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The radiation dynamics of optical emitters can be manipulated by properly designed material structures
modifying local density of photonic states, a phenomenon often referred to as the Purcell effect. Plasmonic nanorod
metamaterials with hyperbolic dispersion of electromagnetic modes are believed to deliver a significant Purcell
enhancement with both broadband and nonresonant nature. Here, we have investigated finite-size resonators
formed by nanorod metamaterials and shown that the main mechanism of the Purcell effect in such resonators
originates from the supported hyperbolic modes, which stem from the interacting cylindrical surface plasmon
modes of the finite number of nanorods forming the resonator. The Purcell factors delivered by these resonator
modes reach several hundreds, which is up to 5 times larger than those in the ε-near-zero regime. It is shown
that while the Purcell factor delivered by the Fabry-Pérot modes depends on the resonator size, the decay rate in
the ε-near-zero regime is almost insensitive to geometry. The presented analysis shows a possibility to engineer
emission properties in structured metamaterials, taking into account their internal composition.

DOI: 10.1103/PhysRevB.92.195127 PACS number(s): 81.05.Xj, 73.20.Mf, 78.67.Pt

I. INTRODUCTION

The local density of optical states (LDOS) related to
various photonic modes can strongly affect quantum dynamics
of light-matter interactions [1]. Free-space electromagnetic
modes can be modified in the vicinity of material structures,
and as a result, either a local enhancement or reduction of the
interaction strength can be achieved. The rate of spontaneous
emission in a weak light-matter coupling regime, calculated
on the basis of the Fermi golden rule, is proportional to
the LDOS, and its change relative to free space is referred
to as a Purcell factor [2]. Furthermore, the formalism of
the Purcell effect can be generalized to higher-order effects,
such as spontaneous two-photon emission [3,4]. The Purcell
enhancement in dielectric cavities is typically related to the
ratio of the quality factor of the resonance to the volume
occupied by the resonant mode. Various types of photonic
cavities can deliver quality Q factors as high as 1010 and
satisfy the conditions to reach the strong-coupling regime [5]
where the Purcell factor description of decay dynamics breaks
down [6]. Noble metal (plasmonic) nanostructures provide
relatively low quality factors but yield subwavelength optical
confinement [7] and, as a result, also efficiently influence
spontaneous emission [8,9]. This nanoplasmonic approach is
extremely beneficial for certain quantum optical applications,
where improved and designed scattering cross sections are
required to develop functionalities at the nanoscale and single-
photon levels [10]. The Purcell enhancement in plasmonic
nanostructures depends significantly on the relative position
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of the emitters with respect to a metal nanostructure, posing
serious challenges and limitations for large-scale practical
implementations [11]. Furthermore, the enhancement, based
on local plasmonic resonances approach, still has a limited
bandwidth, even though it is much broader than for high-Q
optical cavities.

A qualitatively different approach to decay rate engineering
relies on designing the hyperbolic dispersion of modes
supported by anisotropic metamaterials, which ensures high
nonresonant Purcell factors in a broad wavelength range [12].
These metamaterials with extreme anisotropy of dielectric
permittivity, also known as hyperbolic metamaterials, have
recently attracted significant attention due to their unusual
electromagnetic properties. Homogenized hyperbolic meta-
materials were theoretically shown to provide infinitely large
LDOS and, as a result, are expected to deliver extremely high
Purcell enhancements [13]. This diverging LDOS originates
from the hyperbolic dispersion of modes in uniaxial crystals,
having opposite sign of the permittivity components in
the ordinary and extraordinary directions, perpendicular and
parallel to the optical axis, respectively. The fundamental
limitations for this type of enhancement result from a par-
ticular metamaterial realization as composites of finite-size
components, commonly referred to as “meta-atoms” [14], as
well as the metamaterials’ nonlocal response [15,16]. The
most widely used realizations of hyperbolic metamaterials
are based on layered metal-dielectric structures [17] or
vertically aligned nanorod arrays [18]. Hyperbolic metama-
terials also serve as building blocks for optical components
with enhanced capabilities, such as hyperbolic cavities [19]
and waveguides [20], as well as delivering nonreciprocal
effects [21], Hamiltonian optics-based cavities [22], and many
others.

1098-0121/2015/92(19)/195127(8) 195127-1 ©2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.92.195127


ALEXEY P. SLOBOZHANYUK et al. PHYSICAL REVIEW B 92, 195127 (2015)

In this work, we analyze emission properties of a radiating
dipole embedded inside or in close proximity to a finite-
size three-dimensional resonator formed by a nanorod-based
hyperbolic metamaterial. Taking into account the details of
the hyperbolic metamaterial realization as a finite number of
plasmonic nanorods, we show that the Purcell enhancement
originates from Fabry-Pérot modes of the resonator formed
by the hyperbolic metamaterial. The impact of the modes of
the metamaterial resonators on the Purcell factor has been
investigated for different resonator sizes, and the importance of
the emitter’s position within the resonator has been considered.
We also demonstrate the fast convergence of the Purcell
enhancement with the increase of the number of nanorods in
the resonator, with a 16 × 16 nanorod array having properties
of an infinite metamaterial slab (infinite number of finite-
length rods). This investigation enables comparison of the
Purcell enhancement provided by both finite-size and infinite
structures and separating the impact of the modal structure
of resonators.

II. EFFECTIVE MEDIUM THEORY AND NUMERICAL
MODELING

We consider a metamaterial consisting of a square array
of plasmonic (Au) nanorods (Fig. 1). This basic configuration
enables addressing all the relevant effects, with substrate and
embedding dielectric materials straightforwardly included in
numerical modeling. In the first approximation, neglecting
nonlocal effects [23], the optical response of such a structure
can be obtained from a homogenization procedure of the
nanorod composite [24], representing it as an effective uniaxial
medium with permittivity tensor ε = diag(εxx,εxx,εzz), where
εxx = εyy and εzz are the permittivities for the light polarization

FIG. 1. (Color online) (a) Schematic view of the hyperbolic
metamaterial resonator with the transverse dimensions Lx and Ly .
(b) Schematics of the numerical setup. An emitting dipole is inserted
in the center of the resonator. (c) The effective permittivity of
the metamaterial calculated for an infinite array of nanorods with
Lz = 350 nm, a = 60 nm, r = 15 nm (Au permittivity was taken
from [32]).

perpendicular to and along the nanorod axes, respectively
[Figs. 1(a) and 1(b)]. In the frequency range where εxx and εzz

have opposite signs [Fig. 1(c)], extraordinary electromagnetic
modes, propagating in such an anisotropic medium, have
hyperbolic dispersion. For the considered system, this crossing
from the conventional elliptic to hyperbolic dispersion regime
occurs at around 520-nm wavelength, where the real part
of the effective permittivity εzz becomes vanishingly small
[Fig. 1(c)]. The frequency range around Re(εzz) = 0 is called
the ε-near-zero (ENZ) region. This ability to support the
quasistatic behavior of electromagnetic waves (freeze phase)
has various intriguing consequences on wave propagation
in bended structures [25] and in tailoring radiation proper-
ties [26]. It should be noted that the ENZ regime is usually
linked with the strong spatial dispersion effects since the
vanishing leading term in the permittivity coefficient makes
the next term of significant importance [27].

The nonlocal (spatial dispersion) behavior of the nanorod
metamaterials cannot be described in the conventional ef-
fective medium theory and has an impact on both reflection
and transmission of the metamaterial as well as emission and
nonlinear effects [23]. Electromagnetic nonlocalities could be
classified as structural, material, and collective [28]. While
constitutive material components of the considered meta-
material may, in principle, exhibit collective hydrodynamic-
type nonlocalities [29], their contribution is small for the
geometrical sizes considered here. Structural nonlocality due
to the retardation effects in the unit cell is much stronger
in the case of nanorod metamaterial, requiring modifications
in the homogenization approach and the use of modified
effective medium models [23,30]. Numerical modeling which
considers the internal, microscopic structure of metamaterial
composites takes the structural nonlocality into consideration
automatically without a need for any additional considerations.

The numerical simulations have been performed using
the time-domain solver of the CST MICROWAVE STUDIO 2014

package [31]. We used perfect matched layer (PML) bound-
aries, and additional space was added between the structure
and the PMLs in order to prevent evanescent waves from
interacting with the boundaries. Optical constants for gold
were taken from Ref. [32]. The subwavelength dipolar emitter
was modeled here as a perfect electric conductor (PEC)
nanorod with a length of 28 nm and a radius of 1 nm [Fig. 1(b)].
The Purcell factor was calculated through an input impedance
of a point dipole source. As was previously shown [33,34],
this method is completely equivalent to the Green’s function
approach, which is widely used in photonics [35].The overall
number of mesh cells was around 3 × 106, with mesh density
locally adjusted in order to accurately represent the source. In
order to reach reliable results and to prevent the oscillation of
the output time signal after the excitation has been turned off,
the duration of the simulation is usually increased above the
interval needed to transmit the excitation pulse.

The numerical analysis based on the Green’s function
approach enables evaluation of both the decay rates, which
are proportional to the imaginary part of the Green’s function,
and the energy shift, which is proportional to its real part [36].
A similar approach taking into account nonlocal response,
Lamb shift, and linewidth modifications has recently been
used for layered hyperbolic metamaterials [37]. The analysis,
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reported here, concentrates on Purcell factor evaluation. Since
the rate enhancement has not shown extremely high values,
wavelength shift was neglected.

III. RESULTS

A. Hyperbolic metamaterial resonators

We begin with an analytical description of the modal
structure of finite-size resonators made of a homogenized
hyperbolic metamaterial based on the nanorod assembly. The
Purcell factor is proportional to the imaginary part of the
Green’s function in a medium [1]:

R(ω) = ImG(r,r,ω) ≈ Im
∑

n,l,m,σ

∣∣En,l,m,σ
x (r)

∣∣2

ω2 − ω2
n,l,m,σ

, (1)

where n, l, m are integers denoting the eigenmode number of
the resonator made of the metamaterial and σ = {TE,TM} is
the mode’s polarization, where TE corresponds to the modes
with the electric field lying in the xy plane and TM corresponds
to the modes with the magnetic field in the same plane. The
imaginary part of electromagnetic Green’s functions describes
the LDOS and does not diverge due to losses in the system if the
emitter is placed in lossless dielectric between the nanorods.
On the other hand, material losses in the nanorods themselves
and radiation from the resonator into the far field remove
divergence of Eq. (1) in the vicinity of the poles.

The rigorous eigenmode analysis of the anisotropic and
lossy rectangular resonator requires sophisticated numerical
techniques. However, approximate expressions for the eigen-
frequencies and field distributions in the resonator can be de-
rived within an approximate analytical formalism [38]. Within
this formalism, perfect electric conductor (PEC) boundary
conditions are imposed at the sidewalls of the resonator at
x = ±Lx/2, y = ±Ly/2 in order to obtain the resonator mode
numbers, corresponding to quantized kx,(m) and ky,(l) wave
vectors in x and y directions, respectively:

kx,(m) = πm

Lx

, m = 1,3,5 . . . ,

(2)
ky,(l) = πl

Ly

, l = 1,3,5 . . . .

If the radiating dipole is situated on the (0,0,z) axis, only
the modes with symmetric Ex and Ey field distributions with
respect to inversions x → −x,y → −y can be excited by the
dipole and will contribute to the Purcell effect.

In order to obtain the mode structure in the remaining z

direction, a slab waveguide is then considered which may
support TM and TE guided modes confined in the z direction.
The propagation constant of these modes k⊥, (m, l) satisfies the
condition

k⊥, (m, l) =
√

k2
x, (m) + k2

y, (l). (3)

This k⊥, (m, l) propagation constant can be evaluated by find-
ing the modes of a hyperbolic-metamaterial-slab waveguide
in the effective medium approximation [39]. As has been
shown in the analysis of the metamaterial waveguides [39]
and can also be seen from the numerical modeling below, this

approximation holds for lower-order highly confined modes
of sufficiently large resonators.

First, we will consider quasi-TE modes of the resonator.
By substituting Eq. (2) into the dispersion equation (3) for a
slab waveguide which is symmetric with the respect to the
z → −z inversion, we find two classes of modes with the
tangential electric field either symmetric (n = 0, 2, 4, . . .) or
antisymmetric (n = 1, 3, 5 . . .) along the z axis (the index here
corresponds to the number of zero crossings for a leading field
component: electric field for TE and magnetic field for TM
modes):

(k2
⊥,(m,l) − (ωm,l,n,TE

c

)2
)1/2

(εxx

(ωm,l,n,TE

c

)2 − k2
⊥,(m,l))

1/2

= tan

{
(εxx

(ωm,l,n,TE

c

)2 − k2
⊥,(m,l))

1/2Lz

2
+ π

4
[1 − (−1)n]

}
.

(4)

If the dipole is placed at z = 0, the antisymmetric modes will
have the node of the electric field at the dipole position and
thus cannot be excited and will not contribute to the Purcell
effect [Eq. (1)]. When the dipole is shifted from z = 0, both
symmetric and antisymmetric modes will contribute to the
Purcell factor. Similarly, using the waveguide dispersion for
TM polarized modes, we obtain

(εxx)1/2
(
k2
x,(m) + k2

y,(l) − (ωm,l,n,TM

c

)2)1/2

((ωm,l,n,TM

c

)2 − k2
⊥,(m,l)

εzz

)1/2

= tan

⎧⎨
⎩

(εxx)1/2(
(ωm,l,n,TM

c

)2 − k2
⊥,(m,l)

εzz
)1/2Lz

2
+ π

4
[1 − (−1)n]

⎫⎬
⎭,

(5)

In this case, however, the modes are symmetric (n =
0, 2, 4, . . .) or antisymmetric (n = 1, 3, 5 . . .) with respect
to the tangential component of the magnetic field, with the
electric field having opposite symmetry.

In order to distinguish the mode contributions to the Purcell
effect, the spectrum of the eigenmodes will first be analyzed
assuming vanishing Ohmic losses in the metamaterial. In this
approximation, following Eq. (4), the TE mode eigenfrequen-
cies are limited by

π

Lx

√
(m)2 + (l)2 <

ωm,l,n,TE

c
<

π

Lx

√
εxx

√
(m)2 + (l)2, (6)

satisfying the requirement that the left-hand side of Eqs. (2)
and (4) should be real valued. Therefore, for any finite-
frequency range, only a finite number of pairs (m,l) exists that
satisfy Eq. (6). For each (m,l) pair, a finite set of mode numbers
n can be found. Thus, in a finite-frequency range, only a finite
number of eigenmodes (m,l,n) of the metamaterial resonator
exists.

Specifically, for the metamaterial resonator of the square
cross section with Lx = Ly = 900 nm and Lz = 350 nm and
the effective permittivity as in Fig. 1(c), the following
eigenmodes can be excited in the spectral range from 500
to 1500 nm: TE110 at λ = 1450 nm, TE130 and TE310 at
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λ = 780 nm, and TE330 at λ = 570 nm. It should be noted
that while the predicted higher-order modes were observed in
the rigorous numerical simulations of the nanorod composite,
the fundamental mode TE110 occurs at wavelengths larger
than 1500 nm. This is a known discrepancy [40] related to
the fact that the simplified analysis used above works worse
for the fundamental modes with lower confinement within a
resonator, and, thus, the actual frequency of the TE110 mode
can deviate substantially from the value predicted by the
simplified analytical formalism.

Contrary to TE modes, the eigenfrequencies of TM modes
decrease with the increase of m and l, as can be seen from
Eq. (5). This property of the hyperbolic resonators has been
observed both theoretically and experimentally [19] and can be
understood from the requirement for the TM eigenfrequencies
analogous to Eq. (6):

π2

L2
x

[m2 + l2] >
ω2

m,l,n,TM

c2
>

π2

L2
xεzz

[(m)2 + l2]. (7)

Since εzz is negative in the hyperbolic regime, the right-
hand-side inequality holds for any frequency and m, l. Thus,
there exist modes with arbitrary large m, l that satisfy the
left-hand-side inequality. The number of the supported modes
is, however, limited due to the metamaterial realization as a pe-
riodic nanorod array. Contrary to the case of the uniform hyper-
bolic metamaterial, the x and y wave vectors should be within
the first Brillouin zone of the array, kx,y < π/a, where a is the
period of the array. Thus, for TM modes, m and l eigenvalues
can be 1, 3, 5, and 7 in the case of the 16 × 16 nanorod array
with the parameters as in Fig. 1. For simplicity, in these analyti-
cal calculations, we do not consider possible coupling between
TE and TM modes due to three-dimensional geometrical con-
finement (the numerical modeling includes all such effects).

For each value of m and l there is a number of eigenmodes
corresponding to different n. This number is finite and
increases with m, l. Despite the large number of the TM
polarized eigenmodes supported by the resonator, many of
them have a minor contribution to the overall Purcell factor
since they have either small Q factors due to the large damping
inside the resonator when the losses in metal are considered
or a small value of the x component of the electric field at
the dipole’s position due to the different symmetry properties
of the eigenmodes (Fig. 2). Namely, some of the eigenmodes

FIG. 2. (Color online) Comparison of the numerical (red and
blue lines) and analytical (green and black lines) of the Purcell factor
in the case of real losses (solid lines) and reduced losses Im(ε)/10
(dashed lines). The metamaterial parameters are as in Fig. 1. The
resonator size is 16 × 16 nanorods with Lx = Ly = 900 nm. In the
numerical simulations we have used a small dipole source placed in
the centre of the resonator and oriented along x direction.

would have a minimum of the x component of the electric field
at the dipole position, and some would have maxima [41].
Moreover, in the vicinity of the ENZ frequency, the modes
with large values of n are excited. These modes, however, have
large losses and thus provide little contribution to the overall
Purcell effect. It should be noted, however, that calculations
of the Purcell enhancement for emitters placed in contact with
lossy media face several challenges as the Green’s functions
diverge [30]. This problem is usually addressed by introducing
a depolarization volume (a small lossless cavity) around the
emitter [30]. The numerical modeling below does not, how-
ever, face the above issues, as the emitter is placed in the loss-
less space between the actual rods, forming the metamaterial.

The dependences of the resonant wavelength on the
resonator height Lz for modes TE130, TM151, and TM551 are
shown in Fig. 3(a). The higher-order mode TM551 is lower in
frequency than the lower-order mode TM151, as is expected
for the hyperbolic resonators. This can be intuitively under-
stood considering PEC boundary conditions on the interface
perpendicular to the z axis. In this case, kz is simplified
to kz = πnLz = (εxx)1/2(ω2/c2 − k2

⊥/εzz)1/2, where n is an
integer. It can be seen that for fixed n, the eigenfrequency

FIG. 3. (Color online) Dependence of the eigenmode wavelengths on (a) Lz for the fixed Lx = Ly = 900 nm and (b) Lx for fixed Lz =
350 nm. Bars indicate the width of the resonance.
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decreases with increasing k⊥. The dependence of the resonant
wavelength on the resonator width Lx at the fixed resonator
length Lz = 350 nm is shown in Fig. 3(b). As we can see,
the resonant wavelengths of the TM modes decrease with the
increase of the resonator lateral size. This behavior is evident
from Eq. (3) since it can be seen that for the fixed value of kTM

z

the resonant frequency should increase with increasing Lx . In
contrast, the wavelengths of the TE modes increase with the
increase of the resonator width Lx , similar to the case of a
conventional anisotropic dielectric resonator.

B. Purcell enhancement due to the hyperbolic resonator modes

The analytical analysis performed above does not account
for either the microscopic structure of the metamaterial or the
radiation from the resonator. We now compare the effective
medium analytical description to the results of the numerical
modeling in the case of an x-polarized dipole placed in the
center of the 16 × 16 array of Au nanorods (period a = 60 nm
and radius r = 15 nm) which corresponds to the resonator
dimensions Ly = Lx = 900 nm and Lz = 350 nm. We have
considered real losses in gold for comparison to the analytical
model as well as artificial low losses (artificially reduced by
10 times) in order to articulate the mode position (Fig. 2).
The analytical model provides a clear correspondence to
the numerical results, and the individual eigenmodes can
be identified. The highest Purcell factor corresponds to the
excitation of the TM551 eigenmode in the vicinity of 1000 nm.
The Purcell factor near the ENZ frequency range does not have
extremely large values, as would be expected in the case of an
infinitely large metamaterial [30].

C. Saturation of the Purcell enhancement in finite-size arrays

The Purcell factor for the electric dipole placed in the center
of the metamaterial resonator was numerically calculated for
different sizes of the resonator (Fig. 4). Both parallel and
perpendicular to the nanorods, orientations of the emitting
dipole were analyzed in square and rectangular resonators with
up to 18 rods in one direction. The obtained dependence of the
Purcell factor shows a fast convergence with an increasing
number of rods in the array. In fact, in the arrays larger than
16 × 16 rods (900 × 900 nm), the Purcell factor approaches
the values for the infinite (in the x and y directions) planar
metamaterial slab, so that the Purcell factors for 16 × 16 and
18 × 18 arrays are essentially the same without the signatures
of the resonant modes of the resonator due to the reduced
quality factor of the modes [Fig. 4(a)]. This quality factor
reduction in larger systems is the result of increased material
losses due to the mode being spread over larger number of rods.
Rectangular nanorod arrays show similarly fast convergence,
leading to the conclusion that the behavior of 16 × 16 nanorod
structures is extremely close to that of the infinite metamaterial
[Fig. 4(a)].

The x-oriented dipole source which is located in the central
part of the array can excite only even modes [Fig. 4(a)]. It
can be seen that for the 2 × 2 array the highest Purcell factor
(around 500) is reached at 950-nm wavelength (due to the small
number of the rods forming the resonator, the identification
of the mode structure of the resonator is not possible in the

FIG. 4. (Color online) The Purcell factor dependence on the
number of nanorods in (a) and (b) square and (c) rectangular res-
onators for an emitting dipole (a) and (c) perpendicular and (b) parallel
to the nanorods. The dipole is located in the center of the array.

effective medium formalism as in Sec. III A). The highest
Purcell factor obtained for the smallest array can be attributed
to a small modal volume. For larger arrays this mode exhibits
a slight shift to longer wavelengths, as expected from Eq. (4),
and the Purcell factor decreases up to the value of 200. The
Purcell factor for a z-oriented dipole is very low but also
follows the mode structure of the resonator with the increasing
number of rods [Fig. 4(b)]. The rectangular nanorod arrays
provide a Purcell factor of around 200 already for two rows of
nanorods [Fig. 4(c)]. The contribution of different transverse
modes of the rectangular array in the Purcell factor is more
pronounced for arrays with a smaller number of rows and
becomes indistinguishable for arrays with six or more rows of
rods [Fig. 4(c), green curve]. For all considered sizes of the
resonators, a Purcell factor of less than 100 is observed in the
ENZ regime at around 520-nm wavelength [Fig. 1(c)]. As one
can see from the consideration of rectangular metamaterial
resonators, the optical response of the finite-size resonators
converges quickly to the response of the infinitely extended
metamaterial slabs.
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FIG. 5. (Color online) (a) The Purcell factor dependence on the height of the hyperbolic metamaterial resonator (16 × 16 nanorod array,
Lx = Ly = 900 nm). (b), (c) The electric field Ex distributions excited by the dipole positioned at the center of the resonator with Lz = 350 nm
at the wavelength of (b) 1000 nm and (c) 600 nm (nonresonant wavelength).

D. Purcell enhancement dependence on the rod length

We will now investigate the impact of the resonator height
(rod length) on the Purcell factor (Fig. 5). In this section,
resonators made of an array of 16 × 16 rods were considered.
For all nanorod heights, there is a relatively small peak in the
vicinity of the ENZ frequency related to the high modal density
of bulk plasmon-polariton modes at this frequency [39,42].
The highest observed Purcell factor strongly depends on the
rod length. Its maximum shifts to longer wavelengths with
the increase in rod height, in accordance with the frequency
shift of the resonator mode [Eq. (4)]. This (TM551) mode has a
characteristic field distribution inside the resonator [Fig. 5(b)]
with three pronounced maxima of the electric field (two max-
ima of the magnetic field with one zero crossing), typical of the
second Fabry-Pérot TM mode along the rods. Away from the
modes of the resonator, the electric field has the characteristic
cross-shaped form [Fig. 5(c)] typical for a radiating dipole
field distribution in a hyperbolic dispersion regime [12].

E. Purcell enhancement in small hyperbolic resonators

If, starting from a single nanorod, the number of rods in
the resonator is gradually increased, nontrivial behavior of
the Purcell factor is observed (Fig. 6). The highest Purcell
factor is obtained neither with a single rod nor in the limit of
an infinite number of rods. The optimal structure provides a

resonant mode with a high LDOS which enhances the decay
rate. It can be seen that the dipole positioned near the center
of a single nanorod excites the second-order mode n = 2 with
three maxima of the electric field [Fig. 6(b)] at a wavelength
of around 855 nm and the fourth mode n = 4 with five field
maxima [Fig. 6(c)] at a wavelength of around 610 nm. Adding
more nanorods to the resonator and thus changing its size and
the modal structure lead to a shift of the resonant frequencies in
the red spectral range, in accordance with Eq. (4). In particular,
for the geometry with four nanorods, the second mode is
excited at a wavelength of ∼940 nm [Fig. 6(d)], and the fourth
mode is excited at a wavelength of ∼640 nm [Fig. 6(e)]. As
mentioned above, the dipole located near the middle section
of the nanorod layer can only couple to even modes.

F. Purcell enhancement dependence on the dipole position.

In order to understand the average Purcell factor for
an ensemble of randomly distributed emitters, the position-
dependent Purcell factor has been investigated. When the
position of the emitter is changed along the nanorod length
from just outside the metamaterial towards the center of
the metamaterial layer, the Purcell factor has four maxima,
which correspond to the four lowest modes of the resonator
(Fig. 7). The odd modes were not excited by the dipole situated
at the central point of the array due to symmetry-induced

FIG. 6. (Color online) (a) Comparison of the Purcell factor for different numbers of plasmonic rods forming a resonator. (b)–(e) The electric
fields Ex of the dipole (b) and (c) near a single nanorod and (d) and (e) near a four-nanorod array at the wavelengths of (b) 856 nm, (c) 611 nm,
(d) 937 nm. and (e) 637 nm.
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FIG. 7. (Color online) (a) The Purcell factor dependence on an emitter position inside the metamaterial resonator with Lz = 350 nm and
Lx = Ly = 900 nm. The coordinate z = 0 corresponds to the edge of the hyperbolic medium. (b)–(e) The electric field Ex distributions excited
by the dipole positioned at z = 0 for the wavelengths of (b) 1363 nm (TM130 mode, first Fabry-Pérot resonance n = 0, with two electric field
maxima, one magnetic field maximum, no magnetic field zero crossing), (c) 1000 nm (TM551 mode, second Fabry-Pérot resonance n = 1
with three electric field maxima, two magnetic field maxima, one magnetic field zero crossing), (d) 750 nm (TM552 mode, third Fabry-Pérot
resonance n = 2 with four electric field maxima, three magnetic field maxima, two magnetic field zero crossings), and (e) 600 nm (nonresonant
wavelength). All other parameters are as in Fig. 3.

selection rules. It can be seen from the LDOS spectrum
[Fig. 7(a)] that the efficiency of the excitation of the resonator
modes depends on the local field strength of a particular
mode at the position of the radiating dipole. It can be seen
that at different dipole positions, preferential excitation of
the modes TM130 (two electric field maxima, one magnetic
field maximum, no magnetic field zero crossing), TM551

(three electric field maxima, two magnetic field maxima, one
magnetic field zero crossing), and TM552 (four electric field
maxima, three magnetic field maxima, two magnetic field
zero crossings) occurs at the wavelengths of 1363, 1000, and
750 nm, respectively. For the shorter wavelength of 600 nm,
the electric field is shaped as an inverted V [Fig. 7(e)], typical
of the nonresonant hyperbolic regime. The Purcell factor drops
off very quickly with increasing distance between the dipole
and the metamaterial surface: dipoles situated more than 20 nm
away from the interface do not exhibit any significant Purcell
enhancement (Fig. 7).

IV. CONCLUSION

A comprehensive numerical and analytical analysis of
the Purcell enhancement in finite-size nanorod metamaterial
resonators was performed. Using a nanorod metamaterial
with hyperbolic dispersion of electromagnetic modes, the
resonators with a complex hierarchy of modes can be realized.
We have shown that the modes of the hyperbolic resonator
are responsible for the enhancement of spontaneous emission
rates of emitters placed inside the resonator. Thus, a con-
trollable Purcell enhancement can be achieved in the desired
wavelength range by choosing appropriate resonator sizes. A
detailed analysis of various types of geometrical arrangements
of the metamaterial and emitter was carried out. The results

suggest that finite-size metamaterial resonators with properly
designed modes outperform infinite metamaterials in terms of
radiation efficiency enhancement. It was shown that the influ-
ence of only the 16 × 16 nanorod array on the dipole emission
properties converges to that of an infinite metamaterial. These
findings can provide guidelines for modeling and optimization
of experimental samples. As for an outlook for possible future
applications, it is worth mentioning nanostructured light-
emitting devices with high-speed switching rates, cavities
for surface plasmon amplification by stimulated emission of
radiation (SPASERs), and sensing applications.
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