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Abstract 

A large number of genetic loci are associated with adult body mass index. However, the genetics 

of childhood body mass index are largely unknown. We performed a meta-analysis of genome-

wide association studies of childhood body mass index, using sex- and age-adjusted standard 

deviation scores. We, included 35,668 children from 20 studies in the discovery phase and 

11,873 children from 13 studies in the replication phase. In total, 15 loci reached genome-wide-

significance (P-value < 5 x 10-8) in the joint discovery and replication analysis, of which 12 are 

previously identified loci in or close to ADCY3, GNPDA2, TMEM18, SEC16B, FAIM2, FTO, 

TFAP2B, TNNI3K, MC4R, GPR61, LMX1B and OLFM4 associated with adult body mass index 

or childhood obesity. We identified three novel loci: rs13253111 near ELP3, rs8092503 near 

RAB27B, and rs13387838 near ADAM23. Per additional risk allele, body mass index increased 

0.04 Standard Deviation Score (SDS) (Standard Error (SE) 0.007), 0.05 SDS (SE 0.008) and 

0.14 SDS (SE 0.025), for rs13253111, rs8092503, and rs13387838, respectively. A genetic risk 

score combining all 15 SNPs showed that each additional average risk allele was associated with 

a 0.073 SDS (SE 0.011, P-value = 3.12 x 10-10) increase in childhood body mass index in a 

population of 1,955 children. This risk score explained 2% of the variance in childhood body 

mass index. This study highlights the shared genetic background between childhood and adult 

body mass index and adds three novel loci. These loci likely represent age-related differences in 

strength of the associations with body mass index. 
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Introduction 

Childhood obesity is an important public health problem with severe consequences, including an 

increased risk of premature death (1-5). Body mass index (BMI) has a strong genetic component 

with some reported heritability estimates being over 80% (6-8). Large genome-wide association 

studies (GWAS) have revealed many genetic loci associated with BMI or adiposity in adults (9-

13). However, the genetic loci underlying BMI in children are less well known. The biological 

background of BMI may differ between children and adults. In addition, it may be that the 

relative contributions of the same genetic loci differ depending on age, for example due to 

different gene-environment-interactions or body fat distributions (6, 14, 15). A limited number of 

loci has been identified to associate with dichotomous definitions of childhood obesity (16-18). 

Also, the roles of specific known adult loci for BMI, such as FTO and ADCY3, have been 

described in children (13, 19). The age-specific effects are illustrated by longitudinal studies on 

the effects of the well-known adult BMI increasing risk allele of FTO with BMI throughout 

childhood (15). It has been reported that adult BMI increasing risk allele is associated with lower 

BMI in infancy, an earlier adiposity rebound and a higher BMI from the age of five years 

onwards (14, 15, 20). To date, studies did not present a large GWAS meta-analysis on the full 

spectrum of childhood BMI (13, 16-19).  

To identify genetic loci influencing childhood BMI, we meta-analyzed 20 GWAS with a 

total of 35,668 children of European ancestry, combining data for around 2.5 million single 

nucleotide polymorphisms (SNPs) imputed to the HapMap imputation panel. We used as 

outcome sex- and age-adjusted standard deviation scores at the oldest age between 2 and 10 

years. 
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Results 

Study characteristics are shown in Supplementary Material, Table S1. Childhood BMI was 

transformed into sex- and age-adjusted standard deviation scores (SDS) (LMS growth; Pan H, 

Cole TJ, 2012. http://www.healthforallchildren.co.uk).  

 

Meta-analysis of genome-wide association studies 

Inverse-variance weighted fixed-effects meta-analysis revealed 861 SNPs with genome-wide 

significant or suggestive P-values (< 5 x 10-6). Two SNPs with high heterogeneity were not 

followed up (I2 values of 89.4 and 96.0), leaving 859 SNPs representing 43 loci. A locus was 

defined as a region of 500 kb to either side of the most significant SNP. The Manhattan and 

Quantile-Quantile plots of the discovery meta-analysis are shown in Figure 1 and Supplementary 

Material, Figure S1, respectively. The lambda for the discovery meta-analysis was 1.10. LD 

score regression analysis showed that this slight inflation was mainly due to polygenicity of the 

trait, rather than to population stratification, cryptic relatedness or other confounding factors 

(intercept 1.01). Individual study lambdas are shown in Supplementary Material, Table S2. All 

43 loci were taken forward for replication in a sample of 11,873 children from 13 studies. Table 

1 and Supplementary Material, Tables S3 and S4 show the results of the discovery, replication, 

and joint analyses for the 43 genome-wide and suggestive loci.  

In total, 15 of these reached genome-wide significance in the joint analysis. Twelve out 

of these 15 had been reported previously for related phenotypes. SNPs in or close to ADCY3, 

GNPDA2, TMEM18, SEC16B, FAIM2, FTO, TFAP2B, TNNI3K, MC4R, GPR61, LMX1B and 

OLFM4 are associated with adult BMI or childhood obesity (11, 13, 16). We identified three 
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novel loci: rs13253111 near ELP3, rs8092503 near RAB27B, and rs13387838 near ADAM23. Per 

additional risk allele, BMI increased 0.04 Standard Deviation Score (SDS) (Standard Error (SE) 

0.007), 0.05 SDS (SE 0.008) and 0.14 SDS (SE 0.025), for rs13253111, rs8092503, and 

rs13387838, respectively. Figure 2 and Supplementary Material, Figure S2 show the regional 

plots and the forest plots, respectively, for these loci.  

 

Genetic risk score 

We combined the 15 identified genome-wide significant SNPs into a genetic risk score that 

summed the number of BMI-increasing alleles weighted by their betas from the discovery 

analysis and rescaled to a range of 0 to 30, which is the maximum number of risk alleles. The 

risk score was associated with childhood BMI (P-value = 3.12 x 10-10) in 1,955 children from the 

PIAMA Study, one of our largest replication cohorts. For each additional average risk allele in 

the score, childhood BMI increased by 0.073 SDS (SE 0.011) (Figure 3). This risk score 

explained 2.0% of the variance in childhood BMI.  

 

Associations with adult body mass index and childhood obesity 

The genetic correlation between childhood BMI and adult BMI was 0.73. A lookup of the 15 

SNPs associated with childhood BMI in a recently published GWAS meta-analysis on adult BMI 

in more than 300,000 participants, revealed that all SNPs showed evidence for association were 

nominally significantly associated with adult BMI, with P-values of 0.005, 5.76 x 10-5 and 0.003 

for the novel SNPs rs13253111, rs8092503 and rs13387838, respectively. Also, the direction of 

the effect estimates for all 15 SNPs was the same in children and adults (Supplementary 
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Material, Table S5) (11). The 15 SNPs found in this study explained 0.94% of the variance in 

adult BMI in the GIANT consortium (11).  

A reverse lookup in our dataset of the 97 known genome-wide significant loci previously 

reported to be associated with adult BMI showed that 22 out of the 97 loci were significantly 

associated with childhood BMI index, using a Bonferroni-adjusted P-value cutoff of 5.2 x 10-4 

for 97 SNPs. A total of 50 out of the 97 known adult BMI SNPs were nominally associated with 

childhood BMI (P-value <0.05). The direction of the effect estimates was the same in adults and 

children for 86 SNPs (P-value binomial sign test <1.0 x 10-4; Supplementary Material, Table S6).  

We looked up the association of the three novel loci in a GWAS meta-analysis of 

childhood obesity. In this study, childhood obesity cases were defined as having a BMI ≥ 95th 

percentile, whereas childhood normal weight controls were defined as having a BMI < 50th 

percentile. This meta-analysis included 22 studies, of which 16 were also included in our current 

meta-analysis. All three SNPs were associated with childhood obesity ((P-values 0.01, 0.005, 

and 6.0 x 10-4 for rs13253111, rs8092503, and rs13387838, respectively) (16).  

 

Functional analysis 

To explore functionality, we first analyzed if the 15 identified SNPs affect messenger RNA 

expression (eQTLs). We analyzed eQTLs from peripheral blood samples from 5,311 individuals, 

which revealed two cis-eQTLs (false discovery rate (FDR) P-value <0.05) for rs11676272, the 

top SNP in one of the previously identified loci (ADCY3). One of these eQTLs was for ADCY3, 

and one was for DNAJC27 (21). Also, we found a cis-eQTL for FAM125B for rs3829849, which 

is located in LMX1B (Supplementary Material, Table S76). eQTL analysis in adipose tissue, a 

more specific target tissue in relation to BMI, from 856 healthy female twins in the MuTHER 
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resource in Genevar revealed two significant cis-eQTLs (distance to SNP < 1 Mb) for 

rs11676272, for transcripts of ADCY3 and POMC, with a Bonferroni-corrected P-value of < 

0.003 (22, 23). The association of rs11676272 with expression of ADCY3 was also validated in a 

second eQTL analysis in a smaller set of 206 lymphoblastoid cell lines (24). We did not identify 

eQTLs related to our three novel loci. 

 Second, we performed functional analyses with the tool Data-Driven Expression 

Prioritized Integration for Complex Traits (DEPICT) using all SNPs with a P-value < 1 x 10-5 in 

the discovery analysis (see Materials and methods for details) (25). Gene prioritization analysis 

did not show prioritized genes, nor did the gene set enrichment analysis reveal evidence for 

enriched reconstituted gene sets and genes near the associated SNPs were not found to enrich for 

expression in a panel of 2009 tissue and cell types (FDR< 0.05; Supplementary Material, Tables 

S87a, b and c).  

 

Discussion 

In this GWAS meta-analysis of childhood BMI among more than 47,000 children, we identified 

15 genome-wide significant loci, of which three loci, rs13253111 near ELP3, rs8092503 near 

RAB27B, and rs13387838 near ADAM23, have not been associated with adiposity related 

phenotypes before. 

Large GWAS have revealed many genetic loci associated with BMI or adiposity in adults (9-13). 

A recent meta-analysis in up to 339,224 individuals identified 97 BMI-associated loci, 

explaining 2.7% of the adult BMI variation. Pathway analyses showed that the central nervous 

system may play a large role in obesity susceptibility. The number of identified loci associated 

with BMI or obesity in childhood is scarce. Of the total of 15 loci associated with childhood BMI 
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in the current study, 12 have previously been associated with adiposity outcomes in adults or 

children. All 12 loci are known to be associated with adult BMI (11). Also, eight loci, including 

those in or near ADCY3 (annotated to the nearby gene POMC in the previous paper), TMEM18, 

SEC16B, FAIM2, FTO, TNNI3K, MC4R and OLFM4, have previously been associated with 

childhood obesity (16). All three novel loci were nominally associated with the more extreme 

outcome of childhood obesity in a largely overlapping population of child cohorts (16).  

A recent meta-analysis of two studies showed that the known loci FTO, MC4R, ADCY3, 

OLFM4 are associated with BMI trajectories in childhood (26). Their findings also suggested 

that a locus annotated to FAM120AOS influences childhood BMI, which could not be replicated 

in the current study. The lead SNP in this locus, rs944990, had a P-value of 1.61 x 10-5 in the 

current analysis. These findings suggest that the overlap between the genetic background of 

childhood and adult BMI is relatively large, but not complete. 

Rs7550711 represents one of the 12 identified loci known to be associated with BMI or 

obesity in adults and children. Rs7550711 is a proxy for rs17024258 and rs17024393 (R2 0.8 

with both SNPs), which have previously been associated with adult obesity and BMI, 

respectively, and annotated with the GNAT2 gene. However, our proxy resides in GPR61, G 

protein-coupled receptor 61, the biology of which may be more relevant to BMI. Gpr61-deficient 

mice are obese and have hyperphagia, suggesting the role of Gpr61 in food intake regulation 

(27). Further studies, including expression studies in relevant human tissues, are needed to 

establish the causal genes underlying this association.  

We identified three loci, rs13253111 near ELP3, rs8092503 near RAB27B, and rs13387838 near 

ADAM23, which have not been associated with adiposity related phenotypes before in adulthood 

or childhood. The nearest genes to the novel loci have varying functions. ELP3, Elongator 
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Acetyltransferase Complex, subunit 3, has a potential role in the migration of cortical projection 

neurons and in paternal demethylation after fertilization in mice (28-30). RAB27B, RAS-

associated protein RAB27B, encodes a membrane-bound protein with a role in secretory vesicle 

fusion and trafficking. It has been associated with pituitary hormone secretion, regulation of 

exocytosis of digestive enzyme containing granules from pancreatic acinar cells, and with gastric 

acid secretion (31-33). Expression of ADAM23, A Disintegrin And Metalloproteinase Domain 

23, may influence tumor progression and brain development (34, 35). It has also been described 

to be expressed in mouse adipose tissue and to have a potential role in adipogenesis in vitro (36).  

Two of our novel loci, rs13253111 near ELP3 and rs13387838 near ADAM23, are close to 

rs4319045 and rs972540, respectively. Both these SNPs were reported as subthreshold results in 

the GWAS meta-analysis on adult BMI (11). However, the linkage disequilibrium between the 

SNPs in both pairs is very low (R2 ≤ 0.1 for both) suggesting that these SNPs may represent 

different signals. It is important to note that, although both SNPs reached genome-wide 

significance in the joint discovery and replication analysis, the P-values in the replication stage 

were non-significant. This lack of significance may be due to the smaller sample size and lower 

power. Also, the joint P-values were slightly higher than the discovery P-values. Heterogeneity 

between the discovery and the replication stages was low to moderate, with I2 values of 61.1 and 

27.8 for rs13253111 and rs13387838, respectively (P-values > 0.01 for both). These two signals 

need to be interpreted with some caution and further studies with larger sample sizes are needed 

to fully clarify the role of variants in these regions in the physiology of BMI.  

  Functional analysis showed cis-eQTLs for the lead SNPs in two of the known loci. 

Rs11676272 was associated with eQTLs in ADCY3 and DNAJC27, also known as RBJ. Both 

these genes have been associated with adult BMI before and the association of rs11676272 with 
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expression of ADCY3 has been previously described in childhood BMI (11, 13, 37). Rs3829849 

was associated with an eQTL in FAM125B, or MVB12B, multivesicular body subunit 12B. This 

gene encodes a component of ESCRT-I (endosomal sorting complex required for transport I), a 

plasma membrane complex with a role in vesicular trafficking, was recently described to be 

associated with intra-ocular pressure (38). However, the LD of our SNPs with the peak markers 

for the DNAJC27 (R2 0.11) and the FAM125B (R2 0.03) transcripts was low. Our analysis using 

DEPICT did not show enriched gene sets. This may reflect the relatively limited sample size in 

our analysis. Further studies are needed to determine the potential functional impact of all SNPs 

associated with childhood BMI. 

Using LD score regression analysis with our meta-analysis results and the results from 

the recently published GWAs meta-analysis on adult BMI as input, we found that the genetic 

correlation between childhood and adult BMI was high (11, 39). The variance in adult BMI 

explained by the 15 SNPs identified in this study was lower than in children. The novel SNPs 

reported in this study may represent loci that specifically influence childhood BMI, but not adult 

BMI. An alternative explanation is that the effect sizes of these loci may be larger in children 

than in adults, which may explain the discovery in childhood studies but not in adult studies (11). 

The large overlap between childhood and adult BMI loci suggests that many of these loci may 

not represent childhood-specific effects, but rather involvement of the same loci with differential 

effect sizes at different ages. Age-specific effects of genetic variants associated with BMI in 

children have been described for the FTO locus (15). However, longitudinal studies with 

multiple measurements of BMI are needed to confirm and quantify such varying effects with 

age. In discussing the genetic overlap between childhood and adult BMI, it needs to be noted 

that, because of the differences in body proportions and body fat distribution, childhood BMI 
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may be a different phenotype as compared to adult BMI. Our outcome was the conventional 

measure of BMI calculated as weight/height2. Especially in early childhood, higher orders of 

magnitude for height may be more appropriate. Results from a previously published GWAS 

study on childhood BMI in two of the cohorts included in the current meta-analysis suggest that 

the results for SNPs close to ADCY3 are different when higher orders of magnitude for height are 

being used (37). Further studies are needed to identify loci related to more specific and directly 

assessed measures of adiposity and body fat distribution in young children. 

In conclusion, we identified 15 loci associated with childhood BMI, of which three are 

novel. Our results highlight a considerable shared genetic background between childhood and 

adult BMI. The novel BMI-related loci may reflect childhood-specific genetic associations or 

differences in strength of associations between age groups.  

 

Materials and methods 

Study populations  

Characteristics of each discovery and replication study population can be found in 

Supplementary Material, Table S1 and Supplementary Methods. The discovery analysis included 

20 studies with an age range from 3 to 10 years: the Avon Longitudinal Study of Parents and 

Children (ALSPAC, 6887 children), the Children’s Hospital of Philadelphia (CHOP, 2456 

children), the Copenhagen Studies on Asthma in Childhood 2000 birth cohort (COPSAC2000, 

309 children), the Danish National Birth Cohort (DNBC, 1020 children), the Generation R Study 

(GenerationR, 2226 children), the GOYA Study (GOYA, 199 children), the Helsinki Birth 

Cohort Study (HBCS, 1674 children), the INfancia y Medio Ambiente Project (INMA, 756 

children), the Leipzig study (Leipzig, 555 children), the Lifestyle – Immune System – Allergy 
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Study plus German Infant Study on the influence of Nutrition Intervention (LISA+GINI, 1147 

children), the Manchester Asthma and Allergy Study (MAAS, 801 children), the Norwegian 

Mother and Child Cohort Study (MoBa, 126 children), the Northern Finland Birth Cohort 1966 

(NFBC 1966, 3948 children), the Northern Finland Birth Cohort 1986 (NFBC 1986, 4000 

children), the Netherlands Twin Register (NTR, 1810 children), the Physical Activity and 

Nutrition in Children Study (PANIC, 423 children), the Western Australian Pregnancy Cohort 

(Raine) Study (Raine, 1458 children), the Special Turku coronary Risk factor Intervention 

Project (STRIP, 569 children), the Young Finns Study (YFS, 1134 children), the British 1958 

Birth Cohort Study, with two subcohorts which were entered into the meta-analysis separately 

(1958BC-T1DGC, 1974 children, and 1958BC-WTCCC2, 2196 children).  

We included 13 replication studies. Eleven of these were cohort studies: 574 children 

from the Copenhagen Studies on Asthma in Childhood 2010 birth cohort (COPSAC2010), 676 

additional children from the DNBC, 386 additional children from LISA+GINI, 3152 children 

from the TEDS Study, 1955 children from the Prevention and Incidence of Asthma and Mite 

Allergy birth cohort study (PIAMA), 1665 children from the BREATHE Study, 447 children 

from the Bone Mineral Density in Childhood Study (BMDCS), 200 children from the TEENs of 

Attica: Genes and Environment (TEENAGE) study, additional imputed data on 857 children 

from the Leipzig Study, 480 additional children from PANIC, and additional imputed data for 

569 children from STRIP. We also included two obesity case-control studies in the replication: 

the Danish Childhood Obesity Biobank (306 cases, 158 controls) and the French Young Study 

(304 cases, 144 controls). In the BREATHE Study, information was available about six SNPs 

only (rs8046312, rs12429545, rs13130484, rs3845265, rs543874, rs8084077).  
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All included children were of European ethnic origin. Sex- and age-adjusted standard 

deviation scores were created for BMI at the latest time point (oldest age, if multiple 

measurements existed) between 2 and 10 years using the same software across all studies (LMS 

growth; Pan H, Cole TJ, 2012. Available from: http://www.healthforallchildren.co.uk). 

Syndromic cases of obesity and children of non-European ethnic origin were excluded. In the 

case of twin pairs, only one twin was included, either randomly or based on genotyping or 

imputation quality. 

 

Statistical approach 

 Cohort-specific genome-wide association analyses were first run in the discovery cohorts, using 

high-density Illumina or Affymetrix SNP arrays, followed by imputation to the HapMap CEU 

release 22 imputation panel. The MAAS study imputed to the combined 1000 Genomes (1000G) 

Pilot + HapMap 3 (release June 2010/Feb 2009) panel. Before imputation, studies applied study-

specific quality filters on samples and SNP call rate, minor allele frequency and Hardy-Weinberg 

disequilibrium (see Supplementary Material, Table S1 for details). Leipzig (discovery sample), 

NFBC1986, STRIP (discovery sample), and PANIC (discovery sample) contributed unimputed 

data from the Metabochip. Linear regression models assuming an additive genetic model were 

run in each study, to assess the association of each SNP with SDS-BMI, adjusting for principal 

components if this was deemed needed in the individual studies. As SDS-BMI is age- and sex-

specific, no further adjustments were made. Before the meta-analysis, we applied quality filters 

to each study, filtering out SNPs with a minor allele frequency below 1% and SNPs with poor 

imputation quality (MACH r2_hat <= 0.3, IMPUTE proper_info <= 0.4 or info <= 0.4). For 

studies contributing unimputed metabochip data to the discovery analysis, we excluded SNPs 
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with a SNP call rate < 0.95 or with a Hardy Weinberg Equilibrium P-value of ≤ 0.00001. We 

performed fixed effects inverse-variance weighted meta-analysis of all discovery samples using 

Metal (40). Genomic control was applied to every study before the meta-analysis. Individual 

study lambdas ranged from 0.985 to 1.077 (Supplementary Material, Table S2). The lambda of 

the discovery meta-analysis was 1.10. After the meta-analysis, SNPs for which information was 

available in only one study were removed. 

The final dataset consisted of 2,499,691 autosomal SNPs. The most significant SNP for 

each of 43 genome-wide significant or suggestive loci (P-value < 5 x 10-6) was taken forward for 

replication in 13 replication cohorts. A locus was defined as a region 500 kb to either side of the 

most significant SNP. All replication cohorts had in silico data available. One of them only had 

non-imputed data (BREATHE), two (TEENAGE and TEDS) had data imputed to HapMap 

release 22, one cohort (PANIC) used exome chip data and the other nine performed imputation 

to 1000G. The replication samples of the STRIP and Leipzig studies only contributed 20 and 21 

imputed SNPs, respectively, as the unimputed SNPs were part of the discovery analysis). Fixed 

effects inverse-variance meta-analysis was performed for these 43 SNPs combining the 

discovery samples and all replication samples, giving a joint analysis beta, standard error and P-

value (Table 1 and Supplementary Material, Table S2).  

 

Sensitivity analyses 

Allele frequency differences between the discovery and the replication samples were small and 

stayed within a range of seven percentage points for all SNPs, except for rs1573972, which had a 

minor allele frequency of 9% in the discovery analysis and 28% in the replication analysis. This 

was likely due to the inclusion of one study (MAAS) that had imputed to the combined 
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HapMap+1000G panel, whereas all other studies with imputed data had imputed to HapMap. To 

increase homogeneity, we performed several sensitivity analyses. First, we reran the discovery 

meta-analysis excluding the MAAS study. This analysis did not materially change our findings, 

with one additional SNP (rs10055577) reaching the subthreshold level of significance (P-value = 

1.10 x 10-6) and five SNPs (rs4870949, rs1838856, rs633143, rs10866069, and rs1573972) 

losing significance. None of these five SNPs had replicated in the primary analysis. Second, we 

reran the replication and joint meta-analysis including only those cohorts that imputed to 1000G. 

Results of this analysis were very similar to the primary analysis, with two additional replicated 

SNPs, rs17309930 near BDNF and rs13107325 in SLC39A8. Both of these are known loci for 

adult BMI (11, 13). Third, we reran the replication including only the HapMap-imputed and 

unimputed studies (TEDS, TEENAGE, and BREATHE). The results were very similar to those 

using all studies, with rs4870949 and rs2590942 now passing the significance threshold and 

rs8092503 and rs3829849 now just above it (results not shown). Rs1573972 was not replicated 

in any of the analyses. As results of the third and fourth sensitivity analyses were very similar to 

those including all replication cohorts, we used the latter as our main analysis for reasons of 

power. 

 

Genetic risk score and percentage of variance explained 

A weighted risk score was computed as the sum of the number of SDS-BMI-increasing alleles 

(dosage) weighted by the effect sizes from the discovery meta-analysis. Then, the score was 

rescaled to range from zero to the maximum number of SDS-BMI increasing alleles (30 alleles 

for 15 SNPs) and rounded to the nearest integer. The association of the risk score with SDS-BMI 

was assessed in one of the largest replication cohorts (PIAMA, N=1955) by running a linear 
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regression model. The variance in SDS-BMI explained by the risk score was estimated by the 

unadjusted R2 of this model. The percentage of variance in adult BMI explained by the 15 SNPs 

was calculated using the published data from the recently published large meta-analysis of 

GWAs studies on adult BMI (11). For each SNP, the variance explained was calculated as: 

2*(adult effect size^2)*MAF*(1-MAF) and these variances were then summed to give the total 

percentage of variance in adult BMI explained by the 15 SNPs (11, 41). 

 

LD score regression 

LD score regression was used with the standard settings (39). Changing the minor allele 

frequency filter from 0 to 0.05 did not change the results. Therefore, we report the results of the 

unfiltered analysis only.  

 

eQTL analysis  

eQTL analysis was conducted using most significant SNP from each of the 15 genome-wide 

significant loci from the joint analysis. There was no linkage disequilibrium between these SNPs. 

First, we assessed whether the top SNPs or their proxies, identified on the basis of R2 > 0.7, were 

associated with gene expression in whole-blood cells in a sample of 5,311 individuals (21). 

Expression in this dataset was assessed using Illumina Whole-Genome Expression BeadChips 

(HumanHT-12). eQTLs were deemed cis when the distance between the SNP chromosomal 

position and the probe midpoint was less than 250 kb. eQTLs were mapped using Spearman's 

rank correlation, using imputation dosage values as genotypes. A n FDR P-value of <0.05 was 

considered significant.  Second, the 15 SNPs were introduced to the online eQTL database 

Genevar (www.sanger.ac.uk/resources/software/genevar) to explore their associations with 
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expression transcripts of genes in proximity (<1Mb distance) to the SNP in adipose tissue from 

856 healthy female twins of the MuTHER resource (22, 23). We used Bonferroni correction for 

the significance threshold (P-value< 0.003).  

 

Data-driven Expression Prioritized Integration for Complex Traits (DEPICT)(42)  

DEPICT was run using SNPs with P-value < 10-5 as yielding 56 independent DEPICT loci 

comprising 100 genes. DEPICT was run using default settings, that is using 500 permutations for 

bias adjustment, 20 replications for false discovery rate estimation, normalized expression data 

from 77,840 Affymetrix microarrays for gene set reconstitution (see (43) for details), 14,461 

reconstituted gene sets for gene set enrichment analysis, and testing 209 tissue/cell types 

assembled from 37,427 Affymetrix U133 Plus 2.0 Array samples for enrichment in tissue/cell 

type expression (42). 
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Legends to figures 

Figure 1 Manhattan plot of results of the discovery meta-analysis of 20 studies 

Chromosomes are shown on the x-axis, the –log10 of the P-value on the y-axis. The grey dotted 

line represents the genome-wide significance cutoff of 5 x 10-8. Genes shown in black are the 

known loci that were significantly associated with childhood BMI in the joint discovery and 

replication analysis. Genes shown in grey were significant in the discovery, but not in the joint 

discovery and replication analysis. * indicates novel loci that were significantly associated with 

childhood BMI in the joint discovery and replication analysis. See also Table 1. 

 

Figure 2 Regional plots of the three novel loci for childhood BMI  

On the x-axis the position of SNPs on the chromosome is shown. On the left y-axis is the –log10 

of the P-values from the discovery analysis, on the right y-axis is the estimated recombination 

rate (from HapMap), shown by the light blue line in the figure. The named SNP is the most 

significant SNP in the locus from the discovery meta-analysis. . The linkage disequilibrium of all 

SNPs with the most significant SNP is shown by the symbols, with dark grey diamonds 

indicating an R2 of ≥0.8, inversed dark grey triangles indicating an R2 of 0.6-0.8, dark grey 

triangles indicating an R2 of 0.4-0.6, dark grey circles indicating an R2 of 0.2-0.4, and light grey 

circles indicating an R2 of 0-0.2. Genes (from HapMap release 22) are plotted below the x-axis. 

 

Figure 3 Association of the weighted risk score with BMI  

Along the x axis, categories of the weighted risk score are presented, the mean standard 

deviation score (SDS)-BMI per group is shown on the right y axis, with the line representing the 
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regression of the mean SDS-BMI values on the categories of the weighted risk score. The left y 

axis represents the number of children in each risk score category, shown in the histogram. The 

P-value is derived from the analysis of the continuous risk score. Analysis was performed in the 

PIAMA Study (N =1955). 
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Tables 

Table 1 Results of the discovery, replication and joint analyses for 43 loci with P-values < 5 x 10-6 in the discovery phase  

 

SNP 

 

CHR Position Nearest gene EA/Non-EA EAFa Betaa SEa 

P-value 

discovery 

P-value 

replication 

P–value 

joint 

rs13130484b 4 44870448 GNPDA2 T/C 0.44 0.067 0.007 8.94 x 10-11 4.29 x 10-18 1.58 x 10-23 

rs11676272b 2 24995042 ADCY3 G/A 0.46 0.068 0.007 8.55 x 10-23 0.020 7.12 x 10-23 

rs4854349b 2 637861 TMEM18 C/T 0.83 0.090 0.009 6.00 x 10-21 0.005 5.41 x 10-22 

rs543874b 1 176156103 SEC16B G/A 0.20 0.077 0.009 2.38 x 10-17 8.77 x 10-4 2.20 x 10-19 

rs7132908b 12 48549415 FAIM2 A/G 0.39 0.066 0.008 4.99 x 10-19 0.043 1.57 x 10-18 

rs1421085b 16 52358455 FTO C/T 0.41 0.059 0.007 3.20 x 10-19 0.654 4.53 x 10-16 

rs12429545c 13 53000207 OLFM4 A/G 0.13 0.076 0.010 3.66 x 10-11 1.01 x 10-4 2.08 x 10-14 

rs987237b 6 50911009 TFAP2B G/A 0.19 0.062 0.009 3.81 x 10-13 0.224 1.80 x 10-12 

rs12041852b 1 74776088 TNNI3K G/A 0.46 0.046 0.007 1.77 x 10-10 0.142 2.28 x 10-10 

rs6567160b 18 55980115 MC4R C/T 0.23 0.050 0.008 4.06 x 10-12 0.996  1.21 x 10-9 

rs13253111 8 28117893 ELP3 A/G 0.57 0.042 0.007 4.13 x 10-9 0.114 4.89 x 10-9 

rs8092503 18 50630485 RAB27B G/A 0.27 0.045 0.008 8.55 x 10-8 0.034 8.17 x 10-9 

rs3829849b 9 128430621 LMX1B T/C 0.36 0.041 0.007 1.46 x 10-6 0.001 8.81 x 10-9 

rs13387838 2 206989692 ADAM23 A/G 0.04 0.139 0.025 2.40 x 10-8 0.306 2.84 x 10-8 

rs7550711d 1 109884409 GPR61 T/C 0.04 0.105 0.019 1.50 x 10-8 0.401 4.52 x 10-8 

rs17309930b 11 27705069 BDNF A/C 0.21 0.045 0.009 2.47 x 10-8 0.540 1.41 x 10-7 

rs2590942b 1 72657869 NEGR1 T/G 0.82 0.047 0.009 3.88 x 10-9 0.966 1.91 x 10-7 

rs13107325b 4 103407732 SLC39A8 T/C 0.07 0.081 0.016 1.19 x 10-8 0.970 3.79 x 10-7 

rs10151686b 14 29536217 PRKD1 A/G 0.04 0.096 0.019 1.50 x 10-6 0.109 6.99 x 10-7 

rs25832 5 66211438 LOC375449 A/G 0.71 0.039 0.008 2.41 x 10-6 0.177 1.62 x 10-6 
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rs7869969 9 95257268 FAM120A G/A 0.33 0.036 0.008 4.43 x 10-7 0.425 1.68 x 10-6 

rs11079830c 17 44037629 HOXB6  A/G 0.58 0.034 0.007 1.43 x 10-6 0.254 1.98 x 10-6 

rs4569924 5 153520218 GALNT10 T/C 0.43 0.032 0.007 4.06 x 10-7 0.823 3.48 x 10-6 

rs8046312b 16 19886835 GPR139 A/C 0.81 0.042 0.009 4.06 x 10-10 0.185 3.97 x 10-6 

rs1838856 2 113822060 PAX8 A/C 0.46 0.034 0.008 1.85 x 10-6 0.588 1.47 x 10-5 

rs633143 1 179716108 CACNA1E T/C 0.14 0.044 0.011 3.40 x 10-6 0.648 2.44 x 10-5 

rs4923207 11 24713901 LUZP2 T/G 0.79 0.039 0.010 1.60 x 10-6 0.834 3.52 x 10-5 

rs6971577 7 140350204 MRPS33 C/G 0.78 0.036 0.009 1.17 x 10-6 0.690 6.80 x 10-5 

rs10866069 3 64366964 ADAMTS9 T/C 0.17 0.041 0.011 3.05 x 10-6 0.687 8.43 x 10-5 

rs12457682 18 7216505 LAMA1 C/A 0.23 0.035 0.009 3.81 x 10-6 0.942 9.01 x 10-5 

rs11165675b 1 96812556 PTBP2 A/G 0.27 0.031 0.008 2.93 x 10-6 0.520 1.01 x 10-4 

rs12096993 1 217931859 SLC30A10 T/C 0.27 0.031 0.008 1.38 x 10-6 0.583 1.02 x 10-4 

rs760931 1 1637388 CDC2L1 C/G 0.93 0.103 0.027 3.15 x 10-6 0.160 1.27 x 10-4 

rs2968990 4 131098524 C4orf33 C/T 0.37 0.028 0.007 1.67 x 10-6 0.487 1.42 x 10-4 

rs1247117 10 120418792 C10orf46 G/A 0.11 0.040 0.011 3.47 x 10-6 0.339 2.62 x 10-4 

rs6580706 12 47959818 TUBA1C C/G 0.34 0.031 0.009 1.83 x 10-8 0.047 3.68 x 10-4 

rs8092620 18 41433991 SLC14A2 G/T 0.48 0.024 0.007 3.31 x 10-6 0.199 7.32 x 10-4 

rs188584 3 62675007 CADPS C/A 0.77 0.028 0.008 3.23 x 10-6 0.139 0.001 

rs4870949 8 126704776 TRIB1 T/C 0.07 0.164 0.054 3.13 x 10-10 0.061 0.002 

rs1573972 4 171559399 AADAT C/T 0.19 0.030 0.013 3.78 x 10-6 0.232 0.020 

rs214821 20 2258291 TGM3 T/C 0.02 0.479 0.208 3.38 x 10-6 0.575 0.021 

rs8084077 18 49532928 DCC T/C 0.73 0.014 0.008 3.47 x 10-6 2.72 x 10-5 0.062 

rs3845265 18 63690108 DSEL G/A 0.71 0.013 0.008 8.86 x 10-7 1.44 x 10-6 0.087 

a From joint analysis 

b Locus previously reported in (11) 

c Locus previously reported in (11, 16) 

d Locus previously reported in (9, 11) 

CHR: Chromosome; EA: Effect Allele; EAF: Effect Allele Frequency; SE: Standard Error 
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Abbreviations 

 

1000G – 1000 Genomes 

BMI – Body mass index 

CHR - Chromosome 

DEPICT – Data-Driven Expression Prioritized Integration for Complex Traits 

EA – Effect allele 

EAF – Effect allele frequency 

eQTL – Expression quantitative trait locus 

FDR – False discovery rate 

GWAS – Genome-wide association study 

LD – Linkage disequilibrium 

MAF – Minor allele frequency 

HWE – Hardy-Weinberg Equilibrium 

SDS – Standard deviation score 

SE – Standard error 

SNP – Single Nucleotide Polymorphism 

 

 at K
ing's C

ollege L
ondon on D

ecem
ber 3, 2015

http://hm
g.oxfordjournals.org/

D
ow

nloaded from
 

http://hmg.oxfordjournals.org/


50 

 

 at K
ing's C

ollege L
ondon on D

ecem
ber 3, 2015

http://hm
g.oxfordjournals.org/

D
ow

nloaded from
 

http://hmg.oxfordjournals.org/


51 

 

 at K
ing's C

ollege L
ondon on D

ecem
ber 3, 2015

http://hm
g.oxfordjournals.org/

D
ow

nloaded from
 

http://hmg.oxfordjournals.org/


52 

 

 at K
ing's C

ollege L
ondon on D

ecem
ber 3, 2015

http://hm
g.oxfordjournals.org/

D
ow

nloaded from
 

http://hmg.oxfordjournals.org/

