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Abstract

Increasing demand and sophistication of wireless applications require intelligent
systems which, along with performing efficient and reliable adaptive operations,
should be simple to implement. Cognitive radio (CR) is one such system which has
the capability of adapting to its surroundings. In this thesis, the role of different
layers of network in carrying out the functionalities of CR systems is investigated and
cross-layer design strategies involving the physical (PHY), the media access control
(MAC), and the application are proposed. This thesis makes several contributions.

Firstly, we propose novel optimal radio resource allocation (RRA) algorithms
under different scenarios with deterministic and probabilistic interference violation
limits based on perfect and imperfect availability of cross-link channel state informa-
tion (CSI). In particular, in contrast to the ‘average case’ and ‘worst case’ estimation
error scenarios in the literature, we propose a probabilistic approach to mitigate the
total imposed interference on the primary service under imperfect cross-link CSI.
An expression for the cumulative density function (cdf) of the received signal-to-
interference-plus-noise ratio (SINR) is developed to evaluate the average spectral
efficiency. Through simulation results, we investigate the achievable performance
and the impact of parameters uncertainty on the overall system performance.

Secondly, we implement stochastic RRA algorithms in both hybrid- (i.e., mixed
underlay and overlay) and opportunistic (i.e., overlay) access orthogonal frequency-
division multiple access (OFDMA)-based CR systems. The proposed solutions allo-
cate power and subcarrier to cognitive users over wireless fading channels in order
to maximize the total transmission rate based on the probabilities of channel avail-
ability obtained through spectrum sensing. In order to protect the primary service
operation from harmful intervention, stochastic transmit and interference power con-
strains are imposed on the cognitive users. The performance of the proposed stochas-
tic algorithms and their advantages over the conventional hard-decision-based ap-
proaches are assessed and demonstrated through simulation results.

Finally a specific cross-layer design for multi scalable video application transmis-
sion in an interference-limited spectrum sharing system is proposed. The proposed
design jointly considers the parameters from the PHY and the application layers in
order to maximize the overall peak signal-to-noise ratio (PSNR). Results indicate
that significant improvement in secondary receivers (SRxs) average video quality
is achieved through our proposed algorithm over other state-of-the-art non-quality-
aware (NQA) designs in the literature. The enhanced performance was obtained
whilst guaranteeing SRx minimum quality and primary receiver (PRx) prescribed
quality of service (QoS) constraints.
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Ĥsp
k

= 0.1. . . . . . . . . 86

3.1 Aggregate transmission rate for the hybrid case versus sensing detec-
tion probability Pd

n,k with different probabilities of channel availabil-
ity P(H i

n,k). System parameters are: Ith = 1 Watts, Pt = 5 Watts,
σ2
ps = 0.01 Watts, σ2

n = 0.001 Watts. . . . . . . . . . . . . . . . . . . . 108
3.2 Aggregate transmission rate for the opportunistic case versus sens-

ing detection probability Pd
n,k with different probabilities of channel

availability P(H i
n,k). System parameters are: Ith = 1 Watts, Pt = 5

Watts, σ2
ps = 0.01 Watts, σ2

n = 0.001 Watts. . . . . . . . . . . . . . . 109
3.3 Aggregate transmission rate for the hybrid case against interference

power thresholds with different transmit power constraints and primary-
secondary noise levels. System parameters are: σ2

n = 0.002 Watts,
Pd

n,k = 0.9, P(H i
n,k) = 0.8. . . . . . . . . . . . . . . . . . . . . . . . 110

3.4 Aggregate transmission rate for the opportunistic case against inter-
ference power thresholds with different transmit power constraints
and primary-secondary noise levels. System parameters are: σ2

n =
0.002 Watts, Pd

n,k = 0.9, P(H i
n,k) = 0.8. . . . . . . . . . . . . . . . . 110

3.5 Aggregate transmission rate for the hybrid case versus primary-secondary
interference power levels with different noise power values. System pa-
rameters are: Ith = 5 Watts, Pt = 10 Watts, Pd

n,k = 0.9, P(H i
n,k) =

0.8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
3.6 Aggregate transmission rate for the opportunistic case versus primary-

secondary interference power levels with different noise power values.
System parameters are: Ith = 5 Watts, Pt = 10 Watts, Pd

n,k = 0.9,
P(H i

n,k) = 0.8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

11



3.7 Aggregate transmission rate for the Hybrid case against transmit
power thresholds using the proposed RRA algorithm with different
interference constraints and primary-secondary noise levels. System
parameters are: σ2

ps = 0.01 Watts, σ2
n = 0.002 Watts, Pd

n,k = 0.9,
P(H i

n,k) = 0.8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
3.8 Aggregate transmission rate for the opportunistic case versus transmit

power thresholds using the proposed RRA algorithm with different
interference constraints and primary-secondary noise levels. System
parameters are: σ2

ps = 0.01 Watts, σ2
n = 0.002 Watts, Pd

n,k = 0.9,
P(H i

n,k) = 0.8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

4.1 Network model, one STx, one PTx, and multiple uniformly distributed
PRx and SRx. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

4.2 Example for decoding structure of the SVC bit stream. . . . . . . . . 122
4.3 Average PSNR performance using the proposed quality-aware RRA

and non-quality-aware RRA algorithms versus Ith constraint of three
symmetrically distributed video users and different BER target. Sys-
tem parameters are: K = 32, N=3, Pt = 30 Watts, σ2

e =1, and εm = 1%.132
4.4 Average PSNR performance using the proposed quality-aware RRA

and non-quality-aware RRA algorithms versus Ith constraint of three
symmetrically distributed video users and different BER target. Sys-
tem parameters are: K = 32, N=3, Pt = 30 Watts, σ2

e =1, and εm = 5%.132
4.5 Aggregate rate performance using the proposed quality-aware RRA

and non-quality-aware RRA algorithms versus Ith constraint of three
symmetrically distributed video users and different BER target. Sys-
tem parameters are: K = 32, N=3, Pt = 30 Watts, σ2

e =1, and
εm = 1% . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

4.6 Aggregate rate performance using the proposed quality-aware RRA
and non-quality-aware RRA algorithms versus Ith constraint of three
symmetrically distributed video users and different BER target. Sys-
tem parameters are: K = 32, N=3, Pt = 30 Watts, σ2

e =1, and
εm = 5% . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

4.7 Average PSNR versus Error variance of three symmetrically distributed
video users using the proposed quality-aware RRA and non-quality-
aware RRA algorithms with different values of collision probability.
System parameters are: Ith = 1.5 Watts, K = 32, N=3, Pt = 30
Watts, and εm = 1%. . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

4.8 Average PSNR versus Error variance of three symmetrically distributed
video users using the proposed quality-aware RRA and non-quality-
aware RRA algorithms with different values of collision probability.
System parameters are: Ith = 1.5 Watts, K = 32, N=3, Pt = 30
Watts, and εm = 5%. . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

12



4.9 Average PSNR performance using the proposed quality-aware RRA
and non-quality-aware RRA algorithms versus Ith constraint of three
asymmetrically distributed video users with different BER target
value. System parameters are: K = 32, N=3, Pt = 30 Watts, σ2

e

=1, and εm = 1%. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
4.10 Average PSNR performance using the proposed quality-aware RRA

and non-quality-aware RRA algorithms versus Ith constraint of three
asymmetrically distributed video users with different BER target
value. System parameters are: K = 32, N=3, Pt = 30 Watts, σ2

e

=1, and εm = 5%. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

13



List of symbols
∆f . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Spacing between subcarriers of OFDM
φk(t) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Carrier signal
K . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Number of subcarriers
Ts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Symbol duration
Xk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Transmitted symbol
fc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Carrier frequency
T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Orthogonality duration
s̃(t) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . OFDM output signal
s(t) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Bandpass signal
sb(t) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Baseband-equivalent signal
uT (t) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Shaping function
ha(t) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Rectangular shaping function
ε(t) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Shaping error function
y(t) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Received signal
ai(t) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Attenuation over path i
φi(t) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Phase shift over path i
τi(t) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Propagation delay over path i
s(t) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . transmitted signal
νi(t) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Additive white Gaussian noise
h(t, τ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Impulse response mobile radio channel
γ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Signal-to-noise-ratio
γ̄ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Average signal-to-noise-ratio
f(.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Probability density function
Γ(.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Complete Gamma function
N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Number of secondary receivers
M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Number of primary receivers
B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Total bandwidth
Hss
n,k . . . . . . .Channel gain from secondary transmitter to secondary receiver

Hps
n,k . . . . . . . . .Channel gain from primary transmitter to secondary receiver

Hsp
m,k . . . . . . . . .Channel gain from secondary transmitter to primary receiver

γn,k(t) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . instantaneous received SINR
Pn,k . . . . . . Transmit power of the kth subcarrier and nth secondary receiver
σ2
n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Noise power
σ2
ps . . Received power on the secondary receiver from primary transmitter
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Chapter 1

Introduction and Overview

1.1 Evolution of Wireless Communications

In the beginning, man resorted to shouting to make himself heard beyond the imme-

diate surroundings. Then, as now the human voice could only carry so far. Later,

when people learn to master fire, they used signal fires, placing them on the hilltop

or other clearly visible landmarks. In the 18th century, the optical telegraph made

it possible to send coded messages for the average distance of around 10 km but

could be up to three times that across the waters. Samuel Morse was originally an

American artist who was to become famous for his electrical alphabet. In 1835, he

presented the world first commercial telegraph. In 1867, James Clark Maxwell, a

professor of Natural Philosophy at King’s College London, developed the relation

between electricity and magnetism, inspired by the earlier experimental work of

Michael Faraday, and predicted the existence of electromagnetic waves, later discov-

ered by Hertz in 1887. At the end of the 19th century, Italian inventor, Guglielmo

Marconi invented wireless signalling [1]. By 1901, he managed to transmit a Morse-

coded message across the Atlantic. In 1906 the first International Radiotelegraph

Convention was signed during the International Radiotelegraph Conference (Berlin,

1906). In addition to the service regulations and final protocol, it was also decided

that priority should be given to the SOS distress Morse signal (...- - -...) [2]. A real

breakthrough in radio came in the same year (1906), when Lee de Forest invented

triode, the first radio tube that could be used as an amplifier. Since then, on Radio
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waves used in many applications, including two-way voice communications, video

and voice broadcast, and point-to-point digital microwave communications. How-

ever, the cellular telephone system has been the most successful application of the

wireless communications. The origin of these systems began in the 1910s, when the

first wireless audio transmission was established between New York and San Fran-

cisco. The Japanese had the lead in cell technology development, where the first

cellular network was established. In 1981, the first cellular license in the US was

awarded, and in 1983, the cellular mobile service started by Ameritech Corporation,

known as the advanced mobile phone system (AMPS). The AMPS carrier frequency

was 850 MHz and was based on the frequency division multiple access (FDMA)

technology. Along with it, Nordic mobile telephony (NMT) in northern Europe

countries. Within a couple of years, here in the UK, Vodafone, and shortly after

Cellnet, released the total access communication system (TACS). These formed a

part of what is known as "first generation mobile systems" (1G), which was catered

for voice services and was based on analogue transmission technology.

Over the past few years, there have been extensive research, development and

expansion, in wireless communications, particularly, in the field of cellular systems.

In 1987, the FCC declared the use of new technologies in the 800 MHz radio spec-

trum, in which resulted in the first digital cellular transmission technologies (time

division multiple access (TDMA), code division multiple access (CDMA), and global

system for mobile communication (GSM) tested shortly thereafter). 2nd generation

(2G) has been extremely successful, where GSM became the prominent standard

in Europe and major part of Asia, and CDMA and GSM jointly in America. 2G

networks were the first to provide short messaging service (SMS) and data. Gen-

eral packet radio service (GPRS) was introduced into the GSM for supporting the

packet switching traffic in a GSM network. It offers higher data rates than the

conventional GSM, however the enthusiasm for 3rd generation (3G) and immense

hype in the late 1990s was creating an evidently unstoppable demand for higher

data rate and new applications. 3G networks offer faster data rates, makes them

particularly suitable for modern smart-phones, many of their applications require

stable high speed internet connection. The emergence of digital technologies has
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changed the landscape of cellular communications. With the deployment of 3G and

recently 4G communication systems, the way of communications has dramatically

shifted from voice service to multimedia and data centric communications. Success

of cellular technologies, together with the advanced technology in smart phones and

application developments, have seized the interest and imagination of the popu-

lation. As a result, there has been an exponentially growing demand for cellular

mobile technologies; according to Cisco visual networking index (VNI), by the end

of 2013, the number of cellular connected devices will surpass the number of people

of the world. Rapid increase in the number of mobile-connected devices, along with

the demand for faster and more reliable mobile connections in a growing number of

mobile applications, such as video and games, show the significance and perspective

of wireless communication over the next coming years.

1.2 Challenges and Design of Wireless Systems

Providing ubiquitous mobile access to an extended number of connected devices,

requires a solution to several scientific and economic challenges, vary from advanced

signal processing algorithms and low power semiconductor design to the scarcity

of available radio resources and the deployment of wider cellular networks. In this

means, any wireless system needs to overcome transmission and propagation effects

that are significantly more hostile and critical compared to that for a wired system.

In the early stages of wireless communications, Marconi showed that wireless waves

can travel across the Atlantic and Pacific oceans. Today, the purpose of wireless

communications has developed: The radio technology is not being used merely to

communicate over large distances, but rather for its economic aspects, comfort and

flexibility. Short-range mobile communications provide access to the fixed communi-

cation infrastructure. Essential technical bottlenecks in a wireless technology are the

capacity of the wireless channel, its uncertainty and unreliability due to unfavourable

time-varying, multipath propagation and critical inter and intra cell interference.

Integrating digital microelectronics and signal processing developments, provided

solutions to overcome the issues associated with the mobile wireless channel [3]. As
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a result of the rapid developments in digital signal processing and microelectronic

circuits, nowadays the problems associated with transmission over wireless channels

are mostly resolved. Particularly, innovative developments including space diversity

combining (SDC), adaptive antennas, spread-spectrum techniques, digital modula-

tion schemes, multi-carrier modulation (MCM), and multiple-input multiple-output

(MIMO) systems have overcome the channel impairments and consequently have

had a major contribution to mobile technology growth. However the scarcity of

resources (e.g., spectrum and power) is remained to be resolved. As a result of this

limitation in availability of resources, intelligent and adaptive resource allocation to

the users is vital for providing the best possible service quality considering the eco-

nomical parameters. This is particularly crucial with the high data rates demands

for the next generation mobile communication systems. The issue of allocating sub-

carriers, rates, power, and time slots has therefore become an active area of research.

Even though the conventional layered networking approach, e.g., open systems in-

terconnection (OSI), enjoys the advantages of simplicity, modularity, expandability,

and standardization, this architecture was defined for wired networks and its inflex-

ible and rigid design makes the layered model inefficient to overcome the wireless

networks related problems. In contrast to the layered scheme, cross-layer design

tends to blur such rigid boundaries to allow interaction between layers by enabling

information and configuration exchange from one layer to another layer [4, 5].

Further, contrary to the conventional strict non-shared spectrum usage regula-

tions, intelligent shared-based spectrum deployment approaches are currently have

appeared as a favourable candidate in order to overcome the spectrum crunch prob-

lem [6]. In the following of this chapter, I briefly highlight the research background

of the mobile networks and technical challenges, as well as remedies, are reviewed

in detail. Finally, the research outline and contributions of this thesis are provided

at the end of this chapter.
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1.3 Fundamentals

1.3.1 Orthogonal Frequency-Division Multiplexing

Multi-carrier modulation (MCM) is a modulation technique in which multiple car-

riers are used for modulating the information signals (data bits), in contrast to a

single carrier used in the most common single carrier modulation schemes such as

binary phase-shift keying (BPSK) and quadrature phase-shift keying (QPSK). Thus

multi-carrier modulation is usually defined as the principle of transmitting informa-

tion by dividing the data stream into several parallel data bit streams, and by using

these sub-streams to modulate several carriers. The first systems utilized MCM

were military HF (high frequency) radio links in the late 50s and early 60s [7].

In the conventional multi-carrier systems using frequency division multiplexing

(FDM), a block of K serial data symbols, each of duration Ts , is converted into a

block of K parallel data symbols, each of duration T = KTs. The K parallel data

symbols are modulated by K different carrier signal φk(t) [8, 9].

However the guard band between adjacent sub-channels is a waste of spectrum

and leads to an inefficient use of radio spectrum. By developing the orthogonal

frequency-division multiplexing, the most popular technique of the MCM scheme,

generally known as orthogonal frequency-division multiplexing (OFDM) in brief, in

the mid-1960s, spectral efficiency was significantly improved. In OFDM, the sub-

carrier frequencies are chosen in a way that the sub-carriers are orthogonal to each

other, which means that the cross-talk between the sub-channels is avoided and

inter-carrier guard bands are not necessary, as shown in Fig.1.1. This approach

significantly simplifies both the transmitter and the receiver design. In comparison

to the single-carrier and the conventional FDM transmission technology, OFDM

offers many advantages. Some of those advantages are summarised as follows [10,11]:

• In contrast to conventional FDM, a separate filter for every sub-channel is not

required.

• In OFDM, each sub-channel experiences relatively flat fading so that the fre-

quency selective fading can be effectively suppressed.
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• The inter-symbol interference (ISI) and inter-carrier interference (ICI) can be

effectively mitigated by using the concepts cyclic prefix and guard band.

• Compared to other double side-band modulation schemes, higher spectral ef-

ficiency can be achieved.

• It can be conveniently implemented by using inverse fast Fourier transform

(IFFT) and fast Fourier transform (FFT) for modulation and demodulation

respectively.

• More tolerant to time synchronization errors and delay spread.

Despite advantageous features of the OFDM, there are, however, certain disadvan-

tages associated with implementing OFDM to be considered. Some of the disadvan-

tages are as :

• OFDM signal can experience a large peak-to-average power ratio (PAPR),

which may result in a signal distortion due to the non-linearity of the high

power amplifier (HPA). To reduce the distortion caused by the non-linearity

of HPA, usually, HPA requires a larger back-off from the peak power, which

generally results in high power consumption in mobile devices.

• OFDM is very sensitive to Doppler shift.

• It is also more sensitive to distortions that may remove the orthogonality

between carriers, i.e. carrier-frequency offsets (CFOs), due to Doppler shift

and/or local oscillator drift.

1.3.2 Mathematical Description

Generally, a conventional multi-carrier transmitter is made of a set of modulators,

each at a different carrier frequency. The transmitter then generates the transmit-

ted signal by combining the individual modulator outputs [12]. Assume that the K

data symbols to be transmitted are Xk, k = 0, 1, ..., K − 1, where Xk is a complex

number in an appropriate signal constellation, such as QPSK or quadrature ampli-

tude modulation (QAM). Also assume that the kth sub-carrier frequency for Xk is
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Figure 1.1: Frequency spectrum of OFDM subcarrier signals.

fk. To study the orthogonality conditions of a set of signals, φk(t) = ej2πfkt, where

0 ≤ k ≤ K, we examine the time orthogonality of this set through the following

stages. Let φk(t) = ej2πfkt, and φk(t) = ej2πflt be two subcarriers. Orthogonality is

achieved if 〈φk(t).φl(t)〉 = 0

〈φk(t).φl(t)〉 =
∫ T

0
φk(t)φ∗l (t)dt

=
∫ T

0
ej2πfkte−j2πflt

= ej2π(fk−fl)T − 1
j2π(fk − fl)

, k 6= l

= ej2π(fk−fl)T
(
sin{π(fk − fl)T}

π(fk − fl)

)
, k 6= l. (1.1)

The condition that 1.1 to be zero is 2π(fk−fl) = vπ, where v is an integer value [8].

Thus, to ensure the orthogonality between φk(t) and φl(t), their frequencies must

be separated by integer multiplies of 1/2T . However in the practical scenarios, the

frequency separation used in OFDM, is larger than 1/T . This is to ensure the

orthogonality even when the subcarrier modulated signals experience some random

phases. Assume the two considered subcarriers has random phases, i.e., θk and θl
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respectively, the orthogonality condition can be written as

〈φk(t), φl(t)〉 =
∫ T

0
φk(t)φ∗l (t)dt

=
∫ T

0
e−j2πfkt+jθkej2πflt−jθl

= ej2π(fk−fl)T+(θk−θl) − eθk−θl
j2π(fk − fl)

, k 6= l. (1.2)

To guarantee the orthogonality for any random phases θk, and θl, the subcarriers

must be separated by 1/T in frequency. Fig. 1.2 shows four orthogonal subcarriers of

an OFDM signal in time domain. Eq. 1.2 shows that the subcarriers are orthogonal

in the symbol interval of [0, T ]. As the orthogonality conditions are not satisfied

beyond the interval t ∈ [0, T ], to preserve the orthogonality at any given time

t ∈ (−∞,∞), the subcarrier function is required to be windowed by a rectangular

pulse function uT [10]. This can be efficiently implemented by using a rectangular

pulse shaping function at the transmitter (ha(t) = uT (t)). The complex envelope of

an OFDM system output signal is given by

s̃(t) = A
∑
n

b(t− nT,xn), n = 0, 1, ..., K − 1, (1.3)

where

b(t,xn) = ha
K−1∑
k=0

xn,ke
j2π(k−K−1

2 )t
T , (1.4)

where xn, is the data block, n is the block index, and ha is the pulse shaping function.

xn consists of n data symbols and can be defined as

xn = {xn0, xn1, ..., xnK−1}, (1.5)

where xn0 is the complex data symbol, usually chosen from QAM or phase-shift

keying (PSK) constellation. Therefore the OFDM complex envelop, s̃(t), in (1.3),
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Figure 1.2: Time domain OFDM subcarrier signals.

considering the rectangular pulse shaping function can be written as

s̃(t) = A
∞∑

n=−∞

K−1∑
k=0

xn,ke
j2π(k−K−1

2 )t
KTs uT (t). (1.6)

The bandpass signal and the complex baseband-equivalent signal in the interval

[0, T ), respectively can be noted as 1

s(t) = <[s̃(t)ej2πfct], (1.7)

sb(t) = A
K−1∑
k=0

xn,ke
j2π(k−K−1

2 )t
KTs uT (t), (1.8)

where fc is the carrier frequency.

1.3.3 OFDM implementation using IFFT/FFT

The simplicity and efficiency of transmitter and receiver implementation of OFDM

system , is one of the key features in the OFDM. By assuming Ts the sampling time,
1For the sake of brevity, we henceforth omit the index reference n.
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and removing the fixed delay of K−1
2 , the first term of (1.8) can be given by

Xm = A
K−1∑
k=0

xke
j2πkm
K . (1.9)

Except for the multiplier A, the base band equivalent signal (1.9) is the formulation

of a K-point inverse discrete Fourier transform (IDFT) [10]. If K is a power of

two, then there are many fast architectures and algorithms that can implement such

an IDFT operation efficiently. However, according to Nyquist-Shannon sampling

theorem, infinite number of samples are required to exactly represent the rectangular

pulse shaping function, in which means, that by assuming a finite sampling number,

the rectangular nature of the shaping function cannot be achieved.

uT (t) =
∞∑

k=−∞
sinc

(
t

Ts
− k

)
,

=
K−1∑
k=0

sinc
(
t

Ts
− k

)
+ ε(t),

= ha(t) + ε(t), (1.10)

where ε(t) is the error function, and ha(t) is the distorted shaping function.

1.3.4 OFDM Transceiver Block Diagram

OFDM transceiver can be created in different ways. An example of the typical

OFDM transceiver is shown in Fig. 1.3 [13]. In the transmitter side, the input

binary data is encoded by a conventional error correction encoder. The rate can

be 1/2, 2/3, 3/4, etc. After interleaving, the binary bits are mapped into complex

numbers representing BPSK, QPSK, 16-QAM, or 64-QAM constellation points, at

the symbol mapping unit.

In order to make coherent detection robust against phase noise and frequency

offsets, in every OFDM symbol, four of the subcarriers are dedicated to pilot sig-

nals. This step is followed by serial to parallel converter to prepare the data signal

to be converted to OFDM symbols. Next, by applying the IFFT, the pilot and data

values are modulated onto K subcarriers. After reconverting the parallel OFDM
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Figure 1.3: Block diagram of an OFDM transceiver.

symbols into serial sequence, to enhance the OFDM system robustness against mul-

tipath propagation, a cyclic prefix is added to the OFDM symbol. Following this

step, the digital output signals are converted to analog signals, which then can be

upconverted, amplified and transmitted through an antenna. Generally, the receiver

operates the reverse of the transmitter, with extra training tasks. First, the receiver

needs to estimate the frequency offset and the symbol timing, using the special

training symbols in the preamble. After removing the cyclic prefix extension, FFT

can be applied to the signal to recover the M-QAM values of all subcarriers. The

pilot subcarriers and the training symbols are utilized to used for the channel and

frequency offset estimation. The M-QAM values are then reconverted into binary

values, and finally a the error correction decoder, decodes the information bits.

Fig. 1.4 illustrates the structure of the OFDM preamble which precedes OFDM

packet [13]. This preamble is important to operate automatic gain control, packet

detection, symbol timing, fine frequency offset and channel estimation.
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Figure 1.4: OFDM preamble structure.

1.3.5 Wireless Channel Model

The wireless channel presents an essential challenge as a medium toward robust and

efficient wireless communication. It is not only susceptible to the deteriorating effects

of interference, noise and other channel impairments, but also, these impediments

unpredictably change over time as a result of user movement. In this section, we

briefly describe the wireless channels and the statistical models used to reflect their

effect on the transmitted signals. Detailed information about the channel models

can be found in [14]. In a wireless communication system, there may be many paths

for a signal from a transmitter to a receiver. Generally, the components of the radio

signal are reflected by the landmarks, objects or different atmospheric layers. These

reflected signals travel in different paths and combine at the receiver. If we assume

that the ai(t), and τi(t) are, respectively, the overall attenuation, phase shift, and

propagation delay from the transmitter to the receiver on path i, time t, and I the

total number of arriving multipath components, the received bandpass signal may

be expressed as,

y(t) =
I∑
i=1

ai(t)s(t− τi(t)) + νi(t), (1.11)

where s(t) is the transmitted signal, and νi(t) is the additive white Gaussian noise

(AWGN). By substituting the results from 1.7 in 1.11, and omitting the noise, we

have

y(t) = <
[(∑

i

ai(t)e−j2πfcτi(t)s̃(t− τi(t)
)]

ej2πfct. (1.12)
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The multipath fading channel is then modelled as a linear time-variant low-pass

filter having the complex impulse response as follows:

h(t, τ) =
∑
i

ai(t)e−j2πfcτi(t)δ(τ − τi(t)). (1.13)

1.3.5.1 Statistical Models for Fading Channels

In order to implement effective receivers and consequently devising robust wire-

less communication systems, it is critical to tackle the destructive effect of fading.

Although deriving an exact mathematical formulation of propagation in wireless

channels is too complex, several multipath models have been introduced to explain

the experienced statistical nature of a wireless channel. Those statistical models

effectively approximate and characterise the behaviour of fading channels based on

the nature of the wireless propagation environment and the design of communication

scenarios. In this subsection, we briefly describe some of the most widely utilized

multipath fading distributions, for modelling the indoor and outdoor propagation

channels in cellular communication systems. Detailed information of statistical mod-

els, can be found in the literature [15–18].

Rayleigh Fading Channel

When there are a large number of propagation paths, the central limit theorem can

be applied to show that the multipath fading channel 1.13 can be modelled as a

complex Gaussian random variable. [19,20]. In the case that there is no direct line-

of-sight (LOS) path, the mean of the Gaussian distribution is zero. In this scenario,

the envelope |h(t)|, at any instant t, is said to be Rayleigh-distributed. [21, 22].

Therefore, the channel gain |h(t)|2, and consequently instantaneous received signal-

to-noise ratio (SNR), γ, are Exponentially-distributed with the following probability

density function (pdf):

f(γ) = 1
γ̄

exp(−γ
γ̄

), (1.14)

where γ̄ denotes the average received SNR. Rayleigh fading is a reasonable model for

ionospheric and tropospheric radio signal propagation as well as for macro-cell (i.e.

relatively large coverage cells) and heavily built-up urban environments, in general,
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where there is no direct LOS path between transmitter and receiver.

Ricean Fading Channel

In the event where there are fixed signal reflectors or scatters beside the randomly

moving scatters in the channel, h(t) distribution can no longer be modelled as a

complex Gaussian distribution with zero mean. In this case the envelope |h(t)|

follows a Rician distribution. The Rician fading model typically assumes a dominant

LOS path component and a large number of independent and identically distributed

(i.i.d.) reflected signals. The channel gain |h(t)|2, and consequently instantaneous

received SNR, γ, are distributed with the following pdf:

f(γ) = (1 + n2)e−n2

γ̄
exp

(
−(1 + n2)γ

γ̄

)
I0

2n

√√√√(1 + n2)γ
γ̄

 , n ≥ 0, (1.15)

where n is the Nakagami-n fading parameter and I0[.] is the 0th order modified

Bessel function of the first kind. Moreover, Rician parameter (L = n2), is the ratio

between the power of the direct path and the average power of the scattered path

components and indicates the Rician-distributed channel quality [23,24]. In the case

where there is no LOS signal, i.e. n = 0, the Rician fading is equivalent to Rayleigh

fading, whereas it converges to a non-fading channel in the limit as n −→ ∞.

Compared to Rayleigh fading, Rician fading levels are more benign, therefore Rician

fading channel models are typically employed for micro-cellular (i.e. relatively small

coverage cells) environments, such as urban and sub-urban areas [25–27].

Nakagami-m Fading Channel

The Nakagami-m distribution, where m denotes the Nakagami-m fading parameter,

provides a generalized fading model introduced by Nakagami in th 1940s [28]. Par-

ticularly, it features the Rayleigh, Rician and many and other fading distributions

over the parameter m. The pdf of received SNR, γ, over Nakagami-m fading, is

given by

f(γ) = 1
Γ(m)

(
m

γ̄

)m
γ(m−1) exp(−mγ

γ̄
) , m ≥ 1

2 , (1.16)
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Figure 1.5: Gamma-distributed probability density function for various values of the Nak-
agami parameter m.

where Γ(m) is the Gamma function, denoted by

Γ(m) =
∫ ∞

0
tm−1e−tdt. (1.17)

When m = 1, and m = 2 Nakagami distribution is approximately equivalent

to Rayleigh distribution and Rayleigh distribution with two-antenna diversity re-

spectively. For m approach infinity the Nakagami distribution becomes an impulse,

which means there is no fading. Fig. 1.5 illustrates that in higher values of m the

severity of fading decreases. The most severe fading levels are experienced where

m = 1
2 , which corresponds to one-sided Gaussian fading distribution. Further, Ri-

cian distribution can be approximated by the Nakagami-m distribution for m ≥ 1,

and the following relation between Rician parameter and Nakagami fading factor

m [29–31],

L =
√
m2 −m

m−
√
m2 −m

, m ≥ 1. (1.18)

The wireless mediums for indoor and sub-urban, urban and ionospheric environ-

ments can usually be better modelled by Nakagami distribution [28,32,33].
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1.4 Cognitive Radio

Most of the current radio systems are not aware of the surrendering spectrum envi-

ronment and operate in a pre-assigned specific frequency spectrum using a specific

spectrum access technology. Researches on the spectrum utilization show that a

large part of the spectrum is under utilized or not used in a specific space (geo-

graphic location) or time due to legacy command-and-control regulation. For ex-

ample, Fig. 1.6 shows the spectrum utilization for different locations in the Untied

Kingdom [34]. The limited precious available spectrum and the inefficiency in the

spectrum utilization necessitate a new wireless communication concept to exploit

the available wireless spectrum in a more efficient approach. Cognitive radio is in-

troduced as a prominent candidate to solve this problem of spectrum crunch. The

terms of cognitive radio (CR) and software-defined radio was first proposed by J.

Mitola in his paper [35]. The outline "what cognitive radio is" given in [36] describes

the cognitive radios as:

Cognitive radio is an intelligent wireless communication system that is aware

of its surrounding environment (i.e., outside world), and uses the methodology of

understanding-by-building to learn from the environment and adapt its internal states

to statistical variations in the incoming RF stimuli by making corresponding changes

in certain operating parameters (e.g., transmit-power, carrier-frequency, and modu-

lation strategy) in real-time, with two primary objectives in mind:

• highly reliable communications whenever and wherever needed;

• efficient utilization of the radio spectrum.

Although the initial term and definition of CR had not been specifically on

spectrum use, the concept of CR has become almost exclusively utilized to imply

intelligent spectrum radios. Basically, CRs (often defined as secondary users) can

effectively use the under-utilized or unused parts of the spectrum of licensed users

(primary users) by actively observing the spectrum and dynamically adapting their

parameters according to this observation.
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Figure 1.6: Signal strength data obtained over a 24 hour period from midday to midday,
the time ascends from the bottom to top of the plot i.e. the earliest time is at the baseline.

1.4.1 Cognitive Radio functions

Realizing this simple theory of the concept incorporates a range of requirements, lim-

itations, and decisions associated with the amount of available information about

the primary user (PU) activities and how to acquire this information. In order to

clear up from the implementation perspective, the most important functions of cog-

nitive radio are categorized as, spectrum sensing, spectrum management, spectrum

mobility, and spectrum sharing. Along with maximizing the overall performance

of the secondary user (SU), the main objective of these functions is to ensure an

efficient and robust operation of the PUs without destructive intervention from the

SUs. These functions can be summarized as follows:

1.4.1.1 Spectrum sensing

Spectrum sensing is one of the main functionalities of CR concept. It can be consid-

ered as the task of acquiring information and awareness about the spectrum usage

and PUs activities in the surrounding of a CR transceiver, across different dimen-

sions such as space (location), time, frequency, and code. The current spectrum
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sensing methods are mostly based on either interference-based detection, transmis-

sion detection, and cooperative detection approach. However, there are many chal-

lenges related to spectrum sensing which make the process of detecting spectrum

conditions difficult for a CR user. Some of those challenges are related to hard-

ware requirements, sensing frequency and duration, hidden PU problems, detecting

spread spectrum PUs, and security issues [37,38]. The concept of the dedicated sens-

ing network has been introduced to tackle the hidden PU problems, which separates

the sensing systems from the secondary transceiver and the spectrum information is

provided by the SUs’ service provider [39]. Different methods of spectrum sensing

and their benefits and drawbacks have been outlined in [40–43].

1.4.1.2 Spectrum management

Following spectrum deduction functionality, the CR networks evaluate the available

spectrum and the limitation of this availability to relatively select the appropriate

channels over which they can establish transmission. This process is basically known

as spectrum management. Spectrum management functionality consists of two com-

ponents, namely, spectrum assignment, and spectrum access. Spectrum assignment

involves allocating the idle or underutilized spectrum bands to CR users according

to a specific policy. In the spectrum access part, the physical (PHY) layer param-

eters, e.g., transmit power, modulation and coding scheme with certain constraints

on power and bit error rate (BER) requirements are adapted based on the spectrum

sensing information and the spectrum assignment policy.

1.4.1.3 Spectrum mobility

The spectrum environment that CR network is operating on is dynamic, and may

change with time, location and even be reoccupied by the PUs at any instant.

Therefore, a CR network also needs to be able to adjust its operating parameters

when required. Another option for a CR is to modify its operating bands by using

p-persistent carrier sense multiple access (CSMA) rule. CSMA is a probabilistic

media access control (MAC) protocol, which a CR user verifies the absence of other

traffic before transmitting on a shared transmission channel. If the primary channel
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availability probability is known to be p, then the probability of data loss of a CR

user employing p-persistent CSMA to switch the operating band will be reduced.

The process of SUs changing their operating bands can be defined as frequency

handoff, in which a SU needs to terminate its communication on the current band,

vacate the channel, and identify a new available channel to continue its communica-

tion. Spectrum handoff mechanisms are usually categorized into two types based on

the decision timing of selecting target channels, namely reactive-decision spectrum

handoff and proactive-decision spectrum handoff.

In the reactive spectrum handoff approach the target channel is searched in an

on-demand way, and the spectrum switching and reconfiguration are conducted after

detecting a PU, therefore this approach has a non-negligible sensing and switching

delay [44]. The concept of proactive method is to exploit the long-term traffic statis-

tics to predict the channel availability condition and conduct spectrum switching

and reconfiguration before the reacquisition of the channel by the PU.

1.4.1.4 Spectrum sharing

The shared nature of the spectrum requires to coordinate the transmission attempts

between CR users. Spectrum sharing handles this coordination, so that all SUs

fairly can have access to the available spectrum. Spectrum sharing strategies can be

classified into different categories based on the architecture of the CR system, spec-

trum assignment behaviour, and spectrum access techniques. The first classification

based on the network architecture can be defined as which can be centralized or dis-

tributed spectrum sharing. Centralized spectrum sharing applies a centralised entity

to control the spectrum assignment and access activities of all active SUs. Whereas

distributed spectrum sharing does not need any controlling entity and based on lo-

cal (or global) policies that are performed by each user distributively allows the CR

users to conduct spectrum allocation and access themselves.

Furthermore, the spectrum allocation behaviour classifies the spectrum sharing

approaches into two categories: cooperative spectrum sharing, and non-cooperative

spectrum sharing. Cooperative spectrum sharing, as the title implies, involves shar-

ing some information by SUs with each other. A typical technique used in these
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approaches is forming clusters to share information, which make a balance between

a centralized and distributed approaches. In non-cooperative spectrum sharing tech-

niques, individual nodes do not collaborate and spectrum sharing is conducted con-

sidering only a single user.

Third classification for spectrum sharing is based on the spectrum access ap-

proach, which has three classes: spectrum underlay, and spectrum overlays and

spectrum hybrid. The underlay spectrum access technique allows simultaneous ac-

cess of available spectrum to PUs and SUs, while imposing PU interference thresh-

old [45] on the CR network transmission parameters. The overlay spectrum access

approach enables opportunistic access to the idle primary frequency bands by SUs.

The third spectrum access approach provides a combination of the two aforemen-

tioned approaches. The basic concept is to opportunistically access the idle licensed

frequency bands and limit the interference imposed on the PUs for the simultane-

ous access of the frequency bands. There is a rich literature available, providing

good insight on various aspects of spectrum sharing fundamentals such as poten-

tial and capacity of spectrum sharing systems, optimal limits of spectrum sharing,

etc. [37,45–47]. Implementation of CR functions involves more than one layer of the

protocol stack rather than being performed at a single layer. The role of different

OSI network layers in performing these CR functionalities, thus the need for cross-

layer design and certain cross-layer design ideas for CR systems, will be dealt with

more detail in Section 1.5. The following subsections cover the details of potential

transmission strategy and spectrum access techniques used in CR systems.

1.4.2 OFDM in cognitive radio systems

CR or software defined network implementation includes exploitation of the local

unused spectrum, interaction across several networks, protocols, and devices, mov-

ing across the spectrum while being able to stay in abidance with local regulations,

adapting the transmission, reception and system parameters without users interven-

tion, and having the capability to learn from the long-term users’ reaction statistics.

To achieve these objectives, PHY is required to be highly flexible and adaptable.

One of the questions that arise as part of considering implementation of CR sys-
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Figure 1.7: PUs and SUs distributed in frequency domain

tems is about which transmission technique to employ in CR systems. OFDM as a

PHY transmission strategy in CR system has the potential of fulfilling the aforemen-

tioned requirements, particularly the ability to avail the idle or underutilized part

of licensed spectrum by choosing those specific sub-bands. Considering a spectrum

consisting of m primary bands with bandwidths B1
p , B

2
p , . . . , B

M
p . In the event some

of these bands are not being used by the PUs, then those bands can be utilized

by the CR network. Each band is divided into several OFDM subchannels with

bandwidth Bs and therefore a vacant band can be utilized by multiple SUs, each SU

using a certain number of subchannels based on the scheduling strategy. Further-

more, if any subchannel in the PUs’ spectral band is free then there is a possibility

of assigning this to a SU. Fig. 1.7 illustrates the opportunistic spectrum access in

OFDM-based CR network.

Underlay and hybrid spectrum access strategies, allow the PUs and SUs to co-

exist at the same band. Since the PUs are the certified users of the spectrum, any

type of disruption at the primary receivers (PRx) from the SUs is not desirable.

Therefore, in these cases, the SUs need to ensure a predefined interference level

limit specified by PUs [48,49].

1.5 Cross-layer Design

The open systems interconnection (OSI) model organizes a networking framework in

waterfall-like certain number of layers, with virtually rigid boundaries between them.
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Each layer is responsible for a well-defined function to offer services to the higher

layers without revealing the details of how the service was implemented. Although

the conventional layered structure offers the benefits of modularity, standardization,

and expandability, its firm and strict architecture make the layered structure in-

efficient to deal with the problems arise due to the random nature of the wireless

medium. As a result, the strict boundary between different layers of network in the

new designs is blurring and the so-called cross-layer design has received popular-

ity in wireless networks due to its high performance, especially in delivering QoS

satisfaction for real-time applications.

The following examples merely illustrate the idea of cross-layer design. Link

adaptation, for example, involves adaptation of certain parameters according to the

wireless channel characteristics while meeting user-specified QoS demands. How-

ever, these parameters are not limited to a specific layer of the protocol structure,

e.g., transmission power and data rate are PHY parameters, whereas delay is a per-

formance measure at the data link layer (DLL) and transmission control protocol

(TCP), and packet loss may occur due to bad wireless channel condition (PHY),

or congestion (TCP), or queueing (DLL). Moreover, user-specified QoS demands lie

in the application layer, therefore other layers need to get some details from the

application layer to adapt their parameters accordingly. In essence, today’s wireless

networks and applications demand for flexible interactions among different layers

of network. As in any other case, these flexible interactions also come at a cost of

design complication [50,51]. Instead of solving the problem in parts at different lay-

ers, cross-layer design problems extend to a broader region ranging across multiple

layers. This makes the process of obtaining global solutions more difficult.

Over the past few years, a large number of cross-layer designs have been pro-

posed in the literature [52, 53]. Fig. 1.8 demonstrates some of these cross- layer

design concepts. Backward and forward information flow cross layer design pro-

vides information flow across layers via specialized interfaces. Information received

from other layers provides useful knowledge of network status and communication

characteristics, that may be exploited in better decision making, parameters modi-

fication, etc. In design coupling without new interfaces cross-layer method, multiple
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Figure 1.8: Illustrating the different kinds of cross-layer design proposals. (a) backward
and forward information flow cross-layer, (b) design coupling without new interfaces, (c)
merging of adjacent layers, (d) vertical calibration [52,53].

layers are developed in a collaborative approach. The design of one is conducted by

considering another layer functionality, therefore dependency is created at the time

of designing. The referenced layer is called fixed layer and the dependent layer is

called designed layer. Since the designed layer is developed based on fixed layer,

an explicit interface between them is not required. In merging of adjacent layers

method a single super-layer is created by combining the adjacent layers service and

functionalities. In this method joint optimization can be applied directly to the

super-layer. Obviously, this approach does not involve any additional interfaces.

However, this method is uncommon due to the complexity it introduces to the net-

work. The final method is vertical calibration across layers. As the name indicates,

this method refers to parameter adjustment that span across layers. Basically, the

application layer performance is a function of the parameters at all the stack layers.

Hence, it is reasonable that jointly optimizing all parameters of downstream layers

can help to achieve better performance than individual layer configuration.

Cross-layer design, in the case of CR networks, becomes even more challenging,

due to the inherent characteristics of sensing, managing, reasoning, and adaptation.

A CR user is required to consider a variety of input sources at the same time in-
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cluding its own observations statistics in order to implement the learning process.

In addition, a CR system needs to take into account several parameters simulta-

neously, such as user perspective application requirements of the SUs, a number

of constraints, including the interference limit and sensing functionality, and its

own potential to exploit the available spectrum and channel conditions. Achieving

a reasonably optimal solution through merging all the specifications, requirements

and limitations into a single optimization problem needs an adaptation and engage-

ment covering multiple layers. In this work three particular cross-layer designs are

proposed in chapters 2, 3, and 4.

1.6 Wireless Video Communications

Video communication has developed from a simple way of visual communication

to an essential empower for different video applications. Various remarkable video

applications have been efficiently deployed recently, with the aim of delivering users

with more adaptable, flexible, customized, and rich viewing experience. Ubiqui-

tous video applications, accompanied by paradigm shift from wired, passive, and

non-interactive video content access to wireless, interactive, and distributed content

access, certainly, required a new way for advanced video communications. However,

given the resource-limited, distributed as well as the heterogeneous nature of wireless

systems, the support of rich wireless video communications is still challenging.

To deal with the limited radio resources and to provide adaptivity for the severe

wireless channel conditions, packet scheduling, rate control, along with error control

strategies are usually involved in the development of codecs to enable reliable and

efficient wireless video communications. At the same time, due to devices energy

limitation, as well as transmit power and interference constraints in the context of

CR wireless networks, video coding and transmission algorithms need to operate

with the minimum possible power consumption. Hence, video coding and transmis-

sion over wireless networks is inherently a complex optimization problem with a set

of limitations. To sum up, wireless video communications involve an extensive range

of challenges and possibilities, offering the grounds for technical innovations. In this
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section we briefly discuss the fundamentals of scalable video coding and in Chapter

4 we investigate the challenge of resource allocation for scalable videos over MQAM

OFDMA-based CR networks.

1.7 Scalable Video Coding (SVC)

The need for scalable video coding, that enables on-the-fly adaptation to specific

application demands such as processing capabilities and display features of the in-

volved devices, and varying wireless channel conditions, arises from the continuous

development of receiving devices and the growing usage of wireless transmission

systems that are characterized by a widely changing connection quality [54–56]. In

these heterogeneous environments, interoperability of the encoder and decoder so-

lutions from various manufacturers as well as flexible adaptation of once-encoded

content is desired. Scalability has already been provided in the earlier video coding

standards such as, MPEG-2, H.263, and MPEG-4 video coders by means of scalable

profiles. However, the availability of quality and spatial scalability in these stan-

dards comes with a significant increase in decoder complexity and a considerable

decrease in coding efficiency compared to the corresponding non-scalable schemes.

These disadvantages, which reduced the scalable schemes potentials, are addressed

in SVC modification of the H.264/AVC standard [57,58].

1.7.1 Types of Video Stream Scalability

A video stream is known as scalable when parts of the bit stream can be dropped

in a manner that the resulting stream provides another appropriate substream for

some receiver decoder, and the substream delivers the source content with a rea-

sonable reconstructed quality which is less than the associated complete original

video bit stream but is high considering the lower amount of valid received data.

The substream can be a lower temporal resolution (frame rate), lower spatial res-

olution (picture size), or a lower quality (signal-to-noise ratio) video stream (each

individually or in combination) compared to the original corresponding bitstream.
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Figure 1.9: Spatial scalability with additional inter-layer prediction (dash arrows).

1.7.1.1 Spatial Scalability

In spatial scalability the encoder generates two or more layers with different spa-

tial resolutions from a single video source in a way that the base layer is encoded

independently to deliver the basic spatial resolution and the enhancement layer(s)

uses the spatial reconstructed base layer to provide higher or full spatial resolution

of the video stream. To support spatial scalability, SVC employs the conventional

multi-layer coding approach, which is already included in H.262/MPEG-2, H.263,

and MPEG-4. Similar to single-layer coding, SVC employs motion-compensated

prediction and intra prediction in each spatial layer. Moreover, SVC offers so-called

inter-layer prediction techniques as shown in Fig. 1.9, in which exploit the statisti-

cal dependencies between different spatial layers to enhance the coding efficiency of

enhancement layers.

1.7.1.2 Temporal Scalability

Temporal scalability allows dividing the video stream frames into several layers, in

which, the base layer is coded to provide the basic frame rate and the enhancement

layer(s) is coded using temporal prediction corresponding to the base layer or higher

enhancement layers. The layers could have either the same or different temporal
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Figure 1.10: Temporal scalability with with hierarchical B or P pictures. Tx define the
temporal layers with x addressing the corresponding temporal layer identifier.

resolutions, and when combined, produce full temporal resolution video stream at

the decoder. Furthermore, the concept of hierarchical B or P pictures can enable

the dyadic temporal enhancement layers in temporal scalability as shown in Fig.

1.10.

1.7.1.3 Quality Scalability

Quality scalability provides generating two or more SNR layers of the same spatial-

temporal resolution but different fidelity from a single video source such that the base

layer is coded to produce the basic video quality and the enhancement layer(s), in

which, when combined with the base layer reconstructs a higher quality reproduction

of the original video stream. As the enhancement layer is considered to enhance the

SNR of the base layer, this form of scalability is also called SNR scalability. The

H.264/SVC extension supports two SNR scalability modes, namely coarse grain

scalability (CGS) and medium grain scalability (MGS). 1For CGS, a refinement of

quality is obtained by requantizing the video stream with a smaller quantization

step size. Therefore, interlayer texture, motion and residual prediction may be used

to improve efficiency of CGS. However, CGS quality layers number is limited to

the number of quantization steps. MGS is introduced to enhance the flexibility of

the rate adaptation and potentially better coding efficiency. MGS provides finer
1An outdated mode of SNR scalability called fine grain scalability (FGS) has been removed

from the h.264/ SVC extension, due to the mode’s high computational complexity.
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granularity level of quality scalability by distributing the CGS enhancement layer

transform coefficients into more layers and therefore, a CGS layer can be divided

into several MGS layers [58].

1.8 Aim, Contributions, and Outline of Thesis

The main purpose of this thesis is to strike a balance between the conflicting goals

of minimizing the interference introduced to the primary users and maximizing the

performance of the SUs. To address this issue we introduce an efficient framework to

integrate adaptive resource allocation techniques into the shared-spectrum problem.

The main focus is particularly on the PHY layer design, while integrating this layer

and higher layers’ parameters, specifically, the application and MAC layers. The

resources considered consist of subcarriers, transmission power, and transmission

rate, while the constraints include instantiates total interference, average and peak

total power, BER, and minimum required quality based on the defined scenario.

The proposed algorithms differ from the literature works mainly in three aspects.

Firstly, probabilistic interference management has been combined with the imperfect

secondary-primary channel estimation, adaptive modulation and coding (AMC), and

the proposed resource allocation scheme. Secondly, we proposed a stochastic radio

resource allocation algorithm in both hybrid- (i.e., mixed underlay and overlay)

and opportunistic (i.e., overlay) OFDMA-Based CR systems. Finally, the proposed

strategy is deployed to optimize the user’s perspective video quality quality based

on a the probabilistic interference management to provide the secondary users with

high robustness, scalability, extendibility. In summary, the contribution of the work

can be listed as:

1. A closed-form expression for the cdf of the OFDMA CR’s received SINR is

derived.

2. A new low-complexity formulation for the probabilistic imperfect STx to PRx

cross-link CSI is proposed.

3. The issue of violating interference limits associated with imperfect cross-link
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CSI for the average case, worst case, and probabilistic case, scenarios of channel

estimation error is examined.

4. The aggregate transmission rate of the OFDMA CR network through incor-

porating the stochastic information on the different number of subcarriers

experiencing different scenarios is derived.

5. The comprehensive problem of power, rate, and subcarrier allocation for en-

hancing the average spectral efficiency of downlink multi-user OFDMA CR

systems subject to satisfying total average transmission power and peak ag-

gregate interference constraint is proposed.

6. Stochastic total transmit and interference power constraints under imperfect

sensing information is formulated.

7. We devise the stochastic radio resource allocation algorithms based on the

spectrum sensing probabilistic information on channel availability.

8. A new closed-form expression for the deterministic approximation of the prob-

abilistic PRx interference constraint, in order to solve the probabilistic con-

strained mixed discrete-continuous non-linear programing (MDCNLP) prob-

lem is proposed.

9. A new cross-layer design is proposed to maximize overall SRx quality of multi-

user scalable video applications subject to prescribed total transmission power,

maximum interference limit on the PRx and minimum acceptable video qual-

ity.

The thesis is outlined as follows: In Chapter 2, the comprehensive problem of

joint power, rate, and subcarrier allocation have been investigated for enhancing

the spectral efficiency of multi-user orthogonal frequency-division multiple access

(OFDMA) CR networks subject to satisfying total average transmission power and

aggregate interference constraints. We propose novel optimal radio resource alloca-

tion (RRA) algorithms under different scenarios with deterministic and probabilistic

interference violation limits based on perfect and imperfect availability of cross-link
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channel state information (CSI). In particular, in contrast to the ‘average case’ and

‘worst case’ estimation error scenarios in the literature, we propose a probabilistic

approach to mitigate the total imposed interference on the primary service under

imperfect cross-link CSI. An expression for the cumulative density function (cdf) of

the received signal-to-interference-plus-noise ratio (SINR) is developed to evaluate

the average spectral efficiency. Dual decomposition is utilized to obtain sub-optimal

solutions for the non-convex optimization problems. Through simulation results,

we investigate the achievable performance and the impact of parameters uncer-

tainty on the overall system performance. Furthermore, we show that the proposed

RRA algorithms can significantly improve the cognitive performance whilst obey-

ing the imposed power constraints. In particular, the performance under imperfect

cross-link CSI knowledge for the proposed ‘probabilistic case’ is compared over the

conventional scenarios to show the potential gain in employing this scheme.

In Chapter 3, a stochastic RRA algorithm is designed to maximize the total

transmission rate of OFDMA-based CRs in both hybrid (i.e., joint underlay and

overlay) and opportunistic- (i.e., overlay) spectrum access strategies. Our novel solu-

tion incorporates the probabilities of channel availability obtained through spectrum

sensing for allocating power and subcarrier in a multi-user multi-band environment.

In order to protect the licensed users from harmful intervention under imperfect sens-

ing information, stochastic transmit and interference power constraints are imposed

on the CRs. The performance of the proposed RRA algorithm and advantages over

the conventional hard-decision-based approaches are demonstrated using numerical

results.

In Chapter 4 we investigate an optimal RRA scheme for multiple users scalable

H.264/SVC video transmission OFDMA-based CR networks. The framework ex-

ploits a new probabilistic approach to mitigate the total imposed interference by

cognitive users on the licensed networks. We contemplate two fundamental net-

work’s service objectives, number of satisfied users, and the aggregate transmit-

ted video quality. We first write the 3-dimensional scalable video quality of the

H.264/SVC video transmission over an OFDMA-based CR networks. The total

quality is expressed following four physical layer parameters: subcarrier allocation,
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modulation spectral efficiency, power allocation, and stochastic interference limita-

tion. An efficient suboptimal algorithm is proposed in two steps to solve the prob-

abilistic constrained mixed discrete-continuous non-linear programing (MDCNLP)

problem. Adaptive MQAM/OFDMA systems under imperfect channel information

at the transmitter are shown to have substantial gain in average PSNR compared

to conventional quality blind OFDMA-based CR RRA algorithms.

Finally, a conclusion of this thesis is provided in Chapter 5, and ample sugges-

tions for future research are included at the end of this chapter.
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Chapter 2

Spectral Efficiency of Adaptive

MQAM/OFDMA

Cognitive Radio Networks

2.1 Introduction

In recent years, significant effort has been made towards improving the spectral effi-

ciency of cellular networks in order to meet the growing demand and sophistication

of wireless applications. Several spectral-efficient technologies, such as machine-to-

machine (M2M) communications, small-cell (SC) solution, massive multiple-input

multiple-output (MIMO), and cognitive radio (CR) - each with respective advan-

tages and challenges - are promising candidates in this direction [59].

In this chapter, we consider underlay spectrum-sharing, where robust interference

management is critical for tackling any harmful cross-service interference. Orthog-

onal frequency-division multiplexing (OFDM) has emerged as a prominent radio

access technology for new generation of wireless communication systems including

LTE and LTE-advanced [60]. For OFDM-based multi-user applications, multiple-

access can be accommodated through orthogonal frequency-division multiple-access

(OFDMA) technique [61]. In OFDMA systems, different subcarriers may be as-

signed to different users in order to exploit the channel quality random variations

of users across each subcarrier. OFDMA technology is considered as a de facto
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standard for CR networks due to its inherent advantages in terms of flexibility and

adaptability in allocating spectrum resources in shared-spectrum environments [62].

Radio resource allocation (RRA) plays a significant role in optimizing the overall

spectral efficiency of conventional OFDMA systems [63]. In addition, adaptive RRA

is an active area of research in the context of OFDMA-based CR networks with the

aim of achieving a balance between maximizing the cognitive network performance

and minimizing the inflicted interference on the licensed users. Suboptimal and opti-

mal power allocation policies are studied in [64], where the aggregate capacity of the

CR system is maximized under a primary receiver (PRx) interference limit. In [65], a

queue-aware RRA algorithm is proposed to maximize the fairness in OFDMA-based

CR networks subject to a total power constraint at the base station. A Lagrangian

relaxation algorithm is adopted in [62] to probabilistically allocate resources based

on the availability of the primary frequency band via spectrum sensing.

Most of the RRA algorithms on CR networks in the literature assume perfect

channel state information (CSI) between the secondary transmitter (STx) and PRx,

and few have considered imperfect cross-link CSI. However, due to technical reasons

such as estimation errors and wireless channel delay, obtaining perfect cross-link CSI

is difficult in practical scenarios. In [66] and [67], the ergodic capacity is derived

over fading channels with imperfect cross-link knowledge, however, the analysis is

carried out for a single cognitive user (CU). Furthermore, due to noisy cross-link

information, it is unrealistic to assume that the secondary network strictly satisfies a

deterministic interference constraint. The authors in [68] propose a RRA algorithm

for maximizing the instantaneous rate in downlink OFDMA CR systems subject

to satisfying a collision probability constraint. However, [68] only considers the

individual impact of probabilistic interference constraint per subcarrier. Motivated

by the above, we thoroughly investigate different scenarios by analysing the impact

of deterministic and probabilistic interference constraints depending on perfect and

noisy cross-link knowledge. In particular, we develop novel RRA algorithms under

‘average case’, ‘worst case’, and ‘probabilistic case’ scenarios of channel estimation

uncertainty for multi-user OFDMA CR networks.

On the other hand, to the best of the author’s knowledge, enhancing the average
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spectral efficiency of multi-user OFDMA-based CR systems has not been addressed

in the literature. In this work, by exploiting the advantages of channel adaptation

techniques, we propose novel joint power, subcarrier, and rate allocation algorithms

for enhancing the average spectral efficiency of downlink multi-user adaptive M-

ary quadrature amplitude modulation (MQAM)/OFDMA CR systems. Given the

received power restrictions on the STx in order to satisfy the primary network inter-

ference limit and the cognitive network power constraint, the STx transmit power

is a function of the cognitive-cognitive direct-link and cognitive-primary cross-link

fading states. We derive the cumulative distribution function (cdf) of the CR’s re-

ceived signal-to-interference-plus-noise ratio (SINR) to evaluate the average spectral

efficiency of the adaptive MQAM/OFDMA CR system.

The main novelties and contributions of this work are summarized as follows:

1. The comprehensive problem of power, rate, and subcarrier allocation for en-

hancing the average spectral efficiency of downlink multi-user OFDMA CR

systems subject to satisfying total average transmission power and peak ag-

gregate interference constraint has been studied.

2. A closed-form expression for the cdf of the OFDMA CR’s received SINR is

derived under limitations imposed on the STx through the power and inter-

ference constraints. Consequently, an upper-bound expression for the average

spectral efficiency of the adaptive multi-user MQAM/OFDMA CR system is

formulated.

3. The critical issue of violating interference limits associated with imperfect

cross-link CSI availability is examined by carrying out the analysis for the

‘average case’, ‘worst case’, and ‘probabilistic case’ scenarios of channel esti-

mation error.

4. The impact of deterministic and probabilistic interference constraints on the

system performance is considered with perfect and imperfect cross-link CSI.

In particular, we propose a new low-complexity deterministic formulation for

the probabilistic cross-link interference.
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The organization of this chapter is as follows: Section II presents the network

model and operation assumptions. In Section III, the resource allocation problem for

enhancing average spectral efficiency of the adaptive multi-user MQAM/OFDMA

under perfect cross-link CSI subject to power and deterministic interference con-

straints is developed. In Section IV, under noisy cross-link knowledge, the impact

of ‘average case’ and ‘worst case’ of channel estimation error based on a posterior

distribution of the perfect channel conditioned on its estimate is examined. Section

V investigates the performance under a collision probability constraint with im-

perfect cross-link CSI and proposes a deterministic formulation of the probabilistic

aggregate cross-link interference. In all of the RRAs derived in the chapter, opti-

mal power, rate, and subcarrier assignments are obtained. Illustrative numerical

results for various scenarios under consideration are provided in Section VI. Finally,

concluding remarks are presented in Section VII.

2.2 System Model and Preliminaries

In this section, the multi-user OFDMA CR network model, wireless channel, and

operational assumptions are introduced. Further, interference management schemes

and spectral efficiency of the adaptive MQAM/OFDMA system under consideration

are studied.

2.2.1 Network Architecture and Wireless Channel

We consider an underlay shared-spectrum environment, as shown in Fig. 2.1, where

a cognitive network with a single STx and n = 1, ..., N secondary receivers (SRx)s

coexist with a primary network with a primary transmitter (PTx) and m = 1, ...,M

PRxs. The cognitive network can access a spectrum licensed to the primary net-

work with a total bandwidth of B which is divided into K non-overlapping sub-

channels subject to not violating the imposed interference constraint set by a regu-

latory authority. The sub-channel bandwidth is assumed to be much smaller than

the coherence bandwidth of the wireless channel, thus, each subcarrier experiences

frequency-flat fading. Let Hss
n,k(t), H

ps
n,k(t), and H

sp
m,k(t), at time t, denote the chan-
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nel gains over subchannel k from the STx to nth SRx, PTx to nth SRx, and STx to

mth PRx. The channel power gains |Hss
n,k(t)|2, |H

ps
n,k(t)|2, and |H

sp
m,k(t)|2 are assumed

to be ergodic and stationary with continuous probability density functions (pdf)s

f|Hss
n,k

(t)|2(.), f|Hps
n,k

(t)|2(.), and f|Hsp
m,k

(t)|2(.), respectively. In addition, the instanta-

neous values and distribution information of secondary-secondary channel power

gains is assumed to be available at the STx [67]. In this work, we consider different

cases with perfect and noisy cross-link knowledge between STx and PRxs.

Each sub-channel is assigned exclusively to at most one SRx at any given time,

hence, there is no mutual interference between different cognitive users [69]. It

should also be noted that by utilizing an appropriate cyclic prefix, the inter-symbol-

interference (ISI) can be ignored [70]. The received SINR of cognitive user n over

sub-channel k at time interval t is

γn,k(t) =
Pn,k|Hss

n,k(t)|2

σ2
n + σ2

ps

(2.1)

where Pn,k is a fixed transmit power allocated to cognitive user n over sub-channel

k, σ2
n is the noise power, and σ2

ps is the received power from the primary network.

Without loss of generality, σ2
n and σ2

ps are assumed to be the same across all users and

sub-channels [71,72]. For the sake of brevity, we henceforth omit the time reference t.

Due to the impact of several factors, such as channel estimation error, feedback delay,

and mobility, perfect cross-link information is not available. With noisy cross-link

STx to PRxs knowledge, we model the inherent uncertainty in channel estimation

in the following form

Hsp
m,k = Ĥsp

m,k + ∆Hsp
m,k (2.2)

where over subcarrier k, Hsp
m,k is the actual cross-link gain, Ĥsp

m,k is the channel es-

timation considered to be known, and ∆Hsp
m,k denotes the estimation error. Hsp

m,k,

Ĥsp
m,k, and ∆Hsp

m,k are assumed to be zero-mean complex Gaussian random variables

with respective variances δ2
Hsp
m,k

, δ2
Ĥsp
m,k

, and δ2
∆Hsp

m,k
[66, 73]. For robust receiver de-

sign, we consider the estimation Ĥsp
m,k and error ∆Hsp

m,k to be statistically correlated
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random variables with a correlation factor ρ =
√
δ2

∆Hsp
m,k
/(δ2

∆Hsp
m,k

+ δ2
Hsp
m,k

), where

0 ≤ ρ ≤ 1.

2.2.2 Interference Management

In a shared-spectrum environment, and particularly for delay-sensitive services, the

licensed users’ quality of service (QoS) is highly dependent on the instantaneous

received SINRs of cognitive users. In order to protect the licensed spectrum from

harmful interference we pose a deterministic peak total interference constraint be-

tween STx and primary users

N∑
n=1

K∑
k=1

ϕn,k(γn,k)Pn,k(γn,k)|Hsp
m,k|2 ≤ Imth ,∀m ∈ {1, ...,M} (2.3)

where ϕn,k(γn,k) is the time-sharing factor (subcarrier allocation policy), Pn,k(γn,k)

is the allocated transmit power, and Imth denotes the maximum tolerable interference

threshold.

However, as a consequence of uncertainties about the shared-spectrum environ-

ment and primary service operation, it is unrealistic to assume that the STx always

satisfies the deterministic peak total interference constraint. In practical scenarios,

probability of violating the interference constraint is confined to a certain value that

satisfies the minimum QoS requirements of primary users. The probabilistic inter-

ference constraint is particularly critical for robust interference management given

noisy cross-link knowledge. To improve overall system performance and to miti-

gate the impact of channel estimation errors, the following allowable probabilistic

interference limit violation is considered

P

(
N∑
n=1

K∑
k=1

ϕn,k(γn,k)Pn,k(γn,k)|Hsp
m,k|2 > Imth

)
≤ εm

,∀m ∈ {1, ...,M} (2.4)

where P(.) denotes probability, and εm is the collision probability constraint of mth

PRx.
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Figure 2.1: Schematic diagram of the shared-spectrum OFDMA system. For simplicity
purposes, channels of a single cognitive user are drawn.

On the other hand, mitigating the interference between neighbouring cells is a

vital issue due to the increasing frequency reuse aggressiveness in modern wireless

communication systems [74]. As a remedy to inter-cell interference, and to maintain

effective and efficient power consumption, we impose a total average transmit power

constraint on the cognitive network as follows

N∑
n=1

K∑
k=1

Eγn,k

{
ϕn,k(γn,k)Pn,k(γn,k)

}
≤ Pt. (2.5)

where Ex(.) denotes the expectation with respect to x, and Pt denotes the total

average transmit power limit.

2.2.3 Spectral Efficiency

The focus of this work is mainly on optimal power, rate, and subcarrier allocation

for enhancing the average spectral efficiency of the adaptive MQAM/OFDMA CR

network. In a multi-user scenario, various subcarriers may be allocated to different

users. In other words, users may experience different channel fading conditions over

each sub-channel. Therefore, any efficient resource allocation scheme in OFDMA

must be based on the sub-channel quality of each user. Furthermore, in a shared-

spectrum environment, satisfying the interference constraints is an important factor

in allocating resources.
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Employing square MQAM with Gray-coded bit mapping, the approximate in-

stantaneous bit-error-rate (BER) expression for user n over subcarrier k is given

by [70]

ξbn,k(γn,k) = 4
log2(Mn,k(γn,k))

1− 1√
Mn,k(γn,k)


×Q

√ 3γn,k
Mn,k(γn,k)− 1

 (2.6)

where Mn,k(γn,k) denotes the constellation size vector of MQAM which each ele-

ment is a function of the instantaneous received SINR of the cognitive user n over

subcarrier k, and Q(.) represents the Gaussian Q-function. The aggregate average

spectral efficiency (AASE) of the adaptive multi-user MQAM/OFDMA system per

subcarrier per user over the fading channel is defined as

AASE =
N∑
n=1

K∑
k=1

Eγn,k

{
log2 (Mn,k(γn,k)ϕn,k(γn,k))

}
. (2.7)

In order to evaluate the AASE, the distribution of the received SINR, a function of

secondary-secondary and secondary-primary channels, must be developed.

2.3 Deterministic Interference Constraint with Per-

fect Cross-Link CSI

The objective of this work is to maximize the aggregate average spectral efficiency of

cognitive users while satisfying total transmission power and peak maximum tolera-

ble interference constraints. In this section, we solve the resource allocation problem

with the perfect cross-link knowledge and deterministic interference constraint.

2.3.1 Problem Formulation

Mathematically, the optimization problem can be stated as follows.
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Problem O1:

max
ϕn,k(γn,k),Pn,k(γn,k)

N∑
n=1

K∑
k=1

Eγn,k

{
log2(Mn,k(γn,k))ϕn,k(γn,k)

}
(2.8a)

s. t.:
N∑
n=1

K∑
k=1

Eγn,k

{
ϕn,k(γn,k)Pn,k(γn,k)

}
≤ Pt (2.8b)

N∑
n=1

K∑
k=1

ϕn,k(γn,k)Pn,k(γn,k)|Hsp
m,k|2≤Imth , ∀m∈{1, ...,M} (2.8c)

N∑
n=1

ϕn,k(γn,k) = 1,∀k∈{1, ..., K} (2.8d)

ϕn,k(γn,k) ∈ {0, 1},∀n ∈ {1, ..., N},∀k ∈ {1, ..., K} (2.8e)

ξbn,k(γn,k) ≤ ξ, ∀n ∈ {1, ..., N},∀k ∈ {1, ..., K} (2.8f)

where ξ denotes the common BER-target.

In the adaptive multi-user MQAM/OFDMA CR system under consideration,

different transmit power and constellation sizes are allocated to different users and

subcarriers. Using the upper-bound expression for the Gaussian Q-function, i.e.,

Q(x) ≤ (1/2) exp(−x2/2), the instantaneous BER for user n over subcarrier k,

subject to an instantaneous constraint ξbn,k(γn,k) = ξ can be expressed as

ξbn,k(γn,k) ≤ 0.3 exp
 −1.5γn,k
Mn,k(γn,k)− 1

Pn,k(γn,k)
min

(
Pt
K
,
Im
th

Nsp
m

)
. (2.9)

where N sp
m = ∑K

k=1 |H
sp
m,k|2. With further manipulation, for a BER-target ξ, the

maximum constellation size for user n over subcarrier k is obtained as

M∗
n,k(γn,k) = 1 + ζγn,kPn,k(γn,k)

min
(
Pt
K
,
Im
th

Nsp
m

) (2.10)

where

ζ = −1.5
ln(ξ/0.3) . (2.11)

According the constraints (2.8b) and (2.8c) in the optimization problem O1, the
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cumulative density function (cdf) of γn,k can be written

Fγn,k(Γ) = P

(
Pt|Hss

n,k|2

K(σ2
n + σ2

ps)
≤ Γ,

Imth|Hss
n,k|2

N sp
m (σ2

n + σ2
ps)
≤ Γ

)
. (2.12)

The probability expression in (2.12) can be further simplified by considering the

cases Pt|Hss
n,k|

2

K(σ2
n+σ2

ps)
S

Imth|H
ss
n,k|

2

Nsp
m (σ2

n+σ2
ps)

and conditioning on N sp
m

1−P

(
Pt|Hss

n,k|2

K(σ2
n + σ2

ps)
> Γ,

Imth|Hss
n,k|2

N sp
m (σ2

n + σ2
ps)

> Γ
)

=

1−


P

(
|Hss

n,k|2 >
KΓ(σ2

n + σ2
ps)

Pt

)
N sp
m ≤

ImthK

Pt

P

(
|Hss

n,k|2 >
N sp
m Γ(σ2

n + σ2
ps)

Imth

)
N sp
m >

ImthK

Pt
.

(2.13)

Lemma 1: For large values of K, given complex Gaussian random variables Hsp
m,k

with means µHsp
m,k

and equal variance δ2
Hsp
m,k

for all k ∈ {1, ..., K}, the non-central

Chi-square random variable N sp
m = ∑K

k=1 |H
sp
m,k|2 can be approximated as a Gaus-

sian random variable with respective mean and variance µNsp
m

=δ2
Hsp
m,k

[
2K+µ′

]
and

δ2
Nsp
m

=δ4
Hsp
m,k

[
4K+4µ′

]
, where µ′ = ∑K

k=1(
µ
H
sp
m,k

δ
H
sp
m,k

)2.

Proof 1: We can write Hsp
m,k = δHsp

m,k
Gsp
m,k, where Gsp

m,k ∼ CN(
µ
H
sp
m,k

δ
H
sp
m,k

, 1). As-

suming equal variance for random variables Hsp
m,k,

∑K
k=1 |G

sp
m,k|2 is a non-central

Chi-Square random variable with degree of freedom 2K and non-centrality param-

eter µ′ = ∑K
k=1(

µ
H
sp
m,k

δ
H
sp
m,k

)2. For large values of K, central limit theorem (CLT) can be

invoked to show that the non-central Chi-Square random variable ∑K
k=1 |G

sp
m,k|2, can

be approximated as a Gaussian random variable as follows

K∑
k=1
|Gsp

m,k|2 ∼ N
(
2K+µ′ , 4K+4µ′

)
. (2.14)

60



Hence, N sp
m = ∑K

k=1 |H
sp
m,k|2 can be approximated by

N sp
m =

K∑
k=1
|Hsp

m,k|2 ∼ N

(
µNsp

m
, δ2
Nsp
m

)
(2.15)

where µNsp
m

= δ2
Hsp
m,k

[
2K +µ

′
]
and δ2

Nsp
m

= δ4
Hsp
m,k

[
4K + 4µ′

]
. Denoting the pdf of N sp

m

with fNsp
m

(.), and the cdfs of |Hss
n,k|2 and N sp

m with F|Hss
n,k
|2(.) and FNsp

m
(.), respectively,

we write the cdf of γn,k as

Fγn,k(Γ) = 1− A−B, (2.16)

A =
∫ Im

th
K

Pt

0
P

(
|Hss

n,k|2>
KΓ(σ2

n + σ2
ps)

Pt

)
fNsp

m
(N sp

m )dN sp
m

=P

(
|Hss

n,k|2>
KΓ(σ2

n + σ2
ps)

Pt

)∫ Im
th
K

Pt

0
fNsp

m
(N sp

m ) dN sp
m

= P

(
|Hss

n,k|2>
KΓ(σ2

n + σ2
ps)

Pt

)
P
(
N sp
m ≤

ImthK

Pt

)

=
(

1− F|Hss|2
(
KΓ(σ2

n + σ2
ps)

Pt

))
FNsp

m

(
ImthK

Pt

)
(2.17)

and

B=
∫ ∞
Im
th
K

Pt

P

(
|Hss

n,k|2>
N sp
m Γ(σ2

n+σ2
ps)

Imth

)
fNsp

m
(N sp

m ) dN sp
m . (2.18)

Recall that the cdf of a Normally-distributed random variable X with mean µ and

standard deviation σ is given by FX(x) = 1
2

[
1 + erf

(
x−µ
2σ2

)]
, and the cdf of an

Exponentially-distributed random variable Y is computed by FY (y) = 1 − e−y/µ,

where µ is the mean. Suppose that |Hss
n,k|2 follows an exponential distribution with

mean µ|Hss
n,k
|2 , hence, the integrals in (2.17) and (2.18) can be simplified to (2.19)

and (2.21), respectively. Finally, a closed-form expression for cdf of γn,k is developed

in (2.22). Trivially, through respective differentiation of (2.22), the pdf of γn,k is

obtained in (2.23).
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A= 1
2 exp

−KΓ(σ2
n + σ2

ps)
Ptµ|Hss

n,k
|2

1 + erf

( ImthK

Pt
− µNsp

m√
2δ2
Nsp
m

) (2.19)

B =
∫ ∞
Im
th
K

Pt

exp
(
−Nsp

m Γ(σ2
n+σ2

ps)
µ|Hss

n,k
|2I

m
th

)
exp

(
−(Nsp

m −µNspm )2

2δ2
N
sp
m

)
√

2πδ2
Nsp
m

dN sp
m ≈ (2.20)

1
2 exp

Γ(σ2
n + σ2

ps)(−2µNsp
m
µ|Hss

n,k
|2I

m
th + δ2

Nsp
m

Γ(σ2
n + σ2

ps))
2µ2

Hss
n,k
Imth

2


1− erf

(
µ|Hss

n,k
|2I

m
th

(
−µNsp

m
+ ImthK

Pt

)
+ δ2

Nsp
m

Γ(σ2
n + σ2

ps)√
2µ|Hss

n,k
|2I

m
thδNsp

m

). (2.21)

Fγn,k(Γ) ≈1− 1
2 exp

−KΓ(σ2
n + σ2

ps)
Ptµ|Hss

n,k
|2

1 + erf

( ImthK

Pt
− µNsp

m√
2δ2
Nsp
m

)
− 1

2 exp
Γ(σ2

n + σ2
ps)(−2µNsp

m
µ|Hss

n,k
|2I

m
th + δ2

Nsp
m

Γ(σ2
n + σ2

ps))
2µ2

Hss
n,k
Imth

2


1− erf

(
µ|Hss

n,k
|2I

m
th

(
−µNsp

m
+ ImthK

Pt

)
+ δ2

Nsp
m

Γ(σ2
n + σ2

ps)√
2µ|Hss

n,k
|2I

m
thδNsp

m

). (2.22)

fγn,k(Γ) ≈
K(σ2

n + σ2
ps) exp

(
−KΓ(σ2

n+σ2
ps)

Ptµ|Hss
n,k
|2

)erf
 Im

th
K

Pt
−µ

N
sp
m√

2δ2
N
sp
m

+ 1


2Ptµ|Hss
n,k
|2

+
(σ2

n + σ2
ps)δNsp

m
exp

(
−
Imth

2K2µ|Hss
n,k
|2−2ImthKµNspm µ|Hss

n,k
|2Pt+2K(σ2

n+σ2
ps)PtδNspm Γ+µ2

N
sp
m
µ|Hss

n,k
|2P

2
t

2µ|Hss
n,k
|2P

2
t δNspm

)
√

2πImthµ|Hss
n,k
|2

−

0.5(σ2
n + σ2

ps)(ImthµNsp
m
µ|Hss

n,k
|2 − (σ2

n + σ2
ps)δNsp

m
Γ)

× exp
(σ2

n + σ2
ps)Γ((σ2

n + σ2
ps)δNsp

m
Γ− 2ImthµNsp

m
µ|Hss

n,k
|2)

2Imth2µ|Hss
n,k
|2

2


×

erf

(
Imthµ|Hss

n,k
|2
(
ImthK

Pt
− µNsp

m

)
+ (σ2

n + σ2
ps)δNsp

m
Γ
)

√
2δ2
Nsp
m
Imthµ|Hss

n,k
|2

− 1


Imth
2µ2
|Hss
n,k
|2

(2.23)
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2.3.2 Obtaining Solutions

It can be observed that the optimization problem, O1, is convex with respect to the

transmit power Pn,k(γn,k), however, it is non-convex with respect to ϕn,k(γn,k) as the

time-sharing factor only takes binary values. To obtain a sub-optimal solution for

problem O1, we employ the Lagrangian dual decomposition algorithm. By applying

dual decomposition, the non-convex optimization problem, O1, is decomposed into

independent sub-problems each corresponding to a given cognitive user.

The Lagrangian function of problem O1 is expressed as1

L

ϕn,k(γn,k), Pn,k(γn,k), λ(γn,k), µ, η(γn,k)
 =

K∑
k=1

N∑
n=1

Eγn,k

 log2

1 + ζγn,kPn,k(γn,k)
min

(
Pt
K
,
Im
th

Nsp
m

)
ϕn,k(γn,k)


−

K∑
k=1

∑
γn,k

λk(γn,k)
 N∑
n=1

ϕn,k(γn,k)− 1


− µ

 K∑
k=1

N∑
n=1

Eγn,k

{
ϕn,k(γn,k)Pn,k(γn,k)

}
− Pt


−
∑
γn,k

η(γn,k)
 K∑
k=1

N∑
n=1

ϕn,k(γn,k)Pn,k(γn,k)|Hsp
m,k|2 − Imth

 (2.24)

where µ, η(γn,k), and λk(γn,k) are the non-negative Lagrangian multipliers. Define

l

ϕn,k(γn,k), Pn,k(γn,k), λ(γn,k), µ, η(γn,k)
 =

K∑
k=1

N∑
n=1

log2

1 + ζγn,kPn,k(γn,k)
min

(
Pt
K
,
Im
th

Nsp
m

)
ϕn,k(γn,k)fγn,k(γn,k)

−
K∑
k=1

λk(γn,k)
 N∑
n=1

ϕn,k(γn,k)− 1


− µ

 K∑
k=1

N∑
n=1

ϕn,k(γn,k)Pn,k(γn,k)fγn,k(γn,k)


1For simplicity, the analysis is carried out for a single primary receiver.
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− η(γn,k)
 K∑
k=1

N∑
n=1

ϕn,k(γn,k)Pn,k(γn,k)|Hsp
m,k|2

. (2.25)

Note that the variation of the Lagrangian function, (2.24) with respect to the

optimization parameters, ϕn,k(γn,k) and Pn,k(γn,k), is equal to zero if and only if the

derivative of l
ϕn,k(γn,k), Pn,k(γn,k), λ(γn,k), µ, η(γn,k)

 with respect to ϕn,k(γn,k)

and Pn,k(γn,k) is equal to zero [75].

Based on the Karush-Kuhn-Tucker (KKT) necessary conditions theorem [76],

the optimum solutions
(
P ∗n,k(γn,k), ϕ∗n,k(γn,k)

)
must satisfy the following conditions:

∂l(ϕn,k(γn,k), Pn,k(γn,k), λ(γn,k), µ, η(γn,k))
∂Pn,k(γn,k)


= 0, Pn,k(γn,k) > 0

< 0, Pn,k(γn,k) = 0
(2.26)

∂l(ϕn,k(γn,k), Pn,k(γn,k), λ(γn,k), µ, η(γn,k))
∂ϕn,k(γn,k)



< 0, ϕn,k(γn,k) = 0

= 0, ϕn,k(γn,k)∈(0, 1)

> 0, ϕn,k(γn,k) = 1

(2.27)

λk(γn,k)
 N∑
n=1

ϕn,k(γn,k)− 1
 = 0 (2.28)

µ

 K∑
k=1

N∑
n=1

Eγn,k

{
ϕn,k(γn,k)Pn,k(γn,k)

}
− Pt

 = 0 (2.29)

η(γn,k)
 K∑
k=1

N∑
n=1

ϕn,k(γn,k)Pn,k(γn,k)|Hsp
m,k|2 − Imth

 = 0 (2.30)

The Lagrangian dual optimization problem associated with (2.24) is given by

min
λ(γn,k),µ,η(γn,k)

(F (λ(γn,k), µ, η(γn,k)) , s.t.:λ(γn,k), µ, η(γn,k) ≥ 0 (2.31)

where F (λ(γn,k), µ, η(γn,k)) denotes the Lagrangian dual function formulated below

F (λ(γn,k), µ, η(γn,k)) =
N∑
n=1

fn(ϕn,k(γn,k), Pn,k(γn,k)) +
K∑
k=1

∑
γn,k

λk(γn,k)

+ µPt +
∑
γn,k

η(γn,k)Imth (2.32)
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where

fn(ϕn,k(γn,k), Pn,k(γn,k)) =

max
ϕn,k(γn,k),Pn,k(γn,k)

 K∑
k=1

Eγn,k

 log2

1 + ζγn,kPn,k(γn,k)
min

(
Pt
K
,
Im
th

Nsp
m

)
ϕn,k(γn,k)


−

K∑
k=1

∑
γn,k

λk(γn,k)ϕn,k(γn,k)− µ
K∑
k=1

Eγn,k

{
ϕn,k(γn,k)Pn,k(γn,k)

}

−
∑
γn,k

η(γn,k)
K∑
k=1

ϕn,k(γn,k)Pn,k(γn,k)|Hsp
m,k|2

. (2.33)

To find the optimum solution of problem (2.33), we differentiate

l

ϕn,k(γn,k), Pn,k(γn,k), λ(γn,k), µ, η(γn,k)
 with respect to ϕn,k(γn,k)Pn,k(γn,k)

∂l

ϕn,k(γn,k), Pn,k(γn,k), λ(γn,k), µ, η(γn,k)


∂(ϕn,k(γn,k)Pn,k(γn,k))
=

ζγn,k

min
(
Pt
K
,
Im
th

N
sp
m

)fγn,k(γn,k)
ln(2)

1 + ζγn,kPn,k(γn,k)

min
(
Pt
K
,
Im
th

N
sp
m

) 
− µfγn,k(γn,k)− η(γn,k)|Hsp

m,k|2. (2.34)

Applying the KKT conditions yields the optimal potential power allocation policy

for Lagrangian multipliers µ and η(γn,k)

P ∗n,k(γn,k) =
 fγn,k(γn,k)

ln(2)(µfγn,k(γn,k) + η(γn,k)|Hsp
m,k|2) −

min
(
Pt
K
,
Imth
Nsp
m

)
ζγn,k

+

(2.35)

where [x]+ , max{x, 0}. The solution in (2.35) can be considered as a multi-

level water-filling algorithm where each subcarrier has a distinct water-level for a

given user. Note that the water levels determine the potential optimum amount

of power that may be allocated to nth SRx over subcarrier k. The result in (2.35)

can be used to find the optimal subcarrier allocation strategy. By differentiating
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l

ϕn,k(γn,k), Pn,k(γn,k), λ(γn,k), µ, η(γn,k)
 with respect to ϕn,k(γn,k) we have

∂l

ϕn,k(γn,k), Pn,k(γn,k), λ(γn,k), µ, η(γn,k)


∂ϕn,k(γn,k)
=

ζγn,kP
∗
n,k(γn,k)

min
(
Pt
K
,
Im
th

N
sp
m

) fγn,k(γn,k)
ln(2)

1 + ζγn,kP
∗
n,k

(γn,k)

min
(
Pt
K
,
Im
th

N
sp
m

) 

+
ln
1 + ζγn,kP

∗
n,k(γn,k)

min
(
Pt
K
,
Im
th

N
sp
m

)  fγn,k(γn,k)
ln(2) − λk(γn,k). (2.36)

By substituting the optimal power policy (2.35) in (2.36) and by applying the KKT

conditions, the optimal subcarrier allocation problem is formulated as:

n∗ = argmax(Λ(γn,k)) , ∀n ∈ {1, ..., N} , ∀k ∈ {1, ..., K}

(2.37)

where n∗ is the optimal SRx index, and

Λ(γn,k) =

ζγn,kn,kP
∗
n,k(γn,k)

min
(
Pt
K
,
Im
th

N
sp
m

) fγn,k(γn,k)

ln(2)
1 + ζγn,kn,kP

∗
n,k

(γn,k)

min
(
Pt
K
,
Im
th

N
sp
m

)  +
ln
1 + ζγn,kn,kP

∗
n,k(γn,k)

min
(
Pt
K
,
Im
th

N
sp
m

)  fγn,k(γn,k)
ln(2) . (2.38)

The optimal subcarrier allocation policy is therefore achieved by assigning the

kth subcarrier to the user with the highest value of Λ(γn,k) for all corresponding

γn,k. To ensure optimality, λk(γn,k) should be between first and second maxima

of Λ(γn,k). If there are multiple equal maxima, the time-slot can be identically

shared among the respective users. Substituting (2.35) and (2.38) in (2.33), derives

fn(ϕn,k(γn,k), Pn,k(γn,k)), therefore, the solution for (2.32) can be obtained. To com-

pute the solution for the non-differentiable dual problem in (2.31), different optimiza-

tion algorithms can be applied, including subgradient, ellipsoid, and cutting-plane.
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Algorithm 1: Subgradient-based method; AASE∗, M∗
n,k(γn,k), ϕ∗n,k(γn,k),

and P ∗n,k(γn,k), are the optimal values of AASE, Mn,k(γn,k), ϕn,k(γn,k), and
Pn,k(γn,k), respectively.

1. Assign initial values to λk(γn,k), µ, η(γn,k), τ i1, and τ i2, ∀n ∈ {1, ..., N}, and
∀k ∈ {1, ..., K}, respectively.

2. Calculate Pn,k(γn,k) and ϕn,k(γn,k), ∀n ∈ {1, ..., N}, and ∀k ∈ {1, ..., K},
using (2.35) and (2.37), respectively.

3. Update λk(γn,k), µ, η(γn,k), τ i1, and τ i2, for any n ∈ {1, ..., N}, and
k ∈ {1, ..., K}, according to (2.39) and (2.40).

4. Repeat steps 2 and 3 until convergence.

5. Determine P ∗n,k(γn,k) and ϕ∗n,k(γn,k), using (2.35) and (2.37), respectively.

6. Based on the obtained results from step 5, calculate M∗
n,k(γn,k) using (2.10),

hence, compute AASE∗ according to (2.7).

In this work, we use the subgradient-based method to update the values of the

coefficients λk(γn,k), µ, and η(γn,k), in order to determine the optimal solution to

(2.31).

The subgradient method has been widely used for solving Lagrangian relaxation

problems. The master problem sets the user resource allocation prices, and in or-

der to update the dual variables, in every iteration of the subgradient method, the

algorithm repeatedly finds the maximizing assignment for the sub-problems indi-

vidually. For any optimal pair of (ϕ∗n,k(γn,k), P ∗n,k(γn,k)), the dual variables of the

problem (2.32) are updated using the following iterations

µi+1 = µi − τ i1

(
Pt −

N∑
n=1

K∑
k=1

Eγn,k
{
ϕ∗n,k(γn,k)P ∗n,k(γn,k)

})
(2.39)

ηi+1(γn,k) = ηi(γn,k)− τ i2

×
(
Imth −

N∑
n=1

K∑
k=1

ϕ∗n,k(γn,k)P ∗n,k(γn,k)|H
sp
m,k|2

)
(2.40)

where for the iteration number i, τ i1 and τ i2 are the step sizes. The initial values of

dual multipliers and step size selection are important towards obtaining the optimal

solution, and can greatly affect the optimization problem convergence.
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The potential optimum continuous-rate adaptive constellation size vector for user

n over subcarrier k is written as

M∗
n,k(γn,k) =

max
1,

ζγn,kfγn,k(γn,k)
ln(2) min

(
Pt
K
,
Im
th

Nsp
m

)
(µfγn,k(γn,k) + η(γn,k)|Hsp

m,k|2

. (2.41)

Note that the aforementioned expression serves as an upper-bound for practical

scenarios where only discrete-valued constellation sizes are applicable. Neverthe-

less, the real-valued M∗
n,k(γn,k) in (2.41) may be truncated to the nearest integer.

The corresponding maximum aggregate average spectral efficiency of the adaptive

MQAM/OFDMA system is thus derived below

AASE∗ =
N∑
n=1

K∑
k=1

Eγn,k

 log2

max
1,

ζγn,kfγn,k(γn,k)
ln(2) min

(
Pt
K
,
Im
th

Nsp
m

)
(µfγn,k(γn,k) + η(γn,k)|Hsp

m,k|2)

ϕ∗n,k(γn,k)
. (2.42)

According to (2.41), no transmission takes place, i.e.,M∗
n,k(γn,k) = 1, when P ∗n,k(γn,k) =

0. Consequently, the optimized cut-off threshold, dictated by the channel quality,

power constraint, and interference constraint, is given by: γth = ln(2)(µ+η(γn,k)|Hm
sp|2)

ζ
.

2.4 Interference Constraint with Average Case/

Worst Case Imperfect Cross-Link CSI

Due to technical reasons such as estimation errors and wireless channel delay, perfect

channel information is not available. In shared-spectrum environments, controlling

the interference on the primary receivers is highly dependent on the accuracy of

the cross-service channel estimation. Here, we assume that imperfect cross-link

knowledge between STx and PRxs is available at the secondary transmitter. The

interference management at the cognitive base station is based on the noisy esti-

mation of STx and PRx channel-to-noise-plus-interference ratio (CINR) by Ĥsp
m,k
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in (2.2). As previously mentioned, by considering the ‘correlated case’ of the esti-

mation Ĥsp
m,k and error ∆Hsp

m,k random variables, we derive a posterior distribution

of the actual channel conditioned on its estimate, to facilitate robust and reliable

interference management.

The maximum achievable aggregate spectral efficiency in bits per second per

Hertz (bps/Hz), for the cognitive radio system operating under peak aggregate in-

terference constraint and total average transmit power constraint, for a given BER-

target quality, with noisy cross-link CSI, is the solution to the following optimization

problem.

Problem O2:

max
ϕn,k(γn,k),Pn,k(γn,k)

N∑
n=1

K∑
k=1

Eγn,k|ĥsp

{
log2(Mn,k(γn,k))ϕn,k(γn,k)

}
(2.43a)

s. t.: constraints in (2.8b), (2.8d), (2.8e), and (2.8f),
N∑
n=1

K∑
k=1

ϕn,k(γn,k)Pn,k(γn,k)|Hsp
m,k|Ĥ

sp
m,k|2≤Imth ,∀m∈{1, ...,M} (2.43b)

where ĥsp is defined as a vector containing Ĥsp
m,k of all time intervals. The objective

of this section is to devise an estimation framework by employing a posteriori pdf of

the channel estimation error given the channel estimation. This general framework

enables us to formulate the ‘average case’ and ‘worst case’ scenarios of the channel

estimation error.

2.4.1 Analysis for the Average Case of Estimation Error

Proposition 1: Given Ĥsp
m,k and ∆Hsp

m,k are statistically correlated random variables

with a correlation factor ρ =
√
δ2

∆Hsp
m,k
/(δ2

∆Hsp
m,k

+ δ2
Hsp
m,k

), where 0 ≤ ρ ≤ 1, hence,

cov(Ĥsp
m,k,∆H

sp
m,k) = δ2

∆Hsp
m,k

1. The posterior distribution of ∆Hsp
m,k given Ĥsp

m,k is a

complex Gaussian random variable with respective mean and variance of

µ∆Hsp
m,k
|Ĥsp
m,k

= E∆Hsp
m,k
|Ĥsp
m,k

(∆Hsp
m,k|Ĥ

sp
m,k)

1var(x) denotes the variance of x and cov(y, z) is defined as the covariance of y and z.
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= E∆Hsp
m,k

(∆Hsp
m,k) +

cov(∆Hsp
m,k, Ĥ

sp
m,k)

δ2
∆Hsp

m,k
+ δ2

Hsp
m,k

×
(
Ĥsp
m,k − EĤsp

m,k
(Ĥsp

m,k)
)

= ρ2Ĥsp
m,k (2.44)

and

δ2
∆Hsp

m,k
|Ĥsp
m,k

= var(∆Hsp
m,k|Ĥ

sp
m,k)

= δ2
∆Hsp

m,k

[
1−

cov2(∆Hsp
m,k, Ĥ

sp
m,k)

δ2
∆Hsp

m,k
δ2
Ĥsp
m,k

]

= (1− ρ2)δ2
∆Hsp

m,k
. (2.45)

Using (2.2), the interference constraint in (2.43b) for the ‘average case’ of esti-

mation error can be written as

N∑
n=1

K∑
k=1

ϕn,k(γn,k)Pn,k(γn,k)

×
(
|Ĥsp

m,k + ∆Hsp
m,k|Ĥ

sp
m,k|

)2
≤ Imth . (2.46)

With further analysis, the above is reduced to

N∑
n=1

K∑
k=1

ϕn,k(γn,k)Pn,k(γn,k)
(
|Ĥsp

m,k|Ĥ
sp
m,k + ∆Hsp

m,k|Ĥ
sp
m,k|

)2
≤ Imth (2.47)

where Ĥsp
m,k|Ĥ

sp
m,k is a constant. Thus, by substituting the expectation in (2.44), we

have

N∑
n=1

K∑
k=1

ϕn,k(γn,k)Pn,k(γn,k)
(
|Ĥsp

m,k + ρ2Ĥsp
m,k|

)2
≤ Imth . (2.48)

By adopting a similar approach to that in the previous section, we employ the

Lagrangian dual optimization method to obtain AASE∗ for the ‘average case’ sce-

nario. The potential optimum power allocation policy for user n and subcarrier k is
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given by

P ∗n,k(γn,k) = fγn,k(γn,k)
ln(2)(µfγn,k(γn,k) + η(γn,k)|Ĥsp

m,k(1 + ρ2)|2)
−

min
(
Pt
K
,
Imth
Nsp
m

)
ζγn,k

+

(2.49)

where in the ‘average case’, N sp
m = ∑K

k=1(|Ĥsp
m,k(1 + ρ2|)2. The optimal subcarrier

allocation policy is the solution to the following problem

n∗ = argmax(Λ(γn,k)) , ∀n ∈ {1, ..., N} , ∀k ∈ {1, ..., K} (2.50)

where n∗ is the optimal SRx index, and

Λ(γn,k) =

ζγn,kP
∗
n,k(γn,k)

min
(
Pt
K
,
Im
th

N
sp
m

) fγn,k(γn,k)
ln(2)

1 + ζγn,kP
∗
n,k

(γn,k)

min
(
Pt
K
,
Im
th

N
sp
m

)  +
ln
1 + ζγn,kP

∗
n,k(γn,k)

min
(
Pt
K
,
Im
th

N
sp
m

)  fγn,k(γn,k)
ln(2) . (2.51)

Subsequently, the optimal continuous-rate solution for the constellation size of user

n over subcarrier k is derived

M∗
n,k(γn,k) =

max
1,

ζγn,kfγn,k(γn,k)
ln(2)(min

(
Pt
K
,
Im
th

Nsp
m

)
)(µfγn,k(γn,k) + η(γn,k)|Ĥsp

m,k(1 + ρ2)|2)

. (2.52)

Hence, the following maximum aggregate average spectral efficiency for the spectrum-

sharing system under imperfect cross-link CSI knowledge for the ‘average case’ of

estimation error can be achieved based on the optimal power, rate, and subcarrier

allocation policies

AASE∗ =
N∑
n=1

K∑
k=1

Eγn,k|ĥn,k

 log2

max
1,
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ζγn,kfγn,k(γn,k)
ln(2) min

(
Pt
K
,
Im
th

Nsp
m

)
(µfγn,k(γn,k)+η(γn,k)|Ĥsp

m,k(1+ρ2)|2)

ϕ∗n,k(γn,k)
. (2.53)

2.4.2 Analysis for the Worst Case of Estimation Error

To derive the interference constraint for the worst case scenario, we must obtain a

formulation for the upper-bound of ∆Hsp
m,k. Recall that ∆Hsp

m,k is a Gaussian random

variable. Therefore, we proceed by bounding the channel estimation error with a

certain probability. By employing the Chebyshev’s inequality, for any Y > 0, we

have

P

(
|∆Hsp

m,k|Ĥ
sp
m,k| ≤ Ω

)
︸ ︷︷ ︸

pr

≥ 1− 1
Y 2 (2.54)

where

Ω = E∆Hsp
m,k
|Ĥsp
m,k

(∆Hsp
m,k|Ĥ

sp
m,k)

+ Y

√
var(∆Hsp

m,k|Ĥ
sp
m,k)). (2.55)

With further manipulation, for a given probability of error, pr, the following holds

Ω =

√√√√var(∆Hsp
m,k|Ĥ

sp
m,k)

1− pr + E∆Hsp
m,k
|Ĥsp
m,k

(∆Hsp
m,k|Ĥ

sp
m,k). (2.56)

The interference constraint for the ‘worst case’ scenario of estimation error is ex-

pressed as

N∑
n=1

K∑
k=1

ϕn,k(γn,k)Pn,k(γn,k)|Ĥsp
m,k + Ω|2 ≤ Imth . (2.57)

Utilizing one-level dual decomposition method, and by applying KKT conditions,

the optimum adaptive power allocation scheme for user n over subcarrier k is derived

as

P ∗n,k(γn,k) =
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 fγn,k(γn,k)
ln(2)(µfγn,k(γn,k) + η(γn,k)|Ĥsp

m,k + Ω|2)
−

min
(
Pt
K
,
Imth
Nsp
m

)
ζγn,k

+

(2.58)

where in the ‘worst case’, N sp
m = ∑K

k=1 |Ĥ
sp
m,k + Ω|2. To derive the optimal subcarrier

allocation policy, the following maximization problem is formulated

n∗ = argmax(Λ(γn,k)) , ∀n ∈ {1, ..., N} , ∀k ∈ {1, ..., K} (2.59)

where the optimal cognitive user index, n∗, can be obtained by substituting (2.58) in

(2.51) and thus solving the optimization problem in (2.59). The optimal continuous-

rate solution for the constellation size of user n over subcarrier k is derived

M∗
n,k(γn,k) =

max
1,

ζγn,kfγn,k(γn,k)
ln(2)min

(
Pt
K
,
Im
th

Nsp
m

)
(µfγn,k(γn,k) + η(γn,k)|Ĥsp

m,k + Ω|2)

. (2.60)

The maximum aggregate average spectral efficiency for the adaptive MQAM/OFDMA

system under imperfect cross-link CSI availability for the ‘worst case’ of estimation

error with a given probability of error, pr, is expressed as

AASE∗ =
N∑
n=1

K∑
k=1

Eγn,k|ĥn,k

 log2

max
1,

ζγn,kfγn,k(γn,k)
ln(2) min

(
Pt
K
,
Im
th

Nsp
m

)
(µfγn,k(γn,k) + η(γn,k)|Ĥsp

m,k + Ω|2)

ϕ∗n,k(γn,k)
. (2.61)

2.5 Probabilistic Interference Constraint

In a practical spectrum-sharing system, the collision tolerable level is confined by a

maximum collision probability allowed by the licensed network. The collision tol-

erable level is highly dependent on the primary service type. For example, in case

of real-time video streaming, a high collision probability is not desirable, however,

delay-insensitive services can tolerate higher packet loss rates. In this section, we

consider an underlay spectrum-sharing scenario where the primary users can toler-
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ate a maximum collision probability εm, ∀m ∈ {1, ...,M}. We derive optimal power,

rate, and subcarrier allocation algorithms for the multi-user OFDMA CR system

under noisy cross-link CSI availability subject to satisfying the imposed peak aggre-

gate power and collision probability constraints. The maximization problem can be

formulated as follows.

Problem O3:

max
ϕn,k(γn,k),Pn,k(γn,k)

N∑
n=1

K∑
k=1

Eγn,k|ĥsp

{
log2(Mn,k(γn,k))ϕn,k(γn,k)

}
(2.62a)

s. t.: constraints in (2.8b), (2.8d), (2.8e), and (2.8f),

P

(
N∑
n=1

K∑
k=1

ϕn,k(γn,k)Pn,k(γn,k)|Hsp
m,k|Ĥ

sp
m,k|2 > Imth

)
≤ εm

,∀m ∈ {1, ...,M} (2.62b)

We proceed by deriving a posterior distribution of the actual cross-link given the

estimated channel gains.

Proposition 2: The posterior distribution of the actual channel Hsp
m,k given the

estimation Ĥsp
m,k is a complex Gaussian random variable with respective mean and

variance of

µHsp
m,k
|Ĥsp
m,k

= EHsp
m,k
|Ĥsp
m,k

(Ĥsp
m,k + ∆Hsp

m,k|Ĥ
sp
m,k)

= EĤsp
m,k
|Ĥsp
m,k

(Ĥsp
m,k|Ĥ

sp
m,k)

+ E∆Hsp
m,k
|Ĥsp
m,k

(∆Hsp
m,k|Ĥ

sp
m,k) = (1 + ρ2)Ĥsp

m,k (2.63)

and

δ2
Hsp
m,k
|Ĥsp
m,k

= var(Ĥsp
m,k + ∆Hsp

m,k|Ĥ
sp
m,k)

= var(Ĥsp
m,k|Ĥ

sp
m,k) + var(∆Hsp

m,k|Ĥ
sp
m,k)

+ 2cov(∆Hsp
m,k|Ĥ

sp
m,k, Ĥ

sp
m,k|Ĥ

sp
m,k)

= (1− ρ2)δ2
∆Hsp

m,k
. (2.64)
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Figure 2.2: PApproximated Model and Empirical Data cdfs, obtained from Monte-Carlo
simulations. System parameters are: βmk ∼ Chi-Square(2, 2), δ2

Hsp
m,k
|Ĥsp
m,k

= 1.
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Figure 2.3: Approximated Model and Empirical Data cdfs, obtained from Monte-Carlo
simulations. System parameters are: βmk ∼ Gamma(2, 0.5, 4), δ2

Hsp
m,k
|Ĥsp
m,k

= 0.5.

Assuming equal variance δ2
Hsp
m,k
|Ĥsp
m,k

across all users and subcarriers, the collision

probability constraint in (2.62b) can be expressed as

P

(
δ2
Hsp
m,k
|Ĥsp
m,k

N∑
n=1

K∑
k=1

ϕn,k(γn,k)Pn,k(γn,k)|Ξm[k]|2 > Imth

)
≤εm (2.65)
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where Ξm[k] is a complex Gaussian random variable with variance of one and mean

of

µΞm[k] =
∣∣∣∣∣∣
µHsp

m,k
|Ĥsp
m,k

δHsp
m,k
|Ĥsp
m,k

∣∣∣∣∣∣
2

. (2.66)

It should be noted that in contrast to the sum of equal-weighted Chi-Square

random variables in Lemma 1, (2.65) includes a sum of non-equal-weighted Chi-

Square random variables. In general, obtaining the exact distribution of the linear

combination of weighted Chi-Square random variables is rather complex. Although

several approximations have been proposed in the literature, e.g., [77–79], most are

not easy to implement. In this work, we propose a simple approximation based

on the moments of δ2
Hsp
m,k
|Ĥsp
m,k

∑N
n=1

∑K
k=1ϕn,k(γn,k)Pn,k(γn,k)|Ξm[k]|2. Consider the

following equality

δ2
Hsp
m,k
|Ĥsp
m,k

N∑
n=1

K∑
k=1

ϕn,k(γn,k)Pn,k(γn,k)|Ξm[k]|2 =
K∑
k=1

βmk |Ξm[k]|2 (2.67)

where βmk = ∑N
n=1 δ

2
Hsp
m,k
|Ĥsp
m,k

ϕn,k(γn,k)Pn,k(γn,k).

Proposition 3: The distribution of the sum of non-equal-weighted non-central

Chi-Square random variables, i.e., ∑K
k=1 β

m
k |Ξm[k]|2, is similar to that of a weighted

non-central Chi-Square-distributed random variable ξχ2
D(δ′), where δ′ , D, and ξ are

respectively the non-centrality parameter, degree of freedom, and weight of the new

random variable:

δ
′ =

K∑
k=1

µΞm[k] (2.68)

D = 2K (2.69)

ξ =
∑K
k=1 β

m
k (2 + µΞm[k])

2K +∑K
k=1 µΞm[k]

. (2.70)

To investigate the above similarity, or the accuracy of the proposed approximation,

we compare the cdf of the proposed Chi-Square distribution with that of (2.67),

using Monte-Carlo simulations. The results in Fig. 2.2 and Fig. 2.3 illustrate

that the approximation is accurate over a wide range of practical values for K over
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randomly-distributed - e.g., Chi-Square or Gamma - weights βmk . Now (2.65) can

be simplified to:

P

δ2
Hsp
m,k
|Ĥsp
m,k

N∑
n=1

K∑
k=1

ϕn,k(γn,k)Pn,k(γn,k)|Ξm[k]|2 > Imth


≈ Pr(ξχ2

D(δ′) > Imth). (2.71)

According to [79], since the non-centrality parameter is small relative to the degree of

freedom, we can approximate the non-central Chi-Square distribution with a central

one using the following

P(ξχ2
D(δ′) > Imth) ≈P(χ2

D(0) > Imth/ξ

1 + δ′/D
). (2.72)

The right hand side (RHS) of (2.72) can be formulated using the upper Gamma

function [80] as

P(χ2
D(0) > Imth/ξ

1 + δ′/D
) =

Γ(K, Imth/ξ

2(1+δ′/D))
Γ(K) (2.73)

where Γ(., .) is the upper incomplete Gamma function, and Γ(.) is the complete

Gamma function.

Proposition 4: For all integer values K 6= 1, and all positive Imth/ξ

1+δ′/D - this condi-

tion is always true because, Imth , δ
′
βmk , and K are positive; consequently, ξ, δ′ , and

D are also positive - the deterministic inequality

δ2
Hsp
m,k
|Ĥsp
m,k

K∑
k=1

(2 + µΞm[k])
N∑
n=1

ϕn,k(γn,k)Pn,k(γn,k)

≤ K Imth
(K!)1/K ln (1− (1− εm)1/K) (2.74)

satisfies the probabilistic inequality (2.65). Therefore, the constraint (2.65) can be

replaced by (2.74).

Proof: The proof is given in the Appendix A.

To obtain AASE∗ for the probabilistic interference constraint and ‘probabilis-
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tic case’ of estimation error scenario, we employ the Lagrangian dual optimization

method as in the previous sections, where

αk = δ2
Hsp
m,k
|Ĥsp
m,k

(2 + µΞm[k]) (2.75)

and

Imth = K Imth
(K!)1/K ln (1− (1− εm)1/K) . (2.76)

Therefore, by solving the Lagrangian optimization problem the following potential

optimal power allocation solution can be obtained for user n over subcarrier k

P ∗n,k(γn,k) =
 fγn,k(γn,k)

ln(2)(µfγn,k(γn,k) + η(γn,k)αk)
−

min
(
Pt
K
,
Im
th

N̂sp
m

)
ζγn,k

+

(2.77)

where N̂ sp
m in the ‘probabilistic case’ is derived in Appendix A, Section C. The

optimal subcarrier allocation policy is the solution to the following problem

n∗ = argmax(Λ(γn,k)) , ∀n ∈ {1, ..., N} , ∀k ∈ {1, ..., K} (2.78)

where n∗ is the optimal SRx index, and

Λ(γn,k) =

ζγn,kP
∗
n,k(γn,k)

min
(
Pt
K
,
Im
th

N̂
sp
m

) fγn,k(γn,k)

ln(2)

1 + ζγn,kP
∗
n,k

(γn,k)

min
(
Pt
K
,
Im
th

N̂
sp
m

)


+

ln

1 + ζγn,kP
∗
n,k(γn,k)

min
(
Pt
K
,
Im
th

N̂
sp
m

)
 fγn,k(γn,k)

ln(2) . (2.79)

By employing the sub-gradient method in Algorithm 1, the Lagrangian multipliers

µ and η(γn,k) can be updated by

µi+1 = µi − τ i1

(
Pt −

N∑
n=1

K∑
k=1

ϕ∗n,k(γn,k)P ∗n,k(γn,k)
)

(2.80)

78



ηi+1(γn,k) = ηi(γn,k)− τ i2

×
(
Imth−δ2

Hsp
m,k
|Ĥsp
m,k

K∑
k=1

(2+µΞ[k])
N∑
n=1

ϕ∗(γn,k)P ∗n,k(γn,k)
)
. (2.81)

Subsequently, optimal expressions are derived for the constellation size and hence

aggregate spectral efficiency under collision probability constraint and imperfect

cross-link CSI:

M∗
n,k(γn,k) = max

1,
ζγn,kfγn,k(γn,k)

ln(2)min
(
Pt
K
,
Im
th

N̂sp
m

)
(µfγn,k(γn,k) + η(γn,k)αk)

, (2.82)

AASE∗ =
N∑
n=1

K∑
k=1

∑
γn,k|ĥn,k

 log2

max
1,

ζγn,kfγn,k(γn,k)

ln(2) min
(
Pt
K
,
Im
th

N̂sp
m

)
(µfγn,k(γn,k) + η(γn,k)αk)

ϕ∗n,k(γn,k)
. (2.83)

The methodologies for deriving the expressions of the cdf of the received SINR

given the estimation, for different ‘average case’, ‘worst case’, and ‘probabilistic case’

scenarios of estimation error, are elucidated in Appendix B.

2.6 Discussion of Results

In this section, we examine the performance of the OFDMA CR network operating

under total average transmit power and deterministic/probabilistic peak aggregate

interference constraints with perfect/imperfect cross-channel estimation using the

respective optimal resource allocation solutions. In the following results, perfect

CSI knowledge of the cognitive user link is assumed to be available at the STx

through an error-free feedback channel. Thus, |Hss
n,k|, ∀{n, k}, are drawn through

a Rayleigh distribution. Further, the secondary-secondary power gain mean values,

µ|Hss
n,k
|2 , ∀{n, k}, are taken as Uniformly-distributed random variables within 0 to

2. It should be noted that the sub-channels are assumed to be narrow-enough so

that they experience frequency-flat fading. Interfering cross-channel values, Hsp
m,k,
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∀{m, k}, are distributed according to a complex Gaussian distribution with mean

0.05 and variance 0.1. For the inaccurate cross-link CSI case, the channel estimation

and error for all sub-channels are taken as independent and identically distributed

(i.i.d.) zero-mean Normally-distributed random variables. In addition, the AWGN

power spectral density is set to -174 dBm. The total average power constraint is

imposed on the system in all cases. Discrete-rate cases with real-valued MQAM

signal constellations, i.e., log2(M) ∈ {2, 4, 6, 8, 10} bits/symbol, are also considered

for practical scenarios. All results correspond to the scenario with three secondary

receivers and a single primary receiver, hence, the subscript m is hereafter omitted.
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Figure 2.4: Probability density functions of the received SINR for OFDMA users in a
given subcarrier k under different average power constraint values. System parameters
are: K = 64, k = 16, Ith = 5 Watts.
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Figure 2.5: Optimal and dual values versus the number of iterations using the sub-gradient
method. Results for the case with deterministic interference constraint and perfect cross-
link CSI knowledge. System parameters are: K = 64, Pt = 30 Watts, Ith = 10 Watts,
ξ = 10−2.

The approximated probability distributions of the received SINRs for cognitive

users in a randomly taken subcarrier, i.e., here k = 16, under different total average

power constraint limits Pt is plotted in Fig. 2.4. For a fixed interference constraint

of Ith = 5 Watts, it can be observed that the probability of higher received SINR

improves as the value of Pt increases. For example, for user 3, the probability of

receiving γ3,16 = 10 dB is 54.5% higher as the value of Pt is increased from 20 to 30

Watts.

Fig. 2.5 illustrates the evolution of the optimal and dual values using the sub-

gradient method over time. The results correspond to the maximum deliverable

AASE for the case with deterministic interference constraint and perfect cross-link

CSI knowledge. The iterative sub-gradient algorithm converges quickly and typically

achieves a lower-bound at 96.5% of the optimal value within 12 iterations. It can

easily be shown that the proposed dual decomposition algorithm converges fast for

different parameters of system settings.
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Figure 2.6: AASE performance versus the tolerable interference power threshold level with
different values of Pt and K. Results for the case with deterministic interference constraint
and perfect cross-link CSI knowledge. System parameters are: Ith = 10 Watts, ξ = 10−2.
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Figure 2.7: AASE performance using the proposed RRA algorithm versus Ith constraint for
different BER-target values. Results correspond to the case with deterministic interference
constraint and perfect cross-link CSI. System parameters are: K = 64, Pt = 30 Watts.

Fig. 2.6 shows the achievable AASE of the adaptive MQAM/OFDMA CR sys-

tem versus STx-PRx interference power threshold levels under total average power

and deterministic interference constraints with perfect cross-link CSI knowledge. As
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expected, greater AASE values are achieved for higher maximum tolerable interfer-

ence since Ith limits the cognitive users’ transmit power. The improved performance

however approaches a plateau in the high Ith region as the Pt threshold becomes

the dominant power constraint. Note that the improved performance by increas-

ing Ith comes at the cost of increased probability for violating the primary users’

QoS. Further, imposing a higher maximum peak average power setting enhances

the achievable AASE in high Ith region - Pt, for the particular values taken in this

example, achieve the same AASE over small Ith settings. Moreover, increasing the

number of subcarriers results in higher attainable performance.

Achievable AASE performance under different maximum tolerable interference

thresholds for respective values of BER-target with perfect cross-link CSI availability

is shown in Fig. 2.7. It can be seen that the system performance is improved under

less stringent QoS constraints. For example, a 26.9% gain in AASE performance is

achieved by imposing ξ = 10−2 in comparison to ξ = 10−3. However, the gap in

performance becomes less significant for lower BER-target regimes.

System performance with noisy cross-link CSI and ‘average case’ of estimation

error versus the correlation factor between estimation and error variables ρ is de-

picted in Fig. 2.8. It can be seen that a higher correlation factor increases the

maximum likelihood between true and estimated interfering channels, hence, the

probability of violating the interference constraint on average is improved and in

turn a lower AASE for the cognitive system is realized. Further, the achievable

AASE with imperfect cross-link CSI knowledge and ‘worst case’ of estimation error

against ρ for different probabilities of channel estimation error bound pr is stud-

ied in Fig. 2.9. Apart from the effect of ρ on the performance, higher values of

pr increase the robustness of the interference management scheme but come at the

cost of lower achievable spectral efficiencies. The results indicate that the improved

AASE performance by decreasing pr in the lower half region (i.e., pr ≤ 0.5) is not

significant yet it may cause critical interference to the primary service operation.

For example, given ρ = 0.5, varying the value of pr from 0.5 to 0.1 results in a 40%

increase in the probability of error bound violation but only provides an effective

gain of 2.3% in the cognitive system performance.
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The achievable performance with imperfect cross-channel information and ‘prob-

abilistic case’ of estimation error versus the collision probability ε with respective

Ith values is illustrated in Fig. 2.10. Increasing the maximum probability of vi-

84



olating the interference constraint set by the a regulatory authority significantly

improves the spectral efficiency of the cognitive network. The trade-off is, however,

the degradation of the primary service operation which is deemed highly undesirable

in practical scenarios.

System performance with noisy cross-link CSI for different ‘average case’, ‘worst

case’, and ‘probabilistic case’ of estimation error is demonstrated in Fig. 2.11.

The results show that the ‘probabilistic case’ with 5% collision probability outper-

forms the achievable AASE under the ‘worst case’ scenario with an error bound of

pr = 0.95. For example, given Ith = 6 Watts, the ‘probabilistic case’ achieves a

26.7% gain in AASE over the ‘worst case’. Further, employing the ‘average case’

provides higher spectral efficiencies. For instance, a 7.0% increase in performance in

achieved utilizing the ‘average case’ over the ‘probabilistic case’. For high values of

Ith, the total average power constraint becomes the dominant limit and therefore the

performance under different cases of estimation error eventually converge. Note that

the ‘average case’ controls the interference based on the average error estimation,

therefore, it cannot mitigate the potential instantaneous interference violations. On

the other hand, implementing the ‘worst case’ can guarantee that the interference

constraints are obeyed at any given time, thus, preserving the primary users’ QoS.

The proposed ‘probabilistic case’ of estimation error provides an optimal trade-off

between the achievable performance of cognitive system and managing the QoS of

primary users. In particular, the ‘probabilistic case’ is advantageous in terms of

performance and flexibility over the conventional ‘average case’ and ‘worst case’

scenarios.
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estimation error against ε with Ith. System parameters are: K = 64, Pt = 40 Watts,
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2.7 Conclusions

In this chapter, we have studied the spectral efficiency performance of adaptive

MQAM/OFDMA underlay CR networks with certain/uncertain interfering channel

information. We derived novel RRA algorithms to enhance the overall cognitive

system performance subject to satisfying total average power and peak aggregate

interference constraints. The proposed framework considers both cases of perfect

and imperfect cross-link CSI knowledge at the secondary transmitter. In the latter,

different ‘average case’, ‘worst case’, and ‘probabilistic case’ scenarios of channel

estimation error were modelled and analysed. To compute the aggregate average

spectral efficiency, we developed unique approximated distributions of the received

SINR for given users over different sub-channels in the respective cases under con-

sideration. Through numerical results we studied the achievable performance of

the cognitive system using our proposed RRA algorithms. By adapting the power,

rate, and subcarrier allocation policies to the time-varying secondary-secondary fad-

ing channels and secondary-primary interfering channels, a significant gain in the

spectral efficiency performance of the cognitive system can be realized, whilst con-

trolling the interference on the primary service receivers. Furthermore, the impact of

parameters uncertainty on overall system performance was investigated. In partic-

ular, simulation results were provided for different cases of error estimation. It was

understood that the ‘average case’ results in higher cognitive system performance,

however, comes at the cost of potential instantaneous interference violations. Sub-

sequently, the ‘worst case’ can guarantee that the power constraints are obeyed at

all times, yet it does not result in desirable cognitive performance. In contrast, the

proposed ‘probabilistic case’ in this chapter, which was derived as a low complex-

ity deterministic constraint, provided an optimal trade-off between the achievable

performance of the cognitive network and preserving the QoS of the primary users.

In summary, the ‘probabilistic case’ can replace the conventional ‘average case’ and

‘worst case’ scenarios in practical situations as a result of enhanced performance

and flexibility.
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Chapter 3

Stochastic Resource Allocation for

Hybrid and Opportunistic-Access

OFDMA Cognitive Radios

3.1 Introduction

Based on the concept of CR, Ofcom and other spectrum regulators have recently

enabled white space devices (WSDs) to operate in the spatially unused TV broad-

casting spectrum [81]. The use cases include rural broadband, WiFi coverage, and

machine-to-machine (M2M) communication, where WSDs avoid interfering with li-

censed TV services using geolocation databases in conjunction with cognitive and

sensing technologies [82].

Three main paradigms have been proposed for CR in regards to the unlicensed

users access to the primary frequency band: (i) underlay spectrum access (USA)

where secondary users (SUs) silently coexist with primary users (PUs), provided

they satisfy an interference limit set by a regulatory authority, (ii) overlay spectrum

access (OSA) in which SUs are only allowed to access the vacant parts of the primary

spectrum, and (iii) hybrid spectrum access (HSA), a combination of the two former

strategies in which SUs can dynamically select between the USA and OSA modes

depending on the traffic characteristics and interference constraints [83]. In this

chapter, we focus on both OSA and HSA paradigms, where the overall shared-
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spectrum system performance is closely related to accurate determination of licensed

spectrum availability.

Various solutions for detecting and monitoring the PU’ activity have been pro-

posed in the literature, e.g., geolocation database, beacon signalling through a ded-

icated channel, and spectrum sensing [84], [85]. In practice, there are inevitable

uncertainties associated with the spectrum monitoring information due to the erro-

neous decisions caused by the adverse characteristics of wireless environment [86].

In this contribution, we invoke spectrum sensing capabilities at CRs via energy de-

tectors which are commonly used due to their relatively low infrastructure price

and favourable compatibility with legacy systems [87]. Nevertheless, the framework

presented in this work can be extended and analyzed for other sensing schemes.

Orthogonal frequency-division multiplexing (OFDM) has emerged as a promi-

nent modulation scheme for a new generation of wireless communication systems, in-

cluding, long term evolution (LTE) and LTE-advanced [60]. For OFDM-based multi-

user applications, multiple-access can be accommodated via orthogonal frequency-

division multiple-access (OFDMA) technology [61]. In OFDMA systems, different

subcarriers may be assigned to different users in order to exploit the random varia-

tions in channel quality. In addition, OFDMA is considered as a tangible standard

for CR due to its inherent advantages in terms of flexibility and adaptability in

allocating spectrum resources in shared-spectrum environments [62].

Radio resource allocation (RRA) plays a significant role in optimizing the overall

performance of conventional OFDMA systems [63]. In addition, adaptive RRA is

an active area of research in the context of OFDMA-based CR systems to facilitate

a balance between maximizing the cognitive network performance and minimizing

the inflicted interference on the licensed users. Many of the RRA algorithms on CR

in the literature incorporate a hard-decision-based strategy in which resources are

allocated according to the conventional binary hypothesis test outcome [88]. Due to

the imperfectness of the spectrum sensing mechanism, such RRA algorithms may

inflict critical interference to PUs’ quality of service (QoS).

The goal of this chapter is to devise stochastic RRA algorithms based on the

spectrum sensing probabilistic information on channel availability for both OSA and
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HSA paradigms. We study the downlink transmission of a multi-user OFDMA-based

CR system operating under QoS constraints and uncertain sensing information.

Suboptimal and optimal power allocation policies are studied in [64], where the

aggregate capacity of the CR system is maximized under a primary receiver (PRx)

interference limit. In [65], a queue-aware RRA algorithm is proposed to maximize

the fairness in OFDMA-based CR networks subject to a total power constraint at

the base station. A Lagrangian relaxation algorithm is adopted in [62] to probabilis-

tically allocate resources based on the availability of the primary frequency band via

spectrum sensing.

One of the central challenges associated in cognitive wireless communications is

controlling the interference levels. In the OSA, the CRs sense the primary frequency

band (active/idle) and adjust their transmission power based on the decision made

by the spectrum sensing mechanism. Hence, given the spectrum sensing scheme is

perfectly accurate, the inactive parts of the licensed spectrum are used by the CRs

without imposing any impact on the primary service operation. On the other hand,

in the HSA, CRs can exploit both unused and underutilized parts of the spectrum

through (1) silent coexistence with PUs in spectral bands at low transmit powers

as far as the maximum tolerable cross-service interference constraint is satisfied (2)

opportunistically utilizing the white spaces of the spectrum at high transmit powers.

3.2 Preliminaries

3.2.1 System Model

Consider a downlink scenario where a secondary transmitter (STx) communicates

with N secondary receivers (SRxs) (indexed by n) over K subcarriers (indexed by

k), by dynamically accessing a primary spectrum under certain constraints. Each

subcarrier is assumed to experience frequency-flat fading. Let Hss
n,k(t), H

ps
n,k(t), and

gspk (t), at time t, denote the complex channel gains over subcarrier k from the STx

to nth SRx, primary transmitter (PTx) to nth SRx, and STx to primary receiver

(PRx), respectively. The channel power gains |Hss
n,k(t)|2, |H

ps
n,k(t)|2, and |g

sp
k (t)|2, are
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assumed to be ergodic and stationary [89]. The values and statistics of channel gains

are assumed to be available at the STx via error-free feedback channels [62], [90]. Let

σ2
n and σ2

ps respectively denote the Gaussian noise and received primary-secondary

interference powers [71].

3.2.2 Spectrum Sensing

In the hybrid spectrum access strategy, i.e., mixed opportunistic and non-opportunistic

scheme, the secondary user transmits simultaneously on K frequency bands (regard-

less of the actual status of each frequency band) and adapts its transmit power on

each band based on the decision made during the sensing slot at the beginning of

each frame. In this section, we study the comprehensive problem of power and rate

allocation, in order to maximize the aggregate instantaneous rate in OFDMA CR

systems.

At the beginning of each time slot in any frame, the STx performs spectrum

sensing on the K subcarriers and decides based on the collected information how

to allocate power and frequency resources to SRxs. Due to the limitations of the

spectrum sensing mechanism and the inherent characteristics of wireless communi-

cations (shadowing and fading), the primary spectrum may be falsely detected. If a

primary frequency band is detected idle although the spectrum is actually busy, i.e.,

mis-detection, cognitive communications causes unwanted interference to primary

service operation. On the other hand, detecting a subcarrier as busy whilst it is

actually idle, i.e., false-alarm, results in underutilization of the spectrum resource.

Based on the sensing information and actual spectrum status, the different scenarios

and probabilities of user n over subcarrier k in the OFDMA CR network are

Siin,k : idle , P(Siin,k) = {1−Pf
n,k}P(H i

n,k)

Sbin,k : false-alarm , P(Sbin,k) = Pf
n,kP(H i

n,k)

Sibn,k : mis-detection , P(Sibn,k) = {1−Pd
n,k}P(H b

n,k)

Sbbn,k : busy , P(Sbbn,k) = Pd
n,kP(H b

n,k)

(3.1)
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where Pf
n,k and Pd

n,k are the sensing probabilities of false-alarm and detection, and

P(H i
n,k) and P(H b

n,k) denote the probabilities that the band is idle and busy,

respectively. Using the energy detection technique, the false-alarm and detection

probabilities for user n over subcarrier k are [91], [92]

Pf
n,k = Q

((
εn,k
σ2
n

− 1
)√

τfs

)
(3.2)

Pd
n,k = Q

((
εn,k
σ2
n

− ψpsk − 1
)√

τfs
2ψpsk + 1

)
(3.3)

where Q(x) is the complementary cumulative distribution function given by Q(x) =
1√
2π
∫∞
z exp(−t22 ) dt, ψpsk is the received signal-to-interference-plus-noise ratio (SINR)

of the primary transmitter at the cognitive detector, fs is the sampling frequency,

τ is the sensing time (here assumed to be fixed), and εn,k is the decision threshold

of the cognitive detector.

3.3 Hybrid Spectrum Access

3.4 Stochastic RRA Algorithm

In this section, we study the comprehensive problem of power and rate allocation

towards maximizing the transmission rate of multi-user multi-band OFDMA CRs.

In the proposed CR network with hybrid spectrum access strategy, the STx trans-

mits simultaneously on K frequency bands (regardless of the actual status of each

frequency band) and adapts its transmit power on each band based on the decision

made during the sensing slot at the beginning of each frame and the received SINR

γssn,k. Letm, b, f , and i denote the number of bands experiencing scenarios Sibn,k, Sbbn,k,

Sbin,k, and Siin,k, respectively. The STx transmits to user n over subcarrier k using

higher power P I
n,k(γssn,k,m, b, f, i) with subcarrier allocation policy ϕIn,k(γssn,k,m, b, f, i)

when the band is detected as idle and lower power PB
n,k(γssn,k,m, b, f, i) with subcar-

rier assignment policy ϕBn,k(γssn,k,m, b, f, i) when the channel is detected to be active.

At the same time, the band k for user n may be actually idle (H i
n,k) or in use (H b

n,k).

The instantaneous transmission rates of the OFDMA CR network for user n and
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subcarrier k based on the sensing information and actual channel status in scenarios

Siin,k, Sbin,k, Sibn,k and Sbbn,k can be respectively expressed as

Rii
n,k(γssn,k,m, b, f, i)=log2

(
1+

P I
n,k(γssn,k,m, b, f, i)|Hss

n,k|2

σ2
n

)

Rbi
n,k(γssn,k,m, b, f, i)=log2

(
1+

PB
n,k(γssn,k,m, b, f, i)|Hss

n,k|2

σ2
n

)

Rib
n,k(γssn,k,m, b, f, i)=log2

(
1+

P I
n,k(γssn,k,m, b, f, i)|Hss

n,k|2

σ2
n + σ2

ps

)

Rbb
n,k(γssn,k,m, b, f, i)=log2

(
1+

PB
n,k(γssn,k,m, b, f, i)|Hss

n,k|2

σ2
n + σ2

ps

)
. (3.4)

For the sake of notational brevity, we henceforth omit the reference - γssn,k,m, b, f, i

- where the context is clear.

The aggregate transmission rate of the OFDMA CR network with hybrid spec-

trum access (RH) through incorporating the stochastic information on the different

number of subcarriers experiencing different scenarios is expressed as

RH =
K∑
m=0

K−m∑
b=0

K−(m+b)∑
f=0

K−(m+b+f)∑
i=K−(m+b+f)

P(m, b, f, i)×


(
K−1
m−1

)(
K−m
b

)(
K−m−b

f

)(
K−m−b−f

i

)
(
K
m

)(
K−m
b

)(
K−m−b

f

)(
K−m−b−f

i

) N∑
n=1

K∑
k=1

ϕIn,kR
ib
n,k+(

K−b
m

)(
K−1
b−1

)(
K−m−b

f

)(
K−m−b−f

i

)
(
K
m

)(
K−m
b

)(
K−m−b

f

)(
K−m−b−f

i

) N∑
n=1

K∑
k=1

ϕBn,kR
bb
n,k+(

K−f
m

)(
K−f−m

b

)(
K−1
f−1

)(
K−m−b−f

i

)
(
K
m

)(
K−m
b

)(
K−m−b

f

)(
K−m−b−f

i

) N∑
n=1

K∑
k=1

ϕBn,kR
bi
n,k+(

K−i
m

)(
K−i−m

b

)(
K−i−m−b

f

)(
K−1
i−1

)
(
K
m

)(
K−m
b

)(
K−m−b

f

)(
K−m−b−f

i

) N∑
n=1

K∑
k=1

ϕIn,kR
ii
n,k

 (3.5)

where P(m, b, f, i) is the probability of having m, b, f , and i bands experiencing

scenarios Sibn,k, Sbbn,k, Sbin,k, and Siin,k, respectively. Using (3.1), and assuming equal

receiver operating characteristics (ROC), P(m, b, f, i) can be computed by

P(m, b, f, i) =
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(
P(Sbin,k)

)m(
P(Sbbn,k)

)b(
P(Sibn,k)

)f(
P(Siin,k)

)i
. (3.6)

We denote the different number of combinations that user n over band k experi-

ences different scenarios Sibn,k, Sbbn,k, Sbin,k, Siin,k, and the total number of combinations

respectively as

M =
(
K − 1
m− 1

)(
K −m

b

)(
K −m− b

f

)(
K −m− b− f

i

)

B =
(
K − b
m

)(
K − 1
b− 1

)(
K −m− b

f

)(
K −m− b− f

i

)

F =
(
K − f
m

)(
K − f −m

b

)(
K − 1
f − 1

)(
K −m− b− f

i

)

I =
(
K − i
m

)(
K − i−m

b

)(
K − i−m− b

f

)(
K − 1
i− 1

)

T =
(
K

m

)(
K −m

b

)(
K −m− b

f

)(
K −m− b− f

i

)
. (3.7)

To protect the primary users QoS from undesirable interference imposed by the

CRs under imperfect sensing information, we consider stochastic total transmit and

interference power constraints, in which the number of subcarriers in each scenario is

Binomially-distributed. Note that, since in scenarios Siin,k and Sbin,k the band is truly

idle, interference arises only in scenarios Sibn,k and Sbbn,k. In the events of Sibn,k and Sbbn,k,

the STx transmission power is accordingly set to P I
n,k and PB

n,k, respectively. The

corresponding stochastic constraints on the aggregate transmission power (CH1)

and aggregate received interference power on the primary receiver (CH2) can be

respectively expressed as

CH1 :
K∑
m=0

K−m∑
b=0

K−(m+b)∑
f=0

K−(m+b+f)∑
i=K−(m+b+f)

P(m, b, f, i)×
M

T

N∑
n=1

K∑
k=1

ϕIn,kP
I
n,k + B

T

N∑
n=1

K∑
k=1

ϕBn,kP
B
n,k+

F

T

N∑
n=1

K∑
k=1

ϕBn,kP
B
n,k + I

T

N∑
n=1

K∑
k=1

ϕIn,kP
I
n,k

 (3.8)
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CH2 :
K∑
m=0

K−m∑
b=0

K−(m+b)∑
f=0

K−(m+b+f)∑
i=K−(m+b+f)

P(m, b, f, i)×
M

T

N∑
n=1

K∑
k=1

ϕIn,kP
I
n,k|H

sp
n,k|2+

B

T

N∑
n=1

K∑
k=1

ϕBn,kP
B
n,k|H

sp
n,k|2

 (3.9)

where Pt and Ith are the total transmit and interference power limits. To maxi-

mize the aggregate transmission rate of the proposed OFDMA CR network with

joint underlay and overlay spectrum access mechanism, we formulate the following

optimization problem.

Problem O1:

max
P I
n,k

,PB
n,k

,ϕI
n,k

,ϕB
n,k

RH (3.10a)

s. t.: CH1 ≤ Pt (3.10b)

CH2 ≤ Ith (3.10c)
N∑
n=1

ϕIn,k = 1 , k ∈ {1, 2, ..., K} (3.10d)

N∑
n=1

ϕBn,k = 1 , k ∈ {1, 2, ..., K} (3.10e)

ϕIn,k ∈ {0, 1} , n ∈ {1, 2, ..., N} , k ∈ {1, 2, ..., K} (3.10f)

ϕBn,k ∈ {0, 1} , n ∈ {1, 2, ..., N} , k ∈ {1, 2, ..., K}. (3.10g)

We apply one-level Lagrangian dual decomposition to solve the constrained

mixed discrete-continuous non-linear programing (MDCNLOP) optimization prob-

lem under consideration.

3.4.1 Lagrangian Function

The Lagrangian function for solving Problem O2 can be expressed as

L(λI , λB, η, µ) = RH −
K∑
k=1

λIk

(
N∑
n=1

ϕIn,k(γssn,k)− 1
)
−
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K∑
k=1

λBk

(
N∑
n=1

ϕBn,k(γssn,k)− 1
)
− η

(
CH2 − Ith

)
−

µ
(
CH1 − Pt

)
. (3.11)

3.4.2 Lagrangian Dual Problem

The Lagrangian dual function under consideration is therefore

min
λI ,λB ,η,µ

(
F (λI , λB, η, µ)

)
, s.t. : λI , λB, η, µ ≥ 0 (3.12)

where

F (λI , λB, η, µ) =
N∑
n=1

fn(λI , λB, η, µ) +
K∑
k=1

λIk +
K∑
k=1

λBk

+ ηIth + µPt (3.13)

and

fn(λI , λB, η, µ) = max
P I
n,k

(γss
n,k

),PB
n,k

(γss
n,k

),ϕI
n,k

(γss
n,k

),ϕB
n,k

(γss
n,k

)(
Rn
H −

K∑
k=1

λIkϕ
I
n,k(γssn,k)−

K∑
k=1

λBk ϕ
B
n,k(γssn,k)− µCn

H1

− ηCn
H2

)
(3.14)

where ∀n ∈ N, Rn
H is the rate per user, Cn

H1 denotes the average power per user,

and Cn
H2 is the interference per user, given by,

Rn
H =

K∑
m=0

K−m∑
b=0

K−(m+f)∑
f=0

K−(m+b+f)∑
i=K−(m+b+f)

P(m, b, f, i)
M

T

K∑
k=1

ϕIn,k(γssn,k)r01
n,k + B

T

K∑
k=1

ϕBn,k(γssn,k)r11
n,k

+ F

T

K∑
k=1

ϕBn,k(γssn,k)r10
n,k + I

T

K∑
k=1

ϕIn,k(γssn,k)r00
n,k

, (3.15)
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Cn
H1 :

K∑
m=0

K−m∑
b=0

K−(m+f)∑
f=0

K−(m+b+f)∑
i=K−(m+b+f)

P(m, b, f, i)
M

T

K∑
k=1

ϕIn,k(γssn,k)P I
n,k(γssn,k) + B

T

K∑
k=1

ϕBn,k(γssn,k)PB
n,k(γssn,k)+

F

T

K∑
k=1

ϕBn,k(γssn,k)PB
n,k(γssn,k) + I

T

K∑
k=1

ϕIn,k(γssn,k)P I
n,k(γssn,k)

. (3.16)

and

Cn
H2 :

K∑
m=0

K−m∑
b=0

K−(m+f)∑
f=0

K−(m+b+f)∑
i=K−(m+b+f)

P(m, b, f, i)
M

T

K∑
k=1

ϕIn,k(γssn,k)P I
n,k(γssn,k)|H

sp
n,k|2+

B

T

K∑
k=1

ϕBn,k(γssn,k)PB
n,k(γssn,k)|H

sp
n,k|2

 (3.17)

In order to solve the Lagrangian dual function, we have formulate it as two inde-

pendent sub-problems where

fn(λI , λB, η, µ) = max
P I
n,k

(γss
n,k

),ϕI
n,k

(γss
n,k

))
f In(λI , η, µ)

+ max
PB
n,k

(γss
n,k

),ϕB
n,k

(γss
n,k

)
fBn (λB, η, µ) (3.18)

where

f In(λI , η, µ) =
K∑
m=0

K−m∑
b=0

K−(m+f)∑
f=0

K−(m+b+f)∑
i=K−(m+b+f)

P(m, b, f, i)
M

T

K∑
k=1

ϕIn,k(γssn,k)r01
n,k + I

T

K∑
k=1

ϕBn,k(γssn,k)r00
n,k − η

M

T

K∑
k=1

ϕIn,k(γssn,k)

× P I
n,k(γssn,k)|H

sp
n,k|2 − µ

K∑
k=1

ϕIn,k(γssn,k)P I
n,k(γssn,k)

×

M

T
+ I

T


− K∑

k=1
λIkϕ

I
n,k(γssn,k) (3.19)
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and

fBn (λB, η, µ) =
K∑
m=0

K−m∑
b=0

K−(m+f)∑
f=0

K−(m+b+f)∑
i=K−(m+b+f)

P(m, b, f, i)
B

T

K∑
k=1

ϕBn,k(γssn,k)r11
n,k + F

T

K∑
k=1

ϕBn,k(γssn,k)r10
n,k − η

B

T

K∑
k=1

ϕBn,k(γssn,k)

× PB
n,k(γssn,k)|H

sp
n,k|2 − µ

K∑
k=1

ϕBn,k(γssn,k)PB
n,k(γssn,k)

×

B

T
+ F

T


− K∑

k=1
λBk ϕ

B
n,k(γssn,k). (3.20)

To find the optimum power solution we compute ∂fIn(λI ,η,µ)
∂(ϕIn,k(γss

n,k
)P I
n,k

(γss
n,k

)) and
∂fBn (λB ,η,µ)

∂(ϕBn,k(γss
n,k

)PB
n,k

(γss
n,k

))

K∑
m=0

K−m∑
b=0

K−(m+f)∑
f=0

K−(m+b+f)∑
i=K−(m+b+f)

P(m, b, f, i)



M

T

|Hss
n,k|

2

σ2
n+σ2

ps

1 + |Hss
n,k
|2P I

n,k
(γss
n,k

)
σ2
n+σ2

ps

+
I

T

|Hss
n,k|

2

σ2
n

1 + |Hss
n,k
|2P I

n,k
(γss
n,k

)
σ2
n


−

ηM

T
|Hsp

n,k|2
−

µ
M

T
+ I

T


 (3.21)

and

K∑
m=0

K−m∑
b=0

K−(m+f)∑
f=0

K−(m+b+f)∑
i=K−(m+b+f)

P(m, b, f, i)



B

T

|Hss
n,k|

2

σ2
n+σ2

ps

1 + |Hss
n,k
|2PB

n,k
(γss
n,k

)
σ2
n+σ2

ps

+
F

T

|Hss
n,k|

2

σ2
n

1 + |Hss
n,k
|2PB

n,k
(γss
n,k

)
σ2
n


−

ηB

T
|Hsp

n,k|2
−

µ
B

T
+ F

T


. (3.22)

By applying the Karush-Kuhn-Tucker (KKT) conditions, the following potential

optimum power allocation policy when the spectrum is detected idle, P I∗
n,k(γssn,k), is
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obtained

P I∗
n,k(γssn,k) =

[√
∆I + χI

ΠI

]+

(3.23)

where ∆I , χI , and ΠI are defined in (3.24)-(3.27), respectively.

∆I =
 |Hss

n,k|4

(σ2
n + σ2

ps)σ2
n

M

T
+ I

T

+GI

 |H
ss
n,k|2

σ2
n + σ2

ps

+
|Hss

n,k|2

σ2
n


2

−
4GI |Hss

n,k|4

(σ2
n + σ2

ps)σ2
n

 |Hss
n,k|2

σ2
n + σ2

ps

×M

T
+
|Hss

n,k|2

σ2
n

× I

T
+GI

 (3.24)

χI =
|Hss

n,k|4

(σ2
n + σ2

ps)σ2
n

M

T
+ I

T

+GI

 |H
ss
n,k|2

σ2
n + σ2

ps

+
|Hss

n,k|2

σ2
n

 (3.25)

ΠI = −
2GI |Hss

n,k|4

(σ2
n + σ2

ps)σ2
n

(3.26)

GI = −η|Hsp
n,k|2

M

T
− µ

M

T
+ I

T

. (3.27)

Subsequently, the optimal power allocation policy when the spectrum is detected

busy, PB∗
n,k(γssn,k), is

PB∗
n,k(γssn,k) =

[√
∆B + χB

ΠB

]+

(3.28)

where ∆B, χB, and ΠB are defined in (3.29)-(3.32), respectively. P I∗
n,k(γssn,k) and

PB∗
n,k(γssn,k) can be considered as multi-level water-filling algorithms.

∆B =
 |Hss

n,k|4

(σ2
n + σ2

ps)σ2
n

B

T
+ F

T

+GB

 |H
ss
n,k|2

σ2
n + σ2

ps

+
|Hss

n,k|2

σ2
n


2

−

4GB|Hss
n,k|4

(σ2
n + σ2

ps)σ2
n

 |Hss
n,k|2

σ2
n + σ2

ps

× B

T
+
|Hss

n,k|2

σ2
n

× F

T
+GB

 (3.29)

χB =
|Hss

n,k|4

(σ2
n + σ2

ps)σ2
n

B

T
+ F

T

+GB

 |H
ss
n,k|2

σ2
n + σ2

ps

+
|Hss

n,k|2

σ2
n

 (3.30)

ΠB = −
2GB|Hss

n,k|4

(σ2
n + σ2

ps)σ2
n

(3.31)
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GB = −η|Hsp
n,k|2

B

T
− µ

B

T
+ F

T

. (3.32)

By differentiating (3.19) with respect to ϕIn,k(γssn,k), i.e.,
∂fIn(λI ,η,µ)
∂ϕI

n,k
(γss
n,k

) , we obtain

K∑
m=0

K−m∑
b=0

K−(m+f)∑
f=0

K−(m+b+f)∑
i=K−(m+b+f)

P(m, b, f, i)


M

T

 P In,k(γssn,k)
σ2
n+σ2

ps(
1 + P I

n,k
(γss
n,k

)
σ2
n+σ2

ps

)
ln(2)

+ r10
n,k

+ I

T

 P In,k(γssn,k)
σ2
n(

1 + P I
n,k

(γss
n,k

)
σ2
n

)
ln(2)

+ r00
n,k


−

ηM

T
P I
n,k(γssn,k)|H

sp
n,k|2

−
µP I

n,k(γssn,k)
M

T
+ I

T


− λIk (3.33)

and by differentiating (3.20) with respect to ϕBn,k(γssn,k), i.e.,
∂fBn (λB ,η,µ)
∂ϕB

n,k
(γss
n,k

) , we obtain

K∑
m=0

K−m∑
b=0

K−(m+f)∑
f=0

K−(m+b+f)∑
i=K−(m+b+f)

P(m, b, f, i)


B

T

 PBn,k(γssn,k)
σ2
n+σ2

ps(
1 + PB

n,k
(γss
n,k

)
σ2
n+σ2

ps

)
ln(2)

+ r11
n,k

+ F

T

 PBn,k(γssn,k)
σ2
n(

1 + PB
n,k

(γss
n,k

)
σ2
n

)
ln(2)

+ r01
n,k


−

ηB

T
PB
n,k(γssn,k)|H

sp
n,k|2

−
µPB

n,k(γssn,k)×
B

T
+ F

T


− λBk . (3.34)

In order to achieve optimal performance in f In(λI , η,mu), ϕIn,k(γssn,k) = 0 and ϕIn,k(γssn,k) =

1 are assigned where ∂fIn(λI ,η,µ)
∂ϕI

n,k
(γss
n,k

) < 0 and ∂fIn(λI ,η,µ)
∂ϕI

n,k
(γss
n,k

) ≥ 0, respectively. The optimal

subcarrier allocation policy is therefore achieved by assigning the kth subcarrier to

the user with the highest value of ΛI
n,k. The problem under consideration is formu-

lated as

nI∗ = argmax(ΛI
n,k) ∀n ∈ N , ∀k ∈ K (3.35)

where ΛI
n,k is defined in (3.36).

ΛI
n,k =

K∑
m=0

K−m∑
b=0

K−(m+f)∑
f=0

K−(m+b+f)∑
i=K−(m+b+f)

P(m, b, f, i)
M

T
×
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 P In,k(γssn,k)
σ2
n+σ2

ps(
1 + P I

n,k
(γss
n,k

)
σ2
n+σ2

ps

)
ln(2)

+ r10
n,k

+ I

T

 P In,k(γssn,k)
σ2
n(

1 + P I
n,k

(γss
n,k

)
σ2
n

)
ln(2)

+ r00
n,k


−

ηM

T
P I
n,k(γssn,k)|H

sp
n,k|2

−
µP I

n,k(γssn,k)
M

T
+ I

T


. (3.36)

Similarly, to accomplish optimal performance in fBn (λB, η,mu), ϕBn,k(γssn,k) = 0

and ϕBSn,k(γssn,k) = 1 are assigned where ∂fBn (λB ,η,µ)
∂ϕB

n,k
(γss
n,k

) < 0 and ∂fBn (λB ,η,µ)
∂ϕB

n,k
(γss
n,k

) ≥ 0, respec-

tively. The optimal subcarrier allocation policy is therefore achieved by assigning

the kth subcarrier to the user with the highest value of ΛB
n,k (defined in (3.38)). This

problem can thus be formulated by

nB∗ = argmax(ΛB
n,k) ∀n ∈ N , ∀k ∈ K. (3.37)

ΛB
n,k =

K∑
m=0

K−m∑
b=0

K−(m+f)∑
f=0

K−(m+b+f)∑
i=K−(m+b+f)

P(m, b, f, i)
B

T
×

 PBn,k(γssn,k)
σ2
n+σ2

ps(
1 + PB

n,k
(γss
n,k

)
σ2
n+σ2

ps

)
ln(2)

+ r11
n,k

+ F

T

 PBn,k(γssn,k)
σ2
n(

1 + PB
n,k

(γss
n,k

)
σ2
n

)
ln(2)

+ r01
n,k


−

ηB

T
PB
n,k(γssn,k)|H

sp
n,k|2

−
µPB

n,k(γssn,k)
B

T
+ F

T


. (3.38)

3.4.3 Sub-Gradient Method

For any optimal values of
(
P I∗
n,k(γssn,k), PB∗

n,k(γssn,k), ϕI∗n,k(γssn,k), ϕB∗n,k(γssn,k)
)
, the dual vari-

ables are updated as follows

η(t+ 1) = η(t)− τ1(t)
(
Ith − CH2

)
(3.39)

and

µ(t+ 1) = µ(t)− τ2(t)
(
Pt − CH1

)
(3.40)
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where t is the iteration number, and τ1(t) and τ2(t) respectively denote the step sizes

for the interference and power constraints.

To guarantee optimality, λIk and λBk should be selected between the first and

second maxima of ΛB
n,k and ΛB

n,k, respectively. By replacing (3.23) and (3.35) in

(3.19), and (3.28) and (3.37) in (3.20), f In(λI , η, µ) and fBn (λB, η, µ), and ultimately

the solution to (3.13) can be obtained.

3.5 Opportunistic Spectrum Access

In the opportunistic spectrum access strategy, the secondary users simultaneously

sense all frequency bands and access only those that are detected to be idle. The

accuracy of the spectrum sensing mechanism is of great importance towards preserv-

ing the QoS of the primary service users. As previously discussed, spectrum sensing

mechanism decisions may be erroneous. In the case of detecting the spectrum as

idle when it is actually busy, the cognitive operation imposes harmful interference on

the primary network. Most of the existing works on opportunistic spectrum access

assume perfect sensing and thus employ an aggressive radio resource allocation. In

contrast, in this work, resources are allocated within all detected idle channels while

possible interference due to mis-detection is not allowed to exceed the interference

constraint.

The instantaneous rate of the OFDMA cognitive radio system for user n and

subcarrier k, for idle detected and actual spectrum, i.e., S00, and for mis-detection,

i.e., S01, scenarios can be respectively expressed as

r0
n,k = log2

(
1 +

Pn,k(γssn,k)|Hss
n,k|2

σ2
n

)
(3.41)

r1
n,k = log2

(
1 +

Pn,k(γssn,k)|Hss
n,k|2

σ2
n + σ2

ps

)
. (3.42)

For the opportunistic spectrum access scenario under consideration, the OFDMA
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CR network aggregate instantaneous rate can be formulated as follows

RO =
K∑
m=0

K−m∑
b=0

K−(m+f)∑
f=0

K−(m+b+f)∑
i=K−(m+b+f)

P(m, b, f, i)
M

T

N∑
n=1

K∑
k=1

ϕn,k(γssn,k)r1
n,k + I

T

N∑
n=1

K∑
k=1

ϕn,k(γssn,k)r0
n,k

. (3.43)

The constraint on the average transmit power can be expressed as

CO1 :
K∑
m=0

K−m∑
b=0

K−(m+f)∑
f=0

K−(m+b+f)∑
i=K−(m+b+f)

P(m, b, f, i)×
M

T

N∑
n=1

K∑
k=1

ϕn,k(γssn,k)Pn,k(γssn,k) + I

T
×

N∑
n=1

K∑
k=1

ϕn,k(γssn,k)Pn,k(γssn,k)
. (3.44)

The constraint on the aggregate received interference on the primary network is

computed by

CO2 :
K∑
m=0

K−m∑
b=0

K−(m+f)∑
f=0

K−(m+b+f)∑
i=K−(m+b+f)

P(m, b, f, i)×
M

T

N∑
n=1

K∑
k=1

ϕn,k(γssn,k)Pn,k(γssn,k)|H
sp
n,k|2

. (3.45)

In order to maximize the aggregate instantaneous rate of the OFDMA CR system,

we formulate the following optimization problem.

Problem O2:

max
Pn,k(γss

n,k
),ϕn,k(γss

n,k
)
RO (3.46a)

s. t.: CO1 ≤ Pt (3.46b)

CO2 ≤ Ith (3.46c)
N∑
n=1

ϕn,k(γssn,k) = 1 , k ∈ K (3.46d)

ϕn,k(γssn,k) ∈ {0, 1} , n ∈ N , k ∈ K. (3.46e)
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3.5.1 Lagrangian Function

The Lagrangian function for solving Problem O2 can be expressed as

L(λ, η, µ) = RO −
K∑
k=1

λk

(
N∑
n=1

ϕn,k(γssn,k)− 1
)
− η

(
CO2 − Ith

)
− µ

(
CO1 − Pt

)
.

(3.47)

3.5.2 Lagrangian Dual Problem

The Lagrangian dual function under consideration is therefore

min
λ,η,µ

(
F (λ, η, µ)

)
, s.t. : λ, η, µ ≥ 0 (3.48)

where

F (λ, η, µ) =
N∑
n=1

fn(λ, η, µ) +
K∑
k=1

λk + ηIth + µPt (3.49)

and

fn(λ, η, µ) = max
Pn,k(γss

n,k
),ϕn,k(γss

n,k
)

(
Rn
O −

K∑
k=1

λkϕn,k(γssn,k)

− ηCn
O2 − µCn

O1

)
(3.50)

where ∀n ∈ N, Rn
O is the rate per user, Cn

O1 denotes the average power per user, and

Cn
O2 is the interference per user, given

Rn
O =

K∑
m=0

K−m∑
b=0

K−(m+f)∑
f=0

K−(m+b+f)∑
i=K−(m+b+f)

P(m, b, f, i)×
M

T

K∑
k=1

ϕn,k(γssn,k)r1
n,k + I

T

K∑
k=1

ϕn,k(γssn,k)r0
n,k

, (3.51)
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Cn
O1 :

K∑
m=0

K−m∑
b=0

K−(m+f)∑
f=0

K−(m+b+f)∑
i=K−(m+b+f)

P(m, b, f, i)×
M

T

K∑
k=1

ϕn,k(γssn,k)Pn,k(γssn,k) + I

T

K∑
k=1

ϕn,k(γssn,k)Pn,k(γssn,k)
. (3.52)

and

Cn
O2 :

K∑
m=0

K−m∑
b=0

K−(m+f)∑
f=0

K−(m+b+f)∑
i=K−(m+b+f)

P(m, b, f, i)×
M

T

K∑
k=1

ϕn,k(γssn,k)Pn,k(γssn,k)|H
sp
n,k|2

 (3.53)

By computing ∂fn(λ,η,µ)
∂(ϕn,k(γss

n,k
)Pn,k(γss

n,k
)) , the following expression is derived

K∑
m=0

K−m∑
b=0

K−(m+f)∑
f=0

K−(m+b+f)∑
i=K−(m+b+f)

P(m, b, f, i)



M

T

|Hss
n,k|

2

σ2
n+σ2

ps

1 + |Hss
n,k
|2Pn,k(γss

n,k
)

σ2
n+σ2

ps

+
I

T

|Hss
n,k|

2

σ2
n

1 + |Hss
n,k
|2Pn,k(γss

n,k
)

σ2
n


−

ηM

T
|Hsp

n,k|2
−

µ
M

T
+ I

T


. (3.54)

Consequently, by applying KKT conditions, the potential optimal power allocation

policy, P ∗n,k(γssn,k), is

P ∗n,k(γssn,k) =
[√

∆ + χ

Π

]+

(3.55)

where

∆ =
 |Hss

n,k|4

(σ2
n + σ2

ps)σ2
n

M

T
+ I

T

+G

 |H
ss
n,k|2

σ2
n + σ2

ps

+
|Hss

n,k|2

σ2
n


2

−
4G|Hss

n,k|4

(σ2
n + σ2

ps)σ2
n

 |Hss
n,k|2

σ2
n + σ2

ps

M

T
+
|Hss

n,k|2

σ2
n

I

T
+G

 (3.56)
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χ =
|Hss

n,k|4

(σ2
n + σ2

ps)σ2
n

M

T
+ I

T

+G

 |H
ss
n,k|2

σ2
n + σ2

ps

+
|Hss

n,k|2

σ2
n

 (3.57)

Π =
2G|Hss

n,k|4

(σ2
n + σ2

ps)σ2
n

(3.58)

G = −η|Hsp
n,k|2

M

T
− µ

M

T
+ I

T

. (3.59)

P ∗n,k(γssn,k) can be considered as a multi-level water-filling algorithm. By differenti-

ating (3.50) with respect to ϕn,k(γssn,k), i.e.,
∂fn(λ,η,µ)
∂ϕn,k(γss

n,k
) , we obtain

K∑
m=0

K−m∑
b=0

K−(m+f)∑
f=0

K−(m+b+f)∑
i=K−(m+b+f)

P(m, b, f, i)


M

T

 Pn,k(γssn,k)
σ2
n+σ2

ps(
1 + Pn,k(γss

n,k
)

σ2
n+σ2

ps

)
ln(2)

+ r1
n,k

+ I

T

 Pn,k(γssn,k)
σ2
n(

1 + P I
n,k

(γss
n,k

)
σ2
n

)
ln(2)

+ r0
n,k


−

η
(
K−1
m−1

)(
K−m
b

)
(
K
m

)(
K−m
b

)
(
K−m−b

f

)(
K−m−b−f

i

)
(
K−m−b

f

)(
K−m−b−f

i

)Pn,k(γssn,k)|Hsp
n,k|2


−

µPn,k(γssn,k)
M

T
+ I

T


− λk. (3.60)

In order to achieve optimal performance in fn(λ, η,mu), ϕn,k(γssn,k) = 0 and

ϕn,k(γssn,k) = 1 are assigned where ∂fn(λ,η,µ)
∂ϕn,k(γss

n,k
) < 0 and ∂fn(λ,η,µ)

∂ϕn,k(γss
n,k

) ≥ 0, respectively.

The optimal subcarrier allocation policy is therefore achieved by assigning the kth

subcarrier to the user with the highest value of Λn,k. The problem under consider-

ation is formulated as

n∗ = argmax(Λn,k) ∀n ∈ N , ∀k ∈ K (3.61)

where

Λn,k =
K∑
m=0

K−m∑
b=0

K−(m+f)∑
f=0

K−(m+b+f)∑
i=K−(m+b+f)

P(m, b, f, i)

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M

T

 Pn,k(γssn,k)
σ2
n+σ2

ps(
1 + Pn,k(γss

n,k
)

σ2
n+σ2

ps

)
ln(2)

+ r1
n,k

+ I

T

 Pn,k(γssn,k)
σ2
n(

1 + P I
n,k

(γss
n,k

)
σ2
n

)
ln(2)

+ r0
n,k


−

η
(
K−1
m−1

)(
K−m
b

)
(
K
m

)(
K−m
b

)
(
K−m−b

f

)(
K−m−b−f

i

)
(
K−m−b

f

)(
K−m−b−f

i

)Pn,k(γssn,k)|Hsp
n,k|2

−µPn,k(γssn,k)
M

T
+ I

T


. (3.62)

3.5.3 Sub-Gradient Method

For any optimal pair of
(
P ∗n,k(γssn,k), ϕ∗n,k(γssn,k)

)
, the dual variables are updated as

follows

η(t+ 1) =
η(t)− τ1(t)

(
Ith − CO2

)+

(3.63)

and

µ(t+ 1) =
µ(t)− τ2(t)

(
Pt − CO1

)+

(3.64)

where, as previously mentioned, t is the iteration number, and τ1(t) and τ2(t) respec-

tively denote the step sizes for the interference and power constraints. By replacing

(3.55) and (3.61) in (3.50), f In(λI , η, µ), and ultimately the solution to (3.49) can be

obtained.

3.6 Performance Evaluation and Discussion

The performance of the downlink OFDMA CR network with hybrid and opportunis-

tic spectrum access scheme using the proposed stochastic RRA algorithm subject to

satisfying peak transmit and interference power limits is studied. The total system

bandwidth is divided into 8 subcarriers each with 18 kHz. |Hss
n,k|2 are assumed to be

Exponentially-distributed with mean values taken as Uniformly-distributed random

variables within 0 to 1, ∀n ∈ {1, ..., N}, ∀k ∈ {1, ..., K}. Further, interfering cross-

link power gains, |gspk |2 are considered to be Exponentially-distributed with a mean
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of 0.5, ∀k ∈ {1, ..., K}. Note that equal receiver operating characteristic (ROC) is

assumed over all users and subcarriers. All results correspond to an OFDMA CR

network with 3 SRxs.

Fig. 3.1, and Fig. 3.2 show the aggregate transmission rate of the OFDMA CR

network using the proposed stochastic RRA algorithm versus the spectrum sensing

detection probability for the hybrid case and opportunistic case respectively. As

expected, a higher probability of detection results in improved RH performance due

to a more reliable detection of the licensed spectrum, resulting in higher probabili-

ties of scenarios Siin,k and Sbbn,k and consequently harmless joint underlay and overlay

cognitive communications. Further, the gain in performance increases for higher

probabilities of licensed band availability, particularly under accurate sensing infor-

mation. E.g., for Pd
n,k = 0.8, by increasing P(H i

n,k) from 0.5 to 0.6, the achievable

aggregate transmission rate is improved by 36.80%.
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Figure 3.1: Aggregate transmission rate for the hybrid case versus sensing detection proba-
bility Pd

n,k with different probabilities of channel availability P(H i
n,k). System parameters

are: Ith = 1 Watts, Pt = 5 Watts, σ2
ps = 0.01 Watts, σ2

n = 0.001 Watts.
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Figure 3.2: Aggregate transmission rate for the opportunistic case versus sensing detection
probability Pd

n,k with different probabilities of channel availability P(H i
n,k). System

parameters are: Ith = 1 Watts, Pt = 5 Watts, σ2
ps = 0.01 Watts, σ2

n = 0.001 Watts.

The achievable aggregate transmission rate of the OFDMA CRs against the

interference power constraint for different values of transmit power threshold and

primary-secondary interference power for hybrid case and opportunistic case are

respectively depicted in Fig. 3.3 and Fig. 3.4. Trivially, a higher interference

power limit allows for greater transmission power which in turn improves the rate

performance. The gain in RH , however, reaches a plateau in high Ith region as Pt
becomes the dominant power constraint. In areas where Ith is subordinate, a higher

Pt and lower σ2
ps setting enhances the CRs uppermost transmission rate performance.

In addition, the impact of various primary-secondary interference power values on

the attainable number of bits per second are illustrated in Fig. 3.5 for hybrid case

and 3.6 for opportunistic case. A higher value of σ2
ps degrades the overall cognitive

network performance, especially due to its deteriorating effect in the events of mis-

detection.
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Figure 3.3: Aggregate transmission rate for the hybrid case against interference power
thresholds with different transmit power constraints and primary-secondary noise levels.
System parameters are: σ2

n = 0.002 Watts, Pd
n,k = 0.9, P(H i

n,k) = 0.8.
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Figure 3.4: Aggregate transmission rate for the opportunistic case against interference
power thresholds with different transmit power constraints and primary-secondary noise
levels. System parameters are: σ2

n = 0.002 Watts, Pd
n,k = 0.9, P(H i

n,k) = 0.8.
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Figure 3.5: Aggregate transmission rate for the hybrid case versus primary-secondary
interference power levels with different noise power values. System parameters are: Ith = 5
Watts, Pt = 10 Watts, Pd

n,k = 0.9, P(H i
n,k) = 0.8.
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Figure 3.6: Aggregate transmission rate for the opportunistic case versus primary-
secondary interference power levels with different noise power values. System parameters
are: Ith = 5 Watts, Pt = 10 Watts, Pd

n,k = 0.9, P(H i
n,k) = 0.8.
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We compare the performance of the proposed stochastic hybrid RRA algorithm

with the stochastic conservative approach where cognitive transmission only com-

mences over idle detected bands. Fig. 3.7, and Fig. 3.8, show that the hybrid

solution provides superior performance in comparison through added flexibility on

resource allocation decisions. The improvement is particularly significant in the case

of inaccurate spectrum sensing information where the hard-decision-based approach

severely limits the CRs overall rate performance.
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Figure 3.7: Aggregate transmission rate for the Hybrid case against transmit power
thresholds using the proposed RRA algorithm with different interference constraints and
primary-secondary noise levels. System parameters are: σ2

ps = 0.01 Watts, σ2
n = 0.002

Watts, Pd
n,k = 0.9, P(H i

n,k) = 0.8.
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Figure 3.8: Aggregate transmission rate for the opportunistic case versus transmit power
thresholds using the proposed RRA algorithm with different interference constraints and
primary-secondary noise levels. System parameters are: σ2

ps = 0.01 Watts, σ2
n = 0.002

Watts, Pd
n,k = 0.9, P(H i

n,k) = 0.8.

3.7 Conclusions

In this section, we developed stochastic resource allocation algorithms for multi-

user multi-band OFDMA-based CRs with joint underlay and overlay spectrum ac-

cess mechanism over wireless fading channels. In contrast to the state-of-the-art

hard-decision-based methods, our novel solution allocated radio resources based on

the collective stochastic information of different number of subcarriers experiencing

different idle, false-alarm, mis-detection, and busy scenarios, resulting in improved

overall transmission rate performance. At the same time, stochastic transmit and

interference power constraints were imposed on the CRs in order to tailor for the

imperfectness associated with the spectrum sensing information.
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Chapter 4

Quality-Aware Resource

Allocation for Scalable Video

Transmission over Cognitive Radio

Networks

4.1 Introduction

In recent years, due to the advanced development in digital technology and mobile

computing, and with the rising number of multimedia mobile terminals, there has

been a significant increase in demand for support of multimedia applications over

wireless networks. This trend has caused a critical shortage of the radio spectrum

resource. Efficient deployment of the available spectrum resources is therefore a top

priority. (OFDM) is a potential radio access technology for CR networks due to its

flexibility and adaptability in the physical layer [93]. However, video streams are

delay-sensitive and bandwidth-intensive [94], hence, transmitting and decoding the

video streams is more challenging than generic data and voice. Scalable video codec

(SVC) extension of the H.264/AVC standard provides significant benefits for CR ap-

plications due to its temporal, spatial, and quality scalability that enables on-the-fly

codec reconfiguration based on video quality, required resolution at the terminal, and

channel conditions [95]. In this chapter, we propose a quality-aware (QA) flexible

114



and adaptive cross-layer resource allocation scheme for multi-user video applications

over OFDMA-based CR networks with probabilistic interference constraint.

Adaptive resource allocation for OFDMA-based CR networks has been studied

extensively in the past few years [96–98]. Suboptimal and optimal power allocation

policies are examined in [99], where the total capacity of the CR system is maximized

under a primary receiver (PRx) interference limit. In [100], to maximize the system

throughput in OFDMA-based CR networks, a fair resource allocation scheme in the

physical layer is devised, while ensuring PRx interference limit. The authors in [101]

developed an efficient algorithm by jointly considering secondary transmitter (STx)

transmission power budget and PRx interference limit. The work in [102] introduces

a low-complexity algorithm to maximize CR network total capacity while satisfying

secondary receiver (SRx) proportional rate requirements. In [103], an optimal re-

source allocation scheme is developed to maximize CR network throughput under

both imperfect and perfect sensing conditions. The authors in [104] focused on the

probabilities of unused sub-channels in an OFDMA-based cognitive wireless network

with the objective of optimizing total CR network utility. Quality of service (QoS)

support issues in OFDMA-based CR networks have already been investigated in

a few studies. The authors in [105] and [106] formulated the joint power and bit

allocation problem while considering secondary network QoS constraints. The goal

was to maximize the overall secondary network capacity by adjusting STx transmit

power, whilst satisfying SRx minimum signal-to-interference-plus-noise ratio (SINR)

requirements. The work in [107] developed a strategy for broadcasting scalable H.264

videos over non-cognitive downlink MIMO–OFDM systems. However the adopted

technique in this scheme is based on the piecewise linear PSNR-rate model for the

layered SVC video streams, which would be considered to be wasteful in terms of

bit-rate as the increase in bit-rate does not project the real increment in PSNR for

the layered SVC resource adaptation.

To the best of authors’ knowledge, there have been few studies on Quality-Aware

cross-layer resource allocation in OFDMA-based CR networks. The authors in [108]

addressed the resource allocation problem in an OFDMA-based CR system using

a cross-layer approach to provide satisfactory QoS to both real-time and non-real-
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time video applications. The work in [109] proposed a resource allocation scheme for

OFDMA-based CR networks with per-subcarrier power limit. The design in [110]

for OFDMA-based CR networks considers the transmission of scalable video over

OFDMA-based CR networks and attempts to perform bit, subcarrier, and power

allocation for different SRx such that the total rate of the CR network increases, re-

sulting in improved video quality. Although these works have improved the resource

allocation of OFDMA-based CR networks, the users’ quality-rate (Q-R) model of

the video bit stream has not been considered. Furthermore, one of the main chal-

lenges associated with CR network design is estimating the channels between the

STx and the PRx to ensure that interference is maintained under control. Most

of the previous works on CR networks resource allocation, assume perfect channel

state information (CSI) between the secondary transmitter (STx) and the PRx, and

few have considered imperfect CSI. [111] and [112] considered a spectrum sharing

scenario with imperfect cross-link CSI. The authors derived optimal power and er-

godic capacity for the secondary network subject to PRx instantaneous interference

outage. However, the results correspond to a single cognitive user and a single car-

rier. Motivated by these results, in this chapter, a cross-layer QA resource allocation

algorithm is developed to optimize OFDMA-based CR networks performance, con-

sidering imperfect STx to PRx cross-link CSI, whilst satisfying the PRx interfering

probability constraint. Thus, the proposed framework incorporates the probabilistic

nature of the CSI. One of the most challenging issues associated with implementing

probabilistic constrained optimization design is the intensive computational com-

plexity to perform stochastic analysis. We develop an efficient and mathematically

accurate approach to replace the probabilistic constraints by deterministic ones. The

main contributions of this chapter are:

• Proposing a new low-complexity formulation for the probabilistic imperfect

STx to PRx cross-link CSI.

• Developing a new closed-form expression for deterministic approximation of

the probabilistic PRx interference constraint, in order to solve the probabilis-

tic constrained mixed discrete-continuous non-linear programing (MDCNLP)
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problem.

• Analyzing the problem of maximizing overall SRx quality of multi-user scalable

video applications subject to prescribed total transmission power, maximum

interference limit on the PRx and minimum acceptable video quality.

The remainder of this chapter is organized as follows: In Section 4.2 we describe

the system model and the associated assumptions, including framework structures,

network distribution model, primary transmitter (PTx) to SRx interference, and

STx to PRx interference limit. In Section 4.4, the Non-linear optimization problem,

deterministic constraints, and probabilistic interference conditions are formulated.

Section 4.3 briefly describes the scalable video compression structure and video user

quality model. In Section 4.5 we present our optimization algorithm in two parts.

Performance of the proposed method is evaluated using computer simulations in

Section 4.6. Finally, a summary of the main results and contributions is provided

in Section 4.7.

4.2 THE NETWORK MODEL

4.2.1 Network Model

We consider a downlink multi-user video streaming scenario for OFDMA-based cog-

nitive radio networks. The proposed model consists of one secondary transmitter

(STx), one primary transmitter (PTx), N secondary receivers (SRxs), and M PRxs.

It is assumed that each subcarrier experiences frequency-flat fading. The sets of sub-

carriers, PRx, and SRx are respectively denoted by: K = {1, ..., K}, M = {1, ...,M},

and N = {1, ..., N}. When a cognitive user requests a video, it sends a messages

to the STx, the STx then forwards the demand to the video server where the adap-

tive SVC encoder encodes the video into several layers and delivers the layers to

the intermediate control server (ICS). ICS re-packetizes the received packets from

the video server in a way that the STx recognizes the layer IDs. The proposed

packetization scheme in described in section 4.3.
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Figure 4.1: Network model, one STx, one PTx, and multiple uniformly distributed PRx
and SRx.

In CR networks, where the primary and secondary users are distributed side by

side, the mutual interference affects both the primary and the secondary systems.

Let B denote the overall available bandwidth for secondary users and we also assume

that each sub-channel has an equal bandwidth of Bs = B/K. The unit interference

caused by the PTx on the SRx n over subcarrier k can be taken as noise and is

measured by the SRx. We denote the signal-to-interference-plus-noise ratio (SINR)

of the subcarrier k with unit power at SRx as:

γn,k =
|Hss

n,k|2∑M
m=1 Jm,n,k +N0B

, (4.1)

where N0 is the power spectral density (PSD) of the additive white Gaussian noise

(AWGN), Hss
n,k is the subcarrier k gain from the STx to the nth SRx, Jm,n,k is the

interference power imposed by the PTx on the nth SRx over subcarrier k. The

interference caused by PTx on the PRx m, which should be no larger than the mth
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PRx interference limit, can be denoted as:

Im,t =
K∑
k=1

N∑
n=1

ϕn,k.Pn,k.Im,k, (4.2)

where Pn,k denotes the subcarrier k transmit power allocated to the nth SRx, ϕn,k is

the time-sharing factor for the subcarrier k of the SRx n. In this work, we assume

that only one SRx can communicate over each subcarrier at any given time and ϕn,k
can take on either zero or one, when the subcarrier is not allocated or assigned to the

user n respectively, and Im,k is equal to Im,k = Vm,k|Hsp
n,k|2, where H

sp
n,k is the channel

gain from STx to the mth PRx, and Vm,k =
∫ dm,k+Wm/2
dm,k−Wm/2 Ts((sinπfTs)/πfTs)

2df , Ts
is the symbol duration, Wm is the mth PRx bandwidth, dm,k = |fk − fm| is the

spectral distance between the centre frequency of subcarrier k (fk) and that of the

primary user m (fm). In our imperfect channel modeling, the estimated channel

gain between the STx and the mth PRx for any m εM and k ε K is denoted by a

K-tuple vector, Ĝm = [Ĥsp
m,k]T of K sub-channel gain entries Ĥsp

m,k, where,

Gm = Ĝm + Em. (4.3)

Gm = [Hsp
n,k]T is a K-tuple vector of entries Hsp

n,k to represent the actual channel

gain, and Em = [em,k]T is a vector with entries em,k to represent the error vec-

tor of independent and identically distributed (i.i.d.) complex Gaussian variables

(C N(0, σ2
e)), with mean of zero and variance of σ2

e . We propose an effective method

to mitigate the impact of channel estimation error on the PRx quality of service

(QoS). This method, based on the probabilistic information of interference, aims

to enhance primary network robustness against the STx activity. To improve the

system performance and to mitigate the impact of the channel estimation errors, we

confine the probability of violating the PRx interference limit by STx to be smaller

than a maximum acceptable collision probability, i.e.,

Pr(f(Gm) > Imth) ≤ εm, (4.4)

where f(Gm) is the total interference imposed on the mth PRx, Imth is the tolerable

119



interference limit of the mth PRx, and εm is the maximum acceptable probability of

collision between the STx and the mth PRx. According to the channel estimation

error model (4.3), the total interference Im,t is:

Im,t = f(Ĝm + Em) =
K∑
k=1

N∑
n=1

ϕn,k.Pn,k.σ
2
e .Vm,kZm,k (4.5)

which is, according to equation (4.2), a non-central Chi-square-distributed random

variable, where Zm,k is characterized by a non-central Chi-square-distributed random

variable with two degrees of freedom, and the corresponding non-centrality param-

eter, δk, is given by, δk = |Ĥsp
m,k
|2

σ2
e

. To avoid disruptive inter-cell interference, and

to facilitate effective and efficient power consumption, we impose a total transmit

power constraint Pt on the cognitive network:

N∑
n=1

K∑
k=1

ϕn,kPn,k ≤ Pt. (4.6)

At the physical layer, we focus on M-ary quadrature amplitude modulation (MQAM)

and convolutional coding with bit interval coded modulation (BICM) based on the

results in [113]. A particular set of MQAM modes is illustrated in Table 4.1.

4.3 MULTIMEDIA QUALITY MODEL

Video transmission over dynamic and error-prone wireless CR networks requires a

flexible system to adapt the video source bit rate to the channel condition and the

dynamics of the network. To achieve flexibility in variation of bit rate for video

transmission, the SVC extension of the H.264/AVC standard is developed by the

Joint Video Team (JVT). For the SVC bit-streams, the base layer encodes the lowest

spatial (resolution), temporal (frame rate), and quality (signal-to-noise ratio (SNR))

level of the video stream, whilst the enhancement layers can be used to reconstruct

a higher level of quality during the decoding process.

In theory, rate adaptation can be conducted to any spatio-temporal-quality res-

olution under a given bit rate constraint, assuming dyadic spatio-temporal-quality
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scaling is used. However, usually only a limited set of spatial, temporal, and quanti-

zation parameter levels are permitted at the SVC. In SVC stream layer, spatial and

temporal dependency resolution are denoted by s and t, indices of the possible spatial

resolutions S ={QCIF,CIF, 4CIF, ...} , and frame rates T ={3.75, 7.5, 15, 30, ...},

with cardinality of |S| and |T | respectively. Moreover, SNR refinement layers within

each dependency layer are identified by q, the index of the quality layer with quan-

tization step-sizes of Q = {64, 40, 25, ...}, with cardinality of |Q|. In the following,

we describe the layer ordering and packet priorities in detail. Assuming (s, t, q) as

the 3-dimensional SVC layer index, we map the 3-dimensional coordinates to a one-

dimensional index as, F (s, t, q) = l, where F (., ., .) represents a particular ordering

scheme. We use l to indicate the lth element of L = |S| × |T | × |Q| layers ordered

by F (s, t, q), where, S, T, and Q represent the sets of spatial, temporal, and SNR

resolutions, respectively. It is clear that a convex ordering scheme has to satisfy

the criterion: PSNRl
n > PSNRl+1

n , where PSNRl
n is the layer l of the SRx n peak

signal-to-noise ratio (PSNR). First, we initialize the lowest layer i.e., (0, 0, 0), as the

first point of the ordering path, next, by considering the three possible paths, i.e.,

(s + 1, t, q), (s, t + 1, q), (s, t, q + 1), we choose the layer with the highest quality

improvement, argmax(4PSNR/∆R), where 4PSNR and 4R are respectively the

quality and rate increments due to the chosen layer addition. For the packetization

scheme, similar to H264/AVC, SVC coded data structure is divided into two parts,

namely video coding layer (VCL) and network abstraction layer (NAL) units. To

transport from video server to STx, each NAL unit is packetized into one or more

real-time transport protocol (RTP) packets. The internet engineering task force

(IEFT) [114] specification of RTP payload format, suggests that RTP packet with

identical NAL unit times is mandatory for fast and real-time SVC video transport.

Moreover, in the unequal error protection (UEP) scheme, NAL units belonging to

different SVC priority layers are not loaded in an RTP packet. As a result, the RTP

packet could only contains one NAL unit and consequently, contains the decoding

deadline information of only one SVC layer. Detailed RTP packetization scheme

could be found in [114]. Quality of spatial-temporal-quality layers can be expressed
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Figure 4.2: Example for decoding structure of the SVC bit stream.

as an aggregate floor function:

Un =
∑
l∈L
4PSNRl

n, (4.7)

where Un denotes the nth user reconstructed video quality, 4PSNRl
n is the partic-

ular layer quality increase as defined below. The quality and rate increase can be

expressed as:

4 PSNRl
n =


PSNRl

n − PSNRl−1
n l 6= 0

PSNR0
n = PSNRn(0, 0, 0) l = 0

(4.8)

∆Rl
n =


Rl
n −Rl−1

n , l 6= 0

R0
n = Rn(0, 0, 0) l = 0

. (4.9)

In this work we use three video samples: Stefan, Mobile, and Coast guard. The

PSNR and rate corresponding to the video sample layers are obtained using the

“Joint Scalable Video Model” (JSVM) software [115].
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4.4 Problem Formulation

The objective of this chapter is to maximize the overall weighted received quality of

SRxs while satisfying the individual users’ minimum prescribed quality constraints,

subject to a prescribed total transmission power and PRx maximum tolerable inter-

ference. Mathematically, the optimization problem can be defined as follows:

max
ϕn,k, Pn,k

N∑
n=1

wnUn (4.10a)

S.t. : constraints in (4.6) and (4.4) (4.10b)

Pn,k ≥ 0 ∀n ε N, ∀k ε K (4.10c)
K∑
k=1

ϕn,krn,k ≥ Rn,0 ∀n ε N (4.10d)

ϕn,k ε {0, 1} ∀n ε N, ∀k εK (4.10e)
N∑
n=1

ϕn,k ≤ 1 ∀k εK, (4.10f)

where wn is the nth SR’s quality weight ∀n εN, and represents the user’s prior-

ity or deadline and can be calculated in different ways. In this work we consider

equal weights for all users. Un is the nth SR’s video layered Q-R utility function,

rn,k = Bs.r
c
n,klog2(Mn,k) is the nth SRx rate over the subcarrier k, rcn,k is the kth

subcarrier coding rate and Mn,k is the constellation size for a given bit-error-rate

(BER) target, Pt is the maximum total transmit power of STx, and Rn,0 is the mini-

mum required rate to transmit the nth SRx base-layer video content. N = {1, ..., N},

K = {1, ..., K} and M = {1, ...,M}, are the set of integer numbers, corresponding

to the number of possible SRx, sub-channels, and PRx, respectively. Imth is the mth

PRx maximum interference threshold. (4.6) and (4.10c) indicate transmit power

constraints. (4.10d) refers to the SRx minimum rate constraint, while (4.4) denotes

the PRx interference constraint. The probabilistic inequality in (4.4) is not a con-

vex constraint. In the next section, we reformulate this constraint as a deterministic

convex one. (4.10e) and (4.10f) show that every subcarrier can be allocated to at

most one SRx. The optimization problem in (4.10a) is a probabilistic constrained
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MDCNLP problem, wherein some variables are restricted to taking only discrete or

binary values.

4.4.1 Formulation of the Probabilistic constraint

In this subsection, we propose a deterministic approximation for the inequality (4.4).

To proceed further we denote the following equality:

K∑
K=1

N∑
n=1

ϕn,k.Pn,k.σ
2
e .Vm,kZm,k =

K∑
k=1

βm,kZm,k, (4.11)

where βm,k = σ2
e .
∑N
n=1 ϕn,k.Pn,k.Vm,k. Eq. (4.11) can be expressed as the sum

of weighted Chi-Square random variables over K subcarriers. In general, exact

distribution of the linear combination of weighted Chi-Square variables is rather

complex. Several approximations of the distribution of sum weighted non-central

Chi-square distributed random variables (4.11) have been proposed in literature,

e.g. [77,78], and [116], however, they are not easy to implement in the RRA context.

We propose a simple approximation based on the moments of (4.11) as the following

proposition.The cumulative distribution function (cdf) of the sum of weighted non-

central Chi-Square-distributed random variables, Zm,k, k εK, mεM, with 2 degrees

of freedom, i.e.,∑K
k=1 βm,kZm,k, is ‘similar distributed’ to that of the non-central Chi-

Square-distributed random variable ξχ2
D(δ′), where δ′ , D, and ξ are respectively the

non-centrality parameter, degree of freedom, and weight of the new distribution,

and given by:

δ
′ =

K∑
k=1

δk (4.12)

D = 2K (4.13)

ξ =
∑K
k=1 βm,k(2 + δk)
2K +∑K

k=1 δk
. (4.14)

The similarity of these two distributions, or the accuracy of the proposed ap-

proximation, the cdf of the proposed Chi-Square distribution with that of (4.11),

using Monte-Carlo simulations were compared in Fig. 2.2. The results show that
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the approximation is accurate over a wide range of practical values for K and σ2
e .

Using the this approximation and the theorem in [79], (4.4) can be simplified to:

Pr(
K∑
k=1

N∑
n=1

ϕn,k.Pn,k.σ
2
e .Vm,kZm,k > Imth)

≈ Pr(ξχ2
D(δ′) > Imth) ≈ Pr(χ2

D(0) > Imth/ξ

1 + δ
′
/D

). (4.15)

By some mathematical manipulation and using the Gamma function approximation

similar to Proposition 2.5 and the proof in Appendix A, for all integer values K 6= 1,

and all positive I
m
th/ξ

1+δ
′
/D
, (this condition is always true because, Imth , δk, βk, and K are

positive; consequently, ξ, δ′ and D are also positive), the deterministic inequality,

K∑
k=1

(2 + δk).σ2
e .Vm,k.

N∑
n=1

ϕn,k.Pn,k ≤ Īmth , (4.16)

satisfies the probabilistic inequality (4.4), where Īmth = − K.Imth
(K!)1/K .ln(1−(1−εm)1/k) . There-

fore, the constraint (4.4) can be replaced by (4.16).

4.5 Quality-Aware RRA Algorithm

The layered utility-based RRA optimization problem belongs to the group of non-

linear combinatorial optimization problems, for which there is no general method

to achieve optimality. In this section, a sub-optimal RRA algorithm for downlink

MQAM/OFDMA system based on the users’ layered SVC video quality, and multi-

user resource allocation optimality is presented. The proposed algorithm is formed

of two parts. In the first part, we discuss the subcarrier allocation, then, we propose

a power allocation algorithm for the obtained subcarrier allocation scheme.

4.5.1 Subcarrier Allocation Algorithm

The proposed subcarrier allocation is detailed in two sub-steps. First, the main

purpose is to maximize the number of satisfied users, i.e., those who meet their

minimum quality according to the layered Quality model constraint (4.10d). Second,
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Table 4.1: SINR limits and transmission modes using adaptive modulation and coding
(AMC) [113].

Mode Ri bit/symb Coding rate Modulation
SINR (dB),
BER < 10−5

SINR (dB),
BER < 10−6

1 1 1/2 QPSK 4.09 4.65
2 1.33 2/3 QPSK 5.86 6.49
3 1.5 3/4 QPSK 6.84 7.45
4 1.75 7/8 QPSK 8.44 9.05
5 2 1/2 16QAM 10.04 10.93
6 2.66 2/3 16QAM 12.13 12.71
7 3 3/4 16QAM 13.29 14.02
8 3.5 7/8 16QAM 15.01 15.74
9 4 2/3 64QAM 17.70 18.50
10 4.5 3/4 64QAM 18.99 19.88
11 5.25 7/8 64QAM 21.06 21.94

the rest of the remaining subcarriers are allocated to the users with the highest

quality improvement based on the layered Quality model. First, to maximize the

number of satisfied SRxs, i.e. those who meet their minimum quality according

to the layered quality model constraint (4.10d), a maximum power distribution is

assumed over all subcarriers. We formulate the equal maximum power as follows:

Pmax = min{ Īmth∑K

k=1(2+δk).σ2
e .V

m
n,k

, Pt
K
} ∀m εM. (4.17)

The allocated power derived from (4.17), satisfies the power constraint and interfer-

ence constraints imposed to each PRx individually, i.e., (4.6) and (4.16). In order

to achieve the highest possible performance, we denote an ordered normalized min-

imum rate set as follows:

π = {R
0
n1

Rtn1
,
R0
n2

Rtn2
,
R0
n3

Rtn3
, . . . | R

0
n1

Rtn1
<

R0
n2

Rtn2
<

R0
n3

Rtn3
, . . . } (4.18)

N = {1, 2, 3, ...N}, n1, n2, n3, ... ∈ N, (4.19)

where π is the ordered normalized minimum rate set for N SRxs, and

Rt
n =

K∑
k=1

rn,k (4.20)
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is the nth SRx maximum achievable rate over K subcarriers when Pmax allocated

to all subcarriers. In the first sub-step, in order to allocate a minimum set of

subcarriers to each SRx, in each iteration a subcarrier with highest γn,k from the

feasible set of subcarriers is assigned to the user with the lowest normalized minimum

rate. This is repeated until all users have been allocated their minimum number of

subcarriers to fulfill the minimum required rate. Once a subcarrier is assigned, it will

not be considered in further subcarrier allocation operations. In other words, each

subcarrier can be allocated to just one SRx. In the second sub-step, the remaining

subcarriers are assigned to the users according to the layered quality model. In this

stage, the cognitive users’ normalized quality level improvement are formulated as

flows:

<n = {Φ1
n, Φ2

n, Φ3
n, ..., ΦL

n}, ∀n ε N (4.21)

Φl
n = 4PSNR

l
n

∆Rl
n

.Rt
n, (4.22)

where <n is the set of L levels of nth SRx’s normalized quality improvement, Φn
l is

the lth level of the nth SRx’s normalized quality improvement. The sorted set of all

SRx normalized quality improvements in descending order, is denoted as:

E = {Φl1
n1 , Φl2

n2 , Φl3
n3 , ..., Φln

nn}

Φl1
n1 ≥ Φl2

n2 ≥ Φl3
n3 ≥ ... ≥ Φln

nn , ∀n ε N, ∀l ε L. (4.23)

In this sub-step, subcarrier is allocated to the users according to their levels’ or-

dering in (4.23) iteratively, until reaches the corresponding quality level. Similar

to the previous sub-step, once a subcarrier is assigned, it will not be considered in

further subcarrier allocation process. The algorithm continues until all subcarriers

are allocated.

4.5.2 Power Allocation Algorithm

As previously mentioned, each user requires a minimum rate to guarantee the base

layer transmission; below this minimum rate, there is no layered quality characteri-
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zation to allocate the power according to this model. In the first sub-step of power

allocation, the multi-level water-filling power allocation policy is used to distribute

the power between the users’ assigned subcarriers to meet the required minimum

rate. However, because of the interference constraints in CR networks, the clas-

sical water-filling method is not applicable. Any power allocation scheme in CR,

must not only maximize the utility function, but also satisfies the maximum total

transmit and interference power threshold constraints. Starting with the user with

highest priority in the ordered normalized minimum rate set (π), in each bit load-

ing iteration, power is allocated to the user’s assigned subcarrier with the highest

rate enhancement. When the users’ minimum required rates is satisfied, or the to-

tal transmission power or interference constraints are reached, the iteration process

stops. This water-filling process is repeated for N users according to the ordered

normalized minimum rate set order (4.18). By the end of this process, we can move

to allocate the rest of available power according to the layered quality model. In

second sub-step, the power allocation to the subcarriers is similar to the previous

sub-step, but in a different order. The power is allocated according to the SRx’s

normalized quality level improvement set (4.23). Furthermore, the power level is set

to satisfy the upper-bound of the layers’ required rate corresponding to the chosen

level as:

∑
k ∈ Zn

Bs.r
c
n,klog2(Mn,k) = Rl

n, n ∈ {n1, n2, .., nN}

l ∈ {l1, l2, ..., lL}. (4.24)

4.6 PERFORMANCE ANALYSIS

In this section we examine the performance of the QA algorithm and compare it to

the non-quality-aware (NQA) algorithm used in the literature, e.g., [108], [68], under

total transmit power and probabilistic peak aggregate interference constraints with

imperfect cross-channel estimation using the respective optimal resource allocation

solutions. For the simulations, the video content and the model parameters are
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Algorithm 2: Quality-aware subcarrier allocation
Minimum subcarrier allocation

1. Set the initial value to each user’s subcarriers vector Z1, Z2, Z3 ... and
ZN = 0

2. Calculate Pmax and Rt
n according to (4.17) and (4.20) respectively

3. Select the first available normalized minimum rate from the set π based on
(4.18)

4. Allocate the selected user i a subcarrier with highest γn,k from the set of
available subcarriers K

5. Update Zn and K, Remove the allocated subcarrier from K and add it to Zn

6. Repeat steps 4 and 5 until ∑k ∈ Zn B.r
c
n,klog2(Mn,k) ≥ R0

n, in the case of K is
empty go to sub-step minimum power allocation in the algorithm 3

7. Remove the R0
n

Rtn
from the set π

8. Repeat steps 3 to 7 until all users rate limits are reached

Quality-based subcarrier allocation
1. Set the initial vale for the new Z1, Z2, Z3...,ZN and K achieved from the

previous sub-step

2. Find the SRx normalized quality levels improvement sets according to (??)

3. Determine the sorted set of all SRx normalized quality improvement E from
(4.23)

4. Select the first available member of set E and determine the corresponding
user n and level l

5. Allocate the selected user n the subcarrier with highest γn,k, from the
available subcarriers K

6. Update Zn and K, Remove the allocated subcarrier from K and add it to Zn

7. Repeat steps 4 to 6 until ∑k ∈ Zn B.r
c
n,klog2(Mn,k) ≥ Rl

n, in the case of K is
empty go to minimum power allocation step

8. Remove the Φl
n from the set E

9. Repeat step 3 to 7 until all users’ rate limits are reached or E is empty.
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Algorithm 3: Quality-aware power allocation
Minimum power allocation

1. Set the initial value of the new Z1, Z2, Z3..., and ZN from Algorithm.2

2. Set the initial value of ∆P

3. Set the initial value of PZ1, PZ2, PZ3...,PZN=0, which are the subcarriers
power set

4. Select the first available normalized minimum rate from the set π based on
(4.18)

5. If ∑n ∈ N
∑

k ∈ Z(2 + δk).σ2
e .V

m
n,k.Pn,k ≤ Īmth and ∑n ∈ N

∑
k ∈ Z Pn,k ≤ Pt, select

the user subcarrier with highest rate enhancement, i.e, ∆rn,k, and increase
the rate by Pn,k = Pn,k + ∆P , and update PZn

6. Repeat step 3 and 4 until ∑k ∈ Zi B.r
c
n,klog2(Mn,k) ≥ R0

n

7. Remove the R0
n

Rtn
from the set π

8. Repeat step 3 to 6 until all users rate limits are reached

Quality-based power allocation
1. Set the initial valuePZ1, PZ2, PZ3...,PZN from minimum power allocation

sub-step

2. Determine the sorted set of all SUs’ normalized quality improvement E from
(4.23)

3. Select the first available member of set E and determine the corresponding
user n and level l .

4. select the user subcarrier with highest rate enhancement, i.e, ∆rn,k, and
increase the rate by Pn,k = Pn,k + ∆P , and update PZn

5. Repeat step 3 and 4 until ∑k ∈ Zi B.r
c
n,klog2(Mn,k) ≥ Rl

n

6. Remove Φl
n from the set E

7. Repeat step 3 to 6 until all users’ rate limits are reached or E is empty.

derived by the video server. We assume that the connection between the video server,

ICS, and STx is error free. Three cognitive users respectively, receiving the standard

video samples, Stefan, Mobile, and Coast guard, in CIF (352 × 288) resolution, are
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assumed for the simulations. The video streams are encoded using JSVM 9.15

reference software into two SNR layers: one base layer and an enhancement layer,

and five temporal layers (with the same resolution). The wireless network is modeled

as a three-user Rayleigh fading symmetric/asymmetric channel and wn = 1 for all

users. For simplicity, we consider a single PRx. In our simulations, we assumed 32

OFDM subcarriers, with total bandwidth, 1.6 MHz. In addition, the AWGN PSD

is set to -110 dBm. The PSD of the PTx interferences to all SRxs are equal and are

set to 10−8W/Hz. Discrete-rate cases with real-valued MQAM signal constellations

with BICM are also considered for practical scenarios as listed in Table 4.1, for

different values of BER [113]. It is further assumed that every SRx has a minimum

quality threshold requirement to receive the base layer corresponding to the scalable

video streams. Sufficient buffer time is assumed to be available for the reliable

transmission of the base layer for each user. In the case where the packet that

belongs to the user’s base layer is not received at the decoder by the deadline, a

simple intra-layer frame copy (FC)technique is used for error correction.

Fig. 4.3 and Fig. 4.4 show the achievable PSNR values for the adaptive MQAM

/OFDMA CR system versus STx-PRx interference power threshold levels with, re-

spectively, 1% and 5% collision probability. As expected, greater PSNR values are

achieved for higher maximum tolerable interference since Ith limits the cognitive

users’ transmit power. The results show that the proposed algorithm outperforms

the conventional NQA scenario under similar probabilistic interference power thresh-

old and collision probability. However, as shown in Fig. 4.5 and Fig. 4.6, the NQA

algorithm achieves a higher total rate than the QA algorithm. NQA always oper-

ates at the most extreme point, where users compete for the maximum rate. This

“quality-blind” RRA algorithm allocates the most resources to the user with better

channel regardless of the user’s contribution to the overall system quality enhance-

ment.
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Figure 4.3: Average PSNR performance using the proposed quality-aware RRA and non-
quality-aware RRA algorithms versus Ith constraint of three symmetrically distributed
video users and different BER target. System parameters are: K = 32, N=3, Pt = 30
Watts, σ2

e =1, and εm = 1%.
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Figure 4.4: Average PSNR performance using the proposed quality-aware RRA and non-
quality-aware RRA algorithms versus Ith constraint of three symmetrically distributed
video users and different BER target. System parameters are: K = 32, N=3, Pt = 30
Watts, σ2

e =1, and εm = 5%.
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Figure 4.5: Aggregate rate performance using the proposed quality-aware RRA and non-
quality-aware RRA algorithms versus Ith constraint of three symmetrically distributed
video users and different BER target. System parameters are: K = 32, N=3, Pt = 30
Watts, σ2

e =1, and εm = 1% .
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Figure 4.6: Aggregate rate performance using the proposed quality-aware RRA and non-
quality-aware RRA algorithms versus Ith constraint of three symmetrically distributed
video users and different BER target. System parameters are: K = 32, N=3, Pt = 30
Watts, σ2

e =1, and εm = 5% .
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Fig. 4.7 and Fig. 4.8 illustrate the average PSNR, versus channel estimation error

variance for three video users symmetrically located within a 1 km radius from the

STx. Simulation results show that, for both considered RRA schemes, the average

PSNR decreases with increasing the variance of the cross-channel estimation error.

The proposed probabilistic interference approach, however, keeps the probability of

meeting the target primary user QoS larger than 1−εm. Apart from the impact of Ith
on the performance, lower values of collision probability increase the robustness of

the interference management scheme, but this comes at the cost of lower achievable

average PSNRs.

In the second scenario, we consider the same parameters as before, except that

the PRx channels are asymmetric. We assume that, the PRxs’ distances to the

cognitive base-station are 0.6, 1.3, and 0.8 km, respectively. Fig. 4.9 and Fig.

4.10 illustrate evolution of the maximum achievable average PSNR under different

maximum tolerable interference thresholds for 1% and 5% collision probability re-

spectively. For example, the proposed algorithm achieves a 3.8 dB increase in the

average PSNR over the NQA algorithm where Ith = 1.5 watt, σ2
e = 1, BER = 10−5,

and εm = 5%. It can be observed that the advantage of using the QA algorithm is

even greater under the asymmetric scenario. The plausible justification for this can

be explained as the user with the better channel conditions in NQA algorithm, re-

ceives higher resources, the quality improvement is low or negligible due to the user

quality saturation. It is notable that the advantage of the proposed QA algorithm

is even more when the difference between the users’ videos quality is considerable.
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Figure 4.7: Average PSNR versus Error variance of three symmetrically distributed video
users using the proposed quality-aware RRA and non-quality-aware RRA algorithms with
different values of collision probability. System parameters are: Ith = 1.5 Watts, K = 32,
N=3, Pt = 30 Watts, and εm = 1%.
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Figure 4.8: Average PSNR versus Error variance of three symmetrically distributed video
users using the proposed quality-aware RRA and non-quality-aware RRA algorithms with
different values of collision probability. System parameters are: Ith = 1.5 Watts, K = 32,
N=3, Pt = 30 Watts, and εm = 5%.
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Figure 4.9: Average PSNR performance using the proposed quality-aware RRA and non-
quality-aware RRA algorithms versus Ith constraint of three asymmetrically distributed
video users with different BER target value. System parameters are: K = 32, N=3, Pt =
30 Watts, σ2

e =1, and εm = 1%.
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Figure 4.10: Average PSNR performance using the proposed quality-aware RRA and non-
quality-aware RRA algorithms versus Ith constraint of three asymmetrically distributed
video users with different BER target value. System parameters are: K = 32, N=3, Pt =
30 Watts, σ2

e =1, and εm = 5%.
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4.7 CONCLUSION

In this chapter, cross-layer RRA algorithms for scalable multi-user video streams in

MQAM/OFDMA-based CR networks have been developed. We proposed a novel

framework to maximize SRxs’ average PSNR whilst guaranteeing the PRx interfer-

ence limit under imperfect cross-link information. To characterize the relationship

between the transmit rate and the average PSNR of the scalable video streams,

a simple layer ordering model was proposed. We formulated a probabilistic con-

strained optimization problem to restrict the probability of violating the tolerable

interference limit on the PRx by the STx to a predetermined limit. We have shown

that the use of distribution approximation provides an accurate estimation of the ac-

tual probabilistic constraint for a wide range of practical error variance and number

of subcarriers. Simulation results illustrated that the cross-layer RRA can signif-

icantly improve the aggregate quality of the SRx video streams in an error-prone

environment over the state-of-the-art rate maximization algorithms in the literature.
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Chapter 5

Conclusions and Future Research

Proposals

5.1 Conclusions

The growth in demand for various wireless applications requires extremely intelligent

systems capable of making appropriate decision and efficiently adapting parameters

based on the observation of their surroundings. In addition, the network design

should be in a acceptable complexity level to be implemented in practical scenarios.

In such a system, OFDM has been regarded as a promising PHY layer transmission

technique because of the flexibility it provides to schedule and allocate the resources

and also the simplicity of implementation. Furthermore, radio resource management

is of great importance in efficient wireless communication systems design. However

the radio resource allocation in OFDM systems can not be efficient and optimal if

conducted by considering only the PHY layer, due to the interdependence among the

different layers parameters. To this end, cross-layer design offers considerable poten-

tial to achieve global optimum performance and to guarantee the QoS requirements

in the application layer. Moreover, in the past decade, cognitive radio is considered

to be a prominent candidate for be towards improving wireless network capacity.

Further, cognitive radio is regarded as an effective way to address the problem of

spectrum crunch, by means of intelligent and efficient usage of the available radio

spectrum. Inspired by these challenges, this thesis focused on cross-layer design and
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optimization in OFDMA- base CR networks, involving the parameters from PHY

layer, MAC layer and the application layer, with the goal of maximizing different

metric parameters, in particular the total deliverable throughput, total rate, and

total achievable application layer video streams PSNR.

In Chapter 1, a brief survey on the current and emerging cellular mobile networks

was provided. Following a brief history of wireless communication, an overview of

basics of OFDM technology, performance and implementation were given. General

idea of CR networks and different spectrum access strategies were studied. Par-

ticular emphasis was placed on functionalities and associated challenges of OFDM

based CR networks. Cross-layer design concept and different implementation strate-

gies including, backward and forward information flow cross-layer, design coupling

without new interfaces, merging of adjacent layers, and vertical calibration concept

were studied. Finally the wireless video communications and the video scalability

are discussed in brief.

In Chapter 2 the comprehensive problem of joint power, subcarrier, and rate allo-

cation, together with interference mitigation in downlink OFDMA CR networks was

tackled. The spectral efficiency performance of adaptive MQAM/OFDMA underlay

CR networks with certain/uncertain interfering channel information were studied. A

novel RRA algorithms to improve the overall cognitive system performance subject

to satisfying total average power and peak aggregate interference constraints. In the

proposed framework we considered both cases of perfect and imperfect cross-link CSI

at the cognitive transmitter. In the latter, different ‘average case’, ‘worst case’, and

‘probabilistic case’ scenarios of channel estimation error were modeled and analysed.

To compute the aggregate average spectral efficiency, we developed unique approxi-

mated distributions of the received SINR for given users over different sub-channels

in the respective cases under consideration (i.e., average case, worst case and prob-

abilistic case). The performance of the proposed RRA algorithm and interference

management techniques under various sets of system settings was examined. We

have shown that by incorporating the proposed joint resource allocation and inter-

ference management design framework, a higher overall system performance in the

OFDMA CR network can be realized over the conventional optimization methods.
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In Chapter 3, a stochastic resource allocation algorithms for multi-user multi-

band OFDMA-based CRs with joint underlay and overlay spectrum access strategies

over wireless fading channels was developed. In order to protect the primary users

QoS from destructive interference imposed by the CRs in underlay spectrum access

strategy and the miss-detection scenarios due to the imperfect sensing information,

we considered stochastic total transmit and interference power constraints, where the

number of subcarriers in each scenario (Idle, false-alarm, miss-detection, and busy) is

Binomially-distributed. At the same time, we developed the total transmission rate

objective function based on the collective stochastic information of different number

of subcarriers experiencing different idle, false-alarm, miss-detection, and busy sce-

narios, resulting in improved overall transmission rate performance. In contrast to

the state-of-the-art hard-decision-based methods, although separate transmit power

and subcarrier allocation policies based on the stochastic information of different

number of subcarriers experiencing different scenarios is derived, we have developed

an exclusive final optimum soft-decision-based power and subcarrier assignment for

the proposed OFDMA CR network.

Chapter 4 proposed a cross-layer design technique to maximize the total PSNR

and the number of satisfied secondary users of multi-user scalable video streams

in MQAM/OFDMA-based CR networks by jointly considering the application layer

and the physical layer, and by utilising the probabilistic information about secondary-

primary cross channels. We first developed the 3-dimensional scalable video quality

of the H.264/SVC video transmission over an OFDMA-based CR networks. An

ordered expression for the layers PSNR improvement of the scalable video applica-

tions and the layered utility-based RRA optimization problem were derived. The

total user’s quality is expressed following four physical layer parameters: subcar-

rier allocation, modulation spectral efficiency, power allocation, and probabilistic

interference limitation. Furthermore to solve the probabilistic constrained mixed

discrete-continuous non-linear programing (MDCNLP) problem, we proposed an ef-

ficient suboptimal algorithm is in two steps. Adaptive MQAM/OFDMA systems

under imperfect channel information at the transmitter are shown to have substan-

tial gain in aggregate PSNR compared to conventional quality blind OFDMA-based
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CR RRA algorithms.

5.2 Future Research Proposals

In this section, additional research ideas for future work are outlined. Specifically,

different potential improvements to the proposed works are suggested. An imme-

diate extension to enhance the work carried out in chapter 2, is to incorporate

the number of automatic repeat request (ARQ) retransmissions in the optimiza-

tion problem. It would be interesting to determine the level of interference on the

primary users and develop the algorithms to achieve an efficient control over the

throughput-interference-delay trade-off.

Throughout the work in Chapter 3, to simplify the analysis, the ROC was as-

sumed to be equal over all subcarriers and users. However, in practical systems with

different sensing environment, optimum ROC selection is a crucial parameter affect-

ing the imposed interference and consequently , the total achievable primary and

secondary users performance. Hence, taking different ROC into consideration would

be an interesting research undertaking. It would be also be beneficial to extend and

analyse the proposed stochastic framework with a more practical distribution for

modelling the number of subcarrier arability in each scenario.

Cross-layer design proposed in chapter 4 did not consider the layers’ play back

deadline. Also, queuing delay is an important QoS parameter affecting the overall

performance of the system. A cross-layer framework designed to serve multiple pri-

mary and secondary users by incorporating the application layer, physical and data

link layer, and considering the layers play back deadline and queuing delay can be

an exciting research topic. Forward error correction (FEC) is one technique of error

correction schemes which is largely has been employed in communication systems.

However, due to the hierarchical structure and the dependence between the SVC

video stream layers, it is important consider this inter-dependence between layers in

the FEC design. Therefore, In this sense, there is still large room for enhancing the

current unequal error protection (UEP) FEC design, as such protection are expected

to incorporate the inter-layer dependence with the emerging UEP technologies. Fur-
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thermore, to enhance the practical feasibility of the proposed cross-layer algorithms,

for the cooperative CR networks, analysis can be extended to a quality-aware multi-

relay selection for multi-stream cooperative CR systems with relay nodes and/or

base station.
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Appendix A

Proof of Proposition 4

For a Chi-Square random variable χ2
D, with a degree of freedom 2K, the probability

P(ξχ2
D(δ′) > Imth) ≈P(ξχ2

D(0) > Imth/ξ

1 + δ
′
/D

), (A.1)

can be formulated using the upper gamma function [117] as

Pr(χ2
D(0) > Imth/ξ

1 + δ
′
/D

) =
Γ(K ,

Imth

2ξ(1+δ
′
/D)

)

Γ(K) . (A.2)

By defining

xy = Imth
2ξ(1 + δ

′
/D)

, (A.3)

and using the results from [117], we have

Γ(K , xy) = y
∫ ∞
x

e−t
y

dt, (A.4)

where y = 1/K. Given 1/(KΓ(K)) = 1/Γ(K + 1), and using the corollary of [117],

we can derive the following equalities

Γ(K , xy)
Γ(K) = y

∫∞
x e−t

y
dt

Γ(K) =
∫∞
x e−t

y
dt

Γ(K + 1) . (A.5)
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The upper-bound of (A.5) can be expressed as

Γ(K , xy)
Γ(K) =

∫∞
x e−t

y
dt

Γ(K + 1) ≤ 1− [1− e−ϑxy ]1/y. (A.6)

The expression in (A.6) is valid for all positive x, if and only if,

0 ≤ ϑ ≤ min{1, [Γ(K + 1)]−1/K}. (A.7)

Thus, for all K ≥ 1,

ϑ = (Γ(K + 1))−1/K . (A.8)

Subsequently, from (2.65), (A.6), and (A.8),

Γ(K , xy)
Γ(K) ≤ εm (A.9)

and by replacing (A.5) in (A.9), we have

1− [1− e−ϑxy ]1/y ≤ εm. (A.10)

With further manipulation, it can be shown that

xy = − ln(1− K
√

1− εm)
(Γ(K + 1))−1/K . (A.11)

Replacing (A.3) in (A.11) we have:

Imth
2ξ(1 + δ

′
/D)
≤ − ln(1− K

√
1− εm)

(Γ(K + 1))−1/K , (A.12)

Finally, by replacing (2.68), (2.69), and (2.70) in (A.12), we have:

δ2
Hsp
m,k
|Ĥsp
m,k

K∑
k=1

(2 + µΞm[k])
N∑
n=1

ϕn,k(Υ)Pn,k(Υ)

≤ K Imth
(K!)1/K ln (1− (1− εm)1/K) . (A.13)
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Appendix B

Received SINR cdf Derivation

Deriving cdf of the received SINR given the estimation, Fγn,k|Ĥsp
m,k

(γn,k|Ĥsp
m,k), for dif-

ferent ‘average case’, ‘worst case’, and ‘probabilistic case’, scenarios are as follows:

B.0.1 ‘Average Case’

The random variable Hsp
m,k|Ĥ

sp
m,k, given the ‘average case’ of estimation error, is a

complex Gaussian random variable with mean zero and variance δ2
Ĥsp
m,k

(1 + ρ2)2.

Using Lemma 1, N sp
m = ∑K

k=1 |H
sp
m,k|Ĥ

sp
m,k|2 can be approximated by

N sp
m =

K∑
k=1
|Hsp

m,k|2 ∼ N

(
µNsp

m
, δ2
Nsp
m

)
(B.1)

where µNsp
m

= 2Kδ2
Ĥsp
m,k

(1 + ρ2)2 and δ2
Nsp
m

= 4Kδ4
Ĥsp
m,k

(1 + ρ2)4. By replacing these

new parameters in (2.22), Fγn,k|Ĥsp
m,k

(γn,k|Ĥsp
m,k) can be obtained under the ‘average

case’ of estimation error.

B.0.2 ‘Worst Case’

To derive the distribution of the received SINR given the estimation, for the ‘worst

case’ of estimation error, we invoke Lemma 1. In this case, the random variable

Hsp
m,k|Ĥ

sp
m,k is a complex Gaussian random variable with mean

√
δ2
∆Hsp

m,k

(1−ρ2)

1−pr and

variance δ2
Ĥsp
m,k

(1 + ρ2)2. Hence, the random variable N sp
m = ∑K

k=1 |H
sp
m,k|Ĥ

sp
m,k|2 can
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be estimated as

N sp
m =

K∑
k=1
|Hsp

m,k|Ĥ
sp
m,k|2 ∼ N

(
µNsp

m
, δ2
Nsp
m

)
(B.2)

where µNsp
m

= δ2
Ĥsp
m,k

(1 + ρ2)2
[
2K + µ

′
]
and δ2

Nsp
m

= δ4
Ĥsp
m,k

(1 + ρ2)4
[
4K + 4µ′

]
and

µ
′ = ∑K

k=1 |δ2
∆Hsp

m,k
(1 − ρ2)/(1 − pr)δ2

Ĥsp
m,k

(1 + ρ2)2|. Using the parameters of N sp
m in

(2.22) yields the distribution of the received SINR given the estimation for this case.

B.0.3 ‘Probabilistic Case’

For the ‘probabilistic case’ of estimation error, invoking Lemma 1 and using (2.74),

N̂m
sp =

K∑
k=1

δ2
Hsp
m,k
|Ĥsp
m,k

2 +
∣∣∣∣∣∣
µHsp

m,k
|Ĥsp
m,k

δHsp
m,k
|Ĥsp
m,k

∣∣∣∣∣∣
2


=
K∑
k=1

(1− ρ2)δ2
∆Hsp

m,k

2 +
∣∣∣∣∣∣ (1 + ρ2)Ĥsp

m,k√
(1− ρ2)δ∆Hsp

m,k

∣∣∣∣∣∣
2
 (B.3)

is a Normally-distributed random variable with mean µN̂m
sp

= 2Kδ2
Ĥsp
m,k

(1 + ρ2)2 +

2K (1− ρ2)2
δ2

∆Hsp
m,k

and variance δ2
N̂m
sp

= 4Kδ4
Ĥsp
m,k

(1 + ρ2)4. Hence, by replacing

N̂m
sp and Imth with N sp

m and Imth , respectively, and applying the analysis in (11)-(20),

Fγn,k|Ĥsp
m,k

(γn,k|Ĥsp
m,k) can be developed for the collision probability constraint with

‘probabilistic case’ of estimation error.
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