introduction

The heart supplies the body and itself with blood carrying oxygen and nutrients. The
corresponding circulation during a cardiac cycle is illustrated in (Figure 1.1). Cardiovascular
diseases (CVDs) are the major causes of death and disability worldwide and collectively describe
pathological function of heart, brain vasculature and blood vessels [1]. The development of CVDs
is often related to structural changes of the heart or vasculature altering blood flow dynamics
which in turn can advance pathologies and/or increase the workload of the heart. Complex wall
shear stress patterns due to disturbed blood transport are assumed to regulate biochemical
responses in vessel walls and can cause arterial remodeling and the formation of atherosclerotic
plaques [2, 3]. The resulting narrowing of the vessel lumen further affects hemodynamic
conditions. Plaque formation modulates aortic stiffness and retrograde flow channels,
respectively, and increases the risk of an embolic stroke [4]. Pathological aortic valves can
promote pronounced helical flow patterns, retrograde flow jets and are associated with the
formation of ascending aorta aneurysms [5]. Heart muscle pathologies lead to altered vortex
patterns in the ventricles thereby reducing the efficiency of blood flow redirection (e.g. within
the left ventricle from the left atrium through the aortic valve) [4]. These examples illustrate the
importance of assessing parameters of cardiovascular fluid dynamics to serve diagnosis and

therapy monitoring in CVDs.

Functional imaging modalities must provide tools to identify and quantify abnormal blood flow
patterns related to the patient’s pathogenesis, to guide, control and optimize corresponding
therapies, surgical interventions or implant designs (e.g. stents, valve replacement).
Echocardiography is a widespread imaging technique used in clinical routine for the assessment
of 1D or 2D blood flow velocity fields. Besides its advantages of rapid planning, real-time
visualization, good temporal resolution and low cost, ultrasound Doppler methods are inherently
limited by acoustic access, spatial resolution, angle dependency of velocity quantification and
operator dependency [6]. Flow in large vessels such as the aorta or pulmonary arteries can be

assessed using transesophageal echocardiograms. Semi-quantitative information on blood



Figure 1.1 a) Venous or deoxygenated blood (blue) is collected in the right atrium (RA),

while arterial or oxygenated blood (red) flows from the lungs through the right (RPVs) and
left pulmonary veins (LPVs) into the left atrium (LA). b,c) With increasing pressure, the
atrioventricular valves (tricuspid and mitral valve) are opened and blood is ejected into the
right (RV) and left ventricle (LV). d) Due to muscle contraction, the displaced venous blood
opens the semilunar valves (pulmonary and aortic valve) and is delivered to the lungs via
main (MPA), right (RPA) and left pulmonary artery (LPA). Simultaneous LV contraction
transports arterial blood through the aortic arch (composed of the ascending (AA) and
descending aorta (DA)) where branching arteries distribute it throughout the body. This

figure was produced using Servier Medical Art (www.servier.com, accessed 2014).

velocity patterns can also be obtained using invasive X-ray angiography procedures. Despite its

high spatio-temporal resolution, flow quantification has several limitations [7].

1.1 Motivation

Phase-contrast (PC) MRI is a non-invasive imaging technique allowing for time-resolved multi-
dimensional flow measurements in arbitrary positioned imaging volumes. Velocity component
information along arbitrary directions is encoded into the signal phase [8]. Upon vector field
calculation, complex flow patterns can be quantified using laws of fluid dynamics and illustrated
with streamline or particle trace visualization [4]. Besides basic quantities such as flow volumes
and rates, hemodynamic measures such as wall shear stress and relative pressure gradients can

be derived [4].

Even though multi-dimensional PC MRI protocols are available on clinical scanners, widespread
use in clinical routine has mainly been hampered by the long acquisition times. The assessment

of 3D vector fields increases measurement time by at least a factor of four relative to a scan
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protocol with the same imaging volume, spatial and temporal resolution, but without velocity
encoding. For a standard 3D gradient-echo PC experiment with 3 x 3 x 3 mm? spatial and 50 ms
temporal resolution, nominal scan time is on the order of one hour. Reduced data acquisition
strategies in conjunction with reconstruction algorithms exploiting receiver coil weighting [9],
spatio-temporal correlations [10] or transform-domain sparsity [11] have significantly decreased
nominal scan times. However, the actual scan time is again increased by a factor of 2-3 due to
free-breathing acquisitions employing respiratory gating. Acquiring multiple velocity encodes
along a given direction increases the sensitivity to low and high velocities and enables the
estimation of velocity distributions within each voxel. This concept of multi-point PC can be
applied to quantify turbulent flow [12] which is not resolved by current PC vector field mapping.
However, the gain in information about local flow distributions comes at the expense of further
prolonged scan times. Velocity reconstruction accuracy may also be compromised by system
imperfections, noise, misregistration effects between calibration and actual scan, residual

motion, and inappropriate prior knowledge.

The objectives of this thesis are to accelerate multi-point PC MRI for velocity vector field and
turbulence measurements and to develop corresponding acquisition protocols and

reconstruction algorithms addressing the above limitations.

1.2 Outline

Chapter 2 gives an overview of the basic principles of MRI signal generation, spatial- and flow

encoding, Fourier reconstruction and PC related correction methods.

In Chapter 3, the concept of image reconstruction formulated as an inverse problem is
introduced. A review of parallel imaging (Pl), compressed sensing (CS), dynamic imaging and

motion-compensating methods is given.

A method for auto-calibrated Pl exploiting temporal correlations in coil sensitivity weighting is
introduced in Chapter 4. Measurements of mean velocity and turbulent kinetic energy (TKE) from

highly undersampled radial multi-point PC data are presented.

Chapter 5 introduces novel algorithms directly incorporating physical prior knowledge about

blood flow into the reconstruction from undersampled 3D PC data.

Motion correction combined with auto-calibrated Pl is presented in Chapter 6 together with
results from computationally accelerated image reconstruction. Optimized sampling patterns for

dynamic imaging are also derived and validated.



The feasibility of the methodological developments in a relevant patient population with different

congenital heart disease conditions is presented in Chapter 7.

1.3 Contribution of the Thesis

In this thesis, an undersampled radial multi-point PC acquisition scheme with auto-calibrated Pl
reconstruction is presented (Chapter 4). The approach is demonstrated to compare favourably
with previous methods achieving up to 14-fold scan acceleration. Improved reconstruction
accuracy is demonstrated for magnitude, phase and TKE maps by exploiting temporal correlations

in signal space.

To correct for non-divergent velocity components in reconstructed velocity vector fields, a novel
approach taking into account physical prior information on the divergence-free condition of
incompressible fluids is proposed (Chapter 5). The concept is incorporated into a CS-based
separate magnitude and phase reconstruction framework. Non-convex reconstruction algorithms
regularizing phase difference maps using divergence-free Wavelets or finite difference-based
divergence and curl operators are developed and compared to standard convex CS. Using
reconstructions of dynamic 3D PC data, it is demonstrated that phase specific regularization

efficiently reduces non-divergent field components and improves vector field visualization.

In Chapter 6, it is demonstrated that reconstruction times of iterative auto-calibrated
reconstruction methods can be reduced by a factor between 1.5 to 2 using efficient mathematical
formulations of the encoding and Pl operators. Furthermore, data-driven non-rigid respiratory
motion correction in conjunction with Pl is presented for an effective combination of scan
acceleration and time-efficient respiratory motion compensation. Moreover, optimized Cartesian

undersampling patterns are derived for dynamic Pl in combination with CS reconstruction.

A 3D variant of the auto-calibrated Pl technique presented in Chapter 4 is implemented and
applied to acquire prospectively undersampled radial multi-point PC data in a congenital heart
disease patient cohort (Chapter 7). Reconstruction results and measurement times of around 15
minutes demonstrate the potential of concurrent velocity and turbulence mapping in a clinical

setting.
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Chapter 2

MRI Basics

2.1 Nuclear Magnetic Resonance

2.1.1 Magnetization

MR systems manipulate net magnetization aligned with a static magnetic field By = Boe: along
the z-direction e. = (0,1,1)" in a (x,0,z) coordinate system [13-17]. The measureable
magnetization M is defined as the macroscopic magnetic moment per unit volume resulting from
the superimposing nuclear angular moments or spins w: M =2 . For spin-1/2 isotopes (e.g. H,
BC or *'P), quantum mechanics allows the magnetic moment’s z-component to assume only two
values/directions related to the magnetic quantum numbers +1/2. In a magnetic field-free
environment, the two quantum states are equally probable, and thus, add up to a zero magnetic
moment. In the presence of By, the two quantum states are not energetically identical anymore
and a net population of magnetic dipoles aligned with e: is produced. In the thermal equilibrium
at spin temperature Ty, Boltzmann statistics approximates the net magnetization along z by
3 nyzthO

M, = , .
T AT (2.1)

with spin density n, gyromagnetic ratio % the Planck and Boltzmann constants % and ks,

respectively.

2.1.2 Spin Dynamics

The dynamics of net-magnetization M(r,?) in a magnetic field B(r,f) = (B«(r,1),B,(r,t),Bo)" at

11



position r is described by classical physics laws using the Bloch equations:

M. (r,t)/ T,(r)
%M(r,t) =M(r,t) x yB(r,t) — M (r,0)/ T)(r) . (2.2)
(M (r,t) =M, (r))/ T,(r)
If Bxy(1,f) = 0, the differential equations describe magnetization rotating around e: with Larmor
frequency wo = yBo. Simultaneously, the longitudinal component M. builds up to M, while
transverse components M., decay with tissue dependent constants 71 and 7>, respectively. The
relaxation time constants reflect spin-lattice and spin-spin interactions driving the spin ensembles
back to thermal equilibrium state. A solution of (2.2) can be obtained by neglecting
relaxation effects (71— +) yielding precessing magnetization (Figure 2.1a). Then, (2.2) is locally
transformed into a coordinate system (X, y,Z = z) rotating at position r with wo around e: leading
to a new set of uncoupled differential equations,
M (r,1)/ T,(r)

%M(r,ﬂm - Men/neo | (2.3)
(M..(r.)~ M,(r)) /T, (r)

with solutions M (r,t) =M (r,0)exp(-t/T,(r)), M (r,t)=M(r,0)exp(—¢/T,(r)) and

M. (r,0) = (M. (r,0) =M, (r))exp(=t / T;(r)) + M, (r).

By-a.fy

Figure 2.1 a) Precessing magnetization around the main magnetic field axis with angular
velocity wo = yBo. b) Effective magnetization resulting from the superposition of the altered
main field z-component and the RF field component in the rotating coordinate system. c)
If the resonance condition (w-= yBo) is met, transverse magnetization is built up by rotating

M around B with angular frequency yB:.
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2.1.3 Spin Excitation — Producing Transverse Magnetization

Precessing transverse magnetization can be measured using the principle of Faraday induction,
i.e. by detecting the induced voltage in a receiver coil tuned to the Larmor frequency. Transverse
magnetization is generated by superimposing the main field Bo with a transverse radio-frequency
(RF) field Bi(£) = (Bi(£),0,0)" generated by a transmit coil-driven with a current oscillating at ..

The Bloch equations (neglecting relaxation effects) in the locally rotating frame (e;,e;,e. =e_)

then read

iM(rﬂt)mt = M(rﬂt)mt X yl:(BO - a)z Jef + Bl (t)efc:|
dt 14

=M(r,t),,, x7B

(2.4)

eff 7

describing precessing magnetization around B in the rotating frame (Figure 2.1b). Since
Bo>> B, the z-component of B,yneeds to disappear, i.e. the RF pulse needs to fulfil the resonance

condition
W, =, :7/30. (25)

Accordingly, magnetization is tipped around e, in the (,Z)-plane with the flip angle

a(t) = yI;Bl(f)dT (Figure 2.1c).

2.2 Imaging

Superimposing the main magnetic field with a gradient field G(f) = (G(?),G.(¢),G(t))’,
B(r,?) = (Bo+ G(?)-r)e;, enables spatially selective excitation and spatial encoding of the MR signal.
The resonance condition of the RF pulse w(r) = y(Bo + G'r) becomes spatially dependent and,

accordingly, a plane perpendicular to the gradient direction is excited.

Upon excitation, the initial transverse magnetization precessing with
a(r,f) = y(Bo + ABo(r) + G(¢)-r) around the axis of the applied longitudinal field is denoted
p(r) = p(r,t =0). The field map 4Bo incorporates deviations of the field strength from the nominal

value Bo. At time point ¢ > 0, the rotating magnetization has accumulated a net phase of
¢(r,t):j;w(r,r)dr:yj;Bz(r,r)dr. Consequently, the complex-valued signal d(f) can be written

as a superposition of the precessing magnetization from distinct infinitesimal small

13



compartments dr having accumulated a spatially dependent net phase:

d(t)= Ic(r)p(r)e"/T;(r)e_"”(r”)dr . (2.6)

Vv

The excited volume is given as V, c(r) denotes the complex receiver coil sensitivity, and

1T} =1/T,+1/T,

inhom

refers to the transverse relaxation time constant taking into account signal

dephasing due to spin-spin interactions (72) and due to field inhomogeneities (Timiom).

2.2.1Spatial Encoding

Ignoring off-resonance (4Bo, chemical shift, susceptibility variations) and relaxation terms, and by

defining the spatial frequency vector

k() =7[G()dr, (2.7)

a Fourier relation between acquired signal d(k) and the sensitivity-weighted object p(r) is
obtained:

d(k) = [c(r)p(r)e ™ dr . (2.8)

Vv

The signal is now sampled in the so-called k-space by applying gradient waveforms. Figure 2.2
shows examples of standard 2D Cartesian gradient-echo (GRE) and spin-echo (SE) sequence.
These sequences allow manipulation of the signal’s echo time (TE), i.e. the time when k=0 is
traversed by prephasing gradients preceding the actual readout lobe on the frequency-encoding
axis. The echo signal is generated by a readout gradient (GRE) reversing the direction of phase
accumulation or a 180° RF refocusing pulse (SE) inverting the accumulated phase. While GRE is
sensitive to off-resonance effects since phase is accumulated during the whole TE interval, SE

employs 180° refocussing pulses rewinding field induced phases. Consequently, the echo signal

is weighted by e in GRE and by ¢*'" in SE sequences, respectively.

2.2.2 Fourier Reconstruction

By sampling the k-space signal at a finite number of positions k;, i = 1,...,M, a linear discretized

version of (2.8) is obtained [18]:

d=Ep, (2.9)

14
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Figure 2.2 a) lllustration of a GRE sequence with G.(f) composed of a negative prephasing

and a positive readout lobe. The corresponding k-space coverage is depicted on the right.
Solid lines indicate the actual acquisition window during which signals are sampled. b) SE
sequence with a positive prephasing and readout gradient separated by a 180° refocusing
RF pulse. Both sequences depict full-echo acquisitions where readouts cover the whole k-
space range [—kimakema] given by the spatial resolution. Partial-echo acquisitions
consisting of smaller prephasing gradient areas sample intervals [—kxo,kema] With

0 < ko < kvmax enabling shorter TEs.

with the vectorized data samples d € C¥, the discrete (sensitivity weighted) image p € CVand the

encoding matrix E mapping the image to the acquired data. In case of Cartesian sampling, E

implements a concatenation of a (unitary) uniform Fourier transform (FT) F € CM*¥and a sampling

matrix L, € {0,1}*¥: E = F, = LLF. Using N. receiver coils, the encoding matrix reads

E=(I, ®F,) (2.10)

15



if the multi-coil images stacked in p = [pf,...,pi,(‘]r are related to all channel’s data

d=1[d,..d,]", or

N(
E=(I, ®F,)S (2.11)

with 8 = [S],..,8], 1" where the coil sensitivity diagonal matrices S; € C¥*V are known.

For FT reconstruction, the data vector is pre-weighted with a diagonal matrix W ¢ RNM<NeM)

compensating for variable sampling density, followed by a multiplication with E: E“Wd. When
the coil sensitivities are used, an additional diagonal weighting matrix multiplication with

W, e R¥V s.t. WSS = I, is added. An artifact-free image is obtained when M = N and the k-

space sampling distance Ak; along the direction i fulfills the Nyquist sampling theorem with voxel

size Ax;,

1 1
Ak, <

l =———, (2.12)
NAx,  FOV,

within a given field of view (FOV).

2.2.3 Radial Sampling

Radial imaging or projection acquisition where k-space is traversed along radial spokes (Figure
2.3) was the first sequence used in MRI [14, 19]. Radial imaging features a number of advantages
relative to Cartesian imaging: 1) The absence of phase encoding gradients allows for short
minimum echo times (TE). Partial-echo or ultra-short TE (UTE) sequences [20] with short or no
prephasing gradients permit extremely short TEs, which are essential for imaging of short T3
species. 2) The oversampled center of k-space provides a low-resolution image from
undersampled data, which can be used as training, calibration or motion state data in advanced
reconstruction algorithms [21-25]. 3) Motion leads to streak artifacts depending on the direction
of object motion as opposed to rectilinear Fourier imaging where ghosting artifacts appear along
the phase-encode direction regardless of the direction of motion [26]. In radial imaging, the
oversampled low frequency components are averaged reducing motion-induced artifacts [26].
Each projection itself also contains information about movement enabling motion tracking and
correction [27]. 4) Undersampling in the azimuthal direction generates streak artifacts, but the

overall image structure is maintained (Figure 2.4) which is in contrast to Cartesian undersampling.
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Figure 2.3 Full- and partial-echo radial GRE sequence. The prephasing and readout
gradients are rotated about the center of k-space. Actual signal acquisition coinciding with

the trajectory’s solid lines is performed on the constant plateau of the readout lobe.

On the other hand, the Nyquist sampling criterion requires a larger set of measurements as

compared to Cartesian imaging [17]:

VA
PNyquiSt = E NPE ’

(2.13)

where Npg is the number of phase encodes corresponding to a Cartesian scan with the same

isotropic FOV and resolution.
Image reconstruction of radial data may be divided into three approaches:

Filtered backprojection The projection of an n-dimensional image is defined as the integral of the

object function p(r) over the (n—1)-dimensional sub-planes perpendicular to the direction e,
p(r,er):jp(r)é(r—r-er)dr. Filtered backprojection algorithms are implementations of the
inverse Radon transform which back-projects filtered projections [28]. The filtering is directly

performed on the acquired profiles d(ke,) which correspond to the FT of p(r,e;). Images are then

reconstructed according to:
p(r)= [ F ' {d(ke, )h(k)}(x -e,.e,)de,, (2.14)
Sija

where integration is performed over the unit semi-circle S;, or hemisphere S, . Ideal filters A(k)

are |k| and k* for 2D and 3D projections, respectively. However, to avoid noise amplification, band-

limited filters are applied [28].

Gridding Gridding reconstruction implements a non-uniform inverse FT (IFT) from k- to image-

space. The signal on the non-Cartesian sampling trajectory is interpolated onto a rectilinear grid
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Figure 2.4 Cartesian (left column), spiral (middle) and radial (right column) undersampling
artifacts from 4-fold undersampled short-axis view data. Regular Cartesian undersampling
along the phase encoding direction leads to coherent aliasing along that direction while
reduced spiral acquisition introduces severe streak- and swirl-like artifacts. Skipped radial

profiles produce streaks but preserve the overall image structure.

via convolution interpolation, followed by a uniform inverse fast FT (IFFT) and a de-apodization
step [29-31]. The block diagram in Figure 2.5 describes the general 3D interpolation process. The

Cartesian signal after the convolution step,

d,(6)= Y d(k,)h(k —k, )w(k,), (2.15)

reveals that gridding allows interpolation between any two trajectories, and thus, also from a
rectilinear onto an arbitrary one. This is referred to as inverse gridding [32]. In this case, the 2D

sampling density compensating weights are constant: w(k) = dk. Ak, Ak-.

For equidistant 2D radial sampling, the i-th point’s sampling weight in polar coordinates (n; 4k:,p;)

can be calculated analytically:

%(Ak,,)2 . n =0
w(k,) = , (2.16)

%(Ak,fni 0 #0

with the number of projections P, the radial sampling distance 4k, integer n;, and
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0 < ¢ <27 A widely used separable gridding kernel A(k) = flk.)f(k)) f(k:) is the Kaiser-Bessel (KB)
window [33]:

(k) =%10 (ﬂ\/l _ kWY ) (2.17)

where W denotes the kernel width, Io() the zero-order modified Bessel function of the first kind,
and S a shape parameter. [34] provides an optimal solution for a given kernel width and

oversampling ratio a: = 7 (W / a)*(a —0.5) — 0.8)"%.

noil-c&u'r( k) nw,.,( k)
d(k) \f]; 5 é - IFFT | ()

Figure 2.5 Mathematical model of the image reconstruction process using gridding. The
continuous k-space signal d(K) is measured on a non-Cartesian trajectory. This is modeled
by a multiplication with the sampling function Ilmca(K) = Xi0(k — k)w(ki) where {k:}
denotes the sample coordinates, o(+) the Dirac delta function and w(k:) the corresponding
sampling density compensating weights. The sampled signal is then convolved with the
kernel h(k) and resampled on a rectilinear grid by means of the delta comb
eard K) = Zonni 0(kc — mAk,ky — nAky, k: — IAk) Ak Al Ak-. Upon uniform IFFT, the coil image
is filtered with the inverse of the kernel function’s IFT, H(r), to correct for potential

attenuation of the image borders due to the convolution step.

Non-uniform FFT (NUFFT) NUFFT implements a FT evaluated at non-uniformly spaced frequency

locations. For the 1D case, this reads

N-1
Xm :X(a)m) :anefiw'”” m=1,....M, (2.18)

n=0

with frequencies ww. Instead of directly evaluating (2.18), linear interpolation of an oversampled
weighted K-point FFT, Yi = Y(27k / K), of the equally spaced samples {x.} is used to approximate
X

K-1
Xm ~ Xm = ZV;kYk = <Y’ Vm> ’ (219)
k=0
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where v, is the interpolation coefficient vector for frequency w.. Reference [35] provides a
solution for a min-max interpolator that minimizes the worst-case approximation error over all

signals of unit norm:

min max )?m—Xm‘. (2.20)

Vi xeCVix], <1

The extension to higher-dimensional signals is outlined in [35]. The NUFFT operator actually
implements an inverse gridding operation. Gridding in MRI, i.e. reconstructing an image from

non-Cartesian trajectories is then formulated as an inverse problem:

argmin”d—Fp i (2.21)
p

where F implements the NUFFT matrix. Iterative solvers can then be used for the minimization

problem (2.21) with the forward model F and without sampling density compensation.

It can be shown that the sequence of points {X0,X1, 000X} where
Xn={n&tmoa1 = (1 / F){nFii}moar: (i > +00) is distributed very evenly across the unit interval [0,1]
(Figure 2.6a) [36, 37]. The Golden ratio & is the irrational number
J5-1

2 7

£=lim L -

2.22
i—>+00 E ( )

with {Fi} being the integer Fibonacci sequence. Following this principle, a 2D radial Golden angle
(GA) sampling scheme has been proposed for dynamic imaging providing a nearly uniform
distribution of profiles over the interval [0,180°[ for each reconstruction window [38]. Adjacent

projections are acquired with the fixed angular increment
Ap=£180" =111.25° (2.23)

allowing flexibility in temporal resolution and positioning of reconstructed image frames (Figure
2.6b). This concept has further been extended to 3D radial imaging with isotropic resolution and
imaging volume, respectively [37], based on multi-dimensional Golden means § s.t. N-D points
X» = {n&}mea1 provide near uniform coverage of [0,1[" [36]. A near optimal coverage of the half
unit sphere is then attained by approximately uniform sampling of a bounded 2D parameter space

corresponding to sampled directions [37].
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Figure 2.6 a) /llustration of subdividing the 1D unit interval using the Golden mean for a 6-

(top) and 33 point (bottom) sequence. Each point x. (n > 0) in the sequence is positioned
s.t. it subdivides an interval into two segments whose lengths’ ratio is the Golden mean &
b) The radial GA acquisition scheme allows arbitrary temporal resolution and positioning
of reconstructed heart phases. Profiles acquired over multiple R-R intervals for a given
reconstruction window can be pooled together without congruent projection. Figure a) is

adapted from [37].

2.2.4 From Real- to Complex-Valued Signals

A receiver design must convert an analog real- into a complex-valued discrete signal agreeing
with the models (2.8) and (2.9) for FT-based reconstruction. A classical quadrature receiver design
is illustrated in (Figure 2.7a) [17]. The continuous time-frequency representation of a real valued

MR signal during readout (neglecting relaxation effects),
s(t) oc j|p(r)||c(r)|sin(a)0t +K(@) r+d,, —d)dr, (2.24)
V

is a band-pass signal with a carrier frequency of wo and a bandwidth dependent on object size
and readout gradient strength. @.x denotes the phase of transverse magnetization at the
beginning of sampling and ¢.x the phase of the coil sensitivity. After low-pass filtering, the so
called in-phase and quadrature component are centered at the zero frequency, i.e. the By

component has been removed. Upon discrete sampling, discrete in-phase and quadrature
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Figure 2.7 a) lllustration of a quadrature detection scheme transforming a real-valued

signal s(t) into a complex-valued d[k:] conforming with the k-space models (2.8) and (2.9).
Before passing to the reconstructor, bandlimiting and resampling filters may
be applied to the signal swp[i] —ises[i]. b) Corresponding spectra of the bandpass signal
within the quadrature scheme. ¢) Spectra within current direct digital receiver path
without any demodulation. Upon high oversampling of s(f), a resampling filter shifts the
bandpass supports closer to the zero frequency. Proper centering is then achieved using

digital filtering.

component are combined according to su[i] — iseup[i] leaving the spectrum of the complex valued

signal corresponding to the readout k-space samples (Figure 2.7b).

New receiver designs do not transform precessing magnetization to the rotating coordinate
system using analog demodulation. After digitization, the signal is bandlimited around a
frequency > 0 and centered to zero with digital filtering (Figure 2.7c).
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2.3 Flow Encoding

The signal model (2.8) can be extended to additionally encode information about flow by
investigating the phase accumulation of moving spins in the presence of bipolar flow encoding

gradients.

The precession frequency w(X,f) = y(Bo + ABo(x(¢)) + G(?)-x(¢)) of a spin travelling on the

trajectory x(¢) leads to a phase accumulation after time ¢

o(x,t)=yByt+ ;/J- AB,(x(7))dt + ij(r) -x(r)dr. (2.25)

Expanding x(f) in the right-hand term using a Taylor series about # yields:

dx(t,) 1.d°x(t,) )
x(¢)=x(t,))+——((—-t,)) +————({F—¢,)) +.... 2.26
(1) =x(t,) 7 (r=1,) T (t—1,) (2.26)
The applied gradient’s first moment vector reads:
k,()=7[G()rdr. (2.27)
0

Bipolar waveforms of zero net area allow encoding velocity component along the direction of k,
if terms after second orderin (2.26) are neglected and # =t is assumed to be the center of gravity
of the bipolar waveform. Upon combining (2.25)-(2.26), the velocity encoding signal model
becomes [8, 39]:
d(k,k, )= j j o(r) p(r, v)e T Vrdy | (2.28)
R}V

where p(r,v) is proportional to the spin density at location r with velocity v = v(#.). These bipolar
gradients are then combined with spatial encoding waveforms [17, 40] (Figure 2.8). In practice,
orthogonal velocity components are acquired separately, and therefore, velocity is only encoded
along the corresponding directions. In this case, the signal model can be modified by replacing

the vectors k, and v with the scalars &, and v.

However, since spatial and functional encoding do not temporally match, i.e. t. # TE, spatial
misregistration of the velocity can occur. The resulting artefacts can be minimized by designing

sequences with short TEs.
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Figure 2.8 Schematic of a GRE sequence with bipolar waveforms and velocity sensitivity in
readout direction (left). The amplitude of a bipolar gradient is incremented according to

Ak.. The velocity encoding first moment then defines a new axis in signal acquisition space

(right).

2.3.1Fourier Velocity Encoding

Fourier velocity encoding (FVE) allows reconstructing the velocity distribution or spectrum, p(r,v),
in each voxel by acquiring a range of k.-points (Figures 2.8 and 2.9) followed by an IFT of the signal
d(k,k,) along the spatial and velocity encoding axes. The Nyquist sampling distance for the k.-axis

then becomes:

Akv: 1 = 1 = 1 )
N,Av  FOS 2V

enc

(2.29)

with the number of samples N, the velocity resolution Av, the field of speed FOS, and the highest
detectable velocity V. (encoding velocity). However, the ability to resolve velocity distributions
comes at the expense of scan time which is proportional to N, and the increase in minimum TE
due to higher gradient first moments required. With the assumption of Gaussian distributed
velocities [12], i.e. velocity spectra fully characterized by mean v and standard deviation ¢

(=, ()’

p(r,v)=po(r)m%(r)e 2T (2.30)

an analytical expression for the signal upon IFT along the spatial encodes is obtained:

2

2
LA

d(r,k,)= Ic(r)p(r,v)e’ik"vdv =c(r)p,(r)e ? ’ , (2.31)

R
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where po(r) denotes the spatial spin density. Theoretically, from any two velocity encoded

segments with k.1 # k.2, mean velocity and standard deviation can be derived according to:

K)o ()
d(r,k,)) BTN o

- 2 . (2.32)
d(nkv,z)

However, noise in the measurements requires an estimation of o for a reliable quality of the fit
in practice. Furthermore, the distance k.1 — k.2 needs to be restricted to avoid wrapped mean

velocity estimations.

k
L%

Figure 2.9 lllustration of the sampling pattern in the k-k, plane in FVE and standard PC.

FVE

For simplicity, the frequency encoding component ky is omitted.

2.3.2 Phase-Contrast MRI

Phase-contrast (PC) velocity mapping assigns one velocity value v(r) to each voxel [41],

p(r,v)=p,(r)s(v-v(r)), (2.33)

with the Dirac delta function d(+), such that the phase modulated and sensitivity weighted spin

density po becomes p(r,k) = c(r)po(r)e @

after IFT. Practically, measuring the phase difference
A¢(r) between two velocity-encoded measurements with different first gradient moments, k..
and k., allows to calculate w(r) by simultaneously eliminating field inhomogeneities and

background phases:

= Ak v(r) =——(r), (2.34)

enc

| p(r.k,,)
A¢(r)‘<{p(r,kv,z>}
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with Ve corresponding to the maximum detectable velocity without phase wrapping. Figure 2.9
points out that PC can be seen as a special case of FVE where only two velocity-encodes are

acquired.

Four-point PC encoding [42] is a 3D velocity vector field acquisition scheme where the phase of a
reference segment (k, = 0) is subtracted from the phase of three segments acquired with first
moments applied along three orthogonal directions (x,y,z). The velocity vector v = (vi,»,v:) T at

position r is then linearly related to the corresponding phase vector ¢ = (¢o,¢x,¢»,¢-)": v = A with

k., 0 0Y)(-110 0
A=l 0 k, 0| |-1 010 (2.35)
0 k.)\-1 0 01

2.3.3 Velocity-to-Noise Ratio

If the real and imaginary part of the noise in a receiver channel are uncorrelated and of equal

amplitude, the variance of a complex-valued image phase oy is given by [43]:

2
o, 1

o =—F,
* 82 SNR?

m

(2.36)

with standard deviation o, signal strength S., and signal-to-noise ratio SNR, of the
corresponding magnitude image. After phase subtraction (2.34) of two images with
approximately equal magnitude, the variance in the estimated velocity component v becomes

[43]:

2V,
o, =—%0,, (2.37)
T

resulting in a velocity-to-noise ratio (VNR) which is inversely proportional to the encoding velocity

and proportional to signal SNR:

v VA% 1%
VNR=—=————oc—SNR, . 2.38
0. o, T 12:38)

The SNR of the image magnitude itself is proportional to the voxel size and the square root of the

total acquisition time T, [44]:

N uton N
SNR,, o AxAyAz\[T,, = AxAyAz # (2.39)
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with the total number of encoding profiles Nieaow, Samples Nmpe along each profile and the

receiver bandwidth BW.

The relation (2.39) holds only for uniform k-space sampling like equidistant Cartesian sampling. If
a variable sampling density is used, density compensation needs to be accounted for. Maintaining
spatial resolution and total acquisition time, the loss in SNR relative to constant density sampling

may be described by the SNR efficiency factor [45]:

Ak
n= —=<1, (2.40)
\/ [ wiao)di [ wite) " di
where A: denotes the k-space area covered by the trajectory and w(k) the sampling density
weights. For 2D projection reconstruction, the efficiency factor is given by n = 3"2/2 = 0.866

revealing a loss of 13.4% in SNR.

2.3.4 Concomitant Fields and Eddy Currents

Fundamental laws of physics and MR system imperfections introduce image artifacts related to
the linear encoding model (2.28). These errors affect the phase accumulation and can be modeled
as spatially dependent phase offsets ¢.(r,k,):
dk,k,)= fIc(r)p(r,V)el”’“(r’k”e'“k'”k”'v)drdv. (2.41)
R}V

The additional phase term includes field inhomogeneities, concomitant gradient field and eddy
current induced errors. While time-invariant field effects can be removed by the phase
subtraction in PC MRI, gradient non-linearities lead to deviations from the nominal gradient
strength and direction resulting in spatially dependent gradient first moments, respectively. This
error in Ve and encoding direction can be corrected for if the gradient coil model parameters

generating the field imperfections are known [46].

Assuming a divergence- and curl-free magnetic field in the scanner bore, a spatially varying field
B(r) has to obey V-B =div B =0 and VxB = curl B = 0. The linear encoding field purely aligned
with the z-axis, B(r) = Boe: + G-r, fulfils the divergence- but not the curl-free condition. In
consequence, it can be shown that components By and B, perpendicular to the longitudinal axis
are introduced, and thus, the net field is increased resulting in spatially dependent differences in
precession frequencies (Figure 2.10). With current MRI systems, the altered magnetic field

magnitude is approximated by ||B(x,y,z,0)| = Bo + G(f)-r + Bd(x,y,z,t) with the non-negative
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Figure 2.10 /llustration of the altered net magnetic field resulting from transverse
components arising due to the field gradients. The concomitant field B. exceeding the
nominal field leads to phase offsets which cannot be removed by the phase subtraction in
PCimaging. Remaining velocity offsets (in a 4-point PC experiment) along three orthogonal

directions M-P-S are also shown.

concomitant field term revealing non-linear spatial dependencies [17, 47]:

B (x,y,z,t) = L[ G, 1)’z + G, )’z +
25, (2.42)
L G.(t) % ~G,(1)G.(1)xz -G, (G.(t)yz] .

This adds a phase accumulation according to ¢,(r,k,) = ;/j xX,9,2,B,,G,(7),G,(7),G. (r))

Since different gradient first moments have different concomitant field phase offsets, they are
not removed by the phase subtraction in PC imaging. However, from the nominal gradient
waveforms, coefficients (a,b,c,d) related to the concomitant gradient cross- and self-squared
terms can be calculated and the corresponding phase offset contribution in ¢«(r,k,) is eliminated

by voxel-wise subtraction prior to phase difference calculations:
p(r,kv) «— p(r,kv)e—i@.(r,kw) — p(r,kv)e—i(az2+b(x2+y2)+cxz+dyz), (243)

with a:(7/2B0)J‘[Gx(r)2+Gy(z')2]dr, b:(y/SBO)IGZ(r)Z dr, c:(—y/zBO)ij(r)Gz(r) dr and

d=(-y/2B,) j G,(r)G.(7) dr .

Another source of deviation of the actual from the nominal gradient waveform is related to eddy
currents. According to Faraday’s law, time-varying magnetic fields produced by gradient coils
induce currents in conductive structures within the scanner system. These eddy currents
themselves build up magnetic fields counteracting the nominal pulse shapes resulting in distorted
gradient functions, temporally shifted and biased in strength, which translates into k-space
trajectory misalignment and phase fluctuations [17]. To correct for these error sources, MR
systems are equipped with gradient shield coils cancelling induction effects of the imaging

gradients to some extent [48]. These are placed around the gradient coils and are driven by input
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currents such that the magnetic flux is minimized outside the shield. In addition, gradient pre-
emphasis modulates the imaging gradient’s input currents to prospectively compensate for the
eddy current disturbances. The induced eddy currents in conductive structures are approximated
by a series of LR-circuits inductively coupled to a gradient coil [49]. The total gradient waveform
2(?) generated by a gradient coil is then given by the superposition of the input current i(¢) and

eddy currents ix(?):

g(1)=ai(t)+ Y a,i (1) . (2.44)

Linear time-invariant system (LTI) theory directly relates the input current to the resulting

gradient shape in the Laplace transform domain:

G(s)za(l—ch a j[(s)zH(s)I(s). (2.45)
T s+w,

Coefficients cx and wx collect model parameters and H(s) is the impulse response function of the

LTI system. Using an ideally switching gradient and a step function input current I(s) = 1/s,

respectively, the eddy current gradients become exponentially decaying distortions:

g() =a(1—20kew"’j- (2.46)

Gradient waveform pre-emphasis then corresponds to finding an input current i(¢)/I(s) for a
desired waveform g(#)/G(s). However, eddy currents induced by a gradient coil do not only
disturb the field along the direction of the gradient, they can also generate temporally decaying

components along the other two orthogonal directions which have to be compensated for:

G.(s)| [Hy(s) Hy(s) H_(s))|L(s)
G,(s) |=| H,(s) H,(s) H_(s)|l1,(5)], (2.47)
G.(s)) \H.(s) H,(s) H.(s) \I(s)

where e.g. H.(s) accounts for the eddy current effects in the x-channel when the y-gradient is
activated by I(s). Since the model parameters in (2.44) and (2.45) are not known, they are
measured using free induction decay (FID) experiments where phase evolutions of field probes
at different spatial locations are recorded after a gradient pulse followed by a non-selective RF
excitation [17]. The time derivative of the phase then allows deriving the gradient fields at the

corresponding locations.

The combination of shielded imaging gradients and eddy current pre-emphasis is sufficient for

most MRI applications. However, in flow-encoded MRI where different images are acquired with
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different encoding gradients, remaining eddy current related phase offsets are not nulled in
velocity field reconstructions. Image-based methods typically employ a polynomial phase
correction function derived from static tissue voxels which is then subtracted from the phase
differences maps [50, 51]. Therefore, the success of these methods depends on the availability
of static tissue voxels with sufficient VNR. Phase offsets can also be derived from phantom
calibration scans where the measurement is repeated, and thus, scan time doubled [52]. Recent
advances in spatio-temporal magnetic field monitoring [53] allow to directly measure velocity
offsets in PC experiments in short calibration scans. Further improvement can be expected from
progress in gradient waveform pre-emphasis composed of more comprehensive error models

including field monitoring [54].
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Chapter 3

Image Reconstruction

A realistic discrete signal model incorporates additive zero-mean complex-valued Gaussian noise

with independent real and imaginary part [55]:
d=Ep+n, (3.1)

where the elements of the noise vector n € CY* are uncorrelated over time and k-space,

respectively, but may be correlated among receiver channels [56].

MR image reconstruction aims to invert the linear system of equations (3.1). Solutions minimizing

the data fidelity least squares term ||d — Ep||2 fulfill the normal equation E“Ep = E”d. The

corresponding minimum-norm solution for underdetermined (N.M < N) and the projection onto
the range space of E for overdetermined (N.M > N) linear systems with full rank encoding
matrices is given by the Moore-Penrose pseudo-inverse, Efd, which reads E" = E”/(EE")™" and
E' = (E"E)'E”, respectively [57]. Depending on the existence, uniqueness and stability of the
inversion, additional prior knowledge can be incorporated via regularization terms Ri(+) to restrict
the solution space or guarantee a stable inversion. Further generalization of the data consistency
term by a positive definite matrix W leads then to the following formulation of the image

reconstruction problem:

argmin(d —Ep)” W(d-Ep)+ > A'R/(p), (3.2)

with the regularization parameters A; trading data fidelity and regularization. When the R/s
implement quadratic cost functions of the form Ri(p) = p”Rip with positive definite matrices R;,
the solution minimizing (3.2) becomes linear in d by setting the gradient of the error functional

to zero. For an overdetermined system, the solution then reads (E”WE + X: 4> R)'E*Wd, while

for an underdetermined problem (X4’ R)"E*(E(Z:2?R)'E” + W)'d results. The two
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solutions are analytically equivalent and connected via a variant the Woodbury matrix identity”
[58]. However, the second expression provides a numerically more stable inversion when E has

more columns than rows. For the function Ri(p) = ||Aip||3, Ribecomes A”A..

3.1 Parallel Imaging

Parallel imaging (Pl) reconstructs images from undersampled data by exploiting redundancy in
the encoding process due to coil sensitivity weighting. Knowing the coil sensitivities, this
redundancy is reflected by the tall matrix structure (more rows than columns) of the encoding
operator. When skipping k-space profiles, aliasing artifacts are then composed of superpositions
of sensitivity weighted voxels which can be mapped back to the unfolded object using linear
algebra [56, 59]. However, the estimation of accurate sensitivity maps is essential for good
reconstruction quality and prone to different sources of errors, e.g. spatial misregistration
between calibration and actual scan, field of view (FOV) limitations [60, 61], or extrapolation to
regions with low spin density [62]. Auto-calibrating k-space methods reconstruct multi-coil k-
space data without the need of coil map estimation [63]. Sensitivity weighting translates into a
correlated multi-coil k-space due to the convolution with the FTs of the sensitivity maps. These k-

space correlations can directly be extracted from the acquired data.

3.1.1 SENSE

In the sensitivity encoding (SENSE) model, redundancy due to sensitivity

weighting of the Cartesian object vector p € CV is reflected by the structure of the

encoding matrix E = (Iy.® F.,)S € CN*¥ with the FFT or NUFFT operator F., when the total

number of measurements N.M exceeds the Nyquist sampling rate given by the k-space trajectory,
the FOV and resolution of the imaging volume. A noise optimal inversion of (3.1) is given by
minimizing a weighted least-squares problem (3.2) with the weighting matrix W being the inverse

of the noise covariance matrix or sample noise matrix [56]

Y=m"=% 0I,, (3.3)

*(AB'C-D)'AB'=D'A(CD'A - B)"!
32



with W. the N. x N. receiver noise matrix. The noise matrix contains noise variances of each
receiver channel along the diagonal, while reflecting inter-channel noise correlations in the off-

diagonal elements. The signal-to-noise optimal solution in this case is obtained as:
p=E"Y'E)'E'Y'd. (3.4)
The effect of the weighting matrix can be illustrated when W. is assumed to have entries on the
diagonal only. In this case, each component of the data consistency term is weighted according
to the coupling of the coil to the object of interest. By modifying the data vector, d —>d, and
sensitivity maps, E — E, ¥ can be eliminated from (3.4) by a noise-decorrelation process using
Cholesky decomposition of W. [59]: p = (EH]:Z)’IEH& . If M equals the Nyquist sampling rate, (3.4)

is referred to as Roemer combination [64] of multi-coil data.

The theoretical maximum undersampling factor R is limited by noise amplification caused by the
reduced amount of acquired data samples and the degree of redundancy introduced by S in the
encoding matrix E. The resulting local image space noise amplification relative to the fully
sampled case is then inversely proportional to the so called geometry factor and the square root

of R [56].

3.1.2 GRAPPA

While SENSE requires explicit knowledge of coil sensitivities to provide the coil-combined

image p € CY, Cartesian generalized auto-calibrating partially parallel acquisitions (GRAPPA) [63]

inverts (3.1) by reconstructing multi-coil k-space data (In. ® F)p € C" by means of a k-space

interpolation scheme:
p=I, ®F"G(, ®1,)d, (3.5)

where G is composed of interpolation kernels for each coil synthesizing missing from acquired
samples (Figure 3.1a). The number of kernels per coils depends on the different sampling patterns
occurring when shifting a k-space data block over the missing k-space points. Inner- and inter-coil
signal correlations which are assumed to be valid over the full k-space are informed from a fully
sampled calibration area acquired in the center of k-space. This can be achieved with a so-called
calibration matrix A whose rows contain vectorized data blocks shifted over the calibration data

(Figure 3.1a). The vectorized interpolation weights g, corresponding to the i-th coil and the local
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Figure 3.1 a) Cartesian GRAPPA linear k-space interpolation scheme. Missing (gray) phase
encodes are synthesized from acquired (black) lines within a predefined neighborhood
(gray blocks) across all coils (left). The coil specific and position dependent interpolation
weights gis are fitted to a fully sampled center of k-space (middle) by means of the
calibration matrix A (right) composed of vectorized k-space blocks shifted line by line over
the calibration area. The corresponding first coil’s calibration target points are indicated
by the red area and column, respectively. b) lllustration of radial GRAPPA where profiles
(right) are reordered in a hybrid k-space according to their angular positions (middle).
Cartesian GRAPPA is then applied on segment along the radial components (right). Figure
adapted from [23, 65, 66].

sampling pattern indexed by s can then be derived from following inverse problem:
d; =Ae, =Alg, , (3.6)

with d; being the i-th coil’s interpolation target points within the calibration area, e; a unit vector

with a one at the component corresponding to the position of the target point within the
vectorized full data block over all coils and I a sampling matrix that extracts only acquired points

from the local k-space grid.

34



Non-Cartesian GRAPPA methods are based on shifting acquired k-space points to the appropriate
nearest Cartesian location [67] or rearranging the data into a Cartesian parameter space where
standard GRAPPA can be performed [66, 68]. For example, 2D radial GRAPPA first reorders the
acquired and missing projections onto a Cartesian grid with the two dimensions referring to
angular and readout position (Figure 3.1b). This hybrid data space is then subdivided into
segments along the readout direction which are then reconstructed separately using Cartesian

GRAPPA.

3.1.3 SPIRIT/ESPIRIT

Iterative self-consistent Pl reconstruction (SPIRIT) [23] is a recently proposed auto-calibrating
method generalizing GRAPPA. A Cartesian multi-coil k-space d. is generated from samples d
acquired along an arbitrary sampling trajectory with the constraint of calibration consistency
d. = Gd,, i.e. each Cartesian k-space point, whether acquired or not, is expressed as a linear
combination of all k-space points within a local neighborhood across all channels (Figure 3.2). In
contrast to GRAPPA, G implements a Cartesian shift-invariant interpolation scheme, assuming
fixed signal correlations over a fully sampled local neighborhood, independent of the local
sampling patterns. Data fidelity with arbitrary trajectories is imposed by using a linear operator
E: mapping reconstructed Cartesian k-space to d: d = Eid.. Since G is composed of k-space
convolution matrices, the calibration consistency constraint can be easily reformulated in image
space by means of a matrix G: replacing the convolution operators with diagonal matrices
corresponding to the image-domain representation of the k-space interpolation kernels: p = Gxp.
Thereby, voxel-wise multiplications of the multi-coil images p with the IFTs of the SPIRIT
convolution kernels is implemented followed by summations over the coil dimension.
Transforming G into image space, replacing E. with the corresponding encoding matrix E and
relaxing these two linear constraints, image reconstruction can then be formulated as an

unconstrained Lagrangian optimization problem:

argmin ||d—Ep|f; +2* [|(G, -Dp ; +R(p), (3.7)
p

with 4 trading data and calibration consistency and R(-) incorporating further regularization on

the estimated multi-channel image.

G. reduces to voxel-wise matrix-vector multiplications p.(r) = G«(r)p.-1(r), updating the N. x 1
multi-channel image vector p.-i(r) via the N. x N. matrix G«(r) composed of the values of the

inverse Fourier transformed convolution kernels at position r, during iteration step n using an

iterative solver for (3.7). Ideally, the solution converges to the scalar object function p(r) € C
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Figure 3.2 /llustration of the SPIRIT calibration consistency operation (left), inclusion of
non-Cartesian trajectories (middle) and the calibration step (right). Generalizing GRAPPA,
each Cartesian k-space point (whether acquired or not) is expressed as linear combination
of all k-space samples within a predefined vicinity across all coils. Data consistency with
non-Cartesian samples is enforced by a regridding operation relating reconstructed
Cartesian k-space to the non-Cartesian trajectory. If the calibration matrix A is assembled

according to Figure 3.1a, calibration target vectors d; can directly be extracted from A.

Figure adapted from [23].

modulated by the coil sensitivity vector ¢(r) € C: lim_wo pa(r) = p(r)e(r). With the above matrix-

vector multiplication, this leads to:
¢(r)=G,(r)e(r), (3.8)

stating that the coil sensitivity vectors are the eigenvectors of the calibration matrices G(r)
corresponding to the eigenvalue of 1. In practice only information about the relative spatial
positioning between the coils can be extracted, and thus, the phase of an arbitrary reference coil
needs to be subtracted from every coil map after the voxel-wise eigendecomposition of G..
Following these steps, one can proceed with SENSE or computationally optimized SPIRIT
reconstruction (ESPIRIT) [65, 69]. However, this relation between the calibration operator and
the coil sensitivity maps is fairly intuitive. A mathematically more profound relation is derived in
[65], based on a different calibration operator. The underlying assumption is that all multi-coil k-
space data blocks are spanned by the same orthonormal vector set generating the calibration
data. Using the calibration matrix A, whose rows are composed of the vectorized k-space blocks,
basis vectors can be calculated using singular value decomposition of A: A = ULV”. The modified

self-consistency operator then locally projects each data block Ixd. onto the subspace generated

36



by V, (matrix with column vectors supporting the row space of A according to the singular values

in X), plugs the projected data back into the k-space grid and averages overlapping positions:

G=M"Y LVV', (3.9)
k

with the diagonal matrix M =271, . The rows of VHVHH can be viewed as multiple SPIRIT kernels

working in parallel whose output images are averaged under the assumption of periodic
boundary conditions. The image-domain implementation G. of G and the estimation of

normalized sensitivity maps (SS = I) are further detailed in [65].

3.2 Compressed Sensing

Sparsity-promoting inversion of linear systems has gained a lot of attention in the signal
processing community over recent years. Underdetermined linear systems of equations, y = Az,
have in general no or infinitely many solutions. If the system matrix has full rank, the pseudo-
inverse gives the minimum-norm solution. However, it has been shown that one can recover a

unique sparse solution vector solving the following non-convex optimization problem when A

fulfills certain requirements [70]: min ||z[jo s.t. y = Az with the fo-norm ||:||o counting a vector’s

non-zero entries. In practice, tractable reconstruction algorithms need to be applied on noisy

data. When replacing the £o- with the convex £i-norm

lz],=>|z1, (3.10)

1

computationally  feasible algorithms can be used for approximate solutions:

min ||z): s.t. |y — Az||; < ¢, with € controlling data fidelity and is normally set at the noise level.

Based on [71, 72], Lustig et al. [73] adapted this concept of compressed sensing (CS) for MRI by
li-regularizing the inversion of incomplete k-space measurements. If the object p has a sparse
representation in a linear transform domain, ¥p, and the undersampling pattern leads to

incoherent (noise-like) artifacts in the image and sparse domain, the object can be recovered by

solving the unconstrained minimization problem

argmin ||d —Ep| +4]|'¥p|,. (3.11)
p

Depending on the imaging experiment, ¥ implements e.g. a discrete Wavelet, anisotropic total
variation (TV), identity or temporal FT operation. Noise and incoherent artifacts are then removed
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by the sparsity-seeking £i-norm which suppresses noise-like contributions from small coefficients

while maintaining the significant signal components. The non-linear conjugate gradient (CG)
solver in [73] approximates the non-differentiable sum in (3.11) by ||[¥p|: = p"¥"W~'W¥p, with

the real-valued diagonal matrix

w =diag(\/(‘l’p)* 0(‘I’p)+K), (3.12)

where the complex conjugate (-)*, the square root and the multiplication o denote element-wise

vector operations. k adds a small positive constant to each component. The gradient update
during CG iterations is then calculated according to V|[¥p| = 2¥/W~'¥p. Using iterative
reweighted least squares (IRLS) algorithms [74], the following problem which is quadratic in p is

solved:
k+1 : 2 /1 HyyH -1
p"" =argmin|[d-Ep]|; +Ep YW, Y¥p, (3.13)
p

with Wy being the diagonal matrix evaluated at p*. The factor 1/2 origins from an auxiliary function

defining an upper bound for the £ terms, i.e. minimizing (3.13) for k — +o0 also minimizes (3.11).

The above update can then be calculated by running a few CG iterations inverting
[E7E + (1 / 2)¥"W ' W]p = E”d. Unitary transforms (YW = Iy) allow using iterative shrinkage-
thresholding algorithms (ISTAs) [75-77] which can be decomposed into a line search step along
the gradient of the convex data fidelity term, followed by a sparsity-promoting operation in the

transform domain:
k+l _ g H k H k
ptl = SM(T[p +7E" (d-Ep )]) (3.14)

Si(xi) = max(|x:| — £,0)sgn(x.) is the soft-thresholding function acting on the vector elements x; and

Tis a step size parameter.

Combining Pl or dynamic imaging with the CS reconstruction formalism is straightforward [23, 78,
79]. Originally, most linear operators ¥ rely on fixed analytic transforms, which is only as good as
the underlying mathematical model, and thus, can implement too rigid priors. Recent research
focusses on more flexible data-adaptive sparse representations based on structural similarity of

image patches [80, 81], coefficient support structure [82] or dictionary learning [83].
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3.3 Dynamic Imaging

In dynamic imaging, k-space data were collected for different time points ¢, thereby spanning a
so-called k-t space. Time-interleaved Cartesian and non-Cartesian undersampling introduces
coherent or incoherent aliasing in the spatial and temporal frequency domain (x-f space).
Undersampling artifacts in x-f space may be removed by linear or non-linear methods exploiting
temporal correlations in an object series signal representation. Assuming that only minor parts
within the image undergo rapid changes, the support of the dynamic object in the x-f domain is

sparse and/or tightly packed.

Linear Cartesian reconstruction schemes like k-t SENSE [84] or k-t GRAPPA [85] acquire a fully
sampled center of k-t space (either separated from or simultaneously with the actual data scan)
for training or calibration data together with time-interleaved regularly skipped phase encoding
lines (Figure 3.3). While k-t GRAPPA directly exploits signal correlations in k-t space by extending

the GRAPPA kernel along the time axis, k-t SENSE reconstructs an unfolded x-f space vector p by
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Figure 3.3 Regular 2D k-t undersampling leads to superimposing equidistant (separated by

FOV,/ R) aliases of the spectral y-f support along the phase encoding axis (top). Coherent
aliasing can be reduced using time-interleaved undersampling shifting aliases additionally
along the temporal frequency axis according to the PSF (bottom). Figure adapted from

[84].
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Figure 3.4 lllustration of time-interleaved 2D Cartesian variable-density random

undersampling and a PSF revealing incoherent aliasing in the x-f space along the phase

encoding and temporal frequency direction.

exploiting prior knowledge about the signal covariance fo =pp"” and reduced aliasing due to

sheared point-spread function (Figure 3.3):

argmin (d-Ep)”'©, (d-Ep)+ip"0 jp, (3.15)
P

with the noise covariance matrix @, E = (In. ® F.,)SF! and the temporal FT F.. In practice, @y is
approximated by the diagonal matrix Mif containing the squared estimated signal magnitude

from training data. Higher acceleration factors can be achieved by projecting the frequency
distributions on a number of principle components derived from a principle component analysis
(PCA) of the training data [86]. This constraint reduces the number of unknowns and better
temporal fidelity is achieved. The object vector to be reconstructed contains the x-pc space
coefficients, the encoding matrix is extended with the operator B,..,,implementing the transform

from x-pc to x-f space, E = (In. ® F.)SF/ B,;, and the covariance matrix refers to the x-pc
domain: @,. or M . Non-Cartesian implementations of k-t GRAPPA and k-t SENSE have been

demonstrated in [21, 22].

Time-interleaved Cartesian variable-density random or non-Cartesian undersampling additionally
spreads aliasing along the time and temporal frequency axis (Figure 3.4), respectively [78]. When
the x-f signal support is sufficiently sparse, non-linear reconstruction can remove the incoherent

artifacts using algorithms presented in Section 3.2:

argmin ||d—Ep|; +A[|Ep]|,, (3.16)
P

with the object vector p containing the x-t image series. Other sparsifying transforms are based
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on temporal derivatives [87, 88], PCA [11, 89, 90] or reordering schemes [91, 92]. Data-adaptive
transforms exploit global or local low-rank structures [93-95], structure of coefficient support [96]

or dictionary learning [97].

3.4 Motion

Motion compensation techniques are invaluable to reduce breathing artifacts, scan times, or to
increase spatio-temporal resolution in cardiovascular MRI. Data acquisition over multiple heart
and respiratory cycles makes measurements sensitive to motion. Thus, combining k-space
profiles from multiple motion cycles can lead to inconsistencies in the encoding model resulting
in ghosting or blurring artifacts in the reconstructed image due to periodic respiratory or random
motion [98, 99]. This section provides a brief overview of current motion correction methods in

thoracic and abdominal imaging.

3.4.1 Affine Motion

When excited spin distributions are not congruent with the reference positions during k-space
profile readouts, mismatch occurs between encoded and actual object positions. Affine motion
is a model allowing for analytical relations between image deformation and corresponding effects

in k-space. After affine transformation, each position vector r in the imaging volume is mapped

according to Tr + dr, with T € R*** and translation vector dr € R*. Rigid motion implies T being

orthogonal: TT = T-!. The k-space signal model is then affected according to

d(k) = j o(Tr +6r) p(Tr + Sr)e ™ dr
V

(3.17)
= Uc(r)p(r)ef((Tl)rk).rdrjei«rl ) K)or _ d((T’l)Tk)ei((T’l)"k)-ar

Vv

i.e. elementary affine transformations such as translation lead to a linear phase ramp in k-space
according to the Fourier shift theorem, a rotation in image remains the same rotation in k-space,

and an expansion becomes a contraction and vice versa.

3.4.2 Motion Compensation

Cardiac motion artifacts can be minimized by separately collecting k-space profiles for short time

intervals which are synchronized with the cardiac cycle using an electro-cardiogram (ECG).
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Figure 3.5 /llustration of cardiac and respiratory gating (TD: trigger delay, AW: acquisition
window). Each heart phase’s k-space profile acquisition is distributed over multiple heart
beats and R-R intervals, respectively. Data are only accepted if the respiratory motion

related NAV signal is within the gating window.

Depending on the width and relative position with respect to the ECG R-wave, the corresponding
cardiac phases can be resolved. When collecting data over the full cardiac cycle, the profiles are
then retrospectively binned (relative to the recorded R-waves) into cardiac phases [100]. If no
reliable ECG signal is available, cardiac self-gating methods assessing an ECG surrogate signal from

repeatedly collected profiles may be used [27, 101].

Respiratory motion suppression by breath-holding is widely used [102, 103], but its use is limited
in non-compliant patients, in case of breath-hold drifts or if breath-hold durations are a concern.
The latter can be counteracted in conjunction with k-space undersampling techniques. In case
scan times exceed a patient’s breath-hold capability, free-breathing acquisitions using pro- or

retrospective motion correction are warranted.

Using prospective motion compensation methods, motion information is estimated during the
scan to correct for corruption in real-time. For example, navigators (NAVs) monitor the
movement of the lung-liver interface which is assumed to be linearly correlated with the position
of the heart [102]. When the NAV signal falls within an acceptance window, the acquired data
within the corresponding heart beat are accepted (Figure 3.5). Until acceptance of a profile,
rejected profiles need to be resampled in the subsequent heart beats. For an acceptance window
of 5mm width, scan time can be prolonged by a factor between 2 and 3 in practice. To address
the limited gating efficiency, k-space position dependent gating approaches [104] may be used
to allow for larger gating window widths for higher phase encoding lines where artifacts are less
pronounced as compared to the lower spatial frequencies. Phase encode reordering [105]

reduces ghosting artifacts by prospectively encoding k-space profiles according to the NAV
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position, and thus, the periodicity of the respiratory motion over the sampling scheme is reduced.
In general, the NAV excitation pulse is interleaved with the imaging sequence and the quality of
the gating signal depends on the field strength [106]. In contrary, respiratory belt-based gating
[107, 108] provides a continuous and field strength independent signal from a pressure sensor
placed around the chest wall measuring its extension during respiration. A drawback is that the
positioning of the belt can affect the linearity of the correlation between chest and heart’s
movement [109]. Self-gating methods [101, 110] extract the gating signal from sampled k-space
profiles, interleaved or simultaneously acquired with the imaging sequence, and thus, do not rely
on external sensors. Heart motion can be tracked directly, and therefore, does not depend on
linear models between diaphragm and heart position which can be inaccurate because of patient-
specific correlation factors [111] or heart-diaphragm hysteresis [112]. Slice or volume tracking
methods [113, 114] modify the RF pulses and imaging gradients after the NAV signal. Affine
motion correction with a patient-specific motion model trained on three 1D NAVs has shown
significant error reduction in free-breathing coronary angiography [115]. Since the motion model
parameters are trained on a reduced region of interest (ROI) in a separate calibration scan, while
motion compensation is applied globally, artifacts originating from outside the ROl cannot be
captured, and the model fails when breathing patterns deviate between the actual and the

calibration scan.

Retrospective compensation strategies are designed to reduce artifacts during image
reconstruction of motion-corrupted data. When models are restricted to translational, rotational
or affine motion, profiles can be corrected according to (3.17). Motion model parameters may be
extracted from radial profiles [116, 117], low-resolution images obtained during startup cycles
before the acquisition window [114, 118] or from data densely sampled in the k-space center
[119, 120], binning data to different respiratory positions [25, 121-123], or changes in coil
sensitivity profiles [124]. General non-rigid motion has been approximated by locally restricted

analytical motion models [125-127].

3.4.3 Matrix Formalism for General Motion Model

A reconstruction framework for retrospective motion correction incorporating a matrix

description of general non-rigid motion has been proposed in [128]. The linear encoding

model (3.1) is extended with an operator T € R ¥V describing the spatial deformation of the

reconstructed image in a reference respiratory position relative to the motion states (i = 1,...,Nus)
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during the data acquisition:

E ... 0T
d=ETp+n=| : . : olptm, (3.18)
0 - E, ||T,

ms ms

Given the 2D or 3D spatial transformation fields u(r) and assuming that the entries of the
deformation matrix can be extracted from acquired profiles, a motion-corrected image can be
reconstructed by using standard numerical algorithms for inversion of the modified forward
encoding model. The T/s then spatially align p to the motion states via bi- or trilinear
interpolation: p(r) = Ti(p) = p(r + u(r)). Figure 3.6 depicts the principle of general non-rigid linear
transformation with anillustrative deformation of a 2D brain image. This motion matrix formalism

has already been combined with SENSE-based Pl [120, 129-131], k-t PCA [132] and CS [25].

i

I

Figure 3.6 a) Reference image (p) is transformed (T:p) to the motion state (p:) using the

linear operator T.. b) 2D displacement field components (describing spatial deformation
of pi to p) obtained by non-rigid image registration are superimposed onto p.. Brain data

set was provided by elastix.isi.uu.nl.
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Chapter 4

Radial k-t SPIRIT: Auto-
Calibrated Pl for

Generalized PC MRI*

4.1 Introduction

Sensitivity encoding (SENSE) [56] and generalized auto-calibrating partially parallel acquisitions
(GRAPPA) [10] are the most widely used and commercially available parallel imaging (PI)
reconstruction methods among various other techniques [133-139]. Accurate coil sensitivity
estimation is essential for SENSE reconstruction quality which can be hampered by
misregistration errors between calibration and actual scan (e.g., due to respiratory or bulk
motion), field of view (FOV) limitations [60, 61], or regions with low spin density [62]. In contrast,
GRAPPA is an auto-calibrating PI method extracting coil sensitivity information from fully sampled
calibration lines of the actual scan. The missing data for each coil are separately synthesized by
means of a shift-variant k-space interpolation scheme whose weights are fitted to a fully sampled
calibration area. Misregistration errors, difficulties with accurate coil sensitivity estimation and
FOV limitations can thus be avoided or reduced. However, for GRAPPA reconstruction techniques,
the inclusion of non-Cartesian trajectories [66, 68, 140, 141] needs approximations and is not as
straightforward as in SENSE [59]. Dynamic Pl methods such as TSENSE [142], TGRAPPA [143], or
k-t SENSE [84] exploit temporally averaged calibration or spatio-temporal correlations, but may

suffer from temporal filtering effects caused by signal nulling or errors in sensitivity maps [144].

* Published in: C. Santelli, T. Schaeffter and S. Kozerke, “Radial k-t SPIRIT: Autocalibrated Parallel
Imaging for Generalized Phase-Contrast MRI”, Magnetic Resonance in Medicine, vol. 72(5),
pp. 1233-1245, 2014.
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Recently, iterative self-consistent Pl reconstruction (SPIRIT) generalizing GRAPPA has been
proposed [23]. Correlated k-space data are reconstructed iteratively with a full and shift-invariant
interpolation kernel enforcing self-consistency with calibration data for arbitrary sampling
trajectories. The inclusion of prior knowledge by means of additional regularization terms offers
a general reconstruction formalism similar to SENSE. Relative to GRAPPA, better reconstruction
accuracy and noise behavior have been shown [23]. Additionally, using low-rank matrix
completion, the SPIRIT calibration data can be reconstructed from a partially sampled calibration

area [145, 146]. A non-linear k-t SPIRIT method exploiting Wavelet-domain sparsity in conjunction

with £;-norm minimization has also been proposed [92]. In that study, the SPIRIT kernel was

derived from a time-averaged center of k-space, and thus, only signal correlations along the

spatial encodes were used.

Acceleration by data undersampling is needed in time-resolved flow encoded phase-contrast (PC)
MRI to achieve appropriate spatio-temporal resolution within an acceptable scan time [9-11, 147-
156]. Radially acquired one-directional through-plane PC measurement for aortic flow volume
guantification has been combined with non-linear temporally constrained reconstruction

regularizing first- or second-order temporal derivatives [88, 157].

While PC assesses mean velocity, Fourier velocity encoding (FVE) [8, 158] is a technique, which
resolves the distribution of velocities within a voxel by adding another encoding dimension along

the velocity direction (k). For this, the velocity encoding gradients are varied to obtain a range of

k,-points, i.e., different first moments k, (¢) :;/'[;G(r)rdr. However, due to the large number of

encodings, scan time becomes critical. One major advantage of FVE is that it allows for
guantification of both mean velocities and turbulence [12]. It has been shown that turbulent
kinetic energy (TKE) maps can also be calculated from undersampled velocity-encodings assuming
Gaussian distributed velocity spectra [12]. Originally, a standard PC k,-sampling scheme has been
proposed requiring estimation of velocity standard deviations (SDs) to find optimal k,-points
potentially causing mean velocity phase wrapping. By sampling multiple k,-points, phase
wrapping can be avoided and sensitivity is increased for a wide range of velocities [159, 160].

However, this multi-point velocity encoding scheme prolongs scan time further.

In this work, following the principle of k-t GRAPPA [85], we propose to extend non-Cartesian

SPIRIT to include the temporal dimension thereby additionally exploiting temporal correlations in

k-t space. The performance of this linear £,-norm minimizing k-t method relative to frame-by-

frame SPIRIT and auto-calibrated radial k-t GRAPPA [22] reconstruction is evaluated based on
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simulated and prospectively undersampled radial two-dimensional (2D) in vivo multi-point PC

aortic flow measurements.

4.2 Theory

The basic SPIRIT formalism [23] enforces data and calibration consistency. The latter exploits coil
sensitivity dependent signal correlations by expressing a Cartesian k-space sample, independently
if acquired or not, as a linear combination of k-space points in a full neighborhood across all coils.
Accordingly, a coupled system of linear equations d. = Gd. is used, with vector d. containing the
Cartesian k-space data of all channels and the operator G defining a shift-invariant interpolation
scheme. The weights of G are fitted to a fully sampled centre of k-space, termed calibration area.
Arbitrary sampling trajectories are incorporated by the data consistency term d = Exd. relating
the reconstructed Cartesian k-space to the acquired signal d using the linear operator Ex. For
Cartesian acquisition this becomes an operation simply selecting the acquired k-space points out
of d., whereas for non-Cartesian sampling E« represents a regridding matrix. The reconstruction

process is then formulated as the following unconstrained Lagrangian minimization problem:

S+ 27 |(G -,

y (4.1)

argmin ||d -E,d,
d(

with the regularization parameter A trading data and calibration consistency, and identity
matrix I originating from the constraint Gd. — d. = 0. Using an iterative solver for problem (4.1),
each coil’s full k-space is re-synthesized from the k-space in the previous iteration step. In
contrast, GRAPPA non-iteratively synthesizes missing k-space from the acquired data, and
therefore, uses a shift-variant interpolation kernel; its weights depend on the relative positions
of the sampled k-space points to the target locations comprising only non-acquired points to be

interpolated.

Dynamic MR data are acquired in k-t space. Similar to k-t GRAPPA extending GRAPPA for dynamic
imaging, SPIRIT is extended to this higher-dimensional k-t space to additionally exploit temporal
correlations. For this purpose the calibration consistency operator G in (4.1) is modified to
include the temporal neighborhood of a Cartesian k-space sample. Accordingly, every Cartesian
k-t point, whether sampled or not, is represented as a weighted sum of k-t points within a
predefined full neighborhood over all coils and adjacent time frames (Figure 4.1a). Adapting Ex«
leads to a linear mapping of the reconstructed Cartesian k-t space over all coils d. to a dynamic
sampling trajectory d (Figure 4.1b). The weights of the interpolation kernels in G are again fitted
to a fully sampled k-t calibration area by means of the calibration matrix A stacking row by row
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Figure 4.1 a) Schematics of k-t SPIRIT. Every Cartesian k-t sample point is expressed as a
linear combination of neighboring points in dynamic k-t space across all coils. The
corresponding weights are indicated by the arrows. Calibration consistency for every
Cartesian k-t space point is enforced over a full neighborhood (grey blocks) including
acquired and non-acquired Cartesian samples. b) lllustration of Golden angle (GA)
sampling providing an optimal distribution of radial profiles over time. Data consistency
with non-Cartesian sampling is accomplished by regridding the reconstructed points on

the sampling trajectory.

vectorized k-t space data blocks (across all coils) containing target and source points. The data
blocks are shifted in a row-by-row manner over the calibration area. Accordingly, adjacent rows
correspond to overlapping k-t blocks. The coil specific convolution kernels g, i = 1,...,N.,
assembling G are then estimated by solving the following Tikhonov regularized least-squares

problem:

argmln“d Ang + mhbl”gl
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with vector d; = Ae; containing the target points within the calibration area of coil i, and
A; = AI the corresponding reduced calibration matrix whose rows are composed of the

vectorized source points (e:: as defined in (3.6), Li: sampling matrix that extracts the source points
corresponding to g; from a vectorized full k-space data block). Acuin: can be determined using the
L-curve method [161]. For reconstruction, the functional (4.1) with modified operators and data

vectors is minimized using a conjugate gradient (CG) solver for the equivalent problem:

{z(gk—n}d" _m

Multiplying the vector difference with matrix [E[ A(G — I)""] corresponds to solving the normal

2

arg min
d

(4.3)

c

2

equation of the least-squares problem in expression (4.3). Because G also represents
convolutions in k-t space followed by appropriate summations over all coils, it can be equivalently
implemented by point-wise multiplications with the IFT of the corresponding kernels in the x-f
domain. Therefore, the dynamic multi-coil image p in x-f space can efficiently be reconstructed

by solving:
[E"E+4(G, -D"(G, -1 ]p=E"d, (4.4)

with the modified data and calibration consistency operators E and Gy, respectively. E then maps

the object in x-f space to the measured trajectory in k-t space.

4.3 Methods

4.3.1 Data Acquisition

Free-breathing navigator-gated fully sampled 2D gradient-echo radial cine FVE data with three-
directional velocity encoding were acquired in the aortic arch of 11 healthy volunteers on a 3
Tesla (T) Philips Achieva scanner (Philips Healthcare, Best, The Netherlands) using a six-element
cardiac receive array. The FOV was set to 250 x 250 mm? with a voxel size of 2 x 2 x 10 mm?. Data
for three different first gradient moments corresponding to encoding velocities of 50 cm/s, 100
cm/s and 200 cm/s were acquired in addition to a reference data set (k, = 0). For three-directional
velocity mapping, this amounts to 10 k,-point sampling: 3 k,-points for each direction, plus the
reference image (Figure 4.2a). For k-t SPIRIT, simulated undersampled radial data sets were
obtained by separately regridding these 10-point measurements onto GA profiles [38] rotated by

(0.5zN / R)Apc4 (N: image matrix dimension, R: undersampling factor relative to radial Nyquist,
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Figure 4.2 a) /llustration of 10-point k,-space sampling (4dk, = = / (200 cm/s)). Three
orthogonal directions in the measurement coordinate system (M-P-S) are flow encoded.
b) Stack of GA radials cine sampling trajectory for a velocity encoded direction (dk, = w /

(200 cm/s), Ak = Ak, = 1/ FOV).

Apes = 111.25°) between adjacent cardiac phases (Figure 4.2b). For standard frame-by-frame
SPIRIT reconstruction, regridding on equally spaced projections was performed. For comparison
with self-calibrated radial k-t GRAPPA [22], regridding on time-interleaved equally spaced

projections was used, s.t. each k-space position was sampled in every R-th time frame.

A time-interleaved GA sampling scheme was implemented for prospective undersampling and
SPIRiT-based reconstruction. A fully sampled data set was acquired in a healthy volunteer.
Prospective undersampling by a factor of R was realized by retaining the first

0.5zN / R projections in each heart phase.

4.3.2 Image Reconstruction

Each velocity encoded image was reconstructed separately with a 7 x 7 ke-k, and 7 x 7 x 3
ky-k,-t neighborhood for frame-by-frame and k-t SPIRIT, respectively. The 7 x 7 extension in
ky«-k, direction was chosen according to [23] for a good trade-off between reconstruction
convergence and accuracy. Based on simulations, a temporal interpolation window width of 3
was found to be optimal for magnitude and velocity reconstruction. The appropriate kernel

weights were calculated from a 30 x 30 x (no. of cardiac phases) calibration area from the data
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(kv = 0) corresponding roughly to 1/8 x 1/8 of the acquisition matrix dimension (248 x 248). For
each undersampled data set (R=2, 4, 6, 8, 10, 12, 14), the calibration area for each heart phase
was synthesized by means of structured low-rank matrix completion [146] (Figure 4.3). For an
oversampled center of k-space (R =2, 4, 6, 8), this step is theoretically redundant, but was found
to provide improved results in practice due to noise reduction. The iterative algorithm alternates
between singular value decomposition (SVD) thresholding of each heart phase’s calibration
matrix and averaging of matrix entries referring to the same k-space location, imposing low rank
and Hankel structure, respectively. Data consistency of an updated Cartesian calibration data
estimate was enforced by interpolating it onto the non-Cartesian trajectory and subtracting the
gridded residual from the current estimate. Acauin; in (4.2) were calculated for each experiment
separately with the L-curve method using the SVDs of source point matrices A. Then, the
interpolation weights g; were directly obtained by means of the SVD matrices and Acuini. The
regularization parameter A for image reconstruction was empirically set to 0.125 and 0.25 for
simulated and prospective undersampling, respectively. For k-t GRAPPA reconstruction,
projections were reordered in a hybrid (¢,k.f)-space (¢, k- polar coordinates of projections) [66].
The readout direction (k) was divided into equally spaced segments of width 8 which were then
separately reconstructed using 2 x 3 x 2 Cartesian k-t GRAPPA kernels: each missing k-space line
was interpolated from the two neighboring acquired lines along azimuthal and temporal direction
with a kernel size of 3 along the readout direction. For interpolation weight estimation, kernels
were shifted along all (g,k.f)-space dimensions over the calibration data (k. = 0) generated

according to [22].

Low-Rank

({5}

Completion

(e}

Figure 4.3 k-t SPIRIT reconstruction workflow. The calibration operator G is calculated
from the center of k-t space obtained by structured low-rank matrix completion before it

is passed on to the CG solver.
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From the resulting coil-combined image series, p(r,t,k), mean velocity vu(r,f) and SD au(r,t) at
position r and frame ¢ were calculated for each velocity encoded direction
according to p(r,t,k) / p(r,t,0) = exp(=0.50.(r,t)°k? — iva(r,f)k.) and equation (2.32), respectively
[12]. Magnitude images were combined using a sum-of-squares approach, while velocity induced
phase was calculated with a magnitude weighted sum of phase differences [162]. a\(r,f) was fitted
to |p(r,t,k)| / |p(r,t,0)| for all kv # 0 in a standard least-squares sense. Turbulence intensity maps
were then derived according to [163]. Following standard PC processing, va(r,t) was assessed by
taking the phase of the complex valued ratio p(r.t.k) / p(r,t,0) for k. / 4k, =1 and k. / Ak, =2
allowing for two- and three-point velocity estimation [164]. For the three-point method, the
velocity was estimated using a weighted least-squares fit to the two unwrapped phase maps. The

weighting matrix was assessed according to kexp(—0.50.(r,t)%k?) [160].

4.3.3 Data Analysis

Reconstruction accuracy of simulated undersampled data was measured using the temporally

resolved and overall root-mean-square error (RMSE) over a region of interest (ROI):

where r,; and o.; denote the i-th pixel value of the reconstructed and the fully sampled reference
measure in the dynamic ROI, respectively. ¥ and o can represent image magnitude or SD. A
magnitude weighted RMSE metric was used to measure mean velocity reconstruction
performance by reducing the impact from random phase variations due to low signal magnitude

[154]:

2
Yo
E § [rt’l 20t’l (V;,i_vl‘o,i)j

i ieROI,

2. 2 (o)

¢ ieROI,

(4.6)

RMSE, =

For the overall RMSEs, the mean over all volunteers was taken. The ROl was manually segmented

over the aortic arch for every heart phase ¢.
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4.4 Results

Figure 4.4a reveals the mean velocity reconstruction accuracy of frame-by-frame SPIRIT, k-t
GRAPPA and k-t SPIRIT for two- and three-point velocity encoding within the ROl covering the
aortic arch. The mean overall RMSE over all volunteers is plotted against different undersampling
factors. The three velocity encoded directions in measurement (M), phase-encode (P), and slice-
select (S) are given. It is seen that k-t SPIRIT improves velocity reconstruction accuracy, especially
for higher acceleration factors. k-t GRAPPA was found to slightly outperform frame-by-frame
SPIRIT up to R = 12. The error level was lowest for the phase-encode (P) direction where highest
velocities occur. The through-plane component (S) with the lowest velocity-to-noise ratio (VNR)
shows the highest error levels. Figure 4.4b shows linear regression analysis between reference
and reconstructed data of the velocity components in P direction for SPIRIT, k-t GRAPPA and k-t
SPIRIT. Data for undersampling factors of 4, 8, 12, and 14 are compared. All pixels in the dynamic
ROl were included in the analysis. Pearson’s correlation coefficients for the two- and three-point
reconstructions are shown in Table 4.1. Additional line fit parameters are presented in Tables 4.2

and 4.3 in the Appendix Section 4.6.

2-Point 3-point
R SPIRIT k-t GRAPPA k-t SPIRIT SPIRIT k-t GRAPPA k-t SPIRIT
2 0.9968 0.9973 0.9981 0.9989 0.9990 0.9993
4 0.9946 0.9951 0.9960 0.9977 0.9978 0.9983
6 0.9884 0.9905 0.9942 0.9958 0.9962 0.9975
8 0.9857 0.9860 0.9927 0.9938 0.9939 0.9967
10 0.9798 0.9820 0.9911 0.9904 0.9914 0.9957
12 0.9763 0.9792 0.9898 0.9874 0.9890 0.9949
14 0.9734 0.9746 0.9887 0.9863 0.9839 0.9940

Table 4.1 Pearson’s correlation coefficients of linear regression analysis between

reconstructed and reference velocities.
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Figure 4.4 a) Mean overall RMSE of the three orthogonal velocity components (M-P-S) as

a function of acceleration factor. The error bars indicate the SD. The RMSEs were

calculated over ROIs covering the aortic arch as illustrated in the mean velocity maps. b)

Pixelwise correlation of mean velocities relative to the fully sampled reference in a ROI for

the in-plane component P using one (top row) and two (bottom row) velocity encodes.

Correlation plots of SPIRIT (blue), k-t GRAPPA (green) and k-t SPIRIT are compared for 4-,

8-, 10-, 12-, and 14-fold undersampling.

In Figure 4.5a, systolic spatial velocity profiles (blue, green and red) along the indicated horizontal

lines through the ascending and descending aorta are compared relative to the fully sampled

reference (black). Figure 4.5b shows a SPIRIT, k-t GRAPPA and k-t SPIRIT reconstructed systolic

velocity map for different undersampling factors together with the reference. The corresponding

masked error maps confirm better performance of k-t SPIRIT compared with SPIRIT and k-t

GRAPPA.
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Figure 4.5 a) Horizontal velocity profile plots along the indicated lines through the
ascending (top two rows) and descending (bottom two rows) aorta. Two- and three-point
reconstructed P components are shown for the fully sampled reference (black) and the
three reconstruction techniques (blue, green and red). b) Reconstructed systolic velocity
maps (SPIRIT: top row, k-t GRAPPA: middle row, k-t SPIRIT: bottom row) along with

reference data and masked error maps are given.

Magnitude reconstruction accuracy of frame-by-frame SPIRIT, k-t GRAPPA and k-t SPIRIT over all
volunteers is compared in Figure 4.6a. The overall RMSE with respect to the ROl illustrated in the
systolic magnitude reference image is plotted against different undersampling factors for all three

orthogonal directions. The rows correspond to the reference and the applied encoding velocities.
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A systolic magnitude image is added to each plot illustrating the magnitude damping observed at
higher k,~values. Error levels increase with decreasing encoding velocities. Additionally, at higher
k/s, less improvement in reconstruction accuracy by k-t SPIRIT is observed for the M- and P-
directions. Figure 4.6b compares the temporally resolved error performance in a single volunteer
of SPIRIT, k-t GRAPPA and k-t SPIRIT. The temporal magnitude RMSE is shown for different
undersampling factors (columns) and encoding velocities (rows) for the S-direction. k-t SPIRIT
clearly outperforms frame-by-frame SPIRIT and k-t GRAPPA reconstruction for high
undersampling factors. Temporal changes in magnitude level due to higher gradient’s first

moments are reflected by increased RMSEs during systole.

Systolic magnitude frames from fully sampled signal are shown together with frame-by-frame
SPIRIT (top), k-t GRAPPA (middle) and k-t SPIRIT (bottom) reconstructed data in Figure 4.7a for
two ky-points along the M-direction. Corresponding difference maps relative to reference confirm
reduced reconstruction error of k-t SPIRIT relative to SPIRIT and k-t GRAPPA. Data
acquired at k. / 4k, = 0 show larger error reduction by k-t SPIRIT compared with data encoded

with k. / Ak, = 4. Temporal magnitude profiles for all acceleration factors are given in Figure 4.7b.

The mean overall RMSEs of SD for each velocity encoded direction are shown in Figure 4.8a
together with plots of the temporal SD RMSE in a single volunteer. Errors are smallest in systolic
frames where phase dispersion is largest. In Figure 4.8b,c , systolic velocity magnitude and TKE
maps derived from the SD reconstructions using frame-by-frame SPIRIT and k-t GRAPPA versus k-

t SPIRIT are shown relative to the fully sampled reference.

Velocity reconstructions of prospectively undersampled data reconstructed with SPIRIT and k-t
SPIRIT are compared in Figure 4.9a relative to the fully sampled reference. A systolic P-component
velocity map is shown for different undersampling factors and for two- and three-point
processing. Corresponding error maps (Figure 4.9b) confirm increased reconstruction accuracy

for k-t SPIRIT.

Systolic magnitude frames reconstructed from prospectively undersampled data are shown in
Figure 4.10a along with the fully sampled reference. SPIRIT and k-t SPIRIT reconstruction results
are shown for two velocity encodes along the P-direction. Figure 4.10b represents the
corresponding temporal profile plots along the indicated lines. Improved reconstruction by k-t
SPIRIT is revealed. Figure 4.10c shows systolic TKE maps reconstructed using frame-by-frame

SPIRIT and k-t SPIRIT.
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Figure 4.6 a) Mean and SD of overall RMSE of SPIRIT, k-t GRAPPA and k-t SPIRIT magnitude

reconstruction for reference image (k. / Ak, = 0), 200 cm/s- (k. | Ak, = 1), 100 cm/s-

(k.| Ak, =2) and 50 cm/s-encoded (k. / Ak, =4) images. The RMSEs are assessed from ROIs

as indicated in the systolic magnitude reference frame. The frames in the graphs illustrate

the signal destruction in the blood pool due to velocity induced intravoxel phase dispersion

at higher k,-values. b) Temporal magnitude reconstruction accuracy of the three

techniques applied. Error curves for the S-direction are compared as a function of

undersampling factor (columns) and encoding velocity (rows).
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Figure 4.7 a) Systolic magnitude images of k., /| Ak, = 0 (top) and k. | Ak, = 4 (bottom)
encoded segment in M direction. Fully sampled reference and reconstructed frames
(SPIRIT: top row, k-t GRAPPA: middle row, k-t SPIRIT: bottom row) from 4-, 8-, 10-, 12-, and
14-fold undersampling are illustrated together with corresponding error maps. b)

Temporal profile plots along indicated lines in reference images.
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Figure 4.8 a) Mean overall reconstruction accuracy of SDs fitted to the magnitude images
for all three encoded directions depending on the degree of undersampling. The ROI is
illustrated in the three systolic SD maps. Additionally, RMSEs of SD reconstructions along
S-direction as a function of cardiac phase for 4-, 8-, 10-, 12-, and 14-fold undersampling
are shown. b) Systolic velocity magnitude maps obtained with frame-by-frame SPIRIT (top
row), k-t GRAPPA (middle row) and k-t SPIRIT (bottom row) compared with the fully

sampled reference. c) Corresponding TKE maps [J/m?].
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Figure 4.9 a) SPIRIT and k-t SPIRIT reconstructed systolic mean velocity maps encoded
along P direction of prospectively undersampled data. Results from two- (top row) and
three-point (bottom row) processing are illustrated together with data from the fully

sampled reference. b) Corresponding error maps.
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Figure 4.10 a) Systolic magnitude images reconstructed from prospectively undersampled
data reconstructed with SPIRIT and k-t SPIRIT. Images illustrate two velocity encodes (top:
kv /| Ak, = 0, bottom: k. / Ak, = 4) along P direction and the fully sampled reference. b)

Corresponding temporal profile plots along indicated lines. c) Systolic TKE maps.
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4.5 Discussion

In this work, the auto-calibrating coil-by-coil method SPIRIT has been extended to exploit both
spatial and temporal correlations. The proposed k-t SPIRIT scheme has successfully been
implemented and tested on simulated and prospectively undersampled 2D radial multi-k, flow

encoded in vivo data of the aortic arch.

k-t SPIRIT shows improved reconstruction accuracy of mean velocity. Error levels were lowest
along the component with highest velocities. Point-wise correlation analysis confirmed improved
accuracy of mean velocities reconstructed with k-t SPIRIT versus SPIRIT and radial k-t GRAPPA

relative to fully sampled ground truth data up to radial undersampling factors of 14.

Improvements in magnitude reconstruction accuracy were shown for all k,-encodings. Highest
error reduction by k-t SPIRIT was found at high encoding velocities with low intravoxel phase
dispersion. Accordingly, magnitude damping was low, and hence, local signal-to-noise ratio was
high. Temporally resolved magnitude profiles revealed a clear reduction in spatial blurring and
enhanced sharpness of vessel borders with k-t SPIRIT compared to frame-by-frame SPIRIT and
k-t GRAPPA reconstruction. At higher k,-encodes, temporal profile plots of the proposed k-t
method showed reduced noise-like artifacts relative to standard SPIRIT. Relative to k-t GRAPPA,
which resulted in temporal blurring at high acceleration factors, spatio-temporal resolution was
better preserved when using k-t SPIRIT. Consequently, the accuracy of assessing velocity SD and

TKE was found to improve with k-t SPIRIT relative to SPIRIT and k-t GRAPPA.

In the present implementation, each spatial direction was encoded using the same k,-sampling
pattern and strengths. The error dependency of velocity SD as a function of cardiac phase, and
hence of VNR, prompts for Bayesian processing of multi-k, data as proposed previously [160]. At
the same time, the high radial undersampling factors feasible with k-t SPIRIT would permit finer
sampling of k,-space to improve SD estimates also at lower mean velocities during diastole. In this
respect, it should, however, be noted that SD and TKE estimates are diagnostically most relevant

during systole in the aorta where transient and even turbulent flows can occur.

In the k-t SPIRIT reconstruction scheme implemented here, spatial, temporal or spatio-temporal
transform operators were not included. It is expected that the incorporation of sparsifying

transforms can further improve reconstruction accuracy.

Currently, average reconstruction times per frame for k-t and frame-by-frame SPIRIT are in the
same range using the Matlab implementation (38 s with calibration operator calculation, 18 s

without calibration for velocity encoded frames). However, it has already been demonstrated
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that SPIRIT reconstruction times can significantly be reduced by using parallelized

implementation on multi-GPU and multi-core systems [165].

Applying k-t SPIRIT to generalized PC MRI has allowed assessing reconstruction accuracy of both
image magnitude and phase. Adaptation of the method to other dynamic imaging protocols

including cine imaging is straightforward.

In summary, k-t SPIRIT offers improved reconstruction accuracy at high radial undersampling
factors and hence will facilitate the use of generalized PC MRI for routine use. While this
preliminary report has described the implementation and feasibility, studies in larger cohorts are

warranted to prove robustness of the approach in a clinical setting.
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4.6 Appendix

2-Point 3-point
R SPIRIT k-t GRAPPA k-t SPIRIT SPIRIT k-t GRAPPA k-t SPIRIT
2 0.9978 0.9946 0.9974 0.9987 0.9959 0.9984
4 0.9905 0.9810 0.9923 0.9938 0.9854 0.9943
6 0.9847 0.9683 0.9866 0.9897 0.9760 0.9892
8 0.9800 0.9546 0.9779 0.9876 0.9700 0.9835
10 0.9908 0.9356 0.9715 0.9963 0.9619 0.9766
12 0.9792 0.9123 0.9666 0.9862 0.9548 0.9730
14 0.9820 0.8848 0.9642 0.9888 0.9304 0.9732

Table 4.2 m-values (slope) of linear line fits (mx + b) in Figure 4.4b

2-Point 3-point
R SPIRIT k-t GRAPPA k-t SPIRIT SPIRIT k-t GRAPPA k-t SPIRIT
2 -0.0044 -0.0189 0.0027 0.0129 0.0086 0.0253
4 0.0119 -0.0415 0.0314 0.0440 0.0646 0.0967
6 -0.0182 -0.0202 0.0591 0.0695 0.1249 0.1739
8 -0.1558 0.1772 0.0879 0.1243 0.2294 0.2625
10 -0.4621 0.2005 0.1409 0.0426 0.3124 0.3356
12 0.1149 0.4894 0.0990 0.3172 0.5160 0.3252
14 -0.0682 0.1679 0.0793 0.4869 0.1102 0.3433

Table 4.3 b-values (offset) of linear line fits (mx + b) in Figure 4.4b
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Chapter 5

Accelerating 4D Flow MRI
by Exploiting Vector Field

Divergence Regularization®

5.1 Introduction

Time-resolved, 3D phase-contrast (PC) flow measurements, also referred to as 4D flow MR, allow
the assessment of complex flow patterns and calculation of hemodynamic parameters in larger
vessels [4, 166]. The method encodes the velocity vector components of blood flow along three
orthogonal directions into phase differences between multiple complex-valued images acquired
with different first gradient moments [167]. As a result of the sequential encoding concept and
large volumetric coverage, scan times can be considerable, thereby hampering wide-spread use

of the method in a clinical setting [168].

Scan acceleration techniques exploiting coil sensitivity weighting [23, 56, 63], spatio-temporal
redundancy [84-86, 142, 143, 169], transform-domain sparsity [73, 78] or non-Cartesian sampling
[170, 171] have successfully been applied to PC protocols [10, 11, 148-151, 154, 155, 172].

In compressed sensing (CS) based techniques [73], a smooth object phase is assumed and
transforms are designed to sparsify the image magnitude. Additional ¢;-regularization of complex

differences between flow encoded segments has shown improvement for 2D cine PC MRI with
one-directional velocity encoding [156]. Alternatively, the volume continuity of incompressible

flow, i.e. the divergence-free condition, has been exploited for noise reduction of velocity vector

* Published in: C. Santelli, M. Loecher, J. Busch, O. Wieben, T. Schaeffter and S. Kozerke,
“Accelerating 4D Flow MRI by Exploiting Vector Field Divergence Regularization”, Magnetic
Resonance in Medicine, DOI 10.1002/mrm.25563, 2015.
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fields in post-processing methods [173-180]. Normalized convolution with divergence-free radial
basis functions (RBF) [177] and divergence-free Wavelets (DFWs) thresholding [180] have
demonstrated promising vector field denoising performance. While the RBF method needs
accurate segmentation of the blood pool and long processing times, Wavelet-based vector field
denoising imposes fast and suitable boundary conditions that can be obtained by keeping non-

divergence-free Wavelet coefficients.

A reconstruction framework for CS with separate magnitude and phase regularization has been

proposed in [181] with alternating minimization of image magnitude and phase. The method was
tested on retrospectively undersampled 2D flow measurements with £;-norm regularization of
Wavelet-transformed magnitude and a finite difference (FD) penalty using either £,-norm or

edge-preserving potential functions. Relative to standard CS, improved reconstruction

performance of magnitude and phase data could be demonstrated.

Based on the concept to directly incorporate physical priors about blood flow, which was first

presented in [182], we propose to use the separate magnitude and phase framework for 3D

velocity field reconstruction with /¢;-regularization of image phase components enforcing

incompressibility and divergence-free condition, respectively. A novel reconstruction algorithm
using a FD divergence and curl operator is proposed. Similar to [183], DFW-based velocity field
regularization is presented, however, with a simpler thresholding scheme as proposed in [183].
The performance of these phase regularization methods is tested and compared to standard CS
on simulated 3D computational fluid dynamics (CFD) and 4D flow MRI in vivo data from healthy

volunteers and a patient.

5.2 Theory

5.2.1 Separate Magnitude and Phase Reconstruction

let p=m o e® € CV be the N-dimensional complex-valued image vector with real valued
magnitude m € RY and phase ¢ € RY, E the encoding matrix mapping the reconstructed object
to the acquired data d € C¥, ¥ a sparsifying transform (e.g. an orthonormal Wavelet transform)
and A a regularization parameter trading data consistency and transform-domain sparsity. o

denotes the component-wise vector multiplication between m and the phase exponential vector
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e®  For multi-coil Cartesian data acquisition, the encoding operator s

N.NxN

composed of coil sensitivity weighting S € C , FT F € CM¥ and an undersampling matrix

L € {0,1}". E = (In. ® LF)S. While standard ¢;-norm regularized CS [73] minimizes the convex
error functional
2
Ja kgl + 2o, 51

a separate magnitude and phase CS-based reconstruction formalism [181] aims to solve the

optimization problem

arg min “d —E(mo e’“’)“z +A, ||‘I’mm||1 + A4,R(9), (5.2)
m,¢

via alternating minimization of the error function fAim,$) = ||d — E(m o €?)|| 2 + L||¥.m||: + Z:R().

Thereby, fim,$) is minimized with respect to phase and magnitude with fixed magnitude m* and

phase ¢**! obtained in iteration step k and k + 1, respectively:

¢ = arg min f (m*,¢) (5.3)
m’*"' =argmin f(m,$"""). (5.4)

Here, the sparsifying operator W. acts only on the magnitude while different regularization R(¢)

is used for the phase.

5.2.2 Phase Regularizers
For 4-point velocity encoding [42], the phase of the image acquired with flow compensation
(denoted as reference image o) is £,-norm penalized via a gradient operator on the exponential

of the phase, thereby enforcing smoothness [181]:

R(%):H[Df D] Df]re”"’z, (5.5)

2

with the FD gradient operators D,.- along the three orthogonal directions.

In contrast, ¢;-penalization of the underlying 3D velocity vector field is proposed for the three

velocity encodes. Following the vector field denoising principles in [176] and [180], FD- or
Wavelet-based velocity regularization is incorporated as two different approaches for regularizing

divergence. The three corresponding magnitude and phase difference images are now stacked in
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vectors m € R and ¢, € R, respectively. FD divergence and curl penalization is

performed with a divergence matrix Da = [D: D, D:] and a curl operator

Dcuﬂ:[o D. —Dv, -D: 0 Dx, Dy -D. 0]

R(¢9,)= ||\Pdiv,curlKv¢v |

D,
with Td,.‘,w,,{ d} (5.6)
k) 7/D

curl

The diagonal matrix K, maps phase to velocity values according to the applied gradient’s first

moments. Relative weighting between divergence and curl penalization can directly be included

by scaling of the resulting divergence scalar and curl vector field coefficients via y € R*. DFW

transform (DFWT) [179, 180] projects a 3D vector field on divergence-free and non-divergence-

free complement vector Wavelets spanning the entire space of velocity fields in R>. Resulting

divergence-free coefficients provide a sparse representation of incompressible flow, while non-

divergence-free coefficients can depict divergence in e.g. partial volume voxels at vessel

boundaries. Accordingly, £1-phase-regularization using DFWT reads:

Y ... 0

with ¥, =B| I ¥ | (5.7)

0O - ¥

z

R(@)=|¥,K 0,

1

where ¥.,: perform 3D Wavelet decompositions with component and coordinate dependent
scaling and Wavelet functions [179]. B implements linear combinations of the resulting standard
Wavelet decomposition coefficients to obtain divergence-free and non-divergence-free

representations. Detailed forward and inverse linear combinations are listed in [179, 180].

5.2.3 Phase Difference Reconstruction Algorithms

Let E’;’% = (I, ® E)diag(m” o e™) be the modified encoding matrix including object magnitudes
obtained in iteration step &, duplicated background phase ¢o € R* and ¥y € {Wancuw, ¥a}. The

following non-convex optimization problem is then solved to update the velocity induced phase

vector:

(5.8)

v

kel : ki
o :arg;man—Em%e“ ”2 +4 ||‘I’¢KV(1)V

B

For FD-based regularization, we propose to use an augmented Lagrangian (AL) framework with
variable splitting [184]. More precisely, equation (5.8) is converted into an equivalent constrained

optimization problem by introducing auxiliary variables decoupling quadratic and non-quadratic
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terms. Then, an AL algorithm using alternating minimization with respect to the auxiliary variable
is applied, dividing reconstruction into smaller sub-problems which can efficiently be

implemented compared to direct solving of equation (5.8).

Using the splitting ui = e® and w: = Yana Koy, equation (5.8) is first transformed into the

constrained problem

* ’ u2 = T KV¢

V!

(5.9)

div,curl

argrnm”d Em%“l” +A ||u2|| tou =e
uLu,,0,

resulting in the unconstrained optimization problem with the vectors of modified Lagrange

multipliers bi and b, and the tuning parameters ui and . weighting the quadratic penalty terms:

argmm“d E! ul” + Ay | + 4 Hul e* —b H +2 |u2 b 4

i K. -b,[.. (510)

div,curl

A solution of equation (5.10) is then obtained by alternating minimization with respect to u,, u:

and ¢ including update rules for by and b, (b} =b3 =0 ):

u = argmm”d E, u ‘ + Hu1 —e'* —b” (5.11)
i = argmin 7, s, + %“u P S (5.12)
o =argminHul! —e¥ b+ 2 furt -, K 4 i (5.13)
bi”! =b{ +*" —ui™ (5.14)
b =b) + ‘I’div,curlde)vM ~uy",

where n denotes the sub-iteration step within the (k+1)-th update of . given in equation (5.10).
The cost function (5.11) is quadratic in w; which can be updated with a few numbers of conjugate
gradient (CG) iterations [59]. Equation (5.12) is solved using soft-thresholding [76]. The non-
convex sum in equation (5.13) is minimized using non-linear CG with Fletcher-Reeves update and
a Newton-Raphson line search using backtracking [181]. Corresponding gradient and Hessian

operators are detailed in the Appendix Section 5.6.1.

To exploit sparsity of the divergence-free flow field while allowing for divergent components at
vessel borders, soft-thresholding of the divergence-free and non-divergence-free Wavelet
coefficients is used in an iterative reconstruction scheme alternating between Wavelet shrinkage

and data consistency (Figure 5.1).
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Figure 5.1 Schematic of iterative phase update via DFW regularization. The intermediate
phase maps ¢ are decomposed using the divergence-free Wavelet filter bank whose
coefficients are thresholded and then transformed back. Upon background phase addition
and magnitude multiplication, the resulting complex-valued image is weighted by the coil
sensitivities and transformed into k-space where sampled data points are replaced with
the acquired signals. After inverse FT, coil combination and background phase subtraction,

the phase provides an updated solution vector.

5.3 Methods

5.3.1 Numerical Phantom

Static three-dimensional 4-point PC MR data were simulated based on CFD data in a U-bend
shaped tube where the fluid is modeled to be approximately divergence-free. The encoding
velocity was set at 110% peak velocity in the CFD data set. A seven-element coil array whose
elements were uniformly distributed around the object was incorporated. Complex Gaussian
noise was added in image space to obtain a signal-to-noise ratio (SNR) of 15 relative to the
maximum magnitude of the coil-combined images. Retrospectively decimated data sets with

undersampling factors of R = 3, 6 and variable-density random undersampling [73] along k,- and

k-direction were reconstructed. Missing k-space data were then reconstructed using standard ¢;-

regularized CS-SENSE as well as the proposed separate magnitude/phase CS framework using

either DFW- or FD-based operators.

5.3.21In Vivo Experiments

Free-breathing navigator-gated 3D gradient-echo Cartesian cine 4-point PC data of the aortic arch
were acquired in 5 healthy volunteers on a 3 Tesla Philips Achieva scanner (Philips Healthcare,

Best, The Netherlands) using a six-element cardiac receive array. Data from 24 heart phases (42
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ms temporal resolution), imaging volumes of 322 x 252 x 50.75-57.75 mm? (receiver bandwidth:
335 Hz/voxel) were acquired with an isotropic voxel size of 1.75 x 1.75 x 1.75 mm?3, a flip angle of
10° and TR/TE = 4.7/2.4 ms. The encoding velocities along the three orthogonal directions FH-AP-
RL varied between 140-200, 120-160 and 100-130 cm/s, which were prescribed to optimize the

dynamic ranges of the phase measurements based on acquired velocities from scout 2D PC scans.

Additionally, post-operative data from a 71-year-old patient with an aortic valve and aortic
prosthesis were acquired on a 1.5 Tesla Philips Achieva system with a 5-element cardiac coil array,
a 320 x 310 x 82 mm? imaging volume (receiver bandwidth: 191 Hz/voxel), a 2 x 2 x 2 mm? voxel
size, a 10° flip angle and TR/TE = 4.8/2.2 ms. Three different first gradient moments corresponding

to encoding velocities of 160, 120 and 100 cm/s were applied.

Fully sampled data were retrospectively undersampled (R = 3, 6) using variable-density random
undersampling in the phase encoding plane [73] and then reconstructed using standard CS and

CS with DFW and FD phase regularization.

Written informed consent was obtained from all subjects prior to scanning according to ethics

approval and institutional guidelines.

5.3.3 Image Reconstruction

Normalized 3D coil sensitivities were estimated from in vivo data using eigendecomposition of a

linear k-space reconstruction operator [65].

For standard CS reconstruction of complex-valued images (reference and velocity encodes), an
iterative projection onto convex sets (POCS) algorithm [185] leaving the acquired data unchanged

was used (Table 5.1a). With normalized coil sensitivities (S7S e {Iy,Isv }), the algorithm reduces

to iterative soft-thresholding with a constant gradient step size of 1 [76]:
p =wrs, (\P[pk +E“(@d —Epk)]), (5.15)
with the orthogonal 3D Wavelet transform matrix ¥ and the shrinkage function
S (x;) =max(1-1/|x,|,0)x, (5.16)

operating on the vector elements x;.. A modified version keeping the image phase fixed, was

implemented (Table 5.1b) for the magnitude update steps (5.4). The diagonal matrix W fixes the

phase values according to reference (W:diag(eiw+l)) and velocity encoded

(W =diag(e™® o L )) image reconstruction.
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a) Complex-Valued Image Reconstruction

b) Magnitude Update

Init:

k=0, nlter, po, t, €

Init:

n=0, nlter,m’ to, e, W

do

p*! < S[Sp" + FI; (d - Eph)]
if S7S =1
pk-¢-1 <« (SHS)flpkH
end
pk+1 « THSzk (‘I’pk+1)

ti1 <— update(ty)

e« [lp*!
k<—k+1

while k < niterand e > ¢

- ik

do

p < S“ISWm" + F1" (d - EWm")]
if S7S=1
p < (S"S)y'p
end
m"! WS, (¥.lp])

twn1 <— update(t,)

e<_||mn+l_
n<n+1

while n <nlterande>¢

m”||z

c) Reference Image Velocity Encodes
Pa'::;?e':er €S Magn./Phase cs FD DFW
A 0.02 - 0.02 - -
A - 0.02 - 0.02 0.02
A - 0.2 - [1, 5] -
4 - - - 0.5/10.01, 0.03] -
W= o - - - 1 -
Lap1 = tapa - - - - manually
tuay - - - - [0.9%412, 1.1 tyr112]

Table 5.1 a) POCS algorithm for complex-valued image reconstruction. In the intermediate

solution, sampled k-space points are replaced with acquired signals. Thereafter, coil

normalization is performed followed by the sparse coefficient soft-thresholding step.

Thresholds can be updated in every iteration. Iterations are stopped when the maximum

number of iterations niter or the convergence distance ¢ is reached. b) Modified version

for magnitude update sub-iteration steps n. The phase from iteration step k+1 in (5.3) is

assumed to be fixed and incorporated via the diagonal matrix W. Wavelet shrinkage is

then applied on the image magnitude only. c) Reconstruction parameters for reference

segment and velocity encoded images. If not separated by “/”, values are valid for CFD and

in vivo experiments (ts1n, tar thresholds for divergence-free and non-divergence-free

coefficients).
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Background phase images @0 were reconstructed using the regularizer in
equation  (5.5) and non-linear CGs  with  backtracking line search  [181]
(http://web.eecs.umich.edu/~fessler/irt/irt/contrib/zhao,feng/separate-mag-phase/). The
optimization problem (5.8) was solved for velocity phase updates using the algorithms as
described in Section 5.2.3. Three detail levels were used in the DFW decomposition, while the
scaling function coefficients remained unchanged during Wavelet shrinkage. Two different global
thresholds were used: one for the two divergence-free and one for divergent vector Wavelet
coefficients. Non-convex magnitude and phase retrieval was initialized with a few numbers of
complex valued convex CS iterations (Table 5.1a) to increase the probability of finding a global
minimizer of equation (5.8). Reconstruction times were 6 minutes per timeframe for the DFW

method, and 20 minutes per timeframe for the FD method on an AMD 6134 CPU.

Regularization and thresholding parameters were tuned manually for CFD and in vivo
experiments in order to reduce divergence without over-regularizing flow values, as determined
with divergence and flow measurements. Prior to reconstruction, multi-coil data were normalized

to maximum signal magnitude. A's were set 0.02 for convex CS, 44 = 0.2 for background phase

reconstruction, 44 € [1,5] for FD, y=10.5 and y € [0.02,0.03] for CFD and in vivo data, respectively,

and w1 == 1. Threshold levels for DFW shrinkage needed to be tuned separately for CFD and in
vivo experiments: non-divergence-free thresholds were chosen between 90-110% of divergence-

free coefficient threshold levels. Reconstruction parameters are summarized in Table 5.1c.

For the patient data measured at 1.5 Tesla, concomitant field correction was directly included in
the phase regularized reconstructions of the velocity encoded images. This was accomplished by
appending an additional phase exponential vector with the phase difference corrections to the

modified encoding operator in equation (5.8).

The reconstruction algorithms implemented in Matlab (The MathWorks, Natick, MA, USA) and
example data sets are available for download from

http://www.biomed.ee.ethz.ch/research/bioimaging/cardiac/reduced_data/.

5.3.4 Data Analysis

Velocity vector fields reconstructed from undersampled CFD data were compared relative to the
noiseless and fully sampled reference data in terms of directional and velocity magnitude

reconstruction accuracy. Mean directional error was quantified in a region of interest (ROI)
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capturing the flow regime according to

r,i Vo,i

Directional error = (5.17)

’

A\ \4

0,i

ieROI ‘ 2 ‘

1
RO %

r,i

2

where v.; and v,; € R? denote the reconstructed and reference velocity vector at the i-th voxel

within the ROI, respectively. The normalized root-mean-square error (nRMSE) was used to

quantify the error of velocity magnitude (v = ||v|]2) reconstruction:

(5.18)

Mean values were assessed over 20 trials for SNR = 15 and R = 3, 6. In vivo data were analyzed
by assessing mean absolute divergence, total flow, peak flow, streamline quantification and in-

plane velocity vector display.

5.4 Results

Figure 5.2 illustrates velocity magnitude images reconstructed from undersampled data
(R = 3, 6) relative to the noise-free and noisy fully sampled reference data for the numerical
phantom. Improved velocity magnitude maps were obtained with separate magnitude and phase
reconstruction using either DFW or FD when compared to standard CS. For R = 6, high velocities

are best recovered by DFW. Difference maps were calculated relative to the noise-free reference.

Figure 5.3 shows corresponding maps of the absolute value of resulting vector field divergence.
Improved noise characteristics and divergence reduction of the reconstructed flow fields are seen

when the proposed phase regularization methods are used.

Axial velocity profiles and in-plane velocity vector plots along the indicated line are shown in
Figure 5.4 for CS, DFW and FD reconstructions relative to the noise-free and noisy reference data.
Improvements of in-plane velocity pattern visualization by phase-regularized reconstruction can
be seen. At R = 6, standard CS produces vector fields having less visible noise as compared to
R = 3. This qualitative improvement with increasing undersampling factor can also be observed

for the proposed DFW and FD methods.
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Figure 5.2 Numerical phantom. Normalized velocity magnitude images for CS, DFW and
FD reconstructions from 3- (top row) and 6-fold (bottom row) undersampled data relative
to noise-free and noisy (SNR = 15) references a). Corresponding difference maps are given

in b).

Figure 5.5 shows bar plots of directional error, velocity magnitude nRMSE and the mean of the
absolute value of divergence. The noisy reference, inverse FT (IFT), CS and divergence-regularized
data (DFW, FD) are compared to the noise-free reference. Relative to CS, phase regularization
reduces the directional error. For R = 6 directional errors become smaller for each method when
compared to R = 3. This is consistent with the vector field plots shown in Figure 5.4. However, for
the velocity magnitude nRMSE, error levels increase with increasing acceleration factor and are
only slightly reduced by phase regularization. In contrast, a clear reductionin mean absolute
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Figure 5.3 Absolute value of normalized velocity vector field divergence of the numerical
phantom for CS, DFW and FD reconstructions from 3- and 6-fold undersampled data

relative to noise-free and noisy references.

divergence by DFW and FD relative to standard CS is seen. In agreement with the directional
error, divergence is also decreased for larger R with all reconstruction methods. The SNR
dependence of mean absolute divergence reveals overall improvement of vector field
reconstruction with DFW and FD regularization relative to CS for all SNR values tested. At low SNR
values, FD-based divergence reduction is seen to outperform DFW regularization. Mean absolute
divergence of the in vivo data is presented in Figure 5.5e comparing fully sampled reference, IFT,
CS, DFW- and FD-phase-regularized reconstructions. Relative to standard CS, DFW reduced the
mean absolute divergence of the flow field by 44.8% and 50.9% for three- and six-fold
undersampling, respectively. Corresponding numbers for FD phase regularization are 50.6% and
54.2%. CS already decreased divergence to or even below the reference level. In vivo results also
confirm the reduction of divergence with increasing scan acceleration as observed in the
computer phantom. Figure 5.5f illustrates reconstructed divergence maps of an exemplary in vivo

case covering ascending and descending aorta relative to the fully sampled reference data.

Figure 5.6 shows in-plane velocity vector field components in the indicated cross-section through
the ascending aorta and pulmonary artery of a healthy volunteer. The background image
represents velocity magnitude. Relative to the reference, denoising of the flow field is already
obtained using CS, confirming the divergence statistics in Figure 5.5. Further reduction in
divergence is reflected by smoother vector fields upon reconstruction with DFW and FD

regularization.
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Figure 5.4 Through-plane velocity profiles a) and in-plane velocity vectors b) across

indicated line for CS (green profile line), DFW and FD (red profile lines) reconstructions
from 3- and 6-fold undersampled data of the numerical phantom relative to reference data

(blue profile line).

Figure 5.7 illustrates in-plane flow field components of the patient data set. Noise reduction of

the in-plane velocity vectors with DFW and FD regularization is seen relative to CS.

Figure 5.8 shows in-plane vector fields of the patient measurement. Besides divergence reduction

relative to CS, the indicated vortex formation is better recovered by DFW and FD.

In Table 5.2a, relative errors of peak and total flow in the aortic arch for IFT, CS, DFW and FD
reconstructions are compared to the fully sampled reference data in the healthy cohort.
Increasing the undersampling factor leads to increased underestimation of peak and total flow
with similar results for CS, DFW and FD reconstruction. Corresponding Bland-Altman and linear

correlation plots can be found in the Appendix Section 5.6.2.
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a) Directional Error (SNR = 15) b)  nRMSE, [%] (SNR = 15)
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Figure 5.5 Comparison of directional error a), nRMSE of velocity magnitude b), mean of
absolute divergence ¢) and the dependency of divergence reduction on SNR d) for the
numerical phantom. Comparison of mean absolute divergence in volunteer cohort e).

Example data of divergence maps in systole for the different reconstruction approaches f).

Improvements in streamline visualization were measured by comparing streamline lengths as
well as the number of streamlines arriving at their expected end point in the volunteer data
relative to the fully sampled data (Table 5.2b). Streamlines were seeded after the aortic arch in

the superior descending aorta, and then the lengths were measured as well as the number of
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Figure 5.6 In-plane velocity field visualization in a cross-section at the line indicated in a

healthy subject. Comparison of CS, DFW and FD reconstructions relative to fully sampled
reference data for 3- (top) and 6-fold (bottom) undersampling. The arrows point to

differences between CS, DFW and FD reconstructions.

lines crossing a plane at the inferior end of the descending aorta. Relative to standard CS,
streamline lengths with DFW were 6.99% and 12.85% longer (R =3 and R = 6). Streamline lengths
with FD reconstruction were 19.95% and 19.41% longer. The number of streamlines crossing the
target plane increased by 18.69% and 24.87% (R = 3 and R = 6) for DFW relative to CS, while FD

improved this measure by 55.12% and 51.86%, respectively.

5.5 Discussion

In this work, physical prior knowledge about 3D blood flow has been incorporated into a CS-based
reconstruction of undersampled 4D flow MRI data. Using a separate magnitude/phase

reconstruction framework, FD divergence and curl operators have been incorporated for

fi-regularization of velocity encoded phase differences. An efficient reconstruction algorithm

based on variable splitting was implemented for the non-convex phase image updates.
Additionally, divergence-free vector Wavelet regularization alternating between Wavelet
coefficient shrinkage and k-space data fidelity was tested. All methods were applied to simulated
CFD-based 3D PC data of a U-bend and 4D flow in vivo data of the aortic arch, and compared to

standard CS reconstruction.
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Figure 5.7 In-plane velocity field visualization in a cross-section at the line indicated in the
patient magnitude image. Comparison of CS, DFW and FD reconstructions relative to fully
sampled reference data for three- (top) and six-fold (bottom) undersampling. The arrows

point to differences between CS, DFW and FD reconstructions.

Figure 5.8 In-plane vector field components in slice through the aortic arch of the patient

data. CS, DFW, and FD reconstruction results are compared to the fully sampled reference
image for three- (top) and six-fold (bottom) acceleration. The arrow highlight the vortex in

the flow field.
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a)

R=3

R=6

Method Total Flow [%)] Peak Flow [%] Total Flow [%] Peak Flow [%]
IFT -17.37 £ 34.30 -19.63 + 40.16 -65.13 £ 123.64 -65.63 +£121.68
cs -3.74 £6.55 -2.42+5.20 -7.24£11.13 -4.45 £11.53
DFW -5.53+9.61 -3.09 +£10.26 -8.89+15.84 -5.12+17.41

FD -4.57 + 8.56 -3.52+8.61 -8.19 + 15.88 -6.03 + 13.60

b) R=3 R=6
. . . Streamline
Method Streamline Streaml.me Plane Streamline Plane Crossing
Length [%] Crossing [%] Length [%] %]

IFT -22.96 -89.31 -43.56 -95.13

cs -0.43 -14.81 2.54 -12.86
DFW 6.56 3.88 15.39 12.01

FD 19.52 40.31 21.95 39.00

Table 5.2 a) Relative error (mean + 1.96 x standard deviation) of peak flow and total flow
measurements for IFT, CS, DFW and FD reconstructions relative to the fully sampled
reference data in the five volunteer data sets. b) Relative change in streamline length and
number of streamlines reaching the end of the descending aorta in comparison to the fully

sampled reference data.

The CFD phantom with added noise revealed improvement in velocity vector field assessment
when using DFW or FD phase regularization relative to standard CS. Velocity magnitude images
showed that FD and DFW regularization efficiently reduces undersampling and noise-like
artifacts. Divergence was clearly reduced in the flow regime by separate magnitude and phase
reconstruction relative to the standard CS method. Overall improvement in velocity vector field
visualization was also demonstrated for 3- and 6-fold acceleration. Reduction in directional error
and divergence was found to be most prominent when using phase regularization. Error levels
for velocity magnitude were shown to be similar or slightly below standard CS. The increased
error reduction of velocity direction compared to magnitude is due to the proposed phase
regularizers which impose a penalty on velocity direction rather than on magnitude. Using
variable-density random undersampling, data consistency is mainly enforced for low frequency
spatial harmonics favoring smooth phase maps, while recovering high frequency components

relies on model assumptions to a larger degree. Thus, reconstructed vector fields are increasingly
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denoised/regularized in conjunction with standard Wavelet denoising (convex CS) or divergence
penalization (DFW, FD), thereby favoring direction dependent error metrics (directional error and

absolute mean divergence) at higher undersampling factors.

The spatial derivative operators applied on relatively low spatial resolution data with regard to
the spatial extent of local peak flow and specific flow patterns further compromise the
underestimation of total and peak flow amplitudes relative to standard CS. In order to improve
the measurement accuracy of peak flow and flow jets, better reconstruction of high frequency
components is required. In future work, optimal sampling patterns to recover peak flow need to
be derived. In the current work, a sampling pattern common in standard CS has been chosen to
enable a fair comparison with convex CS. Furthermore, the gain in scan efficiency due to
undersampling should be investigated to improve spatial resolution, thereby reducing the

influence of discrete spatial derivative operators.

For DFW phase regularization, coarse masking of the blood pool prior to application of the
Wavelet filter banks resulted in minor improvements of denoising performance, while FD

reconstruction was not affected by masking.

In vivo experiments confirmed the observation of reduced divergence with increasing
undersampling in conjunction with variable-density sampling. Relative to standard CS, DFW and
FD phase regularization, both led to a reduction in mean absolute divergence within the flow
volumes, while divergence was least for FD. Vector field visualization and streamline
guantification were improved by divergence regularization. Similar to post-processing techniques
[178], vector field denoising by divergence-free reconstruction was confirmed by longer
streamlines relative to the noisy fully sampled data. The assessment of peak flow revealed an

underestimation by 2.4, 3.1, 3.5% (R=3) and 4.5, 5.1, 6.0% (R = 6) for CS, DFW and FD.

The initialization of the non-convex reconstruction algorithms with a good solution estimate
turned out to be crucial, and thus, a few preceding convex CS iterations were necessary. Due to
the increased number of reconstruction parameters relative to standard CS, a limitation of this
work is the lack of a fully optimized parameter set, which may also be a potential source of
comprising the accuracy of the in vivo total and peak flow measures. In [180] , a data-adaptive
threshold selection procedure was applied to DFW denoising. However, this relied on the
assumption of Gaussian distributed noise of the vector field components and for undersampled

data reconstruction, manually tuned thresholds were used.

While the DFW reconstruction was significantly faster (3x) than FD, the FD regularization

performed slightly better than the DFW regularizer for most metrics. However, at this point we
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cannot recommend one method over the other, and thus, further data need to be acquired to

conclude on the preferred approach.

In the present work, variable splitting was used to divide FD phase regularization into smaller sub-
problems which were easier to solve (in terms of implementation and computational load) than
direct minimization. However, each auxiliary variable comes at the expense of an additional
regularization parameter weighting the added quadratic term. While in convex problems, the
solution is not affected by these parameters influencing only the convergence rate [184], a

detailed analysis of their effect in non-convex reconstruction is a remaining task.

Errors due to eddy currents in PC MRI lead to low-order phase offsets across the entire imaging
volume. The addition of this phase offset in a vessel can potentially create non-stochastic
divergence in the measured velocity fields, which will then be removed by divergence-free
methods. Divergence-free methods will therefore correct some portion of eddy current errors,
but with the potential of increasing or decreasing flow values. Our experiments showed no
significant errors in total flow measurements, so the negative effects of removing the divergent
portion of coherent phase errors appears to be negligible. However, magnetic field monitoring
can be used if eddy current-related phase offsets need to be addressed explicitly [53]. The phase
offset maps obtained from a short calibration scan can then directly be included in the velocity

field reconstruction.

In summary, the incorporation of the divergence-free condition directly into the reconstruction
via separate magnitude and phase regularization is a promising tool to enhance accelerated 4D
flow MRI. Improved 3D velocity field reconstruction and visualization have been demonstrated
on simulated CFD and in vivo data. To prove robustness of the methods in a clinical setting or

their applicability to other vascular regimes, studies in larger cohorts are needed.
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5.6 Appendix

5.6.1 Gradient and Hessian

The gradient \Y and Hessian V? of the function
g(,) =0 /2)y, —e* ”5 +(, 12) [y, _Tdiv,curlde)v ||§ with 'y, =“7” —-b{ and y, Zugﬂ -b;

are given by [181]:
vg(¢v) = lul Re {(ie_id’v ) © yl } - ﬂZKS‘PZiv,c‘url (y2 - ‘Pdiv,curlde)v) . (5 19)
Vzg(d)v) = /ul Re{diag(eiiqk © YI)} + ﬂZKf\Pgiv,curleiv,curlKv : (520)

First and second derivative needed to optimize the step size « during the line search along
direction eare then given by f"(a) =e'Vg(d, + ae) and f"(ax) =€’ Vg(¢, + ae)e, which reduce

to element-wise vector, diagonal matrix and inner products.
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5.6.2 Peak and Total Flow Bland-Altman Plots
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Figure 5.9 Bland-Altman and linear correlation plots of peak flow measurements (R = 3).
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Figure 5.10 Bland-Altman and linear correlation plots of peak flow measurements (R = 6).
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Figure 5.11 Bland-Altman and linear correlation plots of total flow measurements (R =3).
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Figure 5.12 Bland-Altman and linear correlation plots of total flow measurements (R = 6).
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Chapter 6

Optimized SPIRIT, Motion
Correction and Sampling

6.1 Efficient SPIRIiT Reconstruction®

SPIRIT (Section 3.1.3) is an auto-calibrating parallel imaging (PI) method for arbitrary k-space
trajectories generalizing GRAPPA (Section 3.1.2). The computational complexity of the calibration
operator has been reduced from O(N?) to O(N.) (N.: number of coils) by extracting coil
sensitivity maps via eigendecomposition (3.8) of the image-based interpolation kernel [69]. In
[69] only the forward operation of the modified kernel has been used in a projection onto convex
sets algorithm for Cartesian sampling. However, general gradient-based iterative solvers, e.g.
conjugate gradients (CG) for non-Cartesian sampling also include adjoint besides forward

operations.

Here we propose to reduce the computational complexity for non-Cartesian SPIRIT by
incorporating the coil sensitivity-based kernel into CG-like reconstruction. Additionally, the two
consecutive k-space interpolation steps during the regridding-gridding operation are

approximated by a diagonal matrix multiplication reducing computational costs further.

In SPIRIT, the k-space interpolation kernel G can efficiently be implemented in the image domain
yielding a matrix-vector multiplication, p.(r) = G«(r)p.-1(r), for each pixel at iteration step n. p.(r)
denotes the N. x 1 column vector stacking each coil’s image value at voxel position r, and Gx(r)
is a N. x N. matrix containing the values of the inverse Fourier transformed k-space kernel at r.

The corresponding image-domain operator, acting on all coil images stacked in vector p, is then

*Based on: C. Santelli, T. Schaeffter and S. Kozerke, “Efficient Non-Cartesian SPIRIT without Explicit
Consecutive Regridding and Gridding”, Proceedings of the 21°* Meeting of ISMRM, Salt Lake City,
UT, USA, p. 2643, 2013.
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Figure 6.1 K matrices of undersamped spiral (left) and radial (right) trajectories with

acceleration factor R.

denoted as G.. It has been shown in [69] that the voxel-wise O(Nf) matrix
multiplication can be reduced to a successive O(N.) vector-vector and scalar-vector
multiplication: G«(r) = ||c(r)|| ;> e(r)e(r)”, where ¢(r) is the coil sensitivity vector corresponding

to the eigenvector of G«(r) with eigenvalue 1. Defining the modified operator as

C, (r) = e()|,” e(r)e(r)” (6.1)

and C for voxel-by-voxel and whole multi-coil image vector processing, respectively, it is seen
that C«(r)” = C«(r) and C" = C. With the identity I, the calibration consistency and its adjoint

operation appearing as (Gx — I)"(G. — I) in CG-like reconstruction can then be simplified to

(C-D"(C-T)=—(C-T). (6.2)

Following [186], the regridding-gridding operation E”E with the encoding matrix E of the data

consistency term is replaced with
E"E~1_ F"diag(F,Q)FIL_,, (6.3)

with the zero-padding matrix I.,, doubling the image matrix dimensions, the unitary FT matrix F,
the non-unitary FT Fo, and Q as defined in [186]. Instead of calculating Q according to [186],
diag(FoQ) is approximated by another diagonal matrix K. Similar to [187], K is obtained by
regridding a constant ones k-space onto the non-Cartesian trajectory followed by gridding back
onto the Cartesian grid (Figure 6.1). Combining the two approaches, the normal equation to solve

the image-domain minimization problem (3.7) reduces to:

[1,F"KFI_, - 2*(C-1)|p=E"d, (6.4)
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Figure 6.2 Reconstruction workflow. K is obtained via the geometry of the undersampled
trajectory. The calibration operators G and C are calculated from the center of k-space
via low-rank matrix completion and eigendecomposition of the corresponding image-

domain matrix Gy, respectively.

with the arbitrary k-space trajectory d and regularization parameter 4.

To test the approach, an artificial 16-channel coil array data set [188] was used to generate a
reference multi-coil computer model data set. Complex-valued white Gaussian noise with
independent real and imaginary part was added. Eight virtual channels were computed
using coil array compression [188]. The reference data (256 x 256 matrix) were projected onto
undersampled spiral and radial k-space trajectories. For both sampling schemes, a fully sampled
k-space center (30 x 30) for calibrating G. with a 7 x 7 kernel was calculated via low-rank matrix
completion [189]. C was obtained by eigendecomposition of G, and K using regridding and
gridding of a (256 x 256) ones k-space (Figure 6.2). CG with 40 iteration steps was then used for
reconstruction, once with G. and E for standard SPIRIT, once with the new operators C and K,

and once with C and E. To implement E, the NUFFT gridder [35] was used.

Figure 6.3 shows reference, direct IFT, SPIRIT reconstructed and error images for the simulated
spiral and radial data. The masked error images depict the equality of using operator G. or C, and
E or K. Compared to standard spiral SPIRIT with G./E, the saving in reconstruction time when

using C/K and C/E was 43% and 40%, respectively. For radials, the corresponding time savings
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Figure 6.3 a) Coil-combined reference and gridded 3-fold undersampled spirals.

Reconstructed and error images shown for standard SPIRIT with operators G, and E and
for the proposed method using operators C and K or C and E. Reconstruction times
relative to standard SPIRIT (1.0) are given. b) Corresponding images for 16-fold

undersampled radial data set.

were 35% and 49%, revealing that the benefit of K depends on the number of acquired k-space

samples.

In summary, significant reduction in reconstruction time has been achieved for spiral and radial
data reconstruction using computationally optimized SPIRIT. In addition, the exchangeability of
the two consecutive k-space interpolation steps with a diagonal matrix multiplication has been
shown. Depending on the number of k-space samples, reconstruction time savings by a factor of

1.5-2 have been demonstrated.
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6.2 SPIRIiT™¢ — Auto-Calibrating Parallel

Imaging with Non-Rigid Motion Correction®

Scan acceleration and motion-compensating techniques are invaluable to reduce acquisition
times and breathing artifacts in cardiac imaging. Respiratory motion compensation with navigator
(NAV) gating or breath-holding is widely used, but the approaches may be limited in non-
compliant patients (Section 3.4). Based on the matrix formulation of general motion correction
(Section 3.4.3) [128], various approaches have been presented permitting data acquisition during
free breathing of the subject [130, 131]. It has also been demonstrated that the method can be
combined with different undersampling techniques [25, 120, 132]. Among the PI portfolio, SPIRIT
(Secition 3.1.3) [23] has gained interest as an auto-calibrating Pl technique for arbitrary k-space
trajectories generalizing GRAPPA (Section 3.1.2) [63]. Here, the SPIRIT reconstruction framework
is extended by incorporating a linear motion operator into the signal model allowing for scanning
during the entire breathing cycle in cardiac imaging. Simulation and in vivo data demonstrate the

benefits of the technique.

In SPIRIT, a Cartesian multi-coil image p is reconstructed by minimizing (3.7). The data consistency
term is extended with a bilinear interpolation matrix T warping the coil images into the different

motion states corresponding to the respiratory positions during data acquisition:
2 2 2
|[d—ETp[, + 2*|(G, —Dp]|, + R(p) - (6.5)

The encoding operator then maps the motion state images to the acquired profiles.

Dynamic short-axis view data (256 x 256 image matrix) were generated from the MRXCAT human
anatomy model [190] simulating realistic cardiac and non-rigid respiratory motion. Thirty cardiac
phases of 30 ms each, covering the whole cardiac cycle, were calculated for a number of heart
beats corresponding to an undersampling factor R relative to radial Nyquist. Complex-valued coil
sensitivities and Gaussian noise (resulting in a signal-to-noise ratio (SNR) of 30) were added. The
dynamic 8-coil array data were then projected onto a 2D Golden angle (GA) radial trajectory [38]
with a TR of 3 ms per profile (Figure 6.4). Fully sampled 2D radially (GA) encoded 4-point cine PC

in vivo data (5 mm NAV window, 250 x 250 mm? field of view (FOV), uniform 200 cm/s velocity

* Based on: C. Santelli, T. Schaeffter and S. Kozerke, “SPIRIT™ — Autocalibrating Parallel Imaging
with Non-Rigid Motion Correction”, Proceedings of the 21 Meeting of ISMRM, Salt Lake City, UT,
USA, p. 3748, 2013.
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Figure 6.4 2D dynamic short-axis view MRXCAT phantom data simulating cardiac and non-

rigid respiratory motion is projected onto a GA trajectory over a number of R-R intervals
corresponding to the acceleration factor for a given temporal resolution. The calibration
consistency operator for motion state and motion-corrected image reconstruction is
derived from an image temporally averaged over all heartbeats. Motion state images are
reconstructed using TV-regularized SPiRIiT for each heartbeat’s cardiac phases from
acquisition windows symmetrically placed around corresponding phase intervals. Upon
non-rigid image registration relative to the reference respiratory positon, deformation

maps are then used to assemble each heart phase’s T operator.

encoding, 2 x 2 x 10 mm? voxel size, 5.4/2.9 ms TR/TE, 28 ms temporal resolution) were acquired
in a healthy volunteer during free breathing on a 3Tesla Philips scanner (Philips Healthcare, Best,
The Netherlands) with six receiver coils. The same scan was repeated without NAV gating during
normal free breathing with 4x radial undersampling. In a third scan, the volunteer was advised to

breathe deeply, and thus, introducing severe motion artifacts. Reconstruction was performed

with and without motion correction using equations (6.5) and (3.7) and with ¢, anisotropic total

variation (TV) regularization: R(p) = |[Vupl, where V., = [V Vi]r denotes the finite

difference-based image gradient operator. The 7 x 7 k-space interpolation kernels assembling G«
were fitted to a 30 x 30 calibration area extracted from a temporal average image of the reduced
k-space data. Motion state images at each heartbeat and phase were assigned by reconstructing
low-resolution images using equation (3.7) with TV from a 50 projections window around each
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heart phase (Figure 6.4). T was obtained by non-rigid registration of the motion state images

relative to a reference heartbeat using the ITK-based elastix framework [191] (Figure 6.4).

Figure 6.5 compares images and temporal profiles of the heart model reconstructed from 4-, 8-
and 12-fold radially undersampled data without (SIPRIT) and with motion correction (SPIRIT™)
relative to the fully sampled reference. Figure 6.6 shows a comparison of the in vivo fully sampled
NAV-gated reference, SPIRIT™ and SPIRIT reconstructions from 4-fold undersampled data
acquired without respiratory gating. Image artifacts induced by respiratory motion were well
corrected for with SPIRIT™. In conjunction with significant undersampling, the method holds

considerable potential for accelerating free-breathing cardiac imaging protocols.

SPIRIT I3

i i i
' 4 \ » ) » )

SPIRIT™ nn

Figure 6.5 Cardiac frame of heart model (Ref) and reconstructed images for different

undersampling factors without (SPIRIT, top row) and with (SPIRIT™, bottom row) motion

correction. The corresponding temporal profiles are plotted along the indicated line.



SPIRIT™ SPIRIT

Figure 6.6 Systolic magnitude and in-plane velocity component images of NAV-gated scan
(left). Reconstructed images of non-gated 4-fold radially undersampled measurement with
(middle) and without (right) motion correction. The arrows point out regions where
motion-correcting SPIRIT reduces blurring artifacts. The corresponding acquisition times

are also depicted.

6.3 Optimized k-t Sampling for Combined

Parallel Imaging and Compressed Sensing*

The combination of Pl (Section 3.1) and compressed sensing (CS) (Section 3.2) has shown
improved reconstruction performance [23, 79] as compared to applying either of the two

methods alone. In many CS approaches, sampling patterns are designed to fully sample the center

* Based on: J. F. M. Schmidt*, C. Santelli* and S. Kozerke, “Optimized k-t Sampling for Combined
Parallel Imaging and Compressed Sensing Reconstruction”, Proceedings of the 22" Meeting of
ISMRM, Milan, Italy, p. 4377, 2014. (* denotes shared first authorship)
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Figure 6.7 lllustration (neglecting sensitivity weighting and sampling density correction) of
a single coil’s PSF in the x-t and x-f domain showing the 5-fold undersampling artifacts of
the conventional (top) and proposed (bottom) k-t sampling scheme. 6(x — Xo,t — to / f— fo)
denotes a unit vector with the non-zero component at the position corresponding to voxel
Xo = (xo,y0) and time/frequency ty/fo. The zoomed area shows the transition between
reqular (2-fold) and random undersampling. Peak-to-sidelobe ratios of the x-t PSFs are

3.22 (top) and 1.48 (bottom). Corresponding values for the x-f PSFs are 2.92 and 2.02.

of k-space while random undersampling with decreasing density at higher phase encodes is used.
Optimization of k-space trajectories combining regular and random undersampling patterns has
been proven beneficial to improve reconstruction accuracy [192, 193]. In dynamic imaging, time-
interleaved k-t sampling may be used in addition to reduce signal overlaps in the spatio-temporal
Fourier x-f domain [194]. Following ideas presented in [192] and [194], a Cartesian k-t sampling
scheme for dynamic MRI with time-interleaved regularly and randomly undersampled low- and
high-frequency components, respectively, is proposed. Using cardiac short-axis view data, it is
demonstrated that this approach improves image reconstruction relative to standard density-

weighted CS trajectories.
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In £i-norm regularized SENSE-based reconstruction, a coil-combined image p is estimated by

minimizing the optimization problem (3.11). For dynamic 2D Cartesian imaging, E = (In. ® LF)S
is composed of coil sensitivity weighting S, FT F along the spatial coordinates, and undersampling
of each coil’s k-t space using the reduced identity matrix L. The point-spread function (PSF) of a
conventional variable-density weighted CS k-t trajectory [79] is shown in Figure 6.7 with noise-
like aliasing along the phase encoding and, in x-f space, additionally along the temporal frequency
direction (providing sparse-domain incoherence). With the proposed method, the fully sampled
center of k-t space is replaced with a regular time-interleaved pattern, while the degree of
incoherent random undersampling is increased for higher phase encodes (Figure 6.7). The
corresponding PSF in the spatio-temporal x-t domain features well-separated peaks generating
coherent aliasing, which is well suited for Pl. Upon temporal FT F,, the coherent Nyquist replicas
are shifted along the temporal frequency direction [194]. Thereby, the x-f PSF replicates the
spectral support along the diagonal reducing coherent signal overlap while preserving incoherent

interference.

Breath-held fully sampled cine 2D balanced SSFP short-axis view data were acquired (28 cails,
FOV: 296 x 264 x 8 mm?, spatial resolution: 2 x 2 x 8 mm?) in a healthy subject on a 3 Tesla scanner
(Philips Ingenia, Philips Healthcare, Best, The Netherlands). Data were compressed to 12 virtual
channels [188]. Normalized coil sensitivities (S””S = I) were computed from a temporal averaged
image using ESPIRIT (Section 3.1.3) [65]. k-t space was retrospectively decimated (5- and 8-fold)
using time-interleaved regular 2-fold and increasing random variable-density undersampling of
low and high spatial frequencies, respectively. Standard random variable-density sampling with a
full center of k-space [73, 79] was used for comparison. Image series p were
reconstructed with ¥ = F, using an iterative soft-thresholding algorithm (3.14) leaving the
acquired data unchanged (z=1). Normalized root-mean-square errors (NRMSE’s) were calculated
according to: |jm, — my|2 / ||m,||> with vectors m, and m, stacking reconstructed and reference

magnitude pixels within a ROI, respectively.

Figure 6.8 shows reconstructed systolic and diastolic magnitude frames together with the
corresponding error maps. Figure 6.9 illustrates temporal profile plots across the heart of the fully

sampled reference and reconstructions from undersampled data.

Improved unfolding and temporal resolution relative to standard CS sampling is demonstrated.
Even though sensitivity information in this study was not obtained frame-by-frame from
decimated data, temporally resolved auto-calibration data can be easily derived by averaging of

adjacent frames or via low-rank matrix completion [189]. The application to k-space-based
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methods, e.g. SPIRIT [23], 3D imaging or further sparsification of the x-f representation [86] is

straightforward.

Ref Standard Proposed Standard Proposed

9.58 % 4.01% 18.61 % 10.22 %

Figure 6.8 Systolic (first row) and diastolic (second row) reference and reconstructed
images from 5- and 8-fold undersamplded data (left: standard CS sampling, right:
proposed sampling). Magnitude error maps depict error reduction due to combination of

coherent and incoherent undersampling. Normalized root mean square errors are quoted.
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Standard Proposed Standard Proposed

1942 %

Figure 6.9 Temporal profiles along the indicated line. The proposed sampling scheme
shows improved unfolding and temporal resolution compared to standard variable-density

CS sampling. nRMSE’s of reconstructed profiles are also depicted.

6.4 Discussion

Reduced reconstruction times for non-Cartesian SPIRIT have been demonstrated using a modified
Pl operator and an approximation of the regridding-gridding cascade, which can be incorporated
into any linear SPIRiT-based optimization problem. The extension to 3D and dynamic imaging is

straightforward. The inclusion of non-linear regularization is part of future work and first

successful attempts have already been made for £i-problems [195]. Furthermore, the recently

proposed ESPIRIT algorithm [65] is also a computationally optimized variant of SPIRIT, essentially
reducing to auto-calibrated SENSE. Thereby, regularization terms act on coil-combined than on
multi-coil images. Following this principle, temporally resolved and normalized coil sensitivities

for SENSE-like reconstruction can be estimated from the k-t SPIRIT kernel (Chapter 4).

Retrospective data-driven respiratory motion correction has been combined with radial SPIRIT
and preliminary results revealed the potential to bring down effective close to nominal scan times

in flow encoded MRI. While motion-compensating techniques like averaging might work for 2D
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scan protocols [154], future work must focus on the extension of the proposed method to
dynamic 3D flow imaging, where 100% scan efficiency is essential. 3D volume imaging is further
expected to reduce through-plane motion artifacts. Relative to isotropic 3D projection
acquisition, stacked 2D radial trajectories are beneficial in terms of SNR. Relaxing the fixed Golden
means (Section 2.2.3) and using modified GA increments [196], respectively, may reduce the
noise exposure for the patient and eddy current artifacts due to smaller gradient step sizes. Since
in vivo data were measured with prospective cardiac triggering, not the full cardiac cycle was
covered. A retrospective cardiac gating PC sequence allowing to reconstruct arbitrarily placed
cardiac phases of any temporal width needs to be implemented. Without any restriction on the
deformation fields ui(r), the i-th motion state’s signal model (neglecting coil sensitivity weighting)

reads
d(k) = j p(r+u,(r)e ™ dr

- j m(r +u, (1))’ ek gy (6.6)
4

= J.YZ (m)e" Ve dr
4

with m and ¢ being the object magnitude and phase, respectively. Following the principle
described in Section 3.4.3, both magnitude and phase should be warped prior to FT. If the T:’s

implement linear operations, the discrete encoding model in (3.18) is modified according to
d = Ediag(e™)Tm +n=E(Tm)ce™)+ 7, (6.7)
where o denotes the element-wise vector multiplication between Tm and the phase exponential

vector €'™. Under which conditions the following approximation holds in flow encoded MRI is

another remaining task:
Tp=T(moe?)~(Tm)oe™. (6.8)

Problem (6.7) may also be inverted via a separate magnitude and phase reconstruction
framework used in [181] and Chapter 5. However, reconstruction times are then assumed to
increase drastically. Restricting the motion model, e.g. to affine motion, the relation (3.17)
between a deformed complex-valued object and the corresponding effect in k-space can be used
to correct each profile prior to reconstruction. The application of external motion sensors, e.g.
field probes for spatio-temporal magnetic field monitoring [197], for motion estimation or cardiac

gating is another important part of future research.

An optimized Cartesian k-t sampling scheme for combined Pl and CS has been proposed and

applied to 2D cardiac short-axis view data. Due to the denser sampling of higher phase encodes,
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the proposed acquisition strategy is a candidate to remove the bias of underestimating flow
measures when using divergence-free phase regularization in conjunction with the conventional
variable-density CS trajectory using a fully sampled center of k-space (Chapter 5). Therefore, the

method has to be extended to 3D volume imaging and then tested on 4D flow data.
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Chapter 7

Radial 3D k-t SPIRIT Multi-
Point PC MRl in CHD
Patients

7.1 Introduction

In congenital heart disease (CHD) patients, 2D phase-contrast (PC) MRI is considered as a
reference method for blood flow measurements of various anatomical conditions [198].
Conventionally, PC MRI data are acquired during free breathing of the subject. To reduce
respiratory motion-related image artifacts, a number of signal averages (NSA) is collected. For
typical CHD measurements, 2-5 NSAs are acquired resulting in scan times of 2-5 minutes per slice.
Depending on the CHD condition, the planning of the slice position and orientation can be very
time consuming. In addition, 2D slices may not capture the 3D nature and complexity of
pathophysiological blood flow in CHD patients, hence prompting for comprehensive 3D PC MR

imaging approaches.

While conventional PC MRI techniques provide an average velocity vector per image voxel, 3D
multi-point PC MRI methods allow assessing velocity distributions within each voxel, and thereby,
enable estimating the energy stored in velocity fluctuations [159, 160]. By quantifying both mean
kinetic and turbulent kinetic energy (TKE), the energy budget of blood flow can be assessed. In
addition, the multi-point encoding concept permits mapping of blood flow over a wide range of
velocities without phase wraps [199]. The latter aspect is of particularimportance in CHD patients

which can present with large variation of flow conditions.

On a practical note, 3D PC MRI methods greatly simplify the planning of the scan, and hence,
require less experience of the operator. However, total scan times of 3D PC MRI encoding both

mean and turbulent kinetic energy are very long. Different scan acceleration techniques have
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been employed to reduce acquisition times including k-t GRAPPA, SENSE, k-t BLAST, k-t PCA [152,
200-202]. Prospective undersampling in conjunction with a k-t PCA variant [154, 155] has been
presented in [203].

In this work, the feasibility of 3D k-t SPIRIT multi-point PC MRl is assessed in CHD patients.

7.2 Methods

7.2.1 Data Acquisition

Prospectively undersampled 3D gradient-echo radial cine 10-point 3D PC MRI data with three-
directional velocity encoding were acquired from 6 CHD patients (mean age: 6.2 years, range: 9
months — 12.3 years) on a 1.5 Tesla Philips Achieva scanner (Philips Healthcare, Best, The
Netherlands). Written informed consent according to ethics guidelines was obtained from the
subjects’ parents. Golden angle [38] stack of stars trajectories were sampled with a 75% partial-
echo factor for readout profiles in the kc«-k, plane and a half-scan factor of 75% along the k, phase
encoding direction. Sampling patterns between two adjacent heart phases were rotated by a
fixed angle increment while projections were congruent along the slice phase encoding direction.
Together with the reference data set (k. = 0), three different first gradient moments were
sampled per spatial axis. The lowest k,-value (# 0) was set according to the maximum expected

velocity. The k,~sampling pattern was the same for each encoded axis. Specific scan parameters

CHD patients characteristics and scan protocols

Patient#  Age  CHDtype r:e;'s] [ ;Or;/s] N;hacsagf Vene [cm/s] Ne GA
1 4y/7m SP sten. 2x2x4 250x250%52 22 400/200/100 2 Yes
2 9m PV sten. 2x2x2 250x250x20 19 200/100/50 2 Yes
3 2y/4m LPA sten. 2x2x4 250x250%x48 20 180/90/60 2 Yes
4 10y/11m PA sten. 2x2x4 250x250x52 21 270/135/90 5 Yes
5 - - 2x2x4 250%x250x52 21 240/120/80 5 Yes
Dilated
6 12y/4m branch 2x2x4 250x250x48 21 200/100/50 2 Yes
PAs

Table 7.1 SP: sub-pulmonary, PV: pulmonary valve, LPA: left pulmonary artery, PA:

pulmonary artery, Venc: encoding velocity, N.: number of coils, GA: general anaesthesia.
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for each CHD patient are listed in Table 7.1. The undersampling factor relative to radial Nyquist
was set to 8. Respiratory motion artifacts were reduced by a navigator (NAV) placed on the right
lung-liver interface. NAV gating efficiency was on the order of 50% using an acceptance windows
(3-5 mm) adapting to drifting breathing patterns. The imaging volume was planned to cover the

pathological structures.

7.2.2 Image Reconstruction

Each velocity encoded segment was reconstructed using a 3D variant of k-t SPIRIT: prior to
reconstruction, congruent stack-of-star profiles were inverse Fourier transformed. Then, for each
slice z, dynamic Cartesian k-t space was reconstructed using 2D k-t SPIRIT (Chapter 4). 7 x 7 x 3
kx-ky,-t kernels were used to assemble the calibration operator G and were fitted to calibration
areas corresponding to (1/8N x 1/8N x no heart phases) data arrays of the reference segments
(k» = 0), with N being the dimension of the volumes. Depending on the number of k, phase
encodes, number of heart phases and number of channels, reconstruction times were on the

order of 2-5 hours on standard computer hardware.

7.2.3 Flow Quantification

From the resulting coil-combined image series p(r,t,k,), mean velocity vu(r,f) and standard
deviation ou(r,f) were calculated for each velocity encoding direction according to equation

(2.32):

p(r,t,kv) — e—O.SO",(r,r)zkf e—ivm(r,t)k\, ) (71)
p(r,1,0)
Magnitude and velocity induced phase were calculated using a sum-of-squares approach and
with a magnitude weighted sum of phase differences [162], respectively. o(r,f) was fitted to
lo(r,t.k)| / |p(r,t,0)| for all k& # 0 using standard least-squares methods. TKE maps were then

computed using
) 3
TKE(r,t) =5203,,. (r,0), (7.2)
i=1

with i indexing the three orthogonal directions and v being the fluid density [163]. vu(r,f) was
obtained by taking the phase of the complex-valued ratio o(r,t,k,) / p(r,t,0) for the two &/'s
corresponding to the highest and second highest encoding velocity allowing for three-point PC

velocity processing [164].
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7.3 Results

Figures 7.1-7.6 show the TKE and velocity magnitude volumes reconstructed with 3D radial k-t
SPIRIT. Data sets for each patient show the slices along the k,-direction. Magnitude image
volumes of the reference segments (k. = 0) illustrate the underlying anatomy. Turbulence and
flow image series were manually segmented. These masks coincide with regions of interest (ROIs)

used for the measurements illustrated in Figure 7.7.

Figure 7.1 shows systolic CHD flow data of a 4.6 year old patient with a hypoplastic LV, a double
outlet right ventricle and a severe sub-pulmonary stenosis. Velocities over 300 cm/s occur across
the sub-pulmonary structure under GA. The jet is surrounded by high TKE values in the range of
1450 J/m3. The sub-pulmonary narrowing is indicated by the arrow in the magnitude anatomy

image.

Systolic TKE and velocity magnitude maps of a 9 months old child are shown in Figure 7.2. The
patient was diagnosed with a ventricular imbalance, a dominant RV and a hypoplastic LV together
with a mild stenosis at level of pulmonary valve and dilated PAs causing mild narrowing of
proximal branch PAs at their origins. The jet formation across the indicated MPA rises up to 230

cm/s under GA comes along with TKE values larger than 400 J/m?.

Systolic CHD TKE and velocity data of a 2.3 year old child with moderate LPA stenosis are
presented in Figure 7.3. The focal LPA stenosis at the origin of the bifurcation is highlighted in the
TKE image. Higher TKE values are also visible in the ascending aorta adjacent to peak velocities of

around 140 cm/s.

Patient data from a ten year old diagnosed with a hypoplastic aortic arch, dilated RV and an
Ebstein’s anomaly are shown in Figure 7.4. There is a jet across the small pulmonary homograft
surrounded by high TKE values. The peak velocity measured within the indicated small homograft

is around 260 cm/s while TKE rises up to 900 J/m>.

Systolic TKE formations around high velocity magnitude voxels of patient 5 are presented in Figure

7.5.

Figure 7.6 shows systolic TKE and velocity magnitude data from a 12.3 year old patient with a
dilated MPA and branch PAs. Preferential flow toward the RPA is depicted by the arrow in the
velocity magnitude image. Relatively high turbulence values are associated with moderate peak

velocity magnitudes.

Correlation plots between 3D k-t SPIRIT reconstructed maximum TKE and maximum velocity
magnitude together with the correlation between total TKE and maximum velocity magnitude
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are illustrated in Figure 7.7. Data points are indexed with the corresponding patient numbers.
Patient 1 has the highest peak TKE value, but with a spatially and temporally integrated TKE below
numbers of patient 5 and 4. Similarly, patient 5 exhibits largest total TKE, while the peak energy

density is below the ones of patient 1 and 4.

Patient 1

ONNMENN" "~ TUNN325[cm/s] O MY T T T 11490 [)/m?]

Figure 7.1 Systolic magnitude (top), TKE (middle) and velocity magnitude (bottom) volumes
of CHD patient 1.
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Patient 2

OMNEENNNNNNT" ' | (433 I/md 0 240 [cm/s]

Figure 7.2 Systolic magnitude (top), TKE (bottom left) and velocity magnitude (bottom

right) images of CHD patient 2.
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Figure 7.3 Systolic magnitude (top), TKE (bottom left) and velocity magnitude (bottom

right) images of CHD patient 3.
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Patient 4

O MENNNNNNNTTTT T  ]1020 [i/md] 0 310 [em/s]

Figure 7.4 Systolic magnitude (top), TKE (bottom left) and velocity magnitude (bottom
right) images of CHD patient 4.

7.4 Discussion

The feasibility of accelerated 3D multi-point PC MRl in clinical routine use has been demonstrated
in this preliminary report. The acceleration factor of 8 yielded nominal scan times of 6-8 minutes
resulting in net measurement times of 11-17 minutes depending on the NAV efficiency.
Qualitative illustrations revealed TKE formation around jet areas, but turbulence formation was
also associated with low velocities in dilated vessel structures. Correlation plots between
maximum velocity magnitude and total and maximum TKE showed no strong correlation
indicating the potential of TKE quantification to provide additional information besides directional
flow measures. However, the data were acquired from six CHD patients with different ages, body
sizes and pathologies. Therefore, TKE parameters should be related to these numbers. For

instance, normalization with stroke volume should be investigated [204]. Spatial resolutions are
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Patient 5

O MENNNNNNTT T T [ (718 [I/m?] Y 320 [em/s]

Figure 7.5 Systolic magnitude (top), TKE (bottom left) and velocity magnitude (bottom

right) images of CHD patient 5.

relatively low compared to the vessel structures. The signal-to-noise ratio (SNR) decrease with
higher resolutions needs to be investigated. Increasing voxel sizes for higher SNR affects the
accuracy of standard deviation values and assumption of underlying Gaussian velocity spectra
[205]. NAV-gated respiratory motion compensation for anaesthetized subjects resulted in scan
efficiencies of around 50%. However, with awake patients, longer net scan times and deeper and
stronger varying breathing trajectories need to be considered. Therefore, motion correction and
self-gating techniques are required (Sections 3.4 and 6.2). The prospective cardiac triggering
scheme used in this study did not cover the full cardiac cycle. Retrospective cardiac triggering is
therefore an important concern of future research. Besides variability in constructing heart
phases at arbitrary time points, this may bring further insight into energy dissipation effects over
the full R-R interval. With large voxels compared to the anatomy sizes, violation of the divergence-
free condition becomes another important issue. Divergence-free post-processing [177, 180] or
reconstruction (Chapter 5) may be applied. Another limitation of this study is the lack of fully
sampled reference data. This was due to the limited amount of research scan time within the
patient scan protocols. Standard flow field calculations, for instance peak and total flow
measurements, are also part of future work. Additional varying sampling along the slice phase

encoding direction in conjunction with non-linear reconstruction methods has the potential to
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Patient 6

o BN T T 377 [i/md] 0 95 [cm/s]
Figure 7.6 Systolic magnitude (top), TKE (bottom left) and velocity magnitude (bottom

right) images of CHD patient 6.

further shorten scan times. Only 2- or 5-channel cardiac coils were used in this 1.5 T study. Larger
coil arrays or higher field strengths can therefore improve the performance of this auto-calibrated
dynamic parallel imaging technique. A major drawback of the presented implementation relates
to the very long image reconstruction times when using k-t SPIRIT. Further work is required to

provide computationally optimized reconstruction using dedicated computer hardware.

In summary, the potential of radial 3D k-t SPIRIT for highly accelerated CHD measurements in
clinical routine use has been demonstrated. At the same time, additional efforts are warranted

to address the limited spatial resolution and scan efficiency. Future work should implement
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Figure 7.7 Maximum (top) and (total) TKE values are plotted against maximum velocity
magnitude. TKE;o+ was assessed by summation over all voxels within the corresponding

dynamic ROIs.

advanced motion compensation technigues as presented in this thesis along with efficient image

reconstruction approaches for clinically feasible processing times.
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Chapter 8

Discussion and Outlook

Phase-contrast (PC) MRl is a powerful non-invasive imaging tool to quantify and visualize blood
flow related physiology and pathophysiology, and thus, has the potential of improving diagnosis
and management of Cardiovascular diseases (CVDs). The assessment of multiple velocity encoded
images increases the sensitivity to a broader velocity range and allows simultaneous assessment
of directional (mean velocity) and incoherent (turbulent) flow. Energy dissipation in the arterial
tree due to turbulent flow is associated with complex vascular geometries and the pathogenesis
of different CVDs. However, the increased amount of acquired data further aggravates the
problem of long measurement times mainly preventing the transfer of the method to clinical
routine use. Furthermore, reconstruction accuracy of velocity vector fields is compromised by

system imperfections and noise.

A linear auto-calibrated parallel imaging (PI) reconstruction method for dynamic imaging has
been proposed, implemented and applied to multi-point PC measurements. Improvements
relative to auto-calibrated frame-by-frame and a previously proposed k-t reconstruction have
been shown for magnitude and phase reconstruction in the aortic arch. The method does not rely
on densely sampled calibration data and can easily be extended to non-linear reconstruction
schemes by adding corresponding regularization terms. To further accelerate flow encoded
acquisitions, the k-t signal space can be extended with the velocity encoding axis (k-k,-t space),
thereby exploiting spatial-velocity-temporal correlations [206]. However, besides the gain in
measurement time and the relaxation of the Gaussian assumption of intra-voxel velocity
distributions, reconstruction time and memory load will be further increased. Future work should
therefore address these problems and consider efficient implementations on multi-core systems.
In this work, computationally optimized iterative reconstruction has also been designed enabling
speed-ups by a factor of 1.5-2. The application to k-t reconstructions is straightforward. Instead
of multi-coil images, coil-combined dynamic scenes could be calculated using SENSE-like
reconstruction where normalized dynamic coil sensitivities are extracted via eigendecomposition

of the k-t Pl operator following the principles in [65]. A motion correction algorithm has been
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developed combining Pl and non-rigid motion correction. While similar methods with a 100%
acceptance window still use retrospective gating [120] or reconstruction from reduced data is
primarily used for motion state image calculations [25], this work has demonstrated the potential
of combining scan time reductions from increased gating windows and undersampled data
acquisition. Preliminary results show the applicability of the method to PC MRI. However, the
detailed effect of using a general linear non-rigid motion operator [128] on non-smooth and
motion-corrupted image phase maps needs to be investigated further. Additionally, when using
low encoding velocities in multi-point PC schemes, signal magnitude damping due to increased

intra-voxel phase dispersion is assumed to complicate data-driven motion information extraction.

Non-convex compressed sensing (CS) based reconstruction methods for 3D PC MRl incorporating
physical prior knowledge about blood flow have been developed and implemented. Non-
divergent field components have been reduced relative to the standard convex method by phase
regularization via divergence-free Wavelets or finite difference-based divergence and curl
operators. Results from simulated computational fluid dynamics data have revealed decreased
directional errors of reconstructed velocity vector fields, and 4D flow in vivo data from the aorta
has shown improved streamline statistics. However, the bias of underestimating peak and total
flow measures by standard CS has not been removed. This bias is associated with the decreased
sampling density with increasing distance from the k-space center. Accordingly, reconstruction
of high spatial frequencies progressively relies on spatial gradient-based regularization acting on
a coarse resolution relative to the extent of the vessel volume. Therefore, future work should
investigate higher spatial resolutions and optimized k-space trajectories with increased sampling
density of higher spatial frequencies at the cost of sampling of lower frequency components. A
first attempt has been made in this thesis by proposing an optimized k-t sampling pattern for
combined Pl and CS reconstruction. Improved reconstruction accuracy has been presented for
cardiac short-axis data by a separation of coherent and incoherent artifacts via time interleaved
regular undersampling of the k-space center with increased random undersampling of higher
phase encodes. Using smaller voxel sizes is also expected to better approximate the divergence-
free condition and to increase the performance of the discrete velocity operators in smaller vessel

structures, respectively.

With the proposed phase regularization approach, divergence has significantly been reduced
within the blood pool of the aorta while non-divergent components have been kept at the vessel
borders. However, accurate boundary conditions are needed to derive other physical parameters
such as wall shear stress. Integrating more comprehensive models inferred from fluid mechanics
is thus an essential focus of future work. With increasing complexity of image reconstruction
algorithms, the number of regularization and tuning parameters is also increased. Since heuristic
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approaches optimizing specific error measures relative to fully sampled data sets are usually used
to assign these parameters, automatic allocation schemes for prospectively undersampled data

need to be developed.

The feasibility of the developed k-t auto-calibrated Pl method for translation into the clinical
setting has been demonstrated by applying it to multi-point 4D PC MRI measurements of
congenital heart disease patients. A 3D model of the algorithm was used to reconstruct
prospective 8-fold radially undersampled data sets. Turbulence and velocity magnitude volumes
have been compared and revealed intra-voxel velocity dispersion in jet flow regimes. Assessing
3D volumes instead of single 2D slices clearly simplified scan planning. Since data have been
acquired with a small number of coils and has been reconstructed with a linear algorithm, the use
of larger coil arrays and non-linear reconstruction schemes are warranted in future work.
Furthermore, the assessment and interpretation of patient specific turbulent kinetic energy

numbers in terms of energy dissipation over the full cardiac cycle is a remaining issue.

In summary, data-driven reconstruction algorithms for highly accelerated PC MRI have been
developed and revealed significant improvements relative to previous techniques. Besides scan
time reduction, the methods can also be applied to increase spatio-temporal resolution which is
essential to further improve flow quantification (e.g. jet, total and peak flow measurements) and
visualization (e.g. stream- and pathlines). Results from computer simulations and retrospectively
and prospectively undersampled velocity encoded data have demonstrated the potential of the
methods for multi-point PC MRI and further promote the value of flow assessment in clinical

routine for diagnosis and monitoring of CVDs.
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