
This electronic thesis or dissertation has been 

downloaded from the King’s Research Portal at 

https://kclpure.kcl.ac.uk/portal/  

Take down policy 

If you believe that this document breaches copyright please contact librarypure@kcl.ac.uk providing 

details, and we will remove access to the work immediately and investigate your claim. 

END USER LICENCE AGREEMENT 

Unless another licence is stated on the immediately following page this work is licensed 

under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International 

licence. https://creativecommons.org/licenses/by-nc-nd/4.0/ 

You are free to copy, distribute and transmit the work

Under the following conditions: 

 Attribution: You must attribute the work in the manner specified by the author (but not in any
way that suggests that they endorse you or your use of the work).

 Non Commercial: You may not use this work for commercial purposes.

 No Derivative Works - You may not alter, transform, or build upon this work.

Any of these conditions can be waived if you receive permission from the author. Your fair dealings and 

other rights are in no way affected by the above. 

The copyright of this thesis rests with the author and no quotation from it or information derived from it 

may be published without proper acknowledgement. 

Investigating group III metabotropic glutamate receptors as novel therapeutic targets in
Parkinson’s disease and Levodopa-induced dyskinesia

Finlay, Clare Judith

Awarding institution:
King's College London

Download date: 06. Jan. 2025



1 
 

 

Investigating group III metabotropic 

glutamate receptors as novel therapeutic 

targets in Parkinson’s disease and 

Levodopa-induced dyskinesia 

 

 

 

Clare Judith Finlay 

 

 

 

Submitted for the degree of 

Doctor of Philosophy 

 

Wolfson Centre for Age-Related Disease 

King’s College London  



2 
 

Abstract 

The loss of nigrostriatal dopamine neurones in Parkinson’s disease causes characteristic 

motor symptoms resulting from signalling alterations in the basal ganglia. An important 

consequence of this is increased firing of the glutamatergic subthalamic nucleus (STN). 

Since the STN innervates dopaminergic neurones in the substantia nigra pars compacta 

(SNc), any increased firing could perpetuate degeneration of these cells by promoting 

excitotoxicity. Activation of group III mGlu receptors reportedly reduces glutamatergic 

transmission at the subthalamonigral synapse suggesting activation of these receptors 

might provide neuroprotection in PD. 

The results reported in this thesis support site-directed targeting of the group III receptor 

subtype mGlu4 in the SNc as a neuroprotective approach in the 6-hydroxydopamine 

lesioned rat; however while one mGlu4 positive allosteric modulator tested was successful 

another was not, highlighting several future considerations for the use of these agents. 

Unexpectedly, activation of group III and mGlu4 receptors increased, rather than reduced 

glutamate release in the intact SNc. However, this effect was lost in the 6-

hydroxydopamine lesioned SNc, reassuring us that in the parkinsonian state activation of 

these receptors should not exacerbate excitotoxicity. Further experiments are required to 

define the mechanisms by which the mGlu4-mediated protection is afforded. Additional 

studies are also required to shed light on why these protective effects were lost in a 

subsequent study following systemic injection of an mGlu4 PAM (LuAF21934); might this 

relate to severity of lesion, or a detrimental effect of activating mGlu4 receptors outside the 

SNc, for example?  The lack of protective efficacy subsequently found with a systemically 

administered mGlu7 agonist (AMN082) against a severe 6-hydroxydopamine lesion also 

points towards partial lesion models for future testing.  

Finally, since other antiglutamatergic strategies have proven successful, we investigated 

mGlu4 activation as a means to inhibit L-DOPA-induced dyskinesia expression or 

development in rodents. While this approach was ineffective at reversing established 

dyskinesia there was a hint that it might be efficacious at delaying the onset of this 

complication that will be worth investigating further. 

In conclusion, targeting the mGlu4 receptor has shown some beneficial effects in relation to 

Parkinson’s disease but much remains to be discovered about the actions of these agents 

both within and outside of the basal ganglia before any clear potential is revealed.    
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1 Introduction 

1.1 What is Parkinson’s disease? 

1.1.1 Prevalence and pathology 

Parkinson’s disease (PD) is the second most prevalent neurological disorder in the world 

after Alzheimer’s disease, and was named in recognition of Dr. James Parkinson after he 

described the condition in his ‘Essay on the Shaking Palsy’ (Parkinson, 2002 (orig. 1817)). 

The cardinal motor symptoms of the disease include bradykinesia, rigidity and a resting 

tremor, alongside other non-motor symptoms such as depression, autonomic dysfunction 

and sleep disturbances (discussed further in section 1.5.2). PD affects 1.8% of the European 

population over the age of 65 (de Rijk et al., 2000) but estimates of overall worldwide 

incidences vary, probably as a result of differences in genetic susceptibility and exposure to 

environmental risk factors (Twelves et al., 2003). 

PD results from the degeneration of the so-called nigrostriatal pathway; dopaminergic cells 

that project from the substantia nigra pars compacta (SNc) to the caudate nucleus and 

putamen (collectively the dorsal striatum). Dopamine acts in the striatum to balance the 

activation of two opposing efferent pathways, the striatonigral ‘direct’ pathway and the 

striatopallidal ‘indirect’ pathway (see section 1.3.2). The motor symptoms of PD present 

when the striatal dopamine content is reduced by 50-66% (Kordower et al., 2013; Riederer 

et al., 1976) and nigral cell loss is >50% (Kordower et al., 2013), at which point this critical 

balance between the pathways is lost. 

Along with degeneration of the nigrostriatal tract, the other pathological hallmark of PD is 

the presence of intraneuronal 8-30µm diameter protein inclusions called Lewy bodies (LB), 

mainly composed of fibrillar α-synuclein and ubiquitin (Spillantini et al., 1997). Whether LBs 

are intrinsically neurotoxic or merely symptomatic of neuronal malfunction is unknown, 

since on the one hand they stain positive for aggresome markers such as γ-tubulin and 

pericentrin (Olanow et al., 2004), which suggests they form as a cytoprotective measure, 

but on the other hand misfolded α-synuclein is thought to propagate PD pathology 

between cells (Luk et al., 2014; Masuda-Suzukake et al., 2013), implicating them in the 

progression of the disease. Nevertheless, the spread of LB into specific areas of the brain 

has been linked to the progressive worsening of PD (Braak et al., 2003) and has also been 

suggested to underlie the varied non-levodopa responsive non-motor symptoms of PD 

(Dickson et al., 2009). The link between spreading LB pathology and the development of 
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motor and non-motor symptoms led to the development of Braak staging for classification 

of the progression of PD (Braak et al., 2002). 

1.1.2 Aetiology 

1.1.2.1 Genetic factors 

Mutations in several genes are associated with increased risk of developing PD, though 

familial forms of the disease account for <5% of total PD cases. A brief summary of the 

functions of some of the genes implicated in monogenic forms of familial PD is shown in 

Table 1. 

 

Table 1: A selection of genes implicated in monogenic forms of familial parkinsonism. Information 
on gene function was obtained from Genetics Home Reference (GHR, 2014) at 
http://ghr.nlm.nih.gov on 6/8/14. 

Gene Protein Function 

SYNA 
(PARK1/4) 

α-synuclein (α-syn) This protein is located presynaptically and is thought 
to be involved in vesicle trafficking. It is a major 
component of Lewy bodies. 

Parkin 
(PARK2) 

Parkin Parkin is part of the E3 ubiquitin ligase complex that 
is involved in tagging damaged or excess proteins for 
degradation by the proteasome. 

PINK1 
(PARK6) 

PTEN-induced putative 
kinase 1 

This serine/threonine kinase causes the binding of 
parkin to damaged mitochondria, leading to 
mitophagy. 

DJ-1 
(PARK7) 

Daisuki-Junko-1 This protein has putative roles as a sensor to 
oxidative stress and as a chaperone involved in 
protein folding and degradation. 

LRRK2 
(PARK8) 

Dardarin (Leucine-rich 
repeat kinase 2) 

A mitochondrial-associated protein that interacts 
with parkin. Likely involved in the cellular response to 
oxidative stress. 

 

Unsurprisingly given its presence in LB, at least 18 mutations in SYNA, the gene encoding α-

synuclein, are associated with the development of autosomal dominant forms of 

parkinsonism. Alongside these missense mutations, notably A53T, SYNA can also undergo 

gene duplication, which proportionately increases the production of the α-synuclein 

protein within cells. SYNA-linked parkinsonism tends to be early-onset (~50y) and includes 

extensive Lewy body pathology. Symptoms range from the classical motor features to more 

severe features such as dementias and myoclonus, and in the case of gene multiplications 

the severity is linked to the gene dose (Bonifati, 2014). 

http://ghr.nlm.nih.gov/
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Autosomal dominant mutations in LRRK2, encoding the protein Dardarin, account for 

around 10% of cases of familial parkinsonism (Spatola et al., 2014). This multicatalytic 

kinase/GTPase is ubiquitously expressed and has diverse functions including immune 

regulation, endocytosis and autophagy (Cookson, 2012). Importantly from the point of view 

of PD, Dardarin is involved in mitochondrial dynamics (Wang et al., 2012b) and mutations 

in this protein lead to enhanced vulnerability to excitotoxic stress (Plowey et al., 2014). 

Mutations in several other mitochondrially-associated proteins are also responsible for a 

proportion of cases of autosomal recessive familial PD, including PINK1 and Parkin. These 

proteins act in conjunction to facilitate the degradation of damaged mitochondria 

(Narendra et al., 2012), and mutations in either one of them leads to mitochondrial 

dysfunction in vitro and in vivo (Burman et al., 2012; Grunewald et al., 2010; Marongiu et 

al., 2009; Moisoi et al., 2014). 

The function of DJ-1 is not well-defined but an acidic form of this protein accumulates 

under conditions of oxidative stress, and this shift appears to be part of a neuroprotective 

function (Canet-Aviles et al., 2004). Mutations in this protein enhance susceptibility to 

oxidative stress in vivo (Kim et al., 2005), perhaps by inhibiting the protective acidification 

at a key residue, cysteine 106. DJ-1 may also form a complex with Parkin and PINK1 to 

promote degradation of unfolded proteins, therefore mutations in any of these 

components could promote the accumulation of damaged proteins (Xiong et al., 2009). 

While cases of familial parkinsonism are rare, the study of these genes has helped to 

identify pathways and cellular processes that are likely to also be disrupted in idiopathic 

PD. Indeed polymorphisms in these genes and others may enhance susceptibility to PD in 

patients in whom the disease is of otherwise unknown aetiology. 

1.1.2.2 Environmental factors 

Alongside genetic factors, exposure to exogenous agents may promote the development of 

PD. One major risk factor that has been associated with PD is increased exposure to 

pesticides (Kamel et al., 2007; Priyadarshi et al., 2001). Several of these, such as rotenone, 

pyridaben and fenpyroximate, have been shown to be mitochondrial complex I inhibitors 

(Sherer et al., 2007), and dopaminergic neurones have been shown to exhibit enhanced 

susceptibility to degeneration following exposure to pesticides with complex I inhibiting 

properties (Bywood et al., 2003). As well as inducing oxidative stress by inhibition of 

mitochondrial function, widely-used pesticides, herbicides and fungicides including 

rotenone, DDT, paraquat and maneb, may co-operate with metal ions to cause a 
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conformational change in α-synuclein to a shape that promotes the formation of fibrillar α-

synuclein, the main component of LB (Uversky et al., 2002). This suggests that pesticides 

may promote more than one pathological mechanism associated with PD. 

Secondly, there is evidence that exposure to heavy metals, particularly manganese, iron 

and copper, is also associated with increased risk of idiopathic PD (Coon et al., 2006; 

Fukushima et al., 2010; Rybicki et al., 1993). The mechanism by which heavy metals are 

thought to promote degeneration is by catalysing the formation of free radicals and 

depleting intracellular antioxidant stores (Ercal et al., 1991), putting cells under additional 

oxidative stress. 

Finally, there is evidence that external causes of inflammation, including infection and head 

trauma, are associated with increased risk of PD. Regarding infection, several studies report 

that agents such as Streptococcus species, influenza and herpes simplex increase risk of PD 

(Fang et al., 2012; Vlajinac et al., 2013). The variety of infectious agents involved suggests 

that rather than these viruses or bacteria being uniquely causative, future PD susceptibility 

is increased by infection-related inflammation (Liu et al., 2003). Similarly, increased 

susceptibility to idiopathic PD has been associated with various sources of head trauma 

(Friedman, 1989; Goldman et al., 2006), notably boxing, leading to the term ‘pugilistic 

parkinsonism’. Again, this is likely due to a general increase in inflammation in the CNS 

secondary to traumatic injury.  

 

1.2 What Mechanisms Contribute to the Degeneration of the 

Nigrostriatal Pathway? 

Several mechanisms are believed to contribute to the degeneration of dopaminergic 

neurones in PD, either related to the innate properties of these neurones or initiated by 

genetic susceptibility and/or exposure to environmental risk factors. Interactions between 

these mechanisms help to propagate cell loss once it has been initiated. 

1.2.1 Innate sensitivity 

Dopaminergic cells may be more vulnerable to ROS-mediated degeneration than other cell 

types due to the inherent instability of dopamine, which can spontaneously oxidise to form 

H2O2 , superoxide (·O2
-) and dopamine-o-quinone free radicals (Hastings, 2009). Quinone 

autoxidation products of dopamine can impair mitochondrial function, leading to 

disruption of mitochondrial membrane potential and apoptotic-like cell death (Jana et al., 
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2011). However this does not explain why other dopaminergic cell populations, such as the 

A10 projection from the VTA to the NAc, are relatively spared in PD while the A9 

nigrostriatal projection degenerates. The difference is likely due to increased energy 

requirement of A9 cells versus other dopaminergic cells, meaning an increased reliance on 

mitochondria and therefore an increased vulnerability to anything that compromises their 

function (Neuhaus et al., 2014; Surmeier et al., 2012). 

1.2.2 Mitochondrial dysfunction and oxidative stress 

Given the particular reliance of nigrostriatal dopaminergic neurones on optimal 

mitochondrial function, any factor that inhibits this may contribute to the degeneration 

found in PD. This assertion is further supported by the existence of familial forms of 

parkinsonism that are caused by mutations in genes that regulate mitochondrial turnover 

and the response to oxidative stress (section 1.1.2.1). 

Mitochondria are double-membraned organelles that generate energy in the form of 

adenosine triphosphate (ATP) via the electron transport chain (ETC). The ETC is composed 

of a series of redox proteins located on the inner mitochondrial membrane (Figure 1). 

Electrons from the metabolic intermediates nicotinamide adenine dinucleotide (NADH) and 

succinate are cycled through the various complexes (complex I-IV), eventually joining with 

molecular oxygen and protons to form water.  

 

 

Figure 1: The complexes of the electron transport chain. The passage of electrons through 
complexes I-IV (red dashed arrows) releases Gibb’s free energy, which drives protons into the 
intermembrane space creating a gradient (solid green arrows). Re-entry of protons into the matrix 
via the F0/F1 ATP synthase pump drives the production of ATP. CoQ = coenzyme Q; CytC = 
cytochrome C; Pi = inorganic phosphate 
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The passage of these electrons releases Gibb’s free energy, which drives the accumulation 

of protons in the intermembrane space. These protons re-enter the mitochondrial matrix 

via the F0/F1 ATP synthase complex, driving the generation of ATP from adenosine 

diphosphate (ADP) and inorganic phosphate. 

Several factors have been suggested to contribute to mitochondrial dysfunction in PD. 

Complexes I-IV are encoded not by chromosomal DNA but by mitochondrial DNA (mtDNA). 

The accumulation of mutations in mtDNA is thought to lead to impaired ETC complex 

function, especially at complex I (Parker et al., 1989; Swerdlow et al., 1996). Complex I 

activity is known to be reduced in patients compared to healthy controls in a variety of 

neuronal and non-neuronal cell types (Haas et al., 1995; Keeney et al., 2006; Schapira et al., 

1990), though not all of these cell types degenerate in PD. Dopaminergic neurones seem to 

be selectively vulnerable to the deleterious effects of widespread complex I deficits in PD, 

which is supported by a recent study showing that catecholaminergic neurones are more 

vulnerable than other neurones to equivalent mutation rates in mtDNA (Neuhaus et al., 

2014). 

Reduced activity or inhibition of ETC complexes can cause ‘leakage’ of electrons, which 

readily join with surrounding molecules leading to the formation of free radical species 

such as superoxide. Mitochondrial dysfunction is therefore deleterious to cells not only 

through ATP depletion but also through the generation of free radicals and reactive oxygen 

species (ROS) from the electron transport chain. Increased ROS production that is not 

counteracted by antioxidant mechanisms results in a state known as oxidative stress. ROS 

and reactive nitrogen species (RNS) are highly reactive and cause oxidative damage to 

biomolecules, triggering apoptosis and thereby degeneration. There is extensive evidence 

for the involvement of oxidative/nitrosative stress in the aetiology of idiopathic PD, 

including the presence of the protein nitration product 3-nitrotyrosine in LBs (Good et al., 

1998) and increases in the SNc of protein oxidation products such as protein carbonyls 

(Alam et al., 1997; Yoritaka et al., 1996), lipid peroxidation products such as 

malondialdehyde (Dexter et al., 1989), and DNA oxidation products such as 8-

hydroxyguanosine (Zhang et al., 1999) in PD patients compared with age-matched healthy 

controls. 

The normal cellular defence against oxidative stress includes enzymes such as superoxide 

dismutase (SOD) and antioxidant molecules such as glutathione that neutralise oxidising 

species. Impaired functioning of antioxidant enzymes or depleted levels of antioxidant 
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molecules in cells can predispose them to oxidative stress. Dopamine quinones have been 

shown to reduce the activity of the mitochondrial antioxidant enzyme SOD2 in vitro 

(Belluzzi et al., 2012), however studies of antioxidant enzymes in PD patients have variously 

shown them to have reduced (Abraham et al., 2005; Ambani et al., 1975; Kish et al., 1985) 

or increased activity (Kalra et al., 1992; Saggu et al., 1989), perhaps depending on the 

specific enzyme measured, region of interest or disease duration. With regard to molecular 

antioxidants, decreased amounts of the reduced form of glutathione (GSH) have 

consistently been found in the SN of PD patients (Pearce et al., 1997; Riederer et al., 1989; 

Sian et al., 1994), reflecting a general increase in oxidative stress. Interestingly, glutathione 

deficiency has been shown to be sufficient to initiate degeneration of dopaminergic 

neurones in rats (Garrido et al., 2010). 

1.2.3 Proteasomal dysfunction 

The ubiquitin-proteasome system (UPS) consists of a series of enzymes which label 

(ubiquitinate) and ATP-dependently degrade excess or non-functional proteins. If these 

proteins are not degraded and recycled they form aggregates within cells that can interfere 

with cell function, and this is believed to underlie the proposed neurotoxic effects of LBs. 

The presence of LBs and increased oxidatively damaged proteins in PD led to speculation 

that the disease may be the result of deficiencies within the UPS. In addition, mutations in 

the genes encoding the aforementioned E3 ubiquitin ligase Parkin and the enzyme 

ubiquitin carboxy-terminal hydrolase L1 (UCH-L1) have also been associated with 

monogenic forms of familial parkinsonism (Dawson et al., 2010; Leroy et al., 1998), further 

supporting proteasomal dysfunction as a pathogenic mechanism.  

Indeed there have been several reports of impaired 20/26S proteasomal activity in post 

mortem PD brains, associated with structural abnormalities such as loss of the α subunit of 

the proteasome complex (McNaught et al., 2003; McNaught et al., 2001). This would lead 

to incomplete degradation of abnormally folded or damaged proteins, which would then 

accumulate in the cytoplasm and interfere with normal functioning. The reason for 

impaired proteasomal function in idiopathic PD is uncertain, however proteasomal function 

has been shown to be inhibited in vitro by hydrogen peroxide and by peroxynitrite and 

hypochlorite radicals (Reinheckel et al., 1998), therefore the oxidative stress that has been 

described to contribute to neurodegeneration in PD by damage to biomolecules and ATP 

depletion could further enhance neurodegeneration by interfering with protein 

degradation. 
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1.2.4 Inflammation 

The brain contains resident immune cells called microglia that can be activated by 

inflammatory stimuli such as the bacterial endotoxin lipopolysaccharide (LPS) or by cellular 

contents released during necrosis. Astrocytes can also become activated by exposure to 

these stimuli. Once activated, these immune cells release a series of inflammatory 

mediators such as nitric oxide and superoxide (which directly damage cells) along with 

cytokines such as tumour necrosis factor-α, and interleukins -1β and -6, which have been 

implicated in neurotoxicity when present at high concentrations (reviewed by(Liu et al., 

2003; McGeer et al., 2004). 

Inflammation is implicated in the pathogenesis of PD by post mortem studies in humans 

that have identified increased glial activation and cytokine production in and around the SN 

(Boka et al., 1994; Hunot et al., 1999; Imamura et al., 2003; McGeer et al., 1988; Mogi et 

al., 1996). However the question of whether this is a cause or effect of the degeneration of 

the dopaminergic cells originating in this nucleus is up for debate (Teismann et al., 2003). It 

is likely that both scenarios occur in tandem, such that an initial toxic stimulus (such as an 

environmental toxin or infectious agent) causes the initial glial activation and as the 

neurones are overwhelmed, either by the stimulus or by the chronic exposure to 

inflammatory mediators, and cell death begins to occur this damage will drive reactive 

gliosis (Burda et al., 2014). The selective loss of dopaminergic neurones in an inflammatory 

situation could be explained by a further innate vulnerability of these cells; the SN is 

particularly rich in microglia, meaning that dopaminergic neurones are more susceptible 

than other neurones to neurodegeneration following an inflammatory stimulus (Kim et al., 

2000). 

Inflammation could interact with other potential mechanisms of cell loss, for example there 

is a suggestion that neuroinflammation and α-synuclein aggregation potentiate each other 

(Gao et al., 2011). In addition, inflammation causes export of glutamate from microglia 

(McMullan et al., 2012), thereby increasing the risk of initiating excitotoxicity (expanded 

below). 

1.2.5 Glutamate-mediated excitotoxicity 

Increases in glutamate concentration in the SNc may increase the risk of 

neurodegeneration via a process called excitotoxicity. This can result from increased 

release of glutamate from overactive subthalamic nucleus terminals or from reduced 

glutamate clearance from the synaptic cleft, both of which mechanisms have been 
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demonstrated in Parkinson’s disease (Ferrarese et al., 1999; Remple et al., 2011). This 

mode of degeneration is also thought to play a role in preclinical models of 

neurodegeneration such as 6-hydroxydopamine (6-OHDA)-lesioned rats, where 

downregulation of glial glutamate transporters (Chung et al., 2008) and loss of inhibitory 

control over the subthalamic nucleus have been reported (Fernandez-Suarez et al., 2012). 

Excessive stimulation of neurones by excitatory amino acids (mainly glutamate) causes cell 

death. While normal stimulation of NMDA receptors on the post-synaptic membrane is 

associated with neuroprotective effects, when glutamate release is sufficiently high for it to 

overspill from the synaptic cleft it activates extrasynaptic NMDA receptors. Activation of 

these receptors causes downstream activation of multiple pathways, mainly mediated by 

increases in intracellular free Ca2+, that promote cell death (Hardingham et al., 2010; 

MacDermott et al., 1986). 

Increases in intracellular Ca2+ activate neuronal nitric oxide synthase (nNOS), which 

catalyses the transformation of arginine and NADPH to citrulline and NADP+, with the 

release of nitric oxide (NO). NO can react with superoxide in the cytoplasm to produce the 

highly reactive oxidant peroxynitrite (ONOO-), which causes oxidative damage to 

biomolecules such as DNA and proteins. Calcium can also accumulate in the mitochondria, 

where it causes depolarisation of the mitochondrial membrane and subsequent opening of 

the permeability transition pore (PTP), releasing pro-apoptotic molecules and initiating 

apoptosis (reviewed by(Rasola et al., 2011). 

In a healthy cell, with adequate stores of antioxidant molecules (such as glutathione) and 

antioxidant enzymes (such as SOD and catalase), the effects of glutamate overstimulation 

would be counteracted. However a cell that may already be under a degree of oxidative 

stress is more easily overwhelmed by an excitotoxic insult (see sections 1.2.1 and 1.2.2 for 

more detail about the selective vulnerability of dopaminergic neurones and oxidative stress 

in PD). In support of this, exposure of dopaminergic neurones in vitro to a normally non-

noxious glutamate insult can cause degeneration if these neurones have been rendered 

more vulnerable by inducing a low level mitochondrial dysfunction (Marey-Semper et al., 

1995). There also seems to be cross-talk between excitotoxicity and neuroinflammation 

(Chang et al., 2008; Ossola et al., 2011), which has also been demonstrated in PD (see 

section 1.2.4). 
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An additional glutamate-mediated mechanism of cell death involves inhibition of L-cystine 

uptake into cells as excess glutamate inhibits the transporter (Bannai et al., 1980). Once 

inside cells, cystine is reduced to cysteine, one of the trio of amino acids that comprise the 

antioxidant molecule glutathione. Therefore inhibition of cystine uptake will decrease 

cellular glutathione production, rendering the cell more vulnerable to oxidative stress. 

Though not demonstrated in the human disease, there is evidence from animal models of 

PD that excitotoxicity might be involved in dopaminergic neurodegeneration. This includes 

the finding that disinhibition of the STN via lesioning of the GP can cause SNc degeneration 

in rats, suggestive of an excitotoxic mechanism of cell loss (Wright et al., 2004). In addition, 

an MPTP-induced lesion can be exacerbated by nigral infusion of glutamate (Kucheryanu et 

al., 2000). The main evidence for a role of excitotoxicity in PD comes from preclinical PD 

models, where inhibition of glutamate signalling has been shown to be neuroprotective. 

This is discussed in detail in section 1.6. 

 

1.3 Symptom Generation: Structure and Function of the Basal 

Ganglia 

The degeneration of dopaminergic neurones via the mechanisms described leads to altered 

signalling in the basal ganglia (BG), a series of nuclei in the midbrain that receive cortical 

input, integrate the information and feed back again to the cortex to either promote or 

inhibit motor function. It is this altered BG functioning that underlies the generation of 

bradykinetic motor symptoms in patients with Parkinson’s disease. 

1.3.1 Anatomy of the basal ganglia 

The BG comprise several nuclei; the SNc, caudate nucleus and putamen (while these nuclei 

are anatomically distinct in the human and primate BG, they are fused in rodents to form a 

single structure called the CPu that is commonly referred to as the dorsal striatum or 

simply the striatum), globus pallidus externus (GPe), subthalamic nucleus (STN), substantia 

nigra pars reticulata (SNr) and the globus pallidus internus (GPi; this is called the 

entopeduncular nucleus or EPN in rodents). The connectivity between these nuclei is 

explored below; much of the work on both the anatomical and functional connectivity 

described in this section was performed in rodents and primates, which are also the most 

commonly used species for modelling PD. 
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Striatal connectivity 

The major neuronal input to the striatum is a glutamatergic projection originating in lamina 

V and lamina III of various cortical regions, which project to defined but overlapping regions 

within the striatum (McGeorge et al., 1989). These afferents form asymmetric contacts on 

the dendritic spines of GABAergic medium spiny neurones (MSNs), which make up the vast 

majority, ~95%, of the neuronal population within the striatum. It is widely accepted that 

there are two distinct main types of MSN; striatonigral MSNs, which express dopamine D1 

receptors (D1R), substance P and dynorphin and project to the SNr and EPN/GPi, and 

striatopallidal MSNs, which express dopamine D2 receptors (D2R) and enkephalin and 

project to the GP(e) (Bertran-Gonzalez et al., 2010; Gerfen et al., 1990). Immunolabelling 

studies in rats have shown that distinct populations of cortical neurones innervate 

striatonigral MSNs compared with striatopallidal MSNs (Lei et al., 2004), supporting the 

functional segregation of these two striatal cell populations. It is this segregation that 

underlies the idea of a ‘direct’ and an ‘indirect’ pathway in the BG, which will be described 

in more detail later. More recent studies have also identified a small population of D1R and 

D2R-expressing MSNs projecting to multiple nuclei within the BG but their function has not 

yet been elucidated (Perreault et al., 2011).  

Another important striatal input from the point of view of PD is the dopaminergic 

nigrostriatal projection, originating in the SNc. It is the differential actions of dopamine at 

D1R and D2R on MSNs that balances the activation of these opposing neuronal populations 

in response to corticostriatal input, exerting opposite effects on D1 and D2 receptors 

(Surmeier et al., 2007; West et al., 2002). The binding of dopamine at D1R leads to Gαs/olf-

coupled activation of adenylate cyclase and enhancement of L-type Ca2+ currents, 

increasing neuronal excitability in the presence of corticostriatal glutamatergic input 

(Hernandez-Lopez et al., 1997; Nishi et al., 2011). Conversely, the binding of dopamine at 

D2R leads to Gαi-coupled inhibition of adenylate cyclase, Gβγ-mediated activation of 

phospholipase C, and inhibition of L-type Ca2+ currents (Hernandez-Lopez et al., 2000). 

Hence the actions of dopamine in the striatum are to promote the activation of 

striatonigral MSNs and inhibit the activation of striatopallidal MSNs. In addition to this 

dopaminergic influence, other neurotransmitters are released into the striatum, including 

serotonin from the dorsal raphe nucleus and noradrenaline from the locus coeruleus. 

The remaining 5% of cells present in the striatum are GABAergic and cholinergic 

interneurones, which are mainly activated by glutamatergic afferents originating in the 
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thalamus. Large aspiny cholinergic interneurones are tonically active and inhibit glutamate 

release from corticostriatal terminals via muscarinic M2 and M3 receptors, thereby 

inhibiting MSN activation (Pakhotin et al., 2007). Fast-spiking GABAergic interneurones 

mediate feedforward inhibition of MSNs and are thought to be responsible for lateral 

inhibition, such that only a specific pool of MSNs is activated at any one time and 

surrounding MSNs are inhibited. This leads to a pattern of activation that is task-specific 

and avoids excessive ‘noise’ in the BG output (Tepper et al., 2004). These interneurones are 

additionally activated by dopamine (Bracci et al., 2002), meaning that reduced 

dopaminergic input might be expected to decrease the extent of lateral inhibition and lead 

to dysregulated striatal output. 

GP connectivity 

The GP is the first relay nucleus in the classical ‘indirect’ pathway. The main inputs to the 

GP are a GABAergic projection from the striatum (via D2R/enkephalin-expressing MSNs, as 

described above), inhibiting GP efferent neurones, and a glutamatergic projection from the 

STN, which will activate them (Parent et al., 1995b).  

GP efferent neurones are GABAergic and highly collateralised, mainly projecting to the 

subthalamic nucleus, where they form synapses with proximal and distal dendrites and 

soma of neurones in the rostrolateral regions of the STN, and the GPi/EPN, where they 

form synapses overwhelmingly at soma and proximal dendrites of target neurones (Parent 

et al., 1995b). Additional targets have also been described following anterograde tracing 

studies, including the SNr, SNc and pedunculopontine nucleus (PPN) as well as feedback 

targeting of striatal interneurones by parvalbumin-negative neurones (Billings et al., 2004; 

Bolam et al., 2000; Parent et al., 1995b). 

While the GP was originally considered to be a simple relay with a main role in the 

inhibitory control of the glutamatergic STN, the discovery of efferents from the GP to the 

output nuclei of the BG, the SNr and EPN/GPi, along with a range of other BG nuclei has led 

to an increasingly important role being assigned to this region as an integrator of striatal 

and subthalamic inputs. This role is supported by the convergence of subthalamopallidal 

and striatopallidal inputs on single pallidal neurones, as has been described in primates 

(Parent et al., 1995b). 
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STN connectivity 

The STN is the second relay nucleus in the classical ‘indirect’ pathway and is the only 

glutamatergic nucleus within the basal ganglia. The major inhibitory input to the STN is the 

GABAergic projection originating in the GP, causing a direct inhibition of subthalamic 

excitatory output. The STN also receives glutamatergic input from the cortex, along with 

the thalamic parafascicular nucleus and PPN (Canteras et al., 1990). The corticosubthalamic 

projection is of particular interest as it forms part of the third pathway within the BG, the 

‘hyperdirect’ pathway. This pathway is unique in that it bypasses the striatum, allowing a 

direct cortico-STN connection, subsequent increased output from the STN, and thereby 

increased output from the EPN/SNr. Activation of the hyperdirect pathway therefore 

inhibits motor function. The cortico-STN connection arises in the primary motor cortex and 

supplementary motor area, projecting to the lateral and medial STN respectively, and is 

somatotopically arranged, suggesting that it is composed of parallel connections that are 

each specific to a particular movement (Nambu et al., 1996). The corticosubthalamic 

connection has been demonstrated in multiple species (Bosch et al., 2012; Brunenberg et 

al., 2012; Nambu et al., 1996) and it is currently understood to play a role in termination of 

an ongoing movement and impulsivity (Obeso et al., 2008). 

Another important input to the STN in the context of Parkinson’s disease is a dopaminergic 

projection from the SNc, which modulates the various other neuronal inputs to this nucleus 

thereby affecting STN output (Hassani et al., 1996; Hassani et al., 1997). In addition the 

subthalamic nucleus is innervated by thalamic nuclei, the dorsal raphe nucleus and the PPN 

(Parent et al., 1995b). 

The excitatory glutamatergic efferents of the STN project primarily from the lateral portion 

of this nucleus to the EPN/GPi and SNr, the output nuclei of the BG, and also to the GP, 

with which it makes a reciprocal connection (Parent et al., 1995b). The importance of this 

reciprocal relationship between the GP and STN in normal function and in pathological 

conditions has been of particular recent interest with regard to synchronisation of activity 

within the BG network and will be discussed in section 1.3.3.5. The subthalamo-SNr/EPN 

projection completes the classical ‘indirect’ pathway from the striatum to the output 

nuclei. 

In addition the STN sends lesser projections to the SNc, striatum, cortex and PPN (Parent et 

al., 1995b). As is the case for the GP, the STN and SNc form a reciprocal connection. 
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Subthalamonigral glutamate release into the pars compacta is of particular interest in this 

thesis, as excessive glutamate levels can trigger degeneration of cells by excitotoxicity 

(section 1.2.5) and this is the cell population that degenerates in Parkinson’s disease.  

EPN/SNr connectivity 

The EPN and SNr collectively form the output nuclei of the BG, sharing similar afferent and 

efferent neurones, and therefore they are considered together in this section. 

The main glutamatergic input to the EPN and SNr originates in the STN. Subthalamic 

afferents form asymmetrical synapses, predominantly with dendritic shafts of SNr 

neurones (Parent et al., 1995b), and make up ~10% of total boutons in the SNr. An 

additional minor glutamatergic input originates in the prefrontal cortex (Naito et al., 1994). 

This glutamatergic input from the ‘indirect’ pathway is counterbalanced by the main 

GABAergic input to the EPN and SNr, the striatonigral MSNs that form the ‘direct’ pathway. 

Additionally the output nuclei receive considerable GABAergic innervation from the GP as 

described above (Smith et al., 1989). Further minor GABAergic afferents originate in the 

nucleus accumbens and ventral pallidum (Blandini, 2000). 

The EPN and SNr send highly collateralised GABAergic efferents primarily to the small 

dendrites of the ventral anterior (VA) and ventral lateral (VL) motor thalamus, and also 

send more minor projections/collaterals to the parafascicular thalamic nucleus, superior 

colliculus and PPN (Parent et al., 1995a). A glutamatergic nigrothalamic connection has also 

recently been described, though its function is as yet unknown (Antal et al., 2014). 

Inhibition of the VA and VL thalamus by activation of the BG output nuclei leads to 

inhibition of thalamocortical feedback and reduces motor function, whereas reduced BG 

output disinhibits thalamocortical feedback and facilitates motor function. Therefore 

regulation of this output by striatonigral GABAergic efferents and subthalamonigral 

glutamatergic afferents is of utmost importance for motor function. 

Thalamocortical feedback 

The VA and VL thalamic nuclei receive GABAergic inputs from the EPN and SNr and provide 

feedback to the premotor, primary, cingulate and supplementary motor areas of the cortex 

via glutamatergic efferents (McFarland et al., 2002; Schell et al., 1984). While VL efferents 

tend to target caudal motor cortical areas involved with execution of movements, VA 

efferents tend to target rostral motor cortical areas that are involved in cognitive aspects of 
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movement such as motor learning (Haber et al., 2001). The thalamic nuclei (centromedian 

and parafascicular nuclei in this case) additionally innervate the striatum, providing the 

second largest glutamatergic input to this nucleus after the cortex. This feedback is thought 

to help prepare the striatum for subsequent cortical input or modulation of activity that 

might result from the thalamocortical feedback (Groenewegen et al., 1994). 

As well as projecting to the cortex, the VA and VL thalamic nuclei receive reciprocal and 

non-reciprocal glutamatergic corticothalamic innervation (Fonnum et al., 1981), which 

relays information between areas of the cortex from limbic to cognitive to motor regions 

(McFarland et al., 2002). 

Thus when the output nuclei of the BG, the EPN/SNr, are activated they inhibit 

thalamocortical neurones from providing feedback to the cortex. Conversely when the 

output nuclei of the BG are inhibited they disinhibit thalamocortical neurones and thereby 

increase activity in the cortex, which promotes motor function. 

SNc connectivity 

Located in the dorsal part of the substantia nigra, the pars compacta is made up of 

melanin-containing dopaminergic neurones. These are the cells that degenerate in PD. 

Several afferent neurones innervate the SNc, including GABAergic neurones from the 

striatum and GP and glutamatergic neurones from the STN, PPN and prefrontal cortex 

(Kanazawa et al., 1976; Parent et al., 1999). In addition, the SNc receives cholinergic 

projections from the PPN and serotonergic projections from the raphe nuclei (Blandini, 

2000). 

Dopaminergic efferents from the SNc terminate largely in the striatum, but also in the STN 

and GP (Guyenet et al., 1978; Hassani et al., 1997). In the striatum, the nigral projection 

neurones converge with corticostriatal inputs to form symmetrical synapses with spines 

and dendrites of MSNs (Smith et al., 2000); dopamine released from these terminals acts 

on post-synaptic D1R and D2R on striatonigral and striatopallidal MSNs respectively, 

modulating excitability of these neurones as described earlier. In the STN, dopamine acts 

on both D1-type and D2-type receptors, with activation of either receptor subtype eliciting 

similar effects of depolarisation and increased firing rate of STN neurones and reduction of 

the impact of competing GABAergic inputs (Cragg et al., 2004; Mintz et al., 1986a; Ni et al., 

2001; Zhu et al., 2002). The functionality of the dopaminergic nigropallidal connection has 

not been fully clarified, however experiments in rats have shown that intrapallidal 
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administration of both D1 and D2 receptor antagonists cause catalepsy, highlighting an 

important role for dopamine in this nucleus in motor function (Hauber et al., 1999). 

1.3.1.1 Working model of the BG 

Given the complex connectivity between the BG nuclei, simplified working models have 

been developed in order to explain its functionality. In the basic, canonical model of the BG 

(Albin et al., 1989) these structures are arranged into two functionally discrete pathways 

that respond with opposite effects to corticostriatal input (Figure 2). 

 

 

Figure 2: Classical model of the basal ganglia as described by Albin et al. (1989). Glutamatergic 
neurones are shown in red, GABAergic neurones are shown in green and dopaminergic neurones are 
shown in blue. CPu = caudate-putamen; EPN = entopeduncular nucleus; GP = globus pallidus; 
SNc/SNr = substantia nigra pars compacta/reticulata; STN = subthalamic nucleus. 

 

The ‘direct’ pathway is a monosynaptic GABAergic connection of the striatum to the 

EPN/SNr, which are the output nuclei of the basal ganglia. The net output of activation of 

this pathway is the disinhibition of thalamocortical feedback, which promotes movement. 

The ‘indirect’ pathway is a multisynaptic connection between the striatum and EPN/SNr, 

via the GP and STN. The net effect of activation of this pathway is the inhibition of 

thalamocortical feedback, and thus the inhibition of movement. 

In simple terms, the role of dopamine in the BG is to balance the activation of these 

opposing pathways. Dopamine in the striatum activates dopamine D1 receptors (D1R) 
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present on striatonigral ‘direct’ medium spiny neurones (MSN) to facilitate signalling in this 

pathway, whilst simultaneously activating D2 receptors (D2R) present on striatopallidal 

‘indirect’ MSNs to inhibit signalling in this pathway (explained in greater detail earlier). 

Since this model was proposed in the late 1980s it has been considerably updated to 

include additional connections (Blandini, 2000; Wichmann et al., 2011), namely the 

corticosubthalamic glutamatergic connection, the pallido-EPN/SNr connection, the 

subthalamopallidal glutamatergic connection and the nigrosubthalamic dopaminergic 

connection. The updated model as detailed by Blandini et al. (2000) is shown in Figure 3, 

and places the STN in a more central role than the classical model. This newer model also 

brings into play the ‘hyperdirect’ pathway, connecting the cortex to the STN to the 

EPN/SNr, allowing additional and more rapid excitation of BG output (and thus inhibition of 

motor function) than that afforded by the ‘indirect’ pathway. 

 

 

Figure 3: Updated model of the basal ganglia as described by Blandini et al. (2000). Glutamatergic 
neurones are shown in red, GABAergic neurones are shown in green and dopaminergic neurones are 
shown in blue. CPu = caudate-putamen; EPN = entopeduncular nucleus; GP = globus pallidus; 
SNc/SNr = substantia nigra pars compacta/reticulata; STN = subthalamic nucleus. 
 

Of course, all of these models are simplifications of the anatomically defined neuronal 

populations within the BG. While the models shown in Figure 2 and Figure 3 are useful to 

explain the generation of motor symptoms in PD, and have been informative in defining 

targets for surgical intervention, the connectivity within this network is significantly more 
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complicated, as is clear from the connectivity of the individual nuclei detailed earlier, and 

these models also fail to account for neuromodulatory influences from cholinergic and 

noradrenergic inputs. 

In addition to the highly complex connectivity within the BG, yet more complicated models 

have also been proposed that encompass areas beyond the BG. Notably one model 

incorporates the lower brainstem nuclei that are affected by Lewy body pathology prior to 

the onset of parkinsonian motor symptoms, placing the pedunculopontine nucleus in a 

bridging role between these nuclei and the BG nuclei (Braak et al., 2008). Further 

connections between the BG and the cerebellum, which is highly involved in motor 

function, have also been demonstrated using neuronal tracing studies (Bostan et al., 2010) 

so it is clear that the field has moved on considerably from the original model detailed by 

Albin et al. (1989). 

1.3.2 Functioning of the healthy basal ganglia 

At rest, striatal MSNs are predominantly silent and the BG output nuclei exert tonic 

inhibitory control over the thalamic nuclei, inhibiting their activation of the cortex 

(Chevalier et al., 1990). 

The prevailing view of signalling in the BG is that during initiation of movement a 

corticostriatal signal activates MSNs in the direct pathway. The MSNs activated are thought 

to be specific to the particular movement; target MSNs are activated at the expense of 

surrounding MSNs, which are inhibited by striatal interneurones (Tepper et al., 2004), 

ensuring that the outcome is a pattern of neuronal activation that is specific to the action 

being performed. The activated pool of striatonigral MSNs inhibits a corresponding pool of 

output neurones in the EPN/SNr, causing a phasic gap in their tonic inhibition of 

thalamocortical neurones, which are thus activated to feed back to the cortex. Following 

the initiation of a movement by activation of the direct pathway, the indirect pathway is 

then activated, enhancing the inhibitory control of certain sets of neurones in the output 

nuclei over thalamocortical feedback. This aids in focusing the desired movement and 

inhibiting unwanted movement (Haber et al., 2001; Sano et al., 2013). 

The role of the hyperdirect pathway is less certain, but due to its net inhibitory effect on 

motor function it has been suggested that it plays a similar role to the indirect pathway 

(Obeso et al., 2008). Therefore activation of the STN in turn activates populations of output 

neurones in the EPN/SNr that are distinct from the target population that are inhibited by 

the striatonigral MSNs. In this way the activation of these potentially ‘noise creating’ 
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populations would maintain the inhibition of their corresponding thalamocortical feedback 

neurones, meaning that they do not interfere with the specific feedback activated via the 

direct pathway. In addition, the activation of the STN by the cortex could lead to activation 

of the GP via subthalamopallidal neurones. The GP could then exert further inhibitory 

control over the population of output neurones targeted by the striatonigral MSNs, 

enhancing the actions of the direct pathway. 

1.3.3 Functioning of the parkinsonian basal ganglia 

According to the classical model, motor symptoms such as bradykinesia in Parkinson’s 

disease arise from increased signalling in the hyperdirect and indirect pathways and 

decreased signalling in the direct pathway (Figure 4). This is due to the loss of the actions of 

dopamine, which normally inhibits indirect pathway activity via activation of D2R and 

promotes direct pathway activity via activation of D1R. In simple terms, when the striatal 

dopamine concentration is too low, such as in Parkinson’s disease, signalling in the indirect 

pathway predominates, leading to an overall inhibition of thalamocortical feedback and 

therefore an inhibition of motor function.  

As was the case for the anatomical studies, much of the evidence of altered firing in the 

parkinsonian BG presented in this section was obtained from experiments in animal 

models. 
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Figure 4: Model of motor symptom generation in the BG in Parkinson’s disease. Degeneration of 
the nigrostriatal dopaminergic neurones leads to reduced striatal dopamine release. In the normal, 
intact BG, dopamine in the striatum acts on D1 and D2 receptors to respectively promote signalling 
in the ‘direct’ (CPu → EPN/SNr) pathway and inhibit signalling in the ‘indirect’ (CPu → GP → STN → 
EPN/SNr) pathway. In the PD brain, dopamine levels are insufficient to elicit its usual D1- and D2-
mediated effects, leading to a pathological overactivation of the indirect pathway. In addition there 
is also evidence that the hyperdirect pathway (cortex → STN → EPN/SNr) is overactive in the 
parkinsonian BG, further enhancing the effects of increased activation of the indirect pathway. The 
net effect of this is an increase in basal ganglia output to the ventral anterior and ventral lateral 
thalamic nuclei, inhibiting thalamocortical feedback and thus reducing motor function. 

 

1.3.3.1 Altered corticostriatal input 

Input into the BG is altered in the parkinsonian state, and striatal spine loss has been 

consistently shown in 6-OHDA-lesioned rats, MPTP-treated primates and also in PD 

patients (Day et al., 2006; Ingham et al., 1993; Stephens et al., 2005). Despite this spine 

loss, the morphology of remaining spines is altered in ways that are suggestive of enhanced 

transmission, for example in MPTP-treated primates there is evidence of increased spine 

volume and more extensive and complex post-synaptic densities at corticostriatal synapses 

(Smith et al., 2009). A similar increase in post-synaptic density has also been demonstrated 

in PD patients (Anglade et al., 1996). 

The specificity of this plasticity to striatonigral, striatopallidal, or both types of striatal 

projection neurones is controversial, and may depend on the species being examined 
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(Smith et al., 2009). Overall though, there seems to be an increase in corticostriatal input in 

the parkinsonian BG. 

1.3.3.2 Reduced activity in the direct pathway 

There is some evidence for reduced activity of striatonigral neurones in the parkinsonian 

BG, such as reduced expression of the direct pathway-specific opioid precursor PPE-B in 

dopamine denervated rats (Gerfen et al., 1991; Henry et al., 1999). In addition to this there 

is some indirect evidence, for example in 6-OHDA-lesioned rats corticostriatal input is 

altered such that the corticostriatal neurones that activate striatonigral MSNs show 

decreased activity (Mallet et al., 2006), which together with the decreased dopamine 

concentration would reduce the excitability of these neurones compared with 

striatopallidal neurones. In addition to this, destruction of the nigrostriatal pathway causes 

an increase in GABAA receptor expression in the SNr and EPN of rats, suggesting a 

compensatory upregulation in response to reduced activation of striatonigral neurones (Yu 

et al., 2001). 

1.3.3.3 Overactivation of the indirect pathway 

The predominant activation of the indirect pathway following nigrostriatal degeneration 

has been demonstrated by microdialysis (Bianchi et al., 2003) and electrophysiology (Mallet 

et al., 2006) in 6-OHDA-lesioned rats. 

Indicators of increased activity in striatopallidal MSNs, the first step in the indirect circuit, 

have been demonstrated in MPTP-treated primate and 6-OHDA-lesioned rodent models of 

PD. These include increases in D2R, enkephalin and glutamic acid decarboxylase 67 

(GAD67; GABA synthesising enzyme) expression (Betarbet et al., 2004; Soghomonian et al., 

1997). 

The next stage in this pathway, the pallidosubthalamic connection, is also affected by 

dopamine depletion. The overactivity in the inhibitory striatopallidal connection would be 

expected to reduce activity of pallidosubthalamic neurones, and such an effect has been 

shown in MPTP-treated primates (Fillion et al., 1991) and 6-OHDA-lesioned rats (Pan et al., 

1988). Additionally, there is evidence from both of these models that suggests that in the 

dopamine denervated state there is a specific loss of cells in the GP that innervate the STN 

and the EPN/GPi (Fernandez-Suarez et al., 2012). This would disinhibit not only the STN but 

also the output nucleus efferents that target the VA/VL thalamus, causing an additive 

enhancement of the inhibition of thalamocortical feedback that underlies parkinsonian 

motor symptoms. Despite this cell loss, experiments in 6-OHDA-lesioned rats have shown a 
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proliferation of synapses in pallidosubthalamic neurones that might be a response to this 

cell loss (Fan et al., 2012), however this could also serve to enhance the reciprocal 

connection between the GP and STN, which could have important implications regarding 

the generation of abnormal electrical activity within the parkinsonian BG (section 1.3.3.5). 

There is abundant evidence for an increase in activity of the STN in the parkinsonian state, 

not only in MPTP-treated primates (Bergman et al., 1994b) and 6-OHDA-lesioned rats (Breit 

et al., 2005; Breit et al., 2006; Kreiss et al., 1997) but also in human PD (Remple et al., 2011; 

Yokoyama et al., 1998). This activity involves an increase in abnormal bursty firing (Hassani 

et al., 1996; Tai et al., 2012), which has been linked to abnormal activity throughout the BG 

network (section 1.3.3.5). 

The hyperactivity in the STN, combined with a reduced inhibitory input from the GP, leads 

to increased GABAergic signalling from the EPN/GPi and SNr to the thalamus. This has been 

demonstrated in 6-OHDA-lesioned rats, where the metabolic activity of these nuclei was 

increased following the lesion but this effect could be reversed by ablation of the STN 

(Blandini et al., 1997). 

As well as the reduction in inhibitory pallidosubthalamic signalling increasing STN activity, 

the degeneration of dopaminergic neurones in the SNc could also contribute to 

hyperactivity of this nucleus. Somatodendritic dopamine released in the SNc acts to reduce 

subthalamonigral glutamate release via activation of presynaptic D2R (Campbell et al., 

1985; Hatzipetros et al., 2006). Reduced dopamine in PD would therefore increase 

glutamate release into the SNc, driving further degeneration of these neurones via an 

excitotoxic mechanism, and also into the SNr, driving the increase in inhibitory BG output. 

However, the actions of DA on presynaptic D1R have the opposite effect (Ibanez-Sandoval 

et al., 2006), so further experiments to determine the net effect of loss of dopamine in PD 

on control of subthalamonigral glutamate release need to be completed. 

1.3.3.4 Overactivation of the hyperdirect pathway 

Increased STN activity, if only controlled by reduced GP activity, would be expected to 

stabilise due to the reciprocal connections between these nuclei, however in the 

parkinsonian BG the STN is consistently found to be hyperactive. As well as the neuronal 

loss from the GP to the STN, which would reduce the capacity of the GP to exert its 

inhibitory effect on the STN in response to increased subthalamopallidal firing, enhanced 

activity in the hyperdirect pathway might additionally explain this lack of a self-corrective 

effect.  
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Increased activation of the hyperdirect pathway has been demonstrated following 

nigrostriatal denervation in the 6-OHDA-lesioned rat (Dejean et al., 2008), though this is at 

odds with a previous report which found reduced activity of corticosubthalamic neurones in 

the same model (Orieux et al., 2002). Hyperactivity in this pathway would be expected to 

further enhance activation of the STN, promoting the inhibition of thalamocortical 

feedback by the EPN/SNr. This would therefore contribute to the reduced motor function 

in PD. 

1.3.3.5 Synchronous and oscillatory activity 

One of the most interesting recent developments in the analysis of BG activity in the 

parkinsonian state is the discovery that there is an increase in synchronised oscillatory 

activity in the network. In the dopamine-depleted state, the firing patterns of BG neurones 

become less regular and more bursty (Bergman et al., 1994b; Fillion et al., 1991), and the 

local field potential tends to oscillate at a frequency of 13-35 Hz, corresponding to the β 

frequency range (Kühn et al., 2008; Weinberger et al., 2006). The origin of this abnormal 

activity is still being debated. The STN has been strongly implicated in the generation of this 

increased bursting (Ammari et al., 2011) and oscillatory activity, especially via its reciprocal 

connection with the GP (Gillies et al., 2002; Holt et al., 2014; Tachibana et al., 2011), and a 

role for the hyperdirect pathway has also been suggested based on computational 

modelling of connectivity in the parkinsonian BG (Moran et al., 2011). 

Synchronised oscillatory activity between the cortex, GP, STN and EPN/GPi is correlated 

with motor dysfunction. Further to this, both β-oscillatory activity and motor symptoms 

(bradykinesia and akinesia, but not tremor) are suppressed by L-DOPA (Kühn et al., 2006) 

or high frequency stimulation of the STN (Ray et al., 2008). These results highlight the 

involvement of this abnormal synchronous and oscillatory neuronal activity in the 

generation of motor deficits. 

 

1.4 Current Treatment 

Most current treatments for PD aim to correct the unbalanced signalling in the BG by 

replacement of the dopaminergic regulation of the activation of the direct and indirect 

pathways. Several alternative strategies target other neurotransmitter systems that are 

perturbed in the parkinsonian BG but these are less well-established. 
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1.4.1 Dopamine replacement strategies 

Dopamine replacement strategies are the first-line treatment in PD. They involve 

replacement of the actions of dopamine either by administration of the dopamine 

precursor 3,4-L-dihydroxyphenylalanine (Levodopa or L-DOPA) or using agonists of 

dopamine receptors. 

1.4.1.1 L-DOPA 

L-DOPA is a brain-penetrant precursor of dopamine that is taken up into nerve terminals 

and converted into dopamine by aromatic amino acid decarboxylase (AADC). To help 

minimise the necessary therapeutic dose and avoid side effects associated with the 

peripheral actions of dopamine, such as hypotension, L-DOPA is administered alongside a 

peripheral AADC inhibitor such as carbidopa or benserazide to prevent its conversion into 

dopamine outside the brain. In addition to this, inhibitors of monoamine oxidase B (MAO-

B) and catechol-O-methyl transferase (COMT), enzymes that respectively metabolise 

dopamine (centrally) and L-DOPA (peripherally), can also be given alongside L-DOPA in 

order to prolong its central effects and minimise the necessary therapeutic dose; in fact 

MAO-B inhibitors have been shown to be efficacious as a monotherapy in early PD and 

significantly delay the requirement for L-DOPA (Myllyla et al., 1993). Commonly prescribed 

MAO-B inhibitors include selegiline and rasagiline. Examples of COMT inhibitors include 

entacapone and tolcapone; though tolcapone has a longer half life and shows more potent 

inhibition of COMT (Forsberg et al., 2003), due to hepatotoxicity issues it is generally only 

prescribed for patients in whom entacapone is ineffective (Lees, 2008). 

L-DOPA significantly improves the cardinal motor symptoms of PD and is considered the 

gold standard treatment for the disease (Barbeau, 1969; Fahn, 2004; Godwin-Austen et al., 

1969; Vu et al., 2012). However this treatment is not without side effects. In the short term 

these can include nausea and hypotension, which tend to be dose-related (Godwin-Austen 

et al., 1969), but in the long term patients can develop debilitating involuntary movements 

that may overtake the therapeutic actions of L-DOPA. This is termed L-DOPA-Induced 

Dyskinesia (LID) and is explored later in this chapter (section 1.5.1). In addition there is 

some controversy regarding whether L-DOPA could have a toxic effect via its autoxidation 

into reactive derivatives, similarly to dopamine (described in section 1.2.1). However this 

toxicity was observed only in vitro (Basma et al., 1995; Jin et al., 2010), whereas 

experiments in preclinical models and clinical trials have found no evidence for a 

neurotoxic effect of L-DOPA in vivo (Datla et al., 2001; Parkkinen et al., 2011; Rajput, 2001). 
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1.4.1.2 Dopamine receptor agonists 

The second dopamine replacement strategy used for treatment of PD symptoms is 

dopamine receptor agonists, which can be prescribed as monotherapy to delay the 

introduction of L-DOPA or as an adjunct to allow reduction of the necessary dose of L-

DOPA. These mainly act at D2-like receptors, though mixed D1-like/D2-like receptor 

agonists such as pergolide and apomorphine are occasionally prescribed. Commonly 

prescribed D2-like dopamine receptor agonists include pramipexole, bromocriptine and 

ropinirole. Stimulation of D2-like receptors inhibits activation of striatopallidal neurones in 

the overactive indirect pathway, correcting basal ganglia output (the pathways of the BG 

and the roles of D1 and D2 receptors were described in more detail in section 1.3). 

Receptor agonists do not rely on enzymatic activity within, or storage and release by 

existing dopaminergic cells, so bypass problems such as reduced AADC levels and reduced 

numbers of dopaminergic neurones. They may also reduce the risk of developing 

dyskinesia, as has been demonstrated in both animal models (Bédard et al., 1986; Peace et 

al., 1998) and clinical trials (Holloway et al., 2004; Rascol et al., 2000). This is believed to 

result from their longer half life in comparison with L-DOPA, which provides a more 

continuous dopaminergic stimulus. However, dopamine agonists carry a higher risk than L-

DOPA of side effects such as impulse control disorders (e.g. hypersexuality, pathological 

gambling) and hallucinations, so are not suitable for all patients (Antonini et al., 2009). 

1.4.2 Non-dopaminergic strategies 

Along with degeneration of the nigrostriatal tract, PD involves changes in other 

neurotransmitter systems, including noradrenaline (norepinephrine), glutamate and 

acetylcholine. Several drugs that target these systems are also in use as antiparkinsonian 

therapies, usually as an adjunct to dopamine replacement strategies, or are currently in 

clinical trials. 

Although more commonly prescribed for LID, there is evidence that the partial NMDA 

receptor antagonist amantadine also has antiparkinsonian actions (Brenner et al., 1989; 

Pinter et al., 1999; Schwab et al., 1969). In addition, the NMDA receptor antagonist 

memantine has shown efficacy against axial motor symptoms in a recent clinical trial 

(Moreau et al., 2013). Another antiglutamatergic strategy that has shown some benefit is 

the glutamate release inhibitor safinamide (Stocchi et al., 2004; Stocchi et al., 2012), 

though this drug has other potential antiparkinsonian mechanisms such as MAO-B 

inhibition and inhibition of dopamine reuptake that could also contribute to this effect 

(Caccia et al., 2006). 
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Given the negative correlation between smoking and incidence of PD (Gorell et al., 1999; 

Hernán et al., 2001), and the close association between the dopaminergic and cholinergic 

systems (Quik et al., 2011), it is not surprising that cholinergic signalling has also been 

investigated with regard to PD. Indeed the first antiparkinsonian medications to be 

prescribed were anticholinergics, though they are efficacious mainly against tremor and do 

not ameliorate akinesia and rigidity as well as dopamine replacement strategies (Schrag et 

al., 1999). Though clinical trials have not consistently found an antiparkinsonian benefit for 

nicotine (reviewed by(Quik et al., 2011), the antiparkinsonian potential of targeting 

cholinergic signalling is still being investigated, especially for problems with posture and 

gait (Gurevich et al., 2014; Henderson et al., 2013). 

1.4.3 Surgical strategies 

Along with pharmacological therapies, there are also surgical options for the alleviation of 

PD symptoms. Due to the high costs and specialised training associated with surgery, as 

well as the risk of haemorrhage and infection for the patient, these options are often a last 

resort for patients that are refractory to alternative treatments. 

Initially, surgical ablation of the thalamic nuclei, GPi or STN was carried out and found to 

have symptomatic benefits in patients, with thalamotomy mainly ameliorating tremor 

(Duval et al., 2006; Friehs et al., 1995) and subthalamotomy and pallidotomy ameliorating 

all motor symptoms (Alvarez et al., 2009; Baron et al., 1996; Çoban et al., 2009; Lozano et 

al., 1995). 

The accidental discovery in 1987 that a similar, reversible effect could be achieved by high 

frequency (≥100 Hz) electrical stimulation of the thalamus, GPi or STN (Benabid et al., 1991; 

Limousin et al., 1995) led to deep brain stimulation (DBS) largely supplanting irreversible 

ablation surgery as a means of treating PD symptoms. DBS of the STN or GPi gives long-

lasting improvements in bradykinesia, rigidity, tremor and gait, along with alleviating motor 

complications such as dyskinesia (Benabid et al., 2009; Rodriguez-Oroz et al., 2012). 

Bilateral stimulation of the STN is generally believed to give the most reliable motor 

improvements and allow the largest reduction in L-DOPA dose (Anderson et al., 2005; DBS 

For Parkinson's Disease Study Group, 2001). However recent evidence suggests that 

stimulation of the two nuclei gives a similar antiparkinsonian benefit but can elicit 

worsening or improvement of different non-motor symptoms (Follett et al., 

2010),therefore this may prove to be a deciding factor for some patients. 
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Initially, due to the similar clinical outcome, it was believed that DBS had a similar effect to 

lesioning on neuronal signalling in these nuclei, i.e. inhibition, via local depolarisation block 

(Beurrier et al., 2001). However over recent years a paradoxical activation of subthalamic 

neurones has been reported following STN-DBS (Hashimoto et al., 2003; Stefani et al., 

2005; Windels et al., 2000), raising the question of how two seemingly opposing 

mechanisms can have the same clinical effects. Current understanding leans towards the 

interruption by the electrical stimulation of the pathological synchronous β-oscillatory 

activity (13-30 Hz) in the BG that is associated with PD (Kang et al., 2013; Moran et al., 

2011). This mechanism was mentioned in the previous section (1.3.3.5) and is reviewed in 

detail elsewhere (Deniau et al., 2010; Hammond et al., 2008).  

 

1.5 Unmet Clinical Needs 

The major unmet clinical need with the current pharmacological therapies used for 

treatment of PD is that they do not address the continuing degeneration of the nigrostriatal 

tract, although there is some suggestion that disease progression is delayed by dopamine 

agonists when compared with levodopa (ParkinsonStudyGroup, 2002; Whone et al., 2003). 

Providing a means to protect the neurones that remain in the SNc at the time of diagnosis 

is a central objective in the PD field, as it would allow the prevention or slowing down of 

the loss of dopaminergic terminals that leads to both progressive worsening of PD 

symptoms and an increased likelihood of developing L-DOPA-related complications. As 

such, the hunt for neuroprotective therapies has been the focus of extensive preclinical 

research, including testing of antioxidant therapies and growth factors among many others, 

however as yet none of these therapies has successfully been approved for use in man. The 

use of antiglutamatergic strategies as a potential neuroprotective strategy is one of the 

major focuses of this thesis. 

Similarly, the therapies currently used for treatment of PD do not aid regeneration of the 

nigrostriatal pathway and this is another area of intensive research. Indeed while several 

attempts to treat PD using embryonic dopaminergic grafts in the striatum have been 

reported to be successful up to 5 years after transplantation, especially in younger patients 

(Freed et al., 2001; López-Lozano et al., 1997; Ma et al., 2010), due to the mixed reports of 

success and the development of side effects such as graft-induced dyskinesia the 

widespread clinical utility of this approach is still a long way off (Brundin et al., 2010). 
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As mentioned earlier, the PD therapies that are currently available also have limitations in 

terms of the side effects they elicit. While issues such as addictive behaviours (dopamine 

agonists) and nausea (L-DOPA) can often be alleviated by changing to a different treatment 

strategy, adding in adjuvant therapies or altering the dose, long-term treatment with L-

DOPA can have much more long-lasting detrimental side effects, namely the development 

of dyskinesia. 

In addition to this, current treatments do not address the variety of levodopa-unresponsive 

non-motor symptoms that can both precede and occur simultaneously with PD. These are 

often the symptoms that are the most detrimental to patient quality of life, especially while 

dopamine replacement strategies are still efficacious against motor symptoms (Martinez-

Martin, 2011). 

1.5.1 Levodopa-induced dyskinesia 

Levodopa-induced dyskinesia (LID) is a phenomenon that affects around 40% of Parkinson’s 

disease patients within 5 years of starting treatment with L-DOPA (Ahlskog et al., 2001). It 

represents a major limiting factor in treatment of the symptoms and therefore efforts are 

being made to develop treatments that can reduce its incidence or severity. 

LID manifests in patients as involuntary dystonic and/or choreic movements of the trunk, 

limbs and face, most commonly when the plasma concentration of dopamine is high (‘peak 

dose’ dyskinesia). Though this ‘peak-dose dyskinesia’ is the most common, it is also the 

least disabling of the types of dyskinesia related to levodopa use. ‘Off-period dyskinesia’ 

(when no drug is in the patient’s system) and ‘diphasic dyskinesia’ (which manifests upon 

the rise and fall of L-DOPA concentration at the start and end of a dose) often involve 

painful dystonia of the lower limbs and feet, whereas peak dose dyskinesia is more 

frequently of the choreic form (reviewed by(Fabbrini et al., 2007). However, as PD 

progresses the severity of peak dose dyskinesia can increase and has a significant 

detrimental effect on quality of life (Chapuis et al., 2005; Péchevis et al., 2005). 

Along with the self-evident exposure-related risk factors such as longer duration of L-DOPA 

treatment and increased daily dose, there are several other factors that have been 

reported to be associated with the development of LID. These include dopamine D2 

receptor polymorphisms (Oliveri et al., 1999; Rieck et al., 2012), presence or absence of 

resting tremor (Kipfer et al., 2011), and smoking status (Strong et al., 2006). While these 

may help identify susceptible patients, allowing delay of L-DOPA administration in favour of 

alternative antiparkinsonian agents such as dopamine agonists, eventually most patients 
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will require L-DOPA to control their symptoms and will therefore be at risk of developing 

LID. 

L-DOPA-associated motor complications became apparent soon after its approval for 

treatment of PD symptoms (Cotzias et al., 1969) but the underlying mechanisms are 

complex and are still not fully understood some 45 years later. Once established, LID does 

not reverse and although reducing the L-DOPA dose can alleviate the severity of dyskinesia 

it is often at the expense of the antiparkinsonian benefits. There is inconsistent evidence on 

the efficacy of an L-DOPA ‘holiday’ for amelioration of existing dyskinesia (Rascol, 2000), 

which at best has a transient effect (Koller et al., 1981; Weiner et al., 1980). The causes of 

dyskinesia seem to vary depending on what type a patient has (reviewed by(Brotchie, 

2005) but given the nature of the experiments performed in this thesis I will focus only on 

peak-dose dyskinesia. 

There are two main requirements for the development of LID in PD patients: severe 

dopamine denervation and pulsatile exposure to dopaminergic medication. As the 

nigrostriatal degeneration underlying PD progresses, the patient will have a diminishing 

number of dopaminergic terminals in the striatum, and thus a diminishing capacity to 

buffer the sudden influx of L-DOPA associated with an acute dose. Consequently striatal 

dopamine receptor activation will no longer be determined by physiological release from 

nigrostriatal neurones, but will more closely reflect the drug bioavailability and 

pharmacokinetics. In addition to this, serotonergic and noradrenergic terminals also 

possess the necessary AADC to convert L-DOPA into dopamine, so when dopaminergic 

terminals are lost the L-DOPA is taken up, converted into dopamine and released by these 

neurones instead as a ‘false neurotransmitter’ (Tanaka et al., 1999). Indeed increased 

integrity of the serotonergic system has been shown to be associated with increased 

incidence of LID in patients (Politis et al., 2014). This nonphysiological and pulsatile 

exposure to dopamine leads to alterations in the signalling of a variety of other 

neurotransmitter systems within the BG motor loop, and this combination of erratic 

dopamine release and dysregulated dopamine response is believed to underlie 

dyskinesiogenesis (Lindgren et al., 2010). The cellular and molecular mechanisms 

underlying the development and expression of peak-dose dyskinesia are explored in detail 

in Chapter 6. 

Current treatments focus on reduction of the erratic exposure of the striatum to dopamine, 

often by fragmentation of L-DOPA doses, use of sustained release formulas, or continuous 
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drug infusion (for example Duodopa®). These methods aim to prevent the induction or 

delay the worsening of early dyskinesia, as per the continuous dopaminergic stimulation 

concept (Stocchi, 2009). This approach is not always successful. There are data suggesting 

that sustained release formulations of L-DOPA do not significantly reduce peak dose 

dyskinesia in preclinical models (Papathanou et al., 2012) or patients (Jensen et al., 1988), 

however other studies have shown reduced LID severity preclinically using L-DOPA-loaded 

nanoparticles or microspheres (Yang et al., 2012a; Yang et al., 2012b). There is also clinical 

evidence that L-DOPA infusion (Nyholm et al., 2003) or slow release preparations (Ghika et 

al., 1997) reduce dyskinesia, and a novel approach reducing phasic dopamine release by 

depletion of vesicular dopamine storage also reduced severity of LIDs (Brusa et al., 2013). A 

potential alternative way of prolonging the effect of L-DOPA was recently demonstrated in 

a rodent model of dyskinesia, whereby administration of a more potent, deuterated form 

of L-DOPA that is more resistant to enzymatic breakdown reduced the required dosage and 

thereby reduced the risk of dyskinesia in these rats (Malmlöf et al., 2010). 

Amantadine, a weak NMDA receptor antagonist, is the only commonly prescribed 

antidyskinetic drug at present, suggesting that targeting glutamate signalling is clinically 

efficacious. However its duration of effect has been questioned and therefore there is a 

clear need for the development of new therapies that can either delay the onset, or 

suppress the expression of LID. 

1.5.2 Non-motor symptoms 

Parkinson’s disease is associated with an array of non-motor symptoms that are not 

alleviated by dopamine replacement strategies and can have a severe impact on the 

patient’s quality of life. These affect up to 90% of PD patients (McDowell et al., 2012) and 

include sleep disorders such as Rapid Eye Movement (REM) Sleep Behaviour Disorder 

(RBD), daytime somnolence and restless leg syndrome; neuropsychiatric disorders such as 

depression, anxiety, apathy, cognitive impairment and dementia; autonomic disturbances 

such as constipation, urinary incontinence and orthostatic hypertension; and pain 

(Chaudhuri et al., 2006). 

Currently, non-motor symptoms are treated using drugs developed for these conditions in 

the absence of comorbid PD (e.g. selective serotonin reuptake inhibitors for depression, 

anticholinergics for urinary incontinence;(Lees et al., 2009), however extrapyramidal PD 

pathology may underlie several of these symptoms and little work has been done to 

ascertain the aetiology of these symptoms specifically in PD patients. There is considerable 
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evidence that non-motor symptoms including hyposmia, anxiety, RBD and autonomic 

dysfunction result from PD-related degeneration or LB pathology in non-dopaminergic 

systems, such as the serotonergic dorsal raphe nucleus, noradrenergic locus coeruleus and 

cholinergic nucleus basalis of Meynert (Dickson et al., 2009; Doty, 2012; McCarter et al., 

2012; Prediger et al., 2012). As such, it is perhaps not surprising that these symptoms are 

not alleviated by dopaminergic treatments. 

One of the difficulties in ascertaining whether a common pathophysiological mechanism 

underlies each of these non-motor symptoms in PD compared with the non-PD population 

is the lack of preclinical models that display these symptoms, or the difficulty in identifying 

and quantifying their presence. However, in recent years genetic models have provided 

some insights into the development of non-motor symptoms. For example, cognitive 

impairment that precedes motor dysfunction has been identified in Mitopark® mice (Li et 

al., 2013), sleep abnormalities have been described in α-synuclein over-expressing mice 

(Kudo et al., 2011), and gastrointestinal dysfunction has been noted in A53T α-synuclein 

transgenic mice (Noorian et al., 2012) and also LRRK2 transgenic mice (Bichler et al., 2013). 

Another paper reported that vesicular monoamine transporter 2 (VMAT-2)-deficient mice 

develop a PD phenotype with multiple non-motor manifestations such as anxiety, 

constipation and sleep disturbances (Taylor et al., 2009). In addition to transgenic models, 

non-motor symptoms are increasingly being recognised in classical models of PD, for 

example sleep disorders have been noted in MPTP-treated marmosets (Verhave et al., 

2011) and gastrointestinal dysfunction, cognitive abnormalities and depressive-like 

symptoms have been described in 6-OHDA-lesioned rats (Casas et al., 2011; Colucci et al., 

2012). These studies provide hope that the specific aetiologies of these symptoms on a 

background of PD can now be better investigated, along with identification of the most 

effective treatments. 

 

1.6 Role of Glutamate in PD 

Glutamate is the most abundant excitatory neurotransmitter in the mammalian central 

nervous system and plays a key role in the BG. As previously noted in section 1.3.1, the only 

glutamatergic nucleus within the BG is the STN, but alongside this the main inputs into the 

BG from the cortex are also glutamatergic, as well as some afferents originating in the PPN. 

Hyperactivity of the STN has been consistently shown in the parkinsonian state, along with 

enhanced corticostriatal signalling (Anglade et al., 1996; Smith et al., 2009), enhanced 
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corticosubthalamic signalling (Dejean et al., 2008) and increased activity in the PPN (Breit et 

al., 2006), therefore a global attenuation of glutamatergic signalling might be beneficial in 

PD. 

Given the target nuclei of the STN in the model of the basal ganglia described in section 

1.3.3, attenuation of glutamatergic signalling at the subthalamonigral synapse might 

particularly be expected to have antiparkinsonian effects. Reduced subthalamo-SNr activity 

would in turn reduce the inhibitory output of the SNr/EPN on thalamocortical feedback, 

and would therefore be expected to promote motor function. Indeed, interruption of 

activity within the hyperactive STN via surgical ablation or high frequency stimulation 

successfully ameliorates motor symptoms (section 1.4.3). Given the risk of infection, 

haemorrhage and incorrect lesion/electrode placement associated with these techniques, 

as well as the associated training and procedure costs, attenuation of glutamatergic 

signalling via pharmacological means would be a preferable way of achieving this result. 

As well as symptomatic improvements, attenuation of glutamate release from the STN into 

the SNc might potentially slow the ongoing degeneration of dopaminergic cells in the 

nigrostriatal projection by inhibiting glutamate excitotoxicity (see section 1.2.5 for a 

detailed explanation of this process), thereby delaying the progression of the disease. 

Excessive subthalamonigral excitatory signalling is sufficient to cause degeneration of SNc 

neurones in vivo (Assous et al., 2014), so it is likely that the overactivity of this synapse in 

PD also contributes to the ongoing degeneration in the human brain. Evidence for targeting 

glutamate release from the hyperactive STN as a neuroprotective strategy includes the 

findings that lesioning or high-frequency deep brain stimulation of the STN is 

neuroprotective in both the 6-OHDA rat model (Carvalho et al., 2001; Maesawa et al., 

2004; Piallat et al., 1996; Temel et al., 2006) and the MPTP primate model (Wallace et al., 

2007). However, evidence for a neuroprotective or disease stabilising effect of this strategy 

in humans in inconsistent (Hilker et al., 2005; Krack et al., 2003; Østergaard et al., 2006; 

Visser-Vandewalle et al., 2005). 

Glutamate signalling occurs via two groups of receptors: the fast-conducting ionotropic 

glutamate receptors and the slower G-protein coupled metabotropic glutamate receptors, 

which modulate the excitability of pre- and post-synaptic neurones. In this section these 

receptor types are explored in relation to their signalling, their location in the BG and their 

potential as targets for antiparkinsonian/neuroprotective therapies. Their potential as 
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targets for antidyskinetic therapies is explored in Chapter 6 and is therefore not introduced 

here. 

1.6.1 Ionotropic glutamate receptors 

Ionotropic glutamate receptors are (generally) post-synaptic ligand-gated ion channels and 

are subdivided into three groups defined by their preferred agonists: α-amino-3-hydroxy-5-

methyl-4-isoxazolepropionic acid (AMPA), N-methyl-D-aspartate (NMDA) and kainate. All 

ionotropic receptor types mediate rapid excitation of the postsynaptic neurone in response 

to glutamate, therefore antagonists or negative allosteric modulators at these receptors 

are of therapeutic interest in the parkinsonian situation, where glutamatergic activity is 

increased. 

All ionotropic glutamate receptors are composed of multiple subunits, each with three 

transmembrane domains (M1, M3, M4) and one re-entrant membrane loop (M2) on the 

cytoplasmic side. The M2 loop forms part of the ion pore, and amino acid residues within 

this region determine ion permeability, especially that of calcium. Ligand binding occurs at 

sites within the external segments S1 and S2, bringing the extracellular loops together and 

opening the ion pore (Kew et al., 2005). 

 

  

Figure 5: General structure of an ionotropic glutamate receptor subunit. The final receptor is a 
tetramer of these subunits. Binding of the ligand (glutamate/glycine) at the ligand binding domains 
(LBDs) of external segments S1 and S2 causes a conformational change in the receptor that leads to 
opening of the cation pore formed by the re-entrant membrane loop M2. The specific amino acids 
within this loop in different subunits alter the permeability of the ion channel to calcium. 



56 
 

1.6.1.1 AMPA receptors 

Structure and signalling: 

AMPA receptors are tetrameric receptors composed of GluR1-4 subunits. They are often 

composed of a ‘dimer of dimers’, with a GluR2 dimer and a second homodimer of another 

subunit type (Tichelaar et al., 2004). AMPA receptor tetramers form an ion-permeable pore 

in the post-synaptic membrane and, upon activation by ligand binding, facilitate rapid 

depolarisation via influx of cations. Conductance through the AMPA receptor pore is 

dependent on the degree of ligand binding, requiring a minimum of 2 occupied sites and 

increasing up to 4 occupied sites (Rosenmund et al., 1998). 

Variations in subunit composition confer specific properties on AMPA receptors, for 

example receptors that lack GluR2 subunits are permeable to sodium (Na+), potassium (K+) 

and calcium (Ca2+) ions, whereas the presence of GluR2 renders a receptor impermeable to 

Ca2+ and therefore may protect against excitotoxicity (Kim et al., 2001). The calcium 

impermeability property of GluR2 is due to a substitution of an arginine residue in the M2 

domain where in other subunits this amino acid is a glutamine. In addition to this, a further 

level of diversity is added by the alternative splicing of ‘flip’ and ‘flop’ variants in the 

extracellular domain of each subunit between M3 and M4, which affects receptor channel 

opening and closing kinetics (Pei et al., 2009). Like many receptors, phosphorylation of 

AMPA subunits also represents an important means of regulation (Wang et al., 2005). 

Expression in the BG: 

The expression of AMPA receptor subunits varies throughout the BG, with GluR1-3 

expressed in striatal MSNs, the EPN/GPi and the SNc and GluR1 and/or GluR4 expressed in 

the STN, EPN/GPi and SNr. Additionally GluR4 is expressed by glial cells (Greenamyre, 

2001). With particular regard to glutamatergic signalling in the SNc, rat nigral dopaminergic 

neurones primarily express GluR2/3 subunits, with a heterogeneous expression of GluR1 

subunits that is higher in the ventral tier of the SNc than the dorsal tier (Albers et al., 1999). 

Antiparkinsonian potential: 

As mentioned above, antagonists of AMPA receptors might be expected to have an 

antiparkinsonian effect, however evidence for the efficacy of targeting AMPA receptors in 

PD is inconsistent. Symptomatic relief has been demonstrated using the AMPA receptor 

antagonist NBQX in rodent and primate models of PD (Klockgether et al., 1991), while 

others reported no symptomatic improvements using the same compound (Luquin et al., 
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1993). In several cases (using NBQX and CX516), a symptomatic improvement was found 

that acted synergistically with dopamine replacement therapies (Konitsiotis et al., 2000; 

Loschmann et al., 1991; Wachtel et al., 1992), suggesting that AMPA ligands may work well 

as adjunct therapies. 

The neuroprotective efficacy of the AMPA antagonist Talampanel has been demonstrated 

in rodent models of ischemic stroke (Denes et al., 2006; Erdo et al., 2005), however when 

the AMPA/kainate dual antagonist CNQX and AMPA antagonist NBQX were tested against 

MPP+ toxicity in the rat they showed no neuroprotective effect (Turski et al., 1991), and a 

similar lack of protection was found for NBQX in the 6-OHDA-lesioned rat (Blandini et al., 

2001). Interestingly, AMPA receptor potentiators such as LY503430 and LY404187 do show 

a neuroprotective effect in the 6-OHDA-lesioned rat model of PD (Murray et al., 2003b; 

O'Neill et al., 2004). This seemingly paradoxical protection brought about by potentiation 

of glutamatergic signalling is thought to involve increases in brain-derived neurotrophic 

factor production and cell proliferation. 

Thus from the preclinical data the most promising use for AMPA antagonists in PD was as 

an adjunct therapy alongside dopamine replacement strategies. Unfortunately this did not 

translate into the human disease, as when the AMPA antagonist Perampanel was tested in 

the clinic there was no improvement in motor scores during L-DOPA-related ‘on’ time in 

Perampanel-treated patients versus placebo (Lees et al., 2012). As such, AMPA antagonists 

are no longer being actively pursued as potential therapeutic targets in PD. 

1.6.1.2 NMDA receptors 

Structure and signalling: 

NMDA receptors are heterotetrameric and are generally composed of two GluN1 and two 

GluN2 subunits, usually as a dimer of dimers. GluN1 (NR1) is encoded by a single gene but 

there are eight functional splice variants of this receptor subunit; GluN2 is encoded by a 

family of four genes, GluN2A-D (NR2A-D). Of the GluN2 subunits the most highly expressed 

in the mammalian forebrain are GluN2A and GluN2B, with GluN2A largely present in 

synaptic NMDA receptors and GluN2B largely present in extrasynaptic NMDA receptors, 

though this segregated distribution is not absolute (Groc et al., 2009). NMDA receptors 

containing GluN2A have higher opening probability and faster deactivation kinetics than 

receptors containing GluN2B, but GluN2B has the higher affinity for glutamate of the two 

(Sanz-Clemente et al., 2013). The differential spatial distribution, ligand affinity and kinetics 
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of these receptor subunits might have important consequences for excitotoxicity. 

Activation of NMDA receptors requires the binding of glycine to both GluN1 subunits and 

glutamate to both GluN2 subunits. It also requires depolarisation of the membrane in order 

to relieve the magnesium ion (Mg2+) block, a process that is mediated by antecedent AMPA 

receptor activation. When all of these conditions are met, the ion channel opens to allow 

Ca2+ and Na+ influx and K+ efflux. In NMDA receptors the permeability to Ca2+ is determined 

by the presence of asparagine or glutamine residue within the M2 region (Burnashev et al., 

1992). 

In addition to the five genes encoding GluN1 and GluN2A-D, there are two genes encoding 

GluN3A and GluN3B subunits (NR3A-B) which can assemble alongside these subunits. While 

GluN3 subunits were previously thought to only act as dominant negative regulators of 

GluN1 and GluN2 subunits, a specific developmental role for these receptors is currently 

being elucidated. GluN3A subunits are also proposed to be involved in synaptic plasticity 

and can additionally form an excitatory glycine-activated receptor in combination with 

GluN1, with reduced Ca2+ permeability that is insensitive to Mg2+ block (reviewed by(Kehoe 

et al., 2013).  

Expression in the BG: 

GluN1 subunits are expressed throughout all nuclei of the BG, as would be expected given 

their requirement for the formation of functional receptors, alongside GluN2D. GluN2A and 

GluN2B are expressed mainly in the striatum and GluN2C is restricted to the SNc 

(Greenamyre, 2001). The strong expression of GluN2C/D in the dopaminergic neurones of 

the SNc, compared with weaker expression of GluN2A/B (Albers et al., 1999), is particularly 

interesting due to the unique properties of NMDA receptors containing the 2C/2D subunits; 

namely a less potent Mg2+ block that is rapidly overcome compared with GluN2A and 

GluN2B subunits (Clarke et al., 2013), meaning that these receptors might not rely on 

concomitant depolarisation alongside ligand binding for activation. Previous studies have 

suggested that the majority of NMDA receptors present on dopaminergic SNc neurones are 

GluN1/GluN2B/GluN2D triheteromers (Brothwell et al., 2008; Jones et al., 2005), 

suggesting that inhibitors of any of these subunits might inhibit excitotoxic cell loss in the 

context of Parkinson’s disease. 

Antiparkinsonian potential: 

Given that glutamatergic neurotransmission is increased in the parkinsonian situation, it is 

expected that antagonists of NMDA-mediated signalling would have an antiparkinsonian 
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effect. Indeed, inhibition of NMDA-mediated glutamatergic transmission using systemically-

administered antagonists such as MK-801, amantadine and SDZ 220-581 successfully 

reverses motor dysfunction in preclinical symptomatic models of PD including reserpine-

induced akinesia (Carlsson et al., 1988; Danysz et al., 1994) and haloperidol-induced 

catalepsy (Danysz et al., 1994; Hauber et al., 1990; McAllister, 1996). Based on a local 

administration study using CPP, the sites of action of NMDA antagonists within the BG are 

the STN, EPN/GPi and SNr (Klockgether et al., 1990). 

NMDA receptor inhibition also shows neuroprotective potential, as has been demonstrated 

in 6-OHDA-lesioned rats using MK-801 infused into the STN (Blandini et al., 2001), in MPTP-

treated rodents following systemic administration of (R)-HA-966 or MK-801 or local nigral 

injection of AP7, CPP or MK-801 (Brouillet et al., 1993; Kanthasamy et al., 1997; Turski et 

al., 1991), and in primates when MPTP was coadministered with MK-801 or CPP (Lange et 

al., 1993; Zuddas et al., 1992). All of these compounds non-specifically inhibit signalling via 

GluN1/GluN2 receptors, for example MK-801 inhibits ion flow through the ion channel, 

amantadine accelerates ion channel closing, (R)-HA-966 is a competitive inhibitor of the 

glycine site on GluN1, and SDZ 220-581, and AP7 and CPP are competitive inhibitors of the 

glutamate binding site on GluN2. However, the adverse effects relating to widespread 

inhibition of NMDA-mediated signalling, such as the development of schizophrenia-like 

cognitive dysfunction (Krystal et al., 2005), mean that this is not a viable therapeutic option 

for patients. 

In an attempt to avoid these side effects, recent attention has turned to inhibiting specific 

NMDA receptor subunits, most often GluN2B (NR2B). GluN2B subunits have a higher 

affinity for glutamate than GluN2A subunits and are generally found in extrasynaptic NMDA 

receptors, which are associated with excitotoxicity. Importantly from the point of view of 

neuroprotection in parkinsonism, GluN2B subunits form part of the triheteromeric NMDA 

receptors found on SNc neurones and therefore inhibition of signalling at receptors 

containing this subunit could also reduce excitotoxic cell loss. The GluN2B-specific 

antagonists Ro 25-6981, Ifenprodil, Eliprodil and CP-101,606 have been shown to reduce 

parkinsonian symptoms in a variety of rodent and primate models (Loschmann et al., 2004; 

Nash et al., 2000; Nash et al., 1999; Steece-Collier et al., 2000). In addition to symptomatic 

improvements, neuroprotective effects have been reported following systemic 

administration of the GluN2B-specific antagonists BZAD01 (Leaver et al., 2008)  and 

Ifenprodil (Riquelme et al., 2012) in the 6-OHDA-lesioned rat. Unfortunately the positive 
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preclinical data has not thus far translated into a positive clinical outcome in PD patients, 

for example no motor improvements were found following acute treatment with MK-0657 

(Addy et al., 2009). In addition, it seems that GluN2B-specific antagonists can also cause 

cognitive adverse events in patients, for example when the GluN2B-specific inhibitor CP-

101,606 was tested in clinical trials against L-DOPA-induced dyskinesia it elicited unwanted 

side effects such as dissociation and amnesia (Nutt et al., 2008). This might mean that 

GluN2B-specific antagonists also prove unsuitable as antiparkinsonian therapies. 

1.6.1.3 Kainate receptors 

Structure and signalling: 

Kainate receptors are the least well characterised of the ionotropic glutamate receptors. 

Kainate receptors are tetrameric and composed of GluK1-3 (GluR5-7), and GluK4-5 (KA-1 

and KA-2) subunits. GluK1-3 subunits can form functional homomeric receptors but GluK4-

5 subunits need to combine with GluK1-3 subunits in heteromeric assemblies in order to 

function (Kew et al., 2005). Alternative splicing and RNA editing of these subunits adds 

further diversity to the mature receptors. 

Similarly to AMPA receptors, kainate receptors are permeable primarily to Na+ and K+ but 

less so to Ca2+ (Huettner, 2003). They are predominantly located post-synaptically, where 

they depolarise and activate the neurone on which they reside, mediating excitatory 

neurotransmission. In addition, kainate receptors have been localised to presynaptic sites, 

where their stimulation reduces neurotransmitter release at both glutamatergic and 

GABAergic synapses; however the mechanism behind this has not been elucidated and it is 

possible that the effect is indirect, involving kainate-induced release of endogenous 

neurotransmitters such as glutamate under experimental conditions where this has not 

been controlled for (Huettner, 2003). GluK1 and GluK2 can be edited at the RNA stage, 

leading to the presence of an arginine residue within the M2 region in place of a glutamine 

residue, thus reducing the permeability of the ion channel to Ca2+ (Burnashev et al., 1995).  

Expression in the BG: 

Within the rodent BG, mRNA for kainate receptor subunits is expressed in all regions of the 

basal ganglia, though GluK1 and GluK4 are less widely distributed (Bischoff et al., 1997; 

Wullner et al., 1997). Within the SNc in particular there is moderate to high expression of 

GluK1-3 and GluK5, which colocalises with TH, suggesting that kainate receptors are 

expressed in dopaminergic neurones. Whether these receptors are located pre- or post-
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synaptically in these regions is not known. Additionally, kainate receptors are located in the 

cortex, where they contribute to thalamocortical transmission (Huettner, 2003), so there is 

a clear role for these receptors in BG function. 

Antiparkinsonian potential: 

As in the case for the other ionotropic glutamate receptors, antagonists of kainate 

receptors might be expected to have an antiparkinsonian effect, however there are few 

kainate receptor-specific antagonists available, and commonly-used antagonists such as 

CNQX and DNQX are also antagonists at AMPA receptors, meaning that a specific role for 

kainate receptors cannot be elucidated. A novel antagonist that preferentially inhibits 

kainate receptors over AMPA receptors is NS102 (Johansen et al., 1993), however there are 

no published reports into the use of this compound in parkinsonian symptomatic or 

neurodegenerative models. An alternative kainate-specific antagonist is LY377770, which 

acts at GluK1 (previously known as GluR5). Though it has not been tested in a model of 

parkinsonism there is a published report showing neuroprotection when LY377770 was 

administered in a model of ischaemic stroke, which was associated with improvements in 

locomotor performance (O’Neill et al., 2000). Therefore there is potential that with further 

development of kainate receptor-specific ligands, the potential antiparkinsonian and 

neuroprotective effects of targeting signalling at these receptors could be examined. 

1.6.2 Metabotropic glutamate receptors 

Metabotropic glutamate receptors (mGlu receptors) are a family of eight Class C G-protein 

coupled receptors (GPCRs). Unlike ionotropic glutamate receptors, which mediate fast 

excitatory neurotransmission, mGlu receptors play a modulatory role in both excitatory and 

inhibitory neurotransmission via regulation of neuronal excitability and neurotransmitter 

release. mGlu receptors are divided into three groups on the basis of sequence homology, 

downstream signalling and pharmacology; group I mGlu receptors (mGlu1, mGlu5), group II 

mGlu receptors (mGlu2, mGlu3) and group III mGlu receptors (mGlu4, mGlu6, mGlu7, mGlu8). 

Structurally, mGlu receptors have seven α-helical transmembrane domains (TM1-7) along 

with a hinged globular ‘venus fly trap’ ligand binding domain (VFD) at the N terminus 

(Figure 6). Ligand binding at the VFD causes a conformational change and this triggers 

activation of the intracellular heterotrimeric guanosine nucleotide binding proteins (G 

proteins) with which the receptor is coupled (Kunishima et al., 2000). G proteins are 

located at the inside of the cell membrane and are thought to associate with the second 

intracellular loop of the receptor (Gomeza et al., 1996). Upon GPCR activation, the receptor 
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becomes a guanine nucleotide exchange factor, exchanging the guanosine diphosphate on 

the Gα subunit for a guanosine triphosphate. When this happens it causes the dissociation 

of the GTP-Gα complex from the Gβγ complex, and both of these complexes then go on to 

activate downstream effectors to initiate intracellular signalling cascades (reviewed 

by(Oldham et al., 2008). 

Functional mGlu receptors exist in the cell membrane as dimers, linked via disulphide 

bonds in the cysteine rich region between the VFD and TM1 (Romano et al., 1996). In 

general these dimers are homomeric, however the formation of heterodimeric mGlu 

receptors has also been described in vitro within group I receptor subtypes and within or 

between group II and group III receptor subtypes (Doumazane et al., 2011). Further to this, 

functional mGlu2/mGlu4 heteromers have very recently been reported in vivo in the rodent 

striatum, with important impacts on pharmacological response to modulation (Yin et al., 

2014) due to the necessity of coactivation with ligands at each receptor subtype 

(Kammermeier, 2012). This added level of complexity is yet to be investigated in detail and 

will certainly be of interest when it is. 

 

 

Figure 6: General structure of a metabotropic glutamate receptor monomer. Glutamate and other 
orthosteric ligands bind within the venus flytrap domain (VFD) at the N terminus of the receptor 
while allosteric ligands bind within the 7 transmembrane domains. Glutamate/agonist binding 
causes a conformational change in the receptor that activates the intracellular G protein trimer (α, β, 
γ) with which the receptor is coupled. mGlu receptors are present in the cell membrane as dimers 
that are linked by disulphide bridges in the cysteine-rich region between the VFD and TM1. 
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Activity of mGlu receptors is limited by GPCR kinases (GRKs), which phosphorylate the 

activated receptor and cause it to associate with β-arrestin proteins, inhibiting its 

availability to further interact with the G-protein heterotrimer (Gurevich et al., 2012). In 

addition, certain mGlu receptor subtypes can be post-translationally modified in other 

ways, including sumoylation and ubiquitination, often with as yet unidentified effects on 

physiological function (reviewed by(Mao et al., 2011). 

1.6.2.1 Group I mGlu receptors 

Structure and signalling: 

Group I mGlu receptors comprise mGlu1 (6 splice variants mGlu1a-f) and mGlu5 (2 splice 

variants, mGlu5a-b) and are predominantly located at the post-synaptic membrane 

(Niswender et al., 2010; Shigemoto et al., 1997). Upon ligand binding, this group of 

receptors couples through Gαq, leading to activation of phospholipase C (PLC), which 

hydrolyses the phosphoinositide phosphatidylinositol-4,5-bisphosphate (PIP2) that is 

present within the cytosolic side of the cell membrane, generating diacyl glycerol (DAG) 

and inositol-1,4,5-trisphosphate (IP3). IP3 diffuses into the cytoplasm where it binds to 

receptors on the endoplasmic reticulum, causing the release of Ca2+ into the cytoplasm and 

thereby generating a slow excitatory post synaptic potential (EPSP) (Congar et al., 1997). In 

addition, the Ca2+ and DAG together activate protein kinase C (PKC), a key regulator of 

many intracellular cascades (Tanaka et al., 1994) that importantly potentiates the NMDA 

response by reduction of Mg2+ block (Chen et al., 1992). Activation of group I mGlu 

receptors also regulates ion channel conductance, suppressing M-type K+ conductance and 

activating non-specific cation conductances, with the effect of enhancing neuronal 

excitability (Chuang et al., 2000; Gee et al., 2002; Ikeda et al., 1995).  Alongside G proteins, 

group I mGlu receptors also interact with other intracellular proteins such as Homer 

proteins and arrestins, which can lead to activation of cascades such as the mitogen-

activated protein kinase (MAPK) pathway that influence transcription and are involved in 

synaptic plasticity (reviewed by(Gerber et al., 2007; Hermans et al., 2001).  

Expression in the BG: 

Group I mGlu receptors are widely expressed in the rodent BG, with a relatively higher 

expression of mRNA for mGlu5 compared with mGlu1 in most regions (Messenger et al., 

2002; Testa et al., 1994), suggesting that mGlu5 would be a good target for normalisation of 

signalling. Within the SNc there is a higher expression of mGlu1 than mGlu5, suggesting that 

inhibition of mGlu1 might have neuroprotective effects, and activation of these receptors 

http://en.wikipedia.org/wiki/Phosphatidylinositol_4,5-bisphosphate
http://en.wikipedia.org/wiki/Inositol_1,4,5-trisphosphate
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causes a Ca2+-independent and Na+-dependent inward current in dopaminergic neurones 

(Guatteo et al., 1999). In addition to their postsynaptic role, group I mGlu receptors are 

also thought to be present presynaptically where their activation moderately inhibits 

neurotransmitter release. Indeed, a reduction of EPSCs/EPSPs has been demonstrated in 

SNc dopamine neurones upon application of a group I mGlu receptor agonist (Bonci et al., 

1997; Wigmore et al., 1998) and also in the striatum, where group I mGlu receptors on 

nigrostriatal terminals can be activated by glutamate spillover to inhibit dopamine release 

(Zhang et al., 2003). The mechanism by which this counterintuitive group I-mediated 

inhibition of neurotransmission occurs has not been confirmed, however in the nigra it has 

been suggested that it might be an indirect effect attributable to the release of an NMDA 

receptor-dependent inhibitory retrograde messenger (Wigmore et al., 1998) or secondary 

to an increased release of GABA (Bonci et al., 1997). In the striatum, the inhibition of 

dopamine release is likely mediated by mGlu1 and might involve activation of Ca2+-

dependent K+ channels (Zhang et al., 2003).  

Antiparkinsonian potential: 

Since group I mGlu receptors predominantly facilitate glutamatergic signalling there has 

been much interest in the potential antiparkinsonian effects of inhibiting these receptor 

subtypes using antagonists or negative allosteric modulators. In general it seems that 

targeting of mGlu5 is a more successful antiparkinsonian and neuroprotective strategy than 

targeting mGlu1 (Dekundy et al., 2006; Ossowska et al., 2007; Szydlowska et al., 2007). 

Nevertheless there are reports of neuroprotection at the nigral level with local 

intracerebral infusion of the mGlu1 antagonist LY367385 in 6-OHDA-lesioned rats (Vernon 

et al., 2007), which is not unexpected given the abundant mGlu1 expression in the SNc. 

Reversal of parkinsonian symptoms has been demonstrated using the mGlu5 allosteric 

antagonists MPEP and MTEP in the haloperidol-induced catalepsy model (Dekundy et al., 

2006; Ossowska et al., 2001) and in 6-OHDA-lesioned rats (Ambrosi et al., 2010; Breysse et 

al., 2002). While this symptomatic relief did not translate into the MPTP-treated primate 

model using MTEP as a monotherapy (Johnston et al., 2010), there is evidence that a 

negative allosteric modulator (NAM) of mGlu5, AFQ056, can potentiate the 

antiparkinsonian effects of a low dose of L-DOPA in this model (Grégoire et al., 2011). 

In addition to symptomatic improvements there is a wealth of evidence for a 

neuroprotective effect of the mGlu5 antagonist MPEP in PD models such as 6-OHDA-

lesioned rats (Armentero et al., 2006; Vernon et al., 2005) and MPTP-treated rodents 
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(Aguirre et al., 2005; Battaglia et al., 2004; Hsieh et al., 2012). Interestingly, Ambrosi et al. 

(2010) reported that in rats with a partial 6-OHDA lesion, chronic treatment with MPEP had 

a symptomatic effect but did not provide neuroprotection, in contrast to another study 

using the same model where MPEP was reported to reverse STN hyperactivity and protect 

against cell loss (Chen et al., 2012). 

Though mGlu5 antagonists/NAMs have not been tested in clinical trials for their effects on 

PD motor function, two NAMs, AFQ056 and dipraglurant, are currently in development as 

potential antidyskinetic therapies for patients suffering from L-DOPA-induced dyskinesia 

(Berg et al., 2011; Kumar et al., 2013; Maggos, 2012; Stocchi et al., 2013). 

1.6.2.2 Group II mGlu receptors 

Structure and signalling: 

Group II mGlu receptors comprise mGlu2 (only one form) and mGlu3 (4 splice variants, 

mGlu3, Δ2, Δ4, Δ2Δ3) and are located predominantly presynaptically in the peri-synaptic 

zone, though they have also been localised postsynaptically (Niswender et al., 2010; 

Shigemoto et al., 1997). This group of receptors couples through Gαi/o, negatively 

regulating the enzyme adenylate cyclase (AC) and thus reducing the production of the 

cellular second messenger cyclic adenosine monophosphate (cAMP). This in turn reduces 

the activity of cAMP-dependent protein kinase A (PKA), reducing phosphorylation of K+ 

channels and thereby increasing their activity (Cain et al., 2008; Lesage et al., 2000). In 

addition, the liberation of Gβγ via Gαi activation leads to inhibition of L-type and N-type 

Ca2+ channels (Chavis et al., 1994; Ikeda et al., 1995; McCool et al., 1996), restricting the 

entry of calcium into the cell and therefore inhibiting depolarisation and neurotransmitter 

release (Zamponi et al., 2013). Group II mGlu receptors can act as autoreceptors on 

glutamatergic terminals and also as heteroreceptors at inhibitory (GABAergic) or 

neuromodulatory (e.g. noradrenaline) terminals to negatively regulate neurotransmitter 

release (Lorrain et al., 2003; Salt et al., 1995; Xi et al., 2002). 

Expression in the BG: 

Group II receptors are widely expressed in the BG, with a preference towards mGlu3 over 

mGlu2. mRNA expression studies have identified mGlu2 in the STN and cortex, with maybe 

some weak expression in the SNr, GP and VM thalamus (Messenger et al., 2002; Ohishi et 

al., 1993a; Testa et al., 1994). On the other hand mGlu3 was found to be expressed in every 

nucleus in the BG and additionally in glia, though in contrast to Messenger et al.,  Testa et 
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al. suggested that the expression found in the GP and EPN is attributable to glial and not 

neuronal expression, and Ohishi et al. reported no expression in the STN and SN 

(Messenger et al., 2002; Ohishi et al., 1993b; Tanabe et al., 1993; Testa et al., 1994). With 

regard to subthalamonigral signalling, the fact that mGlu2 and mGlu3 are generally found to 

be expressed by the STN might mean that group II mGlu receptors function as 

autoreceptors at these synapses, and in fact dense staining for group II mGlu receptor 

protein has been found in the SNc (Petralia et al., 1996). In addition, group II receptors 

have been localised to the presynaptic membrane, at least at the subthalamonigral synapse 

targeting the SNr (Bradley et al., 1999a), and accordingly activation of these receptors 

inhibits glutamate release into the SNc and SNr (Bradley et al., 2000; Wigmore et al., 1998). 

Antiparkinsonian potential: 

Given their negative regulation of glutamate release, activation of group II mGlu receptors 

has been investigated as a potential antiparkinsonian strategy. Broad spectrum group II 

agonists such as DCG-IV and LY379268 have shown efficacy in symptomatic models of PD 

such as reserpine-induced akinesia when administered intracerebrally (Dawson et al., 2000; 

Murray et al., 2002). Neuroprotective effects have also been reported following systemic or 

intracerebral treatment with the group II agonists DCG-IV, LY379268 and 2R,4R-APDC in the 

6-OHDA-lesioned rat (Chan et al., 2010; Murray et al., 2002; Vernon et al., 2005) and MPTP-

treated rodent (Battaglia et al., 2003; Matarredona et al., 2001). 

Additionally, neuroprotection has been shown against excitotoxic insults both in vitro using 

DCG-IV, 4C3HPG and L-CCG-I (Bruno et al., 1997) and in vivo using LY379268 (Corti et al., 

2007), an effect that is seemingly dependent on activation of astrocytic mGlu3 and might 

involve the subsequent release of nerve growth factors from these cells (Ciccarelli et al., 

1999). In fact, activation of group II mGlu receptors induces release of multiple growth 

factors, including glial derived neurotrophic factor (GDNF) in striatal neurones (Battaglia et 

al., 2009) and brain-derived neurotrophic factor (BDNF) in the cortex and hippocampus (Di 

Liberto et al., 2010), which likely contribute to the protective effect of activating these 

receptors. 

1.6.2.3 Group III mGlu receptors 

Structure and signalling: 

There are four receptor subtypes within the group III mGlu receptors; mGlu4 (only one 

form), mGlu6 (3 splice variants, mGlu6a-c), mGlu7 (5 splice variants, mGlu7a-e) and mGlu8 (3 
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splice variants, mGlu8a-c) (Niswender et al., 2010). Group III mGlu receptors are 

predominantly presynaptically located and reside in the active zone (Shigemoto et al., 

1997), where they act as autoreceptors on glutamatergic terminals and also as 

heteroreceptors on GABAergic terminals (Salt et al., 1995; Turner et al., 1999). They are 

thought to be endogenously activated by glutamate spillover (Mitchell et al., 2000; 

Scanziani et al., 1997; Vera et al., 2012), which implies that they may play an important role 

where glutamate transmission is pathologically hyperactive such as in the case of 

Parkinson’s disease. 

Similarly to group II, group III mGlu receptors are negatively coupled via Gαi/o to AC, 

decreasing the production of cAMP and thus deactivating PKA. The inhibition of PKA leads 

to reduced phosphorylation and hence increased activation of two-pore K+ channels, and in 

addition the release of the Gβγ complex is also known to activate K+ ion channels (Cain et 

al., 2008; Niswender et al., 2008a; Saugstad et al., 1997), thereby altering neuronal 

excitability. Activation of group III mGlu receptors also leads to inhibition of N-type and/or 

P/Q-type Ca2+ channels, decreasing the probability of neurotransmitter release (Martín et 

al., 2007; Millán et al., 2002; Stefani et al., 1999; Trombley et al., 1992). 

In addition to their classical signal transduction pathways, group III mGlu receptors also 

interact with a variety of other proteins and signalling cascades. For example, the 

neuroprotective effect of group III mGlu receptor activation in cultured cerebellar granule 

cells was produced via G-protein-mediated activation of both the MAPK and 

phosphoinositide-3-kinase (PI-3-K) pathways (Iacovelli et al., 2002). Further C-terminal 

interactions are found within group III receptor subtypes and splice variants for multiple 

scaffolding, signalling and cytoplasmic proteins (reviewed in detail by(Enz, 2007). Briefly 

these include: 

 The scaffolding proteins GRIP and PICK1 (which additionally interact with 

ionotropic glutamate receptors) and Syntenin (which interacts with PICK1). 

 The signalling proteins PKA and PKC (which phosphorylate the mGlu receptor and 

inhibit calmodulin binding), Calmodulin (which inhibits PKC-mediated receptor 

phosphorylation and displaces Gβγ to initiate its signalling cascade), Gβγ (which 

inhibits P/Q-type Ca2+ ion channel conductance), Pias1 (part of the sumoylation 

cascade) and protein phosphatase γ1 (PPγ1). 
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 The cytoplasmic proteins Filamin A (which crosslinks receptors to actin in the 

absence of Calmodulin) and α-tubulin (which affects vesicle trafficking and 

endo/exocytosis). 

Therefore it is clear that on top of the classical effects of activation of group III mGlu 

receptors of reducing cAMP production and altering ionic conductance, many complex 

signalling interactions may also be activated depending on which receptor subtype and/or 

splice variant is expressed by the particular neurone. 

Expression in the BG: 

The expression of mGlu6 is restricted to the retina (Nakajima et al., 1993) therefore it will 

not be considered further in this thesis. The expression of mRNA for mGlu4, mGlu7 and 

mGlu8 in the BG, cortex and thalamus as reported by Messenger et al. (2002) is shown in 

Table 2. 

 

Table 2: Relative expression of mRNA for group III mGlu receptors in the rat basal ganglia as 
reported by Messenger et al. (2002). + to +++++ denotes mild to strong expression. 

 

A fuller analysis of mGlu4 mRNA and protein expression in the rodent BG is given in Chapter 

4. Briefly, mGlu4 is widely expressed within the BG, particularly in the striatum, STN and VM 

and VL thalamic output nuclei (Messenger et al., 2002; Ohishi et al., 1995; Testa et al., 

1994). mGlu4 protein has been identified at high levels in the GP, moderate levels in the 

SNr and EPN, low to moderate levels in the striatum and cortex, and not at all in the STN 

(Bradley et al., 1999b; Bradley et al., 1999c; Broadstock et al., 2012; Corti et al., 2002). 

Electron microscopy studies have localised this protein to the presynaptic membrane in the 

majority of instances, and at both inhibitory and excitatory synapses, suggesting that mGlu4 

BG region mGlu4 mGlu7 mGlu8 

Premotor cortex ++ +++++ ++++ 

Striatum (CPu) +++ ++++ ++ 

GP(e) + + + 

STN ++ ++ ++ 

EPN (GPi) + + + 

SNr + + + 

SNc + + ++ 

Thalamus (VM / VL) +++++ +++ + 
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acts as an autoreceptor and heteroreceptor in the BG (Bradley et al., 1999c; Corti et al., 

2002). In particular it appears to modulate striatopallidal, striatonigral and 

subthalamonigral signalling. 

An analysis of mGlu7 mRNA and protein expression in the rodent BG is given in Chapter 5. 

Briefly, mRNA for mGlu7 is expressed throughout the BG at low levels, with slightly higher 

levels in the STN and more intense expression in the striatum, VM and VL thalamic nuclei 

and premotor cortex (Messenger et al., 2002; Ohishi et al., 1995). Electron microscopic 

studies have identified mGlu7 receptor protein located presynaptically in the CPu, GP, EPN 

and SNr (Bradley et al., 1999b; Kosinski et al., 1999), suggesting that it plays a role in 

modulation of corticostriatal, striatopallidal, and striatonigral signalling. The presence of 

mGlu7 receptors on presynaptic terminals of subthalamonigral neurones has not been 

investigated, however given the expression of mGlu7 mRNA in the STN and the intense 

immunohistochemical staining for mGlu7 in the SNr and EPN it is plausible that these 

receptors are also present presynaptically at this synapse. 

Compared with the other group III receptor subtypes, mGlu8 has not been well-

characterised with regard to its expression within the BG. Like mGlu4 and mGlu7, it is 

expressed at low levels by the GP, EPN and SNr, and at moderately low levels in the STN. 

Compared with the other group III receptor subtypes, mGlu8 expression in the striatum is 

lower, however it has increased relative expression in the SNc (Messenger et al., 2002; 

Robbins et al., 2007). At the protein level, mGlu8 has been described in the striatum (CPu 

and NAc;(Broadstock et al., 2012; Zhang et al., 2009), SNc (Gu, 2003), and at low levels in 

the SNr (Broadstock et al., 2012) but has neither been investigated in other regions nor its 

pre- or postsynaptic localisation ascertained within the BG. On the other hand, it has been 

localised both pre- and postsynaptically in the dentate gyrus and also on astrocytes (Tang 

et al., 2001), suggesting that in other brain regions it functions as an autoreceptor as well 

as having postsynaptic functions and a possible role in neuroinflammation. Experimental 

investigation of the location and targetability of mGlu8 might also give us some clues about 

its localisation and function. For example, the selective mGlu8 agonist (S)-3,4-DCPG failed to 

inhibit release of the glutamate analogue [3H]-D-aspartate from nigral prisms, suggesting 

that it is not present and/or functional at the subthalamonigral synapse as an autoreceptor 

(Broadstock et al., 2012), however in vitro evidence showed that both (S)-3,4-DCPG and an 

mGlu8 PAM (AZ12216052) were able to protect retinoic acid-differentiated SH-SY5Y 

dopaminergic cells from MPP+-induced degeneration (Jantas et al., 2014), suggesting that 
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activation of postsynaptic mGlu8 receptors on dopaminergic neurones may have a 

neuroprotective effect in the absence of attenuation of glutamate release. 

 

Antiparkinsonian potential: 

Electrophysiological and microdialysis studies have shown that activation of group III mGlu 

receptors modulates signalling at multiple synapses within the BG: 

 In the striatum: L-AP4 and L-SOP depress corticostriatal EPSPs and intrastriatal 

IPSPs (Cuomo et al., 2009; Pisani et al., 1997). 

 In the GP: L-AP4 and L-SOP reduce GABA release in the GP in vivo (MacInnes et al., 

2008) and reduce GABAA-mediated IPSCs at the striatopallidal synapse in brain 

slices (Matsui et al., 2003; Valenti et al., 2003). In addition group III mGlu receptors 

also function as autoreceptors on the glutamatergic subthalamopallidal projection. 

Activation of these receptors by L-AP4 reduces subthalamopallidal EPSCs in rat GP 

(Matsui et al., 2003). 

 In the SNr: L-SOP and L-AP4 can reduce glutamate release into the SNr, likely as a 

result of inhibiting release at the subthalamonigral synapse (Austin et al., 2010; 

Wittmann et al., 2001). The direct pathway synapse onto the SNr is a GABAergic 

projection originating in the striatum, and both L-AP4 and L-SOP reduce GABA 

release from these striatonigral neurones (Wittmann et al., 2001). 

 In the SNc: L-AP4 was found to reduce EPSCs in the SNc, suggesting a reduction of 

glutamate release from subthalamonigral neurones (Valenti et al., 2005; Wigmore 

et al., 1998). This inhibition of EPSCs is more efficient than the inhibition of IPSCs 

that has also been described in the SNc, suggesting that group III mGlu receptors 

preferentially regulate excitatory transmission in this region (Bonci et al., 1997). 

The balance between inhibition of signalling at the striatopallidal and the striatonigral 

synapses will have an important effect on the antiparkinsonian efficacy of targeting group 

III mGlu receptors, as each effect will oppositely modulate the net output of the BG from 

the EPN/SNr. Evidence from PD models where group III mGlu receptor agonists have been 

administered systemically or intracerebroventricularly (i.c.v.) supports the idea that the net 

effect of activation of these receptors within the parkinsonian BG is therapeutically 

beneficial. 

The antiparkinsonian potential of targeting group III mGlu receptors has been 

demonstrated in a variety of models of PD. For example, haloperidol-induced catalepsy can 
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be reversed by administration of ACPT-I, either locally into the striatum, GP or SNr 

(Konieczny et al., 2007; Lopez et al., 2007) or systemically (Lopez et al., 2012), or by i.c.v. 

administration of L-AP4 (Valenti et al., 2003). Similarly, reserpine-induced akinesia is 

reversed by intranigral injection of L-SOP or L-AP4 (Austin et al., 2010), intrapallidal 

injection of L-SOP, or i.c.v. injection of either agent (MacInnes et al., 2004; Valenti et al., 

2003). Relief of akinesia and forelimb impairments have also been reported in rats with 6-

OHDA-induced nigrostriatal degeneration following systemic treatment with ACPT-I, or 

intrastriatal or i.c.v. infusion of L-AP4 (Cuomo et al., 2009; Lopez et al., 2012; Valenti et al., 

2003). 

As well as providing symptomatic relief, the broad spectrum group III mGlu receptor 

agonist L-AP4 has also shown neuroprotective potential when administered locally to the 

SNc in 6-OHDA-lesioned rats (Austin et al., 2010; Vernon et al., 2005; Vernon et al., 2006), 

and both i.c.v. (R,S)-PPG and intrahippocampal ACPT-I have been demonstrated to protect 

against other forms of excitotoxic injury in vivo (Domin et al., 2014; Gasparini et al., 1999). 

Identification of the key receptor subtypes involved: 

The success of widespread targeting of group III mGlu receptors led to attempts to dissect 

out which particular receptor subtype was responsible for the antiparkinsonian and 

neuroprotective actions elicited by these broad spectrum agonists. 

With regard to antiparkinsonian actions, which are thought to result from suppression of 

the increased activity in the indirect pathway, studies in mGlu4 knock-out mice implicated 

this receptor subtype in the effects of L-AP4 of reducing transmission at the striatopallidal 

synapse (Valenti et al., 2003). In addition, mGlu4 appears to play an important role in the 

neuroprotective actions of broad spectrum group III mGlu receptor agonists. For example, 

in vitro studies using cortical cultures prepared from wild type and mGlu4
-/- mice found that 

the neuroprotection afforded by the broad spectrum agonists L-AP4, (R,S)-PPG and L-SOP 

against NMDA-mediated toxicity in wild-type cultures was lost in mGlu4
-/- cultures, 

implicating mGlu4 in the protective effect. What’s more, (R,S)-PPG was protective against 

striatal NMDA infusion in wild type but not mGlu4
-/- mice (Bruno et al., 2000), lending 

further support to the importance of this receptor subtype in mediating protection against 

excitotoxicity. With respect to protection of dopaminergic neurones, mGlu4 was also 

implicated in L-AP4-mediated inhibition of excitatory signalling in the rat SNc (Valenti et al., 

2005). These findings led to speculation that the selective targeting of this receptor 

subtype might offer similar effects; the specific antiparkinsonian and neuroprotective 
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potential of selectively targeting mGlu4 is explored further in Chapter 2 (section 2.1.3) and 

Chapter 4 (section 4.1.3). 

In addition to the strong evidence for the involvement of mGlu4 in the antiparkinsonian and 

neuroprotective effects of broad spectrum group III agonists, in the experiment by Bruno et 

al. (2000) even mGlu4
-/- mice were partially protected against excitotoxic cell loss by high 

doses of (R,S)-PPG. The authors suggest that this is due to activation of mGlu7 receptors, 

therefore activation of this subtype might also be expected to be a useful strategy in the 

development of neuroprotective therapies. The specific antiparkinsonian and 

neuroprotective potential of selectively targeting mGlu7 is explored in Chapter 5 (section 

5.1.2). 

mGlu8 has not been widely investigated as a potential target for 

antiparkinsonian/neuroprotective therapies. Though (S)-3,4-DCPG has been reported in 

conference proceedings to provide functional neuroprotection in a lactacystin-infused rat 

model of PD, possibly involving attenuation of inflammation (Williams et al., 2010), no 

further publications have followed this report and thus it is possible that the findings could 

not be reproduced. Instead, this receptor subtype has predominantly been studied as a 

potential target in schizophrenia, seizures and anxiety disorders (Duvoisin et al., 2010; Lee 

et al., 2003; Robbins et al., 2007). 

Overall the best candidate for subtype-specific modulation within the group III mGlu 

receptors in order to obtain an antiparkinsonian and/or neuroprotective effect appears to 

be mGlu4, followed by mGlu7 and then mGlu8. When targeting these receptors with subtype 

specific ligands it would be preferable to use positive allosteric modulators rather than 

orthosteric or allosteric agonists, for reasons that are explained in the following section. 

1.6.3 Orthosteric versus allosteric modulation 

Receptor activation can be achieved directly using an orthosteric or allosteric agonist, or 

the probability of physiological activation enhanced using a positive allosteric modulator 

(PAM). Orthosteric or allosteric agonists directly activate the receptor upon binding, 

whereas PAMs increase the probability of activation of the receptor but require 

simultaneous binding of endogenous ligand for receptor activation. 

Allosteric ligands are preferable to orthosteric ligands from the point of view of group III 

receptor subtype specificity. Orthosteric ligands bind at the glutamate binding site in the 

VFD and are therefore difficult to design to be subtype-specific due to the evolutionary 
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conservation of this region. Allosteric ligands, on the other hand, generally bind within the 

heptahelical (7TM) domain, which tends to have more variability between receptor 

subtypes, giving greater scope for designing subtype-specific molecules. 

Within allosteric ligands, there are several advantages to using allosteric modulators rather 

than agonists, which have been reviewed in more detail elsewhere (Engers et al., 2012; Flor 

et al., 2012) and are briefly presented here. Using a positive allosteric modulator rather 

than an allosteric or orthosteric agonist at group III mGlu receptor subtypes might be 

expected to produce a more physiological means of modulation of signalling, since 

allosteric modulators rely on the binding of endogenous ligand for receptor activation. This 

should mean that only those receptors that are present in areas of pathologically increased 

extracellular glutamate concentration would be expected to be affected, and the activity of 

these receptors would be altered in a phasic rather than a tonic fashion due to the reliance 

on glutamate release. This should limit receptor desensitisation compared with using an 

agonist, and therefore increase the therapeutic dosing range of the compound. In addition, 

the specific modulation only where glutamate signalling is pathologically increased should 

minimise adverse events that might be caused by indiscriminate targeting of glutamatergic 

and GABAergic signalling. The higher potency of glutamate at mGlu4 (EC50 = 3-38 µM) and 

mGlu8 (EC50 = 3-11 µM) compared with mGlu7 (EC50 >1000 µM) makes the former receptors 

preferable targets for allosteric modulation than the latter due to this reliance on co-

stimulation with endogenous glutamate (Cartmell et al., 2000). 

A final advantage of allosteric over orthosteric ligands is that due to their tendency to be 

hydrophobic molecules (rather than hydrophilic amino acid analogues as is the case for 

many orthosteric ligands) they have increased blood-brain barrier penetrance. This is a 

significant obstacle in the research and development of therapeutics targeted at the 

central nervous system, and is important because by increasing the brain penetrance of a 

compound the therapeutic dose can be reduced, which will minimise peripheral activation 

of target receptors that could cause adverse events. 

However, a downside of this hydrophobicity is that it limits solubility in biocompatible 

vehicles, thus making the formulation of a homogenous and stable dosing solution more 

complicated. In addition, due to their enhanced binding with biomolecules, hydrophobic 

compounds tend to be less bioavailable (reduced free fraction) and are more likely to 

exhibit off-target effects by non-specifically binding to non-target receptors. 
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1.7 Modelling Parkinson’s disease 

During the early stages of research into PD, whether it be defining mechanisms or testing 

novel therapeutics, it is necessary to use animal models. In this section I will concentrate on 

mammalian models of PD as they are the best-characterised and are also the most utilised 

for testing of potential treatments, however increasing amounts of research in to the 

genetics of PD and mechanisms of degeneration is carried out in transgenic D. 

melanogaster and C. elegans models, and these models can also be used for simple drug 

screens (Lim, 2010). 

Parkinson’s disease can be modelled preclinically in mammals using a variety of protein 

inhibitors, neurotoxins and genetic modifications. The ideal model would reproduce both 

the hallmark pathology of PD (nigrostriatal – and some extrapyramidal – degeneration and 

the presence of LBs), so-called construct validity, and the symptomatology of PD 

(bradykinesia, rigidity, tremor and perhaps non-motor symptoms), so-called face validity. 

The L-DOPA-responsiveness of these motor symptoms is also often used to determine the 

predictive validity of preclinical models of PD, given that this is the gold-standard treatment 

in humans to which all new therapies would be compared. Ideally, the mechanisms of 

degeneration would also be relevant to the human disease, and this is especially important 

when choosing a model for testing neuroprotective strategies. 

1.7.1 Symptomatic models of PD 

1.7.1.1 Reserpine 

Reserpine is an irreversible inhibitor of VMAT-2, which causes a severe depletion of central 

and peripheral catecholamines. Behaviourally this results in abnormal posture, tremor, 

rigidity and hypokinesia in rodents that persists for approximately 72 hours if untreated 

(Glow, 1959), but which can be reversed by administration of catecholamine precursors 

(Carlsson et al., 1957). It is a crude model of Parkinson’s disease since it does not selectively 

deplete dopamine but also serotonin and noradrenaline. In addition, it does not reproduce 

either of the neuropathological hallmarks of Parkinson’s disease, namely nigrostriatal 

degeneration and the presence of Lewy bodies. Nevertheless despite this poor construct 

validity it has a good degree of predictive validity for drugs with antiparkinsonian efficacy 

(see(Duty et al., 2011), and may even be predictive of drugs with antidyskinetic potential 

(Johnston et al., 2005). 
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1.7.1.2 Haloperidol 

The neuroleptic drug haloperidol is a dopamine receptor antagonist, acting on post-

synaptic D1 and D2 receptors (Sanberg, 1980). The resulting alterations in activity of striatal 

medium spiny neurones lead to rigidity and catalepsy that persists for 1-2 hours after a 

single administration in rats (Hillegaart et al., 1986). Similarly to the reserpine model, this 

model fails to recapitulate the nigrostriatal degeneration or Lewy body pathology 

associated with PD. Nevertheless this model has likewise shown a moderate to high degree 

of predictive validity for symptomatic effects (see(Duty et al., 2011) and is an inexpensive 

and straightforward test that is regularly carried out for novel compounds. 

1.7.2 Toxin-based models of PD 

PD can be modelled in rodents and non-human primates by toxin-mediated destruction of 

the nigrostriatal pathway. The main toxins used in preclinical research are 6-

hydroxydopamine (6-OHDA) and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). 

Administration of these toxins, either by direct infusion into the brain or by systemic 

injection, causes selective degeneration of dopaminergic cells that mimics the 

degeneration seen in Parkinson’s disease patients. In addition to these classical models, the 

link between pesticide exposure and increased risk of developing PD (section 1.1.2.2) led to 

investigation of pesticides as neurotoxic agents. 

1.7.2.1 6-hydroxydopamine 

The 6-OHDA-lesioned rat is one of the most common animal models of PD used in 

preclinical research, and was first described in 1968 by Urban Ungerstedt. He noted that 

rats given a unilateral intranigral infusion of 6-OHDA displayed marked motor asymmetry. 

Similar motor asymmetry was also noticeable in rats given a unilateral intrastriatal infusion 

of 6-OHDA, but was less severe. Analysis of the brains revealed loss of dopaminergic cell 

bodies in the SNc and dopaminergic terminals in the striatum (Ungerstedt, 1968). 

6-OHDA enters dopaminergic neurones via the dopamine transporter (DAT), however it 

also has affinity for other catecholamine transporters, notably the norepinephrine 

transporter (NET), and is therefore commonly given alongside a NET inhibitor such as 

desipramine to enhance dopaminergic specificity. Once inside the cell, 6-OHDA causes 

rapid and irreversible disturbances in intracellular Ca2+ homeostasis and alterations in 

neuronal firing and membrane properties (Berretta et al., 2005). Neurodegeneration 

results from the ability of 6-OHDA to elicit oxidative stress by autoxidation and generation 

of reactive oxygen species such as the superoxide (·O2
-) and hydroxyl (·OH) radicals (Cohen 
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et al., 1974; Saner et al., 1970; Soto-Otero et al., 2010). 6-OHDA-induced 

neurodegeneration is also associated with neuroinflammation (Henning et al., 2008; Maia 

et al., 2012; Marinova-Mutafchieva et al., 2009; Walsh et al., 2011) and inhibition of 

mitochondrial function (Kupsch et al., 2014), both of which are mechanisms thought to 

contribute to human PD pathology (Keeney et al., 2006; McGeer et al., 1988; Mirza et al., 

2000; Schapira et al., 1990). Also in common with the human disease, the 6-OHDA model of 

PD is additionally associated with increased oxidation of biomolecules (Kikuchi et al., 2011; 

Sanchez-Iglesias et al., 2007) and 6-OHDA has been reported to inhibit proteasomal 

function in vitro (Elkon et al., 2004). Along with mechanistic similarities to the human 

disease regarding neurodegeneration, the generation of motor symptoms within the 6-

OHDA-lesioned BG also reflects the pathological state in humans, for example the 

development of motor deficits in 6-OHDA-lesioned rats is associated with increased 

striatopallidal transmission (Bianchi et al., 2003; Jian et al., 1993) and increased STN 

signalling (Breit et al., 2005; Breit et al., 2006; Kreiss et al., 1997), demonstrating a 

pathological overactivation of the indirect pathway  and hence an increase in BG output 

from the SNr/EPN. 

The site of 6-OHDA administration (Francardo et al., 2011; Yuan et al., 2005) as well as the 

dose used (Baluchnejadmojarad et al., 2004; Truong et al., 2006; van Oosten et al., 2002) 

results in variable severity of behavioural measures and cell loss, and this variability is 

exploited in order to model different stages of PD. 

When 6-OHDA is infused into the SNc, where the A9 dopaminergic cell bodies reside, the 

lesion is severe, with a typical TH-positive cell loss of ≥80% that is mostly complete within 

4-5 days (Hanrott et al., 2008; Maler et al., 1973). Similarly, infusion of a high dose of 6-

OHDA into the medial forebrain bundle (MFB), where the A9 axons pass between the 

substantia nigra and the striatum, also causes a severe loss of TH-positive cells, typically 

≥90% (Grealish et al., 2008; Truong et al., 2006). The toxin is taken up into the axon and 

travels to the cell bodies in the SNc by retrograde transport, therefore the lesion takes 

longer to reach its stable end-point compared with SNc infusion, typically 14 days (Walsh et 

al., 2011). Due to the presence of A10 as well as A9 dopaminergic fibres in the MFB, these 

lesions also typically result in loss of cell bodies in the ventral tegmental area and 

dopaminergic terminals in the nucleus accumbens (Grealish et al., 2008). Both SNc and 

MFB infusions model the extensive nigrostriatal denervation of end-stage PD, with a 

predominant necrotic mode of cell death (Hanrott et al., 2008; Jeon et al., 1995; Maler et 
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al., 1973), though some apoptotic features have been noted following MFB lesioning (He et 

al., 2000). Due to the severity of the lesion produced following MFB administration of 6-

OHDA, rats with these lesions quickly develop motor complications reminiscent of LID 

when repeatedly exposed to levodopa. This model is discussed in more detail in Chapter 6 

section 6.1.1. The severity of SNc or MFB lesions also means that they are almost 

exclusively performed unilaterally (i.e. one side of the brain) to avoid the high mortality and 

intensive care required with complete bilateral lesions (Paillé et al., 2007; Ungerstedt, 

1971a). This has the advantage that the intact hemisphere acts as an internal control, and 

therefore allows for comparison of functional performance between the healthy and 

impaired sides of the body as well as neurological comparisons between the intact and 

lesioned nigrostriatal tracts. When a lesion is performed unilaterally, parkinsonian 

symptoms are apparent only on the contralateral side of the body, comprising postural, 

sensorimotor, reaction time and fine motor control deficits (Cenci et al., 2002). 

When 6-OHDA is infused into the dorsal striatum (a single structure in the rat, referred to 

as the caudate-putamen or CPu) the degree of cell loss is more variable, tending to be 

between 50 and 80% (Blandini et al., 2007; Branchi et al., 2008; Roedter et al., 2001), 

though this is highly dependent on the dose and site of injection. Although not technically a 

progressive model, the degeneration occurs more slowly following striatal infusion of 6-

OHDA compared with MFB or SNc due to the time taken for the toxin to be retrogradely 

transported to the cell body. The site of injection within the CPu has an important influence 

over the behavioural characteristics resulting from the lesion, as particular areas are more 

or less innervated by the A9 and A10 projections (Kirik et al., 1998). The partial and slower-

developing nature of striatal lesions more closely mimics the pre- and early symptomatic 

phases of PD, eliciting an apoptotic mode of cell death (Ariano et al., 2005; Hanrott et al., 

2008). Though most often performed unilaterally as in the case of SNc and MFB lesions, the 

reduced severity of degeneration associated with striatal lesions mean that they can also 

be performed bilaterally, resulting in a more accurate representation of the human 

condition. Bilateral lesions are reflected behaviourally with symptoms reminiscent of 

classical PD symptoms; akinesia, rigidity and tremor (Lindner et al., 1999). 

Overall, the 6-OHDA model reproduces the selective degeneration of dopaminergic cells, 

recapitulating the main pathological hallmark of PD, and the mechanisms of degeneration 

are also similar to those in the human disease. The model is extensively characterised, both 

with regard to the degenerative characteristics and the associated behavioural changes, 
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which are driven by comparable changes in basal ganglia signalling as in human PD and for 

which many robust tests have been devised. On the other hand, this model fails to 

reproduce the α-synuclein-related Lewy body pathology that is characteristic of the human 

disease (though there is a single report of increased formation of PINK-1/parkin-positive 

inclusions in 6-OHDA lesioned rats;(Um et al., 2010) and also shows none of the 

extrapyramidal degeneration encountered in human idiopathic PD. 

1.7.2.2 MPTP 

This neurotoxin was discovered by accident when drug users in the late 1970s and early 

1980s were exposed to batches of 1-methyl-4-phenyl-4-propionoxypiperidine (MPPP) that 

had been contaminated with the by-product 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine 

(MPTP), causing them to develop severe and irreversible symptoms reminiscent of 

idiopathic Parkinson’s disease (Langston et al., 1983a). The post mortem analysis of one of 

these sufferers revealed monoaminergic cell loss that was mostly restricted to the SNc and 

also the presence of a Lewy-like inclusion (Davis et al., 1979). MPTP causes 

neurodegeneration via its active metabolite MPP+, which is formed when MPTP is 

metabolised by MAO B in glial cells (Chiba et al., 1984), and acts as a complex I inhibitor 

(Nicklas et al., 1985). This causes mitochondrial dysfunction, generation of ROS and 

eventual cell death as outlined in section 1.2.1. It is particularly damaging to dopaminergic 

neurones as MPP+ is a substrate for the DAT, leading to its accumulation in these cells 

(Gainetdinov et al., 1997; Javitch et al., 1985). 

These findings led researchers to generate a new primate model of PD by repeated 

intravenous administration of MPTP, resulting in a parkinsonian motor phenotype including 

akinesia, rigidity, hunched posture and tremor that was reversible with L-DOPA. When 

examined post mortem, parkinsonian histopathological features were evident, including 

selective loss of nigrostriatal neurones and infiltration of the SNc with immune cells (Burns 

et al., 1983; Langston et al., 1983b), along with a single report of eosinophilic inclusions in 

the locus coeruleus of MPTP-treated squirrel monkeys (Forno et al., 1986). As in the human 

disease, the development of parkinsonian symptoms in MPTP-treated primates has been 

linked to increased activity in the indirect pathway, with increased activity of striatopallidal 

neurones (Robertson et al., 1990), increased firing of the STN (Bergman et al., 1994a) and 

increased output from the GPi (Bergman et al., 1994a) all described in MPTP-treated 

primates. There are also reports of synchronous oscillatory activity driven by the GPe-STN 

in the parkinsonian primate BG (Raz et al., 2000; Tachibana et al., 2011) that is akin to what 

has been found in human PD. Accordingly, transient inactivation, lesioning or high 
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frequency stimulation of the STN of GPi has an antiparkinsonian effect in MPTP-treated 

primates (Baron et al., 2002; Benazzouz et al., 1993; Bergman et al., 1990; Boraud et al., 

1996; Wichmann et al., 1994). 

Though the MPTP-treated non-human primate is the gold standard PD model due to its 

similarities to the human disease, both symptomatically and pathophysiologically, it is an 

exceptionally expensive model and is thus generally reserved for later stages of drug 

development. At earlier stages of preclinical research, the rodent MPTP model may be used 

instead. MPTP is significantly less effective in rats due to increased sequestration of MPP+ 

in vesicles (Staal et al., 2000) but is commonly used in mice to generate a similar bilateral 

parkinsonian phenotype to that seen in non-human primates. The relative resistance to 

MPTP toxicity of mice compared with primates means that the MPTP dosing schedule 

greatly affects the neurodegenerative outcome (Schmidt et al., 2001), however with 

chronic or sub-chronic systemic dosing mice develop partial or full dopaminergic lesions 

respectively (Jackson-Lewis et al., 2007; Tatton et al., 1997), with the presence of nigral 

inflammation (Kohutnicka et al., 1998). Alongside degeneration of dopaminergic neurones, 

one paper reported Lewy-like inclusions and extrapyramidal cell loss, such as degeneration 

in the locus coeruleus, following continuous 30-day infusion with MPTP in mice (Fornai et 

al., 2005), which better recapitulates the idiopathic human disease, though this is by no 

means a robust finding. Behaviourally, MPTP-treated mice show rigidity, akinesia, tremor 

and gait disturbances, which can be measured using behavioural tests such as open field 

locomotor activity and rotarod performance (reviewed by(Sedelis et al., 2001). However, 

the assessment of MPTP-induced behavioural deficits has yielded inconsistent results that 

vary depending on the MPTP dosing regimen employed for the induction of the lesion, 

which could make assessment of the functional effects of neuroprotective therapies 

problematic (Duty et al., 2011). 

The MPTP mouse model is widely used, however there are important practical 

considerations concerning dosing regimen, systemic toxicity that varies depending on 

mouse strain and gender, behavioural assessment, and importantly the safety of the 

investigator, since the effects of MPTP in humans are well-established and irreversible. 

1.7.2.3 Rotenone and other pesticides 

Following the link between pesticide exposure and incidence of parkinsonism, several labs 

investigated the use of complex I-inhibiting pesticides to model the disease in rats. In 

addition to their actions as complex I inhibitors, several pesticides have also been shown to 



80 
 

have proteasome inhibiting effects in vitro (Wang et al., 2006), which means that they 

could enhance more than one potential neurotoxic mechanism. 

The most studied of these is the insecticide rotenone. In 2000, Betarbet et al. reported that 

exposing rats to chronic systemic intravenous rotenone via an osmotic minipump 

reproduced the pattern of degeneration and inclusion bodies typical of PD in around 50% 

of rats, along with hypokinesia, rigidity and a tremor-like phenotype (Betarbet et al., 2000). 

These findings have been replicated by some (Alam et al., 2009; Cannon et al., 2009; Sherer 

et al., 2003), but not all other laboratories that have attempted to characterise this model. 

Among the problems that have been encountered with this model by those labs that have 

failed to replicate the original findings are a high degree of systemic toxicity in liver and 

muscles (Hoglinger et al., 2003; Lapointe et al., 2004), which has been suggested to 

underlie to postural abnormalities, inconsistent loss of TH-positive cells (Lapointe et al., 

2004), and non-specific degeneration of multiple neuronal populations (Hoglinger et al., 

2003). In addition, it has been suggested that the symptoms displayed by rotenone-infused 

animals of postural instability and dystonia, but not often tremor or rigidity, make the 

rotenone model more similar to atypical parkinsonism than idiopathic PD (Hoglinger et al., 

2006). The hepatotoxicity and inconsistent lesioning effect make systemic rotenone 

administration an unreliable model, however there have been subsequent reports that 

local infusion of rotenone into the striatum or MFB also produces a parkinsonian syndrome 

in rats, both biochemically and behaviourally (Saravanan et al., 2005; Sindhu et al., 2005), 

so this approach might be more successfully employed in preclinical research. 

The herbicide paraquat is a structural analogue of MPP+ and has also been investigated as a 

potential toxic agent for modelling PD. Paraquat induces the formation of ROS (Chang et 

al., 2013) and has also been linked to enhancement of α-synuclein fibrillation (Uversky et 

al., 2001), which are two of the potential mechanisms thought to underlie 

neurodegeneration in idiopathic PD. Accordingly, systemic injection of paraquat in mice has 

been demonstrated to cause selective degeneration of nigral dopaminergic cell bodies with 

an inflammatory component (McCormack et al., 2002), however striatal dopamine was 

largely preserved, possibly reflecting compensatory mechanisms. A further study by the 

same group reported the presence of this compensation in younger, but not aged mice 

when exposed to paraquat, the complex III-inhibiting fungicide maneb, or both in 

combination, and this ageing effect was also noted with regard to locomotor deficits 

(Thiruchelvam et al., 2003). In addition to the compensatory mechanisms that may 
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confound interpretation of neuroprotection or behavioural studies, the selectivity of 

paraquat toxicity to dopaminergic neurones has also been questioned (Calò et al., 1990), 

therefore this model is not widely used in preclinical research. 

1.7.3 Proteasomal inhibition to model PD 

Decreased proteasomal activity has been demonstrated in the SNc of idiopathic PD patients 

post mortem (McNaught et al., 2001) and the accumulation of damaged proteins is 

proposed to contribute to neuronal degeneration in this condition. In light of this finding, a 

new rodent model was developed in an attempt to reproduce both neurodegeneration and 

protein pathology, the latter of which is not consistently obtained in either the 6-OHDA or 

MPTP models. Inhibition of the 26/20S proteasome with several different compounds was 

demonstrated to cause protein aggregation and dopaminergic neurotoxicity in vitro 

(Mytilineou et al., 2004; Rideout et al., 2005; Rideout et al., 2001), therefore attempts were 

made to reproduce these results in vivo by administration of proteasome inhibitors in 

rodents with the aim of producing a more partial and gradual model of nigrostriatal 

degeneration with the presence of LB-like pathology. The main proteasome inhibition 

models of PD involve systemic administration of Z-lle-Glu(OtBu)-Ala-Leu-al (PSI) or 

intracerebral infusion of lactacystin. 

In a landmark paper in 2004, McNaught et al. reported that repeated systemic injection of 

PSI in rats caused a delayed degeneration of the nigrostriatal tract, along with 

extrapyramidal degeneration in areas typically affected in idiopathic PD such as the locus 

coeruleus and nucleus basalis of Meynert. This degeneration was associated with α-

synuclein-positive Lewy-like inclusions and a motor phenotype comprising bradykinesia, 

rigidity and abnormal posture (McNaught et al., 2004). At first glance, this seems like an 

almost-perfect model of PD, however over the subsequent few years other groups 

attempted to replicate these results with mixed success. While some groups reported 

similar results (Schapira et al., 2006; Zeng et al., 2006), others could not reproduce the 

model in rats, mice or non-human primates (Bové et al., 2006; Kadoguchi et al., 2008; 

Kordower et al., 2006; Manning-Boğ et al., 2006). In an examination of possible reasons for 

the difficulties in reproducing the results, the original authors suggested that batch 

variability of the PSI between and within suppliers might be the explanation, since this 

peptide aldehyde is hard to keep in stable solution (McNaught et al., 2006). As a result the 

PSI model is not widely used for preclinical modelling of PD.  
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Another proteasome inhibitor that has been tested as a potential agent for modelling PD is 

lactacystin, which is naturally produced by the Streptomyces genus of bacteria (Omura et 

al., 1991). Injection of lactacystin into the nigrostriatal tract causes selective nigrostriatal 

degeneration with induction of oxidative stress and the formation of Lewy-like inclusions 

(Fornai et al., 2003; Lorenc-Koci et al., 2011; Miwa et al., 2005; Xie et al., 2010). 

Behavioural deficits in unilaterally lactacystin-infused rats can be alleviated by L-DOPA, 

which suggests that it has good predictive validity (Konieczny et al., 2014). This model is 

expected to be used increasingly in PD research moving forward, though further 

characterisation of the model is still required. 

1.7.4 Genetic models of PD 

Following the rare cases of familial parkinsonism, attempts have been made to recreate the 

pathology by mutating or knocking out the corresponding genes in mice. 

The most commonly used α-synuclein transgenic models are mice that over-express human 

α-synuclein or mice that express human A53T or A30P mutant α-synuclein proteins under 

neuronal-specific or monoamine-specific promoters. The pattern of degeneration and 

behavioural phenotypes vary between these models, but in general these transgenic 

animals exhibit a moderate behavioural phenotype but with little or no loss of nigrostriatal 

neurones and varying degrees of α-synuclein aggregation (reviewed by(Chesselet et al., 

2011). Improved results have been reported using adeno-associated virus (AAV)-mediated 

delivery of WT or A53T human α-synuclein into the region of the SN, including Lewy-like 

inclusions, striatal dopamine loss and a reduction in the number of TH-positive cells in the 

SN from 3 weeks post-injection, with corresponding behavioural deficits (Kirik et al., 2002). 

A recent comparison between the AAV-mediated α-synuclein model and the 6-OHDA lesion 

model concluded that the AAV α-synuclein model recapitulated idiopathic PD more closely, 

given the larger behavioural deficits recorded with smaller degrees of cell loss (Decressac et 

al., 2012). Nevertheless, much work still needs to be done to characterise this model 

before it can be employed more widely in preclinical research. 

LRRK2 mutations, which like α-synuclein mutations cause an autosomal dominant 

parkinsonian phenotype in humans, have also been modelled in mice. Mutant R1441G 

LRRK2 transgenic mice showed an L-DOPA-responsive hypokinetic/akinetic phenotype with 

reduced dopamine release, however the morphology and number of dopaminergic cell 

bodies in the SNc was unaffected, suggesting a functional rather than a degenerative 

impairment (Li et al., 2009). Similar abnormalities in dopamine release were described with 
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a different mutant LRRK2, R1441C, again in the absence of nigrostriatal neurodegeneration 

(Tong et al., 2009). Similarly to the α-synuclein model, viral-mediated local delivery of the 

mutant gene gives a more valid model than the transgenic animal, for example Adenoviral-

mediated delivery of G2019S mutant LRRK has been reported to cause dopaminergic 

dysfunction and nigrostriatal degeneration in rats (Dusonchet et al., 2011). In both 

examples this might be explained by possible compensatory mechanisms in congenital 

mutants that are not in place in naive animals where the mutant protein is expressed at a 

later time point. This is supported by a conditional mutant where induced short-term, but 

not developmental, expression of a LRRK2 G2019S mutant caused impaired dopamine 

reuptake, though this was not associated in either case with neurodegeneration (Zhou et 

al., 2011). 

Transgenic models have also been made to reflect the autosomal recessive monogenic 

familial forms of parkinsonism, including parkin, DJ-1 and PINK1 mutants. These mutations 

are thought to exert their deleterious effects via mitochondrial dysfunction, however while 

these models had evidence of increased oxidative stress, they failed to elicit any 

nigrostriatal cell loss or cause the development of parkinsonian behavioural deficits 

(reviewed by(Harvey et al., 2008). Indeed, even a triple knockout of all three of these 

mitochondrial-associated genes is insufficient to cause degeneration (Kitada et al., 2009), 

leading the authors to suggest that these genes are protective but not essential for 

dopaminergic neurone survival. 

Alongside recapitulation of the mutations identified in familial parkinsonism, several other 

novel genetic models of PD have been developed. One example of this is the Mitopark® 

mouse, which has a conditional knockout of the mitochondrial transcription factor Tfam in 

dopaminergic neurones, causing a general mitochondrial dysfunction in these cells. The 

Mitopark® model causes an age-related progressive decline in midbrain dopaminergic 

neurones and striatal dopamine content along with the formation of protein inclusions, 

though these do not stain positive for α-synuclein (Ekstrand et al., 2007). This is associated 

with progressive locomotor deficits that are L-DOPA responsive (Ekstrand et al., 2007; 

Galter et al., 2010). The delayed onset and progressive pathology of this model make it an 

exciting prospect for testing neuroprotective therapies in the future. 

1.7.5 Comparing rodent models 

A summary of the characteristics of the rodent versions of the models described in this 

section are shown in Table 3. Further details can be found in the relevant section above. 
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Table 3: Comparison of rodent models of PD as described in this section. 

Model 

SNc 

neurone 

loss? 

Striatal 

DA 

loss? 

Mechanisms 

involved 

LB 

pathology 

Behavioural 

outcomes? 

Reserpine x 

Global loss of 

catecholamines for 

72 hours 

x Akinesia, rigidity 

Haloperidol x x 
Dopamine receptor 

antagonist, 1-2 hours 
x Catalepsy 

6-OHDA   

ROS generation, 

inflammation, 

excitotoxicity? 

x 

Bilateral: akinesia 

rigidity and tremor. 

Unilateral: limb use 

deficits and 

stimulant-induced 

rotation 

MPTP mouse   

Mitochondrial 

dysfunction, ROS 

generation, 

inflammation 



with 

continuous 

infusion 

Akinesia, rigidity, 

tremor, gait 

disturbance but can 

be highly variable 

Rotenone 

/x  

but non-

specific 

cell loss 

reported 

/x 

Mitochondrial 

dysfunction, ROS 

generation, 

inflammation 

/x 

Hypokinesia, 

rigidity, tremor. 

May result from 

systemic toxicity? 

PSI /x /x 
Proteasome 

inhibition 


Bradykinesia, 

rigidity, postural 

abnormality 

Lactacystin   

Proteasome 

inhibition, oxidative 

stress 

 

Unilateral: 

catalepsy and limb 

use deficits and 

stimulant-induced 

rotation 

PARK gene 

transgenics 

Little or 

none 

Little or 

none 

Various: protein 

aggregation, 

mitochondrial 

dysfunction 



particularly 

α-synuclein 

transgenics 

Hypokinesia or 

akinesia, generally 

with vector-

mediated delivery 

of transgene 

Mitopark 

mouse 
  

Mitochondrial 

dysfunction 



but not 

α-synuclein 

positive 

Progressive 

akinesia 

 

Based on this information the best model for my neuroprotection studies is the 6-OHDA-

lesioned rat, as it shows robust, reproducible degeneration that occurs by similar 
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mechanisms to those encountered in human PD, namely oxidative stress and inflammation. 

In addition, the alterations in signalling in the BG following 6-OHDA lesioning are also 

similar to those encountered in the human parkinsonian BG, particularly with regard to the 

increased activity of the glutamatergic subthalamic nucleus, suggesting that excitotoxicity 

could play a role in this model as well as human PD. In contrast to MPTP-treated mice, the 

behavioural deficits caused by unilateral 6-OHDA-induced lesions are robust and well-

characterised, meaning that functional assessment of neuroprotection will also be possible 

in my experiments. This is important for evaluation of the potential clinical benefits of any 

neuroprotection achieved. 

 

1.8 General Aims and Hypothesis for this Thesis 

As noted earlier in this introduction, the unmet clinical needs that remain to be addressed 

with respect to treatment of Parkinson’s disease include, but are not restricted to: 

1. Neurodegeneration - The inability of current treatments to address the continuing 

degeneration of dopaminergic neurones that underlies the motor symptoms of the 

disease. 

2. Levodopa-induced dyskinesia - The motor fluctuations and LID associated with >5 

years of treatment with L-DOPA is not adequately controlled and therapies that can 

suppress or inhibit the development of LID are required. 

3. Non-motor symptoms - The often overlooked non-motor symptoms of PD are 

often inadequately controlled or treated by currently available therapies. 

The current use of the weak NMDA receptor antagonist amantadine as an antiparkinsonian 

and an antidyskinetic agent supports the idea of attenuating glutamate transmission as a 

therapeutic strategy in PD and LID, therefore we hope to demonstrate similar efficacy using 

a group III mGlu receptor-targeted approach. Non-motor symptoms of PD are not 

addressed in this thesis, largely as a result of the lack of well-characterised and validated 

preclinical models of PD-related non-motor symptoms, however the utility of targeting 

glutamate receptors for the treatment of non-motor symptoms has recently been reviewed 

(Finlay et al., 2014) and may be an interesting outcome to measure in future studies. 

Neurodegeneration: 

The preclinical data using antagonists at ionotropic glutamate transporters was promising 

in the case of NMDA antagonists, however the non-selective antagonism of NMDA 
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receptors is associated with psychiatric adverse events and is therefore not suitable for 

widespread clinical use. Alternative strategies of negatively modulating glutamate signalling 

have been explored via inhibition of signalling by group I mGlu receptors, or by activation 

of group II and group III mGlu receptors. 

Based on the evidence outlined in section 1.6.2.3, activation of group III mGlu receptors has 

shown promise as an antiparkinsonian and neuroprotective strategy. Non-subtype-specific 

activation of these receptors provides not only symptomatic relief, by correcting aberrant 

signalling in the BG via reduction of indirect pathway activity, but also corrects 

subthalamonigral hyperactivation, which could in turn reduce excitotoxic degeneration of 

dopaminergic neurones in the SNc. In addition to potentially reducing excitotoxicity, 

activation of group III mGlu receptors has been shown to reduce inflammation, which could 

also help protect against continuing degeneration of the nigrostriatal tract due to release of 

inflammatory mediators and ROS by activated microglia (Taylor et al., 2003). 

In particular, selective activation of mGlu4 is a promising strategy because it seems to be 

the principal receptor subtype involved in modulation of signalling at key synapses within 

the indirect pathway (striatopallidal and subthalamonigral). This receptor subtype also 

underlies the protective effects of broad spectrum group III agonists against excitotoxic 

neurodegeneration in non PD-related models. Alongside mGlu4, mGlu7 is also a potential 

target given its presynaptic localisation in the GP, suggesting that it could modulate 

signalling at the overactive GABAergic striatopallidal synapse. This might be expected to 

indirectly reduce glutamate release from the subthalamic nucleus and thus could exert a 

neuroprotective effect. 

Levodopa-induced dyskinesia: 

Inhibition of glutamatergic signalling has shown promise both preclinically and clinically as 

a means to suppress the expression of established LID. Additionally, there is preclinical 

evidence that inhibition of glutamate signalling can inhibit LID development in de novo L-

DOPA-treated parkinsonian models (evidence for this is explored in Chapter 6). 

Therefore testing group III mGlu receptor subtype-targeted compounds in dyskinesia is 

another interesting avenue of investigation. 
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1.8.1 Aims 

In light of the unmet clinical needs of PD patients, the broad aims of this thesis are to: 

 Investigate the neuroprotective potential of selectively targeting mGlu4 and mGlu7 

in the 6-OHDA-lesioned hemiparkinsonian rat, and also to investigate potential 

mechanisms by which this might occur. 

Studies relating to targeting of mGlu4 are described in Chapters 2 and 4, studies 

relating to targeting of mGlu7 are described in Chapter 5, and investigation of one 

potential mechanism is described in Chapter 3. 

 Investigate the ability of selective activation of mGlu4 to suppress the expression of 

established dyskinesia in 6-OHDA-lesioned L-DOPA-primed rats. 

These studies are reported in Chapter 6. 

 Investigate the ability of selective activation of mGlu4 to inhibit the development of 

dyskinesia in 6-OHDA-lesioned rats when administered alongside de novo L-DOPA 

treatment. 

These studies are reported in Chapter 6. 

1.8.2 Hypotheses 

Our general hypotheses are as follows: 

Selective activation of mGlu4 or mGlu7 using allosteric ligands will provide protection 

against a 6-OHDA-induced nigral lesion in rats. 

Selective positive allosteric modulation of mGlu4 will both suppress the expression of 

established dyskinesia, and inhibit the development of dyskinesia, in 6-OHDA-lesioned 

rats treated sub-chronically with L-DOPA. 
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2 Targeting mGlu4 locally as a potential neuroprotective 

approach in a hemiparkinsonian rat model 

2.1 Introduction 

mGlu4 is the most extensively studied receptor subtype in group III with respect to 

Parkinson’s disease. This is partly due to the range of subtype-specific tool compounds that 

are commercially available and also because many of the antiparkinsonian effects seen 

with broad spectrum group III mGlu receptor agonists were attributed to actions at mGlu4 

based on the concentration of agonist applied and through mGlu4 knock-out studies. 

In the studies reported in this chapter we used two mGlu4 positive allosteric modulators 

(PAMs) in a model of end-stage Parkinson’s disease to test for neuroprotective efficacy. 

One of these PAMs, Compound 11, had only just been reported in the literature when the 

study was carried out (East et al., 2010). The other, VU0155041, had already been shown 

by a previous researcher in our laboratory to have a neuroprotective effect in the 6-OHDA 

model of PD (Betts et al., 2012), so this study acted to verify that these results could be 

repeated by an independent researcher. 

2.1.1 Neuroprotective strategies in PD 

Several neuroprotective and neuroregenerative strategies have been suggested on the 

basis of the proposed degenerative mechanisms identified in PD outlined in section 1.2. 

These include antioxidant therapies (Cadet et al., 1989; Chan et al., 2013; Fahn, 1991; 

Shults et al., 2002), chelation of catalysing transition metal ions (Dexter et al., 2010), nitric 

oxide synthase inhibitors (Broom et al., 2011) and administration of growth factors (Kirik et 

al., 2001; Sleeman et al., 2012). These novel therapies mainly target the oxidative stress 

and inflammatory responses thought to perpetuate the degeneration of neurones, but an 

alternative strategy could be to target the overactivity of glutamate in the basal ganglia 

that contributes to the generation of this oxidative stress and excitotoxicity. 

2.1.2 Targeting group III mGlu receptors as an antiparkinsonian or 

neuroprotective strategy 

Given the model of the basal ganglia described in section 1.3, attenuation of glutamatergic 

signalling at several key synapses, particularly the subthalamonigral synapse, might be 

expected to have antiparkinsonian effects. 

Drugs targeting ionotropic glutamate receptors have been reported to have 

antiparkinsonian and/or neuroprotective effects in preclinical models, as have therapies 



89 
 

targeting group I, group II and group III mGlu receptors. This is described in more detail in 

section 1.6.2 of the Introduction. This thesis concentrates on the potential of targeting 

group III mGlu receptors, and a brief summary of the early work on this group of receptors 

using broad spectrum agonists to investigate antiparkinsonian and neuroprotective 

potential of group III mGlu receptors is given below. 

Broad spectrum group III mGlu receptor agonists such as L-AP4, L-SOP and ACPT-I have 

shown antiparkinsonian efficacy in the haloperidol (Konieczny et al., 2007; Lopez et al., 

2012; Lopez et al., 2007) and reserpine (Austin et al., 2010; Valenti et al., 2003) models of 

PD. They have also demonstrated neuroprotective and behavioural benefits in lesion 

models of PD, such as 6-OHDA-lesioned rats (Austin et al., 2010; Cuomo et al., 2009; Lopez 

et al., 2012; Valenti et al., 2003; Vernon et al., 2005; Vernon et al., 2006). 

Therefore the obvious next step was to test the neuroprotective effects of selective 

activation of the receptor subtypes within group III. Given the enhanced potency of these 

broad spectrum agonists at mGlu4 and mGlu8 compared with mGlu7 (Conn et al., 1997), 

these subtypes seem to represent a good target. 

2.1.3 Symptomatic and neuroprotective efficacy of pharmacological targeting 

of mGlu4 receptors in vivo 

Building on previous work with broad spectrum group III mGlu receptor agonists, subtype-

specific activation of mGlu4 using PAMs has shown efficacy in several rodent models of PD. 

For example haloperidol-induced catalepsy can be reversed by the mGlu4 agonist LSP1-

2111 (Beurrier et al., 2009) and mGlu4 PAMs including Compound 11 (East et al., 2010), 

VU0155041 (Niswender et al., 2008b), VU0364770 (Jones et al., 2012), ADX88178 (referred 

to in this thesis as AF42744;(Le Poul et al., 2012) and LuAF21934 (Bennouar et al., 2013). 

Reserpine-induced akinesia is similarly reversed by PHCCC (Battaglia et al., 2006; 

Broadstock et al., 2012; Marino et al., 2003) and VU0155041 (Niswender et al., 2008b). In 

addition to symptomatic improvements, neuroprotection has also been recently observed 

when VU0155041 was given supranigrally in 6-hydroxydopamine-lesioned rats (Betts et al., 

2012) and when PHCCC was given systemically in MPTP-treated mice (Battaglia et al., 

2006). 

2.1.4 Potential mechanisms of neuroprotection 

mGlu4 activation plays an important role in resistance to excitotoxicity in vitro and in vivo in 

cortical and striatal neurones (Bruno et al., 2000; Maj et al., 2003). There is evidence from 

in vitro studies that the mGlu4 PAM PHCCC can inhibit the release of a glutamate analogue 
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in nigral prisms (Broadstock et al., 2012) and in addition, though not demonstrated for 

mGlu4 specifically, activation of group III mGlu receptors is known to attenuate 

subthalamonigral excitatory neurotransmission (Valenti et al., 2005). Though not all studies 

are in agreement (Ohishi et al., 1995), low-level expression of mGlu4 has been localised to 

the STN at the mRNA level (Messenger et al., 2002; Testa et al., 1994) and in the SNc at the 

protein level (Gu, 2003). This suggests that this receptor might function as an autoreceptor 

to reduce glutamate release into the SNc from subthalamonigral terminals and thereby 

reduce excitotoxic cell death, therefore it is a promising target for neuroprotection studies. 

In addition to the potential involvement of reduced glutamate release, mGlu4 activation 

has been shown to mediate several additional mechanisms, including microtubule 

stabilisation (Jiang et al., 2006) and attenuation of inflammation (Besong et al., 2002; Betts 

et al., 2012; Fallarino et al., 2010). Along with the STN as described above, mGlu4 mRNA has 

also been demonstrated in the SNc in some (Messenger et al., 2002; Testa et al., 1994) but 

not all (Ohishi et al., 1995) reports. Combined with the evidence of mGlu4 protein 

expression in this nucleus (Gu, 2003) this might suggest that there are some post-synaptic 

receptors in this region, which might underlie a microtubule stabilisation response. 

Alternatively both the mRNA and protein expression in the SNc might in fact be localised to 

non-neuronal cells; indeed mGlu4 expression has been demonstrated in several non-

neuronal cell types such as microglia (Besong et al., 2002; Taylor et al., 2003), and 

activation of mGlu4 receptors on these cells is postulated to underlie the in vitro and in vivo 

anti-inflammatory effects that have previously been demonstrated (Besong et al., 2002; 

Betts et al., 2012).  

Along with the mechanisms mentioned above, mGlu4 PAMs may also increase cell viability 

and proliferation via activation of ERK1/2 (Jantas et al., 2014). Therefore there are multiple 

mechanisms by which mGlu4 activation could offer neuroprotective potential. 

2.1.5 6-OHDA SNc-lesioned rat 

Since only one previous study had shown neuroprotective potential in the 6-OHDA-lesioned 

rat using an mGlu4 PAM (Betts et al., 2012), the present studies were conducted to further 

support targeting of this receptor in PD. In the studies reported in this chapter we tested 

two mGlu4 PAMs for neuroprotective efficacy, firstly a novel mGlu4 PAM that had only 

recently been described in the literature (Compound 11;(East et al., 2010) and secondly we 

repeated the study using VU0155041 in order to verify that the same effect that had been 

described previously by Betts et al. (2012) could be replicated by an independent 
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researcher. Both compounds were tested for their ability to protect against the 

nigrostriatal degeneration associated with a unilateral nigral infusion of 6-OHDA. 

The 6-OHDA-lesioned rat model of hemiparkinsonism was introduced in section 1.7.2.1. 

Direct infusion of 6-OHDA into the SNc causes rapid cell degeneration with a necrotic 

phenotype (Hanrott et al., 2008; Maler et al., 1973), and due to the severity of cell loss it is 

considered to best reflect late-stage Parkinson’s disease. Unlike in Parkinson’s disease 

itself, the cell death does not happen progressively but occurs within hours of 6-OHDA 

injection and is complete within 4-5 days. Nonetheless the selective and permanent 

degeneration of the nigrostriatal tract that is achieved by 6-OHDA recapitulates the 

degeneration seen in Parkinson’s disease, meaning that the construct validity of this model 

is good and will allow us to test our mGlu4 PAMs for their ability to provide protection 

against this cell loss. What’s more, the overactivity in the subthalamic nucleus that has 

been described in patients (Remple et al., 2011; Yokoyama et al., 1998) is also found in this 

model (Breit et al., 2006; Kreiss et al., 1997) and 6-OHDA-induced degeneration is 

coincident with neuroinflammation (Henning et al., 2008; Maia et al., 2012; Marinova-

Mutafchieva et al., 2009; Walsh et al., 2011). This means that the postulated 

neuroprotective effects of mGlu4 activation via reduction of subthalamonigral glutamate 

release and reduction of inflammation may both play a role in any neuroprotective effects 

observed. 

The face validity of this model is good with respect to the motor symptoms, and a large 

variety of behavioural tests have been devised for quantification of parkinsonian 

impairments in this model. The main test performed is drug-induced rotometry, where 

asymmetrical turning is measured in response to drugs such as amphetamine and 

apomorphine. This test has been used as a screen for antiparkinsonian drugs with a high 

level of predictive validity (Duty et al., 2011). In addition there are many drug-free 

behavioural tests that have been described in this model. These include tests of paw 

preference such as the cylinder test (Schallert et al., 2000a), assessments of fine motor co-

ordination such as the staircase test (Montoya et al., 1991), measures of more general co-

ordination such as the rotarod (Rozas et al., 1997), and tests of akinesia and impairments in 

movement initiation such as forelimb placement (Schallert et al., 2000a) and stepping tests 

(Olsson et al., 1995). Each test has been designed to quantify a specific aspect of the 

behavioural phenotype following a 6-OHDA lesion, but their usefulness may vary according 

to the extent of lesion. This is discussed in more detail in sections 2.2.3.3 and 2.4.2.1 with 
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regard to the cylinder test, adjusted steps test and drug-induced rotometry. In our studies 

the behavioural outcomes are designed to reflect the degree of dopaminergic cell loss 

induced by the lesion and any degree of neuroprotection provided by the tested mGlu4 

PAMs. 

2.1.6 Hypothesis and aims 

Given the pattern of expression within the rat BG, mGlu4 is an attractive target for potential 

antiparkinsonian therapies. Localisation of mRNA for mGlu4 in the STN and of mGlu4 

receptor protein in the SNc suggests that it is expressed on subthalamonigral terminals, 

where its activation might be expected to reduce presynaptic glutamate release. If so, this 

could reduce excitotoxic cell loss secondary to infusion of the neurotoxin 6-OHDA. 

Therefore we hypothesise that: 

 Activation of mGlu4 locally within the SNc will provide neuroprotection in the 6-OHDA-

lesioned rat. 

The experiments described in this chapter sought to assess the neuroprotective efficacy of 

two mGlu4 PAMs – Compound 11 and VU0155041 – when given sub-chronically in rats with 

a nigral infusion of 6-OHDA. This was carried out by assessing: 

 

 Survival of TH-positive neurones in the SNc. 

 Preservation of striatal dopamine content. 

 Functional effects of neuroprotection, as assessed by the cylinder test, adjusted 

steps test and amphetamine- or apomorphine-induced rotometry. 

 

Both Compound 11 and VU0155041 were administered supranigrally to circumvent 

permeability issues at the blood-brain barrier. 
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2.2 Materials and Methods 

2.2.1 Compounds tested 

Table 4 shows the structures of the mGlu4 PAMs tested for neuroprotective efficacy in the 

6-OHDA SNc-lesioned rat model of Parkinson’s disease.  

Table 4: The chemical structures of the mGlu4 PAMs tested for neuroprotective efficacy in the 
hemiparkinsonian rat. 

Structure Name Target 

NH2

N

N

 

‘Compound 11’ 
 

4-((E)-styryl)-pyrimidin-2-
ylamine) 

mGlu4 Positive 
Allosteric 

Modulator 

Cl

Cl

NH

O

O

OH

 

VU0155041 
 

cis-2-[[(3,5-Dichlorophenyl) 
amino]carbonyl] 

cyclohexanecarboxylic acid 

mGlu4 Positive 
Allosteric 

Modulator 

 

Compound 11 was developed at Evotec/Boehringer Ingelheim and acts as a PAM at human 

or rat mGlu4 (EC50 = 1.0µM). It is reported to show good oral bioavailability, with 

anticataleptic efficacy in the haloperidol model following an oral dose (East et al., 2010). 

However the in vivo clearance rate of this molecule in rats is high so we chose to administer 

Compound 11 directly into the brain in this neuroprotection study. The neuroprotective 

potential of this compound has not yet been examined. 

VU0155041 was discovered via a high-throughput screen at Vanderbilt University. It acts as 

a PAM at human mGlu4 (EC50 = 750nM) and rat mGlu4 (EC50 = 560nM) and reverses 

catalepsy and akinesia in the haloperidol and reserpine models respectively following 

intracerebroventricular administration (Niswender et al., 2008b). This compound has also 

been reported in previous work from our lab to exert neuroprotective effects following 

subchronic supranigral infusion in the 6-OHDA lesioned rat (Betts et al., 2012) and 

therefore the purpose of this study was to confirm that these results could be repeated by 

an independent investigator. Previous work has shown poor brain penetrance of 
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VU0155041 following systemic administration (Doller et al., 2010) and therefore it was 

administered intracerebrally in this study. 

2.2.1.1 Drug formulation 

Compound 11 was synthesised and characterised by Eli Lilly and Company (LSN3030797). It 

was dissolved in a vehicle comprising 10:45:45 v/v/v DMSO/PEG-200/sterile water. DMSO 

(dimethylsulfoxide) and PEG-200 (polyethylene glycol, average molecular weight 200) were 

obtained from Sigma Aldrich (Poole, UK). 

VU0155041 sodium salt was obtained from Tocris Bioscience (Bristol, UK) and was 

dissolved in phosphate buffered saline (PBS) which was made up in distilled water and then 

sterilised in an autoclave. PBS tablets were obtained from Sigma Aldrich (Poole, UK). 

2.2.2 Other materials 

2.2.2.1 Experimental materials 

6-hydroxydopamine hydrochloride, ascorbic acid, desipramine hydrochloride and pargyline 

hydrochloride were obtained from Sigma Aldrich (Poole, UK). Peri-operative analgesia was 

provided using bupivicaine (Marcain; Astra Zeneca, UK) and post-operative analgesia with 

buprenorphine (Vetergesic; (Alstoe/Sovegal) York, UK). All drugs were formulated 

uncorrected for salt weight. 

D-Amphetamine hemisulfate and R-(−)-Apomorphine hydrochloride hemihydrate were 

obtained from Sigma Aldrich (Poole, UK) and dissolved in sterile saline (Aquapharm) before 

use. 

10% buffered formalin for fixing of the midbrain for histology post mortem was obtained 

from Sigma Aldrich (Poole, UK). 

2.2.2.2 Analytical materials 

Tissue processing for immunohistochemistry: Solvents for tissue processing (industrial 

methylated spirits (IMS) and xylene) were obtained from VWR International (Lutterworth, 

UK). Paraffin wax was obtained from Fisher Scientific (Loughborough, UK). 

TH Immunohistochemistry: 

King’s College London: SuperFrost Plus° slides, xylene and IMS were obtained from VWR 

International (Lutterworth, UK). 10% buffered formalin solution, hydrogen peroxide (H2O2), 

citric acid, bovine serum albumin (BSA), sodium azide (NaN3), Trizma® base, sodium 
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chloride, 3,3-diaminobenzidine (DAB) and DPX mountant were obtained from Sigma Aldrich 

(Poole, UK). Polyclonal anti-tyrosine hydroxylase primary antibody was obtained from 

Chemicon via Millipore (AB152; Watford, UK). Biotinylated secondary antibody (goat-anti-

rabbit, BA-1000) and StreptABC (PK-4000) were obtained from Vector Laboratories 

(Peterborough, UK). 

Eli Lilly: SuperFrost Plus® slides were obtained from Thermo Fisher (Loughborough, UK). 

Xylene and (IMS) were obtained from Fisher Scientific (Loughborough, UK). PBS tablets 

were obtained from Sigma Aldrich (Poole, UK). Anti-tyrosine hydroxylase (TH) primary 

antibody (rabbit polyclonal) was obtained from Chemicon via Millipore (AB152; Watford, 

UK)). Normal goat serum, biotinylated secondary antibody and StreptABC were part of a kit 

supplied by Vector Laboratories UK (PK-6101; Peterborough, UK) and DAB (SK-4100) was 

also obtained from the same supplier. 

HPLC for dopamine and its metabolites: Dopamine, DOPAC, HVA, perchloric acid (PCA), 

EDTA, ascorbic acid, sodium dihydrogen phosphate and octane sulfonic acid were all 

obtained from Sigma Aldrich (Poole, UK). HPLC grade methanol was obtained from Fisher 

Scientific (Loughborough, UK). HPLC grade water was obtained using the ELGA LabWater 

system (Veolia Water Technologies, High Wycombe, UK). 
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2.2.3 Neuroprotection study methods 

All procedures were performed in accordance with the U.K. Animals (Scientific Procedures) 

Act, 1986. Unless otherwise stated, all experimental procedures and analysis described 

below were carried out at King’s College London. 

2.2.3.1 Lesioning and treatment 

Male Sprague-Dawley (SD) rats (270-300g, Harlan, UK) were maintained in a temperature- 

and humidity-controlled environment with a 12-hour light-dark cycle and ad libitum access 

to chow and tap water. 

For all studies, rats were pre-treated 30 minutes before lesioning with 5mg/kg pargyline 

and 25mg/kg desipramine (i.p.) to inhibit extracellular metabolism of 6-OHDA by 

monoamine oxidase B and to block the norepinephrine transporter to ensure selective 

uptake of the toxin into dopaminergic cells respectively. 

The mGlu4 PAMs Compound 11 and VU0155041 were delivered by direct intracerebral 

infusion in the region above the SNc due to poor blood-brain barrier penetrance. 12.0mm 

23G stainless steel guide cannulae (Coopers Needleworks; Birmingham, UK) were 

stereotaxically implanted under isoflurane anaesthesia (5% induction, 2% maintenance) so 

as to be 2mm above the substantia nigra, and were secured using screws and dental 

cement (Rapid Repair, Dentsply; Surrey, UK). Bilateral implantation was carried out to 

improve the probability of at least one cannula remaining patent during recovery, thereby 

minimising animal use. For testing of Compound 11 the cannulae were implanted at AP -

4.8mm, ML ±2.0mm, DV -6.3mm relative to bregma and for the VU0155041 study they 

were implanted at AP +3.7mm, ML +2.0mm, DV +4.2mm relative to the interaural line (ML 

calculated from the midline). The co-ordinates were altered for the VU0155041 study due 

to the significant differences between anteroposterior levels with respect to loss of TH-

positive cells in the Compound 11 study. We wanted to lose this effect, so rather than 

aiming the lesion in the anterior region of the SNc (-4.8mm from bregma) we tried some 

co-ordinates that aimed more centrally in the SNc (-5.3mm from bregma). These co-

ordinates had been used successfully by another researcher in our laboratory.  

Rats were allowed to recover for a minimum of five days before baseline behavioural 

assessments were carried out. A minimum of seven days after implantation rats underwent 

unilateral nigral lesioning with 6-OHDA. 12µg 6-OHDA.HCl in 2.5µl 0.2% ascorbate in 0.9% 

saline was infused directly into the SNc at a rate of 1.25µl/min under brief isoflurane 

anaesthesia, using a 30G infusion needle with a 2mm overhang to the guide cannula. 
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Following infusion the needle was allowed to remain in place for a further 2 minutes to 

prevent reflux by allowing the solution to diffuse away from the tip of the needle. 

Figure 7 depicts the cannula placement and lesioning co-ordinates for each of these studies 

in schematic form. 

 

Figure 7: Cannula implantation and lesion location for mGlu4 PAM neuroprotection studies. The 
left hand panel shows the cannula and lesion co-ordinates used in the Compound 11 
neuroprotection study. The right hand panel shows the cannula and lesion co-ordinates for the 
VU0155041 neuroprotection study. The grey bars show the location of the bilaterally implanted 23G 
cannulae; the grey shaded region in each image is the SNc; the black spots represent the location of 
6-OHDA infusion. Diagrams of coronal sections were obtained from The Rat Brain in Stereotaxic 
Coordinates (Paxinos et al., 1998). 

 

Animals were randomly assigned to vehicle and treatment groups (each group n=8) 

following implantation surgery. All mGlu4 PAMs were made up fresh daily and 4µl volume 

was administered supranigrally at a rate of 2.0µl/min using a 30G needle that protruded 

1mm below the guide cannula, resting 1mm above the SNc to avoid causing unnecessary 

mechanical damage to the SNc. The injection needle was allowed to remain in place for a 

further 2 minutes after infusion to prevent reflux. Treatment was administered 1 hour prior 

to lesioning and once daily between 09:00 and 12:00 for a further 7 days (total of 8 doses) 

in conscious animals. Both mGlu4 PAMs were tested at three doses against a vehicle 

control: Compound 11 was tested at 20, 100 and 200nmol/day and VU0155041 was tested 

at 50, 100 and 200nmol/day. Figure 8 and Figure 9 show the study designs for testing of 

these mGlu4 PAMs. 
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Figure 8: Experimental protocol for the Compound 11 (Cpd 11) neuroprotection study. Rats were 
bilaterally cannulated above the SNc and behavioural baselines for the cylinder and adjusted steps 
measured following recovery. On the day of lesioning, rats were treated with Cpd 11 or vehicle (i.c.) 
one hour prior to lesioning of the SNc with 6-OHDA, and then daily after lesioning for a further 7 
days. Behavioural testing was carried out at intervals during the treatment period and following the 
final dose rats were killed by CO2 asphyxiation and their brains removed for analysis. 

 

 

Figure 9: Experimental protocol for the VU0155041 neuroprotection study. Rats were bilaterally 
cannulated above the SNc and behavioural baselines for the cylinder and adjusted steps measured 
following recovery. On the day of lesioning, rats were treated with VU0155041 or vehicle (i.c.) one 
hour prior to lesioning of the SNc with 6-OHDA, and then daily after lesioning for a further 7 days. 
Behavioural testing was carried out at intervals during the treatment period and following the final 
dose rats were killed by CO2 asphyxiation and their brains removed for analysis. 

 

2.2.3.2 Assessment of lesion size 

At the completion of each study rats were killed by CO2 asphyxiation followed by 

decapitation, and the brain removed. The striatum was dissected out on an ice-cold 

platform and snap-frozen on dry ice for HPLC analysis of dopamine, while a coronal block 

containing the midbrain was post-fixed for a minimum of 72 hours in 10% buffered 

formalin before being processed and paraffin embedded for immunohistochemical 

analysis. 
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Immunohistochemistry 

In order to assess the effect of lesioning/treatment on the number of dopaminergic cell 

bodies in the SNc, brain sections were stained for tyrosine hydroxylase (TH), the rate-

limiting enzyme in the dopamine synthetic pathway. 

Formalin-fixed coronal brain tissue blocks (6-7mm thick) were processed using a TP1020 

tissue processor (Leica), which dehydrates and de-fats tissue samples by progressing them 

through timed immersions in the following solvents; 1 x 4 hours in 90% IMS, 3 x 4 hours in 

100% IMS, 3 x 4 hours in xylene, 3 x 4 hours in paraffin wax at 60°C. The processed brain 

blocks were then embedded in paraffin wax for sectioning. 

7µm coronal sections were cut throughout the substantia nigra and mounted in triplicate 

on SuperFrost Plus® slides. Slides were picked for immunostaining at 3 anteroposterior 

levels of the SNc: -4.8mm, -5.3mm and -5.8mm from Bregma (Paxinos et al., 1998), giving a 

total of 9 sections per animal. 

For the Compound 11 study: Slides were dewaxed in xylene and IMS and then incubated for 

10 minutes in 3% H2O2 to quench endogenous peroxidases. After antigen retrieval in boiling 

1mM citric acid (pH 6) slides were blocked with blocking buffer (1% BSA in 0.1M TBS and 

0.1% NaN3, pH 7.6) for a minimum of 10 minutes, then each section incubated overnight in 

50µl primary antibody solution (1:1000 to 1:500 rabbit polyclonal anti-tyrosine hydroxylase 

antibody (AB152) in blocking buffer; dilution was dependent on batch but was consistent 

within studies). The following day, sections were incubated with 50µl secondary antibody 

(1:200 biotinylated goat-anti-rabbit IgG in blocking buffer) for 1 hour, then for 30 minutes 

in 50µl StreptABC/HRP conjugate, before developing in 0.05% DAB in TBS for 10 minutes. 

Unless otherwise stated all steps were carried out at room temperature. 

Stained sections were cover-slipped manually using DPX mountant and viewed using the 

Zeiss Axioskop brightfield microscope. Images were captured at 100x magnification using 

Axiovision release 4.6 software (Zeiss) and cells counted manually at using Image J software 

(publically accessible software developed by the National Institutes of Health).  

For the VU0155041 study: Immunohistochemical staining and analysis were carried out at 

Eli Lilly while on placement. The protocol used is similar but was carried out using an 

automated immunostainer (Lab Vision). The de-waxing and citrate antigen retrieval steps 

were also automated, and carried out in a single step using a PT module and the supplied 

reagent (Lab Vision). Thereafter sections were incubated with 0.3% H2O2 for 30 minutes, 
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blocked with normal goat serum in PBS for 20 minutes, incubated with anti-TH AB152 

primary antibody in PBS at 1:500 for 1 hour, followed by biotinylated goat-anti-rabbit 

secondary antibody in block at 1:200 for 30 minutes, StreptABC/HRP for 30 minutes and 

finally DAB for 5 minutes. All steps were carried out at room temperature and all reagents 

were applied at 200µl per section, with PBS rinsing between reagents. After cover-slipping, 

the slides were scanned at high resolution using an Aperio ScanScope (Leica Biosystems). 

Cells were counted from these images at 100x magnification. 

Cell counts were all performed manually, and viable cells were defined as being rounded, 

densely TH-stained cells with a clear nucleus (Figure 10). Though stereological analysis is 

generally considered to be the most accurate way to quantify cells, sampling of multiple 

sections throughout the SNc has been shown to be a valid alternative (Iczkiewicz et al., 

2010). 

 

Figure 10: Cell counting methodology. The top panel shows the delineation of TH-positive cells in 
the substantia nigra pars compacta (SNc) and those in the ventral tegmental area (VTA) at the -
5.3mm level where the two regions are divided by the medial terminal nucleus accessory optic tract 
(MT). The bottom panel shows a 200x magnified image of TH-positive cells in the intact SNc. Viable 
cells can be identified by a densely stained cytoplasm with a clear intact nucleus. 
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Neurochemical analysis by HPLC 

To confirm the effect of the nigrostriatal lesion and different treatments on striatal 

dopamine content, the left and right striata analysed for their monoamine content by High 

Performance Liquid Chromatography (HPLC), which was carried out either by Jane Cooper 

or by me at Eli Lilly. 

For sample preparation, tissue samples were placed on ice and 0.5ml homogenising buffer 

(0.1M PCA, 0.1mM EDTA, 2.5mg/l ascorbate) was immediately added. The samples were 

homogenised by sonication with a Vibra-cell sonic disruptor, then centrifuged at 20000 x g 

for 15 minutes at 8°C. The supernatant was removed and filtered, then immediately 

assayed. 

Samples were loaded into an autosampler maintained at 8°C. HPLC with electrochemical 

detection was performed using a BDS Hypersil 150x3mm C18 (3µm particle size) column 

(Thermo Scientific, UK) with mobile phase (100mM NaH2PO4, 1.6mM octanesulfonic acid, 

14% methanol; pH 3.2) running at 400µl/min with recycling. The dopamine metabolites 3,4-

dihydroxyphenylacetic acid and homovanillic acid (DOPAC and HVA) were detected at the 

oxidation electrode at 50nA/V sensitivity, and dopamine was detected at the reduction 

electrode, also at 50nA/V sensitivity. 

Peak areas of samples and standards were defined using Empower 2 software (Waters Ltd., 

UK) and further analysed using JMP 8.0 (SAS Institute Inc.) to enable use of the 4-

parameter least-squares fit for the standard curve. This allows loss of peak area between 

standards the start and end of the run to be accounted for and defines the limits of 

quantification. The lower limit and upper limit of quantification (LLOQ and ULOQ) for each 

run was determined by the presence of visible peaks with <20% area difference between 

pre- and post- run standards. The LLOQ and ULOQ for dopamine were 1ng/ml and 

1500ng/ml respectively, for DOPAC were 0.5ng/ml and 750ng/ml respectively, and for HVA 

were 0.5ng/ml and 750ng/ml respectively, as determined by the linear range of mixed 

standards ranging from 0.5-1500ng/ml. 

All analyte concentrations were corrected for tissue weight. An example chromatogram for 

the 1500ng/ml mixed standard at the reduction electrode and an example standard curve 

for dopamine are shown in Figure 11 (both from Empower). 
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Figure 11: HPLC to analyse dopamine concentrations in the lesioned and intact striata following 6-
OHDA lesioning of the MFB. The upper panel shows an example chromatogram obtained at the 
reduction electrode with a 1500ng/ml mixed standard. The lower panel shows an example 
dopamine standard curve constructed from duplicate sets of standards that are analysed at the 
beginning and end of each sample set. 

 

2.2.3.3 Behavioural assessment 

Three behavioural tests were performed to assess the functional outcome of the lesioning 

and mGlu4 PAM or vehicle treatment: the cylinder test, the adjusted stepping test and 

rotational asymmetry. Timings of these tests varied by study and details can be found in 

the study plans in Figure 8 and Figure 9. Testing was carried out from 3 hours after dosing, 

between 12:00 and 15:00. 

Cylinder test 

The cylinder test was first described by Schallert et al. (2000) and exploits the natural 

exploratory behaviour of rodents when placed in a novel environment in order to define 

bias in use of the forelimbs following induction of unilateral injury. This test has been 

shown to be sensitive to nigrostriatal degeneration, leading to a clear bias towards use of 

the ipsilateral paw of 80-90% in rats or mice with a ‘full’ lesion (Glajch et al., 2012; Kirik et 

al., 2000; Lundblad et al., 2002; Schallert et al., 2000a) and a significant positive correlation 

between post-lesion forelimb use and striatal dopamine content or TH-positive cell survival 

(Iancu et al., 2005; Schallert et al., 2000a). This ipsilateral bias is reversed by known human 

antiparkinsonian therapies such as L-DOPA and bromocriptine (Lundblad et al., 2002) along 
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with diverse novel neuroprotective agents such as growth factors (Kirik et al., 2000) and 

antioxidants (de Araujo et al., 2013), and neuroreplacement strategies (Haas et al., 2007). 

This test can therefore detect both short-term pharmacological and longer-term 

neuroprotective/neuroregenerative antiparkinsonian effects. 

For testing, rats were placed in a clear Perspex cylinder of 21cm diameter and 34cm height 

with a mirror behind to allow a 360° view, then video-recorded for 5 minutes (Figure 12). 

Supporting paw touches during exploratory rearing were scored from the video according 

to whether they involved the ipsilateral, contralateral or both paws, as outlined for vertical 

behaviour (Schallert et al., 2000b) – landing behaviour was not scored. Some rats showed 

reduced spontaneous exploration post-lesion, probably in part because the environment 

was no longer novel. In these cases increased exploration was encouraged by flicking the 

main lights in the testing room off and on up to 3 times during the recording period. 

Touches were counted by a non-blinded experimenter throughout the whole 5-minute 

period, or until 10 touches had been made if this was not achieved in the first 5 minutes. 

The number of touches involving both paws was divided equally between the ipsilateral 

and contralateral paws and the overall percent use of ipsilateral and contralateral paws 

calculated as the number of touches involving that paw divided by the total number of 

touches. Percentage use of each paw was compared between groups at baseline and post-

lesion. 

 

 

Figure 12: Rats performing the cylinder test. Rats are placed in a clear Plexiglas® cylinder of 21cm 
diameter and 34cm height and video-recorded for 5 minutes. The number of exploratory forepaw 
contacts made on the sides of the cylinder is counted for ipsilateral, contralateral and both paws 
together. Forelimb bias is assessed by calculating the percentage of touches involving either the 
ipsilateral or contralateral paws (touches using both paws are divided equally between sides). 
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Adjusted steps test 

Several variants of stepping tests were described by Olsson et al. (1995) in rats with full 

(>98%) lesions. The one used in these studies was the adjusted steps test, whereby rats are 

held by the tester such that they are resting their weight on a single forepaw on the edge 

of a table (Figure 13). The rat is then moved laterally over a fixed distance and the number 

of adjusting steps taken in both the forehand (forward) and backhand (reverse) directions 

counted. Rats with a nigrostriatal lesion show rigidity and a greater latency to initiation of 

movement on the affected side, and will therefore take fewer adjusting steps post-lesion 

compared with pre-lesion (Lindner et al., 1999; Olsson et al., 1995). 

Contralateral paw stepping deficits can be improved by pharmacological interventions such 

as L-DOPA (Winkler et al., 2002), dopamine receptor agonists (Olsson et al., 1995) and 

NMDA antagonists (Kelsey et al., 2004). Improvements in the stepping test have also been 

reported for neuroprotective/neuroregenerative studies using growth factors (Kirik et al., 

2001) and dopaminergic grafts (Mukhida et al., 2001). 

The sensitivity of this test, i.e. the ability to predict nigrostriatal integrity on the basis of the 

adjusted stepping score, is unclear. In one particular study experimenters were able to 

detect a significant stepping difference between a 38% lesion and a 55% lesion (Kirik et al., 

2001), but this has not been widely replicated. These same authors had earlier described a 

significant positive correlation between improved stepping performance and increased 

survival of SNc TH-positive cells and striatal dopamine in partial to full lesions (50-98%) by 

linear regression (Kirik et al., 1998). However several other studies have failed to reproduce 

a linear correlation, reporting an ‘all-or nothing’ effect with a threshold loss of striatal 

dopamine or TH-positive cells of 65%, 80% or ~98% DA loss depending on the paper 

(Barnéoud et al., 2001; Chang et al., 1999; Tseng et al., 2005). Similarly a deficit in adjusted 

stepping has been described in MPTP mice with ~65% lesion, that is improved by L-DOPA, 

but not linearly correlated (Blume et al., 2009). In some (Blume et al., 2009; Tseng et al., 

2005) but not all (Barnéoud et al., 2001; Chang et al., 1999) of these studies there could be 

a linear relationship above the lesion threshold given, but this is not always investigated. 

Further studies report measurable but equal deficits in adjusted stepping for cell losses 

ranging from 20-98% (Fang et al., 2006; Sun et al., 2013). 

For all the neuroprotection studies reported in this thesis, rats were moved along a 90cm 

distance over 5 seconds and the number of adjusting steps taken counted in triplicate for 

each paw in the forward and reverse directions. The test was performed by an 
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experimenter who was blinded to the treatment received by each subject. Post-lesion 

performance (number of steps) is expressed as a percentage of pre-lesion performance for 

both the ipsilateral and contralateral paws, and was compared between groups for each 

paw and each direction. 

 

 

Figure 13: A rat performing the adjusted steps test. Rats are held with their weight supported on 
one forelimb and moved laterally over a 90cm distance in 5 seconds in forward and reverse 
directions. The number of adjusting steps taken is counted in triplicate for each paw in each 
direction. 

 

Rotational asymmetry 

Drug-induced rotational asymmetry is a standard method of assessing the extent of the 

lesion in a hemiparkinsonian model by measuring the imbalance in activation between the 

lesioned and intact hemispheres in the presence of stimulant drugs (Figure 14). 

Amphetamine is a dopamine-releasing agent, therefore in the unilaterally lesioned animal 

amphetamine will lead to a greater release of dopamine from the intact nigrostriatal 

pathway compared with the lesioned nigrostriatal pathway. This imbalance leads to 

ipsiversive (towards the side of the lesion) turning (Ungerstedt, 1971b) assuming that the 

striatal dopamine in the lesioned striatum is depleted by >50% (Hefti et al., 1980). 

Apomorphine is a mixed D1 and D2 receptor agonist. In rats with a severe lesion, typically 

greater than 90% loss of nigrostriatal integrity (Hefti et al., 1980), the reduced dopamine 

concentration in the striatum leads to upregulation of dopamine receptors. This process is 

called supersensitisation. Therefore administration of apomorphine in an animal with a 
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severe unilateral lesion causes enhanced activation in the lesioned striatum compared with 

the intact striatum, leading to contraversive (away from the side of the lesion) turning. 

 

 

Figure 14: Diagram showing the mechanisms behind amphetamine- and apomorphine-induced 
rotational asymmetry in unilaterally lesioned animals. Left panel: Amphetamine causes release of 
dopamine from intact terminals, causing a greater activation on the intact side. This results in 
ipsiversive (towards the lesioned side) rotation. Right panel: Apomorphine is a dopamine receptor 
agonist. Where >90% striatal dopamine is lost there is receptor upregulation, leading to 
supersensitisation. This results in a greater activation on the lesioned side and therefore in 
contraversive (away from the lesioned side) rotation.  

 

The degree of amphetamine-induced rotational asymmetry is assumed to reflect the 

degree of degeneration of the nigrostriatal pathway and was assessed when testing 

Compound 11. For this test, rats were tethered to rotational encoders in automated 

rotometry testing chambers (MedAssociates Inc.) and habituated for 10-30 minutes to 

establish baseline asymmetry before being injected with 2.5 or 5mg/kg amphetamine 

(intraperitoneally). Rotational behaviour was assessed automatically using Rotorat 

software (Med Associates Inc.) to measure full rotations in 5-minute time intervals for a 

total of 60-120 minutes. The total net number of ipsiversive turns over the testing period 

was compared between groups in the Compound 11 study. 

In the VU0155041 study apomorphine-induced rotations were measured instead of 

amphetamine-induced rotations. This was due to the large degree of variability and also 

paradoxical contraversive rotations that had been measured in response to amphetamine 

in the Compound 11 study. Additionally, Betts et al. (2012) had already shown an effect of 

VU0155041 treatment on amphetamine-induced rotations in this model so we thought that 

it would be interesting to see if a similar reversal of rotational response would be elicited 
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when apomorphine was used instead. Rats were habituated to the rotometry apparatus for 

40 minutes and then injected with 0.25mg/kg apomorphine (subcutaneously) and recorded 

for 90 minutes, using the same software and parameters as for amphetamine testing. The 

total net number of contraversive turns over the testing period was compared between 

groups. 

2.2.3.4 Statistical analysis 

Normally distributed data are reported as mean ± s.e.m and are presented as bar charts, 

where the bar height represents the mean and the error bars represent the s.e.m. 

Nonparametric data are presented as median ± interquartile range (IQR) and are presented 

as box and whisker plots, where the box represents the IQR, the line within the box 

represents the median and the whiskers represent the minimum and maximum values 

obtained. 

Statistical analysis was carried out using GraphPad Prism version 5. 

Neuroprotective outcomes: Neuroprotection was assessed at the level of the substantia 

nigra by comparing cell counts in the lesioned SNc, expressed as a percent of the intact 

SNc, using a Kruskal-Wallis test with Dunn’s post-hoc (for non-parametric data) or a one-

way ANOVA with Dunnett’s post-hoc (for normally-distributed data). In each group the 

percent of cells remaining at each anteroposterior level counted (-4.8mm, -5.3mm and -

5.8mm relative to bregma) was compared using a one-way ANOVA with Bonferroni post-

hoc test; if significant differences between percent survival was found between levels, each 

level was analysed separately, but if no significant difference was found between levels the 

data were pooled in order to calculate an overall percent survival in the lesioned SNc. 

Where within-group comparisons between intact and lesioned SNc cell counts were made, 

a t-test was used. 

The effect of lesion on striatal markers of dopamine and its turnover was compared within 

groups using Mann-Whitney U tests (for non-parametric data) or t-tests (for normally-

distributed data). Neuroprotection in the striatum was assessed by comparing the 

concentration of dopamine and its metabolites DOPAC and HVA remaining in the lesioned 

striatum, expressed as percentages of the concentrations in the intact striatum. Dopamine 

turnover is increased in the caudate, putamen and nucleus accumbens in PD patients 

(Rabey et al., 2008), therefore the dopamine turnover in each rat was calculated from the 

measured concentrations of dopamine and its metabolites using the formula 
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(DOPAC+HVA)/DA. The turnover in the lesioned striatum, expressed as a percentage of the 

turnover in the intact striatum, was compared between treatment groups. Normally 

distributed striatal data were analysed using a one-way ANOVA with Dunnett’s post-hoc 

test. Nonparametric striatal data were analysed using a Kruskal-Wallis with a Dunn’s post-

hoc test. 

Behavioural tests: The cylinder test was analysed using a 2-way repeated measures ANOVA 

with Bonferroni post-hoc analysis to assess the effects of both lesion and treatment on paw 

use. Adjusted steps and rotometry data and were analysed using a one-way ANOVA with a 

Dunnett’s post-hoc. Where pre- vs. post-lesion performance in the adjusted steps test was 

compared within a group, a paired t-test was used to compare the absolute number of 

steps taken. 

For all tests, the outcome was considered significant where P<0.05. 
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2.3 Results 

2.3.1 Compound 11 (Cpd11) 

2.3.1.1 General observations 

One rat died in the 200nmol-treated group, leaving n=7. For all other treatment groups 

n=8. 

No acute- or sub-chronic adverse effects of dosing with vehicle or Cpd 11 were noted on 

animal health or wellbeing.  

2.3.1.2 Compound 11 did not protect against nigrostriatal degeneration 

TH-positive cells in the SNc 

Intranigral infusion of 6-OHDA was expected to result in a large loss of TH-positive cells in 

the lesioned SNc, with cells in the intact SNc unaffected. Representative nigral images from 

each treatment group at -5.3mm from bregma and the results of the TH-positive cell counts 

are shown in Figure 15. There was a significant difference in the vehicle-treated and 

20nmol Cpd 11-treated rats with regard to the percent of cells remaining at the different 

anteroposterior levels of the SNc, therefore each level was analysed separately. 

-4.8mm: At this level, closest to the lesion site, vehicle-treated rats had a mean of 26 ± 7% 

TH-positive cells remaining in the lesioned SNc. Within the Cpd 11-treated rats the 20nmol 

group had 12 ± 3% survival, the 100nmol group had 25 ± 5% survival and the 200nmol 

group had 22 ± 10% survival, meaning that there was no significant effect of treatment on 

TH-positive cell survival at this level (P=0.3574, one-way ANOVA with Dunnett’s post-hoc). 

-5.3mm: At this level, vehicle-treated rats had a mean of 38 ± 5% TH-positive cells 

remaining in the lesioned SNc. Within the Cpd 11-treated rats the 20nmol group had 27 ± 

4% survival, the 100nmol group had 38 ± 4% survival and the 200nmol group had 28 ± 5% 

survival. Again there was no significant effect of treatment on TH-positive cell survival at 

this level (P=0.1736, one-way ANOVA with Dunnett’s post-hoc). 

-5.3mm: At this level, vehicle-treated rats had a mean of 39 ± 3% TH-positive cells 

remaining in the lesioned SNc. Within the Cpd 11-treated rats the 20nmol group had 37 ± 

5% survival, the 100nmol group had 36 ± 3% survival and the 200nmol group had 37 ± 8% 

survival. Again there was no significant effect of treatment on TH-positive cell survival at 

this level (P=0.9738, one-way ANOVA with Dunnett’s post-hoc). 
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Figure 15: TH-positive cells remaining in rats with a nigral 6-OHDA lesion, sub-chronically treated 
with vehicle or Cpd 11. The upper panels show representative nigral images comparing TH-positive 
cells in the intact and 6-OHDA-lesioned SNc in each treatment group at -5.3mm from bregma. The 
graph shows the mean number of TH-positive cells in the lesioned SNc as a percent of the intact SNc 
at each anteroposterior level. There was no significant effect of treatment on the percent of 
surviving TH-positive cells at any level. Data are presented as mean ± s.e.m. (n = 7-8). 
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Striatal dopamine content 

Upon induction of a lesion of the nigrostriatal pathway dopaminergic neurochemical 

parameters are subject to change. As A9 cells degenerate, the total striatal dopamine 

content decreases and dopamine turnover, measured as the ratio of dopamine metabolites 

to dopamine, increases as remaining dopaminergic terminals adapt to try to maintain 

normal extracellular levels of dopamine. The following data were non-parametric and are 

therefore reported as median ± interquartile range, with non-parametric statistical 

analysis. 

The median concentrations of dopamine and its metabolites in the intact and lesioned 

striatum are shown in Table 5. In all groups, nigral infusion of 6-OHDA led to significant 

reductions of dopamine, DOPAC and HVA (P<0.01; Mann-Whitney U test) and significant 

increases in dopamine turnover (P<0.05; Mann-Whitney U test) in the lesioned striatum 

compared with the intact striatum. 

 

Table 5: Striatal concentrations of dopamine and its metabolites in the intact and lesioned 
striatum following a 6-OHDA nigral lesion and treatment with vehicle or Cpd 11. Data reported are 
median concentrations in ng/g (nearest whole number), except for the dopamine turnover ratio (n = 
7-8) *P<0.05, **P<0.01, ***P<0.001 (Mann-Whitney U test versus intact). 

 Dopamine (DA) DOPAC HVA (DOPAC+HVA)/DA 

 Intact Lesioned Intact Lesioned Intact Lesioned Intact Lesioned 

Vehicle 12003 221*** 1061 10*** 597 45*** 0.14 0.34*** 

20nmol 

Cpd 11 
13467 184*** 1332 8*** 632 35*** 0.16 0.32* 

100nmol 

Cpd 11 
13223 285*** 1318 9*** 717 46*** 0.16 0.27* 

200nmol 

Cpd 11 
11830 145** 1258 8** 675 39** 0.16 0.36* 

 

Vehicle-treated rats showed a decrease of striatal dopamine content in the lesioned 

striatum to 1.83 ± 0.67% of the intact concentration (Figure 16). Dopamine metabolites 

were similarly reduced, to 0.74 ± 1.67% for DOPAC and to 8.69 ± 6.57% for HVA. 
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Figure 16: Striatal dopamine content in the lesioned striatum of rats with a nigral 6-OHDA lesion, 
sub-chronically treated with vehicle or Cpd 11. Treatment with Cpd 11 did not provide significant 
preservation of striatal dopamine content at any of the doses tested. Data are presented as median 
± IQR (n = 7-8). 

 

Treatment with Cpd 11 did not provide significant preservation of striatal dopamine or its 

metabolites at any of the doses tested. 20nmol Cpd 11-treated rats retained 1.43 ± 1.57% 

dopamine, 0.62 ± 1.16% DOPAC and 5.91 ± 3.70% HVA; 100nmol Cpd 11-treated rats 

retained 2.02 ± 4.14% dopamine, 0.63 ± 10.39% DOPAC and 5.53 ± 16.69% HVA; and 

200nmol Cpd-11 treated rats retained 1.22 ± 0.61% dopamine, 0.60 ± 0.04% DOPAC and 

4.98 ± 1.26% HVA. There was no significant effect of treatment on percent dopamine 

content (P=0.2816; Kruskal-Wallis test with Dunn’s post-hoc), percent DOPAC content 

(P=0.7869; Kruskal-Wallis test with Dunn’s post-hoc, data not shown) or percent HVA 

content (P=0.6722; Kruskal-Wallis test with Dunn’s post-hoc, data not shown). 

Dopamine turnover was significantly affected by the lesion in all groups (data not shown). 

Vehicle-treated rats had an increase in turnover from 0.14 ± 0.01 in the intact striatum to 

0.34±0.21 in the lesioned striatum, an increase of 222 ± 143%. Rats treated with 20nmol 

Cpd 11 showed a similar increase in dopamine turnover in the lesioned striatum, to 218 ± 

132% of the turnover measured in the intact striatum, and likewise 100nmol Cpd 11-

treated rats showed a 163 ± 100% increase and 200nmol Cpd 11-treated rats showed a 217 

± 46% increase. Dopamine turnover was not significantly different between vehicle and 

treated rats (P=0.6293; Kruskal-Wallis test with Dunn’s post-hoc). 
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2.3.1.3 Compound 11 did not show consistent preservation of functional outcomes 

Cylinder test 

Pre-lesion and post-lesion use of the ipsilateral and contralateral forelimbs during the 

cylinder test is shown in Figure 17. At baseline (Figure 17a) there was no significant 

difference between groups with respect to either forelimb use (P=0.5888; two-way RM 

ANOVA with Bonferroni post-hoc), with all groups using each forelimb for approximately 

50% of touches. 

Lesioned rats that were vehicle-treated showed a significant decrease in use of the 

contralateral forelimb during exploratory reaching in the cylinder test, from a mean of 46 ± 

4% touches to 8 ± 4% touches (Figure 17b; P<0.0001; two-way RM ANOVA with Bonferroni 

post-hoc). This result shows that a measurable deficit was caused by the lesion induced in 

these rats. Groups treated with 20-200nmol Cpd 11 also showed significantly decreased 

use of the contralateral forelimb post-lesion (P<0.0033; two-way RM ANOVA with 

Bonferroni post-hoc). 

This two-way comparison also revealed an overall effect of treatment that was approaching 

significance (P=0.0807; two-way RM ANOVA with Bonferroni post-hoc). The Bonferroni 

post-hoc test revealed a significant effect of treatment between the vehicle-treated group 

and the 20nmol Cpd 11-treated group regarding post-lesion contralateral forelimb use, 

with only 8 ± 4% touches in the vehicle group and 24±5% touches in the 20nmol Cpd 11 

group (P<0.01; two-way RM ANOVA with Bonferroni post-hoc). This suggests that there was 

partial preservation of contralateral forelimb function in the cylinder test at this dose, 

although it still represents a significant deficit compared with pre-lesion (P=0.0033; two-

way RM ANOVA with Bonferroni post-hoc).  
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Figure 17: Forelimb use in the cylinder test in rats with a nigral 6-OHDA lesion, sub-chronically 
treated with vehicle or Cpd 11. The dashed line shows the expected use of each paw in intact rats. 
Baseline forelimb use is shown in graph (a), indicating no significant bias towards either limb in any 
group. Post-lesion results are shown in (b), indicating that all groups showed a clear bias towards use 
of the ipsilateral paw following nigral 6-OHDA infusion. Daily treatment with 20nmol Cpd 11 
significantly preserved contralateral forelimb use compared with vehicle-treated rats, though this 
was still significantly reduced compared with pre-lesion use. Data are presented as mean ± s.e.m. (n 
= 7-8) **P<0.01 versus Vehicle (two-way ANOVA with Bonferroni post-hoc). 

 

Adjusted steps test 

In the adjusted steps test (Figure 18), vehicle-treated animals took a reduced number of 

adjusting steps with the contralateral forelimb post-lesion, achieving only 59 ± 4% baseline 

forward steps and 64 ± 6% baseline reverse steps. When the numbers of contralateral steps 

taken pre- and post-lesion in this group were compared these percentages represented a 

significant decrease in both the forward (P=0.0003; paired t-test) and reverse (P=0.0010; 
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paired t-test) directions. These results show that a unilateral deficit was measurable in 

fully-lesioned rats using this test. 

 

 

Figure 18: Adjusted stepping test performance in rats with a nigral 6-OHDA lesion, sub-chronically 
treated with vehicle or Cpd 11. The dashed line shows the expected performance in intact rats 
(100% baseline). Contralateral paw performance was decreased post-lesion in all groups, and there 
was no significant effect of treatment with Cpd 11 on post-lesion use of this forelimb in either the 
forward or reverse directions. As expected, ipsilateral paw performance was not significantly 
affected by the lesion. Data are presented as mean ± s.e.m. (n = 7-8). Fwd = forward direction; Rev = 
reverse direction; Ipsi = ipsilateral forelimb; Contra = contralateral forelimb. 

 

The contralateral limb performance of rats (compared with pre-lesion) treated with 20nmol 

Cpd 11 was reduced to 74 ± 5% forward and 58 ± 4% in reverse, with 100nmol Cpd 11 to 69 

± 6 forward and 65 ± 6% in reverse and with 200nmol Cpd 11 to 63 ± 5% forward and 78 ± 

6% in reverse. When the percentage performance was compared between Cpd 11-treated 

groups and vehicle for the contralateral limb there was no significant effect of treatment 

on stepping in either the forward (P=0.1860; one-way ANOVA with Dunnett’s post-hoc) or 

reverse (P=0.1294; one way ANOVA with Dunnett’s post-hoc) directions. 

There was also no significant effect of treatment with Cpd 11 on the post-lesion 

performance of the ipsilateral paw, which was unaffected in both the forward (P=0.6448; 

one-way ANOVA) and reverse (P=0.1168; one-way ANOVA with Dunnett’s post-hoc) 

directions compared with the vehicle-treated group. 
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As would be expected with a unilateral lesion, there was no effect of lesion on adjusted 

stepping performance of the ipsilateral forelimb in any group in either the forward 

(P>0.3153; paired t-tests) or reverse (P>0.1447; paired t-tests) directions.  

Amphetamine-induced rotational asymmetry 

Unilaterally lesioned animals are expected to turn in an ipsiversive direction following 

administration of amphetamine, as mentioned in section 2.2.3.3, and the imbalance is 

expected to be greatest in untreated animals, resulting in a high degree of net ipsiversive 

asymmetry. However, the results of the response to 5mg/kg i.p. D-amphetamine sulfate in 

this study were so variable within each group as to render them inconclusive. The time 

course and total net ipsiversive rotations over 60 minutes are shown in Figure 19. 

 

 

Figure 19: Amphetamine-induced rotational asymmetry in rats with a nigral 6-OHDA lesion, sub-
chronically treated with vehicle or Cpd 11. The time course of rotations is shown in graph (a) and 
the total net number of full ipsiversive rotations over 60 minutes is shown in graph (b). There was no 
significant effect of treatment with Cpd11 on net rotational asymmetry. Data are presented as mean 
± s.e.m. (n = 7-8 per group). 
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Contrary to expectations the vehicle-treated animals showed net contraversive turning 

during the 60 minute testing period (-19.1 ± 112 net ipsi turns per 60 mins), however this is 

likely due to a large variability between animals in this group, where many rats rotated 

strongly in a contraversive direction in the initial stages after the injection. 

The net ipsiversive turns in 60 minutes for the Cpd 11-treated groups were 134 ± 113 at 

20nmol, 33 ± 105 at 100nmol and 180 ± 48 at 200nmol. Although 20-200nmol Cpd 11-

treated animals had net ipsiversive asymmetry as would be expected following 

amphetamine, the time course shows that several rats within these groups also 

demonstrated contraversive turning following the injection, before switching to the 

expected ipsiversive turning.  

The variability in the responses of the rats within all groups means that the standard errors 

of the mean are extremely large both throughout the time course and for the total net 

ipsiversive rotations over 60 minutes. There were no significant differences between 

groups with respect to the total net rotational asymmetry over the 60 minute testing 

period (P=0.5393; one-way ANOVA with Dunnett’s post-hoc). 
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2.3.2 VU0155041 

2.3.2.1 General observations 

One rat each in the 200nmol-treated group and the vehicle-treated group were excluded 

from analysis on the basis that their lesions were incomplete (reflux of 6-OHDA solution 

was noted in both rats during infusion, reflected in <50% loss of TH-positive cells). For 

these groups therefore n=7. For all other treatment groups n=8. 

No acute- or sub-chronic effects of dosing with vehicle or VU0155041 were noted on 

animal health or wellbeing.. 

2.3.2.2 VU0155041 provides significant protection of nigrostriatal integrity 

TH-positive cells in the SNc 

Though cells were counted at 3 anteroposterior levels of the substantia nigra (-4.8mm, -

5.3mm and -5.8mm relative to bregma), there were no significant differences between the 

levels regarding the percent of cells remaining in any group (P>0.2734; one-way ANOVAs 

with Bonferroni post-hoc test) and therefore the data was pooled to calculate overall 

percent cell survival. 

The lesioned SNc of vehicle-treated rats contained a mean of 3.6 ± 0.8 TH-positive cells 

compared with 101.5 ± 3.8 in the intact SNc, meaning that only 3.6 ± 0.9% dopaminergic 

cells survived the lesion (Figure 20). Treatment with VU0155041 offered some degree of 

neuroprotection, with 50nmol VU0155041-treated rats retaining 21.0 ± 10.2% cells, 

100nmol VU0155041-treated rats retaining 27.6 ± 7.6% cells and 200nmol VU0155041-

treated rats retaining 11.2 ± 4.0% cells. Analysis revealed that there was a significant effect 

of 100nmol VU0155041 compared with vehicle with respect to the percentage of cells 

surviving in the lesioned SNc compared with the intact SNc (P=0.0199; one-way ANOVA 

with Dunnett’s post-hoc). 
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Figure 20: TH-positive cells remaining in rats with a nigral 6-OHDA lesion, sub-chronically treated 
with vehicle or VU0155041. The upper panels show representative nigral images comparing TH-
positive cells in the intact and 6-OHDA-lesioned SNc in each treatment group. The graph shows the 
mean number of TH-positive cells in the lesioned SNc as a percent of the intact SNc. Sub-chronic 
treatment with 100nmol VU0155041 significantly increased the percent of surviving TH-positive cells 
compared with vehicle-treated rats. Data are presented as mean ± s.e.m. (n = 7-8) *P<0.05 versus 
vehicle (one-way ANOVA with Dunnett’s post-hoc) 
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Striatal dopamine content 

The mean concentrations of dopamine, DOPAC and HVA measured by HPLC in the intact 

and lesioned striatum are shown in Table 6 along with the dopamine turnover. 6-OHDA 

lesioning led to a significant reduction in dopamine, DOPAC and HVA in the lesioned 

striatum in all groups (P<0.01; t-tests) along with a significant increase in dopamine 

turnover (P<0.01; t-tests). 

Table 6: Striatal concentrations of dopamine and its metabolites in the intact and lesioned 
striatum following a 6-OHDA nigral lesion and treatment with vehicle or VU0155041. Data 
reported are mean concentrations in ng/g (nearest whole number), except for the dopamine 
turnover ratio (n = 7-8) **P<0.01, ***P<0.001 (t-test versus intact). 

 Dopamine (DA) DOPAC HVA (DOPAC+HVA)/DA 

 Intact Lesioned Intact Lesioned Intact Lesioned Intact Lesioned 

Vehicle 14128 748*** 1488 139*** 705 96*** 0.16 0.33** 

50nmol 

VU0155041 
14298 4077*** 1614 492*** 819 285*** 0.17 0.30** 

100nmol 

VU0155041 
15664 5845*** 1639 785*** 722 383** 0.15 0.22** 

200nmol 

VU0155041 
14126 2289*** 1576 423*** 673 217*** 0.16 0.34** 

 

In vehicle-treated animals, 6-OHDA lesioning of the SN led to a large depletion of striatal 

dopamine and its metabolites in the lesioned striatum, such that the lesioned striatum 

contained only 5.2 ± 1.2% of the dopamine measured in the intact striatum (Figure 21). 

Treatment with VU0155041 preserved the dopamine content in the lesioned striatum, 

retaining 25.6 ± 11.3% in the 50nmol group, 38.1 ± 9.7% in the 100nmol group and 16.1 ± 

4.5% in the 200nmol group. There was a significant effect of 100nmol VU0155041 

compared with vehicle on the percent of striatal dopamine remaining (P<0.05; one-way 

ANOVA with Dunnett’s post-hoc). The mean of 38% striatal dopamine remaining in the 

100nmol group is tantalisingly close to the 40% threshold at which motor symptoms of 

Parkinson’s disease are said to become apparent, meaning that this level of protection 

would likely be associated with clinical improvements. 
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Figure 21: Striatal dopamine content in the lesioned striatum of rats with a nigral 6-OHDA lesion, 
sub-chronically treated with vehicle or VU0155041. Treatment with 100nmol VU0155041 led to 
significant preservation of striatal dopamine content compared with rats treated with vehicle. The 
dashed line shows 40% striatal dopamine preservation, the threshold at which motor symptoms are 
said to become apparent in human PD. Data are presented as mean ± s.e.m. (n = 7-8) *P<0.05 versus 
Vehicle (one-way ANOVA with Dunnett’s post-hoc). 

 

Along with significant preservation of striatal dopamine in the 100nmol VU1055041-treated 

group, the same effect was found for the percent DOPAC and HVA concentrations. Vehicle-

treated rats had a mean of 9.0 ± 2.5% DOPAC and 13.4 ± 1.3% HVA preserved in the 

lesioned striatum whereas the 100nmol VU0155041-treated group had 47.7 ± 10.2% 

DOPAC and 52.1 ± 9.8% HVA remaining in the lesioned striatum (both P<0.05; one-way 

ANOVAs with Dunnett’s post-hoc). 

As would be expected following a lesion, dopamine turnover in the vehicle-treated group 

was increased in the lesioned striatum compared with the intact striatum, with 

(DOPAC+HVA)/DA ratios of 0.33 and 0.16 respectively (Table 6), representing a 210 ± 19% 

increase (Figure 22). Dopamine turnover rates were reduced by treatment with 

VU0155041, with an inverse bell-shaped dose response, with the effect approaching 

significance (P=0.0855; one-way ANOVA with Dunnett’s post-hoc). 
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Figure 22: Dopamine turnover rate in the lesioned striatum of rats with a nigral 6-OHDA lesion, 
sub-chronically treated with vehicle or VU0155041. The increase in dopamine turnover induced by 
the lesion in vehicle-treated rats was partially reversed in rats treated with 50nmol or 100nmol 
VU0155041, an effect which approached significance (P=0.086; one-way ANOVA with Dunnett’s 
post-hoc). Data are displayed as mean ± s.e.m. (n = 7-8).  

 

2.3.2.3 VU0155041 provided significant preservation of functional outcomes 

Cylinder test 

Pre-lesion and post-lesion use of the ipsilateral and contralateral forelimbs during the 

cylinder test is shown in Figure 23. At baseline (Figure 23a) there was no significant 

difference between groups with respect to either forelimb use (P=0.9337; two-way RM 

ANOVA with Bonferroni post-hoc), with all groups using each forelimb for approximately 

50% of touches. 

Vehicle-treated 6-OHDA-lesioned rats showed a marked reduction in use of the 

contralateral paw in the cylinder test post-lesion (Figure 23b), from a mean of 50 ± 3% 

touches to a mean of 5 ± 2% touches (P<0.0001; two-way RM ANOVA with Bonferroni post-

hoc). 

 

0 

50 

100 

150 

200 

250 

300 

Vehicle 50 nmol 
VU0155041 

100 nmol 
VU0155041 

200 nmol 
VU0155041 

(D
O

P
A

C
+H

V
A

)/
D

A
 i

n
 le

si
o

n
e

d
 s

tr
ia

tu
m

 
(%

 in
ta

ct
 s

tr
ia

tu
m

) 



123 
 

 

Figure 23: Forelimb use in the cylinder test in rats with a nigral 6-OHDA lesion, sub-chronically 
treated with vehicle or VU0155041. The dashed line shows the expected use of each paw in intact 
rats. Baseline forelimb use is shown in graph (a), indicating no significant bias towards either limb in 
any group. Post-lesion results are shown in (b), indicating that all groups showed a clear bias 
towards use of the ipsilateral paw following nigral 6-OHDA infusion. Daily treatment with 100nmol 
VU0155041 significantly preserved contralateral forelimb use compared with vehicle-treated rats, 
though this was still significantly reduced compared with pre-lesion use. Data are presented as mean 
± s.e.m. (n = 7-8) *P<0.05 versus Vehicle (two-way ANOVA with Bonferroni post-hoc). 

 

Treatment with increasing doses of VU0155051 produced a bell-shaped effect on 

contralateral paw reaching, such that the 50nmol group used the contralateral paw in 10 ± 

3% of touches, the 100nmol group in 18 ± 8% of touches and the 200nmol group in 5 ± 3% 

touches. The 100nmol group had significantly increased post-lesion use of the contralateral 

paw compared to vehicle (P<0.05; two-way RM ANOVA with Bonferroni post-hoc). While 

significantly higher than the vehicle-treated group, this still represented a significant 
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decrease compared with pre-lesion performance (P=0.0054; two-way RM ANOVA with 

Bonferroni post-hoc). 

Adjusted steps test 

Vehicle-treated 6-OHDA lesioned animals showed a decrease in number of steps taken in 

both the forward (P=0.0006; paired t-test) and reverse (P=0.0024; paired t-test) directions 

post-lesion compared with pre-lesion. This corresponded to a reduction in performance to 

58 ± 4% of pre-lesion in the forward direction and 63 ± 6% in the reverse direction (Figure 

24). 

 

  

    

Figure 24: Adjusted stepping test performance in rats with a nigral 6-OHDA lesion, sub-chronically 
treated with vehicle or VU0155041. The dashed line shows the expected performance in intact rats 
(100% baseline). Contralateral paw performance was decreased post-lesion in all groups, however 
treatment with 100nmol VU0155041 significantly preserved stepping performance in this paw in 
both the forward and reverse directions. Data are presented as mean ± s.e.m. (n=7-8). Fwd = 
forward direction; Rev = reverse direction; Ipsi = ipsilateral forelimb; Contra = contralateral 
forelimb.*P<0.05 versus Vehicle (one-way ANOVA with Dunnett’s post-hoc). 

 

Treatment with VU0155041 preserved the function of this paw as demonstrated by the 

increased stepping in VU-treated animals. In the forward direction, contralateral stepping 

performance was 72 ± 7% in the 50nmol group, 85 ± 4% in the 100nmol group and 66 ± 6% 

in the 200nmol group compared. This increase was significant in the 100nmol group 

(P=0.0247; one-way ANOVA with Dunnett’s post-hoc). In the reverse direction, 

contralateral stepping performance was 85 ± 8% in the 50nmol group, 90 ± 6% in the 
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100nmol group and 69 ± 7% in the 200nmol group. Again, this increase in stepping was 

significant in the 100nmol group (P=0.0351; one-way ANOVA with Dunnett’s post-hoc). 

As would be expected with a unilateral lesion, there was no effect of lesion on the number 

of adjusted steps taken by the ipsilateral forelimb in any group in either the forward 

(P>0.1761; paired t-tests) or reverse (P>0.2031; paired t-tests) directions.  

Apomorphine-induced rotational asymmetry 

The time course of rotations before and following 0.25mg/kg s.c. apomorphine is shown in 

Figure 25. Apomorphine acts on post-synaptic dopamine receptors, and elicits 

contraversive rotations in rodents with a full unilateral lesion due to supersensitisation of 

these receptors. This was the case for the vehicle-treated group, where baseline 

spontaneous ipsiversive rotations (net ipsiversive turns over 40 minutes = 7.7 ± 2.4) gave 

way to contraversive rotations following injection of apomorphine (net contraversive turns 

over 90 minutes = 44.0 ± 27.3). 

Following injection of apomorphine, rats treated with 50nmol VU0155041 showed overall 

contraversive asymmetry (19.6 ± 14.2 turns over 90 minutes), as did rats treated with 

200nmol VU0155041 (21.1 ±1 0.7 turns over 90 minutes), though to a lesser degree than 

vehicle-treated animals. On the other hand, rats treated with 100nmol VU0155041 showed 

no overall contraversive asymmetry in response to apomorphine, with a net rotational 

asymmetry of 4.1 ± 10.5 ipsiversive rotations over 90 minutes. 

When net contraversive rotations were compared between groups there was no significant 

effect of treatment with VU0155041 on apomorphine-induced asymmetry (P=0.2396; one-

way ANOVA with Dunnett’s post-hoc), despite a clear trend towards reduced contraversive 

turning in VU0155041-treated groups compared with the vehicle-treated group. This is 

likely explained by the high degree of variability in rotational response within groups, with 

some rats showing very little asymmetry following apomorphine injection and at least one 

animal from each VU0155041-treated group having a net ipsiversive response to 

apomorphine. This will be addressed in the discussion. 
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Figure 25: Apomorphine-induced rotational asymmetry in rats with a nigral 6-OHDA lesion, sub-
chronically treated with vehicle or VU0155041. The time course of rotations is shown in graph (a) 
and the total net number of full ipsiversive rotations over 90 minutes is shown in graph (b). There 
was no significant effect of treatment with VU0155041 on net rotational asymmetry. Data are 
presented as mean ± s.e.m. (n = 7-8 per group). 
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2.4 Discussion 

These studies set out to ascertain whether selective activation of mGlu4 in the SNc by sub-

chronic supranigral infusion of two novel mGlu4 PAMs could provide neuroprotection 

following nigral infusion of 6-OHDA in the rat. 

Contrary to our hypothesis, Compound 11 failed to provide a significant degree of 

neuroprotection at either the nigral or striatal level. This was largely reflected in the 

functional assessments, with the exception of a significant improvement in the cylinder test 

in rats treated with 20nmol Cpd 11. The loss of TH-positive cells in this study was not 

equivalent to the loss of striatal dopamine, such that vehicle-treated rats retained around 

33% TH-positive neurones overall throughout the SNc but only 2% of striatal dopamine 

content. The reason for this is unknown but could relate to the possible 

antioxidant/neuroprotective effects of DMSO (Di Giorgio et al., 2008; Sanmartín-Suárez et 

al., 2011), which composed 10% of the vehicle used in this study. This might have partially 

protected against the physical loss of TH-positive cells without preserving their function, 

which would explain why striatal dopamine was more severely depleted than the number 

of cell bodies. Additionally, the injection of 6-OHDA in the anterior region of the SNc led to 

a non-uniform cell loss between the levels that were assessed in this study. The majority of 

dopaminergic cell bodies reside in this anterior portion of the SNc (Paillé et al., 2007) so cell 

loss here might be more likely to impact on striatal dopamine content than cell loss at more 

posterior levels, therefore the enhanced survival of TH-positive neurones at -5.3mm and -

5.8mm might not have contributed as much to the residual dopamine concentration in the 

lesioned striatum, which was more reflective of cell loss at the -4.8mm level. The variation 

in cell loss between anteroposterior levels in this study led us to change our lesioning and 

treatment co-ordinates when we carried out the repeat of the VU0155041 study. For this 

study we used co-ordinates that aim closer to the centre of the SNc, which resulted in no 

significant degree of variability from front-to-back. 

VU0155041 on the other hand did provide a significant degree of neuroprotection, in 

accordance with our hypothesis. The results of this study closely replicate a previous report 

from our lab demonstrating a similar degree of neuroprotection with sub-chronic 

supranigral administration of VU0155041 (Betts et al., 2012). Neuroprotection was 

observed at both the nigral and the striatal levels, and was significantly different from 

vehicle-treated rats in the 100nmol-treated group. Moreover, the preservation of striatal 

dopamine observed in this group approached the critical threshold of 40% at which the 
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symptoms of PD in humans first become apparent, meaning that this level of protection is 

likely to be clinically important. This was reflected in significant functional preservation in 

both the cylinder test and the adjusted steps test in this group, and a trend towards 

reversal of the apomorphine-induced rotational response. 

The bell-shaped dose-dependency exhibited by VU0155041 is typical of agonist dose 

response curves, where higher doses of compound lead to desensitisation of the target 

receptor and therefore a loss of therapeutic effect. Desensitisation is brought about by 

prolonged stimulation by agonists and may involve internalisation of the receptor, or 

uncoupling of the receptor from its downstream effectors by receptor phosphorylation. 

Although use of allosteric modulators rather than agonists has been suggested to avoid 

these desensitisation effects, VU0155041 is not only a PAM at mGlu4 but also shows 

allosteric agonist activity (Niswender et al., 2008b). Therefore at high concentrations it 

might be expected that VU0155041 would cause desensitisation of mGlu4 and this could 

underlie the loss of efficacy of VU0155041 at higher doses. 

2.4.1 Differing abilities of mGlu4 PAMs to provide neuroprotection 

Despite both of these compounds acting as positive allosteric modulators at the same 

receptor, they showed differing abilities to elicit neuroprotection against nigral infusion of 

6-OHDA in the rat. There are several possible reasons that may help explain this: 

 Differences in the clearance rates of these drugs following intracerebral injection. 

No pharmacokinetic parameters for either Cpd 11 or VU0155041 have been 

reported following intracerebral injection, so until this has been defined this is 

purely speculative. Certainly the neuroprotection observed in the VU0155041 

study suggests that this mGlu4 PAM was present in the brain for a sufficient 

duration to partially counteract the toxic effects of the 6-OHDA lesion, however 

this might not have been the case for Compound 11. Even if Compound 11 exerted 

short-term effects, as might have underpinned the improved performance of 

20nmol-treated rats in the cylinder test, it is possible that its pharmacological 

activity is short-lived overall and therefore the once-daily dosing regimen used in 

this study might not have provided continuous enough mGlu4 modulation to exert 

a neuroprotective effect in a lesion model of this severity. Some pharmacokinetic 

data have been reported for Compound 11 in rats by East et al. (2010), including its 

rapid metabolism when administered systemically (which led to us choosing to 

dose intracerebrally in this study) and a short mean residence time (0.6h) following 
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intravenous delivery. These results point to rapid in vivo clearance in the rat 

following systemic administration that might also be the case following local 

administration. It might be interesting to investigate Compound 11 further with 

more frequent or even continuous delivery, allowing for more consistent activation 

of mGlu4 and circumventing clearance issues that might be hindering a protective 

effect. 

 Differing potencies of the PAMs at mGlu4  

VU0155041 is twice as potent at mGlu4 in vitro as Compound 11. However given 

that VU0155041 gave significant protection at 100nmol but a similar degree of 

protection was not observed when Cpd 11 was given at 200nmol this is unlikely to 

underlie the difference. 

 PAM versus agonist activity  

As well as acting as a PAM, VU0155041 is known to be a partial agonist of mGlu4 at 

high concentrations (a so-called ago-PAM), and the bell-shaped curve of the dose 

response in the neuroprotection study reported in this chapter supports this. It 

could be that the protective effect of VU0155041 was driven by its activity as a 

partial agonist rather than as a PAM, and perhaps the pure allosteric modulation 

afforded by Cpd 11 was insufficient to protect against 6-OHDA-induced 

degeneration. 

 Presence of mGlu2/4 heterodimers at subthalamonigral synapse 

Though previously thought to mainly exist as homodimers, there is evidence that 

mGlu receptors can also heterodimerise with other subtypes that share a common 

G protein, particularly mGlu2/4 (Doumazane et al., 2011). Though mGlu2/4 

heterodimers have not been demonstrated in vivo at the subthalamonigral synapse 

they have been demonstrated in the rat striatum (Yin et al., 2014). In addition the 

subthalamic nucleus expresses mRNA for both mGlu2 and mGlu4 at comparable 

levels (Messenger et al., 2002), which suggests that these heterodimers could also 

form at the subthalamonigral synapse. When in the form of a heterodimer it was 

originally thought that activation of both subunits was necessary for receptor 

activation (Kammermeier, 2012), however further investigation has revealed that 

depending on the allosteric site at which they bind, certain positive allosteric 

modulators of mGlu4 are unable to potentiate the effects of orthosteric activation 

with L-AP4 or glutamate at these heterodimers (e.g. PHCCC, 4PAM-2) while others 

are able to potentiate the actions of orthosteric agonists (e.g. VU0155041, 
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LuAF21934) (Yin et al., 2014). While the allosteric binding site of Compound 11 has 

not been reported it is conceivable that if it binds at the same site as PHCCC it will 

not activate mGlu2/4 heterodimers, while we know that due to its allosteric binding 

site VU0155041 will activate these heterodimers. Differential activation of mGlu2/4 

heterodimers could therefore underlie the differential abilities of these two 

compounds to elicit neuroprotection in this model, via the ability of VU0155041 

but not Compound 11 to inhibit subthalamonigral glutamate release and therefore 

excitotoxicity. 

2.4.2 General considerations 

One of the main caveats of these experiments is the fact that neuroprotection was 

attempted in a model that replicates very late-stage PD, where the nigrostriatal tract has 

severely degenerated leading to an almost complete loss of striatal dopamine (even 

alongside the less severe loss of TH-positive cells in the Compound 11 study). The 

degeneration following a nigral lesion is rapid, beginning within hours and almost complete 

after a week, leaving little scope for intervention. Treatment was started prior to lesioning 

in an attempt to counteract this, however it cannot be discounted that the failure of 

Compound 11 to elicit neuroprotection was due to the very severe functional lesion that it 

would have had to overcome. In support of this, a previous study investigating the 

neuroprotective effect of nicotine in the 6-OHDA rat showed that significant protection was 

observed in a partial lesion model but that this effect was lost in the full lesion model 

(Costa et al., 2001). Nevertheless it does seem that certain drugs do have sufficient activity 

to partially protect against even this very severe lesion, as was shown in this chapter and by 

Betts et al. (2012) to be the case for VU0155041, and has also been shown in a previous 

study using the broad spectrum group III mGlu receptor agonist L-AP4 (Austin et al., 2010). 

Since PD symptoms appear when striatal dopamine is depleted to around 60% of normal it 

would perhaps be more realistic to attempt neuroprotection in a model of degeneration 

approximating this stage of the disease. This could be achieved using the same toxin by 

using a smaller dose of 6-OHDA in the nigra (Carman et al., 1991; Costa et al., 2001; van 

Oosten et al., 2002) or MFB (Datla et al., 2001; Murray et al., 2003a; Truong et al., 2006), or 

by infusion of 6-OHDA into the striatum (Kirik et al., 1998; Li et al., 2010b; Przedborski et 

al., 1995). Alternatively, use of the dopamine-selective systemically active toxin MPTP at a 

dose that causes a partial lesion could also be considered (in mice, as it is ineffective in 

rats). This would allow for treatment with mGlu4 PAMs either alongside the toxin or 

starting at a time when the lesion is only partial, which would more accurately reflect the 
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clinical situation as drugs would not be given to PD patients until after striatal dopamine 

depletion had reached 60% and symptoms had become apparent. However different 

behavioural tests would need to be employed as the degeneration induced by systemic 

MPTP is bilateral. 

2.4.2.1 Behavioural tests 

Short-term pharmacological effects: Another consideration when interpreting the data is 

that behavioural testing was carried out from 3 hours after supranigral infusion of the drug 

in both studies. No studies were carried out to determine the half life of the drugs in the 

brain when administered locally and so it is impossible to know for sure whether or not the 

behavioural results collected in these studies are a reflection of neuroprotective efficacy 

(as was seemingly the case for VU0155041) or an acute pharmacological effect (as might 

have been the case for the significant effect of 20nmol Cpd11 in the cylinder test, where no 

neuroprotection was observed). 

In the Compound 11 study we found a significant effect of treatment with 20nmol Cpd 11 

on contralateral paw use in the cylinder test post-lesion, in the absence of a significant 

neuroprotective effect. One possible explanation for this apparent functional improvement 

in the absence of neuroprotection is that Cpd 11 exerted a short-term partial correction in 

BG signalling that was sufficient to provide some relief from the effects of the lesion as 

measured in this test. Certainly this drug has previously been shown to provide 

symptomatic relief in the haloperidol model of catalepsy, though the construct validity of 

this model is poor. Since the behavioural testing was carried out around 3 hours after 

dosing it is possible that there was still a sufficient concentration of the drug in the brain to 

modulate signalling in the nigra. 

Predictive validity: In addition to the possibility of confounding acute pharmacological 

effects, the validity of the behavioural data may be questionable with regard to its 

correlation with neuroprotection. This not only might have affected the results measured 

in these studies but would be even more pertinent if the study were to be repeated using a 

unilateral partial lesion model. 

For example a previous study found no difference in performance in the cylinder test 

between mice with an intermediate (80% striatal TH loss) and a severe lesion (94% striatal 

TH loss) (Grealish et al., 2010). In addition, I know from my own experience that up to 30% 

use of the contralateral forelimb can be observed in rats with >98% TH-positive cell loss in 
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the lesioned SNc. Therefore the significant effect found in the Cps 11 study may have been 

a false positive. 

We also noted unusual responses when testing both amphetamine-induced rotations in the 

Compound 11 study and in apomorphine-induced rotations in the VU0155041 study. With 

regard to amphetamine, the correlation between amphetamine-induced rotations and 

nigrostriatal degeneration has been queried (Carman et al., 1991; Dolleman-van der Weel 

et al., 1993; Fang et al., 2006) and may depend on the extent of VTA lesion (Thomas et al., 

1994), however in the Compound 11 study it was not the degree of turning that was 

unusual but the directionality. Amphetamine causes dopamine release, and as such should 

cause a greater activation of the striatum in the intact hemisphere, leading to ipsiversive 

rotation. However several animals in this study exhibited an initial vigorous contraversive 

response to the drug which cancelled out the later switch to ipsiversive turning. This so-

called ‘paradoxical’ turning behaviour has been previously noted in rats up to ~6 days post-

lesion (Carey, 1992; Robinson et al., 1994) and even beyond (Mintz et al., 1986b), and 

within our 60-minute testing period some animals switched from one turning behaviour to 

the other, some remained contraversive, and others only turned in the expected ipsiversive 

direction. In order to overcome this effect we tested amphetamine-induced rotations at 

later time points post-lesion in subsequent studies (day 12 in both LuAF21934 and AMN082 

neuroprotection studies, Chapters 4 and 5 respectively). 

With regard to the apomorphine-induced asymmetry in the VU0155041 study, while the 

results were in line with the functional effects seen in the cylinder and adjusted steps tests, 

this effect failed to reach significance despite a clear abolition of the contraversive turning 

observed in the vehicle-treated group in the 100nmol VU0155041-treated group. The high 

degree of variability in the net turning response probably underlies this, since several 

VU0155041-treated rats displayed ipsiversive turning in response to apomorphine while 

others showed contraversive turning as would be expected. The ipsiversive turning in 

response to apomorphine that was observed in these rats could be explained by the fact 

that despite the canonical model, apomorphine can elicit ipsiversive rotations in rats with 

‘medium-size’ (25-50%) lesions such as were obtained in several rats due to the 

neuroprotective effect of VU0155041 (Da Cunha et al., 2008). 

Nevertheless, the tests used in these studies have been used and shown to be effective in 

similar studies to the ones reported here (and indeed picked up the neuroprotection 

observed in the VU0155041 study reported in this chapter), and all studies are powered in 
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order to be able to detect differences using these measurements. Behavioural analysis 

carries with it an inherently high risk of variability and therefore alternative behavioural 

tests would likely experience similar caveats. 
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2.5 Conclusion 

Local activation of mGlu4 in the SNc using the mGlu4 PAM VU0155041 provided a 

statistically significant and clinically relevant degree of neuroprotection in rats following 

nigral infusion of 6-OHDA, lending further support to the idea of targeting these receptors 

as a neuroprotective strategy in Parkinson’s disease. 

The lack of a protective effect observed when another mGlu4 PAM, Compound 11, was 

tested in the same model suggests that differences in drug properties such as half life and 

bioavailability may well determine whether or not these compounds are efficacious against 

the severe lesion that is induced by nigral infusion of 6-OHDA. However the significant 

effect of treatment in the cylinder test in this study, along with the antiparkinsonian 

efficacy that has been reported for Compound 11 in the haloperidol model of catalepsy, 

does at least suggest that this compound has an acute antiparkinsonian effect that is likely 

due to a partial correction in signalling in the SNc. Further testing of this compound in 

partial lesion models, possibly also using continuous drug delivery, would give a more 

definitive answer as to whether Compound 11 provides only acute pharmacological relief 

from symptoms or if it can also provide neuroprotection in a more clinically relevant 

situation. 

Overall the neuroprotection observed with VU0155041 in the 6-OHDA model in this study 

and in a previous study from our lab, along with the neuroprotection that has been 

observed with systemic administration of the mGlu4 PAM PHCCC in the MPTP mouse model 

of PD, strongly supports the targeting of mGlu4 as a neuroprotective strategy in Parkinson’s 

disease. 
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3 Investigating the effects of group III mGlu receptor agonists 

on glutamate and GABA release in the substantia nigra 

3.1 Introduction 

Having demonstrated neuroprotection following local infusion of VU0155041 into the SNc 

both in the previous chapter and also by previous researchers in our lab (Betts et al., 2012), 

and following other studies that have used the same experimental design to demonstrate a 

neuroprotective effect of broad spectrum group III agonists (Austin et al., 2010; Vernon et 

al., 2005; Vernon et al., 2006), we next wanted to discover whether inhibition of glutamate 

release in the SNc could underlie this protective effect. 

3.1.1 Potential mechanisms of antiparkinsonian effects 

More than one mechanism has been proposed to explain the antiparkinsonian and/or 

neuroprotective effects of activation of group III mGlu receptors in the SNc. 

The first is the inhibition of glutamate release into the SNc from subthalamic efferent 

neurones, which are hyperactive in the parkinsonian state and could contribute to 

degeneration by enhancing excitotoxicity. Activation of group III mGlu receptors with L-AP4 

was found to reduce EPSCs in the SNc, suggesting a reduction of glutamate release from 

subthalamonigral neurones (Valenti et al., 2005). This is a promising result from the point 

of view of neuroprotection, and is what we investigated in the studies in this chapter. 

The second mechanism is suppression of inflammation; anti-inflammatory effects have 

been shown in vitro following pan group III activation (Besong et al., 2002; Taylor et al., 

2003) and in vivo following mGlu4 activation (Betts et al., 2012). This effect is presumably 

mediated by non-neuronal cells, for example activation of group III receptors expressed on 

microglia has been shown to reduce their neurotoxic effects following stimulation with the 

bacterial toxin lipopolysaccharide (LPS) (Taylor et al., 2003). 

There may be some cross-talk between excitotoxicity and inflammation (Chang et al., 2008) 

and accordingly group III mGlu receptor agonists can inhibit LPS-evoked glutamate export 

from microglia, and may thus reduce excitotoxicity (McMullan et al., 2012). In addition, 

activation of astroglial group III mGlu receptors may similarly modulate excitotoxicity 

secondary to toxic (MPP+) or inflammatory (LPS) stimuli, via enhancement of glutamate 

reuptake (Yao et al., 2005; Zhou et al., 2006). 
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Overall, these mechanisms could potentially lead to neuroprotection by reduction of 

excitotoxic and inflammation-mediated cell loss. In line with this theory, group III mGlu 

receptor activation has shown protective effects in models of inflammatory (Zhou et al., 

2006) and excitotoxic (Domin et al., 2014; Gasparini et al., 1999; Vera et al., 2012) 

neurodegeneration. 

3.1.2 Glutamate, GABA and group III mGlu receptors in the SN 

Given the neuroprotective effect observed in the 6-OHDA rat model of PD following sub-

chronic supranigral injection of the mGlu4 PAM VU0155041, we were interested to see if 

we could demonstrate an effect of either broad spectrum group III mGlu receptor 

activation or mGlu4-specific activation on glutamate release into the SNc in order to 

ascertain if this mechanism contributed to the protection. The distribution of group III 

receptors in the substantia nigra certainly suggests that activation of these receptors could 

modulate both glutamatergic and GABAergic signalling. 

The main glutamatergic input to the SNc is from subthalamonigral neurones, but there are 

additional afferents originating in the pedunculopontine nucleus (PPN), cortex and 

amygdala (Chatha et al., 2000). There are also several GABAergic afferents that innervate 

the SNc, predominantly originating in the striatum (the ‘direct’ striatonigral medium spiny 

neurones) but also from the GP and SNr collaterals (Fujiyama et al., 2002). 

The antiparkinsonian effects of group III mGlu receptor agonists when administered into 

the SN, along with evidence that they can reduce subthalamonigral glutamatergic 

signalling, demonstrate the presence of these receptors at this synapse. Given the 

differences in potency of broad spectrum agonists at each receptor subtype it is useful to 

know their relative abundances to try to ascertain which might be the most important 

receptor in mediating these effects. 

3.1.2.1 Intact SNc 

Receptor protein for both mGlu4 and mGlu8 has been identified in the SN (likely the SNc 

though this is not made clear in the paper), with moderate and low relative expressions 

respectively (Gu, 2003). mGlu7 was not examined in this paper, however another study 

found no evidence for mGlu7 protein expression in the SNc (Kinoshita et al., 1998). 

Regarding glutamatergic afferents, mRNA for mGlu4, mGlu7 and mGlu8 has been detected 

at moderate levels in the STN and at moderate to high levels in the cortex (Messenger et 

al., 2002). Along with the protein expression information, this suggests that mGlu4 and 
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mGlu8 might be present presynaptically at the subthalamonigral synapse. In addition, 

mRNA for mGlu7 but not mGlu4 has been detected at moderate levels in the PPN, and 

mRNA for both these receptors has also been detected at low to moderate levels in various 

areas of the amygdala (Ohishi et al., 1995), therefore group III mGlu receptor agonists 

might also modulate signalling at these synapses.  

Regarding GABAergic afferents, mRNA for mGlu4, mGlu7 and mGlu8 has been detected at 

moderate to high levels in the striatum and at low levels in the GP and SNr (Messenger et 

al., 2002; Testa et al., 1994). Another report detected both mGlu4 and mGlu7 in the 

striatum, but only mGlu7 in the GP and SNr (Ohishi et al., 1995). The increased abundance 

of mRNA in the striatum compared with the GP and SNr might suggest that the majority of 

group III heteroreceptors in the SNc modulate signalling at striatonigral neurones. 

In addition, mRNA for all three group III mGlu receptors that are expressed in the brain has 

been identified in the SNc of naive rats. In one study that looked at all group III receptor 

subtypes, mGlu4 and mGlu7 were equivalently expressed at relatively low levels, whereas 

mGlu8 was expressed at moderate levels (Messenger et al., 2002). Other studies support 

some, but not all, of these findings, for example when only mGlu4 was investigated it was 

found to have low level expression in the SNc by one group (Testa et al., 1994) but where 

both mGlu4 and mGlu7 were investigated by another group, only mGlu7 mRNA was localised 

to the SNc (Ohishi et al., 1995). Since the pre- or post-synaptic localisation of group III mGlu 

receptors in the SNc has not been elucidated it is possible that mRNA expression in this 

region could lead to either local or distal group III mGlu receptor expression. 

3.1.2.2 6-OHDA-lesioned SNc 

The reported effects of 6-OHDA-induced nigrostriatal degeneration on group III mGlu 

receptor expression in the SNc are inconsistent, with one study reporting no change in any 

receptor subtype at the level of mRNA (Messenger et al., 2002) and another reporting that 

both mGlu4 and mGlu8 receptor proteins were reduced in SN (likely SNc, see above) after 

lesioning (mGlu7 was not examined) (Gu, 2003). 

3.1.3 Using microdialysis to determine neurotransmitter release 

Microdialysis is a technique that involves the sampling of molecules across a partially 

permeable membrane. Membranes are designed with a specific size cut-off that generally 

allows the passage of small molecules such as steroid hormones and neurotransmitters but 

not large molecules such as proteins. This membrane is on the end of a flexible probe, 

which is perfused continuously with an isotonic perfusate (e.g. artificial cerebrospinal fluid 
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(aCSF), 0.9% saline or another isotonic solution) and acts like an artificial capillary (Figure 

26). 

 

 

Figure 26: Schematic showing the technique of microdialysis using a concentric probe. Perfusate 
(e.g. aCSF) flows continuously through the probe (blue arrows) at a slow rate, usually 0.1-3µl/min. 
The membrane allows diffusion of small molecules into the aCSF within the probe from the 
extracellular environment (green circles and arrows). This technique also allows delivery of small 
molecules into the extracellular environment by retrograde dialysis (red circles and arrows). 

 

As the aCSF flows past the membrane, molecules that are in the extracellular milieu 

surrounding the probe tip diffuse across the membrane into the probe along their 

concentration gradients. The flow of perfusate then carries these molecules out of the 

probe and they are collected in a dialysate fraction. This is how neurotransmitters or other 

small molecules are sampled. 

Microdialysis can also be used for local delivery of small molecules into the region of 

interest by a process called retrograde dialysis. This is simply where a drug is delivered via 

the perfusate flowing through the probe. As the drug molecules pass the membrane they 

will diffuse out into the extracellular milieu along their concentration gradient. 

Microdialysis is increasingly employed to measure free drug concentrations within discrete 

brain regions in pharmacokinetic studies, however it is still most often used to measure 
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neurotransmitter concentrations, both basal and also depolarisation-evoked exocytotic 

release by exposure of the sampled region to a high concentration of potassium ions (high 

K+). 

3.1.4 Considerations for microdialysis 

The recovery of the analyte of interest is dependent on several factors, including: 

 Membrane length/diameter. In general, the larger the membrane area, the better 

the analyte recovery (Kendrick, 1989). However this parameter is usually limited by 

the size of the region of interest. 

 Membrane material. Examples of membrane materials include cellulose or 

regenerated cellulose (e.g. cuprophane), polyacrylonitrile, polycarbonate ether and 

polyethersulfone. These membranes have different properties with regard to size 

exclusion, binding and stability and must be chosen according to the analyte that is 

to be sampled. 

 Perfusate (e.g. aCSF) flow rate. In general, the slower the flow rate the higher the 

relative recovery of analyte, but having said that it is important to also bear in mind 

the sample volume that is required for analysis, and also the reduced temporal 

resolution with very slow flow rates. Use of a very low flow rate such as <0.1µl/min 

can result in almost 100% analyte recovery (Smith et al., 1992), however common 

flow rates used in microdialysis are 1-3µl/min, where relative recovery is typically 

10-30% (Kendrick, 1989).  

 Perfusate composition. The perfusate flowing through the probe should be as 

close to a physiological solution as possible. aCSF is commonly used, but it is 

important to get the composition correct, as efflux of Na+ and Ca2+ ions especially 

could influence normal neuronal signalling. 

 Analyte properties. Properties such as molecular weight and charge of certain 

analytes can make them incompatible with certain membranes – proteins in 

particular can be ‘sticky’. Amino acids and monoamines generally have the highest 

recovery of all neurotransmitters, likely due to their low molecular weight 

(Kendrick, 1989). 

3.1.5 Pros and cons of microdialysis 

As with all techniques, microdialysis has pros and cons. The pros include the fact that the 

procedure is relatively simple and has minimal physical impact on the brain insofar as the 

flow of perfusate is kept separate from brain tissue by the membrane. Physical damage to 
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the brain can be minimised by using flexible concentric microdialysis probes instead of rigid 

U-shaped probes. This technique also allows localised administration of drugs or altered 

perfusate components (such as high K+) by retrograde dialysis. 

The cons of this technique include the poor temporal resolution versus some other 

techniques (typically ≥10 minutes, versus real-time second/millisecond resolution using 

alternative analyte detection techniques such as fast-scan cyclic voltammetry 

(FSCV;(Stamford, 1990), due to the need to balance slow flow rates and the collection of 

adequate sample volumes for analysis. The spatial resolution is also poor, since the 

membrane is not within the synaptic cleft, and it has been suggested that some 

neurotransmitters such as GABA and glutamate signal over too short a distance to create 

overflow that would reach a dialysis probe (reviewed in(Del Arco et al., 2003). 

Other concerns depend on the dialysis method used and the outcomes being measured. 

For example microdialysis can be performed on anaesthetised or freely-moving animals, 

but anaesthesia is known to influence neurotransmitter concentrations to varying degrees 

depending on the anaesthetic used (de Souza Silva et al., 2007). In addition, relative 

recovery of analytes can be low due to incomplete sampling across membrane. It is not 

always easy to relate dialysate concentrations to actual extracellular concentrations, and 

the in vitro recoveries that used to be typically employed for calculating the extracellular 

fluid/dialysate ratio have been shown to be inaccurate due to the impaired movement of 

analytes in the extracellular space compared with in solution (Glick et al., 1994; Nicholson 

et al., 1986). Accurate calculation of extracellular analyte concentrations are particularly 

important in pharmacokinetic studies, however it is not always necessary in the case of 

experiments that are looking at relative changes (e.g. calculating a ratio between 

responses) as relative recovery is assumed to be constant in vivo as it has been shown to be 

in vitro (Kendrick, 1989). 
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3.1.6 Hypothesis and aims 

Previous studies have shown that broad spectrum group III mGlu receptor agonists can 

reduce glutamate release in the SNr (Austin et al., 2010) but this has not been tested in the 

SNc in either the intact or lesioned BG. Neither has the effect of group III agonists been 

tested on GABA release into the SNc. Unravelling how transmitter release is affected in the 

SNc will help to predict the likely therapeutic benefits of targeting these receptors. In 

addition, such knowledge may help to provide an explanation for the previously reported 

neuroprotective effects of supranigral infusion of broad spectrum group III mGlu receptor 

agonists and subtype-selective mGlu4 PAMs. We hypothesise that: 

The broad spectrum group III mGlu receptor agonist L-AP4 will inhibit evoked glutamate 

and GABA release in the naive rat SNc. 

In addition, the effects of mGlu4 subtype-specific positive allosteric modulators on 

glutamate and GABA release in the SNc have not been tested, even though many of the 

effects of group III agonists have been attributed to this receptor subtype (Lopez et al., 

2007; Valenti et al., 2005; Wittmann et al., 2001). Therefore we also tested the effect of 

VU0155041 on evoked glutamate and GABA release in the SNc, where we hypothesise that  

The mGlu4 selective PAM VU0155041 will have similar effects to L-AP4, inhibiting evoked 

release of both glutamate and GABA release in the naive SNc. 

Since there is some evidence that 6-OHDA lesioning reduces the expression of mGlu4 and 

mGlu7 receptor proteins in this region (Gu, 2003), this effect may be altered in the lesioned 

SNc. Given previous electrophysiological data that have demonstrated that in the 

dopamine-depleted state (acute reserpinisation) group III activation retains its ability to 

inhibit glutamatergic transmission but loses its ability to inhibit GABAergic transmission in 

the SNr (Wittmann et al., 2002), along with the finding that subthalamonigral 

neurotransmission is enhanced in the SNc in the parkinsonian state (Guridi et al., 1996; 

Remple et al., 2011), we might expect that in the lesioned SNc: 

The broad spectrum group III mGlu receptor agonist L-AP4 will inhibit evoked glutamate 

release but have a lesser or no effect on evoked GABA release in the 6-OHDA-lesioned rat 

SNc. 

We expect the intact SNc of these rats to retain the decrease in both GABA and glutamate 

release in the presence of L-AP4 that we hypothesise to occur in the naive SNc. 



142 
 

A set of experiments was therefore carried out to test: 

 The effects of L-AP4 on K+-evoked glutamate and GABA release in the SNc of 

anaesthetised naive rats. 

 The effects of VU0155041 on K+-evoked glutamate and GABA release in the SNc of 

anaesthetised naive rats. 

 The effects of L-AP4 on K+-evoked glutamate and GABA release in the intact vs. 

lesioned SNc of anaesthetised rats with a unilateral 6-OHDA lesion of the MFB. 
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3.2 Materials and Methods 

All of the studies outlined in this chapter were carried out at Eli Lilly and Co. Ltd., 

Windlesham, Surrey, U.K. All procedures were performed in accordance with the U.K. 

Animals (Scientific Procedures) Act, 1986. 

3.2.1 Compounds tested 

These experiments tested the broad spectrum group III agonist L-AP4 and the mGlu4 PAM 

VU0155041, shown in Table 7. 

 

Table 7: Structures of the compounds tested in the microdialysis studies. 

Structure Name Target 

NH2

OH

O

OH

OH

O

P

 

L-AP4 
 

(2S)-2-amino-4-
phosphonobutanoic acid 

Broad 
spectrum 
group III 

mGlu 
receptor 
agonist 

Cl

Cl

NH

O

O

OH

 

VU0155041 
 

cis-2-[[(3,5-
Dichlorophenyl) 
amino]carbonyl] 

cyclohexanecarboxylic 
acid 

mGlu4 
Positive 

Allosteric 
Modulator 

 

L-AP4 is a broad spectrum agonist of group III receptors, displaying activity at all three 

receptor subtypes that are expressed in the brain: EC50 = 0.43µM at mGlu4, 160µM at 

mGlu7 and 0.67µM at mGlu8. It has been demonstrated to have antiparkinsonian efficacy as 

described in the Introduction. 

VU0155041 was discovered at Vanderbilt University and acts as a PAM at human mGlu4 

(EC50 = 0.75µM) and rat mGlu4 (EC50 = 0.56µM). Similarly to L-AP4, this molecule has shown 

antiparkinsonian efficacy in acute models of PD including the haloperidol and reserpine 

models when administered into the third ventricle (Niswender et al., 2008b). 
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3.2.1.1 Drug formulation 

L-AP4 and VU0155041 sodium salt were obtained from Tocris Biochemicals, Bristol UK. 

Drugs stocks were made up in sterile distilled water and made up to their final 

concentration in aCSF (141mM NaCl, 5mM KCl, 1.5mM CaCl2, 0.8mM MgCl2 in dH2O) or 

high K+ aCSF (46mM NaCl, 100mM KCl, 1.5mM CaCl2, 0.8mM MgCl2) as appropriate. 

3.2.2 Other materials 

3.2.2.1 Experimental materials 

Microdialysis: Urethane and the aCSF / 100mM K+ aCSF components NaCl, KCl, CaCl2.2H20 

and MgCl2 were obtained from Sigma Aldrich (Poole, UK). 

6-OHDA lesioning: 6-OHDA.HCl, Pargyline.HCl and Desipramine.HCl were obtained from 

Sigma Aldrich (Poole, UK). 

3.2.2.2 Analytical materials 

LC-MS/MS (liquid chromatography with tandem mass spectrometry): Glutamate, GABA, 

benzoyl chloride, acetonitrile (ACN), borax (sodium tetraborate decahydrate), LC-MS grade 

methanol and formic acid (FA) were obtained from Sigma Aldrich (Poole, UK). The internal 

standards D5-Glutamate and D6-GABA were obtained from CDN isotopes (Pointe-Claire, 

Quebec, Canada). 

HPLC (high pressure/performance liquid chromatography) for GABA and glutamate: O-

phthaldehyde (OPA), sodium sulphite, boric acid, ethylenediaminetetraacetic acid (EDTA) 

and citric acid monohydrate were obtained from Sigma Aldrich (Poole, UK). LC-MS grade 

methanol was obtained from Fisher Scientific (Loughborough, UK). 85% phosphoric acid 

and 50% sodium hydroxide solutions were obtained from Acros Organics (via Fisher 

Scientific, Loughborough, UK).  

HPLC for dopamine: As described in section 2.2.2.2.   
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3.2.3 General methods: microdialysis procedure 

3.2.3.1 Probe implantation 

Male Charles River-derived rats (CD; derived from Sprague-Dawley (SD) rats – Charles River, 

UK) between 280-330g were anaesthetised with urethane (2.5g/kg i.p. initial bolus with 

maintenance doses given as required) and placed in a stereotaxic frame with the toothbar 

set at -3.3mm. A 15mm concentric microdialysis probe with a 1mm active membrane 

length (MAB 4.15.1.Cu; Royem Scientific Ltd., Luton, UK) was implanted into the SNc at co-

ordinates AP -5.0mm; ML -2.0mm; DV -8.6mm from bregma (Figure 27). The dialysis 

membrane used was a cuprophane membrane with a size cut-off of 6kDa. 

 

 

Figure 27: Implantation location of microdialysis probe within the SNc. The 1mm probe membrane 
would be expected to lie within the SNc 5.0mm posterior of bregma, as shown in the diagram above. 
The outlined box shows the positioning of the probe tip in relation to the SNc (shaded black). The 
brain diagram was obtained from the Rat Brain in Stereotaxic Co-ordinates (Paxinos et al., 1998). 

 

3.2.3.2 Microdialysis 

For all microdialysis studies we used a dual-stimulation protocol. This was to correct for 

inter-animal variation in the degree of glutamate and GABA release evoked by K+ 

stimulation that was noted in preliminary studies where only a single stimulus was 

assessed. This is a similar protocol to that utilised by Austin et al. (2010). 
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The microdialysis probe was perfused with aCSF (141mM NaCl, 5mM KCl, 1.5mM CaCl2, 

0.8mM MgCl2) at a flow rate of 1.2µl/min, and sampling started after a 90-minute pre-

sample to allow for stabilisation of the baseline. After four 20-minute baseline samples, the 

perfusate was switched for 10 minutes to a high K+ aCSF (46mM NaCl, 100mM KCl, 1.5mM 

CaCl2, 0.8mM MgCl2) to evoke depolarisation and neurotransmitter release, before being 

switched back to aCSF for a further four baseline samples. This gave the control K+-evoked 

response for each animal (S1). 

Following this, animals were exposed firstly for 10 minutes with either vehicle (dH20) or 

drug in aCSF as a pre-treatment, then for 10 minutes with the same vehicle or drug in high 

K+ aCSF, before being returned to aCSF for a further four baseline samples. This provided 

the response to high K+ in the presence of the test drug (S2). 

The difference between these two responses was the major outcome being measured. 20-

minute fractions (24µl) were frozen on dry ice immediately following collection and kept at 

-80°C until analysis. 

3.2.3.3 Probe positioning 

In order to verify the probe positioning, a 1% solution of trypan blue in aCSF was perfused 

for 20 minutes at 1.2µl/min after the experiment. The brain was removed and fresh frozen 

in cooled isopentane and stored at -80°C until analysis. Brains were brought up to -20°C for 

30 minutes, then mounted using OCT (Tissue-Tek) and 30µm sections cut coronally on a 

cryostat (Leica) until the dye was visible. Sections were mounted and inspected using a 

brightfield microscope to confirm that the blue dyed area bisected the SNc. 

Only samples collected from animals with correctly positioned probes were analysed in 

these studies. The positioning success rate was 80% for the unilateral L-AP4 and 

VU0155041 studies (Figure 28). 
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Figure 28: Probe positioning within the SNc for unilateral microdialysis. The membrane length was 
1mm, therefore only the bottom 1mm of blue staining shows the sampled region (marked on 
diagram). 

 

For the bilateral dialysis study the success rate was 92% (Figure 29). 

 

 

Figure 29: Probe positioning within the SNc for bilateral microdialysis. The nigrostriatal tract was 
lesioned (MFB infusion of 6-OHDA) on the left hand side of the brain and microdialysis performed in 
both the intact and lesioned SNc to ascertain the effect of lesioning on L-AP4 response. The active 
membrane length was 1mm (marked on diagram). 

 

The group sizes quoted in the results section only refer to animals with correctly-placed 

probes. 
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3.2.4 Methods specific to Experiment 1: Effect of L-AP4 on glutamate and GABA 

release in the naive SNc 

3.2.4.1 Microdialysis 

Naive male CD rats were implanted with microdialysis probes into the SNc under urethane 

anaesthesia as described in the general methods. 

Groups (all n=6) were exposed to high K+ aCSF for the first evoked release (S1, control) and 

vehicle, 100µM or 300µM L-AP4 in aCSF or high K+ aCSF was infused before and during the 

second evoked release (S2, test). 

The doses of L-AP4 used were chosen to reflect a previous microdialysis experiment 

performed in the SNr, where 300µM L-SOP significantly reduced K+-evoked glutamate 

release (Austin et al., 2010). 

3.2.4.2 LC-MS/MS analysis of glutamate and GABA in the dialysate 

Dialysate samples were analysed using LC-MS/MS as we had encountered problems with 

the HPLC (high performance liquid chromatography) system with regard to peak separation 

on the glutamate chromatograms. The methodology involves derivatisation of samples 

with benzoyl chloride to yield molecules of sufficient size for accurate identification by 

mass spectrometry. 

Samples were prepared by mixing 8µl dialysate (thawed from storage at -80°C) with 4µl 

100mM borax and 4µl of internal standard (either 10µM D5-glutamate or 1µM D6-GABA). 

While mixing, 4µl 2% benzoyl chloride in ACN was added to each sample. Samples were 

vortexed thoroughly and then diluted with 90µl of 50:50:0.05 MeOH:H2O:FA to minimise 

the introduction of borate into the HPLC column. Standards containing equimolar 

concentrations of glutamate and GABA were prepared in aCSF and derivatised in the same 

way, covering a concentration range of 2.5-1000nM. 

Each derivatised sample or standard was first separated at room temperature by gradient 

HPLC (mobile phase A: 0.1% FA in H2O; mobile phase B: 100% LC-MS grade MeOH; flow rate 

200µl/min) on a Phenomenex ACE C18-PFP 50 x 2mm 3µm particle size column fitted with 

a javelin prefilter. The analytes were then ionised by atmospheric pressure ionisation (API) 

and identified by mass spectrometry using an API4000 triple quadropole (MMSP606) mass 

spectrometer (Applied Biosystems). 
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3.2.4.3 LC-MS/MS data analysis 

Calibration curves were generated within Analyst software (v 1.4.2) from the GABA and 

glutamate standards. Concentrations were calculated for each sample from these standard 

curves. 

3.2.4.4 Statistical analysis 

The data in this study were normally distributed; therefore the results quoted are mean ± 

standard error of the mean (s.e.m.). The data are presented as bar charts or line graphs, 

where the bar height/plotted point represent the mean and the error bars represent the 

s.e.m. 

The sizes of the glutamate and GABA release responses at S1 (control) and S2 (with L-

AP4/vehicle) were determined using area-under-curve (AUC) analysis in SigmaPlot (v. 12.5). 

The sizes of the S1 and S2 responses were compared within groups using a paired t-test. 

In addition, the S2/S1 ratios for glutamate and GABA responses were compared between 

vehicle and L-AP4-treated groups using a one-way ANOVA with Dunnett’s post-hoc. 

Results were considered to be statistically significant where P<0.05. 
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3.2.5 Methods specific to Experiment 2: Effect of VU0155041 on glutamate and 

GABA release in the naive SNc 

This experiment investigated the effect of subtype-selective activation of mGlu4 on 

glutamate and GABA release by using the positive allosteric modulator VU0155041. Parallel 

experiments were performed using equimolar concentrations of L-AP4 for comparison, 

lower than the concentrations tested in experiment 1, since VU0155041 and L-AP4 have 

similar potencies at mGlu4 (EC50 = 0.56µM for VU0155041 or 0.43µM for L-AP4). 

3.2.5.1 Microdialysis 

Naive male CD rats were implanted with microdialysis probes into the SNc under urethane 

anaesthesia as described in the general methods. 

Groups were exposed to high K+ aCSF for the first evoked release (S1, control) and either 

vehicle (n=6), 3µM L-AP4 (n=8), 30µM (n=7) L-AP4, 3µM VU0155041 (n=8) or 30µM (n=7) 

VU0155041 in aCSF or high K+ aCSF was infused before and during the second evoked 

release (S2, test). 

3.2.5.2 HPLC analysis of glutamate and GABA in the dialysate 

Dialysate samples were analysed for GABA content using a reverse-phase HPLC system with 

electrochemical detection, the Alexys GABA-Glu Analyzer (Antec, Netherlands). This system 

switches between two columns of different lengths to provide two chromatograms, one for 

the glutamate and one for the GABA (Figure 30). 

The mobile phase consisted of 50mM phosphate, 50mM citrate 0.5mM EDTA and 5% 

methanol (pH 3.70) and was pumped without recycling at 200µl/minute. The stationary 

phase in the columns consists of C-18-linked silica of particle size 3µm. Derivatisation of 

samples with OPA-sulfite (37mM OPA, 50mM sodium sulphite, 90mM boric acid, 5% 

methanol; pH 10.4) was performed by the autosampler, and the electroactive reaction 

products of glutamate and GABA were detected at 2nA/V and 10nA/V respectively.  
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Figure 30: Column switching for dual analysis of GABA and glutamate. The upper panel shows a 
schematic of the column switching process used by the Alexys GABA-Glu analyser: The OPA-sulfite-
derivatised sample undergoes preliminary separation on a 5cm column (1). The fraction containing 
the glutamate (black) is further separated on a 15cm column (2), while the fraction containing the 
GABA (grey) is switched straight onto its detector, arriving at about 9.7 minutes (3). The glutamate is 
detected at a separate detector after around 13.3 minutes (4). The lower panel shows an overlaid 
chromatogram of a 700nM standard run in triplicate. The peaks for GABA and glutamate are clearly 
visible at their respective retention times. 
 

3.2.5.3 Data analysis 

Peak areas were measured on Empower 3 software (Waters Corp.) and the areas of the 

standards and samples were analysed using JMP v. 8.0 (SAS Software). For each run the 

standard curve was determined using a 4-parameter logistic fit to account for loss of peak 

area in the standards between the start and end of the run. The individual lower limit and 

upper limit of quantification (LLOQ and ULOQ) for each run was determined by the 

presence of visible peaks with <20% area difference between pre- and post- run standards. 

The LLOQ and ULOQ for glutamate were 10nM and 500nM respectively, and for GABA were 
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5nM and 1000nM respectively, as determined by the linear range of mixed glutamate and 

GABA standards ranging from 3-3000nM. 

3.2.5.4 Statistical analysis 

The data in this study were normally distributed; therefore the results quoted are mean ± 

standard error of the mean (s.e.m.). The data are presented as bar charts or line graphs, 

where the bar height/plotted point represent the mean and the error bars represent the 

s.e.m. 

The sizes of the GABA release responses at S1 (control) and S2 (with L-

AP4/VU0155041/vehicle) were determined using AUC analysis in SigmaPlot (v. 12.5). The 

sizes of the S1 and S2 responses were compared within groups using a paired t-test. 

In addition, the S2/S1 ratios for the GABA response were compared between vehicle- and 

L-AP4-treated and between vehicle- and VU0155041-treated groups using a one-way 

ANOVA with Dunnett’s post-hoc. 

Results were considered to be statistically significant where P<0.05.  
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3.2.6 Methods specific to Experiment 3: Comparing the effect of L-AP4 on 

glutamate and GABA release in the intact and 6-OHDA-lesioned SNc 

As mentioned in the hypothesis for this experiment, dopamine denervation has been 

shown to alter both subthalamonigral transmission (glutamatergic) and the expression of 

mGlu4 and mGlu7 receptor proteins. Therefore this experiment sought to investigate 

whether or not a full unilateral lesion of the nigrostriatal tract would alter the effect of L-

AP4 on GABA and glutamate release in the SNc. The highest dose of L-AP4 was chosen in 

this experiment to maximise the chance of activating all group III receptor subtypes, and 

because an effect on glutamate release had previously been demonstrated in the SNr for 

the same concentration of L-SOP, another broad spectrum group III mGlu receptor agonist 

with comparable potencies at mGlu4 and mGlu7 (Austin et al., 2010). 6-OHDA lesioning of 

the MFB was carried out two weeks prior to microdialysis. 

3.2.6.1 Lesioning 

Male CD rats (250-270g) were pre-treated 30 minutes prior to lesioning with 5 mg/kg 

pargyline and 25 mg/kg desipramine (i.p.) to inhibit MAO-B and prevent extracellular 

metabolism of the 6-OHDA, and to prevent uptake of toxin into noradrenergic neurones 

respectively. Following this rats were anaesthetised with isoflurane (5% induction and 2-3% 

maintenance) and placed in a stereotaxic frame with the toothbar set at -4.5mm from the 

interaural line. The scalp was excised and bregma identified using a surgical microscope. 

The location of the MFB was defined as -4.0mm AP, -1.3mm ML from bregma, and -7.0mm 

ventral of dura mater. These co-ordinates were chosen as the animals used were at the 

lower end of the weight range covered by Paxinos and Watson’s Rat Brain in Stereotaxic 

Co-ordinates (Paxinos et al., 1998), and in smaller animals these co-ordinates were found 

to have a greater efficacy than those classically used for MFB lesions (Torres et al., 2011). 

A hole was drilled in the skull and a 28G injection cannula was lowered into position. Using 

a Hamilton syringe and CMA pump, 3µl of a 30mM 6-OHDA solution in 0.03% ascorbate 

was infused at a rate of 1µl/minute for 3 minutes (total 15.42µg 6-OHDA). The cannula was 

left in situ for 2 minutes after infusion to allow the toxin to diffuse away from the site and 

prevent reflux up the tract upon retraction. 

The wound was sutured and the animals given 10ml/kg sterile 0.9% saline (s.c.) and kept in 

thermostatically-controlled cages to aid recovery. Analgesia was provided by the 

administration of 0.1ml Vetergesic (Alstoe) following surgery. 
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3.2.6.2 Microdialysis 

14 days post-surgery, when the 6-OHDA-induced lesion was expected to be complete 

(Labandeira-Garcia et al., 1996; Wang et al., 2004) and the rats were in the weight range 

310-350g, they underwent bilateral microdialysis. In order to reflect previous studies this 

was done under urethane anaesthesia (2.5g/kg i.p. initial bolus with maintenance doses 

given as required). Microdialysis probes were implanted bilaterally into the SNc, at co-

ordinates AP -5.0mm; ML ±2.0mm; DV -8.6mm. 

The effect of 300µM L-AP4 on glutamate and GABA release was simultaneously tested in 

both the lesioned and intact nigra. For the control response, S1, high K+ aCSF was perfused 

into the brain for 10 minutes. For the test response, S2, 300µM L-AP4 was infused for 10 

minutes before (in aCSF), and during the 10 minute evoked release (in high K+ aCSF). 

3.2.6.3 HPLC analysis of striatal dopamine 

To confirm the success of the nigrostriatal lesion, following microdialysis the left and right 

striata were dissected, weighed and snap frozen for analysis of monoamines by HPLC as 

described in section 2.2.3.2. 

3.2.6.4 LC-MS/MS analysis of dialysate 

Dialysate samples were analysed using LC-MS/MS as detailed for experiment 1. 

3.2.6.5 Statistical analysis 

The data in this study were normally distributed; therefore the results quoted are mean ± 

standard error of the mean (s.e.m.). The data are presented as bar charts or line graphs, 

where the bar height/plotted point represent the mean and the error bars represent the 

s.e.m. 

Lesion-induced changes in striatal dopamine and its metabolites were compared between 

lesioned and intact sides using t-tests. 

Baseline glutamate and GABA concentrations were measured as an average of the 

concentrations obtained in the first four dialysate samples. These were compared between 

the intact and lesioned SNc using a t-test. 

The sizes of the glutamate and GABA release responses at S1 (control) and S2 (with 300 µM 

L-AP4) were determined using AUC analysis in SigmaPlot (v. 12.5). The sizes of the S1 and 

S2 responses were compared within sides using a paired t-test. 
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The S2/S1 ratios for glutamate were compared between the intact and lesioned SNc using a 

Mann-Whitney U-test as these data were not normally distributed. The S2/S1 ratios for 

GABA were compared between the intact and lesioned SNc using a t-test.  

Results were considered to be statistically significant where P<0.05. 
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3.3 Results 

3.3.1 Experiment 1: Effect of L-AP4 on glutamate and GABA release in the naive 

SNc 

3.3.1.1 L-AP4 increased K+-evoked glutamate release in the SNc at S2 compared 

with S1 

A plot of the dialysate concentration of glutamate over the course of experiment 1 is 

shown in Figure 31. The reason for the dual-release protocol can clearly be seen by the 

differences between groups in glutamate release at S1, when all rats were exposed to only 

high K+ aCSF. This may be caused by inter-individual variation or differences in the exact 

location of the microdialysis probe within the SNc. 

 

 

Figure 31: Dialysate glutamate concentrations during unilateral microdialysis in the naive SNc. The 
two evoked releases, S1 and S2, can clearly be seen at 100 and 200 minutes. The filled bar shows the 
duration of exposure to high K+ aCSF. The dashed bar shows the duration of exposure to L-AP4 or 
vehicle. Data are displayed as mean ± s.e.m. (n = 6 per group). 

 

In the vehicle group, the AUC of the control response (S1) was 6498 ± 730 and the AUC of 

the S2 response (with vehicle) was 7119 ± 1182 (Figure 32a). This increase in glutamate 

release was not significant (P=0.5572; paired t-test). 

In the 100µM L-AP4 group, the AUC of the control response (S1) was 10963 ± 2695 and the 

AUC of the S2 response (with drug) was 13470 ± 2360 (Figure 32b). This increase in 

glutamate release in the presence of 100 µM L-AP4 was not significant (P=0.2156; paired t-

test). 
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In the 300µM L-AP4 group, the AUC of the control response (S1) was 7324 ± 1314 and the 

AUC of the S2 response (with drug) was 10288 ± 1407 (Figure 32c). This represented a 

significant increase at S2 in the presence of 300 µM L-AP4 compared with S1 (P=0.0001; 

paired t-test). 

 

 

Figure 32: Glutamate S1 vs. S2 response in the SNc of anaesthetised naive rats. The S2 response is 
significantly increased compared with S1 in the presence of 300µM L-AP4 (c), but not in the 
presence of either 100µM L-AP4 (b) or vehicle (a). Data are displayed as mean ± s.e.m. (n = 6 per 
group) ***P<0.001 (paired t-test versus S1). 

 

3.3.1.2 L-AP4 did not affect glutamate S2/S1 ratio 

In line with the significant increase in glutamate release at S2 compared with S1 in the 

300µM L-AP4 group, the S2/S1 ratio showed a similar trend towards increasing with 

increasing concentrations of L-AP4; the S2/S1 ratio was 1.10 ± 0.16 in the vehicle group, 

and increased to 1.34 ± 0.14 in the 100µM L-AP4 group and 1.47 ± 0.10 in the 300µM L-AP4 

group. However, despite this trend, when the ratio of S2/S1 response was compared 

between groups (Figure 33) there was no significant effect of treatment (P=0.2230; one-

way ANOVA with Dunnett’s post-hoc). 
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Figure 33: Glutamate S2/S1 ratio in the naive SNc in the presence of L-AP4 or vehicle. The S2/S1 
ratio was not significantly altered by exposure to L-AP4 during K

+
-evoked glutamate release. Data 

are displayed as mean ± s.e.m. (n = 6 per group). 

 

3.3.1.3 L-AP4 decreased K+-evoked GABA release in the SNc at S2 compared with 

S1 

A plot of the dialysate concentration of GABA over the course of experiment 1 is shown in 

Figure 34. 

 

 

Figure 34: Dialysate GABA concentrations during unilateral microdialysis in the naive SNc. The two 
evoked releases, S1 and S2, can clearly be seen at 100 and 200 minutes. The filled bar shows the 
duration of exposure to high K+ aCSF. The dashed bar shows the duration of exposure to L-AP4 or 
vehicle. Data are displayed as mean ± s.e.m. (n = 6 per group). 
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In the vehicle group, the AUC of the control response at S1 was 22570 ± 5411 and 16580 ± 

3006 at S2 in the presence of vehicle (Figure 35a). There was no significant difference 

between the S1 and S2 GABA release responses in this group (P=0.1177; paired t-test). 

In the 100µM L-AP4 group, the AUC of the control response at S1 was 15731 ± 5636 and 

11738 ± 3056 at S2 in the presence of the drug (Figure 35b). This slight decrease was not 

significant when the S1 and S2 GABA release responses were compared (P=0.1903; paired 

t-test). 

In the 300µM L-AP4 group, the AUC of the control response at S1 was 21079 ± 4385, 

decreasing to 16218 ± 3000 at S2 in the presence of the drug (Figure 35c). This decrease 

was found to be significant when the S1 and S2 GABA release responses were compared 

(P=0.0277; paired t-test). 

 

 

Figure 35: GABA S1 vs. S2 response in the SNc of anaesthetised naive rats. The S2 response is 
significantly decreased compared with S1 in the presence of 300µM L-AP4 (c), but not in the 
presence of either 100µM L-AP4 (b) or vehicle (a). Data are displayed as mean ± s.e.m. (n = 6 per 
group) *P<0.05 (paired t-test versus S1) 

 

3.3.1.4 L-AP4 did not affect GABA S2/S1 ratio 

The S2/S1 ratio was 0.84 ± 0.10 in the vehicle group, 0.87 ± 0.07 in the 100µM L-AP4 group 

and 0.81 ± 0.06 in the 300µM L-AP4 group (Figure 36). Though the within group 

comparison reported above had shown that the non-significant decrease in GABA release 

at S2 in the vehicle group was enhanced by L-AP4 such that it became significant in the 

300µM group, when the ratio of S2/S1 response was compared between groups there was 

no significant effect of treatment (P=0.8464; one-way ANOVA with Dunnett’s post-hoc). 
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Figure 36: GABA S2/S1 ratio in the naive SNc the in the presence of L-AP4 or vehicle. The S2/S1 
ratio was not significantly altered by exposure to L-AP4 during K

+
-evoked GABA release. Data are 

displayed as mean ± s.e.m. (n = 6 per group). 
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3.3.2 Experiment 2: Effect of VU0155041 on glutamate and GABA release in the 

naive SNc 

3.3.2.1 Effect of L-AP4 and VU0155041 on glutamate release in the SNc 

Due to technical issues (see Discussion) the glutamate results from this analysis were 

unreliable and are therefore not reported. 

3.3.2.2 L-AP4 decreased GABA release in the SNc at S2 compared with S1 

A plot of the dialysate concentration of GABA over the course of the L-AP4 study is shown 

in Figure 37. 

 

 

Figure 37: Dialysate GABA concentrations during unilateral microdialysis in the naive SNc. The two 
evoked releases, S1 and S2, can clearly be seen at 100 and 200 minutes. The filled bar shows the 
duration of exposure to high K+ aCSF. The dashed bar shows the duration of exposure to L-AP4 or 
vehicle. Data are displayed as mean ± s.e.m. (n = 6-8 per group). 

 

The AUC for the GABA response in the vehicle group was 9023 ± 2836 at S1 and 8297 ± 

2147 at S2 (Figure 38a), which was not significantly different (P=0.5056; paired t-test). 

Even with the lower concentrations employed in this study compared with experiment 1, L-

AP4 reduced GABA release significantly (Figure 38b), reducing the AUC from 6331 ± 1266 at 

S1 to 5353 ± 996 at S2 at a concentration of 3µM (P=0.0293; paired t-test). 

This effect was lost when L-AP4 was given at 30µM (Figure 38c), with an AUC for the GABA 

response of 8300 ± 2086 at S1 that was not significantly changed (6757 ± 1489) at S2 

(P=0.1091; paired t-test). 
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Figure 38: GABA S1 vs. S2 response in the SNc of anaesthetised naive rats. The S2 response is 
significantly decreased compared with S1 in the presence of 3µM L-AP4 (b), but not in the presence 
of either 30µM L-AP4 (c) or vehicle (a). Data are displayed as mean ± s.e.m. (n = 6-8 per group) 
*P<0.05 (paired t-test versus S1) 

 

3.3.2.3 L-AP4 did not affect GABA S2/S1 ratio 

Despite the fact that 3µM L-AP4 elicited a significant decrease in evoked GABA release at 

S2 versus S1 that vehicle treatment did not, there was no significant difference between 

vehicle and L-AP4-treated groups with regard to the S2/S1 ratio (Figure 39), which was 1.00 

± 0.06 in the vehicle treated group, 0.87 ± 0.04 in the 3µM L-AP4 group and 0.86 ± 0.09 in 

the 30µM L-AP4 group (P=0.3728; one-way ANOVA with Dunnett’s post-hoc). 

 

 

Figure 39: GABA S2/S1 ratio in the naive SNc the in the presence of L-AP4 or vehicle. The S2/S1 
ratio was not significantly altered by exposure to L-AP4 during K

+
-evoked GABA release. Data are 

displayed as mean ± s.e.m. (n = 6-8 per group). 
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3.3.2.4 VU0155041 decreased GABA release in the SNc at S2 compared with S1 

A plot of the dialysate concentration of GABA over the course of the VU0155041 study is 

shown in Figure 40. 

 

 

Figure 40: Dialysate GABA concentrations during unilateral microdialysis in the naive SNc. The two 
evoked releases, S1 and S2, can clearly be seen at 100 and 200 minutes. The filled bar shows the 
duration of exposure to high K+ aCSF. The dashed bar shows the duration of exposure to VU0155041 
or vehicle. Data are displayed as mean ± s.e.m. (n = 6-8 per group). 
 

 

The AUC for the GABA response in the vehicle group was 9023 ± 2836 at S1 and 8297 ± 

2147 at S2 (Figure 41a), which was not significantly different (P=0.5056; paired t-test). 

When the SNc was exposed to 3µM VU0155041 during evoked release, the AUC of the 

GABA response was 10797 ± 2566 for the control response at S1 compared with 8757 ± 

1939 for the response in the presence of drug at S2 (Figure 41b). This was a statistically 

significant decrease (P=0.0371; paired t-test). 

When the SNc was exposed to 30µM VU0155041 during evoked release, the AUC of the 

GABA response 8103 ± 2072 for the control response at S1 compared with 6679 ± 1478 for 

the response in the presence of drug at S2 (Figure 41c). There was no significant difference 

between these responses (P=0.1085; paired t-test). 
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Figure 41: GABA S1 vs. S2 response in the SNc of anaesthetised naive rats. The S2 response is 
significantly decreased compared with S1 in the presence of 3µM VU0155041 (b), but not in the 
presence of either 30µM VU0155041 (c) or vehicle (a). Data are displayed as mean ± s.e.m. (n = 6-8 
per group) *P<0.05 (paired t-test vs. S1) 
 

3.3.2.5 VU0155041 did not affect GABA S2/S1 ratio 

Despite the fact that 3µM VU0155041 elicited a significant decrease in evoked GABA 

release that vehicle treatment did not, there was no significant difference between vehicle 

and VU0155041-treated groups with regard to the S2/S1 ratio (Figure 42), which was 1.00 ± 

0.06 in the vehicle treated group, 0.87 ± 0.04 in the 3µM VU0155041 group and 0.91 ± 0.07 

in the 30µM VU0155041 group (P=0.3466; one-way ANOVA with Dunnett’s post-hoc). 

 

 

Figure 42: GABA S2/S1 ratio in the naive SNc the in the presence of VU0155041 or vehicle. The 
S2/S1 ratio was not significantly altered by exposure to VU0155041 during K

+
-evoked GABA release. 

Data are displayed as mean ± s.e.m. (n = 6-8 per group). 
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3.3.3 Experiment 3: Comparing the effect of L-AP4 on glutamate and GABA 

release in the 6-OHDA-lesioned and intact SNc 

In one rat the probe placement in the intact hemisphere was too medial, therefore for the 

lesioned SNc (n = 6) and for the intact SNc (n = 5). 

3.3.3.1 MFB lesioning significantly reduced striatal dopamine content 

MFB lesioning with 6-OHDA caused a severe depletion of striatal dopamine and its 

metabolites (Figure 43). 

 

 

Figure 43: Concentration of dopamine and its metabolites in the intact and lesioned striatum 
following unilateral 6-OHDA lesioning of the MFB. Data are presented as mean ± s.e.m. (n=6) 
***P<0.001 (t-test vs. intact striatum) 

 

The striatal dopamine content in the intact side was 13662 ± 397ng/g, and this was 

reduced to 22.9 ± 7.4ng/g in the lesioned striatum (P<0.0001; t-test). Similarly, the DOPAC 

content was reduced from 1460 ± 112ng/g in the intact striatum to 83.1 ± 8.3ng/g in the 

lesioned striatum (P<0.0001; t-test) and HVA content was reduced from 1378 ± 158ng/g in 

the intact striatum to 15.1 ± 1.5ng/g in the lesioned striatum (P<0.0001; t-test). 

3.3.3.2 6-OHDA lesioning did not affect basal glutamate or GABA concentrations 

Plots of the dialysate concentrations of glutamate and GABA over the course of the 

experiment are shown in Figure 44. 
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Figure 44: Dialysate glutamate (a) and GABA (b) concentrations during bilateral microdialysis in 
the intact and lesioned SNc. Neurotransmitter release was evoked by exposure to high K

+
 aCSF in 

the presence of vehicle (100 mins) and 300µM L-AP4 (200 mins). The filled bar shows the duration of 
exposure to high K+ aCSF. The dashed bar shows the duration of exposure to L-AP4 or vehicle. Data 
are displayed as mean ± s.e.m. (n = 5-6 per hemisphere). 

 

Basal dialysate glutamate concentrations, as measured between 20 and 80 minutes, were 

not significantly affected by the lesion, with 76.3 ± 8.7nM measured in the intact SNc and 

93.6 ± 14.6nM measured in the lesioned SNc, though there is a trend towards increased 

basal glutamate levels in the lesioned SNc (P=0.0988; t-test). 

Basal dialysate GABA concentrations were also unaffected by the lesion, with 26.8 ± 4.1nM 

in the intact SNc and 22.3 ± 2.1nM in the lesioned SNc (P=0.7294; t-test). 
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3.3.3.3 L-AP4 increased K+-evoked glutamate release in the intact but not 

lesioned SNc at S2 compared with S1 

The effect on glutamate release with L-AP4 exposure in the intact SNc was comparable to 

the results collected in the naive rats in experiment 2. The AUC for the S2 response was 

16522 ± 2661, increased from 11413 ± 1805 at S1 (Figure 45; P=0.0427; paired t-test). 

Conversely this effect of L-AP4 was lost in the lesioned SNc, where the AUC for the S2 

response was 11265 ± 1448 compared with 10486 ± 1502 at S1. This did not represent a 

significant increase (P=0.4453; paired t-test). 

 

 

Figure 45: K
+
-evoked glutamate release with vehicle (S1) and L-AP4 (S2). Evoked glutamate release 

was increased at S2 vs. S1 in the intact SNc but this effect was lost in the lesioned SNc. Data are 
displayed as mean ± s.e.m. (n = 5-6 per hemisphere) *P<0.05 (paired t-test vs. S1) 

 

3.3.3.4 The lesion had no overall effect on glutamate S2/S1 ratio 

Despite the presence of an effect of L-AP4 in the intact but not in the lesioned SNc, and a 

trend when the ratios are compared by eye, the overall glutamate S2/S1 ratio was not 

significantly affected by treatment (Figure 46), coming out at 1.38 ± 0.17 in the intact SNc 

and 1.14 ± 0.05 in the lesioned SNc (P=0.1255; Mann-Whitney U test). 
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Figure 46: The glutamate S2/S1 ratio in the intact and lesioned SNc the in the presence of L-AP4. 
The response to L-AP4 as determined by the S2/S1 ratio was not significantly altered by the lesion. 
Data are displayed as mean ± s.e.m. (n = 5-6). 

 

3.3.3.5 L-AP4 tended to decrease K+-evoked GABA release in the intact but not 

lesioned SNc at S2 compared with S1 

The effect on GABA release with L-AP4 exposure in the intact SNc (Figure 47) was also 

comparable to the results collected in the naive rats in experiment 2, though this time it 

narrowly missed reaching significance. The AUC for the S2 response was 7947 ± 1358, down 

from 9565 ± 1971 at S1 (P=0.0758; paired t-test). 

 

 

Figure 47: K
+
-evoked GABA release with vehicle (S1) and L-AP4 (S2). Evoked GABA release was 

decreased at S2 vs. S1 in the intact SNc, an effect that approached significance (P=0.076), but there 
was no significant effect of L-AP4 on GABA release in the lesioned SNc. Data are displayed as mean ± 
s.e.m. (n = 5-6 per hemisphere). 
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As was the case for glutamate, L-AP4 had no effect on evoked GABA release in the lesioned 

SNc. The control response at S1 had an AUC of 11261 ± 4570 and the S2 response in the 

presence of L-AP4 had an AUC of 8578 ± 2406 (P=0.2800; paired t-test). 

 

3.3.3.6 The lesion had no overall effect on GABA S2/S1 ratio 

Unlike the trend towards an effect of L-AP4 in the intact but not in the lesioned SNc, the 

effect of lesion on GABA S2/S1 ratio was not significant, being 0.86 ± 0.06 in the intact SNc 

and 0.94 ± 0.05 in the lesioned SNc (Figure 48; P=0.8395; t-test). 

 

 

Figure 48: The GABA S2/S1 ratio in the intact and lesioned SNc the in the presence of L-AP4. The 
response to L-AP4 as determined by the S2/S1 ratio was not significantly altered by the lesion. Data 
are displayed as mean ± s.e.m. (n = 5). 
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3.3.4 Summary of results 

The results of all the microdialysis studies reported in this chapter are summarised in Table 

8. Overall, L-AP4 at high or low, but not intermediate, concentrations causes a reduction in 

GABA release and an increase in glutamate release in the naive/intact SNc (where 

measurable). VU0155041 at a low but not an intermediate dose also causes a reduction in 

GABA release in the naive/intact SNc, though any concurrent effects on glutamate release 

could not be determined due to technical issues. 

The effects of a high dose of L-AP4 on glutamate and GABA release in the intact SNc were 

lost in the 6-OHDA-lesioned SNc. 

Table 8: Summary of the effects of L-AP4 and VU0155041 on K
+
-evoked glutamate and GABA 

release in the intact and lesioned SNc. n.d. = not determined. The arrow in brackets represents a 
result that approached significance. 

Drug Effect on glutamate at S2 vs. S1 

(naive SNc) 

Effect on GABA at S2 vs. S1 

(naive SNc) 

3µM L-AP4 n.d. ↓ 

30µM L-AP4 n.d. ↔ 

100µM L-AP4 ↔ ↔ 

300µM L-AP4 ↑ ↓ 

3µM VU0155041 n.d. ↓ 

30µM VU0155041 n.d. ↔ 

300µM L-AP4 
Intact SNc Lesioned SNc Intact SNc Lesioned SNc 

↑ ↔ (↓) ↔ 
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3.4 Discussion 

The hypothesis underlying the execution of these experiments was that activation of group 

III mGlu receptors would lead to a reduction in neuronal release of glutamate into the SNc, 

and that a similar effect would be seen with selective activation of mGlu4 due to its 

implication in the effects mediated by broad spectrum group III agonists. Since group III 

mGlu receptors are also located on GABAergic terminals in the SNc we also expected that L-

AP4 and VU0155041 would reduce GABA release. 

Moreover, in light of 6-OHDA lesioning producing changes in group III mGlu receptor 

expression in the SN in general, we also wanted to confirm whether any beneficial effects 

of mGlu receptors on decreasing glutamate release were maintained in the parkinsonian 

state. 

3.4.1 Effects of L-AP4 on GABA release in the naive SNc 

In experiments 1 and 2, L-AP4 significantly reduced GABA release compared with the 

control response at the lowest concentration tested (3µM) and at the highest 

concentration tested (300µM). These results support our hypothesis that activation of 

group III mGlu receptors in the SNc reduces GABA release. 

To our knowledge there are no existing published studies regarding the effects of group III 

mGlu receptor agonists on GABAergic transmission in the SNc. On the other hand there are 

several studies that have investigated the effects of broad spectrum group III agonists on 

GABAergic transmission in the SNr. Given that the microdialysis membrane in the above 

studies would have been partially located within the SNr due to the small size of the SNc 

(0.5mm high compared with the 1mm membrane length; technical considerations relating 

to microdialysis are considered later in the discussion), the decreased GABA and increased 

glutamate detected in the presence of L-AP4 might therefore have partly originated in the 

SNr and so previous studies performed in this region might also be relevant to the analysis 

of the present results. Another factor that might suggest the validity of considering data 

collected in the SNr when discussing results collected in the SNc is that the main 

glutamatergic and GABAergic afferents that innervate the SNr and SNc are shared, though 

of course we cannot be sure that they operate in the same way as the distribution of group 

III mGlu receptors at the synapses could be different. 

The reduction in GABA release described here in the intact SNc in the presence of L-AP4 is 

concordant with electrophysiological experiments, where L-AP4 and L-SOP inhibited 
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GABAergic transmission in the SNr (Wittmann et al., 2001). It also reflects published 

behavioural experiments, where acute SNr infusion of ACPT-I in naive rats caused an 

akinetic phenotype (likely mediated by mGlu8) and acute or chronic SNr infusion of ACPT-I 

led to delayed reaction times in a lever-pressing task (Lopez et al., 2007). These effects are 

recapitulated by acute intra-SNr infusion of the GABAA antagonist picrotoxin and therefore 

seem to involve a group III-mediated reduction in GABAergic transmission (Lopez et al., 

2007). In turn this would disinhibit SNr neurones and increase the SNr-mediated inhibition 

of thalamocortical feedback that underlies parkinsonian motor disability. 

3.4.2 Effects of L-AP4 on glutamate release in the naive SNc 

In experiment 1, where glutamate release was successfully quantified alongside GABA 

release, the significant reduction in GABA release achieved with 300µM L-AP4 was 

associated with a concomitant significant increase in glutamate release. This finding was 

contrary to our hypothesis and would lead us to believe that activation of group III 

receptors in this region, far from having a neuroprotective effect secondary to reduction of 

glutamate release, could in fact enhance glutamate release and potentially thereby 

enhance excitotoxic neurodegeneration of SNc neurones. 

Group III mGlu receptor agonists have been reported elsewhere to inhibit glutamatergic 

transmission in the intact SNc in vitro (Valenti et al., 2005) and also in the intact SNr in vivo 

(Austin et al., 2010; Wittmann et al., 2001). In addition, in vitro results using subtype-

specific activators of mGlu4 and mGlu7 have demonstrated decreased release of a 

glutamate analogue in nigral prisms in the presence of a subthreshold dose of L-AP4 

(Broadstock et al., 2012). However the results of our studies suggest that activation of 

group III receptors with L-AP4 can increase glutamate release in the SNc. A possible 

mechanism that could explain this is that the reduction in GABA release described above 

causes a secondary increase in glutamate release, as explored below. 

GABA has been shown to negatively regulate glutamate release from STN terminals 

(Hatzipetros et al., 2006). This may either be via a direct effect on GABAA  or GABAB 

heteroreceptors on STN terminals (Boyes et al., 2003; Hatzipetros et al., 2006) or via an 

indirect mechanism involving GABAA–mediated inhibition of dopaminergic neurones in the 

SNc (Paladini et al., 1999) and subsequent reduction of dopamine release in the 

nigrosubthalamic pathway, which would usually enhance glutamate release (Cragg et al., 

2004). GABA released from co-stimulated striatonigral afferents is also proposed to inhibit 

glutamate release from subthalamonigral terminals via activation of presynaptic GABAB 
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receptors during STN-DBS, further supporting a tonic inhibitory effect of GABA on 

glutamate release in the SN (Dvorzhak et al., 2013). 

Logically therefore, a reduction of GABA release into the SN, such as might be brought 

about by activation of group III mGlu heteroreceptors on GABAergic terminals, would lead 

to a disinhibition of either or both of the subthalamonigral and nigrosubthalamic neurones, 

thereby giving rise to increased glutamate release from the subthalamonigral neurones 

into the SN (Figure 49). Indeed such an effect was borne out in the intact BG by the results 

of the studies reported here, and therefore we believe that such a mechanism was 

responsible for the increased evoked glutamate release in the presence of L-AP4, which 

was only present where GABA release was also significantly affected. 

 

 

Figure 49: Proposed mechanism of the effect of group III mGlu receptor activation on GABA and 
glutamate release in the naive/intact SNc. The normal functioning of the BG is shown in the left 
hand panel, and the proposed functioning in the presence of L-AP4 is shown in the right hand panel. 
GABAergic connections are denoted by the green arrows, glutamatergic connections by the red 
arrows and dopaminergic connections by the blue arrows. Upon L-AP4 administration: ① Activation 
of presynaptic group III mGlu heteroreceptors leads to decreased GABA release into SN (possibly 
from striatonigral MSNs). ② Reduced GABA release leads to reduced presynaptic GABAB-mediated 
inhibition of glutamate release from subthalamonigral terminals AND/OR ③Reduced GABAA-
mediated inhibition of dopamine release in nigrosubthalamic pathway (dopamine release in the STN 
enhances glutamate release from STN-SN neurones). 

 

The results of our experiments with L-AP4, and the mechanism we propose to underlie 

these, would suggest that the affinity of L-AP4 for group III mGlu receptors is higher on 
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striatonigral (or other GABAergic) terminals than on subthalamonigral (or other 

glutamatergic) terminals. Alternatively, this effect could be explained by differential 

expression or distribution of group III mGlu receptors between GABAergic and 

glutamatergic afferents. Indeed the distribution of presynaptic mGlu4 receptors in the SNr 

is primarily at inhibitory type II synapses rather than excitatory type I synapses (Corti et al., 

2002), suggesting that agonists that target this receptor subtype may preferentially 

modulate GABA release. Whether this is the case in the SNc as well is unknown, therefore 

further experiments to test receptor distribution in the SNc would be of value. 

3.4.3 Effects of VU0155041 on GABA release in the naive SNc 

Since neuroprotective effects have been previously reported following selective allosteric 

modulation of mGlu4 in the SNc with VU0155041 (Betts et al., 2012) we decided to test this 

compound to gauge its effects on glutamate and GABA release in the same model, 

alongside equimolar concentrations of L-AP4 for comparison. As in the case for broad 

spectrum group III mGlu receptor agonists, we are not aware of any previous studies that 

have investigated the effects of mGlu4 PAMs on GABAergic transmission in the SNc. 

The reduction of GABA release during exposure to VU0155041 was in agreement with our 

hypothesis that activation of mGlu4 heteroreceptors on GABAergic terminals would reduce 

neurotransmitter release. The ability of VU0155041 as well as L-AP4 to inhibit GABA release 

in the SNc implicates the involvement of mGlu4 receptors in this effect. Though not 

previously demonstrated in the SN, selective mGlu4 receptor activation is known to inhibit 

GABA release at other locations within the basal ganglia such as the globus pallidus (Valenti 

et al., 2003) and striatum (Cuomo et al., 2009) so it may well also occur in the SNc. 

Unfortunately in this experiment the effects of VU0155041 or equimolar concentrations of 

L-AP4 on glutamate release could not be ascertained due to technical issues with the HPLC 

method employed. This included crowding and overlapping of peaks that could not be 

rectified due, we think, to the progressive degradation of the HPLC columns by the pH 10.3 

derivatisation reagent. Though analysed on the same system, the results for GABA were 

valid as no interfering electroactive products eluted anywhere near the peak of interest 

and therefore the effect of degradation was simply reflected in an incremental reduction in 

retention time. 
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3.4.4 Possible receptor subtype involvement in the GABA response in the naive 

SNc 

Interestingly, 3µM L-AP4 had a similar effect to 300µM L-AP4 on GABA release, causing a 

significant reduction at S2 compared with S1. The effect of VU0155041 on GABA release 

was hard to predict, because as a PAM (rather than an orthosteric agonist like L-AP4) 

stimulation by endogenous glutamate is required for receptor activation. If the VU0155041 

were to reduce glutamate release in line with expectations (which could not be tested due 

to the technical issues mentioned) this might mean that there was insufficient glutamate 

present to activate mGlu4 heteroreceptors, and therefore the drug would have no effect on 

GABA release. However when tested, an equimolar dose of the mGlu4 PAM VU0155041 

caused a significant decrease in GABA release at S2 versus S1 that was similar to that found 

for 3µM L-AP4 and was not present in the vehicle group. 

The biphasic efficacy of L-AP4 in inhibiting GABA release, such that the reduction at S2 

versus S1 was significant at 3µM and 300µM but not at 30µM or 100µM, is of interest. 

Given that VU0155041 and L-AP4 demonstrate similar potency at mGlu4 (0.43µM and 

0.56µM respectively), the effect at 3µM concentration for each of these drugs likely 

involves activation of the mGlu4 receptor. Activation of mGlu8 may also contribute to this 

effect in the case of L-AP4 since mGlu8 receptor protein has been detected in the SN (Gu, 

2003) and the EC50 of L-AP4 at mGlu8 is similar to that at mGlu4. The loss of the effect on 

GABA release at 30 and 100µM L-AP4 may reflect desensitisation of the mGlu4 and mGlu8 

receptors, and its re-emergence at 300µM concentrations may reflect the ability of higher 

concentrations of L-AP4 to activate mGlu7 receptors (EC50 = 160µM). This cannot be stated 

conclusively though, as despite the known drug concentrations in the perfusate, the actual 

concentration of drug that diffused across the membrane and into the brain was not 

determined. 

3.4.5 Loss of L-AP4-mediated effects in the lesioned SNc 

The results obtained for L-AP4 and VU0155041 in the intact SNc conflicted with our 

expectations, implying that broad activation of group III mGlu receptors or selective 

activation of mGlu4 would in fact promote excitotoxic degeneration of dopaminergic 

neurones in the SNc by increasing glutamate release. The potential mechanism explored 

above, involving negative regulation of subthalamonigral glutamate release by GABA, 

stems from experiments performed in naive rodents, and the results I obtained in naive 

rats in experiments 1 and 2 reflected these findings, but it was not clear if the same 

mechanism might be functional in the parkinsonian condition. Therefore we set out to 
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confirm whether or not L-AP4-mediated alterations in evoked glutamate and GABA release 

were maintained in the SNc following nigrostriatal denervation with 6-OHDA. 

Firstly, we found no effect of 6-OHDA lesioning on baseline GABA and glutamate 

concentrations in the SNc, though there was a trend towards increased basal glutamate 

concentrations in the lesioned SNc. This trend for enhanced basal glutamate was in line 

with our expectations, given that glutamatergic transmission in the SNc is enhanced in the 

dopamine denervated BG by increased subthalamonigral firing (Bergman et al., 1994b; 

Remple et al., 2011). Although no comparable microdialysis data have been published for 

the SNc, in previous microdialysis studies performed in the SNr some authors have found 

no significant difference between intact and lesioned sides with respect to basal GABA or 

glutamate concentrations (Bianchi et al., 2003) while others reported no difference in 

GABA but an increase in basal glutamate concentrations in the lesioned SNr (Ochi et al., 

2004). 

As stated earlier, we used a dual-stimulation protocol for all our studies due to the inter-

animal variability that we encountered in pilot studies at S1, and therefore we did not 

compare the size of the response at S1 between groups in any of our studies. However 

another group has previously compared K+-evoked glutamate release in 6-OHDA-lesioned 

rats and intact rats using microdialysis, and they showed a ~40% decrease in K+-evoked 

glutamate release in the SNr of 6-OHDA-lesioned rats compared with control rats with no 

change in basal glutamate levels (Bianchi et al., 2003). This is interesting as it contradicts 

the dogmatic expectation of increased signalling in the indirect pathway in the 

parkinsonian BG (and therefore increased subthalamic nucleus-derived glutamate in the 

SNr). 

The decrease in K+-evoked GABA release that we described in experiment 1 in the naive 

SNc in the presence of 300µM L-AP4 was reproduced in the intact SNc in experiment 3, 

albeit at a level that did not quite attain significance. As in the naive SNc, in the intact SNc 

the decrease in GABA release was concomitant with a significant increase in glutamate 

release. Interestingly the effects of 300µM L-AP4 on GABA and glutamate release in the 

intact SNc were both lost in the lesioned SNc. Therefore our results suggest that the 

mechanism that underlies the effects of L-AP4 in the intact SNc is altered following a full 6-

OHDA lesion of the nigrostriatal pathway such that it is no longer functional (Figure 50). 
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Figure 50: Proposed mechanism of the effect of group III mGlu receptor activation on GABA and 
glutamate release in the intact and lesioned SNc. The proposed effects of activation of group III 
mGlu receptors is shown in the left hand panel for the intact SNc, and in the right hand panel for the 
lesioned SNc. GABAergic connections are denoted by the green arrows, glutamatergic connections 
by the red arrows and dopaminergic connections by the blue arrows. In the intact SNc: ① 
Activation of presynaptic group III mGlu heteroreceptors leads to decreased GABA release into SN 
(possibly from striatonigral MSNs). ② Reduced GABA release leads to reduced presynaptic GABAB-
mediated inhibition of glutamate release from subthalamonigral terminals AND/OR ③Reduced 
GABAA-mediated inhibition of dopamine release in nigrosubthalamic pathway (dopamine release in 
the STN enhances glutamate release from STN-SN neurones). In the lesioned SNc: ❶ GABA release 
into SN not affected by L-AP4. In the parkinsonian state signalling in the striatonigral pathway is 
reduced and this could lead to downregulation of group III mGlu heteroreceptors on these terminals. 
❷ GABA can still act on presynaptic GABAB receptors on STN terminals, preventing the rise in 
glutamate release seen in the intact SNc AND/OR ❸ GABA can still act on GABAA receptors on 
nigrosubthalamic neurones, which inhibits dopamine release into the STN, removing its enhancing 
effects on glutamate release. 

 

The loss of the effect of L-AP4 on GABA release in the SNc in experiment 3 is in line with a 

previous study showing that the ability of L-AP4 to inhibit striatonigral IPSCs is reduced in 

acutely dopamine-depleted rats (Wittmann et al., 2002). However it contradicts the results 

of behavioural experiments where intra-SNr infusion of the group III agonists ACPT-I and L-

AP4 causes reaction time deficits in both naive and 6-OHDA lesioned rats, an effect which is 

mimicked by the GABAA antagonist picrotoxin in both groups of animals and is therefore 

likely caused by a reduction in GABA signalling (Lopez et al., 2012; Lopez et al., 2007). 

The loss of the effect of L-AP4 on glutamate release in the SNc in experiment 3 is likely 

secondary to the loss of the effect on GABA via the mechanism explained earlier. In the 

parkinsonian state, signalling in the BG is increased in the indirect pathway and decreased 
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in the direct pathway. Decreased direct pathway activity could lead to compensatory 

downregulation of group III mGlu receptors on striatonigral terminals, possibly explaining 

the downregulation of mGlu4 and mGlu8 receptor proteins described previously in the SN 

following a 6-OHDA lesion (Gu, 2003). With reduced receptor expression or function on 

GABAergic terminals, the decreased GABA release elicited by L-AP4 in the intact SNc would 

be prevented. 

The increase in glutamate release in the intact SNc and lack of change in glutamate release 

in the lesioned SNc contradict a previous experiment which showed that L-AP4 induced 

inhibition of glutamate transmission in both intact and acutely dopamine depleted rats in 

vitro (Wittmann et al., 2002). However the acute dopamine depletion that was induced by 

reserpine in the Wittmann (2002) study (1.5-2 hours) may not have comparable effects on 

glutamatergic signalling as the chronic dopamine depletion caused by 6-OHDA-induced 

degeneration of the nigrostriatal tract. Firstly, the duration of dopamine depletion may 

have affected the results, with chronic depletion allowing time for longer-term alterations 

in receptor expression and coupling to occur. For example a differential response to mGlu8 

activation with DCPG (administered i.c.v.) has been noted following acute (2 hours) or 

chronic (18 hours) dopamine depletion by reserpine, an effect which may be attributed to 

time-related alterations in receptor protein expression or trafficking (Johnson et al., 2008). 

Secondly, the method of dopamine depletion may have played a role, especially as 

reserpine not only depletes dopamine but also other catecholamines and may therefore 

have a more complicated effect on signalling within the BG than selective dopaminergic 

denervation. For example mGlu5 mRNA expression has been shown to be decreased in the 

striatum 18 hours after reserpine-mediated dopamine depletion (Ismayilova et al., 2006) 

but is unchanged following a 6-OHDA lesion (Messenger et al., 2002). Though changes in 

mRNA expression do not necessarily translate to changes at the protein level, these 

experiments demonstrate that different methods of dopamine depletion may cause 

different effects on glutamatergic signalling by differentially altering glutamate receptor 

expression or function. 

3.4.6 General considerations 

It should be noted that although the within-group S2 versus S1 comparisons mentioned 

above were significant in the relevant drug-treated groups and were not significant in the 

vehicle groups, none of the experiments performed gave a significant difference between 

drug-treated and vehicle groups with respect to the S2/S1 ratio, and therefore they should 

be interpreted with caution. Nevertheless the clear trends in S2/S1 ratio in certain 
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experiments, notably experiment 1, certainly lend support to the S2 vs. S1 effects 

measured in these experiments reflecting a genuine effect of group III mGlu receptor 

activation on glutamate and GABA release. 

There are several technical limitations to the studies reported in this chapter that should 

also be considered when interpreting the data. The main caveat is that the area targeted 

for microdialysis is very small. The depth of the SNc from top to bottom at the implantation 

location is ~0.5mm, meaning that the 1mm membrane used for these studies (the smallest 

produced by the supplier) protruded beyond the borders of this structure. This means that 

a proportion of the glutamate and GABA in the dialysates was sampled from areas outside 

the SNc, likely the SNr. Another feature of the small size of the sampling target is that 

probe implantation can cause physical damage to the area, resulting in the formation of a 

‘trauma layer’ in which neurotransmission is perturbed (Bungay et al., 2003). Though there 

is no way to prevent this phenomenon completely, any effects were minimised by the use 

of a concentric probe design with a small membrane area, which results in reduced tissue 

damage compared with classical U-shaped dialysis probes (Kendrick, 1989). 

In addition, the short membrane length dictated by the size of the SNc would have resulted 

in reduced analyte recovery than if a larger membrane length could have been used, but 

this was not important from the point of view of these studies, where a comparison 

between two responses was the outcome rather than a calculation of the absolute 

extracellular concentration. 

Secondly, microdialysis was performed in anaesthetised rats rather than freely moving rats. 

Anaesthetics are known to affect GABA and glutamate neurotransmission (Garcia et al., 

2010) so this could have affected both basal and evoked release. The anaesthetic used in 

these studies, urethane, has minimal effects on GABA and glutamate neurotransmission 

compared with inhalable anaesthetics such as halothane and isoflurane (Larsen et al., 1998; 

Maclver et al., 1996; Miyazaki et al., 1997; Westphalen et al., 2005), nevertheless it is 

known to modestly potentiate GABAA receptor function and inhibit AMPA and NMDA 

receptor function (Hara et al., 2002) and may also suppress spontaneous glutamate release 

(Tian et al., 2012) so it is still not ideal. In order to completely remove these effects the 

studies could be repeated in freely-moving rats to see if comparable results are collected. 

Thirdly, the temporal resolution is poor in microdialysis, therefore it cannot be deduced 

whether the increase in glutamate release is the cause of result of the decrease in GABA 
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release. There are alternative methods that can be used that have enhanced temporal 

resolution such as FSCV (Stamford, 1990) or enzyme-based microelectrode arrays 

(Rutherford et al., 2007) with sub-second acuity. 

Finally, though the evoked release that was measured is assumed to reflect neuronal 

release of glutamate and GABA, there is some disagreement in the literature as to the 

potential contribution of other pools of GABA and glutamate such as glial cells (reviewed 

by(Westerink et al., 2007). For glutamate especially it has been suggested that none 

escapes the synaptic cleft and therefore none will reach the microdialysis probe to be 

sampled (Obrenovitch et al., 2000). Conversely others have suggested that there is 

sufficient overspill from the synaptic cleft to enable sampling of neuronally released GABA 

and glutamate (Bergles et al., 1999; Isaacson et al., 1993). Classically, testing basal or K+-

evoked neurotransmitter release in the presence of the voltage-dependent sodium channel 

blocker tetrodotoxin (TTX) or in Ca2+-free conditions is used to verify the neuronal origin of 

extracellular neurotransmitters. However while this proved straightforward in the case of 

neurotransmitters such as monoamines (Herrera-Marschitz et al., 1992), when this has 

been attempted for glutamate it has yielded mixed results, which overall suggest a 

predominant neuronal origin of glutamate but with complicating factors such as rapid 

reuptake into glial cells (Herrera-Marschitz et al., 1996; Lada et al., 1998). From the point of 

view of excitotoxicity, which is the focus of our research into group III mGlu receptors, an 

increase in the overall extracellular glutamate concentration is likely to be significant 

regardless of whether it is of neuronal or non-neuronal origin. Its localisation to the 

synaptic cleft is also unnecessary as activation of extrasynaptic rather than post-synaptic 

NMDA receptors is believed to underlie excitotoxicity (Hardingham et al., 2010; Stark et al., 

2011; Xu et al., 2009). 
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3.5 Conclusion 

Contrary to our hypothesis, administration of L-AP4 in the intact SNc led to a significant 

increase in glutamate release and a significant decrease in GABA release compared with 

the control response. When this experiment was repeated using the mGlu4 PAM 

VU0155041 a similar reduction in GABA release was apparent, although due to technical 

difficulties the effect of this drug on glutamate release could not be ascertained. 

Though the significance of these drug effects could be called into question given the lack of 

significant differences in the S2/S1 ratio between drug- and vehicle-treated groups, the 

ability of L-AP4 and VU0155041 to significantly decrease GABA release and (in the case of L-

AP4) increase glutamate release compared to the control responses within groups do 

suggest an effect of group III mGlu receptors, and mGlu4 in particular, in modulating evoked 

neurotransmitter release in vivo. 

Whilst these results might discourage the use of group III mGlu receptor agonists as a 

means to reduce subthalamonigral glutamate release and the possible associated 

excitotoxicity in Parkinson’s disease, these unexpected and potentially damaging effects 

were not maintained following complete lesioning of the nigrostriatal tract. This gives us 

hope that even in the absence of a detectable reduction in glutamate release, 

administration of drugs that activate group III mGlu receptors should at least not worsen 

any ongoing excitotoxicity in the parkinsonian SNc. 

Taken in combination, these experiments do not support the idea of reduced glutamate 

release at the subthalamonigral synapse as the mechanism underlying the neuroprotective 

effects of L-AP4 and VU0155041 in the 6-OHDA model of PD. An alternative mechanism 

that has been suggested to underlie the neuroprotective efficacy of these compounds is 

the reduction of inflammation, so future studies focusing on the potential anti-

inflammatory aspects of group III mGlu receptor targeting would be worthwhile. 
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4 Targeting mGlu4 systemically as a potential neuroprotective 

approach in a hemiparkinsonian rat model 

4.1 Introduction 

The neuroprotection afforded by local supranigral infusion of the mGlu4 PAM VU0155041 

points to targeting of this receptor as a promising strategy to promote dopaminergic cell 

survival in Parkinson’s disease. Though the microdialysis studies that were subsequently 

performed do not point to reduction of glutamate release in the SNc as the protective 

mechanism, previous studies have suggested that VU0155041 reduces inflammation (Betts 

et al., 2012), which is known to also be a feature in the human parkinsonian SNc (Teismann 

et al., 2003), and therefore this could underlie its protective effect. 

Regardless of the mechanism, direct targeting of mGlu4 in the SNc by intracerebral injection 

is not a clinically relevant scenario and therefore the next step is to target the same 

receptor using a systemically active compound. Following systemic administration we 

would expect a more widespread activation of mGlu4 receptors throughout the basal 

ganglia, which could have implications for the efficacy of this therapeutic approach. 

4.1.1 Localisation of mGlu4 in the basal ganglia 

mGlu4 expression at the mRNA and protein levels has been identified at several locations 

within the intact rodent basal ganglia (Figure 51). 

mGlu4 mRNA is expressed at low to moderate levels in the cortex and striatum, and at very 

low to low levels in the GP, STN, SNc, SNr and EPN (Messenger et al., 2002; Ohishi et al., 

1995; Testa et al., 1994), although in one of these studies it was not detected anywhere in 

the BG except the cortex and striatum (Ohishi et al., 1995). 

mGlu4a protein has been detected at low to moderate levels in the cortex and striatum, 

very high levels in the GP, moderate levels in the SNr and EPN and not at all in the STN 

(Bradley et al., 1999b; Bradley et al., 1999c; Broadstock et al., 2012; Corti et al., 2002). 

There is one report where mGlu4a was detected at moderate levels in the intact SNc (Gu, 

2003), in contrast to previous reports where it was not detected (Bradley et al., 1999c; 

Corti et al., 2002). 



183 
 

 

Figure 51: Location of mGlu4 mRNA or receptor protein in the rodent basal ganglia. +, ++ and +++ 
denote low, moderate and high expression of mRNA respectively. P, PP and PPP denote low, 
moderate and high expression of mGlu4a protein respectively. Green arrows denote GABAergic 
neurones, red arrows denote glutamatergic neurones and blue arrows denote dopaminergic 
neurones. 

 

Where the protein has been identified, electron microscopy studies have shown that it is 

(mainly) pre-synaptically located, suggesting it is acting in its canonical role as an inhibitor 

of presynaptic neurotransmitter release: 

 In the striatum, though one study found no evidence for somal localisation (Bradley 

et al., 1999c), another report found that some mGlu4 staining was found in the 

somata of MSNs but that some was also localised to dendrites and axon terminals 

at mainly type II (inhibitory) and also type I (excitatory) synapses (Corti et al., 

2002). 



184 
 

 In the GP, mGlu4 was localised along dendrites and at axon terminals forming type 

II synapses, implicating a role in modulation of striatopallidal GABAergic 

transmission (Bradley et al., 1999c; Corti et al., 2002). 

 Finally, in the EPN and SNr mGlu4 was again localised to dendrites, and in the SNr 

was more commonly identified in axon terminals making type II synapses than type 

I synapses, suggesting that mGlu4 receptors play a greater role in modulating 

inhibitory striatonigral neurotransmission compared with excitatory (perhaps 

subthalamonigral) neurotransmission in the output nuclei of the BG (Bradley et al., 

1999c; Corti et al., 2002). 

The effect of nigrostriatal denervation on mGlu4 receptor expression in the rat is unclear. In 

the model that we use, the 6-OHDA-lesioned rat, lesioning has been reported to reduce the 

expression of mGlu4 mRNA in the striatum (Messenger et al., 2002). At the protein level 6-

OHDA lesioning does not alter striatal mGlu4 receptor expression (Picconi et al., 2002), 

suggesting that the reduction in mRNA expression is either not carried through to the 

protein level or that the downregulation is restricted to striatofugal terminals. In addition, 

6-OHDA lesioning has been reported to reduce mGlu4 receptor expression in the SNc (Gu, 

2003). 

On the other hand in alternative models of PD, namely the haloperidol-treated mouse (an 

acute model) and the MPTP-lesioned mouse (a degenerative model), mGlu4 mRNA has 

been reported to be upregulated in striatal projection neurones, a mechanism that is 

postulated to underlie the ‘compensation’ that is thought to occur in early PD (Cannella et 

al., 2012). However whether this translates to the protein level has not been investigated 

so the consequences of this upregulation for neurotransmission are unknown. 

Finally, in MPTP-lesioned primates no change in mGlu4 expression was noted in any basal 

ganglia region in lesioned animals compared with control (Bogenpohl et al., 2012). Again, 

without any information on whether receptor protein levels are affected the impact of 

MPTP lesioning on mGlu4 activity in primates is unclear. 

To our knowledge there are no existing reports examining the effect of 6-OHDA lesioning 

on mGlu4 receptor protein expression at several of the key synapses that might be targeted 

for an antiparkinsonian therapy, especially on striatopallidal MSNs in light of the reported 

reduction in mGlu4 mRNA in the striatum. While it is not clear exactly how and where these 

receptors might be altered by the lesion, previous behavioural results using mGlu4-specific 
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compounds in this model have demonstrated antiparkinsonian efficacy in combination with 

sub-threshold L-DOPA (e.g.(Bennouar et al., 2013; Le Poul et al., 2012), supporting the 

presence and targetability of these receptors in this model. 

4.1.2 Potential mechanisms of neuroprotection following mGlu4 activation 

Activation of mGlu4 receptors (located presynaptically) leads to inhibition of 

neurotransmitter release from the presynaptic terminal. Though the microdialysis studies 

in the previous chapter did not support this mechanism as underlying the protective effect 

of VU0155041 in the SNc (though this was only tested in the naive SNc; the maintenance of 

this effect is yet to be verified in the 6-OHDA-lesioned SNc), there are previous reports  that 

activation of group III receptors, or specifically mGlu4 inhibits glutamatergic transmission in 

the SNc (Broadstock et al., 2012; Valenti et al., 2005; Wittmann et al., 2001). Even in the 

absence of an effect at the subthalamonigral synapse there are other candidate synapses 

elsewhere in the BG at which activation of mGlu4 has been shown to alter signalling and at 

which inhibition of signalling might be predicted to have an antiparkinsonian effect. These 

are explored below. 

The main input to the basal ganglia is the glutamatergic signalling between the cortex and 

the striatum. The mGlu4 PAM LuAF21934 has been shown to inhibit corticostriatal synaptic 

transmission in naive rats (Bennouar et al., 2013; Gubellini et al., 2014). 

Parkinson’s disease symptoms are driven by overactivation of signalling in the indirect 

pathway (striatum → GPe → STN → SNr/EPN). In addition to the reported ability of mGlu4 

activation to inhibit excitatory transmission at the subthalamonigral synapse (above), 

mGlu4 is also present at the striatopallidal synapse. At this particular synapse, the inhibitory 

effect of broad spectrum group III mGlu receptor agonists on GABAergic signalling in vitro 

was believed to be contingent on mGlu4 receptors (Valenti et al., 2003). This assertion has 

since been supported by data showing that the mGlu4 PAMs LuAF21934 and PHCCC inhibit 

GABA release in the striatopallidal pathway in vitro in the presence of co-stimulation of the 

orthosteric site with either L-AP4 or endogenous glutamate (Gubellini et al., 2014; Marino 

et al., 2003). In addition, the neuroprotection afforded by systemic administration of 

PHCCC in MPTP-treated mice was recapitulated in mice where PHCCC was instead 

administered intrapallidally, implicating the globus pallidus as the primary site of action for 

this mGlu4 PAM (Battaglia et al., 2006; Fazio et al., 2012). 

Therefore activation of mGlu4 at several synapses within the BG might have additive 

antiparkinsonian effects (demonstrated by the reversal of symptoms and neuroprotection 
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mentioned with systemic or i.c.v. administration of mGlu4 activators in the previous 

section). Decreased striatopallidal transmission would lead to increased pallidosubthalamic 

inhibitory neurotransmission, thereby indirectly decreasing glutamate release into the SNc 

from subthalamonigral neurones. This indirect inhibition of nigral glutamate release still 

might lead to a neuroprotective effect even if mGlu4 activation has no direct effect on 

subthalamonigral glutamate release. 

4.1.3 Support for an antiparkinsonian or neuroprotective effect of widespread 

activation of mGlu4 receptors 

In the previous section we explored the potential direct and indirect mechanisms via which 

mGlu4 activation within the BG might normalise signalling in the BG and thereby reduce 

subthalamonigral glutamate release. This would be expected to have symptomatic and 

neuroprotective efficacy in PD models, and indeed there is promising evidence that these 

effects are apparent when subtype-specific compounds are given using routes of 

administration that will simultaneously activate mGlu4 receptors throughout the BG. 

Haloperidol-induced catalepsy can be reversed by systemic or intracerebroventricular 

(i.c.v.) administration of the mGlu4 agonist LSP1-2111 (Beurrier et al., 2009) or the mGlu4 

PAMs Compound 11 (East et al., 2010), VU0155041 (Niswender et al., 2008b), VU0364770 

(Jones et al., 2012) ADX88178/AF42744 (Le Poul et al., 2012) and LuAF21934 (Bennouar et 

al., 2013). Another acute model of PD, reserpine-induced akinesia, is reversed by systemic 

or i.c.v. administration of PHCCC (Battaglia et al., 2006; Marino et al., 2003) or VU0155041 

(Niswender et al., 2008b). 

In the context of lesion models of PD, there is so far only a single published report 

investigating the neuroprotective effect of mGlu4 activation. In this study systemic 

administration of the mGlu4 PAM PHCCC protected against MPTP-induced nigrostriatal 

degeneration in mice, preventing loss of both TH-positive cell bodies in the SNc and 

dopamine in the striatum (Battaglia et al., 2006). This effect was primarily mediated by the 

actions of PHCCC in the globus pallidus and was proposed by the authors to elicit 

neuroprotection by reducing the excitotoxic component by reducing downstream 

subthalamonigral glutamate release. However there remains a possibility that the 

protection observed in this study was at least partially mediated by the partial antagonist 

activity of PHCCC at mGlu1b receptors (Maj et al., 2003) and therefore further studies using 

compounds that are more selective for mGlu4 would be informative. 
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Taken together this evidence suggests that the net effect of activation of mGlu4 receptors 

throughout the BG is antiparkinsonian and, on the basis of the single study reported so far, 

neuroprotective. This gives us a sound basis for investigating the effects of mGlu4 activation 

in an alternative degenerative model of PD using a different mGlu4 PAM. 

4.1.4 Hypothesis and aims 

A previous study has shown that systemic administration of the mGlu4 PAM PHCCC has 

neuroprotective effects in the mouse MPTP model of PD (Battaglia et al., 2006). In light of 

the neuroprotective effect seen with nigral delivery of the mGlu4 PAM VU0155041 in the 6-

OHDA lesioned rat in Chapter 2, the aim of this study was to see if a similar protective 

effect could be shown in the same model with more clinically-relevant systemic 

administration of the mGlu4 PAM LuAF21934, where actions will also occur elsewhere in 

the BG. We hypothesise that: 

Widespread activation of mGlu4 receptors in the BG using the positive allosteric 

modulator LuAF21934 will have a neuroprotective effect in the 6-OHDA model of PD in 

the rat. 

Before commencing this study, the pharmacokinetic (PK) profile for LuAF21934 was defined 

in naive male Sprague-Dawley rats following an oral dose. A plasma profile was obtained up 

to 6 hours after dosing and the brain/plasma ratio was measured at 1-hour and 2-hour time 

points. This study informed the frequency of dosing in the neuroprotection study. 

For the neuroprotection study, LuAF21934 was administered twice daily for 3 days 

preceding and 7 days after intranigral infusion of 6-OHDA in rats. This study assessed the 

ability of LuAF21934 to: 

 

 Enhance survival of tyrosine hydroxylase (TH)-positive neurones in the SNc. 

 Preserve striatal dopamine content. 

 Preserve motor function secondary to any measured neuroprotection, as assessed 

by the cylinder test, adjusted steps test and amphetamine-induced rotometry. 

 

To ensure that any neuroprotective effects observed were mediated by activation of 

mGlu4, LuAF21934-treated groups were compared with lesioned rats that were treated 

with vehicle or with 30mg/kg LuAF21935, a negative control compound that is the inactive 

enantiomer of LuAF21934. 
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4.2 Materials and Methods 

4.2.1 Compounds tested 

Table 9 shows the structure of LuAF21934, the mGlu4 PAM tested for neuroprotective 

efficacy in the 6-OHDA SNc-lesioned rat model of Parkinson’s disease, and LuAF21935, the 

negative control compound used to compare it with. Both LuAF21934 and LuAF21935 were 

synthesised and characterised at Lundbeck (Copenhagen, Denmark). 

Table 9: The chemical structure of the mGlu4 PAM tested for neuroprotective efficacy in the 
hemiparkinsonian rat following systemic administration. Also shown is the structure of the 
negative control compound LuAF21934. 

Structure Name Target 

Cl

Cl

NH2

O

O

NH

 

LuAF21934 
 

(1S, 2R)-N1-(3,4-dichlorophenyl)-
cyclohexane-1,2-dicarboxamide 

mGlu4 Positive 
Allosteric 

Modulator 

Cl

Cl

NH2

O

O

NH

 

LuAF21935 
 

Neg Ctrl 

Inactive 
enantiomer of 

LuAF21934 

 

LuAF21934 was developed at Lundbeck as a variant on VU0155041 that was designed to 

have increased brain penetrance following peripheral administration. The EC50 of 

LuAF21934 at human mGlu4 is ~500nM and when given parenterally can reduce both 

latency in the haloperidol test of catalepsy, and forelimb akinesia in 6-OHDA-lesioned rats 

(Bennouar et al., 2013; Doller et al., 2010). The neuroprotective potential of this compound 

has not yet been examined. 

LuAF21935 is the inactive enantiomer of LuAF21934 and was used in this study as a 

negative control compound (Neg Ctrl group). 



189 
 

4.2.1.1 Drug formulation 

LuAF21934 and Neg Ctrl were dissolved in PEG-400 (polyethylene glycol, average molecular 

weight 400), obtained from Sigma Aldrich (Poole, UK). 

4.2.2 Other materials 

4.2.2.1 Experimental materials 

Materials and compound for lesioning surgery and behavioural testing were as described in 

section 2.2.2.1. 

4.2.2.2 Analytical materials 

Immunohistochemistry: Tyrosine hydroxylase (TH) immunohistochemistry materials used 

were as described in section 2.2.2.2. Ionised calcium binding adaptor molecule 1 (Iba-1) 

primary antibody was obtained from Wako Chemicals (Neuss, Germany). 

HPLC analysis of striatal dopamine and its metabolites: High Performance Liquid 

Chromatography (HPLC) analysis was carried out at King’s College London. Dopamine, 

DOPAC, HVA, 3,4-dihydroxybenzylamine hydrochloride (DHBA), perchloric acid (PCA), 

EDTA, HPLC grade methanol and HPLC grade water were obtained from Sigma Aldrich 

(Poole, UK). Sodium dihydrogen phosphate (NaH2PO4) was obtained from Fisher Scientific 

(Loughborough, UK). Sodium metabisulfite and octane sulfonic acid (OSA) were obtained 

from VWR International (Lutterworth, UK). 

UPLC-MS/MS for PK studies: Ultra-high Performance Liquid Chromatography with tandem 

Mass Spectrometry (UPLC-MS/MS) analysis of brain and plasma samples for the PK studies 

was carried out at Lundbeck (Copenhagen, Denmark). 2-propanol, acetonitrile (ACN), 

ammonium hydroxide, dimethylsulfoxide (DMSO) and formic acid used for brain and 

plasma sample preparation and UPLC-MS/MS were obtained from Sigma Aldrich (Poole, UK 

or St. Louis, MO). 
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4.2.3 Pharmacokinetic testing of LuAF21934 

All procedures were performed in accordance with the U.K. Animals (Scientific Procedures) 

Act, 1986. 

Two PK studies were carried out in order to decide on a dosing schedule that would result 

in a reasonable duration of exposure to LuAF21934 during the lesion development period. 

 (PK-A) a plasma time course of LuAF21934 and AF42744 in naive rats. 

 (PK-B) 1-hour and 2-hour plasma and brain time points for 30mg/kg LuAF21934 in 

naive rats to calculate the brain/plasma ratio. 

4.2.3.1 Drug formulation and dosing 

For PK-A, 10mg/kg and 30mg/kg LuAF21934 were formulated in PEG-400 (5ml/kg) and 

administered by oral gavage to naive male Sprague-Dawley (SD) rats (n = 3 per dose). Serial 

blood samples were collected at 5 minutes, 20 minutes, 1, 2, 4 and 6 hours after dosing. 

For PK-B, 30mg/kg LuAF21934 was formulated in PEG-400 (2ml/kg) and administered by 

oral gavage to 6 naive male SD rats within an hour of formulation. The first group of rats 

was sacrificed 1 hour after dosing (n = 3) and the second group of rats was sacrificed 2 

hours after dosing (n = 3). Blood and brain samples were collected for each group. 

4.2.3.2 Sample collection 

PK-A: Serial blood samples (~200µl/time point) were collected from the tail vein into EDTA-

coated tubes. Blood samples were centrifuged at 3300 x g for 10 minutes at 4°C to separate 

the cells from the plasma, and the plasma was removed and snap-frozen on dry ice to await 

analysis. 

PK-B: Rats were deeply anaesthetised with isoflurane and a blood sample withdrawn by 

cardiac puncture and placed into a Lithium-heparin coated tube (Sarstedt). Blood samples 

were centrifuged at 2000 x g for 10 minutes at room temperature to separate the cells 

from the plasma, and the plasma was removed and snap-frozen on dry ice to await 

analysis. Immediately following cardiac puncture, rats were decapitated and the brain was 

removed from the skull, weighed and snap-frozen on dry ice to await analysis. 

4.2.3.3 Bioanalysis 

Brain samples for PK-B were prepared at King’s College London 24 hours after collection. 

Plasma samples for both studies were prepared for analysis at Lundbeck (Copenhagen, 

Denmark). All brain and plasma samples were analysed by UPLC-MS/MS at Lundbeck. 
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Brain sample preparation: Brains were homogenised in 4 volumes of homogenisation 

buffer comprising a 5:3:2 v/v/v ratio of HPLC water, 2-propanol and DMSO. Homogenates 

were centrifuged at 2700 x g for 20 minutes at 4°C and the resulting supernatant removed 

into a 96-well plate for analysis. 

Plasma sample preparation: 25µl plasma samples were protein-precipitated with 150µl 

ACN containing 5ng/ml internal standard (Lundbeck compound LuAE90074). Samples were 

centrifuged at 6200xg for 20 minutes at 4°C and 100µl supernatant removed. This 

supernatant was diluted 1:1 with 100µl water containing 0.1% ammonium hydroxide. 

Analysis by UPLC-MS/MS: Drug concentrations were determined using UPLC-MS/MS. For 

all analytes, gradient UPLC was carried out, with a phase 1 to phase 2 transition time of 3 

minutes. Mobile phase 1 consisted of water with 0.1% ammonium hydroxide, mobile phase 

2 consisted of ACN with 0.1% ammonium hydroxide. Samples were separated on an 

Acquity UPLC BEH Phenyl column 1.7µm, 2.1 x 30mm (Waters, MA). Detection by mass 

spectrometry was performed using a Sciex-API 4000 MS (Applied Biosystems, NL) using 

electrospray with positive ionization mode. 

The limit of detection for LuAF21934 was 1ng/ml in plasma and 5ng/g in brain. The peak 

area correlated linearly with the plasma and brain concentration of the analytes in the 

range of 1-1000ng/ml plasma and 5–5000ng/g brain (corrected for dilution). If the 

plasma/brain sample drug concentration was above 1000ng/ml or 5000ng/g, the sample 

was diluted appropriately in blank plasma/blank brain homogenate before repeat analysis. 
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4.2.4 Neuroprotection study methods 

All procedures were performed in accordance with the U.K. Animals (Scientific Procedures) 

Act, 1986. 

4.2.4.1 Lesioning and treatment 

Rats were anaesthetised using isoflurane as described for the neuroprotection studies in 

Chapter 2, and the same volume and concentration of 6-OHDA.HCl infused directly into the 

SNc at the following coordinates relative to the interaural line (ML from midline): AP 

+3.7mm, ML +2.0mm, DV +2.2mm (Figure 52). The toxin solution was infused at a rate of 

0.5µl/min via a 25G injection needle, and following infusion the needle was left in place for 

a further 5 minutes to prevent reflux. 

 

Figure 52: Co-ordinates for unilateral 6-OHDA lesioning of the SNc. The black spot shows the 
position of the tip of the infusion cannula. The diagram was obtained from The Rat Brain in 
Stereotaxic Coordinates (Paxinos et al., 1998). 

 

Twice daily treatment at 07:30 and 19:00 with LuAF21934 (10 or 30mg/kg), the negative 

control LuAF21935 (30 mg/kg) or vehicle (2ml/kg) began three days prior to lesioning. The 

first dose on the day of 6-OHDA lesioning was administered 1 hour prior to 6-OHDA, the 

second dose on the day of lesioning at 19.00 and then dosing continued for a further six 

days at 07:30 and 19:00 as before. This resulted in a total of ten days of twice-daily dosing 

(the study plan is shown in Figure 53). 

Drugs were made up once daily and used for both morning and evening dosing, before 

being discarded within 24 hours of formulation. Formulations were stored at room 
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temperature in the dark in between doses. LuAF21934 is known to be stable when 

formulated in PEG-400 for up to one week (personal communication from Lundbeck). 

 

 

Figure 53: Experimental protocol for the LuAF21934 neuroprotection study. Baseline behaviour in 
the cylinder and adjusted steps tests was measured in duplicate prior to commencement of the 
dosing period. Rats were treated twice daily for 3 days prior to lesioning with LuAF21934, vehicle or 
a negative control compound. On the day of lesioning, rats received their morning dose one hour 
prior to lesioning of the SNc with 6-OHDA, and the evening dose as usual, then dosing continued 
daily post-lesion for a further 6 days. Behavioural testing was carried out at intervals during the and 
after the treatment period (days 6, 10 and 14). 14 days after lesioning, rats were killed by CO2 
asphyxiation and their brains removed for analysis. 

 

4.2.4.2 Assessment of lesion size 

At the completion of each study rats were killed by CO2 asphyxiation followed by 

decapitation, and the brain removed. The striatum was dissected out on an ice-cold 

platform, weighed and snap-frozen on dry ice for HPLC analysis of dopamine, while a 

coronal block containing the midbrain was post-fixed for a minimum of 72 hours in 10% 

buffered formalin before being processed and paraffin embedded for 

immunohistochemical analysis. 

Immunohistochemistry 

In order to assess the effect of lesioning/treatment on the number of dopaminergic cell 

bodies in the SNc, brain sections were stained for tyrosine hydroxylase, the rate-limiting 

enzyme in the dopamine synthetic pathway. 

Immunohistochemical staining and analysis for this study was carried out at as described 

for the Compound 11 study in section 2.2.3.2. 
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Neurochemical analysis by HPLC 

In order to assess the effect of lesioning/treatment on the dopamine content of the 

striatum, the left and right CPu were dissected out at necropsy and analysed by HPLC. 

Samples were removed from the -80°C freezer and placed on ice. 8 volumes of 

homogenisation buffer (0.4M perchloric acid, 1mM EDTA, 0.01% Na2S2O5) and one volume 

of 10µM DHBA (internal standard) were added to each sample. Tissue samples were 

homogenised using a sonic homogeniser for around 5 seconds, then centrifuged at 14000 x 

g for 10 minutes at 4°C. Supernatant was aliquoted into HPLC vials and then frozen at -80°C 

to await analysis. 

Before analysis, samples were thawed and placed in autosampler trays maintained at 9°C. 

Mobile phase (0.1M NaH2PO4, 1mM EDTA, 0.01% OSA, 12% MeOH, pH 3.2) was recycled at 

0.8ml/min and 20µl sample volumes were injected down a Spherisorb ODS(2) 3m particle 

size HPLC column (SpheriClone 0.46cm x 15cm; Phenomenex, UK) column maintained at 

30°C. The run time for each sample and standard was 20 minutes, and electrochemical 

detection was performed by an Intro ECD (Antec) at a sensitivity of 50nA/V. An example 

chromatogram of a 1µM standard is shown in Figure 54. 

Chromatograms were analysed using Chromeleon software (Dionex), which automatically 

assigns peaks and calculates their areas based on a user-defined analysis method. Peaks 

that were not recognised by the software were manually defined by drawing in a baseline. 

Sample concentrations were calculated from a linear standard curve constructed from a 

duplicated set of standards covering a range of 0.01-100µM, followed by correction for 

sample dilution. 
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Figure 54: Example chromatogram from a 1µM standard. The standard contains the internal 
standard DHBA (peak 2), Dopamine (peak 3), DOPAC (peak 4) and HVA (peak 7). Peak areas were 
quantified and used to construct standard curves from which the analyte concentrations in the 
striatal homogenates could be calculated. 

 

4.2.4.3 Behavioural assessment 

Three behavioural tests were performed to assess the functional outcome of the lesioning 

and treatment: the cylinder test, the adjusted stepping test and amphetamine-induced 

rotational asymmetry. The days that these tests were performed are shown in the study 
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plan (Figure 53) and all behavioural testing was carried out between 10:30 and 13.30. 

These tests have been discussed in more detail in Chapter 2 (section 2.2.3.3). 

4.2.4.4 Assessment of inflammation 

At the end of the study an additional analysis was performed investigating inflammatory 

markers in the SNc of these rats by staining for the microglial marker Ionised calcium 

binding adaptor molecule 1 (Iba-1). This was done in order to investigate whether we could 

find evidence for similar anti-inflammatory effects as have been reported in a previous 

study targeting mGlu4 (Betts et al., 2012). 

Nigral sections at -5.3mm and -5.8mm from bregma (adjacent to the sections stained for 

TH at these levels) were stained in triplicate for Iba-1. The immunohistochemistry protocol 

used was identical to that used for TH staining (section 2.2.3.2) except for two 

modifications: 1. The primary antibody used was a 1:2000 dilution of polyclonal rabbit anti-

Iba-1 primary antibody and 2. The staining was developed in DAB for 25 minutes. 

Due to the damage noted in the nigra close to the injection site (-5.3mm) only sections at -

5.8mm were analysed. Slides were imaged at 25x magnification using the Zeiss Axioskop 

brightfield microscope. Analysis of staining density in the region of the SNc was carried out 

on greyscale images using Image J (freely available software developed by the National 

Institutes for Health). Staining density in the lesioned SNc was expressed as a percentage of 

the staining in the intact SNc. 

4.2.4.5 Statistical analysis 

Normally distributed data are reported as mean ± s.e.m and are presented as bar charts, 

where the bar height represents the mean and the error bars represent the s.e.m. Normally 

distributed data were analysed using t-tests or one-way or two-way ANOVAs. 

Nonparametric data are presented as median ± interquartile range (IQR) and are presented 

as box and whisker plots, where the box represents the IQR, the line within the box 

represents the median and the whiskers represent the minimum and maximum values 

obtained. Nonparametric data were compared using Kruskal-Wallis tests with Dunn’s post-

hoc analysis. 

Statistical analysis was carried out using GraphPad Prism version 5. 

Neuroprotective outcomes: Neuroprotection was assessed at the level of the substantia 

nigra by comparing the cells remaining in the lesioned SNc as a percent of those remaining 
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in the intact SNc using a Kruskal-Wallis test with Dunn’s post-hoc analysis. Where within-

group comparisons on absolute cell counts are reported, a t-test was used. 

The absolute concentrations of dopamine and its metabolites were compared between the 

intact and lesioned striatum within treatment groups using t-tests. For comparison 

between treatment groups the concentration of dopamine and its metabolites DOPAC and 

HVA in the lesioned striatum were expressed as percentages remaining (lesioned striatal 

concentration as a percent of intact striatal concentration) and compared where possible 

using a one-way ANOVA with Bonferroni post-hoc test. 

Behavioural tests: The cylinder test was analysed using a 2-way repeated measures ANOVA 

with Bonferroni post-hoc analysis to assess the effects of both lesion and treatment on paw 

use. Adjusted steps and rotometry data and were analysed using a one-way ANOVA with a 

Bonferroni post-hoc to allow for comparison of treated groups with both the vehicle-

treated group and the negative control group. Where pre- vs. post-lesion performance was 

compared within a group for the adjusted steps test, a paired t-test was used to compare 

the number of steps taken. 

Inflammatory marker: The staining density in the lesioned SNc, as a percent of the staining 

density in the intact SNc, was compared between treatment groups using a one-way 

ANOVA with Bonferroni post-hoc test. 

For all tests, the outcome was considered significant where P<0.05. 
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4.3 Results 

4.3.1 LuAF21934 PK studies 

PK-A: The plasma time course following oral administration of 10mg/kg or 30mg/kg 

LuAF21934 is shown in Figure 55. 

Plasma Cmax for 10mg/kg LuAF21934 was 869 ± 202ng/ml, achieved 1 hour after dosing with 

a t½ of 1.4 ±0.13 hours. 

Plasma Cmax for 30mg/kg LuAF21934 was 4733 ± 758ng/ml, achieved 1 hour after dosing 

with a t½ of 0.8 ± 0.10 hours. 

These data were used to inform the twice-daily dosing regimen that was adopted in the 

neuroprotection study. 

 

 

Figure 55: Time course of plasma concentration of LuAF21934. Naive male SD rats were given an 
oral dose of 10mg/kg or 30mg/kg LuAF21934 in 5ml/kg PEG-400 and serial blood samples collected 
and analysed by UPLC-MS/MS. Data are shown as mean ± s.e.m. (n = 3 per dose). 

 

PK-B: Brain and plasma samples were analysed at 1 hour and 2 hours following an acute 

oral dose of 30 mg/kg LuAF21934. 

At 1 hour, the plasma concentration of LuAF21934 was 6060 ± 721ng/ml and the brain 

concentration was 3963 ± 585ng/g, giving a brain/plasma ratio of 0.65. The plasma 

concentration at this time point is comparable with plasma Cmax collected for this dose in 

PK-A (P=0.2737; t-test). 
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At 2 hours, the plasma concentration of LuAF21934 was 5537 ± 591ng/ml and the brain 

concentration was 3710 ± 98ng/g, giving a brain/plasma ratio of 0.67. The plasma 

concentration at this time point is significantly higher than that collected for this dose in 

PK-A of 3093ng/ml (P=0.0288; t-test) but since the numbers of animals used in each study 

was low this is likely due to normal variability. 

  



200 
 

4.3.2 LuAF21934 Neuroprotection study 

4.3.2.1 General observations 

All rats were included in the analysis, therefore for all groups n=8. 

No acute- or sub-chronic adverse effects of dosing with vehicle, LuAF21934 or the negative 

control compound LuAF21935 were noted on animal health or wellbeing. 

4.3.2.2 LuAF21934 did not protect against nigrostriatal degeneration 

TH-positive cells in the SNc 

There was no significant difference between cell counts at the three levels of the SNc that 

were analysed (P=0.1249; one-way RM ANOVA with Bonferroni post-hoc), therefore the 

data have been pooled. 

The cell counts and corresponding percentage survival in the lesioned SNc compared with 

the intact SNc are shown in Figure 56 along with representative images from each group. 

Vehicle-treated rats retained 0.4 ± 0.5 TH-positive cells in the lesioned SNc compared with 

109.5 ± 10.2 in the intact SNc, a significant reduction (P<0.0001; t-test) equating to 0.36 ± 

0.42% survival. 

Rats treated with LuAF21934 retained on average 0.16 ± 0.37% TH-positive cells in the 

10mg/kg group and 0.32 ± 0.52% TH-positive cells in the 30mg/kg group. Rats treated with 

30mg/kg LuAF21935, the negative control (hereafter referred to as Neg Ctrl), retained 0.34 

± 0.24% TH-positive cells. There were no significant differences between groups regarding 

the percent of cells remaining (P=0.5578; Kruskal-Wallis test with Dunn’s post-hoc). 
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Figure 56: TH-positive cells remaining in the SNc following a 6-OHDA nigral lesion and treatment 
with vehicle, LuAF21934 or a negative control. Representative images for each treatment group are 
shown in the upper panels, and the TH-positive cells remaining in the lesioned SNc as a percent of 
the TH-positive cells in the intact SNc is shown in the graph below the images. There was no effect of 
treatment on the survival of TH-positive cells in the SNc. Data are presented as median ± IQR (n = 8 
per group). 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

Vehicle 10 mg/kg 
LuAF21934 

30 mg/kg 
LuAF21934 

Neg Ctrl 

TH
-p

o
si

ti
ve

 c
e

lls
 in

 le
si

o
n

e
d

 S
N

c 
(%

 in
ta

ct
 S

N
c)

 



202 
 

Striatal dopamine content 

Striatal dopamine, DOPAC and HVA concentrations in the intact and lesioned striatum are 

summarised in Table 10. 

 

Table 10: Striatal concentrations of dopamine and its metabolites in the intact and lesioned 
striatum following a 6-OHDA nigral lesion and treatment with vehicle, LuAF21934 or a negative 
control. Data reported are mean concentrations in µM (n = 8) ***P<0.001 (t-test versus intact). ND = 
not detected 

 Dopamine DOPAC HVA 

 Intact Lesioned Intact Lesioned Intact Lesioned 

Vehicle  93.38 0.32*** 6.35 0.07*** 3.30 ND 

10 mg/kg 

LuAF21934 
97.76 0.26*** 6.65 0.04*** 3.33 ND 

30 mg/kg 

LuAF21934 
91.60 0.27*** 6.76 0.09*** 3.53 ND 

Neg Ctrl 98.75 0.35*** 6.58 0.07*** 3.41 ND 

 

Striatal dopamine content was decreased in vehicle-treated rats from 93.4µM in the intact 

striatum to 0.32µM in the lesioned striatum (P<0.0001; t-test), meaning that the lesion 

caused a reduction to 0.37 ± 0.07% of normal levels (Figure 57). DOPAC and HVA were 

similarly reduced in the lesioned striatum, to 0.65 ± 0.23% and 0.00 ± 0.00% of the intact 

striatal concentrations respectively (HVA was not detected in any lesioned striatal 

samples). 

Rats treated with LuAF21934 retained on average 0.28 ± 0.05% striatal dopamine in the 

10mg/kg group and 0.30 ± 0.04% in the 30mg/kg group. Rats treated with Neg Ctrl retained 

0.35 ± 0.07% dopamine. There was no effect of treatment on percent striatal dopamine 

remaining (P=0.6986; one-way ANOVA with Bonferroni post-hoc). 
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Figure 57: Dopamine content in the lesioned striatum following a 6-OHDA nigral lesion and 
treatment with vehicle, LuAF21934 or a negative control. Unilateral nigral infusion of 6-OHDA 
severely depleted dopamine in the ipsilateral striatum, such that less than 1% remained compared 
with the concentration measured in the intact striatum. Sub-chronic treatment with LuAF21934 or 
Neg Ctrl had no effect on striatal dopamine content. Data are presented as mean ± s.e.m. (n = 8 per 
group). 

 

Similarly there was no effect of treatment on the DOPAC remaining in the lesioned striatum 

as a % of the intact striatum (P=0.3598; one-way ANOVA with Bonferroni post-hoc). HVA 

could not be compared between groups as it was not detected in any lesioned striatum. 

Dopamine turnover, normally calculated as (DOPAC+HVA)/DA could therefore not be 

calculated, and even an alternative measure of DOPAC/DA could only be calculated for 14 

of the 32 rats due to non-detectable peaks for DOPAC, therefore this parameter was not 

reported. 
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4.3.2.3 LuAF21934 did not preserve functional outcomes 

Cylinder test 

The cylinder test baseline was the pooled result of two pre-lesion tests, and can be seen in 

Figure 58. There was no significant differences between groups at baseline regarding use of 

the ipsilateral or contralateral forelimb (P=0.2923; one-way ANOVA with Bonferroni post-

hoc). 

 

Figure 58: Baseline use of the ipsilateral and contralateral forelimbs during the cylinder test. All 
groups showed around equal use of each paw before dosing and lesioning, with no significant 
differences between groups. The dashed line shows the expected use of each paw in intact rats. 
Data are presented as mean ± s.e.m. (n = 8 per group). 

 

Percent use of the contralateral forelimb in the cylinder test was reduced post-lesion in the 

vehicle group, from 49 ± 1% at baseline to 6.4 ± 2.2% on day 6, 8.4 ± 3.3% on day 10 and 

8.3 ± 3.0% on day 14 (all P<0.0001; two-way RM ANOVAs with Bonferroni post-hoc tests), 

showing that the lesion caused a measurable and sustained deficit (Figure 59). 

Day 6 (Figure 59a): Rats treated with 10mg/kg LuAF21934 used the contralateral limb in 

6.0 ± 2.1% of touches and those treated with 30mg/kg LuAF21934 in 5.1 ± 1.9% of touches. 

Rats treated with Neg Ctrl used the contralateral limb for 5.3 ± 2.6% of touches. Compared 

with baseline there was a significant effect of lesion (P<0.0001) but not treatment group 

(P=0.8561; two-way RM ANOVA with Bonferroni post-hoc) at this time point.  

Day 10 (Figure 59b): Rats treated with 10mg/kg LuAF21934 used the contralateral limb in 

8.1 ± 2.8% of touches and those treated with 30mg/kg LuAF21934 in 3.6 ± 1.3% of touches. 

Rats treated with Neg Ctrl used the contralateral limb for 6.6 ± 2.6% of touches. Compared  
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Figure 59: Use of the ipsilateral and contralateral forelimbs during the cylinder test following a 
nigral 6-OHDA lesion and sub-chronic treatment with vehicle, LuAF21934 or a negative control. 
The dashed line shows the expected use of each paw in intact rats. All groups showed a similar post-
lesion bias towards use of the ipsilateral paw. There was a significant effect of lesion for all groups 
on all testing days, but no significant effect of treatment at day 6, 10 or 14 post-lesion. Data are 
presented as mean ± s.e.m. (n = 8 per group). 
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with baseline there was a significant effect of lesion (P<0.0001) but not treatment group 

(P=0.9085; two-way RM ANOVA with Bonferroni post-hoc) at this time point.  

Day 14 (Figure 59c): Rats treated with 10mg/kg LuAF21934 used the contralateral limb in 

9.2 ± 3.1% of touches and those treated with 30mg/kg LuAF21934 in 6.1 ± 1.8% of touches. 

Rats treated with Neg Ctrl used the contralateral limb for 13.2 ± 3.4% of touches. 

Compared with baseline there was a significant effect of lesion (P<0.0001) but not 

treatment group (P=0.4500; two-way RM ANOVA with Bonferroni post-hoc) at this time 

point.  

Adjusted steps test 

The adjusted steps test baseline was the pooled result of two pre-lesion tests, and the post-

lesion steps taken on each testing day is expressed as a percentage of this baseline (Figure 

60). 

As would be expected with a unilateral lesion, there was no deficit detected in the 

ipsilateral paw in the vehicle-treated group at any time point, with performance >98.8% 

baseline in the forward direction (P>0.1604; paired t-tests on no. of steps) and >99.8% in 

the reverse direction (P>0.4957; paired t-tests on no. of steps). There was also no 

significant effect of treatment with LuAF21934 or negative control on the post-lesion 

percent performance of the ipsilateral paw, which was unaffected in both the forward 

(P>0.5126; one-way ANOVAs with Bonferroni post-hoc tests) and reverse (P>0.4169; one-

way ANOVAs with Bonferroni post-hoc tests) directions for every test session. 

On the other hand, 6-OHDA lesioning caused a clear deficit in contralateral paw use. 

Vehicle-treated rats had an average forward-stepping contralateral performance of 50.5 ± 

2.0% of baseline on day 6, 53.2 ± 1.2% baseline on day 10 and 52.0±1.5% baseline on day 

14 (all P<0.0001; paired t-tests). The average reverse-stepping contralateral performance in 

this group was reduced to 67.1 ± 1.7% baseline on day 6, 69.5 ± 1.6% of baseline on day 10 

and 68.2 ± 1.1% baseline on day 14 (all P<0.0001; paired t-tests). 

Day 6 (Figure 60a): The 10mg/kg LuAF21934 group had a forward-stepping contralateral 

performance of 50.4 ± 4.0% baseline, the 30mg/kg LuAF21934 group performance was 56.7 

± 1.7% baseline and rats treated with Neg Ctrl made 54.4 ± 1.6% baseline steps. There was 

no significant effect of treatment on contralateral forward-stepping performance 

(P=0.2468, one-way ANOVA with Bonferroni post-hoc). 
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Figure 60: Adjusted stepping test performance following a nigral 6-OHDA lesion and sub-chronic 
treatment with vehicle, LuAF21934 or a negative control. The dashed line shows the expected 
performance in intact rats (100% baseline). There was no significant effect of treatment on use of 
the contralateral paw in either direction at day 6, 10 or 14 post-lesion. Data are presented as mean ± 
s.e.m. (n = 8 per group). Fwd = forward direction; Rev = reverse direction; Ipsi = ipsilateral forelimb; 
Contra = contralateral forelimb. 
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Contralateral reverse-stepping showed a similar pattern, with the 10mg/kg LuAF21934 

group at 67.6 ± 1.1% baseline, the 30mg/kg LuAF21934 group at 67.4 ± 2.0% baseline and 

the Neg Ctrl group at 71.4 ± 2.1% baseline. There was no significant effect of treatment on 

contralateral reverse-stepping performance (P=0.2946, one-way ANOVA with Bonferroni 

post-hoc). 

Day 10 (Figure 60b): The 10mg/kg LuAF21934 group had a forward-stepping contralateral 

performance of 55.7 ± 0.0% baseline, the 30mg/kg LuAF21934 group performance was 58.2 

± 1.9% baseline and rats treated with Neg Ctrl made 53.4 ± 2.2% baseline steps. There was 

no significant effect of treatment on contralateral forward-stepping performance 

(P=0.2188, one-way ANOVA with Bonferroni post-hoc). 

Contralateral reverse-stepping showed a similar pattern, with the 10mg/kg LuAF21934 

group at 70.0 ± 1.5% baseline, the 30mg/kg LuAF21934 group at 69.6 ± 2.1% baseline and 

the Neg Ctrl group at 70.0 ± 1.2% baseline. There was no significant effect of treatment on 

contralateral reverse-stepping performance (P=0.9938, one-way ANOVA with Bonferroni 

post-hoc). 

Day 14 (Figure 60c): The 10mg/kg LuAF21934 group had a forward-stepping contralateral 

performance of 55.4 ± 1.5% baseline, the 30mg/kg LuAF21934 group performance was 57.2 

± 1.6% baseline and rats treated with Neg Ctrl made 52.9 ± 1.9% baseline steps. There was 

no significant effect of treatment on contralateral forward-stepping performance 

(P=0.1189, one-way ANOVA with Bonferroni post-hoc). 

Contralateral reverse-stepping showed a similar pattern, with the 10mg/kg LuAF21934 

group at 68.5 ± 1.8% baseline, the 30mg/kg LuAF21934 group at 70.2 ± 1.9% baseline and 

the Neg Ctrl group at 69.0 ± 1.2% baseline. There was no significant effect of treatment on 

contralateral reverse-stepping performance (P=0.8008, one-way ANOVA with Bonferroni 

post-hoc). 

 

 

 

 

 

 

 



209 
 

Amphetamine-induced rotational asymmetry 

The time-course and overall net ipsiversive rotations in response to 2.5mg/kg 

amphetamine are shown in Figure 61. 

 

 

 

Figure 61: Amphetamine-induced rotational asymmetry in rats with a 6-OHDA nigral lesion treated 
sub-chronically with vehicle, LuAF21934 or a negative control. The time course of rotations is 
shown in graph (a) and the total net number of full ipsiversive rotations over 120 minutes is shown 
in graph (b). Despite a trend towards a reduction in rotational asymmetry in LuAF21934-treated rats 
there was no significant effect of treatment on net rotational asymmetry. Data are presented as 
mean ± s.e.m. (n = 8 per group). 

 

Vehicle-treated animals displayed a net ipsiversive rotational asymmetry over 90 minutes 

of 268 ± 101 turns (Figure 61b). Rats treated with 10mg/kg LuAF21934 had a reduced net 

asymmetry of 137 ± 22 turns, and a similar reduction was seen in the 30mg/kg LuAF21934-

treated group, which made 136 ± 28 turns in the same time. Rats treated with Neg Ctrl 
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displayed a similar rotational response to the vehicle-treated group, making 226 ± 64 turns 

in 90 minutes. Despite the reduced turning in the LuAF21934-treated groups, when all 

groups were compared there was no significant effect of treatment on total net rotational 

asymmetry over the time tested (P=0.3534; one-way ANOVA with Bonferroni post-hoc). 

4.3.2.4 LuAF21934 did not reduce microglial activation in the lesioned SNc 

Iba-1 is a marker of microglial activation. Previous reports have suggested a role for mGlu4 

activation in attenuating inflammation, and this might potentially play a role in 

neuroprotection. Due to the physical damage that was encountered at the -5.3mm level 

(see Discussion), Iba-1 staining was only assessed at -5.8mm from bregma. Two rats from 

the 30mg/kg LuAF21934 and one rat from the Neg Ctrl group were excluded from analysis 

as a moderate to high degree of physical damage was still evident at this level in these 

animals. 

The results of the Iba-1 staining are shown in Figure 62. The images in the upper panels 

show representative images to compare the Iba-1 staining in vehicle-treated and 30mg/kg 

LuAF21934-treated groups. The graph below shows these results as the staining density in 

the lesioned SNc expressed as a percentage of the staining density in the intact SNc. 

Vehicle-treated rats showed a slight increase in Iba-1 staining in the lesioned SNc, 

equivalent to 109 ± 1% that in the intact SNc. Similar results were found in LuAF21934-

treated groups, where the 10mg/kg group showed 109 ± 1% staining and the 30mg/kg 

group showed 109 ± 2% staining. Negative control-treated rats also showed a comparable 

degree of increased inflammation, with 111 ± 2% staining in the lesioned SNc. There was no 

significant effect of treatment on microglial activation as assessed by Iba-1 

immunohistochemistry (P=0.7079; one-way ANOVA with Bonferroni post-hoc test). 
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Figure 62: Iba-1 staining density at -5.8mm from bregma in rats with a 6-OHDA nigral lesion 
treated sub-chronically with vehicle, LuAF21934 or a negative control. The top panels show the 
degree of Iba-1 staining in the SNc at -5.8mm from bregma. The arrows denote the location of the 
SNc. The graph below the images shows the Iba-1 staining in the lesioned SNc as a percent of that in 
the intact SNc following densitometric quantification. The dashed line shows the staining density in 
the intact SNc, which was defined at 100%. Microglial activation was slightly increased in the 
lesioned SNc compared with the intact SNc in all groups, but there was no effect of treatment on 
staining for this inflammatory marker (n = 6-8). 
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4.4 Discussion 

This study sought to identify whether systemic administration of the mGlu4 PAM 

LuAF21934 could provide neuroprotection in the 6-OHDA rat model of Parkinson’s disease. 

4.4.1 PK studies 

From the PK study we have a good idea of the brain concentrations that were achieved 

during LuAF21934 dosing. The plasma profile obtained in PK-A led us to dose twice a day 

with this compound rather than the once-daily used in previous studies where drug was 

applied intracerebrally, resulting in improved drug exposure during the treatment period 

while the lesion was developing. In addition, the specific drug concentrations in the plasma 

and brain were analysed at 1-hour and 2-hour time points after dosing, revealing in a 

brain/plasma ratio of 0.66, which is in line with previous in-house data from Lundbeck. The 

1-hour time point is particularly critical as it reflects the brain concentration at the time of 

6-OHDA infusion. The brain concentration at 1 hour was 3963 ± 585ng/g, equivalent to 

12.6µM, of which 3% is believed to be unbound in the rat brain (Bennouar et al., 2013). 

This means that LuAF21934 was present in the brain at a free concentration of around 

119ng/g at 1 hour after the highest dose that was used in these studies, which at ~0.38µM 

is a little below its EC50 concentration at mGlu4 (0.5µM). However EC50 concentrations are 

measured in vitro and the translatability of potencies between in vitro and in vivo systems 

is likely to be imperfect. Certainly the total brain concentration of LuAF21934 measured in 

PK-B 1 hour after dosing of 30mg/kg LuAF21934 is in the range where pharmacological 

effects have been noted in other in vivo experiments (e.g. haloperidol-induced 

catalepsy;(Bennouar et al., 2013) and therefore it is likely that the maximum brain 

concentrations that will have been achieved following oral administration of LuAF21934 in 

the neuroprotection study were sufficient to activate mGlu4 receptors in the BG in this 

neuroprotection study. 

4.4.2 Neuroprotection study 

Even with good brain levels achieved, this study did not provide any evidence of LuAF21934 

eliciting neuroprotection in this model. This was reflected in the lack of any preservation of 

motor function as measured by the cylinder test, adjusted steps test or amphetamine-

induced rotations. In addition we found no evidence for decreased inflammation following 

treatment with LuAF21934, however the degree of inflammation overall was extremely 

low, ~10% increased in the lesioned SNc compared with the intact SNc in this study 

compared with a 300% increase in a study where the mGlu4 PAM/vehicle were delivered 
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supranigrally (Betts et al., 2012). It is possible that measuring inflammatory markers 2 

weeks after an acute nigral lesion misses the majority of the inflammatory response, since 

cell loss is usually complete within the first week (Hanrott et al., 2008; Maler et al., 1973). 

Significant increases in activation of microglia have previously been reported for up to 3 

week following lesioning of the MFB or striatum (Maia et al., 2012; Marinova-Mutafchieva 

et al., 2009; Walsh et al., 2011), however similar experiments have not been reported 

following nigral infusion of 6-OHDA and it could be that the more rapid completion of the 

lesion after nigral lesioning compared with MFB or striatal lesioning leads to an earlier 

abatement of the acute inflammatory response. 

The repeat behavioural testing, both during and after the treatment period, was carried out 

in order to detect both short term (acute pharmacological) and long term (likely 

neuroprotective) effects of LuAF21934 in this model. The behavioural testing on day 6 was 

carried out 3 hours after dosing, when according to PK-A we might expect plasma 

concentrations of up to 1854ng/ml; therefore any improvement in behaviour at this time 

point could reflect a combination of acute pharmacological benefits and neuroprotective 

benefits. The fact that no effects of treatment group were found at the day 6 behavioural 

time point suggests that 3 hours after dosing LuAF21934 does not exert a pharmacological 

effect that results in a measurable change in limb use bias or function in the cylinder test or 

adjusted steps test. On the other hand the behavioural testing on days 10 and 14 was 

carried out between 3 and 7 days after the last dose of LuAF21934, when the drug is no 

longer present in the brain; therefore any improvement in behaviour at these time points 

would be expected to reflect neuroprotective effects of this mGlu4 PAM, where 

preservation of neurones results in improved motor function. The lack of an effect of sub-

chronic LuAF21934 treatment on behavioural tests at these later time points clearly 

suggested that LuAF21934 had not had a neuroprotective effect, and this negative 

outcome was indeed confirmed post mortem by analysis of TH-positive cells and striatal 

dopamine content. 

4.4.3 Possible reasons for the lack of neuroprotection 

One possible explanation for the lack of a neuroprotective effect in this model is that 

physical damage to the SNc was noted in the vicinity of the 6-OHDA injection site when 

immunohistochemical staining was performed. The degree of damage varied from none to 

severe and was importantly equally distributed between groups. In some cases the physical 

damage merely reflected the penetrance of the tip of the injection needle into the SNc and 

was therefore minimal, however in several rats it was more widespread and included loss 
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of tissue in a diffuse area around the injection site. This would mean that for 

neuroprotection to have occurred in this study, LuAF21934 would not only have had to 

counteract the toxic effects of the 6-OHDA but also, in a number of rats, the physical 

damage caused by the injection process, which perhaps underlies the lack of a protective 

effect noted in the study reported here. The varying degree of damage in rats that were 

lesioned on the same day does not support a definite physically damaging effect of the 

toxin solution itself (e.g. osmotic damage), and indeed the same batch of 6-OHDA and 

ascorbate have been used in multiple previous studies without such an effect being noted. 

The presence/extent of physical damage is also roughly equal between groups, suggesting 

that it is not related to LuAF21934 or LuAF21935 administration. However for unknown 

reasons the same toxin solution and same injection conditions (needle diameter, flow rate 

etc.) caused more widespread damage in some rats than others. Certainly the presence of 

this damage could have confounded any neuroprotective properties of LuAF21934; 

nonetheless the degree of TH-positive cell loss was comparable in all rats regardless of the 

presence and degree of physical damage that was noted in the SNc so other factors likely 

played a role in the failure of LuAF21934 to provide neuroprotection in this experiment. 

In addition to the physical damage, the severity of the lesion induced by nigral infusion of a 

large dose of 6-OHDA is likely difficult to overcome due to the rapid induction of 

widespread cell death. The administration of LuAF21934 prior to the lesion gave us the best 

chance to have the drug in the correct place at the correct time to maximise the chances of 

a protective effect, however this is not a clinically relevant scenario and also proved 

unsuccessful in this study anyhow. A repeat of this study is warranted and several 

improvements to the study design could be made to improve the chances of a 

neuroprotective effect, for example using a partial rather than a full lesion model and 

inducing a nigrostriatal lesion without damaging areas that will be subsequently analysed. 

A partial lesion that leads to around 60% loss of striatal dopamine would more accurately 

reflect the clinical situation, since patients present with motor symptoms when their 

dopamine is depleted by around this amount. This could be achieved by using lower doses 

of 6-OHDA that are infused into the nigrostriatal tract outwith the SNc such as into the MFB 

or striatum (Datla et al., 2001; Kirik et al., 1998; Li et al., 2010b; Murray et al., 2003a; 

Przedborski et al., 1995; Truong et al., 2006); this would not only reduce the severity of the 

lesion (giving the LuAF21934 something to actually protect) but would also remove the 

confounding influence of physical damage from the infusion of the toxin directly into the 

site of analysis. Alternatively, a partial lesion induced by systemic administration of MPTP 
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would be ideal, since it causes incomplete loss of dopaminergic neurones and obviates any 

physical damage that may be caused by direct infusion of neurotoxin into the nigrostriatal 

tract. Indeed the MPTP mouse model has already been used to demonstrate the 

neuroprotective effect of systemic administration of another mGlu4 PAM, PHCCC (Battaglia 

et al., 2006). 

Aside from the effects of the physical damage and the size of the lesion, other factors 

might explain the lack of neuroprotection in this experiment. One possibility is that 

activation of mGlu4 receptors throughout the basal ganglia, as would be expected following 

systemic administration, rather than selectively in the SNc following local administration as 

in previous studies, could have resulted in the effects at individual synapses cancelling each 

other out. This would mean that there would be no net effect on signalling in the relevant 

regions of the BG for neuroprotection (i.e. the subthalamonigral projection) and/or no net 

change in the BG and therefore motor output. Considering the localisation of mGlu4 within 

the rodent BG, inhibition of GABA release from striatonigral neurones could lead to 

inhibition of signalling in the direct pathway that might counteract the effects of mGlu4 at 

inhibiting signalling in the indirect pathway (acting at the striatopallidal and/or 

subthalamonigral projections). However this possibility might only be expected to inhibit 

symptomatic relief rather than neuroprotection, and additionally it is at odds with the 

wealth of published reports showing that systemic or i.c.v. administration of mGlu4-

targeted therapies has an antiparkinsonian and/or neuroprotective effect (Battaglia et al., 

2006; Bennouar et al., 2013; Beurrier et al., 2009; East et al., 2010; Jones et al., 2012; Le 

Poul et al., 2012; Marino et al., 2003; Niswender et al., 2008b). Inhibition of signalling at all 

other synapses within the BG where mGlu4 has been localised would be expected to reduce 

subthalamonigral output, however it is possible that the effects of activation of mGlu4 in 

brain regions outside the BG may also influence activity in this region and this could explain 

the lack of a protective effect when mGlu4 PAMs are administered systemically versus 

supranigrally. 

Another possibility is that LuAF21934 was not present at sufficient concentrations to 

activate mGlu4 receptors and therefore did not inhibit signalling at the desired synapses. 

We are confident from the PK studies reported in this chapter that the brain drug 

concentrations achieved at 1 hour after dosing were adequate to have a pharmacological 

effect. However, the lack of behavioural benefits observed 3 hours after dosing of 

LuAF21934 on day 6 might suggest that by this time after dosing there was insufficient drug 
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present to exert these effects. While previous studies in this model have shown successful 

neuroprotection with once-daily local administration for some compounds targeting group 

III or mGlu4 receptors (VU0155041 study in Chapter 2 and also(Austin et al., 2010; Betts et 

al., 2012; Vernon et al., 2005; Vernon et al., 2006), this dosing regimen has proved 

unsuccessful for other mGlu4 PAMs, for example Compound 11 (Chapter 2). Therefore 

these ‘gaps’ in exposure between doses might underlie the lack of a protective effect of 

LuAF21934 in this study. In a repeat study, the dosing regimen could be improved further 

to maximise and stabilise exposure to LuAF21934 during the lesion development period. In 

this study we dosed twice daily, which likely improved drug exposure during lesion 

development compared with earlier studies where mGlu4 PAMs were administered only 

once a day, but given the ~1 hour half life of the drug this still would not have provided 

complete coverage. In future studies the use of continuous dosing via minipumps might be 

considered to overcome this problem, especially since LuAF21934 is soluble in a non-toxic 

vehicle (PEG-400) and is stable for up to a week in non-aqueous solutions (Lundbeck, 

personal communication).  
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4.5 Conclusion 

The results of this study did not show a protective effect of LuAF21934 against a 6-OHDA 

lesion of the SNc when administered systemically. However the presence of physical 

damage within the SNc related to the infusion of the neurotoxin would likely have 

precluded any protective effect that might have been exerted by LuAF21934 and therefore 

the results of this study are far from conclusive. 

While we are confident that the mGlu4 PAM achieved good brain exposure, leading to at 

least intermittent receptor activation, a combination of physical damage and the severity 

of the 6-OHDA lesion noted in this study may have been too drastic for any agent to protect 

against.  

Further studies are required using systemically active mGlu4 PAMs such as LuAF21934, 

preferably using partial nigrostriatal lesion models, in order to support or discount 

widespread activation of this receptor within the BG as a neuroprotective strategy in 

Parkinson’s disease. 
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5 Targeting mGlu7 as a potential neuroprotective approach in 

a hemiparkinsonian rat model 

5.1 Introduction 

5.1.1 The role of mGlu7 in the basal ganglia 

The group III receptor mGlu7 is highly expressed in many areas of the rat brain (Bradley et 

al., 1998; Kinoshita et al., 1998; Kinzie et al., 1995). Pertinently for Parkinson’s disease it is 

found in all regions of the rat basal ganglia, with mRNA expression found at particularly 

high levels in the nucleus accumbens, premotor cortex, striatum, GP, SNr and thalamus 

(Messenger et al., 2002; Ohishi et al., 1995). Electron microscopic studies have identified 

mGlu7 receptors located presynaptically in the CPu, GP, EPN and SNr (Bradley et al., 1999b; 

Kosinski et al., 1999), where they could alter glutamate and GABA release via their role as 

auto- and heteroreceptors respectively. 

As yet, studies have found no evidence suggesting alterations in expression of mGlu7 in the  

ageing rat (Simonyi et al., 2000) or following 6-OHDA lesioning of the MFB (Kosinski et al., 

1999; Messenger et al., 2002). Assuming this situation was reflected in human ageing and 

PD, mGlu7 receptors would be expected to be present and targetable following nigrostriatal 

degeneration. 

5.1.2 Targeting mGlu7 receptors in PD 

Due to the high levels of mGlu7 expression in associated brain areas such as the 

hippocampus and amygdala (Felix-Ortiz et al., 2013; Kinoshita et al., 1998), this receptor 

has predominantly been investigated as a potential anxiolytic or antidepressant target 

(Kalinichev et al., 2013; O'Connor et al., 2013; Palucha-Poniewiera et al., 2013; Palucha et 

al., 2007). It has also been investigated in relation to addiction (Bahi et al., 2011; Li et al., 

2010a) and schizophrenia (Wierońska et al., 2011) due to its expression in the nucleus 

accumbens. However given its widespread expression in the BG it might also be expected 

to play a role in motor function, and as such there is evidence that it may be a useful 

therapeutic target in PD. 

As discussed in Chapter 2, there is a wealth of evidence for the symptomatic and 

neuroprotective potential of activation of mGlu4 receptors. A similar degree of evidence 

had been lacking for mGlu7, likely resulting from a paucity of tool compounds specifically 

targeting this receptor subtype. The 2005 discovery of a selective allosteric agonist for 

mGlu7, N,N’-dibenzhydrylethane-1,2-diamine dihydrochloride, also known as AMN082 
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(Mitsukawa et al., 2005), has since aided our understanding of the potential role of this 

receptor in PD. 

An acute dose of AMN082 can reverse haloperidol-induced catalepsy in rats when 

administered systemically or centrally into the striatum or SNr (Greco et al., 2010; 

Konieczny et al., 2013). AMN082 also reverses reserpine-induced akinesia in rats when 

administered acutely into the SN (Broadstock et al., 2012), though this result was not 

replicated when the drug was acutely administered systemically (Konieczny et al., 2013). 

Importantly from the point of view of models involving nigrostriatal degeneration, acute 

oral administration of AMN082 showed antiparkinsonian efficacy in two models; it reduced 

apomorphine-induced rotational asymmetry in rats with a unilateral nigral 6-OHDA lesion 

when given 30 days post-lesion, and improved reaction time in rats with bilateral striatal 6-

OHDA lesions when given between 3 and 4 weeks post-lesion (Greco et al., 2010). Although 

no neurochemical or histological endpoints were evaluated in these studies it is unlikely 

that these functional improvements were underpinned by a degree of neuroprotection due 

to the fact that the drug was administered acutely in both instances and at a stage after the 

lesion had been fully established. 

There is, on the other hand, in vitro evidence for mGlu7 activation as a neuroprotective 

strategy. In cerebellar granule cell cultures a dose of L-AP4 that is sufficient to activate 

mGlu7 provided neuroprotection against NMDA-mediated toxicity (Lafon-Cazal et al., 1999) 

and further to this AMN082 has been demonstrated to protect hippocampal cell cultures 

against toxicity induced by exposure to the inhalable anaesthetic sevoflurane (Wang et al., 

2012a). 

5.1.3 Potential mechanisms of neuroprotection 

From the point of view of protecting against excitotoxicity in the parkinsonian condition, 

the desired effect of mGlu7 activation in PD is the reduction of the overactive glutamatergic 

transmission within the SNc (as described in section 1.3.3.3), however the effect of 

AMN082 seems to be location-dependent. For example it has been shown to reduce 

glutamatergic transmission/excitatory post-synaptic currents (EPSCs) in the VTA (de Rover 

et al., 2008), spinal cord (Cui et al., 2011) and the basolateral amygdala (Ugolini et al., 

2008), suggesting that it is acting at mGlu7 autoreceptors at these locations. The ability of 

AMN082 to reduce GABA release from mouse hippocampal synaptosomes (Summa et al., 

2013) suggests that it is also functional at mGlu7 heteroreceptors. Conversely AMN082 

increases glutamate release/EPSCs in other locations such as the retina (Guimarães-Souza 
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et al., 2012), amygdala (Ren et al., 2011) and nucleus accumbens (Li et al., 2008), believed 

to result from indirect mechanisms. The mechanisms suggested by the authors above are 

(1) GABA transporter-mediated GABA release secondary to an mGlu7-mediated increase in 

Ca2+-dependent glutamate release (Guimarães-Souza et al., 2012) and (2) an AMN082-

mediated increase in sEPSCs driven by disinhibition of glutamatergic neurones secondary to 

inhibition of GABA release (Li et al., 2008; Ren et al., 2011). Increase of glutamate release is 

the opposite effect to what might be desired for a potential neuroprotective agent. The 

only report of the effects of mGlu7 activation on neurotransmission at BG synapses is a 

reduction in [3H]-D-aspartate (glutamate analogue) release from rat nigral prisms with 

AMN082 in the presence of L-AP4 (Broadstock et al., 2012), which is promising from the 

point of view of reducing glutamate release into the SNc/SNr. However AMN082 is also 

pharmacologically active when locally administered into the striatum (Konieczny et al., 

2013) and mGlu7 has additionally been localised to presynaptic striatopallidal and 

striatonigral terminals (Kosinski et al., 1999); therefore the net effect of mGlu7 activation 

throughout the BG on thalamocortical output is hard to predict. 

The published example of in vitro neuroprotection by AMN082 points to reduction of 

apoptosis as the protective mechanism, potentially involving signalling through the MAP 

kinase pathway and reduction of caspase-3 activation (Wang et al., 2012a), though this may 

not be applicable to all toxins or indeed all cell types. 

Finally, mGlu7 activation with AMN082 may promote proliferation and differentiation of 

cortical neural progenitor cells into neurones, which could have implications for CNS repair 

(Tian et al., 2010). However, a different study using clonal human ventral mesencephalic 

neural stem/progenitor cells contradicts this result, instead suggesting that mGlu7 

activation reduces proliferation and favours an astrocytic differentiation (Vernon et al., 

2011). This suggests that the effects of mGlu7 activation on cell fate are dependent on cell 

population. 
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5.1.4 Hypothesis and aims 

Activation of group III mGlu receptors with broad spectrum agonists at several locations 

within the BG has shown antiparkinsonian effects in various rodent models of PD (Austin et 

al., 2010; Valenti et al., 2003), making this group of receptors an attractive target for 

normalising abnormal transmission in the parkinsonian condition. Despite the reduced 

potency of broad spectrum agonists such as L-AP4 and L-SOP at mGlu7 versus mGlu4 and 

mGlu8 (Conn et al., 1997), due to the widespread expression of mGlu7 in the basal ganglia it 

is worthy of investigation with a subtype-selective agonist or modulator, of which AMN082 

is currently the only example. 

Though alleviation of parkinsonian symptoms has been demonstrated for this compound, 

potentially by correction of signalling at several points within the basal ganglia, no 

neuroprotective effect has yet been investigated. Therefore the aim of this study was to 

investigate whether activation of mGlu7 using the systemically active allosteric agonist 

AMN082 could provide functional neuroprotection against a 6-OHDA-induced lesion of the 

SNc when dosed sub-chronically. The finding that AMN082 in conjunction with L-AP4 can 

reduce release of a glutamate analogue in the SN in vitro (Broadstock et al., 2012) supports 

the targeting of this receptor as a potential neuroprotective therapy, and therefore we 

hypothesise that: 

 

Activation of mGlu7 in vivo will provide neuroprotection in the 6-hydroxydopamine 

lesioned rat. 

 

The neuroprotection study reported in this chapter assessed the ability of AMN082 to: 

 

 Enhance survival of TH-positive neurones in the SNc. 

 Preserve striatal dopamine content. 

 Preserve motor function secondary to any measured neuroprotection, as assessed 

by the cylinder test, adjusted steps test and amphetamine-induced rotometry. 

 

In order to test for the presence of a central action of AMN082 an additional behavioural 

assessment was carried out during the course of the neuroprotection study. As mentioned 

in the introduction to this chapter, AMN082 has been widely reported to have anxiolytic 

effects, and therefore we used a test of anxiety as a positive control for central actions of 

AMN082. The following parameters were measured: 
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 Time spent in the central vs. outer zone in the open field test. 

 Number of faecal pellets produced during the open field test. 

 

Subsequent to the main study, we also carried out a pharmacokinetic (PK) study to 

investigate the brain penetrance and metabolism of AMN082 when administered 

intraperitoneally in 8% DMSO vehicle. 
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5.2 Materials and Methods 

5.2.1 Compound tested 

The compound used for the studies reported in this chapter was AMN082, an allosteric 

agonist of mGlu7. The structure and full IUPAC name of this drug is shown in Table 11. The 

structure of its primary metabolite as defined by Sukoff-Rizzo et al. (2011) is also shown, as 

the plasma and brain concentrations of this metabolite were measured in the PK study 

alongside that of AMN082. 

 

Table 11: The chemical structures of AMN082 and its primary metabolite Met-1. AMN082 was 
tested for plasma and brain pharmacokinetics in naive rats and neuroprotective efficacy in the 
hemiparkinsonian rat. 

Structure Name Target 

NH
NH

 

AMN082 
N,N’-dibenzhydrylethane- 

1,2-diamine 
dihydrochloride 

mGlu7 
allosteric 
agonist 

NH2
NH

 

Met-1 
N-(diphenylmethyl)ethane-

1,2-diamine 

Primary 
metabolite of 

AMN082 

 

AMN082 is a brain-penetrant molecule that was discovered at Novartis via a high-

throughput random screen and first described in a paper by Mitsukawa et al. in 2005. It has 

an agonist action at mGlu7 (EC50 = 260nM) at a site independent of the glutamate binding 

site and is selective for mGlu7 compared with all other metabotropic and three ionotropic 

glutamate receptors at concentrations ≤10µM (Mitsukawa et al., 2005). 

5.2.1.1 Drug formulation 

AMN082 was obtained from Abcam Biochemicals (Cambridge, UK) and was dissolved in an 

8% solution of dimethylsulfoxide (DMSO; Sigma Aldrich, Poole UK) in sterile water. 
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5.2.2 Other materials 

5.2.2.1 Experimental materials 

Surgery and behavioural testing was carried out at King’s College London. The materials 

used have been described previously in Chapter 2. 

5.2.2.2 Analytical materials 

TH Immunohistochemistry: Tyrosine hydroxylase (TH) immunohistochemistry was carried 

out at King’s College London as described in section 2.2.3.2. 

HPLC for dopamine and its metabolites: High Performance Liquid Chromatography (HPLC) 

analysis of dopamine and its metabolites was carried out at Eli Lilly as described in section . 

LC-MS/MS analysis for PK study: Brain and plasma samples from the pharmacokinetic 

study were analysed Liquid Chromatography with tandem Mass Spectrometry (LC-MS/MS) 

by S. Sossick at Eli Lilly and Co. to determine the concentrations of AMN082 and its primary 

metabolite, Met-1. The compounds used to make the standards were obtained from Tocris 

(Bristol, UK) (AMN082) or made in-house at Lilly (Met-1), and were spiked into blank brain 

or plasma samples as appropriate. All other reagents were obtained from Sigma (Poole, UK; 

Trimipramine, ammonium acetate) or Fisher Scientific (Loughborough, UK; Acetonitrile, 

ACN; Formic acid, FA). 
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5.2.3 Neuroprotection study methods 

All procedures were performed in accordance with the U.K. Animals (Scientific Procedures) 

Act, 1986. 

A time-line for the AMN082 neuroprotection study is shown in Figure 63. 

 

 

Figure 63: Experimental protocol for AMN082 neuroprotection study. Rats were treated with 
AMN082 or vehicle (i.p.) one hour prior to lesioning of the SNc with 6-OHDA, and then daily after 
lesioning for a total of 7 injections. Behavioural testing was carried out at intervals during the 
treatment period, and after a 5-day wash-out period amphetamine-induced rotations were 
examined. 24 hours later, rats were killed by CO2 asphyxiation and their brains removed for analysis. 

 

5.2.3.1 Lesioning and treatment 

Male Sprague-Dawley rats (270-300g, Harlan, UK) were maintained in a temperature- and 

humidity-controlled environment with a 12-hour light-dark cycle and ad libitum access to 

chow and tap water. 

Following baseline behavioural measurements, rats were lesioned in the SNc as detailed in 

section 2.2.3.1. Briefly, rats were pre-treated with 5mg/kg pargyline and 25mg/kg 

desipramine (i.p.), then 30 minutes later received an infusion of 12µg 6-OHDA.HCl in 2.5µl 

0.2% ascorbate in 0.9% saline into the SNc at +3.7mm AP, +2.0mm ML and +2.2mm DV 

from the interaural line, or midline for ML co-ordinate (Figure 64). The toxin solution was 

infused at a rate of 1µl/min via a 25G needle, and as in previous studies, the needle was 

allowed to remain in place for a further 5 minutes following infusion to prevent reflux. 
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Figure 64: Co-ordinates for 6-OHDA infusion into the SNc during the AMN082 neuroprotection 
study. The black spot shows the location of the tip of the infusion needle. 

 

One hour prior to lesioning rats received their first dose of AMN082 (1, 5 or 10mg/kg i.p.) 

or vehicle (2ml/kg 8% DMSO), n=6 per group. Dosing continued daily at 16:00 for a further 

6 days post-lesion, alternating injections between the left and right sides of the peritoneal 

cavity to minimise local reactions or adhesion formation that may be associated with 

repeat injections (Smith et al., 1967). 

5.2.3.2 Assessment of lesion size 

Following the one-week dosing regimen, rats were given 6 days’ wash-out from 

AMN082/vehicle and then killed by CO2 asphyxiation and the brain removed. The striatum 

was dissected out on an ice-cold platform and snap frozen on dry ice for HPLC analysis, 

while a coronal block containing the midbrain was post-fixed for a minimum of 24 hours in 

10% buffered formalin before being processed and paraffin embedded for 

immunohistochemical analysis. 

Immunohistochemistry 

7µm coronal sections were cut throughout the substantia nigra and mounted in triplicate 

on SuperFrost Plus® slides. Slides were picked at 3 anteroposterior levels of the SNc: -

4.8mm, -5.3mm and -5.8mm from Bregma, giving a total of 9 sections per animal. Sections 

were stained for TH as described for Compound 11 and LuAF21934 in section 2.2.3.2. Slides 

were viewed using the Axioskop brightfield microscope (Zeiss, UK) and images captured at 

100x magnification using Axiovision release 4.6 software (Zeiss, UK). Cells were counted 
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using Image J software (developed by the NIH) and the number of remaining cells on the 

lesioned side expressed as a percentage of the intact side. 

Neurochemical analysis by HPLC 

Dissected striata were analysed at Eli Lilly and Co. using HPLC-ECD as detailed in section 

2.2.3.2. Concentrations of dopamine, DOPAC and HVA in the lesioned striatum are 

expressed as a percent of the concentration measured in the intact striatum. Dopamine 

turnover was calculated as (DOPAC+HVA)/DA for each side, and expressed as a percentage 

in the same way. 

5.2.3.3 Behavioural assessment 

Motor function 

Behavioural assessments were carried out at intervals during the treatment period. The 

same motor tests were carried out in this study as in the other neuroprotection studies 

reported in Chapter 2, in order to assess the functional outcome of the lesioning and 

treatment; the cylinder test, adjusted steps test and amphetamine-induced rotometry. 

Details of these tests can be found in section 2.2.3.3. All of these tests were performed a 

minimum of 18 hours after dosing, between 10:00 and 16:00, in order to avoid any acute 

pharmacological effects of AMN082 confounding the results. 

Open field test 

The open field test was performed as a measure of central activity of peripherally 

administered AMN082, due to the widely-reported anxiolytic effects of this drug. The open 

field test was carried out one hour after dosing on day 5 (17:00). The open field test can be 

used to assess several behaviours depending on the outcome measure. It is most often 

used as a measure of locomotion/mobility, by assessing the distance travelled by a rat in a 

given time alongside other features such as rearing (Basso et al., 1995; Walsh et al., 1976), 

however a variant on this has been designed to measure anxiety. The open field arena is 

subdivided into central and outer zones and rodent anxiety assessed by measuring the time 

spent in the centre or at the edge of the open field arena (Kuan et al., 2008; Liebsch et al., 

1998). As prey species, rodents generally like to remain close to edges and corners in 

contact with a wall where the risk of predation is minimised (a phenomenon known as 

thigmotaxis). An increased proportion of time spent in the outer/peripheral zone is 

therefore taken to denote anxiety (Liebsch et al., 1998) and an anxiolytic drug would be 

expected to increase the time spent by a rodent in the central zone (Gentsch et al., 1987). 
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This test was carried out using automated tracking software; Ethovision XT v.6 (TrackSys). 

Animals were not habituated to the arenas and no baseline testing was carried out, 

therefore the post-lesion open field test was completely novel. The open fields used were 

black low-density polyethylene circular arenas with 30cm high vertical sides. Each arena 

had a total diameter of 75cm, and the central zone was defined as the area within an 

18.75cm radius of the centre of the arena. One hour following treatment with AMN082 or 

vehicle, rats were placed in the centre of the arena to start. Automated video tracking 

equipment defined the central point of each rat and recorded the time spent in the central 

and peripheral zones of the arena in a testing period of 10 minutes. 

In addition to this outcome measure, defecation is also a validated measure of anxiety and 

is increased in anxious compared with non-anxious animals (Kolyaduke et al., 2013). The 

number of faecal pellets left was counted at the end of the testing period and compared 

between groups. 

5.2.3.4 Statistical analysis 

Normally distributed data are reported as mean ± s.e.m and are presented as bar charts or 

line graphs, where the bar height/plotted point represents the mean and the error bars 

represent the s.e.m. 

Nonparametric data are presented as median ± IQR and are presented as box and whisker 

plots, where the box represents the IQR, the line within the box represents the median and 

the whiskers represent the minimum and maximum values obtained. 

Statistical analysis was carried out using GraphPad Prism version 5. 

For TH-positive cell counts and percent dopamine, DOPAC, HVA and turnover, parametric 

data were analysed using a one-way ANOVA with a Dunnett’s post-hoc test. Within-group 

comparisons on parametric data were made using a t-test. Non-parametric data were 

analysed using a Kruskal-Wallis test with Dunn’s post-hoc test. Within-group comparisons 

on non-parametric data were made using a Mann-Whitney U test. 

Cylinder test data were compared using two-way repeated-measures ANOVA with 

Bonferroni post-hoc, for comparison between treatment groups and pre- and post-lesion 

performance. 
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Post-lesion performance as a percent of pre-lesion performance in the adjusted stepping 

test was compared using a one-way ANOVA with a Dunnett’s post-hoc (for comparison of 

all groups to the vehicle group). 

Data for total net ipsiversive turns over 90 minutes in the amphetamine-induced rotometry 

test were also analysed in using a one-way ANOVA with a Dunnett’s post-hoc. 

For the open field test, the time spent in the central zone was calculated as a percentage of 

the total time spent in the arena. This parameter was compared between groups using a 

one-way ANOVA with Dunnett’s post-hoc analysis. 

For all tests a result of P<0.05 was considered significant. 
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5.2.4 Pharmacokinetic testing of AMN082 

All procedures were performed in accordance with the U.K. Animals (Scientific Procedures) 

Act, 1986. 

5.2.4.1 Sample collection 

Male Sprague-Dawley rats (200-220g, Harlan, UK) were maintained in a temperature- and 

humidity-controlled environment with a 12-hour light-dark cycle and ad libitum access to 

chow and tap water. 

AMN082 was prepared on the day of testing as a 5mg/ml solution in 8% DMSO in sterile 

water. 20 rats received a single dose of 10mg/kg (i.p.) drug solution and were killed at 

specified times after dosing: 30 minutes (n=4), 1 hour (n=4), 3 hours (n=4), 6 hours (n=4) 

and 18 hours (n=4). A further group of rats received a single equivalent injection of vehicle 

(2ml/kg) and were killed after 30 minutes to provide a zero measure. 

At the end of the appropriate post-dose interval, rats were exposed to CO2 until cessation 

of breathing and a blood sample was then taken by cardiac puncture, transferred into a 

lithium-heparin-coated tube (Sarstedt) and kept on ice. When all four samples had been 

collected for a particular time point the blood samples were spun at 2000 x g for 10 

minutes at room temperature and the plasma removed and snap frozen on dry ice to await 

analysis. Immediately following cardiac puncture, rats were killed by cervical dislocation 

and the brain removed, weighed and snap-frozen on dry ice to await analysis. 

5.2.4.2 Analysis of AMN082 and Met-1 by LC-MS/MS 

Sample preparation 

Brain samples were prepared by addition of 4 volumes of ice-cold 90:10:0.1 ACN:H2O:FA 

followed by sonication using the Vibra-cell sonic disruptor (50% amplitude for 20 seconds). 

Plasma samples were prepared by taking 25l of plasma and adding 100l ice-cold 

90:10:0.1 ACN:H2O:FA. 

Both brain and plasma samples were then left to stand for 1 hour at 4°C, after which each 

tube was mixed and centrifuged at 20,000rpm for 15 minutes at 8oC. After centrifugation, 

10l of the supernatant was mixed with 90l of 10ng/ml trimiprimine (internal standard) in 

mobile phase (80:20 ACN:H2O + 10mM ammonium acetate, unadjusted pH ~7.8). Samples 

were mixed and loaded into a chilled autosampler (8oC) to await analysis by LC/MS/MS. 
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LC-MS/MS conditions 

Samples (10µl injection volume) were first separated using a 5µm particle size Hichrom Ace 

C18-300 75 x 2.1mm column with Javelin 2mm pre-filter. The flow rate was 300µl/minute 

and the mobile phase used was 80:20 ACN:H2O + 10mM ammonium acetate with an 

unadjusted pH of ~7.8. 

Samples were then electrospray ionised as they eluted the column and the molecules 

identified using an Applied Biosystems API4000 triple quadropole (MMSP606) mass 

spectrometer. 

An example of the chromatograms produced using this analytical method is shown in 

Figure 65, in this case showing the chromatogram of a spiked plasma standard. 

 

 

Figure 65: Example chromatogram following LC-MS/MS analysis of a blank plasma sample spiked 
with 200ng/g AMN082 and 200ng/g Met-1. The peak for the internal standard, trimipramine, is also 
clearly visible. 

 

LC/MS/MS data analysis 

Calibration curves were generated within Analyst software (v 1.4.2) from a set of AMN082 

and Met-1 standards (1-5000ng/g for brain samples; 4-8000ng/ml for plasma samples). 

Analyte concentrations in each sample were calculated from these standard curves; 
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samples which fell below the bottom standard were recorded as BLLQ (below the lower 

limit of quantification). 

5.2.4.3 PK data analysis 

The brain/plasma ratio for AMN082 was calculated by comparison of the corresponding 

areas under the curve (AUC) for the concentration time courses. AUC was calculated using 

the relevant macro in SigmaPlot (version 12.5). 

  



233 
 

5.3 Results 

5.3.1 Neuroprotection study 

5.3.1.1 General observations 

One rat in the 1mg/kg AMN082 group died following lesioning, leaving this group with n=5. 

For all other groups n=6. 

No adverse effects of acute or sub-chronic administration of 8% DMSO vehicle were noted, 

however in the group administered 10mg/kg AMN082 some rats were observed to develop 

a rigid/tremulous state within an hour of dosing, which resolved within ~3 hours of dosing. 

Since testing of parkinsonian behaviours was carried out a minimum of 18 hours post 

dosing this effect is not expected to have interfered with these measurements. However 

the open field testing for anxiety was performed one hour after dosing, when this effect 

was still present, meaning that it likely influenced the result of this test. 

5.3.1.2 AMN082 did not protect against nigrostriatal degeneration 

TH-positive cells in the SNc 

There was no significant difference between the cell counts at the three levels of the SNc 

(P=0.7921; one-way RM ANOVA with Bonferroni post-hoc) and therefore the results were 

pooled before analysis. 

SNc infusion of 6-OHDA caused severe loss of TH-positive cells in the SNc (Figure 66). 

Lesioned rats treated with vehicle had 115.0 ± 6.1 TH-positive cells in the intact SNc, with 

only 1.2 ± 4.7 remaining in the lesioned SNc, a reduction to 1.1 ± 4.2% of the intact side 

(P<0.0001; t-test). 

AMN082 did not protect against the degeneration of these cells at any of the doses tested, 

with <4% TH-positive cells remaining in the lesioned SNc at all doses tested (2.9 ± 2.3 in the 

1mg/kg-treated group, 3.5 ± 11.8% in the 5mg/kg-treated group and 3.3 ± 5.6% in the 

10mg/kg-treated group). There was no significant difference between any AMN082-treated 

group and the vehicle-treated group (P=0.5327; Kruskal-Wallis test with Dunn’s post-hoc). 
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Figure 66: TH-positive cells remaining in the intact and lesioned SNc of rats with a unilateral 6-
OHDA nigral lesion, following 7 days’ sub-chronic treatment with vehicle or AMN082. Treatment 
with increasing doses of AMN082 did not provide a significant degree of neuroprotection in the SNc. 
Representative TH-stained nigral sections are shown in panel (a) and the number of surviving cells in 
the lesioned SNc as a % intact SNc is shown in graph (b). Data are presented as median ± IQR (n = 5-6 
per group). 
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Striatal dopamine content 

The striatal concentrations of dopamine and its metabolites are shown in Table 12 

 

Table 12: Striatal concentrations of dopamine and its metabolites in the intact and lesioned 
striatum following a 6-OHDA nigral lesion and treatment with vehicle or AMN082. Data reported 
are median concentrations in ng/g (n = 5-6) **P<0.01 (Mann-Whitney U test versus intact). 

 Dopamine (DA) DOPAC HVA 

 Intact Lesioned Intact Lesioned Intact Lesioned 

Vehicle  15040 6.04** 1874 277.29** 613 2.11** 

1 mg/kg 

AMN082 
13290 78.18** 2048 283.58** 903 38.12** 

5 mg/kg 

AMN082 
13134 316.65** 1978 352.87** 652 55.38** 

10 mg/kg 

AMN082 
13601 170.48** 1834 408.55** 667 39.74** 

 

 

6-OHDA lesioning caused degeneration of the dopaminergic nerve terminals in the 

striatum, such that vehicle-treated animals with an intact striatal dopamine content of 

15040 ± 2362ng/g retained only 6.0 ± 23ng/g in the lesioned striatum; 0.04 ± 0.11% of 

normal (Figure 67; P=0.0079; Mann-Whitney U test). DOPAC and HVA were similarly 

reduced (Figure 68a and Figure 68b), to only 14.78 ± 1.63% and 3.21 ± 2.41% of their 

respective concentrations in the intact striatum (both P<0.0001; t-tests). 
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Figure 67: Striatal dopamine concentration following a unilateral nigral 6-OHDA lesion (lesioned 
striatum as a percent of intact striatum) and 7 days of sub-chronic treatment with AMN082 or 
vehicle. Treatment with AMN082 did not significantly preserve dopamine content in the lesioned 
striatum compared with vehicle. Data are presented as median ± IQR (n = 5-6 per group). 

 

AMN082 did not significantly protect against loss of striatal dopamine content (P=0.2092; 

Kruskal-Wallis test with Dunn’s post-hoc), with only 0.5 ± 2.2% remaining in the 1mg/kg-

treated group, 2.37 ± 16.83% in the 5mg/kg-treated group and 1.24 ± 4.27% remaining in 

the 10mg/kg-treated group. Similarly there was no significant preservation of DOPAC 

(P=0.5504; one-way ANOVA with Dunnett’s post-hoc) or HVA (P=0.3862; one-way ANOVA 

with Dunnett’s post-hoc) in any treated group compared with vehicle. 

 

 

Figure 68: Striatal dopamine metabolite concentration following a unilateral nigral 6-OHDA lesion 
(lesioned striatum as a percent of intact striatum) and 7 days of sub-chronic treatment with 
AMN082 or vehicle. Treatment with AMN082 did not significantly preserve either DOPAC (a) or HVA 
(b) content in the lesioned striatum compared with vehicle. Data are presented as mean ± s.e.m. (n = 
5-6 per group). 
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6-OHDA lesioning caused a large increase in dopamine turnover in vehicle-treated animals, 

which was increased to 41 ± 18 in the lesioned striatum compared with 0.17 ± 0.01 in the 

intact striatum. This is an increase to 22388 ± 9056% of the intact turnover rate, though 

this effect narrowly failed to reach significance due to variability within the group 

(P=0.0509; t-test). When the turnover rates were compared between vehicle- and 

AMN082-treated rats there was no significant effect of the drug on the dopamine turnover 

rate in the lesioned striatum (P=0.2413; Kruskal-Wallis test). 

5.3.1.3 AMN082 did not show consistent preservation of functional outcomes 

Cylinder test 

All groups showed no overall bias in forelimb use in the cylinder test pre-lesion (Figure 

69a), using each forelimb for ~50% of touches. 

When tested on day 6 post-lesion, vehicle-treated rats had significantly decreased use of 

the contralateral forelimb post-lesion, where it was involved in only 1.7 ± 1.0% touches, 

compared with a baseline of 47.7 ± 1.9% touches (P<0.0001; two-way RM ANOVA with 

Bonferroni post-hoc). 

AMN082-treated rats displayed a dose-dependent bell-shaped increase in use of the 

contralateral forelimb post-lesion (Figure 69b), with 11.3 ± 4.5% use in the 1mg/kg group, 

20.6 ± 5.7% use in the 5mg/kg group and 2.7 ± 1.4% use in the 10mg/kg group. Statistical 

analysis revealed that there was a significant overall effect of both lesion (P<0.0001) and 

treatment group (P=0.0114) on the use of the contralateral forelimb in the cylinder test, 

with post-hoc analysis revealing a significant effect of treatment with 5mg/kg AMN082 

(P<0.001; two-way RM ANOVA with Bonferroni post-hoc). This functional preservation was 

only partial and therefore still represented a significant decrease compared with pre-lesion 

use in this group (P=0.0021; two-way RM ANOVA with Bonferroni post-hoc ). 
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Figure 69: Cylinder test results in rats with a unilateral nigral 6-OHDA lesion following 6 days of 
sub-chronic treatment with AMN082 or vehicle. Pre-lesion (a) all groups showed the expected 
~50% use of each of the ipsilateral and contralateral paws. Post-lesion (b) all groups showed a clear 
bias towards use of the ipsilateral (healthy) paw. Treatment with AMN082 at 5 mg/kg significantly 
increased use of the contralateral paw post-lesion compared with the vehicle treated group. Data 
are presented as mean ± s.e.m. (n = 5/6 per group). The dashed lines show the expected unbiased 
performance for each forelimb in unimpaired rats ***P<0.0001 (one-way ANOVA with Dunnett’s 
post-hoc).  

 

 

Adjusted steps test 

Similarly to the cylinder test, vehicle-treated animals showed a deficit in contralateral 

stepping in both the forward direction (68.0 ± 5.3% of baseline, P=0.0022; paired t-test on 

no. of steps) and the reverse direction (81.5 ± 5.1% baseline, P=0.0136; paired t-test on no. 

of steps) when tested on day 6 post-lesion. 
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Unlike in the cylinder test, there was no significant effect of treatment with AMN082 in the 

adjusted steps test (Figure 70). Contralateral forward-stepping was reduced to 69.7 ± 9.5% 

of baseline in the 1mg/kg group, 67.2 ± 5.1% of baseline in the 5mg/kg group and 71.8 ± 

5.0% in the 10mg/kg group (P=0.9519; one-way ANOVA with Dunnett’s post-hoc). 

Contralateral reverse-stepping was reduced to 78.3 ± 2.1% baseline in the 1mg/kg group, 

78.3 ± 4.1% in the 5mg/kg group and 83.2 ± 2.1% in the 10mg/kg group (P=0.7273; one-way 

ANOVA with Dunnett’s post-hoc). 

 

 

Figure 70: Adjusted steps test following 6 days of sub-chronic treatment with AMN082 or vehicle. 
Stepping with the ipsilateral paw was unaffected by the lesion in all groups, as expected. Stepping 
with the contralateral paw was impaired post-lesion, but the degree of deficit was not affected by 
treatment with AMN082. Fwd = forward stepping; Rev = reverse stepping; Ipsi = ipsilateral paw; 
Contra = contralateral paw. Data are presented as mean ± s.e.m. (n = 5-6 per group). The dashed line 
shows the expected unimpaired performance of 100% baseline performance. 

 

Stepping with the ipsilateral paw was unaffected in either direction in the vehicle-treated 

group, as would be expected for a unilateral lesion (P>0.3330; paired t-tests on no. of 

steps). There was no effect of treatment on ipsilateral stepping in either the forward 

(P=0.2071; one-way ANOVA with Dunnett’s post-hoc) or reverse (P=0.0596; one-way 

ANOVA with Dunnett’s post-hoc) directions. 

Amphetamine-induced rotational asymmetry 

6-OHDA-lesioned rats treated with vehicle showed the expected ipsiversive turning in 

response to 2.5 mg/kg amphetamine when tested on day 12 post-lesion (5 days after the 

final vehicle [or AMN082] dose), with a total of 327 ± 69 turns over 90 minutes (Figure 71). 
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Figure 71: Amphetamine-induced rotations in rats with a unilateral nigral 6-OHDA lesion following 
7 days of sub-chronic treatment with AMN082 or vehicle and 5 days of wash-out. The 120-minute 
time course of ipsiversive rotational response is shown in (a). The total net ipsiversive rotations are 
shown in (b). AMN082 treatment did not significantly reduce amphetamine-induced ipsiversive 
rotations. Data are presented as mean ± s.e.m. (n = 5-6 per group). 

 

The three groups treated with AMN082 also showed net ipsiversive turning in this test, 

with 391 ± 152 in 1mg/kg-treated rats, 192 ± 85 in 5mg/kg-treated rats and 322 ± 84 in 

10mg/kg-treated rats (Figure 71b). Despite an approximate 40% reduction in net ipsiversive 

turns in the 5mg/kg group compared with vehicle there was a lot of variability within all 

groups, therefore there was no significant effect of AMN082 on amphetamine-induced 

rotational asymmetry (P=0.5502; one-way ANOVA with Dunnett’s post-hoc). 

Open field test 

For this test the rats were placed in the centre of the open field to start the test. This 

means that rats that did not move at all would score highly for % time spent in the central 

zone even though this could have been caused by factors other than an anxiolytic effect of 
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the drug, such as a sedative effect. There was one rat in the 5mg/kg AMN082 group and 

two rats in the 10mg/kg AMN082 group that did not move during the test, remaining 

exactly where they were placed, and therefore these rats were excluded from the analysis. 

This left n=6 for vehicle rats, n=5 for 1mg/kg AMN082 and 5mg/kg AMN082 and n=4 for 

10mg/kg AMN082. 

Vehicle-treated rats spent an average of 9.8 ± 2.8% of the total time in the central zone, 

demonstrating a clear preference for the outer zone close to the walls (Figure 72). 

 

 

Figure 72: Time spent in the central zone of the open field following 5 days of treatment with 
AMN082 or vehicle (tested one hour post-dose). AMN082 did not significantly affect the percent of 
the testing time that was spent by rats in the central zone of the arena. Data are presented as mean 
± s.e.m. (n = 5-6 per group). 

 

AMN082 treated rats showed a bell-shaped dose-dependency regarding time spent in the 

central zone, which increased at 1mg/kg (14.4 ± 2.5% time in central zone), peaked at 

5mg/kg (28.2 ± 13.6% time in central zone) and was lost at 10mg/kg (7.5 ± 3.0% time in 

central zone). This might suggest an anxiolytic effect of treatment with AMN082, however 

this effect was not significant (P=0.2242; one-way ANOVA with Dunnett’s post-hoc). 

The second measure of anxiety assessed was defecation during the open field testing 

period. However since the median number of faecal pellets produced in each group was 0-

0.5 these data were not considered further. 
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5.3.2 Pharmacokinetic study 

The pharmacokinetic study demonstrated that AMN082 is brain penetrant when 

administered intraperitoneally in 8% DMSO vehicle (Figure 73). Following a 10mg/kg dose, 

the brain Cmax was 386.5ng/g (0.5h) and the brain t1/2 was ~2.7 h. Plasma concentrations 

were also calculated, where the plasma Cmax was 101.8ng/ml (1h) and the plasma t1/2 was 

~2.0 h. 

The overall brain/plasma ratio, calculated from the AUC, was 4.76. 

 

 

Figure 73: Brain and plasma AMN082 pharmacokinetic time course in naive rats. 10mg/kg AMN082 
was administered i.p., and brain and blood samples collected at intervals. Data are presented as 
mean ± s.e.m. (n=4 per time point). 

 

The concentration of Met-1, the primary metabolite of AMN082, was also measured 

(Figure 74). Met-1 was not detected in any of the plasma samples, but it was detected in 

brain samples. Interestingly, when shown alongside AMN082 for comparison, it is clear that 

the brain Met-1 levels did not change in line with those of AMN082, rather displaying a 

consistently low concentration of between 17.23ng/g and 32.95ng/g over the 18-hour time 

course, with the Cmax occurring 6 hours after dosing.  
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Figure 74: Brain concentrations of AMN082 and its primary metabolite Met-1 following 10mg/kg 
i.p. AMN082 in naive rats. Data are presented as mean ± s.e.m. (n=4 per time point). 

 

Neither AMN082 nor Met-1 was detected in brain or plasma samples from vehicle-dosed 

rats (sample concentrations all BLLQ, data not shown). 
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5.4 Discussion 

The purpose of these studies was to (1) test for a neuroprotective effect of subchronic 

once-daily administration of AMN082 in a rat model of PD following a 6-OHDA lesion of the 

SNc and (2) determine whether or not AMN082 was able to cross the BBB in rats following 

an intraperitoneal injection in 8% DMSO vehicle. 

5.4.1 Central effects of AMN082 

In an attempt to confirm a centrally-mediated effect of AMN082, an additional behavioural 

test was performed during the neuroprotection study itself. Given that AMN082 has widely 

been reported in the literature to exert anxiolytic effects in the dosing range used in the 

neuroprotection study, a simple measure of anxiety was undertaken 5 days post-lesion, 

one hour after dosing with AMN082 or vehicle. A variant of the open field test was 

employed to compare the time spent in the central (anxiety-inducing) vs. peripheral (safer, 

less anxiety-inducing) zones of a circular arena. 

The open field test as performed in this study did not adequately define an anxiolytic effect 

of AMN082. One rat from the 5mg/kg group and two rats from the 10mg/kg group had to 

be excluded from the analysis due to the clear interference of drug-related side effects 

such as tremors and akinesia with aspects of mobility, thus affecting the movement of the 

rat between the central and peripheral zones. This not only left small group sizes but it is 

also possible that some of the rats that weren’t excluded were under the influence of a less 

noticeable degree of these side effects and their borderline results could therefore have 

skewed the outcomes. Side effects such as these have been reported elsewhere following 

systemic doses of AMN082 exceeding 30mg/kg in rats or 10mg/kg in mice (Bahi et al., 

2011; Palucha et al., 2007). These effects are seemingly mGlu7-independent and are 

thought to be related to off-target effects of AMN082, especially given its reported affinity 

for monoaminergic transporters (Sukoff Rizzo et al., 2011). This is explored in more detail 

below. 

The anxiolytic test itself is also of questionable validity; for example it has been suggested 

that it may measure only a natural anxiety related to a novel situation rather than 

pathological anxiety (Prut et al., 2003). In addition its predictive validity regarding known 

anti-depressant and anxiolytic compounds is doubtful, only showing effects for full agonists 

at 5-HT1A or benzodiazepine receptors  (Prut et al., 2003), for example citalopram failed to 

increase time spent by rats in the central zone (Kuan et al., 2008). Overall, while the 

reasoning behind the inclusion of this test was sound, the presence of unexpected acute 
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side effects of AMN082 meant that the results were not clear-cut enough to serve as proof 

of obtaining a central pharmacological action of AMN082, and therefore do not assist in 

interpretation of the neuroprotection study. 

5.4.2 Neuroprotection study 

Contrary to our hypothesis, the neuroprotection study did not provide any evidence for a 

protective effect of AMN082 at either the level of dopaminergic cell bodies in the SNc, or 

the level of their terminals at the striatum, using this study design. This is despite the 

neuroprotective effects that have recently been reported for AMN082 in neuroblastoma 

cell cultures against MPP+-induced toxicity, an effect believed to reflect a reduction of both 

apoptosis and necrosis (Jantas et al., 2014). However the protection elicited in vitro was 

lost following retinoic acid (RA)-induced differentiation of the cultured cells into a 

dopaminergic phenotype, suggesting that cells with a dopaminergic phenotype are not 

protected against MPP+-mediated neurodegeneration. It would be interesting to test if 

AMN082 was protective in vitro against 6-OHDA in both undifferentiated and RA-

differentiated cultures of this cell type. 

Functionally, the results of the adjusted steps test and amphetamine-induced rotometry 

supported this lack of a protective effect, however there was a significant increase in use of 

the contralateral paw in the cylinder test in rats treated with 5mg/kg AMN082 compared 

with vehicle. This finding cannot be explained by any short-term pharmacological effect of 

AMN082 or Met-1 since the test was performed >18 hours after dosing when 

concentrations of both were almost back to baseline. However, the predictive validity of 

the cylinder test for lesion size is uncertain. Though a highly significant positive correlation 

between limb use asymmetry and striatal dopamine depletion has been reported in this 

test (Iancu et al., 2005; Schallert et al., 2000a) there is still a large variability in response, 

with 0-55% use of the contralateral forelimb reported in rats with >95% TH-positive cell 

loss (Iancu et al., 2005). From personal experience in other experiments (e.g. AIMs 

induction study, section 6.3.5.1) I have seen up to 30% use of the contralateral forelimb in 

rats with >98% TH-positive cell loss in the lesioned SNc. This is consistent with results 

obtained in the cylinder test in 6-OHDA-lesioned mice, where no difference in performance 

was observed between mice with an intermediate (80% striatal TH loss) and a severe lesion 

(94% striatal TH loss) (Grealish et al., 2010). Therefore it is possible that the significant 

effect of AMN082 seen here in the cylinder test was a false positive association arising from 

the variability associated with equivalent lesions in this test. 
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5.4.3 Neuroprotection study: general considerations 

Despite the relatively small group sizes of n = 5-6, this should be sufficient to detect 

neuroprotection at the SNc and striatal levels with 90% power based on previous 

neuroprotection studies in this model (Betts et al., 2012). However there are several 

caveats to this neuroprotection study that warrant consideration. 

Firstly, the compound was only dosed once per day. While once-daily dosing has proven an 

effective treatment regimen for other compounds tested in this model via direct 

intracerebral injection (notably the mGlu4 PAM VU0155041, see section 2.3.2 and Betts et 

al. 2012) we discovered from the PK profile of AMN082 that was carried out subsequent to 

the neuroprotection study that the drug had all but disappeared from the brain and plasma 

by 6 hours, with a half life in the brain of ~2.7 hours. Although the concentration of 

AMN082 was almost at maximal levels in the brain at the time of lesioning, it could be the 

case that the short duration (resulting either from rapid metabolism or receptor 

internalisation) and intermittent activation of mGlu7 was insufficient to elicit 

neuroprotection. This might particularly be the case for a lesion as rapid and severe as that 

following intranigral infusion of 6-OHDA, as was used in this study. Possible ways around 

these problems could be to repeat the study using a partial lesion model, such as striatal 

infusion of 6-OHDA, and/or by enhancing duration of exposure to AMN082, either by more 

frequent injections or by continuous infusion of the drug via a mini-pump. Enhanced 

frequency of exposure would likely require that the drug be delivered in a different vehicle 

as DMSO can cause local irritation and, at higher doses, systemic toxicity. 

Finally, AMN082 is reported to have a rich pharmacology (explored in more detail below) 

that is in contrast to its proposed use as an mGlu7-specific allosteric agonist (Sukoff Rizzo et 

al., 2011). This includes appreciable affinities for the norepinephrine transporter (NET; Ki 

~1300nM) and serotonin transporter (SERT; Ki ~3000nM), which may explain its reported 

efficacy as an anti-depressant or anxiolytic compound. It could not only underlie some of 

the acute side effects noted at higher doses but may also have had unanticipated 

modulatory effects on signalling in the BG that might have interfered with the intended 

action of AMN082 on glutamate release at the subthalamonigral synapse. 

5.4.4 Pharmacokinetics of AMN082 

When no neuroprotective effect was observed in the main study and the proposed 

measure of central pharmacological action of AMN082 – the open field test for anxiety – 
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proved inconclusive we wanted to definitively demonstrate that AMN082 was able to cross 

the BBB using the dosing formulation and route employed. 

The pharmacokinetic study confirmed that AMN082 was brain penetrant when 

administered as an intraperitoneal injection in 8% DMSO. The brain Cmax of 386.5ng/g (tmax 

= 1h) achieved following a dose of 10mg/kg i.p. AMN082 in rats is comparable to previous 

PK data following 10mg/kg AMN082 i.p. in mice (Sukoff Rizzo et al., 2011), which reported 

a brain Cmax of ~340ng/g (tmax = 0.5h). On the other hand the plasma Cmax in the current 

study was only 101.8ng/ml (tmax = 0.5h), compared with ~430ng/ml (tmax = 0.5h) in the 

mouse study. This led to a calculated brain/plasma ratio of around 4.8 in rat compared with 

around 1.0 in mice, suggesting that AMN082 freely crosses the BBB in both species, but 

possibly accumulates in the brain tissue in rats. 

The brain Cmax measured in this study was equivalent to 984.8nM, which exceeds the EC50 

value of AMN082 at mGlu7 (260nM) and is close to the reported affinity of AMN082 at 

other targets such as α1-Adrenoreceptor (Ki ~1000nM) and NET (Ki ~1300nM). While this 

implies that mGlu7 receptor stimulation would have been achieved with this highest dose, 

stimulation of mGlu7 by AMN082 concentrations ≥500nM has been associated with robust 

receptor internalisation in in vitro studies (Pelkey et al., 2007), meaning that this effect may 

have been self-limiting, and as such a bell-shaped dose response curve would be 

anticipated. The plasma Cmax measured in this study was equivalent to 259.4nM, which is 

within the range where it is specific for the mGlu7 receptor according to the panel of 

receptors tested by Sukoff-Rizzo et al. (2011) and Mitsukawa et al. (2005). 

This difference in brain/plasma ratio could be a simple species difference relating to factors 

such as enhanced protein binding of AMN082 in rat brain compared with mouse brain, 

however this is unlikely between two such closely-related species and in fact brain tissue 

binding in rat has been shown to correlate with other rodents, dogs, monkeys and even 

humans  (Di et al., 2011). There are also several technical reasons that could also possibly 

account for this discrepancy. The vehicle used for dosing in the present rat study was 8% 

DMSO in distilled water, compared with 10% Tween-80 in distilled water for the mouse 

study. DMSO is an amphiphilic molecule, allowing it to solubilise relatively insoluble 

lipophilic/hydrophobic compounds (such as AMN082) while also being soluble in water. It is 

widely used in biomedical research, particularly in vitro, but can also be used in vivo to aid 

passage of molecules across the blood-brain barrier (BBB). Though AMN082 is lipophilic 

and should therefore pass easily across cell membranes and into the brain, use of DMSO as 
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a vehicle could have aided this process, leading to a higher accumulation of AMN082 in the 

brain in the present study compared with the mouse study. Alternatively one or more of 

the steps involved in the collection and processing of blood samples or the preparation of 

plasma samples for analysis could have accelerated degradation of AMN082 in these 

samples, while leaving the brain samples unaffected. In future studies it might be possible 

to spike a known concentration of a standard compound with similar properties to the drug 

being tested into plasma samples (blanks and/or experimental). Any degradation of this 

internal standard compound might be expected to reflect degradation of the drug being 

analysed and therefore any enhanced degradation could be accounted for in future 

calculations, 

In addition to measuring the concentration of AMN082, the concentration of its primary 

metabolite, Met-1, was also measured in the collected plasma and brain samples. Met-1 

was reported by Sukoff-Rizzo et al. to have pharmacological activity at mGlu7 (EC50 

~6000nM, over 20-fold less potent than AMN082 itself) and a wide variety of other targets, 

especially the monoaminergic transporters DAT, NET and SERT (Ki ~3000, ~3000 and 

~300nM respectively). In contrast to the results reported in mice, where Met-1 was 

detected in plasma at Cmax 494ng/ml 30 minutes after dosing with 10mg/kg AMN082, Met-

1 was not detected in the present plasma samples at any time, potentially reflecting 

genuinely low levels, or alternatively reflecting sample degradation as was raised as a 

possibility for the lower than expected concentrations of AMN082 in these plasma samples. 

More importantly from the point of view of the present neuroprotection study, only very 

low concentrations of Met-1 were detected in brain homogenates (Cmax = 32ng/g at 6 

hours, equivalent to 141.4nM – around two-fold lower than its most potent reported 

affinity at SERT, EC50 = ~300nM), equating to around half the brain concentration of 

AMN082 at this time-point and less than 10% of the brain Cmax for AMN082. This is in direct 

contrast to the brain Met-1 concentration following AMN082 administration in mice, where 

even as plasma Met-1 concentrations were diminishing the brain Met-1 concentrations 

increased over the duration of the 5-hour study, reaching a maximum concentration of 

897ng/g (3963.8nM, which is above the Ki reported for this molecule at mGlu7, SERT, DAT 

and NET). This implies that unlike in mice, any pharmacological effect of Met-1 would be 

expected to be minimal compared with that of AMN082 in the present rat neuroprotection 

study. 
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One of the main caveats of the PK study was that although brain penetrance was measured 

by a simple brain/plasma ratio calculation there was no measurement of the free fraction 

of drug in the brain. This might be especially important given that the brain/plasma ratio 

for AMN082 was high in rat, as accumulation of a drug in the brain can imply a high degree 

of binding to brain tissue (Reichel, 2006). Only unbound drug (not conjugated with 

proteins) will be free to interact with its targets, but both bound and unbound drug will be 

detected using the protocol employed here. In future PK studies the free drug 

concentration in the brain could be determined using microdialysis, or estimated by 

sampling of CSF rather than whole brain, in order to get a better idea of the bioavailability 

of AMN082. The side effects experienced following dosing of 10mg/kg AMN082 (tremors, 

rigidity) certainly demonstrate that free brain concentrations of AMN082 were adequate to 

elicit a pharmacological effect. These side effects are thought to be mGlu7-independent as 

they are still present in mice where the receptor has been knocked out (Palucha et al., 

2007), so are likely explained by off-target activity. The receptor/transporter at which 

AMN082 shows its next highest binding affinities after mGlu7 are α1-adrenoreceptor and 

NET (Ki ~1000nM at each). Though the brain Cmax, even if it was all unbound, did not exceed 

this concentration, noradrenergic signalling is known to alter BG output; for example 

noradrenaline can alter signalling in the SNr (Berretta et al., 2000) and depletion of central 

noradrenaline (and other monoamines) underlies the akinetic and tremulous phenotype of 

the reserpine model of PD (Glow, 1959). Since a rigid, akinetic parkinsonian phenotype was 

the exact side effect noted in this study it is therefore conceivable that a sufficient fraction 

of the drug was unbound in the brain to enable meaningful interaction of AMN082 with 

these targets. 
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5.5 Conclusion 

The results of the PK study demonstrate that AMN082 crosses the BBB into the brain 

following an intraperitoneal injection, possibly accumulating in the brain, with a reasonably 

short half life of ~2.7 hours. The observation of side effects at higher doses also suggests 

that AMN082 was centrally active, though this was not shown conclusively due to the 

interference of these side effects in the test that was designed to test this. 

During the neuroprotection study the brain concentration of AMN082 was expected to be 

near-maximal at the time of infusion of 6-OHDA, giving the greatest opportunity for the 

drug to act at this pivotal moment, however the results of the study do not provide 

evidence for targeting mGlu7 as a means of achieving neuroprotection in PD. On the other 

hand, due to the severity of the lesion model used in this study, the pulsatile exposure to 

AMN082 and the potential off-target effects of AMN082 that may have confounded the 

results, a potential role for mGlu7 in providing neuroprotection in this disease cannot yet be 

ruled out. 

The discovery of mGlu7 antagonists such as MMPIP (Suzuki et al., 2007) may help elucidate 

the importance of mGlu7 by establishing whether these antagonists are able to counteract 

the well-established protective effects brought about by broad spectrum group III agonists 

such as L-AP4 and L-SOP in vivo (Austin et al., 2010; Vernon et al., 2005; Vernon et al., 

2006). However this may not be easy since both of these group III agonists have a very low 

potency at mGlu7 compared with mGlu4 and mGlu8 and would need to be applied at high 

concentrations that would likely cause desensitisation of the other group III receptors. 

Therefore new subtype-specific pharmacological activators of mGlu7 would certainly be of 

use in continuing these investigations. 
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6 Targeting mGlu4 as a potential antidyskinetic approach in a 

rat model of levodopa-induced dyskinesia 

6.1 Introduction 

Levodopa-induced dyskinesia (LID) was introduced in section 1.5.1 and is a major limiting 

factor in the use of levodopa to treat Parkinson’s disease. The combination of severe 

dopaminergic denervation and pulsatile exposure to levodopa is believed to underlie the 

development of this phenomenon in patients, and as such LID can be modelled preclinically 

by recapitulating these aspects in rodents or primates. 

6.1.1 Preclinical modelling of LID 

The main dopaminergic cell loss models used for evaluation of dyskinesia are the 6-

hydroxydopamine lesioned hemiparkinsonian rodent and the MPTP-treated non-human 

primate (NHP). Repeated exposure of these denervated animals for two or more weeks to 

daily levodopa plus a peripheral DOPA decarboxylase inhibitor such as benserazide or 

carbidopa leads to development of abnormal involuntary movements (AIMs), which can be 

scored according to a variety of ratings scales (Breger et al., 2013; Fox et al., 2012). In the 

rodent these AIMs manifest unilaterally as axial (twisting of the head, neck and trunk), limb 

(repetitive or dystonic movements involving the forepaw and/or limb) and orolingual 

(vacuous chewing, tongue protrusion) phenomena on the side of the body contralateral to 

the lesion (Cenci et al., 1998; Henry et al., 1998). In NHPs LID is bilaterally expressed and 

manifests as choreic and dystonic movements of the limbs, especially the lower limbs, and 

flicking of the fingers, trunk dystonias and repetitive tongue protrusion (Clarke et al., 1987; 

Pearce et al., 1995).  

The NHP model more accurately reflects the human expression of dyskinesia but ethical 

and practical considerations mean that the rat model is a valuable tool for preclinical 

research. The rat AIMs model has good face validity as a model of LID, but more 

importantly the predictive validity of the model is also thought to be good, with 

compounds with known antidyskinetic efficacy in humans and primates also able to reduce 

AIMs expression in rodents (Dekundy et al., 2007). With regard to construct validity, 

research suggests that several mechanisms underlying the development of LID and AIMs in 

these models may also be applicable to the human condition. These mechanisms are 

explored below. 
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6.1.2 Striatal mechanisms underlying dyskinesia 

The role of dopamine in the striatum is to alter the response of medium spiny neurones 

(MSNs) in both the direct and indirect pathways to corticostriatal input. The classical model 

of PD involves hyperactivation of the indirect (striatopallidal) MSNs, causing a downstream 

inhibition of thalamocortical feedback and therefore inhibiting motor function. The classical 

model of LID is the opposite scenario, whereby the presence of high concentrations of 

exogenous dopamine causes hyperactivation of the direct (striatonigral) MSNs, which 

increases thalamocortical feedback and produces exaggerated motor function. Dyskinesia 

is therefore believed to primarily involve chronic overactivation of striatonigral MSNs 

(Brotchie, 2005; Santini et al., 2008) and there is a wealth of evidence for a particular role 

of dopamine D1 receptors (D1R) in the development of LID in both patients and preclinical 

models (Fiorentini et al., 2013; Guigoni et al., 2007; Konradi et al., 2004; Mela et al., 2012). 

However this is likely a simplistic view of dyskinesia. In reality the mechanisms involved 

may be considerably more complex (Jenner, 2008) and a role for the indirect pathway 

cannot be ruled out, especially as both D1R and D2R agonists can provoke dyskinesia in 

primed monkeys (Blanchet et al., 1993). In addition there is recent evidence that abnormal 

expression of the D3R in the striatum may also play an important role in the development 

and expression of dyskinesia (Bézard et al., 2003; Cote et al., 2014; Visanji et al., 2009), 

further implicating the indirect pathway. 

The striatonigral GABAergic projection is a point of convergence for, and is therefore 

modulated by, multiple neurotransmitter systems that have been shown to be 

pathologically altered in dyskinetic individuals. The major input to the BG involves release 

of glutamate from corticostriatal neurones, and together with dopamine and the 

modulatory activity of other neurotransmitters such as serotonin, this determines the 

activity of the output nuclei: the globus pallidus internus (GPi) and substantia nigra pars 

reticulata (SNr). There is evidence from animal models that this corticostriatal glutamate 

release is increased in LID (Nevalainen et al., 2013; Robelet et al., 2004), alongside 

alterations in expression (Hallett et al., 2005; Konradi et al., 2004; Ouattara et al., 2011; 

Ouattara et al., 2010; Samadi et al., 2008), phosphorylation (Ba et al., 2011; Kong et al., 

2009; Oh et al., 1998) and distribution (Gardoni et al., 2006; Silverdale et al., 2010) of 

glutamate receptors, including GluN1/GluN2B NMDA receptors and metabotropic 

glutamate receptor 5 (mGlu5), that facilitate increased signalling across this synapse. 

Morphological alterations indicative of increased glutamatergic transmission are also 

present, including decreased dendritic spine density and increased spine size in MSNs of 
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the direct pathway (Nishijima et al., 2013). This is borne out in human LID, where abnormal 

glutamatergic transmission has been described in the caudate, putamen and motor cortex 

(Ahmed et al., 2011), alongside increased putaminal expression of GluN1/GluN2B NMDA 

receptors (Calon et al., 2003) and mGlu5 (Ouattara et al., 2011). Activation of extrasynaptic 

GluN2B-containing NMDA receptors has particularly been implicated in the development of 

LID (Gardoni et al., 2006). 

The effect of this abnormal glutamatergic transmission may be compounded by the 

consequences of dysregulated release of dopamine from serotonergic terminals within the 

striatum (Santiago et al., 1998), leading to abnormal temporal activation of dopamine 

receptors. These receptors are expressed on striatonigral MSNs as well as in cortical 

dopaminergic systems, which have also been implicated in the pathophysiology of 

dyskinesia (Halje et al., 2012). There are some reports of altered D1R expression or 

trafficking in LID (Guigoni et al., 2007; Hurley et al., 2001), but evidence suggests that the 

key mechanism in dyskinesia is increased functional sensitivity of these receptors (Aubert 

et al., 2005; Bezard et al., 2005; Corvol et al., 2004). 

Whatever the exact mechanism behind increased D1R signalling, stimulation of these 

receptors causes activation of the cyclic AMP (cAMP) / Protein Kinase A (PKA) / DARPP-32 

(Dopamine- and cAMP-Regulated Phosphoprotein, 32KDa) / Protein phosphatase 1 (PP-1) 

pathway and the mitogen activated protein kinase (MAPK) pathway, which culminates in 

phosphorylation of extracellular signal related kinase (ERK1/2) (Neve et al., 2004). This 

results in DNA modifications (Nicholas et al., 2008; Santini et al., 2009) and increased 

expression of transcription factors, especially ΔFosB/FosB (Andersson et al., 2001), which 

are indicative of long-term cellular adaptations. 

Both NMDA and mGlu5 receptors are known to closely interact with D1R (Oh et al., 1998; 

Oh et al., 1999) and with each other (Conn et al., 2005; Fiorentini et al., 2008), activating 

common downstream mediators such as PKA and ERK1/2 (Tang et al., 2000; Voulalas et al., 

2005). Therefore the increased expression of these receptors alongside enhanced D1R 

signalling will co-operate to augment striatonigral signalling in LID. In addition, activation of 

D1R in combination with enhanced activation of NMDA receptors by glutamate leads to 

long term potentiation-like phenomena, and may explain the lack of depotentiation seen in 

the dyskinetic versus non-dyskinetic denervated striatum (Picconi et al., 2003), leading to 

an exaggerated response to normally irrelevant stimuli. The pathological overactivation of 

the direct pathway leads to GABA bursting in the SNr and GPi (Mela et al., 2012), thus 
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disinhibiting thalamocortical feedback and leading to the hyperkinetic movements 

characteristic of LID. 

Striatal glutamatergic and dopaminergic transmission can be modulated by several other 

neurotransmitters. For example, increased serotonergic innervation of the striatum along 

with altered expression of several 5-HT receptor subtypes (Riahi et al., 2012; Riahi et al., 

2013) has been demonstrated in animal and human LID (Rylander et al., 2010b; Zeng et al., 

2010). Importantly, activation of serotonin 5-HT1A receptors has been shown to reduce 

corticostriatal glutamate release (Antonelli et al., 2005; Dupre et al., 2011), and also 

negatively regulates release of dopamine as a false neurotransmitter from serotonergic 

terminals (Carta et al., 2007). Similarly the endocannabinoid system may play a role in LID 

as activation of CB1 receptors has been shown to negatively regulate corticostriatal 

glutamate release (Gubellini et al., 2002; Kofalvi et al., 2005) and also reduce D1R-

mediated responses (Martin et al., 2008; Martinez et al., 2012; Meschler et al., 2001). 

Consequently, molecules such as serotonin receptor 5-HT1A and 5-HT1B agonists (Bezard et 

al., 2013; Bibbiani et al., 2001; Iravani et al., 2006; Munoz et al., 2009; Munoz et al., 2008) 

and endocannabinoid receptor agonists (Fox et al., 2002; Morgese et al., 2007; Walsh et al., 

2010) have shown antidyskinetic efficacy in preclinical models, and also in clinical trials 

against human LID (Bonifati et al., 1994; Sieradzan et al., 2001). 

6.1.3 Extrastriatal mechanisms of dyskinesia 

As well as striatal alterations, there is also evidence from pharmacological studies 

suggesting that modulation of neurotransmission elsewhere in the BG and in areas of the 

cortex may also contribute to LID. Systemically active drugs could therefore produce 

antidyskinetic effects through actions at more than one key synapse. For example 

antagonists of mGlu5, which are currently in clinical trials as antidyskinetic agents (Berg et 

al., 2011; Kumar et al., 2013), may exert their effects not only in the striatum but also in the 

subthalamic nucleus (Maranis et al., 2012). Targeting of 5-HT1A receptors in the subthalamic 

nucleus (Marin et al., 2009) or primary motor cortex (Ostock et al., 2011) also attenuates 

dyskinesia, as does activation of 5-HT1B receptors (Jaunarajs et al., 2009; Zhang et al., 

2008), which are not only present in the striatum but also on GABAergic MSNs terminating 

in the SNr, where their activation can inhibit GABA release (Stanford et al., 1996). Alongside 

the striatal actions already mentioned, another potential mechanism to explain the efficacy 

of CB1 agonists is potentiation of striatopallidal signalling via inhibition of GABA reuptake 

(Sieradzan et al., 2001), which would help to rebalance a hyperactivation of striatonigral 

signalling. Opioid signalling, which is known to be altered in LID (Aubert et al., 2007; Chen 
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et al., 2005a; Johansson et al., 2001), can modulate transmitter release at several synapses 

within the BG, for example inhibition of striatopallidal GABA release (Ogura et al., 2000), 

and inhibition of glutamate and GABA release into the SNr (Mabrouk et al., 2009). 

Targeting several opioid receptor subtypes has shown antidyskinetic efficacy (Cox et al., 

2007; Henry et al., 2001; Ikeda et al., 2009; Koprich et al., 2011), but their role is complex 

and the effects of opioid-targeted approaches may be dose-dependent (Mabrouk et al., 

2009). 

6.1.4 Induction and maintenance of LID 

The development or induction of dyskinesia by repeated exposure to L-DOPA involves the 

sensitisation of various neurotransmitter systems. This plasticity involves elements such as 

alterations in receptor distribution and sensitisation of downstream signalling pathways as 

well as morphological synaptic/dendritic alterations (explored earlier). This process of 

priming is thought to be facilitated by the parkinsonian state, hence the requirement for 

extensive nigrostriatal denervation when modelling dyskinesia in rodents or primates. 

Once dyskinesia has been established, the brain seems to maintain its primed state, such 

that even taking an L-DOPA-free ‘drug holiday’ only results in a short-lived decrease in 

dyskinesia that is thought to be predominantly due to a transient decrease in the required 

therapeutic dose of  L-DOPA  (Feldman et al., 1986; Koller et al., 1981; Weiner et al., 1980). 

The temporal involvement of changes in these various neurotransmitter systems have not 

yet been fully elucidated, but can be tentatively inferred from the ability of 

pharmacological interventions to either inhibit the priming process and/or to suppress or 

reverse the expression of dyskinesia in already-primed animals. 

6.1.5 Targeting glutamate as a therapeutic option for LID 

As described above, modulations in glutamate signalling including altered neurotransmitter 

release and receptor expression and distribution are highly implicated in the development 

and expression of LID in both patients and preclinical models. Indeed the only therapy 

widely used for treatment of LID is amantadine, a low affinity non-competitive antagonist 

of the NMDA receptor. Despite positive results from several clinical trials (del Dotto et al., 

2001; Luginger et al., 2000; Sawada et al., 2010; Snow et al., 2000) there is some 

disagreement as to the duration of efficacy of amantadine (Thomas et al., 2004; Verhagen-

Metman et al., 1999; Wolf et al., 2010) and therefore whether or not there is sufficient 

evidence to support its use for this condition (Crosby et al., 2003; Elahi et al., 2012). 

Nevertheless it is licensed by the US Food and Drug Administration for treatment of LID, 
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and is also included in the 2010 European Federation of Neurological Societies 

recommendations for management of LID (Ferreira et al., 2013). In light of the support for 

amantadine it is perhaps not surprising that several alternative glutamate-targeted 

approaches have been proposed as potential antidyskinetic therapies, and these are 

discussed here. 

AMPA: There is some evidence suggesting that blockade of AMPA receptor-mediated 

signalling may be effective at reducing the induction and expression of dyskinesia in 

preclinical animal models (Kobylecki et al., 2010; Konitsiotis et al., 2000; Maranis et al., 

2012). As yet this has not translated into the clinic, where several clinical trials have failed 

to report a reduction in motor complications in treated patients (Eggert et al., 2010; Lees et 

al., 2012; Rascol et al., 2012). 

NMDA: Enhancement of NMDA-mediated signalling plays a central role in the development 

and expression of LID, and as such is an obvious therapeutic target. In addition to 

amantadine (Dekundy et al., 2007) there are several other NMDA antagonists that have 

been reported to have antidyskinetic efficacy in both animal models and patients. These 

include Dextromethorphan (Verhagen-Metman et al., 1998), MK-801 (Papa et al., 1995; Wu 

et al., 2013) and LY235959 (Papa et al., 1996). However due to concerns about side effects 

associated with long-term indiscriminate inhibition of NMDA receptors, such as cognitive 

deficits (Newcomer et al., 2001) and possible motor side effects at effective doses 

(Paquette et al., 2010), recent efforts have been directed at specific inhibition of NMDA 

receptors containing the GluN2B subunit, which have been shown to be expressed at 

higher levels in dyskinetic models (Hurley et al., 2005) and patients (Calon et al., 2003). 

NR2B-specific antagonists have shown antidyskinetic efficacy in preclinical models, 

inhibiting both the development (Hadj Tahar et al., 2004; Morissette et al., 2006; Wessell et 

al., 2004) and expression of dyskinesia (Blanchet et al., 1999; Wessell et al., 2004). This 

success has translated to the clinic (Nutt et al., 2008), however not without the presence of 

similar adverse events to those experienced with broad spectrum NMDA antagonists, 

including amnesia. There is also some disagreement regarding whether GluN2A or GluN2B 

receptor subunits are the major player in dyskinesiogenesis, with some groups reporting 

that GluN2B antagonists may in fact exacerbate dyskinesia under certain circumstances 

(Nash et al., 2004; Quintana et al., 2012) and that inhibition of GluN2A-containing NMDA 

receptors may therefore be a better therapeutic option (Gardoni et al., 2012; Hallett et al., 

2005).  
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mGluR: Regarding metabotropic glutamate receptors, most interest has been directed at 

the group I receptor mGlu5, and several antagonists at this receptor have shown 

antidyskinetic efficacy in rodent (Gravius et al., 2008; Levandis et al., 2008; Mela et al., 

2007) and primate (Bezard et al., 2014; Grégoire et al., 2011; Johnston et al., 2010; Morin 

et al., 2013; Rylander et al., 2010a) models of LID, for inhibiting both dyskinesia 

development and expression. mGlu5 antagonists have now entered clinical trials, where 

antidyskinetic efficacy has been reported (Berg et al., 2011; Kumar et al., 2013; Stocchi et 

al., 2013), and this is extremely promising. 

Within group III, at the outset of the studies reported in this chapter there was one 

previous published report that activation of mGlu4 receptors in the rodent AIMs model can 

reduce the development of dyskinesia when LSP1-2111 was administered alongside L-

DOPA (Lopez et al., 2011) but attempts to use mGlu4 agonists or PAMs to reverse 

established dyskinesia had been unsuccessful thus far (Le Poul et al., 2012; Lopez et al., 

2011). 

6.1.6 Considerations when testing novel antidyskinetic therapies 

When testing antidyskinetic therapies preclinically or in clinical trials it is important to 

establish that the actions of the drug are directed only against the abnormal dyskinetic 

movements elicited by L-DOPA, without any inhibitory effects against the normal 

antiparkinsonian actions of L-DOPA. 

For example several proposed antidyskinetic therapies have been found to reduce the 

antiparkinsonian effects of L-DOPA, meaning that at certain doses a general inhibitory 

effect on motor function could underlie the antidyskinetic effect observed. These include 

drugs targeting glutamatergic (Johnston et al., 2010; Paquette et al., 2010), serotonergic 

(Bezard et al., 2013; Goetz et al., 2007; Iravani et al., 2006), cannabinoid (Walsh et al., 

2010) and opioid (Cox et al., 2007) signalling. 

On the other hand, a drug that can potentiate the antiparkinsonian effects of L-DOPA could 

minimise the development of dyskinesia by enabling the same therapeutic effect of L-DOPA 

to be elicited with a lower dose of L-DOPA, which in itself would be expected to reduce the 

incidence and/or expression of dyskinesia. These so-called L-DOPA-potentiating effects 

have been reported for therapies targeting glutamatergic (Grégoire et al., 2011; 

Klockgether et al., 1990; Le Poul et al., 2012) and adenosine (Kanda et al., 2000; Kulisevsky 

et al., 2002; Rose et al., 2006) signalling. 
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6.1.7 Hypothesis and aims 

Dyskinesia has been shown to be inhibited by reduction of glutamatergic transmission, as 

demonstrated by the efficacy of antagonists of NMDA and mGlu5 receptors in both 

preclinical models and in patients. Activation of mGlu4 receptors has also been shown to 

reduce glutamatergic transmission at the corticostriatal synapse (Cuomo et al., 2009), a key 

synapse implicated in the development and maintenance of dyskinesia. We therefore 

hypothesise that: 

Activation of mGlu4 receptors using positive allosteric modulators will have antidyskinetic 

efficacy when administered in conjunction with L-DOPA. 

The aims of this set of experiments were to: 

 Define several pharmacokinetic characteristics of the novel mGlu4 PAMs that were 

to be tested in the dyskinesia studies when they are administered as an oral 

solution. 

 Verify that we were able to model dyskinesia in rats using a combination of a 

medial forebrain bundle lesion and repeated exposure to L-DOPA, and characterise 

the development of the phenotype. 

 Determine a positive control compound and dose that could suppress the 

expression of AIMs once established. 

 Test whether established AIMs could be wholly or partially reversed using positive 

allosteric modulators of mGlu4 in this model. 

 Test whether the rotational effect of L-DOPA in this model, as a measure of 

antiparkinsonian efficacy, was potentiated or inhibited by mGlu4 PAMs. This is 

especially important as targeting glutamatergic transmission has been shown to 

potentiate the antiparkinsonian actions of L-DOPA in some studies but to inhibit 

them in others. 

 Test whether concurrent administration of L-DOPA with a positive allosteric 

modulator of mGlu4 could inhibit the development of L-DOPA-induced AIMs in 

lesioned but L-DOPA-naive rats. 
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6.2 Materials and Methods 

6.2.1 Compounds tested 

Table 13 shows the structures of the drugs used in the AIMs studies outlined in this 

chapter. 8-OH-DPAT and amantadine are compounds with proven antidyskinetic efficacy in 

preclinical models and in human LID. AF42744 and LuAF21934 are novel mGlu4 PAMs. 

These compounds were both tested for their ability to reverse established AIMs, and 

LuAF21934 was additionally tested for its ability inhibit the development of AIMs, in the rat 

model. 

 

Table 13: Structures of the drugs tested for antidyskinetic efficacy in rats with L-DOPA-induced 
AIMs. 

Structure Name Target 

CH3

CH3

N

OH

 

8-OH-DPAT 
 

(R)-(+)-2-Dipropylamino-8-
hydroxy-1,2,3,4-

tetrahydronaphthalene 

5-HT1A receptor 
agonist 

CH3

NHCH3

N

N

N

S

N
NH

 

AF42744 
(ADX88178) 

 
5-Methyl-N-(4-

methylpyrimidin-2-yl)-4-
(1H-pyrazol-4-yl)thiazol-2-

amine 

mGlu4 Positive 
Allosteric Modulator 

NH2

 

Amantadine 
 

Adamantan-1-amine 

Weak NMDA 
receptor antagonist 

Cl

Cl

NH2

O

O

NH

 

LuAF21934 
 

(1S, 2R)-N1-(3,4-
dichlorophenyl)-
cyclohexane-1,2-
dicarboxamide 

mGlu4 Positive 
Allosteric Modulator 
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AF42744 (ADX88178) was developed by Addex Therapeutics and is highly potent and 

selective, with an EC50 at human mGlu4 of 4nM and at rat mGlu4 of 9nM (Célanire et al., 

2011; Le Poul et al., 2012). It has been shown to potentiate the effects of L-DOPA in the 

adjusted stepping test in 6-OHDA-lesioned rats and in an ambulation test in MitoPark® 

mice, suggesting a potential antiparkinsonian action, however no reversal of established 

AIMs was found for doses of 0.1, 1 or 10 mg/kg (Le Poul et al., 2012). Its antidyskinetic 

effects have not yet been tested at higher doses. In addition to mGlu4, AF42744 

demonstrates activity at other receptors such as mGlu6 (EC50>10µM), mGlu8 (EC50 = 2.2µM) 

and adenosine A1 and A3 receptors (Ki = ~2.2µM) (Le Poul et al., 2012). Of these potential 

off-target effects, there is some evidence that reduction of signalling at adenosine A1 

receptors attenuates AIMs in mice (Xiao et al., 2011) so this could potentially come into 

play if concentrations were to approach 2.2 µM. 

LuAF21934 was developed by Lundbeck as a more brain-penetrant variant of the 

Vanderbilt mGlu4 PAM VU0155041 (which was used in one of the neuroprotection studies 

reported in Chapter 2). It has an EC50 of 500-636nM at human mGlu4 (Bennouar et al., 

2013; Doller et al., 2010), but its potency at rat mGlu4 has not been reported. In addition to 

its activity at mGlu4, LuAF21934 is an inhibitor of adenosine A2A receptors with a Ki of 7µM. 

Antagonists at this receptor have been reported to inhibit the induction and expression of  

AIMs in primates (Bibbiani et al., 2003) and in mice (Xiao et al., 2006) so at certain 

concentrations LuAF21934 could potentially exert a dual antidyskinetic effect. However the 

effects of adenosine A2A receptor antagonists on dyskinesia in clinical trials have been 

mixed (Kulisevsky et al., 2002; Mizuno et al., 2013) so whether any off-target effects on 

these receptors by LuAF21934 would be antidyskinetic is uncertain. 

6.2.1.1 Drug formulation 

AF42744 and LuAF21934 were synthesised, characterised and provided by Lundbeck 

(Copenhagen, Denmark). Both drugs were formulated in PEG-400 obtained from Sigma 

Aldrich (Poole, UK). 

6.2.2 Other materials 

6.2.2.1 Experimental materials 

Drugs used for lesioning and peri-operative care, and for behavioural testing were obtained 

as outlined in Chapter 2 (section 2.2.2.1). 
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Benserazide hydrochloride and L-DOPA methyl ester hydrochloride for priming were 

obtained from Sigma Aldrich (Poole, UK) and were formulated in sterile saline (Aquapharm) 

corrected for salt weight. (R)-(+)-8-OH-DPAT hydrobromide and amantadine hydrochloride 

were also obtained from Sigma Aldrich (Poole, UK) and were formulated in sterile saline 

(Aquapharm) uncorrected for salt weight. 

6.2.2.2 Analytical materials 

Perfusions: Phosphate buffered saline (PBS) and 10% buffered formalin were obtained 

from Sigma Aldrich (Poole, UK). 4% paraformaldehyde was obtained from Pioneer Research 

Chemicals. 

HPLC for striatal dopamine: Dopamine content was analysed by High Performance Liquid 

Chromatography (HPLC) at King’s College London. The materials used were as described in 

section 2.2.3.2. 

TH immunohistochemistry: The tyrosine hydroxylase (TH) immunohistochemistry materials 

used were as described in section 2.2.3.2. 

UPLC-MS/MS for PK studies: Brain and plasma samples for the PK studies were analysed by 

Ultra-high Performance Liquid Chromatography with tandem Mass Spectrometry (UPLC-

MS/MS) at Lundbeck (Copenhagen, Denmark). 2-propanol, acetonitrile (ACN), ammonium 

hydroxide, dimethylsulfoxide (DMSO) and formic acid used for brain and plasma sample 

preparation and UPLC-MS/MS were obtained from Sigma Aldrich (Poole, UK or St. Louis, 

MO).   
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6.2.3 Pharmacokinetic testing of LuAF21934, AF42744 and Amantadine 

All procedures were performed in accordance with the U.K. Animals (Scientific Procedures) 

Act, 1986. 

Several PK studies were carried out: 

 (PK1) a plasma time course of LuAF21934 and AF42744 in naive rats. 

 (PK2) a single 2-hour time plasma and brain point for both LuAF21934 and AF42744 

at the end of the AIMs reversal study to determine the brain/plasma ratio. 

 (PK3) a single 90-minute plasma and brain time point for 40mg/kg amantadine in 

naive rats. 

PK1 was carried out at H. Lundbeck A/S (Copenhagen, Denmark). PK2 and PK3 were carried 

out at King’s College London. 

6.2.3.1 Drug formulation and dosing 

For LuAF21934 and AF42744 studies (PK1 and PK2), solutions of 10mg/kg or 30mg/kg were 

formulated in PEG-400 (5ml/kg for PK1, 3ml/kg for PK2) and administered by oral gavage 

(n=3 per dose per time point) to male Sprague-Dawley rats within an hour of formulation. 

For PK1, blood samples were collected at 5 minutes, 20 minutes, 1, 2, 4 and 6 hours after 

dosing. For PK2, blood and brain samples were collected 2 hours after dosing. 

For the amantadine brain/plasma ratio study (PK3), a single solution of 40mg/kg 

amantadine.HCl was made up as a 1ml/kg solution in sterile saline. It was administered as a 

single subcutaneous injection and blood and brain samples were collected 90 minutes after 

dosing. 

6.2.3.2 Sample collection 

PK1: Serial blood samples (~200µl/time point) were collected from the tail vein into EDTA-

coated tubes. Blood samples were centrifuged at 3300 x g for 10 minutes at 4°C to separate 

the cells from the plasma, and the plasma was removed and snap-frozen on dry ice to await 

analysis. 

PK2 and PK3: Rats were deeply anaesthetised with isoflurane and a blood sample 

withdrawn by cardiac puncture and placed into a Lithium-heparin coated tube (Sarstedt). 

Blood samples were centrifuged at 2000 x g for 10 minutes at room temperature to 

separate the cells from the plasma, and the plasma was removed and snap-frozen on dry 
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ice to await analysis. Immediately following cardiac puncture, rats were decapitated and 

the brain was removed from the skull, weighed and snap-frozen on dry ice to await 

analysis. 

6.2.3.3 Bioanalysis 

Plasma samples for all studies were prepared for analysis at Lundbeck (Copenhagen, 

Denmark). Brain samples for PK2 were prepared at Lundbeck. Brain samples for PK3 were 

prepared at King’s College London 24 hours after collection using an identical protocol. All 

brain and plasma samples were analysed by UPLC-MS/MS at Lundbeck. 

Brain sample preparation: Brains were homogenised in 4 volumes of homogenisation 

buffer comprising a 5:3:2 v/v/v ratio of HPLC water, 2-propanol and DMSO. Homogenates 

were centrifuged at 2700xg for 20 minutes at 4°C and the resulting supernatant removed 

into a 96-well plate for analysis. 

Plasma sample preparation: 25µl plasma samples were protein-precipitated with 150µl 

ACN containing 5ng/ml internal standard (Lundbeck compound LuAE90074). Samples were 

centrifuged at 6200 x g for 20 minutes at 4°C and 100µl supernatant removed. This 

supernatant was diluted 1:1 with 100µl water containing either 0.1% ammonium hydroxide 

(for LuAF21934 analysis) or 0.1% formic acid (for AF42744 and amantadine analysis). 

Analysis by UPLC-MS/MS: Drug concentrations were determined using UPLC-MS/MS. For 

all analytes, gradient UPLC was carried out, with a phase 1 to phase 2 transition time of 3 

minutes. Mobile phase 1 consisted of water with 0.1% ammonium hydroxide (for analysis 

of LuAF21934) or 0.1% formic acid (for analysis of AF42744 or amantadine); mobile phase 2 

consisted of ACN with 0.1% ammonium hydroxide (for analysis of LuAF21934) or 0.1% 

formic acid (for analysis of AF42744 or amantadine). Different analytical columns were 

used for each analyte: for analysis of LuAF21934 an Acquity UPLC BEH Phenyl column 

1.7µm, 2.1 x 30mm (Waters, MA) was used, for analysis of AF42744, a C18SB HSS 1.8µm, 

30mm x 2.1mm column (Waters, MA) was used and for analysis of amantadine a C8 BEH 

1.7µm, 50mm x 2.1mm column (Waters, MA) was used.  Detection was performed using a 

Sciex-API 4000 MS (Applied Biosystems, NL) using electrospray with positive ionization 

mode. 

For all analytes, the limit of detection was 1ng/ml in plasma and 5ng/g in brain. The peak 

area correlated linearly with the plasma and brain concentration of the analytes in the 

range of 1-1000ng/ml plasma and 5–5000ng/g brain (corrected for dilution). If the 
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plasma/brain sample drug concentration was above 1000ng/ml or 5000ng/g, the sample 

was diluted appropriately in blank plasma/blank brain homogenate before repeat analysis. 
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6.2.4 General methods: AIMs studies 

All procedures were performed in accordance with the U.K. Animals (Scientific Procedures) 

Act, 1986. 

6.2.4.1 MFB Lesioning 

Male Sprague-Dawley rats (270-300g, Harlan, UK) were maintained in a temperature- and 

humidity-controlled environment with a 12-hour light-dark cycle and ad libitum access to 

chow and tap water. 

Following baseline cylinder and adjusted steps measurements (described in section 

2.2.3.3), rats were lesioned in the left MFB. 12.5µg 6-OHDA.HCl in 2.5µl 0.2% ascorbate in 

0.9% saline was infused into the MFB at -2.6mm AP, +2.0mm ML and -8.8mm DV from 

bregma (Figure 75) at a rate of 0.5µl/min using a 25G injection needle. Where used, sham 

animals received an infusion of the vehicle only. Following infusion the injection needle was 

allowed to remain in place for a further 5 minutes to prevent reflux. Rats were pre-treated 

30 minutes before lesioning with 5mg/kg pargyline and 25mg/kg desipramine (i.p.) to 

inhibit extracellular metabolism of 6-OHDA by monoamine oxidase B and to block the 

norepinephrine transporter to ensure selective uptake of the toxin into dopaminergic cells 

respectively. Peri-operative and post-operative care was provided as described previously 

in Chapter 2. 

 

Figure 75: Approximate co-ordinates for 6-OHDA infusion for the MFB lesions. The anteroposterior 
level shown is 2.56mm posterior of Bregma, whereas the co-ordinates employed were 2.6mm 
posterior of Bregma, however the positioning of the MFB is comparable. The coronal diagram was 
obtained from The Rat Brain in Stereotaxic Coordinates (Paxinos et al., 1998). The grey shaded 
region is the MFB and the black spot represents the positioning of the tip of the infusion needle. 
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6.2.4.2 Behavioural assessment 

After 2 weeks’ recovery time, the extent of the lesion was assessed using the cylinder test, 

adjusted steps test (exploratory study only) and apomorphine- or amphetamine-induced 

rotations. These tests are briefly described below, but can be found in more detail in 

section 2.2.3.3. 

For the cylinder test (Schallert et al., 2000a) rats were placed in a clear Perspex cylinder of 

21cm diameter and 34cm height and video-recorded for 5 minutes. Supporting paw 

touches during exploratory rearing were scored as ipsi, contra or both paws. Percentage 

use of each paw was compared between groups. 

In the adjusted steps test (Olsson et al., 1995)  rats were held such that they were resting 

their weight on a single forepaw on the edge of a table. The rat was then moved along a 

90cm distance over 5 seconds and the number of adjusting steps taken was counted in 

triplicate for each paw in both the forehand and backhand directions. Post-lesion 

performance (number of steps) is expressed as a percentage of pre-lesion performance for 

both the ipsilateral and contralateral paws. 

Apomorphine- or amphetamine-induced rotations were measured automatically in 

enclosed rotometer chambers, where rats are tethered to a rotational encoder that 

monitors turning in both directions. Following 30 minutes’ habituation, rats received a 

subcutaneous dose of 0.5mg/kg apomorphine or an intraperitoneal dose of 2.5mg/kg 

amphetamine and their induced rotation was recorded for 120 minutes thereafter using 

RotoRat software (MedAssociates Inc). 

6.2.4.3 Assessment of AIMs 

In all experiments, AIMs were assessed at intervals during the priming period. Where 

applicable AIMs were also assessed following stable establishment of dyskinesia, for 

example for testing of putative antidyskinetic compounds. The details of the timings of 

assessments within each study are shown in the relevant methods sections. 

Within each testing session, AIMs were assessed according to the criteria first described by 

Cenci et al. (Cenci et al., 1998) and later modified by Winkler et al. (Winkler et al., 2002). 

Rats were placed in a clear Perspex cylinder 40cm high and 40cm in diameter. After a 

baseline period of 30 minutes to acclimatise to the equipment, rats were scored for their 

baseline AIMs expression. Following the administration of L-DOPA, rats were scored for a 

period of one minute out of every 20 to follow the time course of the expression of L-
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DOPA-induced AIMs. Rats were generally scored for 180 minutes after L-DOPA 

administration. In some instances, for example when testing L-DOPA alongside 

amantadine, the rats had not returned to baseline by 180 minutes so in this instance 

scoring was continued every 20 minutes until they returned to baseline. 

Scores during each 1-minute recording period were allocated for both duration and 

severity of the three AIMs subtypes; axial, forelimb and orolingual, and were defined thus: 

 

Duration (from Cenci et al. 1998) 

Score 0 1 2 3 4 

Duration 

(all subtypes) 

Absent Occasional 

<50% time 

Frequent 

> 50% time 

Continuous but 

can be 

interrupted by 

sensory stimuli 

Continuous and 

cannot be 

interrupted by 

sensory stimuli 

 

Severity (from Winkler et al. 2002) 

Score 0 1 2 3 4 

Axial Absent Consistent 

lateral 

deviation of 

the head 

& neck >30° 

Consistent 

lateral deviation 

of the head & 

neck 30°<x<60° 

Lateral 

deviation/torsio

n of head, neck 

& upper trunk 

>60° 

Torsion of 

head, neck & 

trunk causing 

loss of balance 

Forelimb Absent Low amplitude 

movements 

involving the 

paw 

Low amplitude 

movements 

involving the 

paw and distal 

limb 

Movements 

involving the 

paw, distal and 

proximal limb 

Vigorous or 

ballistic 

movements of 

large amplitude 

involving the 

whole limb and 

shoulder 

Orolingual Absent Vacuous 

chewing 

Tongue 

protrusion 

- - 
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Sensory stimuli used to interrupt the rats comprised a sharp double tap with a pen on the 

top and side of the Perspex cylinder close to the rat’s position. An example of a rat 

displaying AIMs is shown in Figure 76. 

 

 

Figure 76: A rat displaying AIMs following a MFB lesion and 21 days of daily administration of 
6.25mg/kg L-DOPA + 15 mg/kg benserazide. The axial twisting away from the side of the lesion can 
clearly be seen, along with a slightly open mouth from the chewing motion of orolingual AIMs. 
Although not visible from this picture, the right forelimb makes circling or stirring movements. 

 

The theoretical maximum score that could be obtained by any rat over a 3-hour scoring 

period was 360, comprising a maximum 144 for the axial subtype (max duration 4 x max 

severity 4 x 9 time points), a maximum of 144 for the limb subtype (max duration 4 x max 

severity 4 x 9 time points) and a maximum of 72 for the orolingual subtype (max duration 4 

x max severity 2 x 9 time points). Within any given time point the maximum score that 

could be obtained was 40. 

6.2.4.4 Blinding 

Exploratory study: Scoring of AIMs in the presence of known antidyskinetic compounds 

was not blinded. 

Reversal study: Scoring of AIMs during the antidyskinetics testing on weeks 6 and 8 was 

blinded. LuAF21934 or AF42744 and vehicle solutions were formulated daily by the 
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experimenter to maintain consistency, and the vials were then blinded by another person 

such that they were labelled A, B and C. Scoring of AIMs during testing with amantadine 

was also performed blinded, with the amantadine and vehicle solutions prepared by the 

experimenter, which were then relabelled A and B by another person. 

Induction study: Scoring of AIMs during the induction study was performed blinded. As for 

the reversal study, vehicle and LuAF21934 solutions were formulated daily by the 

experimenter to maintain consistency, and the vials were then blinded by another person 

such that they were labelled A, B and C. 
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6.2.5 Methods specific to Exploratory Study 

Figure 77 shows the plan for the AIMs exploratory study. 

 

 

Figure 77: Study plan for the AIMs exploratory study. The weekly time-line is shown in the lower 
section of the diagram and a break-down of the AIMs scoring during the 3-week priming period is 
shown in the upper section of the diagram. Following baseline testing rats underwent sham or 6-
OHDA lesioning of the MFB. Post-lesion behavioural measures were taken after at least 2 weeks’ 
recovery and lesioned rats were divided into 2 groups with equal behavioural readouts. Thereafter 
all rats underwent 21 days of once-daily dosing with vehicle (1ml/kg saline) or L-DOPA; sham rats 
received L-DOPA (n = 5), lesioned rats received L-DOPA (n = 9) or vehicle (n = 10). AIMs scoring and 
L-DOPA induced rotations were measured at intervals during this time (upper section of the 
diagram, daily time-line). During weeks 7 and 8, at the end of the priming period, all rats underwent 
AIMs reversal testing with known antidyskinetic compounds using a randomised crossover design. 
Rats were perfused 4 days following the last dose of L-DOPA/vehicle. 

 

6.2.5.1 Surgery – Week 0 

Rats received either a 6-OHDA (n=19) or sham (n=5) unilateral lesion of the MFB. 

6.2.5.2 Lesion assessment – Week 2 

Lesion assessment in this study was carried out by measuring apomorphine-induced 

rotations, the cylinder test and the adjusted steps test between 2 and 3 weeks after 

lesioning. Lesioned rats with >6 net contraversive rotations per minute at peak, along with 

clear deficits in contralateral forelimb use, were taken forward to the L-DOPA priming 

phase. 

6.2.5.3 Induction of AIMs (priming) – Weeks 3-5 

Three days after behavioural testing, a group of rats with complete lesions (n=9) began 

daily treatment (between 10:30 and 11:00) with 6.25mg/kg L-DOPA + 15mg/kg benserazide 
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(i.p.) to induce abnormal involuntary movements (AIMs).  A second group of lesioned rats 

were treated with vehicle (1ml/kg saline; n=10) to provide a control group for the effect of 

the L-DOPA, and the sham-lesioned group (n=5) was treated daily with L-DOPA + 

benserazide to provide a control for the effect of lesion on the response to treatment. 

The severity and duration of AIMs were assessed on alternating days, following the ratings 

scale described earlier in section 6.2.4.3, to build a time course of the development of L-

DOPA-induced dyskinesia in this model. 

In addition to scoring AIMs, the development of contraversive turning in response to L-

DOPA/vehicle was also measured on days 2, 8, 14 and 20 of the priming period. Rats were 

habituated to the automated rotometer chambers for 30 minutes before receiving their 

usual daily dose of L-DOPA or vehicle, after which their rotational response was measured 

over the course of 180 minutes. 

6.2.5.4 Reversal with known antidyskinetic drugs – Weeks 6-7 

Following 21 days of priming, the ability of 8-OH-DPAT (0.6mg/kg s.c) and amantadine 

(40mg/kg s.c.) to suppress L-DOPA-induced AIMs in these primed animals was tested in a 

crossover design with a minimum of 3 days’ wash-out between tests. 

6.2.5.5 Necropsy – Week 8 

At least 3 days after final exposure to L-DOPA/vehicle, rats were terminally anaesthetised 

with sodium pentobarbital (600mg/kg i.p.) and the upper half of the body perfused 

transcardially with 0.9% saline followed by 4% paraformaldehyde (~200ml per rat). The 

heads were removed and post-fixed for 24 hours in 4% PFA. 

In order to wash out the excess paraformaldehyde and prepare the brains for magnetic 

resonance imaging (MRI) the heads were immersed in PBS with 0.05% sodium azide at 4°C 

for 3 weeks, with the solution changed at least twice per week. This MRI analysis is still 

ongoing at the time of writing and does not form part of the body of work in this thesis. 

6.2.5.6 Statistical analysis 

All statistics analyses were carried out using GraphPad Prism version 5. 

Pre- and post-lesion performance in the cylinder test was compared between sham- and 6-

OHDA-lesioned groups using a two-way repeated-measured (RM) ANOVA with Bonferroni 

post-hoc test. Post-lesion adjusted steps performance, expressed as a percent of pre-lesion 

baseline performance, was compared between groups using a t-test. Net contraversive 
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rotations over 90 minutes following injection with apomorphine was also compared 

between groups using a t-test. 

When the 6-OHDA-lesioned group (n = 19) was divided between priming treatments (6-

OHDA/L-DOPA, n = 9; 6-OHDA/saline, n = 10), post-lesion performance in the cylinder test, 

adjusted steps test and apomorphine-induced rotational asymmetry was compared 

between these subdivided groups using t-tests. 

The development of AIMs was compared between groups by comparing the AIMs scores 

over time using a two-way RM ANOVA with Bonferroni post-hoc test. Within the 6-OHDA/L-

DOPA group the change in AIMs scores over the 21-day priming period was compared using 

a one-way RM ANOVA with Bonferroni post-hoc test. 

Rotational response to L-DOPA was compared between groups and between testing days 

using a two-way RM ANOVA with Bonferroni post-hoc test. 

Analysis of the effects of the antidyskinetic agents in the 6-OHDA-lesioned L-DOPA-treated 

group comprised a one-way RM ANOVA with Dunnett’s post-hoc performed on the total 

overall AIMs scores recorded after L-DOPA dosing. No statistical analysis was possible on 

Sham/L-DOPA or 6-OHDA/saline groups due to all rats in these groups scoring zero 

throughout. 

In all tests, comparisons were considered significant where P<0.05. 
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6.2.6 Methods specific to AIMs Reversal Study 

Figure 78 shows the study plan for the entire AIMs reversal study. Further detail is given 

regarding the breakdown of the 4 weeks of antidyskinetics testing and the 2 weeks of L-

DOPA sparing both in the text and in Figure 79 and Figure 80. 

 

 

Figure 78: Study plan for the AIMs reversal study. The week-by-week plan is shown in the lower 
part of the diagram, with further details on the 2-weekpriming period in the upper part of the 
diagram. Rats underwent 6-OHDA lesioning of the MFB at week 0 and after a minimum of 2 weeks’ 
recovery were tested for their rotational response to amphetamine. The 14 rats with the greatest 
rotational asymmetry that also showed a clear ipsilateral bias in the cylinder test were then primed 
for 14 days with once-daily injection of L-DOPA/benserazide. The 10 rats with the most concordant 
AIMs scores at day 14 of priming were taken forward to test the acute and sub-chronic 
antidyskinetic efficacies of two mGlu4 PAMs (see Figure 79 for further details) and the positive 
control drug amantadine. The same rats were also used to test for L-DOPA sparing effects of these 
drugs (see Figure 80 for further details). From week 6 to week 13 all rats received a minimum of 3 
doses of L-DOPA+benserazide per week to maintain a dyskinetic state. 

 

6.2.6.1 Surgery – Week 0 

All rats underwent a unilateral 6-OHDA lesion of the MFB (n=16). 

6.2.6.2 Lesion assessment – Week 2 

Lesion assessment in this study was carried out by measuring amphetamine-induced 

rotations, with post-lesion paw use also assessed as a secondary measure using the 

cylinder test. The 14 best responders to amphetamine were taken forward to the priming 

phase. 

6.2.6.3 Induction of AIMs (priming) – Weeks 3-4 

Three days after behavioural testing, the 14 rats that had shown the greatest number of 

rotations in response to amphetamine and showed a strong bias towards ipsilateral paw 
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use in the cylinder test began daily L-DOPA treatment to prime for dyskinesia. Rats received 

a subcutaneous injection of 6.25mg/kg L-DOPA + 15mg/kg benserazide in 1ml/kg 0.9% 

saline daily for 14 days to induce AIMs. This change from the intraperitoneal dosing 

protocol in the exploratory study was in response to a paper describing dose failure 

episodes when using the i.p. route (Lindgren et al., 2007). The severity and duration of 

AIMs were assessed after 8, 11 and 14 days’ treatment following the ratings scale 

described earlier to verify that the AIMs scores had stabilised. The 10 rats with the most 

similar and stable scores were moved into the drug testing phase of the experiment. 

6.2.6.4 Reversal of established dyskinesia – Weeks 5-8 

AIMs reversal testing was carried out for LuAF21934 and AF42744 as shown in Figure 79. 

LuAF21934 was solubilised in PEG-400 to give doses of 10 and 30mg/kg at a volume of 

5ml/kg. Testing of AF42744 was identical to LuAF21934, except that the dosing volume was 

reduced to 3ml/kg. This was to limit the volume of PEG-400 ingested by the rats as it was 

causing moderate diarrhoea during the sub-chronic dosing phase of the experiment. 

 

Figure 79: The 14-day AIMs reversal testing plan that was applied to each mGlu4 PAM 
consecutively: LuAF21934 during weeks 5-6 and AF42744 during weeks 7-8. On days 1, 3 and 5 rats 
received vehicle or 10 or 30mg/kg drug in a randomised cross-over design 30 minutes prior to L-
DOPA+benserazide to test for AIMs reversal effects of acute doses of mGlu4 PAMs. From day 7-10 
rats received a twice-daily dose of 30mg/kg mGlu4 PAM (08:00 and 19:00) and AIMs were scored 
once for the mGlu4 PAM alone (day 7) and once with L-DOPA+benserazide (day 10). Rotations in 
response to a high dose (10mg/kg) L-DOPA were tested 30 minutes after the single dose of mGlu4 
PAM on day 11. On day 13, following 48 hours’ drug washout, AIMs were scored using the usual L-
DOPA+benserazide dose to check whether or not sub-chronic mGlu4 PAM administration had any 
long-lasting effects on AIMs expression. 



275 
 

For both mGlu4 PAMs, the same rats were used (n = 10). For acute testing on days 1, 3 and 

5, rats were administered mGlu4 PAM (10 or 30mg/kg) or vehicle by oral gavage 30 minutes 

before injection with 6.25mg/kg L-DOPA + 15mg/kg benserazide and the AIMs scored by an 

experimenter blinded to the drug treatments. Each rat received both doses of mGlu4 PAM 

and vehicle in a crossover design with 48 hours wash-out between tests. For the subchronic 

dose testing, rats were administered 30mg/kg mGlu4 PAM twice daily for 9 doses (08:00 

and 19:00), from day 7 to 11. AIMs were scored on day 7 after mGlu4 PAM alone (to check 

for dyskinesiogenic effects of the mGlu4 PAMs themselves) and on day 10 alongside 

6.25mg/kg L-DOPA + 15mg/kg benserazide, administered 30 minutes after drug (to check 

for reversal of L-DOPA-induced AIMs by sub-chronic exposure to mGlu4 PAM). 

In order to assess whether mGlu4 PAMs had a detrimental effect on the antiparkinsonian 

effects of L-DOPA, L-DOPA-induced rotations were measured on day 11 in the rotometers 

in rats given 30mg/kg mGlu4 PAM 30 minutes prior to 10mg/kg L-DOPA + 15mg/kg 

benserazide. Rotations were assessed in the same way as for the amphetamine testing but 

recording for 4 hours. 

Drug-free AIMs were scored following a further 48 hours’ wash-out to verify that 

subchronic exposure to drug has not altered the subjects’ usual response to 6.25mg/kg L-

DOPA + 15mg/kg benserazide. 

In total, rats received 6 doses of L-DOPA+benserazide over each 14-day testing period, 

which is sufficient to maintain the dyskinetic phenotype. 

The ability of the weak NMDA antagonist amantadine to suppress AIMs expression was also 

tested as a positive control in week 10 of the study (Figure 78). Animals received 40 mg/kg 

amantadine hydrochloride or vehicle (1ml/kg 0.9% saline s.c.) 30 minutes prior to 

6.25mg/kg L-DOPA + 15mg/kg benserazide and AIMs were scored as usual. Amantadine 

and saline treatments were randomised and the tests were performed 72 hours apart to 

allow for wash-out of amantadine, which has a long half life (known to be ~15h in humans 

following an oral dose;(NOVARTIS-Pharmaceuticals, 2011). 

6.2.6.5 L-DOPA sparing – Weeks 12-13 

L-DOPA sparing was assessed during weeks 12-13 of this study, using the same rats (n = 10) 

as had previously been used for the acute and sub-chronic reversal studies. The rotational 

response of these rats to a low dose of L-DOPA (5mg/kg L-DOPA + 15mg/kg benserazide) 

was tested in the presence of vehicle, 30mg/kg LuAF21934 and 30mg/kg AF42744 (Figure 
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80). As before, the mGlu4 PAMs or vehicle (3ml/kg PEG-400) were administered by oral 

gavage 30 minutes prior to L-DOPA or vehicle (1 ml/kg 0.9% saline) and the rotational 

response recorded for 3 hours in the automated rotometers. 

 

 

Figure 80: L-DOPA sparing experimental plan for testing both mGlu4 PAMs for their ability to 
inhibit or enhance the rotational response of primed rats to a low dose (5mg/kg) L-DOPA. 10 rats 
received an acute oral dose of vehicle, 30mg/kg LuAF21934 or 30mg/kg AF42744 30 minutes prior to 
a subcutaneous dose of L-DOPA or saline vehicle. The rotational response was recorded in 
automated rotometers for 180 minutes. All tests were carried out in a crossover design with a 
minimum of 48 hours’ wash-out in between. 

 

6.2.6.6 Necropsy – Week 14 

Rats were given a final dose of either 30mg/kg LuAF21934 (n=5) or 30mg/kg AF42744 (n=5) 

2 hours prior to sacrifice, and the blood and part of the brain prepared for analysis of drug 

concentrations as described earlier (PK2). On this occasion the whole brain was not taken, 

only part of the cerebellum. 

Following cardiac puncture the brain was removed and cut in a brain matrix. The striatum 

was dissected out, weighed and snap-frozen on dry ice in preparation for HPLC analysis of 

dopamine levels. A block containing the midbrain was immersion-fixed in 10% buffered 

formalin for additional analysis of the lesion size by TH-positive cell counts, should this have 

been necessary. The hindbrain/cerebellum was snap-frozen on dry ice for analysis of drug 

concentration. 

6.2.6.7 Dopamine HPLC 

The success of the MFB lesion was verified post mortem by analysis of striatal dopamine 

concentrations by HPLC at King’s College London. The method of analysis has been 

described earlier in this thesis in Chapter 4 (section 4.2.4.2). 
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6.2.6.8 Statistical analysis 

In the reversal studies, the overall AIMs scores were compared between vehicle and mGlu4 

PAM-treated tests (both acute and sub-chronic administration) using a one-way RM 

ANOVA with a Dunnett’s post-hoc for comparison of mGlu4 PAM-treated scores with 

vehicle scores. A paired t-test was used to verify that the AIMs score at the end of the 

fortnight of mGlu4 PAM testing was not different from the day 14 AIMs score (end of 

priming phase). 

The effect of the antidyskinetic agent amantadine was analysed by a paired t-test 

comparing the total AIMs score after amantadine with the total AIMs score after vehicle. 

For the rotational studies including L-DOPA sparing, the total net number of contraversive 

turns made in response to L-DOPA was compared between vehicle and mGlu4 PAMs using a 

one-way RM ANOVA with Dunnett’s post-hoc. 

In all tests, results were considered significant where P<0.05. 
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6.2.7 Methods specific to AIMs Induction Study 

Figure 81 shows the study plan for testing the efficacy of the mGlu4 PAM LuAF21934 at 

inhibiting the onset of AIMs. 

 

 

Figure 81: Study plan to test inhibition of AIMs induction by an mGlu4 PAM. The week-by-week 
study time-line is shown in the lower part of the diagram and a more detailed breakdown of the 14-
day priming period is shown in the upper part of the diagram. Rats underwent 6-OHDA lesioning of 
the MFB at week 0 and following at least 2 weeks’ recovery the extent of lesioning was verified by 
analysis of amphetamine-induced rotational asymmetry and limb use bias in the cylinder test. Rats 
were divided into 3 groups of equal post-lesion behavioural ability. Each group received 2 daily oral 
doses of vehicle, 10mg/kg or 30mg/kg LuAF21934 for three days and then one daily oral dose of 
vehicle or drug for a further 14 days. For the 14 days of once-daily dosing, the dose of drug or 
vehicle was followed 30 minutes later by a subcutaneous injection of L-DOPA/benserazide. AIMs 
were scored at intervals within this L-DOPA priming period. 72 hours after the final dose of 
drug/vehicle + L-DOPA, rats were perfused and the brains removed for analysis. 

 

6.2.7.1 Surgery – Week 0 

All rats underwent a unilateral 6-OHDA lesion of the MFB (n = 24). 

6.2.7.2 Assessment of lesion – Week 2 

Lesion size was assessed before the experimental phase using the cylinder test and 

amphetamine-induced rotations to establish whether or not the lesion was successful. The 

21 rats with the highest degree of asymmetry in response to 2.5mg/kg i.p. amphetamine, 

and verified by reduced use of the contralateral forepaw in the cylinder test, were stratified 

into 3 groups of n=7 based on net rotational asymmetry. This stratification was performed 

blinded to the eventual treatment that each group would receive. 
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6.2.7.3 Induction of AIMs – Weeks 3-4 

All rats had 3 days of twice-daily treatment with vehicle, 10mg/kg or 30mg/kg Lu AF21934, 

administered p.o. at a volume of 2ml/kg. Thereafter they received a single daily treatment 

with vehicle or drug, followed 30 minutes later by a subcutaneous injection of 6.25mg/kg L-

DOPA + 15mg/kg benserazide, for a total of 14 days. This priming period was chosen 

because the exploratory study outlined earlier had shown that AIMs scores had stabilised 

by this time point.  AIMs were scored at intervals within this induction period at days 2, 5, 

8, 11 and 14 by an experimenter blinded to the treatments received by each group. 

6.2.7.4 Necropsy – Week 5 

At least 3 days after final exposure to L-DOPA, rats were terminally anaesthetised with 

sodium pentobarbital (600mg/kg i.p.) and the upper half of the body perfused 

transcardially with PBS followed by 10% buffered formalin. The brains were removed from 

the skull and post-fixed for a minimum of 24 hours before being cut in a brain matrix. A 

coronal block containing the midbrain was processed and embedded for histological 

analysis of the lesion size by TH staining of nigral cells. A coronal block containing the 

striatum was saved in formalin in case of later analysis of striatal markers of dyskinesia. 

6.2.7.5 Tyrosine Hydroxylase immunohistochemistry 

Lesion size was verified post-mortem by counting the number of TH-positive cells 

remaining in the lesioned SNc, expressed as a percentage of the number of TH-positive cells 

remaining in the intact SNc. Rats with <95% lesion were discarded from the analysis on the 

basis that their chance of developing levodopa-induced AIMs was reduced. 

Coronal sections were cut through the SN at 7µm and mounted on SuperFrost Plus® slides. 

Sections at -5.3mm from bregma, where the medial terminal nucleus fully bisects the SNc 

from the VTA, were stained, imaged and analysed as described in section 2.2.3.2. Counts 

were made in triplicate on three adjacent sections and the mean percentage cells 

remaining calculated. 

6.2.7.6 Statistical analysis 

TH-positive cells remaining in the lesioned SNc, expressed as a percent of TH-positive cells 

in the intact SNc, were compared using a one-way ANOVA with Dunnett’s post-hoc test. 

The number of rats developing AIMs was compared between the vehicle-treated group and 

LuAF21934-treated groups using a Fisher’s exact test. 
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The total score for overall AIMs, the individual AIMs subtypes, and the duration and 

severity scores they comprised were compared using two-way repeated measures ANOVAs 

with Bonferroni post-hoc tests. 

In all tests, results were considered significant where P<0.05. 

  



281 
 

6.3 Results 

6.3.1 Pharmacokinetic study 

6.3.1.1 PK1 – Plasma time course of LuAF21934 and AF42744 

The plasma profile of LuAF21934 was already shown in Chapter 4 in relation to the 

LuAF21934 neuroprotection study. The Cmax of LuAF21934 was 869 ± 202ng/ml following a 

10mg/kg dose and 4733 ± 758ng/ml following a 30mg/kg dose, both attained 1 hour after 

dosing. The t1/2 was 1.4 ± 0.1 hours following 10mg/kg and 0.8 ± 0.1 hours following 

30mg/kg. 

The plasma profile of AF42744 is shown in Figure 82. The Cmax for AF42744 was 1355 ± 388 

following a 10mg/kg dose and 5407 ± 517 following a 30mg/kg dose, attained between 0.5 

and 1 hour post-dose. The t1/2 was 1.2 ± 0.3 hours following 10mg/kg and 2.7 ± 0.8 hours 

following 30mg/kg. 

 

 

Figure 82: Plasma profiles in naive rats following an oral dose of 10mg/kg or 30mg/kg AF42744. 
Serial blood samples were taken from the cannulated tail veins of naive rats following an oral dose 
of 10mg/kg or 30mg/kg AF42744. Data are expressed as mean ± s.e.m. (n = 3 per dose). 

 

Since tmax for both drugs is ~1hr, the pre-treatment time of 30 minutes prior to L-DOPA 

adopted in subsequent studies ensure that maximum plasma drug levels coincide with 

maximal striatal L-DOPA concentration (Carta et al., 2006). 
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6.3.1.2 PK2 – Brain/plasma ratio LuAF21934 and AF42744 after 2 hours 

2-hour brain and plasma concentrations were analysed following an acute oral dose of 

30mg/kg LuAF21934 (n = 5) or 30mg/kg AF42744 (n = 5). These samples were collected at 

the end of the AIMs reversal study and stored at -80°C for 6 months before analysis. 

LuAF21934 

2 hours after a 30mg/kg dose, the plasma concentration of LuAF21934 was 2186 ± 

225ng/ml and the brain concentration was 1196 ± 179ng/g, giving a brain/plasma ratio of 

0.55. This is comparable with the brain/plasma ratio of 0.66 calculated in the LuAF21934 

PK-B study reported in Chapter 4, however the absolute brain and plasma concentrations 

obtained in PK2 were approximately 66% less than the absolute brain and plasma 

concentrations obtained in PK-B. This is likely due to the long-term storage of these 

samples before processing. 

AF42744 

No AF42744 was detected in 2 of the 5 brain samples collected in PK3, despite plasma 

concentrations being comparable in these rats to the other 3 rats in the study. 

If these rats are included, the plasma concentration of AF42744 measured 2 hours after a 

single oral dose of 30mg/kg AF42744 is 1046 ± 365ng/ml and the brain concentration is 297 

± 181ng/g, giving a brain/plasma ratio of 0.28. 

If the rats whose brains had undetectable concentrations of AF42744 are excluded, the 

plasma concentration is 683 ± 339ng/ml and the brain concentration is 495 ± 244ng/g, 

giving a brain/plasma ratio of 0.74. 

As for the LuAF21934 samples in this study, these samples also likely underwent a degree 

of degradation. For example the 2-hour plasma concentration was between 683 and 

1046ng/ml compared with 3223ng/ml at the same time point in PK1. However the 

brain/plasma ratio calculated for AF42744 may be close to the real value, as was found to 

be the case for LuAF21934 in this study. 

6.3.1.3 PK3 – Brain/plasma ratio of amantadine after 90 minutes 

Since amantadine is a known antidyskinetic agent and had shown efficacy in the AIMs 

studies, we wanted to ascertain the brain and plasma concentrations at the time point that 

corresponded with the start of the maximal L-DOPA effect. L-DOPA effect is maximal 

around 60 minutes after administration, so given the 30 minute pre-treatment time 

allowed for amantadine this meant taking brain/plasma ratios 90 minutes after dosing with 
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amantadine. According to previous studies, free brain concentrations are expected to be 

maximal following a systemic injection between 60 and 80 minutes (Kornhuber et al., 1995) 

so this PK study approximates the maximal brain exposure. 

We found that 90 minutes after a subcutaneous dose of 40mg/kg amantadine, the plasma 

concentration was 2513 ± 145ng/ml and the brain concentration was 23633 ± 1885ng/g, 

giving a brain/plasma ratio at this time point of 9.40. 
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6.3.3 Levodopa-induced AIMs exploratory study 

6.3.3.1 MFB lesioning led to measurable behavioural impairments 

Before priming, the success of the MFB lesion was assessed using the cylinder test, 

adjusted steps test and apomorphine-induced rotational asymmetry. 

Cylinder test 

Rats with 6-OHDA MFB lesions showed significantly impaired use of the contralateral 

forepaw in the cylinder test (Figure 83), with a reduction in use from 49 ± 1% of total 

touches pre-lesion to 6 ± 1% post-lesion (P<0.001; two-way RM ANOVA with Bonferroni 

post-hoc). Sham-lesioned animals retained normal use of the contralateral paw after 

surgery with 53 ± 1% contralateral touches, compared with 51 ± 2% at baseline (P=0.4826; 

two-way RM ANOVA with Bonferroni post-hoc). 

 

Figure 83: Performance of Sham- and 6-OHDA-lesioned rats in the cylinder test. The dotted lines 
show the expected unbiased use for an intact rat. Graph (a) shows pre-lesion use of ipsilateral and 
contralateral paws. Graph (b) shows the effect of a sham of 6-OHDA lesion on paw use, with a clear 
bias towards the ipsilateral paw in 6-OHDA-lesioned rats. Data are presented as mean ± s.e.m. (n = 5 
for sham group, n = 19 for 6-OHDA group) ***P<0.001 versus 6-OHDA pre-lesion ###P<0.001 versus 
sham post-lesion (two-way RM ANOVA with Bonferroni post-hoc). 
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Adjusted steps test 

A similar impairment was noted in the adjusted steps test (Figure 84). 6-OHDA-lesioned 

animals showed a significant reduction in contralateral paw stepping post-lesion in both 

the forward (50 ± 1% of baseline number of steps taken) and reverse (71 ± 1% of baseline 

number of steps taken) directions compared with sham-lesioned animals, where 

contralateral paw stepping was preserved at 101 ± 1% baseline in the forward direction and 

100±1% in the reverse direction (P<0.0001; t-tests).  Ipsilateral paw function was preserved 

in both groups in both directions. 

 

 

Figure 84: Adjusted steps test performance in sham- and 6-OHDA-lesioned rats. The dotted line 
shows the expected percentage of pre-lesion steps that an intact rat would be expected to take 
post-lesion. Both sham- and 6-OHDA-lesioned rats’ ipsilateral paws had unimpaired function in the 
forward and reverse directions. Sham-lesioned rats also showed no impairment in use of the 
contralateral paw in either direction, in contrast to 6-OHDA-lesioned rats, which showed a 
significant reduction in contralateral paw function in both the forward and reverse directions. Data 
are presented as mean ± s.e.m. (n = 5 for sham group, n = 19 for 6-OHDA group) ***P<0.0001 versus 
Sham (t-test). 

 

Apomorphine-induced rotational asymmetry 

6-OHDA-lesioned rats also showed significantly increased contraversive rotations in 

response to apomorphine compared with sham-lesioned rats (Figure 85), with on average 

382 ± 32 net contraversive rotations over 90 minutes compared with 10 ± 10 respectively 

(P<0.0001; t-test). 
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Figure 85: Rotational response of sham- and 6-OHDA-lesioned rats in response to 0.5mg/kg 
apomorphine. Graph (a) shows the time course of the rotational response. The total net 
contraversive rotations over the 90-minute testing period are quantified in (b). Data are presented 
as mean ± s.e.m. (n = 5 for sham group, n = 19 for 6-OHDA group) ***P<0.001 versus Sham (t-test). 

 

Lesioned animals were subsequently assigned to L-DOPA-treated and saline-treated 

subgroups, ensuring that there was no significant difference between their post-lesion 

scores for the cylinder test (P=0.9050; t-test), adjusted steps test (P>0.3810; t-test) or 

apomorphine-induced rotational asymmetry (P=0.8956; t-test). 

6.3.3.2 Repeated exposure of lesioned rats to L-DOPA led to the development of 

AIMs 

During the 21-day priming period, half of lesioned rats were treated daily with 6.25mg/kg 

L-DOPA + 15mg/kg benserazide i.p. (n = 9; 6-OHDA/L-DOPA) and the other half were 

treated daily with saline vehicle i.p. (n = 10; 6-OHDA/saline). Sham-lesioned rats were 

treated daily with an identical dose of L-DOPA and benserazide i.p. (n = 5; Sham/L-DOPA). 
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The scores obtained over the priming period for 6-OHDA/L-DOPA rats are shown in Figure 

86, both as an overall score and divided into the three AIMs subtypes. At the first injection, 

some rats in the 6-OHDA/L-DOPA group were already displaying axial and limb AIMs, in 

accordance with previous studies (Winkler et al., 2002). AIMs expression tended to level off 

after the first week of L-DOPA priming, with no significant difference between AIMs scores 

between days 5 and 21 (P>0.05; one-way RM ANOVA with Bonferroni post-hoc), with a 

mean score on day 21 of 173 ± 13. In addition, all AIMs subtypes – axial, forelimb and 

orolingual – developed and stabilised at similar rates, with no change between scores from 

day 3 onwards, day 7 onwards and day 5 onwards respectively (one-way RM ANOVAs with 

Bonferroni post-hoc tests). 

By the end of the 21-day priming phase eight of the nine rats in the 6-OHDA/L-DOPA group 

displayed axial, forelimb and orolingual AIMs with a duration score of at least 3 for each 

subtype, classing them as severely dyskinetic. The ninth rat attained duration scores of at 

least 2 for each subtype, indicative of a more moderate dyskinetic phenotype. The overall 

incidence of dyskinesia in this group was therefore 100%. 

6-OHDA/Saline rats did not display any signs of dyskinesia (scores of zero for duration and 

severity throughout) over the duration of the 21 days of dosing, indicating that the lesion 

alone was insufficient to cause development of this phenotype (data not shown). Similarly, 

Sham/L-DOPA rats did not display any signs of dyskinesia (scores of zero for duration and 

severity throughout), indicating that repeated L-DOPA treatment was insufficient to cause 

dyskinesia in the absence of a nigrostriatal lesion over the 21-day period tested (data not 

shown). There was a significant difference between AIMs scores in the 6-OHDA/L-DOPA 

group and the scores in the 6-OHDA/saline and Sham/L-DOPA groups (effect of treatment 

P<0.0001; two-way RM ANOVA with Bonferroni post-hoc). 

 



288 
 

 

Figure 86: AIMs scores over the course of 21 days of priming in 6-OHDA/L-DOPA rats. Graph (a) 
shows the total score obtained over 180 minutes following L-DOPA administration. Graph (b) shows 
the individual scores obtained per AIMs subtype. Data are presented as mean ± s.e.m. (n = 9) 
***P<0.0001 versus corresponding score on day 1 (one-way RM ANOVA with Bonferroni post-hoc). 

 

6.3.3.3 AIMs expression followed a 3-hour time course 

Dyskinetic 6-OHDA/L-DOPA rats started to express dyskinesia within 20 minutes of L-DOPA 

injection, with the severity and duration peaking between around 40 and 100 minutes. 

After this time the score decreased at a similar rate as it increased, with rats returning to 

baseline by 180 minutes after the L-DOPA was injected. All AIMs subtypes increased and 

decreased at similar rates to one another. An example time course from day 21 is shown 

for these rats in Figure 87 for overall AIMs and also the individual subtypes. 
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Figure 87: AIMs scores over 180 minutes following L-DOPA dosing on day 21 in 6-OHDA/L-DOPA 
rats. Graph (a) shows the overall AIMs scores at each time point. Graph (b) shows the individual 
scores obtained per AIMs subtype. Data are presented as mean ± s.e.m. (n = 9). 

 

6.3.3.4 L-DOPA induced contraversive rotations 

The rotational response of all rats was measured at intervals throughout the L-DOPA/saline 

priming period (Figure 88). The pattern of rotational development closely reflected the 

development of AIMs in the 6-OHDA/L-DOPA treated group, and the lack of any 

development of marked rotational asymmetry in the Sham/L-DOPA group or the 6-

OHDA/Saline group also reflect the fact that no rats in either of these groups displayed 

AIMs at any point during the 21 days of priming. 
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Figure 88: Development of a rotational response following L-DOPA or saline injection during the 
priming period. Data are presented as mean ± s.e.m. (n = 5-10) ** P<0.01, *** P<0.001 versus 6-
OHDA/saline; # P<0.05, ## P<0.01, ### P<0.001 versus Sham/L-DOPA (two-way RM ANOVA with 
Bonferroni post-hoc). 

 

All statistical values quoted below were calculated using a two-way RM ANOVA with 

Bonferroni post-hoc analysis. 

On day 2 the 6-OHDA/L-DOPA group displayed a mean asymmetry of 520 ± 70 net 

contraversive turns in response to L-DOPA, which was significantly higher than the 6-

OHDA/Saline group (-11 ± 8; P<0.01) and the Sham/L-DOPA group (-0.2 ± 3.2; P=0.05). 

On day 8 the 6-OHDA/L-DOPA group displayed a mean asymmetry of 894 ± 293 net 

contraversive turns in response to L-DOPA, which was significantly higher than the 6-

OHDA/Saline group (-3.7 ± 1.4; P<0.001) and the Sham/L-DOPA group (-0.6 ± 3.1; P<0.001). 
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On day 14 the 6-OHDA/L-DOPA group displayed a mean asymmetry of 848 ± 204 net 

contraversive turns in response to L-DOPA, which was significantly higher than the 6-

OHDA/saline group (-2.5 ± 2.1; P<0.001) and the Sham/L-DOPA group (-1.6 ± 2.6; P<0.001). 

On day 20 the 6-OHDA/L-DOPA group displayed a mean asymmetry of 805 ± 161 net 

contraversive turns in response to L-DOPA, which was significantly higher than the 6-

OHDA/saline group (-3.5 ± 1.5; P<0.001) and the Sham/L-DOPA group (-4 ± 8; P<0.001). 

There were no significant differences in rotational asymmetry between the Sham/L-DOPA 

and the 6-OHDA/Saline group on any day (P>0.05). 

There was no significant effect of time on rotational response to L-DOPA/saline in any 

group (P>0.05). 

6.3.3.5 AIMs could be reversed by 8-OH-DPAT or amantadine 

Two drugs with known antidyskinetic properties were tested in all rats to test their efficacy 

at suppressing AIMs in this model (Figure 89), and for any dyskinesiogenic effects they may 

exert in non-dyskinetic rats. 

In dyskinetic rats (6-OHDA/L-DOPA), 0.6mg/kg 8-OH-DPAT completely abolished AIMs 

expression for 160 minutes after dosing. Thereafter rats experienced a 100-minute period 

during which they expressed AIMs of mild to moderate severity (duration scores 1-2) 

before returning to baseline. The overall AIMs score over the 260-minute testing period 

was reduced from 179 ± 14 to 30 ± 11, an 85% reduction that was statistically significant 

(P<0.001; one-way RM ANOVA with Dunnett’s post-hoc). AIMs scores were reduced in all 

subtype areas compared with vehicle treatment; axial from 75 ± 7 to 12 ± 5, limb from 70 ± 

6 to 13 ± 5 and orolingual from 33 ± 3 to 5 ± 2 (all P<0.001; one-way RM ANOVAs with 

Dunnett’s post-hoc tests). 

8-OH-DPAT did not show any dyskinesiogenic effects in either of the two non-dyskinetic 

groups (Sham/L-DOPA and 6-OHDA/Saline). However at this dose all rats in all three groups 

were observed to alternately pad their forepaws and to adopt a flat body posture for 

around one hour after 8-OH-DPAT injection. This is indicative of inhibition of serotonergic 

signalling leading to the development of serotonin-dependent stereotypies. However the 

presence of this side effect does not explain the entire duration of AIMs suppression 

exerted by 8-OH-DPAT in the 6-OHDA/L-DOPA group and therefore is not responsible for 

the antidyskinetic action of this drug. 
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Figure 89: Effect of pre-treatment with known antidyskinetics on total AIMs scores in 6-OHDA/L-
DOPA rats. AIMs were scored after administration of L-DOPA following pre-treatment with the 
known antidyskinetic agents 8-OH-DPAT and amantadine. The time course of AIMs scoring is shown 
in graph (a) and the overall AIMs score over 260 minutes is compared in graph (b). The numbers 
after amantadine denote the pre-treatment time in minutes. 8-OH-DPAT was administered 
immediately before L-DOPA. Data are presented as mean ± s.e.m. (n = 9) *P<0.05, ***P<0.001 
compared with vehicle (one-way RM ANOVA with Dunnett’s post-hoc). 

 

In dyskinetic rats (6-OHDA/L-DOPA group), 40mg/kg amantadine reduced the expression of 

AIMs by 30 ± 4.7% and 14 ± 4.5% when administered 30- and 100-minutes prior to L-DOPA 

respectively. Both of these were statistically significant reductions from the vehicle score of 

179 ± 14 with the 30-minute pre-treatment time giving a more marked reduction: 126 ± 16 

(P<0.001; one-way RM ANOVA with Dunnett’s post-hoc) versus 152 ± 15 (P<0.05; one-way 
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RM ANOVA with Dunnett’s post-hoc) for the 100-minute pre-treatment time. The reduction 

in AIMs score following 30-minute pre-treatment with amantadine was significant for all 

AIMs subtypes when compared using a one-way RM ANOVA with Dunnett’s post-hoc; axial 

scores were reduced from 75 ± 7 to 56 ± 8 (P<0.001), limb from 70 ± 6 to 56 ± 9 (P<0.05) 

and orolingual from 33 ± 3 to 14 ± 2 (P<0.001). 

Similarly to 8-OH-DPAT, amantadine did not show any dyskinesiogenic effects in either of 

the two non-dyskinetic groups, and no side effects of treatment were noted in any rat. 
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6.3.4 Reversal of established L-DOPA-induced dyskinesia 

6.3.4.1 Lesioned rats displayed functional deficits 

Rats were assessed using the cylinder test and amphetamine-induced rotations to establish 

whether or not the lesion was successful. In the cylinder test all but one rat showed a clear 

bias towards using the ipsilateral paw versus the contralateral paw. This rat, with 49.32% 

contralateral touches, was eliminated from the study before the priming stage along with 

another with 30.77% contralateral touches. 

The mean use of the contralateral paw among the remaining rats that were taken forward 

for priming was 12.57 ± 1.87% of total touches. When assessed for amphetamine-induced 

rotations, the rats that were taken forward for priming had a mean net rotational 

asymmetry over the 120 minute testing period of 230 ± 38 ipsiversive rotations. 

The lesser post-lesion behavioural deficit in the cylinder test in this study compared with 

the exploratory study, where mean use of the contralateral paw was 6 ± 1%, might suggest 

that the lesion severity was also reduced. However when striatal dopamine content was 

assessed by HPLC in the final rats used in this study the dopamine concentration in the 

lesioned striatum was <1% of the dopamine concentration in the intact striatum, indicating 

a successful and complete nigrostriatal lesion (data not shown). 

6.3.4.2 AIMs developed over 14 days of priming 

At the end of the 14-day priming phase, 13 of the 14 rats treated with L-DOPA displayed 

axial, forelimb and orolingual AIMs with a duration score of at least 3, classing them as 

severely dyskinetic. The 10 rats with the most similar and consistent expression of AIMs 

were chosen for the acute reversal testing; these rats scored a mean of 180 ± 7 on day 14, 

comprising 76 ± 4 total axial score, 69 ± 3 total forelimb score and 35 ± 3 total orolingual 

score. A plot of the development of AIMs in the 10 rats used in the reversal testing is 

shown in Figure 90. There was no significant difference between scores on days 8, 11 and 

14 with respect to overall score (P=0.2844; one-way RM ANOVA with Bonferroni post-hoc), 

axial subtype (P=0.9727; one-way RM ANOVA with Bonferroni post-hoc), limb subtype 

(P=0.1869; one-way RM ANOVA with Bonferroni post-hoc) or orolingual subtype (P=0.1041; 

one-way RM ANOVA with Bonferroni post-hoc), showing that AIMs scores had stabilised. 
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Figure 90: Stabilisation of AIMs scores during L-DOPA priming period. Mean total scores (a) and 
subtype-specific scores (b) over the last 6 days of L-DOPA priming of the 10 rats that were used for 
the AIMs reversal and L-DOPA sparing tests. Data are displayed as mean ± s.e.m. (n = 10). 

 

6.3.4.3 mGlu4 PAMs did not reverse expression of AIMs 

LuAF21934: The time course of L-DOPA-induced AIMs following L-DOPA administration 

after 30 minute pre-treatment with 10mg/kg or 30mg/kg LuAF21934 or vehicle is shown in 

Figure 91. The mean total AIMs score with vehicle treatment was 184 ± 8. There was no 

significant effect of acute treatment with 10mg/kg LuAF21934 or 30mg/kg LuAF21934 

alongside L-DOPA, which resulted in total AIMs scores of 179 ± 5 and 184 ± 8 respectively 

(P=0.6857; one-way RM ANOVA with Dunnett’s post-hoc). When the AIMs components 

were analysed separately there was no effect of treatment at either dose on axial 

(P=0.5912; one-way RM ANOVA with Dunnett’s post-hoc), forelimb (P=0.9209; one-way RM 
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ANOVA with Dunnett’s post-hoc) or orolingual (P=0.3024; one-way ANOVA with Dunnett’s 

post-hoc) scores. 

 

 

Figure 91: AIMs scores after L-DOPA following 30-minute acute pre-treatment with LuAF21934. 
Neither dose of LuAF21934 altered AIMs expression scores compared with vehicle. Data are 
displayed as mean ± s.e.m. (n = 10). 

 

AF42744: The time course of L-DOPA-induced AIMs in the presence of 10mg/kg or 30mg/kg  

AF42744 or vehicle is shown in Figure 92. The mean total AIMs score with vehicle 

treatment was 173 ± 6. There was no significant effect of acute treatment with 10mg/kg or 

30mg/kg AF42744 (P=0.4190; one-way RM ANOVA with Dunnett’s post-hoc). When the 

AIMs components were analysed separately there was no effect of treatment at either 

dose on axial (P=0.3082; one-way RM ANOVA with Dunnett’s post-hoc), forelimb 
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(P=0.1872; one-way RM ANOVA with Dunnett’s post-hoc) or orolingual (P=0.3743; one-way 

RM ANOVA with Dunnett’s post-hoc) scores. 

 

 

Figure 92: AIMs scores after L-DOPA following 30-minute acute pre-treatment with AF42744. 
Neither dose of AF42744 altered AIMs expression scores compared with vehicle. Data are displayed 
as mean ± s.e.m. (n = 10). 
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When acute treatment failed to give an effect, a sub-chronic dosing regime was tested. 

Rats received 30mg/kg LuAF21934 or AF42744 twice a day at ~12h intervals for 5 days, with 

L-DOPA-induced AIMs scored starting 30 minutes after the morning drug dose on the 

fourth day. The results of the AIMs scores are shown in Figure 93, relative to the scores 

obtained when these rats received an acute dose of vehicle. 

 

 

Figure 93: Time course of L-DOPA response following sub-chronic administration of mGlu4 PAMs. 
There was no AIMs suppressing effect of 3.5-day twice-daily dosing with either 30mg/kg LuAF21934 
(a) or 30mg/kg AF42744 (b) compared with the response 30 minutes after dosing with vehicle. L-
DOPA was administered 30 minutes after the preceding drug/vehicle dose. Data are presented as 
mean ± s.e.m. (n = 9 (a) or n = 10 (b)). 
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Neither LuAF21934 nor AF42744 had a significant effect on the overall AIMs score when 

dosed sub-chronically in this manner. LuAF21934-treated rats had a total AIMs score of 181 

± 8 compared with 184 ± 8 when pre-treated with vehicle (P=0.6857; part of the one-way 

RM ANOVA above), and showed no significant change within the subtype scores (data not 

shown). AF42744-treated rats had a total AIMs score of 178 ± 7 compared with 173 ± 6 

when pre-treated with vehicle (P=0.4190; part of the one-way RM ANOVA above), and 

similarly showed no significant change within subtype scores (data not shown). 

Sub-chronic treatment with LuAF21934 or AF42744 did not have any lasting effects on 

normal AIMs expression, such that there was no difference in total AIMs score when rats 

were re-tested on day 13 (see Figure 79) compared with their scores on day 14 of the 

priming period (P>0.4534; paired t-tests, data not shown). 

6.3.4.4 Amantadine significantly reversed expression of AIMs 

Since neither novel compound reversed the AIMs expressed by these animals, rats were 

administered 40mg/kg amantadine.HCl 30 minutes prior to L-DOPA as a positive control. 

Results from the exploratory study indicated that this should reduce the AIMs scores of 

severely dyskinetic rats by around 30%. On this occasion the overall AIMs score was 

reduced by 42 ± 4%, from 180 ± 7 to 106 ± 10 (Figure 94). This represented a significant 

inhibition of AIMs expression (P<0.0001; paired t-test). Within the AIMs subtypes, 

amantadine treatment reduced the axial dyskinesia score by 37 ± 6%, the forelimb score by 

40 ± 4% and the orolingual score by 54 ± 4% (all P<0.0001; paired t-tests). 
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Figure 94: AIMs expression was suppressible by pre-treatment with amantadine. AIMs in the rats 
used for testing the antidyskinetic potential of LuAF21934 and AF42744 were suppressible by 30-
minute pre-treatment with 40mg/kg amantadine. Data are expressed as mean ± s.e.m. (n = 10) 
***P<0.0001 versus AIMs following vehicle treatment (paired t-test). 

 

6.3.4.5 mGlu4 PAMs did not affect the rotational response to L-DOPA 

In order to examine whether or not LuAF21934 or AF42744 could potentiate the effects of 

L-DOPA and therefore act as L-DOPA sparing agents, 30mg/kg doses of each drug were 

tested acutely for their ability to potentiate the rotational response to a sub-maximal dose 

of L-DOPA. 

The total number of net contraversive rotations was measured in rats for 180 minutes 

following a dose of 5mg/kg L-DOPA + 15mg/kg benserazide (Figure 95). 30 minutes before 

L-DOPA administration, rats received an oral dose of either vehicle, 30mg/kg LuAF21934 or 

30mg/kg AF42744. Neither AF21934 nor AF42744 altered the rotational response of these 
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primed rats to L-DOPA compared with vehicle (LuAF21934 311 ± 79 turns, AF42744 442 ± 

103 turns both versus vehicle 317 ± 45 turns; P=0.1821; one-way RM ANOVA with 

Dunnett’s post-hoc). 

Neither drug elicited any rotational response in the absence of L-DOPA (Drug/saline vs. 

Vehicle/saline P>0.405; paired t-tests) and saline elicited a significantly reduced rotational 

response in all groups compared with the corresponding response to 5mg/kg L-DOPA 

(P<0.0001; paired t-tests). 

 

 

Figure 95: Rotations in response to low-dose L-DOPA following pre-treatment with mGlu4 PAMs. 
Graph (a) shows the time course of rotations induced by 5mg/kg L-DOPA following 30-minute pre-
treatment (p.o.) with Vehicle or 30mg/kg LuAF21934 or 30mg/kg AF42744. (b) Quantification of net 
contraversive rotations over 180 minutes after injection with either L-DOPA or saline vehicle 
following the aforementioned pre-treatments. Data are displayed as mean ± s.e.m. (n = 10) 
***P<0.001 versus corresponding treatment with L-DOPA (paired t-tests). 

 

In order to check that the mGlu4 PAMs did not worsen the normal antiparkinsonian 

response to L-DOPA, the number of net contraversive rotations was also measured on the 
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fifth day of sub-chronic treatment, this time against a high dose of L-DOPA (10mg/kg + 

15mg/kg benserazide) and for a period of 240 minutes (Figure 96). This rotational response 

was compared with the rotational response elicited by the same dose of L-DOPA following 

an acute (rather than sub-chronic) dose of vehicle. 

 

 

 

Figure 96: Rotations in response to high L-DOPA following sub-chronic pre-treatment with mGlu4 
PAMs. Graph (a) shows the time course of rotations induced by 10mg/kg L-DOPA following 30-
minute pre-treatment with Vehicle, 30mg/kg LuAF21934 or 30mg/kg AF42744. (b) Quantification of 
net contraversive rotations over 240 minutes. Data are displayed as mean ± s.e.m. (n = 10). 

 

Vehicle-pretreated L-DOPA-injected rats had a mean net rotational asymmetry of 1493 ± 

234 contraversive turns in 240 minutes, compared with 1472 ± 113 when pre-treated with 

30mg/kg LuAF21934 and 1175 ± 147 when pre-treated with 30mg/kg AF42744. Net 

rotational asymmetry in response to 10mg/kg L-DOPA was therefore not significantly 

affected by sub-chronic pre-treatment with 30mg/kg LuAF21934 or AF42744 compared 
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with vehicle (P=0.2407; one-way RM ANOVA with Dunnett’s post-hoc). Although not a 

direct comparison, the results of this experiment also point to the fact that neither 

LuAF21934 nor AF42744 affects the rotational response of these rats to an L-DOPA 

challenge. 

Thus while the mGlu4 PAMs tested did not offer any L-DOPA sparing capacity alongside a 

low dose of L-DOPA, neither did they suppress the rotational response to a high dose of L-

DOPA. Therefore treatment with mGlu4 PAMs does not suppress the antiparkinsonian 

action of L-DOPA.  
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6.3.5 Inhibition of induction of L-DOPA-induced dyskinesia 

6.3.5.1 Lesioned rats displayed functional deficits 

Lesioned rats were assessed using the cylinder test and amphetamine-induced rotations to 

establish whether or not the lesion was successful. The mean number of net ipsiversive 

rotations over 120 minutes was 222 ± 38, ranging between 13 and 534. Amphetamine-

induced rotations are known to be variable, therefore the additional measure of 

contraversive paw use in the cylinder test was used to help decide which rats to include 

and which to exclude. Two rats with 51 and 60% use of the contralateral paw were deemed 

to have an incomplete lesion and were excluded from the rest of the study. The remaining 

21 rats were stratified by their net amphetamine-induced rotational response to give three 

groups (n = 7 each) of equal chance of developing AIMs in response to L-DOPA priming. 

There were no differences between groups with respect to amphetamine-induced 

rotations (P=0.9938; one-way ANOVA with Bonferroni post-hoc) or contralateral paw use in 

the cylinder test (P=0.6769; one-way ANOVA with Bonferroni post-hoc). 

6.3.5.2 6-OHDA lesioning caused a severe loss of TH-positive cells in the SNc 

At the end of the experiment the lesion success was verified by quantification of tyrosine 

hydroxylase-immunopositive cells in the substantia nigra. MFB lesions are expected to 

result in >98% loss of TH-positive cells in the SNc. One rat from the vehicle group was 

excluded at this stage as it had only 88% cell loss, leaving n=6 in this group, but n=7 in both 

the 10 mg/kg and 30 mg/kg treatment groups. An example of the cell loss obtained in these 

rats is shown in Figure 97, together with quantification of the data. 

When post-lesion amphetamine-induced rotations and cylinder contralateral paw use were 

reanalysed with this rat removed there were still no significant differences between groups 

with respect to either parameter (P=0.9654 and P=0.7827 respectively; one-way ANOVAs 

with Bonferroni post-hoc tests). 

There were no significant differences between groups with respect to intact SNc cell 

number (P=0.9326; one-way ANOVA with Bonferroni post-hoc), lesioned SNc cell number 

(P=0.1127; one-way ANOVA with Bonferroni post-hoc) or the overall % cells remaining in 

the lesioned side (P=0.1055; one-way ANOVA with Bonferroni post-hoc). 
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Figure 97: Verification of lesion size for the AIMs induction study. The upper panel shows images of 
typical cell loss patterns in each group in the AIMs induction study. The graph below shows the cells 
remaining in the lesioned SNc as a percent of those counted in the intact SNc. There was no 
difference between treatment groups with regard to the degree of cell-loss induced by the lesion, 
and therefore the risk of developing AIMs in response to repeated exposure to L-DOPA is expected 
to be similar. Data are presented as mean ± s.e.m. (n = 6-7 per group). 

 

6.3.5.3 Incidence of dyskinesia was not reduced by LuAF21934 

Rats were defined as having developed dyskinesia where the duration scores for all AIMs 

subtypes was >1 (Lundblad et al., 2002). Early in the study, on day 2, there was a 

suggestion that rats treated with 30mg/kg LuAF21934 might be developing AIMs more 

slowly than vehicle-treated rats (Figure 98a), however this was not statistically significant 

(P=0.266; Fisher’s exact test). From day 5 onwards the number of rats in each group that 

was considered to be dyskinetic was stable (Figure 98b). 5 out of 6 rats in the vehicle group 

developed dyskinesia by the end of the 14-day L-DOPA priming period. This was not 
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significantly different to the incidence of dyskinesia at day 14 in rats treated with 10mg/kg 

LuAF21934 (7 out of 7 rats; P=0.462) or in rats treated with 30mg/kg LuAF21934 (6 out of 7 

rats; P=1.000). 

 

 

Figure 98: Incidence of dyskinesia in rats treated for 14 days with L-DOPA, with or without 
LuAF21934. Once-daily L-DOPA was administered 30 minutes after pre-treatment with either 
vehicle, 10mg/kg LuAF21934 or 30mg/kg LuAF21934. (a) shows the incidence of dyskinesia on day 2 
of treatment and (b) shows the incidence of dyskinesia on days 5, 8, 11 and 14 (identical results for 
all days). Data are displayed as percentages of each group. 

 

6.3.5.4 Severity of dyskinesia was not reduced by LuAF21934 

The severity of dyskinesia between groups was assessed by comparing the scores of all rats 

that were considered to have developed dyskinesia, as defined in the methods. Comparing 

the development of overall dyskinesia (total score for all subtypes, duration x severity), 

there was an effect of time (P<0.0001) but not of treatment (P=0.5364). When the AIMs 

subtypes (total score for duration x severity) were assessed between groups this effect of 
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time was maintained (P<0.0001) but there was still no effect of treatment (axial P=0.469; 

limb P=0.435; orolingual P=0.703). These data are shown in Figure 99. 

 

 

Figure 99: Time course showing the development of AIMs with or without LuAF21934. Time 
courses are shown for (a) total AIMs, (b) axial AIMs, (c) limb AIMs and (d) orolingual AIMs in rats that 
developed dyskinesia following 14 days of treatment with L-DOPA in combination with either 
vehicle, 10mg/kg LuAF21934 or 30mg/kg LuAF21934. Data are displayed as mean ± s.e.m. (n = 5-7 
per group). While there was a significant effect of time on total AIMs and total subtype scores, there 
was no effect of treatment on any of these parameters. 

 

The significant effect of time on AIMs scores was expected, since in the exploratory study 

reported earlier in this chapter we saw that the scores for all AIMs subtypes increase over 

the course of the first few days of the priming period, stabilising after 5-7 doses of L-DOPA. 

Total AIMs and AIMs subtype scores were then compared for duration score or for severity 

score independently. For total AIMs where was still no effect of treatment on either 

parameter (P<0.0001 for the effect of time, P>0.439 for the effect of treatment). Neither 

was any effect of treatment found for the individual duration or severity scores for the 

AIMs subtypes. Table 14 shows the results of all the individual analyses performed.  
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Table 14: AIMs development over 14 days of L-DOPA priming with or without LuAF21934. The 
development of total AIMs and AIMs subtypes were compared between groups for dyskinetic rats 
(Two-way ANOVAs with Bonferroni post-hoc). These scores were further divided into duration and 
severity scores to test for an effect of treatment on these finer parameters. No effect of treatment 
was found. D x S = duration x severity score 

 
ALO total 

(D x S) 

ALO 

Duration 

ALO 

Severity 

Axial total 

(D x S) 

Axial 

Duration 

Axial 

Severity 

Time effect P<0.0001 P<0.0001 P<0.0001 P<0.0001 P<0.0001 P<0.0001 

Treatment 

effect 
P=0.5364 P=0.4397 P=0.5623 P=0.4689 P=0.4541 P=0.6224 

 
Limb total 

(D x S) 

Limb 

Duration 

Limb 

Severity 

Orolingual 

total (D x S) 

Orolingual 

Duration 

Orolingual 

Severity 

Time effect P<0.0001 P<0.0001 P<0.0001 P<0.0001 P<0.0001 P<0.0001 

Treatment 

effect 
P=0.4347 P=0.3403 P=0.3798 P=0.7033 P=0.5272 P=0.6137 
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6.4 Discussion 

The purpose of the studies in this chapter was to investigate the potential of mGlu4 positive 

allosteric modulators to suppress the expression of established L-DOPA-induced AIMs in 

rats, or to inhibit the development of AIMs in denervated rats when administered 

alongside L-DOPA during priming. In order to design these experiments we firstly 

investigated the pharmacokinetics of the mGlu4 PAMs that were tested in order to choose 

a suitable pre-treatment time, and secondly we carried out an exploratory study to 

characterise the development of AIMs in rats with an MFB lesion using our chosen protocol 

of once-daily administration of 6.25 mg/kg L-DOPA (+ 15 mg/kg benserazide), including 

identification of a positive control compound for AIMs suppression. 

6.4.1 Pharmacokinetics of tested compounds 

The pharmacokinetics studies carried out demonstrated that oral dosing of LuAF21934 and 

AF42744 gave maximum plasma exposures within 1 hour of dosing, followed by 1-3 hours 

of reasonable plasma exposure (at least ½ Cmax). This led us to administer both drugs 30 

minutes prior to L-DOPA dosing so that the drug Cmax was coincident with the striatal Cmax of 

L-DOPA (Carta et al., 2006), and was at a good concentration for the subsequent 1-2 hours 

during which time L-DOPA-induced AIMs are expressed. 

LuAF21934: As reported in Chapter 4, there are no published reports of the 

pharmacokinetic profile of LuAF21934 following oral administration, however Bennouar et 

al (2013) reported the 1-hour brain and plasma concentrations following a subcutaneous 

dose of 10mg/kg LuAF21934 in hydroxypropyl-β-cyclodextrin. This resulted in a brain 

concentration of 2422ng/g, and a plasma concentration of 2763ng/ml; a brain/plasma ratio 

of 0.88. The results of PK1 suggest that for the same dose given orally, the plasma Cmax is 

considerably diminished to 869ng/ml, likely reflecting a combination of a slower rate of 

absorption from the intestinal tract compared with the subcutaneous space and loss of 

drug via first-pass metabolism in the liver. From the PK study that was reported in Chapter 

4 (PK-B), the brain Cmax was 3963 ± 585ng/g at 1 hour following a 30mg/kg dose and the 

plasma Cmax was 6060 ± 721ng/ml at the same time point, giving a brain/plasma ratio of 

0.65. Though slightly lower than that described by Bennouar et al. it is comparable and 

suggests that a good proportion of the circulating drug crosses the BBB. 

Results from slice electrophysiology demonstrated a significant effect of LuAF21934 at the 

synapse of key interest with respect to LID, the corticostriatal synapse. LuAF21934 was able 

to inhibit corticostriatal excitatory post-synaptic currents (EPSCs) (Bennouar et al., 2013; 
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Gubellini et al., 2014), requiring a bath concentration of at least 1µM – interestingly the 

reported EC50 concentration of LuAF21934, 500nM, had no significant inhibitory effect on 

EPSCs in either of these studies. 

1µM LuAF21934 is the equivalent of 315.2ng/ml in plasma (315.2ng/g in brain). The brain 

Cmax measured for this compound in Chapter 4 was 3963ng/g, attained 1 hour following the 

30mg/kg dose, which is over 10-fold higher than this threshold. However the free fraction 

of LuAF21934 in rat brain homogenate has been measured at 3% of the total concentration 

(Bennouar et al., 2013). This means that LuAF21934 was present in the brain at a free 

concentration of around 119ng/g at 1 hour after the highest dose that was used in these 

studies, which at ~0.38µM is below both the EC50 at mGlu4 (0.5µM) and the threshold for 

inhibition of corticostriatal EPSCs according to the electrophysiological studies that have 

been previously performed (1µM). Nonetheless LuAF21934 is known to exert a 

pharmacological effect in the haloperidol model of catalepsy when total brain 

concentration is ≥400ng/g (Bennouar et al., 2013), and the brain Cmax obtained for 

LuAF21934 in the PK study in Chapter 4 was 10-fold higher than this. Therefore even if 

overall free brain concentrations of LuAF21934 are low, it is still possible that local free 

brain concentrations of LuAF21934 may be sufficient to activate target receptors in certain 

brain regions, or that the in vivo potency of LuAF21934 is higher than that measured in 

vitro; a discrepancy between the in vitro potency and the in vivo pharmacological efficacy 

of LuAF21934 would not be unexpected given that the correlation between these 

parameters is not always strong (Gleeson et al., 2011). Overall, we are therefore confident 

that LuAF21934 had every opportunity to display any antidyskinetic efficacy in the AIMs 

reversal and induction studies. 

AF42744: A full plasma profile following oral dose of 10mg/kg and 30mg/kg AF42744 has 

been reported previously, with plasma Cmax values of 613 and 3230ng/ml respectively and a 

half life of 2.9 hours after an oral dose (Célanire et al., 2011; Le Poul et al., 2012). Whereas 

the t1/2 obtained in PK1 for AF42744 (2.8 hours) was comparable with the previously 

reported value, the plasma Cmax values obtained were approximately 2-fold higher at 

1355ng/ml and 5407ng/ml for 10 and 30mg/kg oral doses respectively. This could reflect 

the differing vehicles used, as Le Poul et al. administered AF42744 as a suspension in 

carboxymethylcellulose, perhaps limiting the bioavailability compared with administration 

of a drug that has been fully solubilised in PEG-400 as in the case of PK1. Brain 

concentrations were not reported in this paper, but CSF concentrations (which more 
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closely reflect free concentrations of drug in the brain) were measured at plasma tmax as 

150nM following 10mg/kg and 1014nM following 30mg/kg AF42744. 

The 2-hour brain/plasma ratio in the samples collected for AF42744 in PK2 was calculated 

to be 0.74, which is comparable to previous in-house data collected at Lundbeck where the 

brain/plasma ratio was ~1.0 following a subcutaneous dose. However the lower-than-

expected absolute concentrations measured in these samples suggest that the extended 

period of storage in the -80°C freezer between collection and analysis (6 months) led to a 

degree of sample degradation. When the plasma and brain samples for PK2 were analysed 

for LuAF21934, lower than expected drug concentrations were also detected in these 

samples compared with the plasma and brain samples collected at this time point in a 

previous PK study (PK-B, reported in Chapter 4). Nonetheless, the rates of degradation in 

brain and plasma samples for LuAF21934 seem to have been roughly equivalent, meaning 

that the brain/plasma ratio was not significantly different in PK2 (0.55) compared with the 

Chapter 4 PK-B study (0.66). This suggests that the brain/plasma ratio measured for 

AF42744 in PK2 (0.74) may also be close to the true value despite the fact that the absolute 

plasma and brain concentrations are lower than might be expected. Having said that, the 

possible brain/plasma ratios that can be calculated depending on whether or not the rats 

whose brains had undetectable AF42744 concentrations are included are very different 

from each other. The only way to resolve this issue would be to repeat the study, preparing 

the brain homogenates 24 hours after collection as in the PK-B study in Chapter 4. For the 

purposes of the rest of this discussion I will assume the brain/plasma ratio of 0.74 is the 

true value, in order to assess the best possible scenario. 

No electrophysiological data has been reported for AF42744 at the corticostriatal synapse 

of key interest here, or indeed at any BG synapse but its potency at rat mGlu4 is higher than 

LuAF21934 (EC50 = 9.1nM AF42744 compared with 500nM for LuAF21934). Therefore it 

might be expected that a 50-fold lower concentration of this drug in the brain (i.e. 20nM) 

would have comparable effects on corticostriatal transmission to those found for 1µM 

LuAF21934 (Bennouar et al., 2013). 20nM AF42744 is equivalent to 5.45ng/ml in plasma 

(5.45ng/g in brain). The plasma Cmax measured for this drug was far above this threshold 

after both 10 and 30mg/kg doses, but more importantly the brain/plasma ratio was 0.74, 

equating to approximately 1003ng/g and 4001ng/g in the brain at tmax respectively. The 

unbound fraction of AF42744 in the brain has been determined at 1% (internal data, 

Lundbeck), leaving unbound brain concentrations following 10mg/kg and 30mg/kg 
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AF42744 of 10.3ng/g and 40.1ng/g respectively. These are the equivalent of 37.8nM and 

147.3nM, which are 5- to 10-fold lower than the 150nM and 1014nM CSF concentrations 

measured by another group following oral administration of 10 and 30mg/kg AF42744 (Le 

Poul et al., 2012), however CSF concentrations are only an estimate of the free drug 

concentration in the brain, generally within 3-fold of each other (Friden et al., 2009; Liu et 

al., 2009), so this would suggest that our estimated values are not unreasonable. More 

importantly, the free brain concentrations in our best case scenario are above the 20nM 

concentration calculated above to have a similar potency to a 1µM concentration of 

LuAF21934, and also exceed the EC50 of AF42744 at rat mGlu4 (9.1nM). 

We would therefore expect that the doses of AF42744 used in the dyskinesia reversal study 

would result in sufficient free brain concentrations to activate mGlu4, which is supported by 

the finding that 3, 10 and 30mg/kg AF42744 are effective against haloperidol-induced 

catalepsy in the rat (Le Poul et al., 2012). These free brain concentrations should not be 

sufficient to interact with other known targets of AF42744, for example adenosine A1, 

adenosine A3 and mGlu8 receptors (EC50 all ~2.2µM), meaning that any effects are expected 

to be mediated by selective activation of mGlu4. 

Amantadine: Given that amantadine is currently prescribed in patients with LID, we 

wanted to use this drug as a positive control for the reversal of dyskinesia in the rat AIMs 

model. Based on similar pre-treatment times in previous published research (Breger et al., 

2013) we decided that in our AIMs experiments we would administer amantadine 30 

minutes prior to L-DOPA, and therefore we wanted to ascertain the brain concentration of 

amantadine close to the time of its peak effect (when AIMs expression is maximal), which is 

60 minutes following L-DOPA injection and therefore 90 minutes after amantadine 

injection. Following a subcutaneous dose of 40mg/kg amantadine, the measured brain 

concentration was 23,633ng/g, equivalent to 156.25µM. The brain/plasma ratio was 9.40, 

which is comparable with the ratio of 9.9 obtained in mice following oral doses of 

amantadine (Kooijmans et al., 2012), suggesting that amantadine is actively transported 

across the BBB by a Na+ and Cl--dependent transporter in both species. The fraction of 

amantadine that is unbound in the brain is 23.3% (Summerfield et al., 2007), equivalent to 

5506.5ng/g or 36.4µM in our PK3 study. This is a slightly higher than both the in vitro 

potency of amantadine on striatal NMDA receptors (IC50 = 12.4µM;(Parsons et al., 1996) 

and the free brain concentration of amantadine measured by microdialysis in rats following 

a comparable dose (11μM;(Kornhuber et al., 1995). Nevertheless this free concentration is 
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only an indirect estimate, and as such it is not unreasonable to assume that the real free 

brain concentration of amantadine measured in our study is likely not dissimilar to either 

the IC50 value or the concentrations measured directly in previous studies. Therefore the 

brain concentration of amantadine after 90 minutes in our PK3 study is broadly in line with 

previous data and also implies that if administered 30 minutes prior to L-DOPA, 

amantadine will be present in the brain in the range at which NMDA receptor transmission 

is effectively inhibited at the time when the pharmacological effect of L-DOPA is maximal. 

6.4.2 General considerations for PK studies 

The main limitation in the way in which these PK studies were carried out is that only total 

brain and plasma concentrations were measured. This means that calculations of the free 

brain concentrations are indirect, relying on the applicability of brain binding data that was 

collected in vitro to the in vivo situation. To avoid this issue, future PK studies might involve 

microdialysis in relevant brain areas (e.g. the striatum for dyskinesia studies) in order to 

accurately measure the drug concentration in the extracellular space. 

In addition, we had some discrepancies in the brain concentrations for both LuAF21934 and 

AF42744 measured in PK2 compared with those that would be expected based on the PK 

data for LuAF21934 reported in Chapter 4. The underlying reasons for this are unknown, 

but could relate to issues of stability during storage and shipping. The influence of storage 

on drug levels was clearly demonstrated by the fact that both brain and plasma samples in 

PK3 had around 67% reduced LuAF21934 content when samples were stored for 6 months, 

compared with when they were analysed within a week. Therefore any fluctuations in 

storage conditions or temperatures that affected the brain samples in PK2 could account 

for these differences. 

6.4.3 Exploratory study 

6.4.3.1 Induction of AIMs 

The results of this study confirmed that using a combination of a 6-OHDA lesion of the MFB 

and a 21-day daily treatment regimen with L-DOPA it was possible to successfully induce 

AIMs in rats. Either the 6-OHDA lesion alone (with vehicle-treatment during the priming 

period) or L-DOPA treatment alone (in rats with a sham lesion and therefore an intact 

nigrostriatal pathway) was insufficient to induce dyskinesia, demonstrating that the 

combination of both is necessary for this phenomenon to occur. The AIMs expressed in 6-

OHDA/L-DOPA rats included axial, forelimb and orolingual manifestations that increased at 

comparable rates upon initiation of priming, reaching maximal severity by day 11 of 
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treatment. Only one of the nine rats treated with L-DOPA failed to express AIMs of all 

subtypes with a duration score of 3 or 4, therefore the incidence of severe dyskinesia is 

high when using this protocol, and is comparable to a previous report regarding both the 

incidence and severity of dyskinesia obtained (Winkler et al., 2002). 

6.4.3.2 Suppression of AIMs 

In agreement with previous reports in the rodent model, dyskinetic behaviours evoked by 

repeated exposure to L-DOPA were suppressible by inhibition of serotonergic signalling by 

8-OH-DPAT (Carta et al., 2007; Dupre et al., 2011; Iderberg et al., 2013) or glutamatergic 

signalling by amantadine (Bido et al., 2011; Breger et al., 2013; Dekundy et al., 2007; 

Lundblad et al., 2002). Activators of 5-HT1A receptors are mainly thought to decrease 

dyskinesia by reducing release of dopamine from serotonergic terminals that have 

aberrantly taken up and converted L-DOPA  (Kannari et al., 1991), but there is evidence 

that they may also reduce striatal glutamate release (Dupre et al., 2013). The side effects 

noted with the dose of 8-OH-DPAT tested, whereby rats exhibited a flat body posture with 

bilateral forepaw padding,  are qualitatively and temporally similar to those reported in 

previous rat studies (Dourish et al., 1985; Goodwin et al., 1987), and also reflect a previous 

report in the macaque model of LID where immobility and abnormal body posture 

coincided with reduced dyskinesia expression with this dose (Iravani et al., 2006). 

It is of particular interest from the point of view of this thesis that amantadine, a weak 

NMDA receptor inhibitor, significantly suppressed AIMs expression to a degree that was 

similar to that reported in humans (Luginger et al., 2000). The brain concentration of 

amantadine measured at inhibition of peak L-DOPA effect was 156.25µM, of which 36.4µM 

is predicted to be bioavailable. As stated earlier, though this estimated free brain 

concentration is a little higher than previous data, it is close to the range of the effective 

free brain concentrations (6-21µM)  previously reported in rats (Kornhuber et al., 1995).  

This lends support to the idea of enhanced glutamatergic signalling as a mechanism behind 

the expression of this phenomenon. The antidyskinetic mechanism of action of amantadine 

is thought to mainly result from its inhibitory action on NMDA receptors (Paquette et al., 

2012) located on MSNs of the direct pathway, thereby inhibiting striatonigral activation 

(Bido et al., 2011). However amantadine has a rich pharmacology that is proposed to 

include enhancement of dopamine synthesis and release (Heikkila et al., 1972) and 

sensitisation of striatal dopamine receptors (Gianutsos et al., 1985), so part of this effect 

could be attributable to alterations in activity in dopaminergic neurotransmitter systems. 

However based on the affinity of ligand used by Gianutsos et al. at the different dopamine 



315 
 

receptor subtypes, the enhanced binding reported after long-term administration of 

amantadine is likely attributable to D2-like receptors, whose activation would in fact 

decrease signalling in the indirect pathway, further unbalancing BG activation in favour of 

the direct pathway, therefore this action is unlikely to play a role in the acute antidyskinetic 

actions of amantadine. 

6.4.3.3 Rotational behaviour 

Rotational behaviour is not adequately defined in terms of dyskinesia. Several studies in 

unilaterally-lesioned PD models have measured the contraversive rotations induced by L-

DOPA as a measure of its antiparkinsonian efficacy, and have reported various ‘L-DOPA 

sparing’ treatments that potentiate the rotations induced by a sub-threshold dose of L-

DOPA (Lindén et al., 1988; Rose et al., 2006). However while rotation in non-primed rats 

following administration of L-DOPA may represent an antiparkinsonian effect, the 

significance of L-DOPA-induced rotation in primed rats is uncertain, especially as it has 

been suggested that rotation in primed animals is predominantly a consequence of axial 

dyskinesia, such that a twisted rat will automatically rotate in the direction in which it is 

facing (Konitsiotis et al., 2006). In order to address the question of whether turning in L-

DOPA primed animals still reflects the antiparkinsonian effect of L-DOPA or whether is it 

part of the dyskinetic phenomenon, the effects of known antidyskinetic compounds on L-

DOPA-induced rotation in dyskinetic animals have been tested. However the results are not 

yet definitive; while on one hand some studies have found that L-DOPA-induced turning is 

not reduced by known antidyskinetic drugs (e.g.(Lundblad et al., 2002), others have found 

that antidyskinetic drugs do reduce contraversive turning (e.g.(Henry et al., 1998).  

In the study reported here, L-DOPA-induced rotational behaviour in lesioned rats increased 

between days 2 and 8 but stabilised thereafter, in parallel with the axial subscore and 

indeed the development of total AIMs. This would certainly seem to support the theory 

that rotation is driven by axial twisting in dyskinetic rats, and if true would have an obvious 

confounding effect on the interpretation of this data in relation to the antiparkinsonian 

efficacy of L-DOPA. However since the effects of 8-OH-DPAT or amantadine on rotational 

behaviour were not tested in this study it is therefore impossible to say for sure whether 

the rotational asymmetry measured was indicative of the antiparkinsonian action of L-

DOPA or to the development of axial AIMs. In future, measurement of rotational AIMs with 

these known antidyskinetic agents would help to inform us on whether or not L-DOPA-

induced rotation is driven predominantly by axial AIMs in our hands. 
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Regardless of the lack of clarity as to the significance of rotations in this model, overall the 

exploratory study served well to validate the establishment of L-DOPA-induced AIMs in this 

laboratory and to confirm that the behavioural outcomes were certainly sensitive enough 

to pick up a suppression of dyskinesia with the known antidyskinetic compounds 8-OH-

DPAT and amantadine. 

6.4.4 Reversal study 

In order to suppress the expression of established dyskinesia a drug would need to 

sufficiently reduce the abnormal basal ganglia transmission elicited by repeated exposure 

to L-DOPA. The critical glutamatergic synapse involved in this priming process is believed to 

be the corticostriatal synapse, specifically onto striatonigral neurones. 

Neither of the mGlu4 PAMs tested in this study was able to reduce the expression of 

established severe dyskinesia in rats at the doses tested. There are no previous publications 

regarding testing of LuAF21934 for reversal, however the results obtained for AF42744 

were in line with the single published report thus far using this compound, where rat AIMs 

expression was not reversed using acute doses of 0.1, 1 or 10mg/kg AF42744 (Le Poul et al., 

2012). To my knowledge no other mGlu4 PAMs have been tested for their ability to reverse 

established AIMs expression, but the mGlu4 orthosteric agonist LSP1-2111 also failed 

reverse established AIMs in mice (Lopez et al., 2011) in agreement with our results. 

The fact that amantadine was able to suppress AIMs in this study demonstrates that 

inhibition of glutamatergic transmission in these rats represented a valid dyskinetic 

strategy. This is supported by a wealth of evidence for antidyskinetic efficacy using 

molecules targeting post-synaptically expressed glutamate receptors, notably NMDA and 

mGlu5 receptors, as detailed in the introduction to this chapter. Indeed one of the drugs 

tested in our study, LuAF21934, has been shown to inhibit corticostriatal glutamatergic 

excitatory post-synaptic currents (EPSCs) in brain slices from naive rats (Bennouar et al., 

2013; Gubellini et al., 2014). There is no data published as yet to show that LuAF21934 

retains its ability to reduce corticostriatal glutamatergic EPSCs in 6-OHDA lesioned and/or 

dyskinetic rats, but this would help to identify whether or not an mGlu4 PAM would also 

modulate signalling under these circumstances. It could be the case that the sensitisation 

of MSNs thought to underlie the development of dyskinesia is simply too robust to be 

significantly affected by a positive allosteric modulator, which may only exert a subtle 

effect on glutamate release that has already been shown to be overactive in the dyskinetic 

rat striatum (Dupre et al., 2011; Nevalainen et al., 2013). 
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An alternative possibility is that the net effect of the presence of LuAF21934 or AF42744 at 

all basal ganglia synapses, as would be obtained following systemic dosing, was small. Since 

mGlu4 receptors are present and functional at multiple glutamatergic and GABAergic 

synapses in this system (detailed elsewhere in this thesis), their simultaneous activation at 

all locations could exert opposing effects and cancel each other out (Cuomo et al., 2009; 

Gubellini et al., 2014; Marino et al., 2003; Valenti et al., 2005). For example mGlu4 mRNA 

has been localised to the striatum, GP and STN (Messenger et al., 2002; Testa et al., 1994), 

and mGlu4 receptor protein to the GP, SNr and EPN (Bradley et al., 1999b; Bradley et al., 

1999c; Broadstock et al., 2012; Corti et al., 2002), so activation of mGlu4 could reduce 

signalling in the indirect pathway. This might counteract the antidyskinetic action of 

decreased activation in the direct pathway elicited by reduction of glutamate release from 

corticostriatal neurones. 

Finally it is also possible that the drugs were not present at sufficient concentrations at the 

relevant brain regions to affect neurotransmission. While our projected free brain 

concentration of AF42744 (see earlier) would suggest that this drug is present in the brain 

at sufficient concentrations to selectively activate mGlu4, this was not the case for 

LuAF21934. Based on the PK study reported in Chapter 4 and internal Lundbeck studies 

into drug binding in brain homogenates, we estimate that at the highest dose given, 

30mg/kg, LuAF21934 was present in the brain at a free concentration of around 377nM. 

This is around two thirds of the EC50 concentration of LuAF21934 at mGlu4 (~500nM) and 

could mean that there is insufficient bioavailable drug to give meaningful activation of 

these receptors. It is also only a third of the concentration that was required to inhibit 

corticostriatal EPSCs in vitro (1µM;(Bennouar et al., 2013). However, the translatability 

between in vitro measures of potency and in vivo average brain free concentrations is 

unclear. It is possible that LuAF21934 is not homogenously distributed in the brain and 

could therefore be present in sufficient local concentrations to activate mGlu4 receptors in 

certain regions. Certainly the total brain concentrations measured in our PK studies (Cmax = 

3963ng/g) are comparable if not higher than other studies into the antiparkinsonian actions 

of LuAF21934 where a definite pharmacological effect has been found (e.g. 400-2500ng/g 

at the time of peak effect in the haloperidol model;(Bennouar et al., 2013). 

Thus targeting mGlu4 receptors with PAMs is not an efficacious way of reversing or 

suppressing established dyskinesia. In addition, since the completion of this study in rats a 

similar study has been carried out in MPTP-treated marmosets, where doses of 3mg/kg and 
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10mg/kg LuAF21934 administered p.o. immediately before 8mg/kg L-DOPA + 10mg/kg 

benserazide failed to reduce the expression of established dyskinesia (unpublished data, M. 

Jackson et al. 2014). This is perhaps not surprising given the many striatal signalling 

alterations that are involved in the development of dyskinesia, meaning that a subtle 

alteration in corticostriatal glutamate release is likely insufficient to meaningfully reduce 

activation of the sensitised post-synaptic striatonigral neurone. Indeed the only effective 

glutamatergic therapies that have been reported in the literature to inhibit expression of 

established dyskinesia target post-synaptic AMPA, NMDA or group I mGlu receptors that 

are known to be involved with D1 receptor signalling (see sections 6.1.2 to 6.1.5), and thus 

directly inhibit activation of these neurones, whereas agonists or PAMs of the 

predominantly pre-synaptic group II or group III mGlu receptors, which seek to reduce 

activation of the post-synaptic neurone indirectly by inhibiting presynaptic 

neurotransmitter release, have so far failed to reproduce this effect (Le Poul et al., 2012; 

Lopez et al., 2011; Rylander et al., 2009). 

6.4.5 L-DOPA sparing/potentiation 

This test was carried out to ascertain whether mGlu4 PAMs could act as L-DOPA 

potentiators, and also to rule out any inhibitory effects of these PAMs on the 

antiparkinsonian actions of L-DOPA. However as discussed earlier, the significance of 

rotational behaviour in this model is not well-defined. It is likely that even if L-DOPA-

induced rotations in dyskinetic rats partly reflect the antiparkinsonian actions of L-DOPA, 

they will be confounded by the strong influence that axial AIMs are believed to play in also 

promoting contraversive turning (Konitsiotis et al., 2006). 

If one were to suppose that L-DOPA-induced rotational asymmetry is representative of the 

antiparkinsonian effect of L-DOPA then the results of the L-DOPA potentiation study would 

suggest that neither LuAF21934 nor AF42744 potentiate, or indeed inhibit, this 

antiparkinsonian action. Alternatively if one were to suppose that rotational asymmetry 

reflects the degree of overall or axial dyskinesia elicited by L-DOPA, then these rotometry 

results would suggest that neither drug suppressed nor exacerbated overall AIMs, or axial 

subtype AIMs. This reflects the data collected earlier in this study regarding the lack of 

effect of an acute dose of either LuAF21934 or AF42744 on the duration or severity of 

overall or axial AIMs. 

Therefore the interpretation of these results could be that mGlu4 PAMs do not potentiate 

or inhibit the antiparkinsonian actions of L-DOPA, or that mGlu4 PAMs do not improve or 
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worsen axial AIMs, or indeed that both conclusions are correct if both mechanisms 

contribute to the overall rotational response. Meanwhile in a recent marmoset study 

where we assessed the ability of LuAF21934 to reverse established dyskinesia, we found 

that this drug had no detrimental or L-DOPA potentiating effects with regard to the 

antiparkinsonian actions of L-DOPA in this model. This supports the results of the rat study 

in finding no overall effect in either direction. 

L-DOPA potentiation/sparing activity has previously been reported for both drugs tested in 

this study (Bennouar et al., 2013; Le Poul et al., 2012), and similarly for other mGlu4 PAMs 

such as VU0364770 (Jones et al., 2012), however notably these results were obtained using 

behavioural tests such as the cylinder and adjusted steps tests rather than L-DOPA-induced 

rotational asymmetry. The failure of LuAF21934 and AF42744 to potentiate L-DOPA-

induced rotations in our experiments is in contrast to a recent study showing that a 

different mGlu4 PAM, TAS-4, dose-dependently potentiates L-DOPA-induced turning in 

lesioned rats (Dube et al., 2014). However it is important to note that in all the studies of L-

DOPA sparing activity mentioned above, the rats were lesioned but had either not 

undergone L-DOPA priming or were primed but had not developed dyskinesia. It is 

therefore difficult to tell to what extent the L-DOPA-induced rotation measured in our 

study, where all rats were severe dyskinetic, was reflective of the antiparkinsonian effects 

of L-DOPA and to what extent it was reflective of the dyskinesiogenic effects of L-DOPA. 

Since no other tests of the antiparkinsonian actions of L-DOPA, such as the cylinder test or 

rotarod, were performed on our rats under the influence of either LuAF21934 or AF42744 

there is no further information to support or discount the validity of the rotometry results 

regarding L-DOPA sparing. Nevertheless what can be concluded is that the mGlu4 PAMs 

tested did not have a detrimental effect on L-DOPA-evoked rotation when administered 

alongside either a high dose or a low dose of L-DOPA. 

Testing of LuAF21934 and AF42744 for L-DOPA sparing/potentiation in non-primed rats or 

in primed but non-dyskinetic rats would help to inform us on the potential of these 

compounds to reduce the development of dyskinesia by virtue of a reduction in the 

required dose of L-DOPA.  

6.4.6 AIMs induction study 

Building on the previous study, where we tested the ability of mGlu4 PAMs to reverse 

established dyskinesia, in this study we set out to determine whether an mGlu4 PAM could 

inhibit the induction of AIMs when administered alongside L-DOPA in rats that had been 
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lesioned but were L-DOPA naive. LuAF21934 or vehicle was given 30 minutes before 

injection of L-DOPA, once daily for 14 days, and AIMs were scored at intervals during this 

priming period on days 2, 5, 8, 11 and 14. However as was the case for AIMs reversal, no 

significant effect of treatment with LuAF21934 was noted on the development of AIMs in 

treated groups compared with vehicle. There was a hint that the highest dose of 

LuAF21934 delayed the onset of AIMs early on in the study, however this effect was lost at 

all later time points. 

The failure of LuAF21934 to prevent the induction of AIMs in my study is in contrast to a 

recent report using the same compound, where coadministration of 30mg/kg LuAF21934 

with L-DOPA significantly reduced the incidence of dyskinesia in denervated rats (Bennouar 

et al., 2013), though the early hint of reduced incidence in my induction study at this same 

dose might suggest that it partially reflected these previous results. Similarly to the 

Bennouar et al. study, all rats in my induction study that did develop AIMs did so with 

comparable severity regardless of treatment group, suggesting that once priming has 

occurred, treatment with LuAF21934 does not suppress the severity or expression of AIMs. 

One potential explanation for the different outcomes in these studies could lie in the 

different dosing protocols employed; twice daily i.p. co-injection of L-DOPA plus LuAF21934 

in the Bennouar study, once daily s.c. L-DOPA 30 minutes after p.o. LuAF21934 in the 

present study. Intraperitoneal dosing may have resulted in higher drug exposure due to 

bypassing primary metabolism in the liver and avoiding variability in gastrointestinal 

absorption, though with no brain concentrations reported after i.p. dosing this cannot be 

known for sure. Certainly the plasma Cmax reported in the Bennouar paper following a 10 

mg/kg s.c. dose of LuAF21934 is over 3 times that obtained following a 10 mg/kg oral dose 

in our PK1 study; 2763 ng/ml versus 869 ng/ml, suggesting that these factors significantly 

influence drug bioavailability and maximum exposures. 

Alternative explanations for the lack of significant inhibition of AIMs development in this 

study are that LuAF21934 was not present at the correct synapses at sufficient 

concentrations to alter neurotransmitter release, or that any reduced signalling obtained 

was either insufficient to significantly affect downstream signalling in sensitised 

striatonigral MSNs or was counteracted by effects of the drug elsewhere in the basal 

ganglia. These possibilities were discussed in more detail in relation to the AIMs reversal 

study. 
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The inability of LuAF21934 administration to inhibit AIMs development is in contrast not 

only to the Bennouar (2013) study but also to results using other PAMs or agonists 

targeting mGlu4. For example the allosteric agonist LSP1-2111 attenuated AIMs 

development when administered alongside L-DOPA in mice (Lopez et al., 2011) and a very 

recent publication reported that the mGlu4 PAM TAS-4 inhibited AIMs development when 

administered alongside L-DOPA in rats (Dube et al., 2014), though in this case it might be 

explained by the administration of a lower concentration of L-DOPA in TAS-4 treated 

groups compared with vehicle groups, as TAS-4 was also demonstrated to have L-DOPA 

sparing properties. 
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6.5 Conclusion 

The ability of amantadine to suppress the expression of AIMs in these studies demonstrate 

that targeting glutamatergic transmission is a valid antidyskinetic strategy in this model, as 

it is in human LID. 

Our findings that LuAF21934 and AF42744 do not have antidyskinetic efficacy where AIMs 

are already established do not support the use of these drugs in existing dyskinesia, in 

accordance with existing work. Since brain penetrance of these compounds was confirmed 

at concentrations that have been shown by others to be pharmacologically active in PD 

models, the likely reason for the lack of success of these reversal studies is that any effect 

on glutamatergic transmission was insufficient to be clinically effective in the already 

sensitised, dyskinetic state. 

The L-DOPA sparing potential of LuAF21934 and AF42744 was not confirmed in the 

rotational study despite being reported by other groups, however due to the possible 

confounding effects of axial dyskinesia in measuring this outcome it would be useful to re-

test this parameter in non-dyskinetic animals. Nevertheless the early results from a recent 

marmoset study support the lack of an effect of LuAF21934 on the antiparkinsonian actions 

of L-DOPA. 

The hint of an ability of 30mg/kg LuAF21934 to delay the onset of AIMs in rats reflects 

previous research where this compound partly inhibited the development of AIMs when 

given alongside L-DOPA. However the lack of a significant effect means that the results are 

not conclusive, and warrants further work into the ability of this compound to delay or 

prevent AIMs onset, perhaps incorporating different dosing regimens or varying doses of L-

DOPA. 
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7 General Discussion and Conclusions 

The search for new treatments for Parkinson’s disease is necessary to tackle the continuing 

decline in patients’ motor function and quality of life that is not adequately controlled by 

currently available therapies. There is much interest in targeting glutamatergic signalling in 

the context of this disease as a means to alleviate the symptoms, provide neuroprotection 

and also prevent or suppress the treatment-related side effects, but as yet the only 

antiglutamatergic drug that is regularly prescribed in PD or L-DOPA-induced dyskinesia (LID) 

is amantadine, a weak NMDA receptor antagonist. The move towards more subtle 

manipulation of glutamate signalling by avoiding direct targeting of ionotropic glutamate 

receptors in favour of modulating their activity and decreasing neurotransmitter release 

probability led to a great research effort focused on G-protein coupled metabotropic 

glutamate receptors. 

Group III mGlu receptors are predominantly presynaptically located on glutamate and 

GABA terminals where their activation inhibits adenylate cyclase activity and Ca2+ channels, 

reducing the probability of neurotransmitter release. They are activated by endogenous 

glutamate and due to their localisation in and around the presynaptic active zone they 

provide feedback inhibition of release in situations where glutamate is at sufficient 

concentration to begin to ‘overspill’ the synaptic cleft. Enhancing or manipulating their 

activation should therefore be useful in the circumstances of pathologically increased 

glutamate release such as is encountered at the subthalamonigral synapse in the indirect 

pathway in PD. Additionally, since global reduction of glutamatergic signalling is also 

beneficial in LID, likely by reducing corticostriatal input to the hyperactive direct pathway, 

targeting group III mGlu receptors to reduce glutamate release at this synapse might also 

be expected to have an antidyskinetic effect. 

The general aims of this thesis were therefore to use allosteric activators of group III mGlu 

receptors, predominantly mGlu4 but also mGlu7, to address two of the principal unmet 

clinical needs in Parkinson’s disease; ongoing neurodegeneration and levodopa-induced 

dyskinesia. 

7.1 Neuroprotection 

Neuroprotection is one of the key goals in PD research, since preventing the loss of further 

dopaminergic neurones after diagnosis would theoretically halt the decline in motor 

function and also reduce the risk of development of LID, which is increased as the number 

of dopaminergic terminals in the striatum diminishes. We hypothesised that activation of 
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these group III mGlu receptor subtypes would provide protection against 6-OHDA-induced 

neurodegeneration in the rat.  

7.1.1 mGlu4 

The results described in Chapter 2 demonstrate that neuroprotection can indeed be 

achieved in rats with a full unilateral nigral 6-OHDA lesion by sub-chronic supranigral 

infusion of the mGlu4 PAM VU0155041, in support of our hypothesis. Though the 

protection provided was not full, neuronal survival and striatal dopamine concentration 

were both approaching 40% in the best-responding group. Given that PD symptoms appear 

in patients when around 60% of dopaminergic cells are lost (i.e. 40% survive) this degree of 

protection is potentially clinically relevant. In support of this, the group with the greatest 

degree of protection also showed significant preservation of motor function as assessed by 

several behavioural tests. Interestingly this PAM showed a bell-shaped dose response 

profile, which is unexpected given that PAMs are not expected to cause receptor 

desensitisation unlike their agonist counterparts. In this case the loss of a therapeutic effect 

at high concentrations suggests that at these doses VU0155041 is acting as an agonist, as 

has been reported for this compound at high concentrations. This agonist activity could 

cause receptor desensitisation and thereby limit the efficacy of the agent. Overall though, 

these results strongly support the idea that a meaningful degree of neuroprotection can be 

provided in this model by selective activation of mGlu4. On the other hand the lack of 

neuroprotection afforded in this model by a different mGlu4 PAM, Compound 11, highlights 

the likelihood that this protective effect is highly influenced by the individual characteristics 

of the different allosteric modulators. This might include aspects such as the in vivo 

clearance rate, concentration-dependent PAM/agonist activity and the recently described 

differential efficacy regarding the activation of mGlu2/mGlu4 receptor heterodimers, which 

adds an additional layer of complexity that must be considered in future preclinical and 

especially clinical situations. Therefore in addition to finding mGlu4 PAMs with favourable 

pharmacokinetic profiles and good selectivity and potency, in the light of the loss of 

efficacy of VU0155041 at higher concentrations it is also clear that it will be crucial to 

identify an efficacious dose range for those PAMs that also exhibit agonist activity that 

avoids loss of the therapeutic effect. 

Though we did not investigate the mechanisms involved within the neuroprotection 

experiments themselves, our hypothesis was based on the notion that local activation of 

presynaptic mGlu4 receptors at the subthalamonigral synapse would normalise the 

enhanced glutamate release into the SNc that is associated with nigral cell loss in this 
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model, thereby inhibiting excitotoxic neurodegeneration. Whilst we predicted therefore 

that we would see a VU0155041-mediated inhibition of glutamate release into the SNc, the 

results of the microdialysis studies reported in Chapter 3 do not support this. In fact our 

results suggest that in intact rats, both broad spectrum activation of group III mGlu 

receptors with L-AP4 and positive allosteric modulation of mGlu4 with VU0155041 

preferentially inhibit GABA release, with a concomitant increase in glutamate release. We 

propose that the increase in glutamate release is a secondary effect of group III mGlu 

heteroreceptor-mediated reduction of GABA release. This could potentially be driven by 

disinhibition of nigrosubthalamic dopaminergic signalling, which is known to increase 

activity of STN neurones (Cragg et al., 2004; Paladini et al., 1999), and/or by reduction of 

direct GABA-mediated inhibitory control of subthalamic terminals (Hatzipetros et al., 2006). 

While this inhibition of GABA release and augmentation of glutamate release in the SNc 

might be expected to promote excitotoxic cell loss, and therefore would caution against 

use of group III mGlu receptor activation in PD, when L-AP4 was tested in the fully 6-OHDA 

lesioned SNc these potentially detrimental effects were lost, such that no significant 

alterations were seen in KCl-evoked release of either glutamate or GABA in the presence of 

the agonist compared with control. While this still does not support reduction of 

subthalamonigral glutamate release as the mechanism behind L-AP4 or VU0155041-

mediated neuroprotection it at least suggests that in the dopamine depleted situation 

these treatments would not be expected to enhance excitotoxicity. In the absence of 

support for a reduction of glutamate release it is possible that alternative neuroprotective 

mechanisms that have been attributed to selective mGlu4 activation, such as attenuation of 

inflammation, underlie the neuroprotection seen in the 6-OHDA-lesioned rat when treated 

with supranigrally with VU0155041. For example there is evidence that activation of mGlu4 

in mixed glial/neuronal cultures exerts a neuroprotective effect, which is supported by 

reduced production of inflammatory markers in vitro (Besong et al., 2002; Maj et al., 2003). 

This is further supported by the observation of a similar anti-inflammatory effect following 

intranigral delivery of VU0155041 in a previous study in this lab (Betts et al., 2012). 

Having successfully demonstrated neuroprotection following local intracerebral 

administration of an mGlu4 PAM the next step was to investigate if a similar effect could be 

obtained following sub-chronic systemic administration of a brain penetrant mGlu4 PAM. 

For this we used LuAF21934, which is structurally similar to VU0155041 and has a similar 

potency at mGlu4 but which has improved BBB penetrance. Before commencing the 

neuroprotection study we confirmed that we could achieve good brain concentrations 



326 
 

following oral administration of LuAF21934 in solution. Initial analysis of the results 

suggested that LuAF21934 had not provided functional neuroprotection in this model at 

either of the doses tested, with no improvements in nigrostriatal integrity at the nigral or 

striatal levels and, consistently, no functional improvements in any behavioural tests. 

However whilst carrying out additional analysis of inflammatory markers in these rats we 

observed that around two thirds of rats across all groups in this study had some degree of 

physical damage in the SNc. The cause of this physical damage is unknown, as it was not 

restricted to rats within a single lesioning day or treatment group, however this might well 

have proven insurmountable from the point of view of neuroprotection and thus the 

neuroprotective potential of sub-chronic systemic treatment with LuAF21934 against a 

nigral 6-OHDA lesion cannot be unequivocally deduced from this experiment. Another 

possibility behind the failure of this study to reveal a protective effect is that the lesion was 

simply too severe, since even in those rats with no evident physical damage there was no 

suggestion of a protective effect of treatment with LuAF21934. Given the previous report 

of successful protection against MPTP-induced degeneration in mice that were treated 

systemically with PHCCC (Battaglia et al., 2006) it seems that it is worth pursuing this line of 

investigation. Ideally the compounds tested should not have the selectivity issues of 

PHCCC, which has partial antagonist activity at mGlu1b that could also account for the 

neuroprotective effect, as has been demonstrated for other mGlu1 antagonists, 

(e.g.(Vernon et al., 2007). First steps might include repeating the LuAF21934 experiment in 

a partial 6-OHDA lesion model (with the toxin infused in either the MFB or striatum to 

avoid physical damage to the SNc) or in the MPTP mouse model as carried out by Battaglia 

et al. (2006) for comparison with PHCCC. If the lack of a protective effect in this study is 

indeed a real negative result then it raises questions as to whether the actions of an mGlu4 

PAM elsewhere in the BG or brain might counteract its effects at the subthalamonigral 

synapse. This might be first assessed using a PAM with proven neuroprotective activity in 

this model, such as VU0155041, administered i.c.v. This would be a good step back from 

local SNc administration to more general activation of mGlu4 receptors in the brain, but will 

negate the problems that this compound demonstrates in penetrating the blood-brain 

barrier. 

7.1.2 mGlu7 

In contrast to mGlu4 (at least when administered supranigrally), selective activation of 

mGlu7 does not currently seem to be a promising strategy for providing neuroprotection in 

PD models. As reported in Chapter 5 the allosteric agonist AMN082 failed to provide 
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neuroprotection or functional improvements in rats with a nigral 6-OHDA lesion, despite 

achieving good brain levels that were pharmacologically significant judging by the side 

effects seen at high doses. In addition, in contrast to the LuAF21934 neuroprotection study, 

no physical damage was evident in the SNc of these animals, suggesting that this was not a 

factor in the failure of AMN082 to protect against 6-OHDA-induced neurodegeneration. 

This does not rule out the possibility, however, that the lesion was too severe to allow time 

for AMN082 to exert any protective effects and similarly to the LuAF21934 study in 

hindsight this study might have been better conducted in a partial lesion model. 

Nevertheless previous studies performed in this lab (Betts et al., unpublished) failed to 

show a protective effect when AMN082 was administered supranigrally in this model, 

therefore there is not the same discrepancy between local versus systemic neuroprotective 

efficacy that we have found for activation of mGlu4, making the negative outcome of the 

AMN082 study more likely to be a real effect. 

Aside from the concerns related to the model, the tool compound used also has limitations 

that might easily have affected the outcome of this study. AMN082 is not only an allosteric 

agonist, raising the possibility that mGlu7 receptors were rapidly desensitised/internalised 

upon ligand binding, but it also has multiple off-target effects, some of which we believe 

we observed in this study. It is therefore impossible to tell exactly what other 

pharmacological interactions might have interfered with or counteracted the actions of this 

compound on mGlu7 receptors. In addition we saw from the experiments in Chapter 2 that 

different ligands can have different neuroprotective efficacies in vivo despite similar in vitro 

profiles, therefore it cannot be ruled out that a different mGlu7-specific allosteric 

modulator might be protective in this model. The potential of mGlu7 as a therapeutic target 

in PD therefore remains uncertain pending the development of more selective mGlu7 

agonists or positive allosteric modulators, and likely also needs to be tested in a partial 

lesion model to more closely reflect the clinical situation and allow the compound the time 

to exert its effects. 

7.2 Levodopa-Induced Dyskinesia 

One of the major limiting factors in the use of dopamine replacement strategies, and in 

particular the dopamine precursor L-DOPA, is the development over time of abnormal 

involuntary movements. This process involves multiple alterations in synaptic functioning, 

especially in the striatum, and once established is seemingly irreversible such that any 

future exposure to L-DOPA will elicit dyskinesia. Current treatment options are limited to a 
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reduction of the dose of L-DOPA, which can mean that patients’ motor dysfunction is not 

adequately controlled, or the antiglutamatergic drug amantadine. There is a clear need for 

alternative antidyskinetic compounds, either to suppress dyskinesia in those who have 

already developed the side effect or to take alongside L-DOPA to prevent its occurrence in 

people who have not. We hypothesised that due to the well-known antidyskinetic effects 

of amantadine, positive allosteric modulation of mGlu4 might be another antiglutamatergic 

strategy that might prove worthwhile in the treatment or prevention of LID. 

With regard to their use in LID, the experimental results presented in Chapter 6 do not 

support the use of mGlu4 PAMs as antidyskinetic agents for the suppression of existing 

dyskinesia. Since our pharmacokinetic studies showed that both LuAF21934 and AF42744  

were brain penetrant and were present throughout the duration of action of L-DOPA it is 

probable that the subtle modulatory effect afforded by targeting mGlu4 receptors is simply 

inadequate to overcome the seemingly irreversible plasticity that underlies the 

development and maintenance of LID. This is concordant with previous publications where 

neither the mGlu4 PAM AF42744 (ADX88178) nor the mGlu4 agonist LSP1-2111 were able to 

diminish the expression of established dyskinesia in the rodent AIMs model (Le Poul et al., 

2012; Lopez et al., 2011), and therefore the weight of evidence is against the usefulness of 

this approach. Further to this, recent experiments that we carried out in collaboration with 

Lundbeck and the Salvage lab at King’s found that LuAF21934 showed no antidyskinetic 

efficacy in the MPTP-treated L-DOPA-primed marmoset, which would certainly suggest that 

this approach is not worth pursuing further. 

On a positive note, while the L-DOPA-induced rotations might not have been the most 

accurate reflection of the antiparkinsonian effects of L-DOPA in our rodent experiment 

considering the possible confounding effects of axial AIMs, neither LuAF21934 nor AF42744 

inhibited this aspect of the L-DOPA response in rats. Furthermore LuAF21934 did not 

detrimentally affect the L-DOPA-induced improvements in locomotor and motor disability 

scores in the marmosets when tested. Unlike previous reports using these compounds we 

found no significant evidence in support of a beneficial L-DOPA potentiating effect of either 

of these compounds in rats or of LuAF21934 in marmosets. Nevertheless these results 

suggest that even if they do not act as L-DOPA potentiators, mGlu4 PAMs at least do not 

interfere with the therapeutic effects of L-DOPA in these models. This is an important 

finding as any agent that compromised the efficacy of L-DOPA would certainly not be 

considered further as a potential therapeutic agent against any aspect of PD, whether that 
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might be motor symptoms, LID or non-motor symptoms. Therefore this class of agents as a 

whole is still worthwhile investigating for these indications. 

When LuAF21934 was tested for its ability to prevent the development of dyskinesia when 

administered alongside L-DOPA in de novo treated 6-OHDA-lesioned rats there was no 

significant antidyskinetic effect, though there was a trend towards a delayed development 

of abnormal movements in the group treated with 30mg/kg LuAF21934. It would be 

interesting to look more closely at this by repeating the experiment in a larger group of 

animals, particularly in light of the reports in the literature of inhibition of induction of 

rodent AIMs with coadministration of allosteric modulators or agonists of mGlu4 alongside 

L-DOPA (Bennouar et al., 2013; Lopez et al., 2011). Possible reasons for the lack of success 

in my experiment when compared with the positive results of these two studies include the 

different dosing route used and the type of ligand. Bennouar et al. (2013) also used 

LuAF21934 at the same doses as in my study, however the drug was dosed 

intraperitoneally and therefore reached higher maximal plasma concentrations (and thus 

likely higher maximal brain concentrations) compared with my study where the drug was 

given as an oral dose. Lopez et al. (2011) used an allosteric agonist of mGlu4 rather than a 

PAM, and the increased activation of receptors that might be expected to result from this 

approach may have proved important in eliciting the antidyskinetic effect. The fact that 

more than one study using more than one different ligand has shown positive results in the 

reduction of dyskinesia development supports further studies into the efficacy of this 

approach. The use of allosteric agonists instead of PAMs might prove to be important in 

some circumstances where a more powerful activation of mGlu receptors seems to be 

required, provided that receptor desensitisation can be avoided. 

Even if mGlu4 PAMs do not show consistent effects in reducing the development of LID 

against a stable experimentally defined dose of L-DOPA, several of these compounds have 

shown L-DOPA potentiating actions in previous reports (Bennouar et al., 2013; Le Poul et 

al., 2012). This raises the possibility that they might still be indirectly efficacious at reducing 

the development of LID by reducing the necessary therapeutic dose of L-DOPA, as was 

recently demonstrated for the novel mGlu4 PAM TAS-4 in the rodent AIMs model (Dube et 

al., 2014). 

7.3 Non-motor symptoms 

Though not addressed in this thesis, activation of group III mGlu receptors might also be 

beneficial with regard to the treatment of several of the non-motor symptoms that are 



330 
 

regularly experienced by PD patients alongside their motor disabilities. These include 

depression, anxiety, pain and autonomic dysfunction as detailed below. 

Activation of group III mGlu receptors in general with ACPT-I, or selective activation of 

mGlu4 with LuAF21934 or LSP1-2111, has shown anxiolytic and antidepressant effects in 

rodents (Slawinska et al., 2013; Tatarczyñska et al., 2002; Wierońska et al., 2010). Similar 

effects have been seen using the selective mGlu7 agonist AMN082 in models of depression 

(Palucha et al., 2007) and the selective mGlu8 agonist DCPG in models of learned fear 

(Schmid et al., 2006). 

In addition to this, broad spectrum group III agonists (ACPT-I and L-AP4), mGlu4 PAMs 

(PHCCC and VU0155041) and the mGlu7 allosteric agonist AMN082 have shown efficacy in 

various rodent models of pain, including neuropathic and inflammatory pain (Chen et al., 

2005b; Dolan et al., 2009; Goudet et al., 2008; Wang et al., 2011). 

With respect to autonomic dysfunction, activation of mGlu7 (Julio-Pieper et al., 2010) and 

mGlu8 (Tong et al., 2003) have been shown to increase faecal water content and colonic 

motility respectively, which could have implications for treatment of constipation that is 

often experienced by PD patients and can affect absorption of medication. 

These results raise the possibility that targeting this group of receptors as a whole or 

subtype-selectively could not only improve the symptoms and possibly delay the 

neurodegeneration associated with PD (depending on the route of administration) but 

could also help address some of the non-motor symptoms that are commonly experienced 

by patients and which limit their quality of life. 

7.4 Final thoughts 

Overall the work presented in this thesis supports the continued examination of mGlu4 as a 

target for neuroprotection in PD and sets the scene for future experiments that will 

advance this area of research. The unexpected results of the microdialysis studies highlight 

the requirement for further investigation into the protective mechanisms involved in the in 

vivo neuroprotective effects of supranigral injection of mGlu4 PAMs, perhaps by testing for 

these protective effects in rats that have been depleted of microglia (Elmore et al., 2014) or 

using inhibitors of pathways that may be initiated by mGlu4 activation such as MAPK (Jiang 

et al., 2006). In addition to this, due to the inconclusive nature of the systemic LuAF21934 

neuroprotection study, a repeat of this study using this same compound or another 



331 
 

systemically active mGlu4 PAM but in a model with a partial lesion would be a worthwhile 

next step. 

 mGlu7 seems less likely to prove a useful target in the near future given the lack of 

selective ligands that have been developed to target this receptor subtype, however the 

potential benefits of targeting this receptor in PD cannot be ruled out on the basis of this 

one compound. Studies using mGlu7-specific antagonists to counteract the effects of either 

broad spectrum group III agonists or AMN082 might help to discriminate between mGlu7-

mediated effects and those mediated by other group III subtypes or off-target effects to 

elucidate whether this receptor warrants further investigation in the context of PD. 

On the topic of LID, while mGlu4 PAMs do not show potential regarding suppression of the 

expression of established dyskinesia they may show some promise as inhibitors of 

dyskinesiogenesis. However this effect is more variable than that obtained when 

postsynaptic glutamate receptors such as NMDA receptors and mGlu5 are targeted and 

therefore these two receptor types are likely to be more actively pursued as targets for 

both suppression and inhibition of development of dyskinesia in the near future. One very 

important finding from the dyskinesia studies in rats and marmosets was a confirmation 

that mGlu4 PAMs do not appear to interfere with the antiparkinsonian actions of L-DOPA, 

which paves the way for use of this class of agents in any aspect of Parkinson’s disease for 

which it may be beneficial. 

In conclusion, although the results reported in this thesis are largely negative they have 

helped to shed light on several aspects of this field of research, including which 

mechanisms may or may not be involved in the neuroprotective effects of local activation 

of mGlu4 receptors and the lack of detrimental interactions of mGlu4 PAMs on the 

therapeutic efficacy of L-DOPA. They pave the way for future studies into the 

antidyskinesiogenic efficacy of mGlu4 receptor activation and the neuroprotective efficacy 

of widespread targeting of mGlu4 and mGlu7 receptors using more clinically relevant 

models. 
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