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Abstract

Diffusion magnetic resonance imaging (dMRI), tractography and the use of

network measures have combined to form an established approach for exploring

brain connectivity. When applied to the human brain, a definition of regions

of interest (ROIs) which act as network nodes is required. In adults, regions

commonly represent brain areas that are assumed to be functionally coherent.

During early development however, a complete set and locations of ROIs in the

brain is yet to be established. This motivates the use of random parcellation

schemes with varying numbers of regions or scales. However, network measures

can be scale dependent, making comparisons across multiple scales challenging

and hindering group comparisons.

To address such scale dependence, network measures are commonly nor-

malised using random surrogate networks which act as a baseline. In this work,

the efficacy of commonly used normalisation techniques is determined and new

methods for generating randomised surrogate networks are introduced. Fur-

thermore, a subset of measures is derived by investigating inter-measure cor-

relations and the framework is then applied to serial dMRI data of a preterm

cohort. It is shown that a new method for generating surrogate networks for

normalisation improves on established approaches and eliminates scale depen-

dencies over a local range, allowing for meaningful group comparison.

While normalisation may be used for group comparison over a local range,

scale dependence can remain over larger ranges. This work shows that the

nature of the scale dependence varies between cohorts, and proposes a multi-

scale framework for group comparison. Using this framework to characterise

the scale dependence, it is possible to differentiate the groups of neonates stud-

ied. This approach, however, requires the calculation of networks at multiple

scales. Therefore the use of a node-merger scheme is also proposed to infer

network properties at a coarse scale from a single network estimated at a fine

scale. This approach allows for multi-scale group comparison based on a single

starting network.
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Chapter 1

Introduction

The human brain is a remarkably complex system of units which interact with

one another to incorporate and process internal and external stimuli. Com-

plex systems cannot simply be studied by investigating the individual units

separately, as many features emerge due to their interaction and global con-

nectivity. The study of connections within the brain has indicated that brain

organisation is non-random and has led to a wide range of studies investigating

its topology [8, 36, 15, 59, 60, 148, 159].

A variety of methods have been used to uncover the underlying connectiv-

ity profile in human and non-human brains based on invasive or non-invasive

procedures. Tracer studies, for example, were first introduced at the end of

the 19th century [170, 171]. They identify connections between regions of the

brain by following individual white matter pathways. These studies, however,

can only be carried out post-mortem and need a significant number of sub-

jects to be able to map out the connectivity profile of a given species, which

prevents comparisons on the subject level [156]. The limitation to groups, in

addition to the rarity of human paediatric samples, motivated the development

of non-invasive imaging techniques to study developing brain connectivity.

With the development of magnetic resonance imaging (MRI), it became

possible to investigate structural and functional connectivity within the living

brain [58]. It also allows the study of the development of and changes in the

connectivity profiles over the life time. One benefit of MRI, over many other

in-vivo imaging techniques, lies in the fact that MRI does not use ionising

radiation and is generally considered a safe imaging technique [147]. This is

particularly important when imaging paediatric patients at younger ages.
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1. Introduction

A mathematical framework for these investigations, which has gained sig-

nificant attention in recent years is network theory [29, 138, 154]. Various

network-theoretical aspects of brain connectivity have been investigated, such

as rich club organisation [8, 36] and segregation and integration [15]. Studies of

conditions such as Alzheimer’s disease [87], attention deficit hyperactivity dis-

order (ADHD) [168] and developmental changes due to premature birth [110],

have explored the potential of using network theory for characterising group

differences within the brain.

The use of network theory relies on the definition of regions within the

brain which act as nodes in a graph or network. However, this aspect is par-

ticular challenging when studying neonates, due to the lack of a consensus

on which parcellation scheme or map of brain regions to use. Nonetheless,

studying brain development in the very early stages, where significant changes

occur [143], provides an opportunity to uncover biomarkers indicative of neu-

rodevelopmental and neurodegenerative diseases [62, 87, 165, 168], especially

in prematurely born infants. Prematurity has been linked, for example, to mo-

tor [94, 95], auditory [94, 125], visual [37, 94] and cognitive impairments [94]

and it has been suggested that approximately 50% of all infants born pre-

maturely suffer from negative cognitive outcome [175]. Therefore it would be

beneficial to find biomarkers to help identify infants at risk and allow for early

intervention and support.

Aims and Outline

The aim of this thesis is to develop methods based on global network measures

that can be used for comparing networks where the location, size and number

of nodes is unknown. The proposed methods are used to investigate brain

development after premature birth, where these challenges are relevant due to

a lack of consensus on which parcellation scheme to use.

The following chapter begins with a brief overview of the biological aspects

of brain development and motivates the investigation of prematurely born in-

fants. It continues by introducing the principles underlying MRI and diffusion

MRI in particular, a modality often used to image the developing brain. Chap-

ter 3 continues by discussing the general concepts used in the field of network

theory and discusses the background of network measures that are used to

analyse brain networks in this work and in the literature. It also highlights the

contribution of network theory with respect to neuroscientific investigations.

Both, chapters 2 and 3 describe difficulties, such as the lack of a standard

10



1. Introduction

parcellation scheme and the unknown location, size and number of nodes in

the brain, that originate when applying network theoretical analyses to the

developing brain.

Following this, chapter 4 motivates the use of random parcellations by com-

paring global network measures calculated using random parcellations with

those using atlas based parcellations. It subsequently employs random parcel-

lations to investigate network normalisation as a tool for comparing networks

of varying size. This includes an exploration of methods for generating surro-

gate networks, which may act as a baseline in network theoretic approaches.

Network normalisation may be used for comparing networks at local scales,

i.e. small variations in the number of regions. When the variation of number of

regions increases, however, the dependence remains and comparison of network

measures continues to be challenging. For that reason, chapter 5 investigates

how this dependence can be used for comparisons of networks over multiple

scales. A multi-scale framework that characterises the global network measures

across scales is introduced and utilised for group comparison.

The multi-scale framework discussed in chapter 5 relies on the definition

of multiple networks over a range of numbers of brain regions. This leads to

additional computational cost compared to using network normalisation, which

can use a single observed network for comparison. Chapter 6 subsequently

investigates the use of a node-merger scheme which can be used to infer coarse

scale information from a single network at a fine scale as a starting point.

The utility of this framework is investigated with respect to its efficacy in

differentiating between groups using both observed and synthetic networks.

This work concludes in chapter 7 by discussing the limitations of the pre-

sented approaches. In addition, section 7.3 outlines potential frameworks

which can be used to place an observed network within the spectrum of random

surrogate networks. These frameworks will form the foundation of future work

which aims to quantify changes of the network type as a result of development

or disease.
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Chapter 2

Studying the Developing Brain

The human brain undergoes rapid and significant changes in the early stages

of development [32]. With advances in non-invasive neuroimaging techniques,

it became possible to follow the neuroanatomical development of the human

brain safely [11, 32, 70, 82, 83, 137, 147, 154]. Studies have suggested that the

time-line of cortical maturation is linked to cognitive milestones depending on

the functional demand, where the primary motor and sensory systems mature

earliest [55, 136, 137]. Studies have also explored the possibility of using non-

invasive imaging techniques to investigate neurodevelopmental disorders, such

as autism and attention deficit hyperactivity disorder [5, 84, 115, 125].

The biological aspects of human brain development from the early stages

until birth are outlined in this chapter and the study of prematurely born

babies is motivated. Furthermore the physical basis of magnetic resonance

imaging (MRI) are discussed, followed by an introduction to diffusion weighted

MRI and the use of tractography to infer fibre pathways in the human brain

in-vivo.

2.1 Early Brain Development

In the human embryo, the neural plate starts closing at around 3 weeks of

gestational age (GA), forming the predecessor of the central nervous system

(CNS) called the neural tube. Subsequently three principal enlargements de-

velop, namely the prosencephalon (forebrain), mesencephalon (midbrain) and

the rhombencephalon (hindbrain) (see Figure 2.1). Over the course of gesta-

tion, the hindbrain continues to evolve into the cerebellum, pons and medulla
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2.1. Early Brain Development

oblongata. Simultaneously, the prosencephalon is subdivided into the dien-

cephalon, the precursor for the optic vesicles, the thalamus and the hypotha-

lamus, as well as the telencephalon, which forms the cerebral hemispheres.

Mesencephalon Rhombencephalon

Prosencephalon

Diencephalon

Telencephalon

Spinal cord

Figure 2.1: Illustration of the three principal enlargements in the human brain,
including their development.

The period of 24 to 40 weeks GA is a critical time in terms of neurogenesis,

neuronal migration, establishment of structural connections, synaptogenesis,

gyrification and cortical expansion, as well as pruning [143]. Neurogenesis

occurs mainly during the second trimester of pregnancy, when most neurons

of the human brain are formed. The exception to this is the cerebellum, which

continues to form neurons until after birth, and the hippocampus, which allows

neurons to be formed over the lifespan and is linked to memory formation. The

cell bodies of neurons are grey in appearance and as a result make up the so

called “grey matter”, which is responsible for information processing. From 24

weeks of gestation until around four weeks after birth, rapid cell death occurs

and reduces the number of neurons in the brain by half (apoptosis) [82].

After neurons are produced they start migrating towards the developing

neocortex [143]. In order to do so they make use of basal processes, which

form a scaffolding throughout the brain. Migrating neurons attach themselves

to and move along this scaffolding to their respective target regions. The first

migrating neurons form a structure called the preplate, which is split into two

transient layers, the marginal zone and the subplate. The cortical plate is

subsequently formed between the marginal zone and the subplate.

After migrating to the cortex, neurons develop afferent outgrowths, ax-

ons, which allow them to communicate using electro-chemical signals. During

gestation, axons from the subplate penetrate the cortical plate around 24-26

weeks GA to establish connectivity, which plays an important role in the differ-

entiation of the cerebral cortex [79]. The development of the system of axons

(structural connectivity) continues into the postnatal period [78]. Around each

axon, myelin sheathes act as electrical insulation for the axons in the brain and

help to increase the efficiency of neural signalling. The process of myelination
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2.1. Early Brain Development

starts before birth from the brain stem around 29 weeks GA [70] and continues

into late adolescence [24]. The structural connectivity is commonly referred to

as white matter, due to the white appearance of the myelin.

Once the axon has reached its target neuron, a synaptic connection is

formed. Synaptogenesis, the formation of synapses, occurs between the third

trimester of gestation and two years postnatal age. It should be noted that

different brain regions may reach their maximum synaptic density at different

time points of development [68]. Additionally, in contrast to the neuronal

density, the synaptic density increases rapidly after birth, which is followed by

pruning, reducing the synaptic density by approximately 40% over a person’s

lifetime [69].

In addition to these microscopic changes, the brain also undergoes macro-

scropic developmental changes in which the grey matter structure of the cortex

forms sulci and gyri. Sulcation and gyrification in the human brain starts with

the appearance of the sylvian fissure and central sulcus at approximately 15

and 20 weeks GA, respectively [83]. Although some variation between indi-

vidual brain development can be found, it has been indicated that sulci and

gyri develop according to a developmental schedule [34]. Even though sulci

are already present by 28 weeks GA, with secondary and tertiary sulci form-

ing afterwards [34], major landmarks are hard to detect in these early stages.

Moreover the sulcation and gyrification of the brain continues after birth [83],

however, it has to be noted that this process may be delayed in premature

babies [11]. Figure 2.2 summarises the time-line of these developmental events

during gestation.

2.1.1 Prematurity

In some cases babies are born premature, i.e. before 37 weeks of pregnancy.

Based on their GA, premature born babies can be divided into extremely

preterm (before 28 weeks GA), very preterm (28-31 weeks GA), moderate

(32-33 weeks GA) and near term or late preterm (34-37 weeks). Figure 2.2

illustrates these categories in relation to the developmental processes occuring.

World-wide, preterm birth occurs on average in roughly one out of ten preg-

nancies, with a generally higher incidence rate in developing countries [19].

Moreover it has been indicated that the overall prevalence of preterm births is

increasing [57].

The causes for premature birth are not completely understood and may be

the result of a combination of multiple factors, such as socioeconomic factors,
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Extremely 

premature
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Figure 2.2: Time-line of human brain development in weeks of post-menstrual
age (PMA). It illustrates the sequence of neurogenesis, neuronal migration,
establishment of structural connections, synaptogenesis and pruning, as well
as gyral development.

genetic influences, medical conditions, pregnancy history or due to the use

of assisted reproductive technologies to initiate pregnancy [57]. Importantly,

there is an increased survival rate of preterm children due to advances in

perinatal care [174].

With higher survival rates additional medical care is required, which can

result in high physical, psychological and economical costs [19]. In particular

it has been indicated that children born prematurely undergo substantially

different cortical organisation [78, 79] and are more likely to suffer from neu-

rodevelopmental impairment compared to term born children [40, 57]. Notably,

Wood et al. [175] showed that approximately 50% of extremely preterm infants

exhibit disabilities at 30 months of age. Clinical disabilities associated with

premature birth include motor [94, 95], auditory [94, 125], visual [37, 94] and

cognitive impairments [94], where cognitive impairments are more prevalent

than motor and sensory impairments [5, 40, 94], as well as mental disorders,

such as autism [125] and attention deficit hyperactivity disorder (ADHD) [5].

It should be noted, however, that sensory impairments can lead to secondary

problems, including language deficit, as well as impaired social and emotional

development [5]. Additionally, behavioural problems such as ADHD may be
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2.2. Imaging the Developing Brain

associated with lower cognitive score [40] and as such be a confounder in some

studies.

2.2 Imaging the Developing Brain

Magnetic resonance imaging (MRI) is widely used for examinations of devel-

oping organs in the human body, such as the heart [90], the liver [167], and

the brain [70, 82]. The benefit of MRI over other techniques, such as computer

tomography (CT) or X-Ray imaging, lies in the fact that MRI does not utilise

ionizing radiation and consequently allows for relatively safe and repeatable

scans at early stages of life [147].

2.2.1 Magnetic Resonance Imaging

The principle of MRI was originally known as nuclear magnetic resonance

and introduced by Rabi et al. in 1938 [116] and further developed by Bloch

et al. [26] and Purcell et al. [114] in 1946. Since then significant advances

have been made, but the underlying physics remains the same. MRI uses the

magnetic moment of non-zero spin nulcei, such as hydrogen (H1), to generate

a detectable signal. Each element’s spin direction is usually randomly dis-

tributed, however, by using an external magnetic field B0, introduced by the

presence of the magnet of an MRI scanner, the spins align in a preferentially

parallel direction at room temperature.

A second magnetic field is applied to the aligned spins, which oscillates at

radio frequencies (RF). This RF pulse excites the spins, which rotates them

away from their preferred orientation (parallel to B0). In order to do so,

the radio frequency is set to the Larmor frequency which is proportional to

the magnetic field strength (see for example [98]). Subsequently the spins

start precessing about B0. The rotation and precession of the spins decay

exponentially with tissue specific time constants T1 and T2 respectively.

Depending on which type of tissue is of interest, imaging sequences can be

optimised to make signals strongly dependent on variations of specific param-

eters, such as time constants T1 and/or T2 (with T1 ≈ 2.5 s and T2 ≈ 0.2 s

in neonates [173]). In order to do so, two key parameters can be tuned. The

first time parameter, related to T1, is the repetition time (TR), which reflects

the time from the application of the first excitation pulse to the application of

the next. The other time parameter is called echo time (TE). It refers to the
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time between the application of the excitation pulse to the peak of the signal

induced in the receiving coil, which relates to the precession decay time T2.

A final magnetic field may be applied in order to encode spatial information

of the signal. This magnetic field is commonly referred to as a gradient, as it is

varied according to the spatial location within the MRI scanner. Research on

gradient pulse sequences has been conducted in order to improve image quality

and reduce imaging time [3, 91, 92, 113, 166]. In particular, by adjusting the

gradients one can apply different weighting schemes such as diffusion weighting

(see section 2.2.2) or use it for slice selection and image encoding.

When applying gradients, slices can be selected from the volume due to

the fact that the precessional frequency of a nuclei in a static magnetic field,

the Larmor frequency, is proportional to the magnetic field strength, which

varies according to the gradients. That means that it is possible to excite

individual slices within the brain by adjusting the RF pulse. By convention

the direction of slice selection is denoted by z, whereas the perpendicular xy

plane characterises the excited slice.

MR images are acquired in a two dimensional k-space, where kx and ky are

given by the integrated area of the gradients in the corresponding direction.

By manipulating the gradients in x and y, the entire signal of the slice can

be collected in k-space and, using Fourier transform, can be mathematically

converted into signals in the xy plane. By changing kx and ky, the measurement

follows a path in k-space. In k-space, measurements around the centre (low

values of kx/y) correspond to gradual changes in space, i.e. constant or slowly

varying areas, whereas high values of kx/y correspond to edges in the resulting

image.

Considering this effect of sampling, it is important to define efficient tra-

jectories through k-space. Various trajectories have been proposed. Acquiring

k-space line by line, where one shot samples kx for a single value of ky and

subsequently altering ky for each shot, is called “phase encoding”. This type

of sequence is typical for most clinical applications [112]. Instead of acquiring

only one ky value in a single shot, an alternative approach uses an oscillat-

ing trajectory, which is consequently able to acquire all of k-space in a single

shot [91]. This approach, also known as echo planar imaging (EPI), is much

faster than phase encoding. Other sequences have been developed which use,

for example, spiral trajectories [2]. Moreover, by using techniques such as com-

pressed sensing and parallel imaging [113, 166], the amount of data required

for high quality image reconstruction can be reduced and as a result, the scan
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time can be further decreased. One example of these techniques is given by

SENSEtivity encoding, which uses the spatial sensitivity information of the

receiver coils to reduce scan time [113]. The factor of undersampling can be

represented by a SENSE-factor, where, for example, a sense factor of two can

be achieved by acquiring only every other line in k-space [113].

This section focuses on reviewing the imaging sequence of EPI, as it is the

most common sequence used in diffusion weighted MRI (see section 2.2.2). A

typical EPI imaging sequence is shown in Figure 2.3a.

Figure 2.3: Imaging sequence (a) and k-space trajectory (b-e) for echo planar
imaging (EPI). In this sequence all of k-space can be imaged in a single shot.

After the initialisation step of the sequence (set-up), which includes excita-

tion (RF), slice selection (Gz) and the initial displacement in k-space (Gy and

Gx) to set the starting point of the trajectory (Figure 2.3b), the data collection

sequence begins. The non-zero gradient component in Gx moves the acquisi-

tion from smaller kx values to higher kx values, traversing k-space from left to

right in Figure 2.3c. At the maximum value of kx, a short pulse in Gy moves

the trajectory to the next ky value and with a negative component in Gx, kx

is traversed in opposite direction (Figure 2.3d). This process is repeated until

the entire k-space has been probed (Figure 2.3e).

2.2.2 Diffusion Weighted MRI and Tractography

Investigations of structural connectivity within the brain started with the in-

troduction of fibre staining methodology in 1882 [170, 171]. However, fibre

staining cannot be done in-vivo, necessitating the development of non-invasive

techniques to characterise fibre trajectories. With the introduction of diffusion
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weighted MRI sequences (dMRI), in-vivo imaging of the structural connectiv-

ity based on diffusion properties became possible.

The structural connectivity within the brain can be investigated by char-

acterising the diffusion of water molecules along the pathways which connect

areas of the brain with each other. In general water molecules within a fluid

undergo random displacements (Brownian motion), due to collisions with other

water molecules. In case of impermeable boundaries, the motion of a water

molecule is restricted. Examples of 2D unrestricted and restricted Brownian

motion are shown in Figure 2.4.

Figure 2.4: Example of unrestricted (top left) and restricted (top right) Brow-
nian motion, with respective 2D representation of the diffusion direction (bot-
tom).

In the brain, it is believed that the 3D movement of water molecules is hin-

dered by the axonal membranes [18]. This means that water molecules undergo

a restricted Brownian motion and the extent to which a preferential diffusion

direction is present can be described using measurements of anisotropy. The

amount of anisotropy has been used to study patients and healthy subjects,

where low levels of anisotropy can serve as markers for white matter dam-

age [48, 66]. This is of particular interest, as the level of anisotropy has been

shown to correlate with task performance [48].

In order to estimate anisotropy, the MRI pulse sequence needs to be mod-

ified to become sensitive to diffusion directions. The principle of adding diffu-
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sion weighting to pulse sequences was introduced by Stejskal and Tanner [142],

where a bipolar gradient is applied after excitation and before data collection.

This gradient successively adds two phases with opposite signs to each spins

precession, where the magnitude is dependent on the spin’s average position

within the body. Assuming that the nucleus/spin does not change its average

position between the adding of the two phases, the net effect is zero. This

is in general the case for unrestricted Brownian motion, as can be found, for

example, in the ventricles. On the other hand, if the motion is restricted, the

average position of the nucleus will most likely change in a given time interval

and the sum of the two phases can be related to net movement of the nu-

cleus. The modified pulse sequence which incorporates diffusion weighting in

one direction is shown in Figure 2.5.

RF

Gz

Gy

Gx

time

set-up data collectiondiffusion weighting

G

δ

Δ

Figure 2.5: Imaging sequence for diffusion weighted imaging in one direction.
This sequence can be applied along any direction, i.e. any linear combination
of x, y and z.

The correct application of diffusion weighted sequences with appropriate

parameters is imperative for image quality [74]. One important parameter

which summarises the influence of dMRI sequences is the so called b factor,

defined as

b = (γ · G · δ)2

(

∆ −
δ

3

)

,

where γ is the gyromagnetic ratio, G the diffusion weighted gradient’s mag-

nitude and ∆ and δ the separation and the duration of the applied diffusion

weighted gradient, respectively [112, 142] (see Figure 2.5). The optimal value
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of the b-factor is problem specific and needs to be guided by the research

question at hand, as it involves a trade-off between diffusion information and

signal-to-noise ratio [74]. In general, the diffusion sequence is repeatedly ap-

plied to acquire a number of volumetric images, each associated with a different

non-collinear diffusion direction. The set of all volumetric images subsequently

provides a diffusion map including a measure of anisotropy of the imaged brain.

Tractography

With diffusion information available, it is possible to characterise the trajec-

tories of the major pathways in the brain by using tractography, which inte-

grates voxel-wise fibre orientation estimates [20, 80, 102]. Various aspect of

the human brain have been investigated using dMRI and tractography, such

as asymmetry of white matter structure [135] or to infer structural connectiv-

ity for network analysis (see section 3.7). Furthermore it can be used to map

the development of structural connectivity non-invasively, for example in the

cerebellum [145] and cortex [177], and therefore describe the evolution of the

emerging pathways and overall fibre organisation.

As a first step, in order to estimate pathways in the brain using tractogra-

phy, the diffusion direction needs to be modelled for each voxel. A variety of

different compartment models have been proposed [108]. The simplest model

represents the direction of diffusion by estimating the diffusion tensor for each

voxel, assuming a single compartment model [12]. However, by fitting this

diffusion tensor model to a voxel, which may contain extra-axonal and intra-

axonal space, i.e. more than one compartment, the resulting directionality

information will be a composite of both. This means that the true direction

of the white matter pathways may not be detectable, depending on the fitted

model [108].

Behrens et al. [22] proposed a model, which assumes a combination of

isotropic (extra-axonal space) and anisotropic diffusion in one direction (intra-

axonal space). This model is commonly referred to as “ball and stick”, as the

isotropic diffusion is represented by a sphere (“ball”) and the anisotropic diffu-

sion by an cylinder with its principal axis in the direction of highest anisotropy

and a radius equal to zero (“stick”). One particular benefit of this approach is

that multiple fibre directions, i.e. multiple “sticks”, can be estimated within

each voxel [23].

Tractography estimates the pathways by using streamlines through the

vector field of diffusion directions measured by dMRI. Streamlines can be de-
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scribed mathematically as 3-dimensional space-curves [13]. On the other hand,

considering that dMRI data are discrete, where diffusion information is aver-

aged across a voxel, streamlines may be represented by a series of connected

voxels.

In general one can distinguish between deterministic and probabilistic trac-

tography methods. Deterministic tractography starts from a seed voxel and

streamlines are integrated by using the voxel-wise directional diffusion infor-

mation. In order to do so, a streamline uses the information in its current voxel

and takes a “step” in the direction of the primary diffusion direction [20]. The

extrapolation of the next point along a streamline can be done in a variety of

ways. Mori et al. [102], for example, assumed that each voxel’s measurement

should be applied over the entire voxel, whereas Lazar and Alexander [80],

for example, use a weighted interpolation of the diffusion direction including

neighbouring voxel measurements. Regardless of the approach to infer the di-

rectionality, the process is repeated until a termination criterion is reached,

which can vary depending on the tractography method used [72].

Using deterministic tractography, termination criteria may be defined by a

white matter mask, where a streamline is terminated if it leaves the mask, a

predefined anisotropy threshold or a curvature threshold. The intuition behind

the anisotropy threshold is based on the fact that with lower anisotropy, the

next step of a streamline is more uncertain. If the anisotropy in a voxel is

below a certain level, subsequent estimation of streamlines may be erroneous

and in order to decrease the amount of false positives, the streamline is termi-

nated [20]. Similarly, if the next step of a streamline would involve an abrupt

change in direction, unlikely to occur in the anatomy of white matter tracts,

a streamline may be terminated, however, it is difficult to justify any given

turning angle threshold [16].

A different tractography approach tries to handle uncertainties in voxels

for which deterministic tractography would stop, for example, because of low

anisotropy [22, 23]. In order to do so, each voxel is assigned a probability

density function (pdf) that reflects the uncertainty of fibre orientations. Once

a streamline reaches a voxel, the direction of the next step is sampled from the

probability distribution of its pdf. This means, however, that the path through

a given voxel may not be unique and it becomes necessary to sample multiple

streamlines from each starting voxel in order to estimate the spatial pdf of

a path connecting a seed point to a target point. Moreover, the confidence

in any streamline can be expressed by its compounded probability along the
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path [22].

The benefit of this approach, as mentioned above, lies in the possibility of

“following” streamlines through voxels of low anisotropy, for example, in the

developing brain (see section 2.1). Furthermore probabilistic tractography is

more resilient to noise, as errant routes due to a noisy voxel, tend to disperse

quickly [20, 22]. Consequently, termination criteria can be very lenient, i.e. no

anisotropy and a large curvature threshold. The use of a curvature threshold is

mainly to prevent streamlines tracing their steps back and thereby artificially

increasing the compounded probability of a path existing [22]. Tracing steps

back is generally possible, as the diffusion direction is degenerate with respect

to its sign and subsequently cannot distinguish afferent and efferent fibres [13,

72].

2.3 Subject and Imaging Data

This work investigates the development of structural brain connectivity in pre-

mature infants. Preterm and healthy term control infants were recruited as

part of studies at Queen Charlotte’s and Chelsea Hospital. Ethical permission

was granted by the Hammersmith and Queen Charlotte’s and Chelsea Hos-

pital (QCCH) Research Ethics Committee and written parental consent was

obtained for each infant.

Serial dMRI data were acquired for all 28 preterm infants, who were born

at less than 32 weeks gestational age (GA). Mean GA at birth was 28.0 ± 2.3

weeks and the mean post-menstrual age at scan (PMA) was 30.8 ± 1.9 and

41.2±1.2 weeks at the first (baseline) and second (follow-up) scans respectively.

Table 2.1 summarises the demographic characteristics for all preterm subjects.

A group of fifteen (6 male) healthy term control infants born at 39.3 ± 1.4

weeks GA were also scanned at 42.1 ± 1.7 weeks PMA. All preterm infants at

term equivalent age and ten term control infants were sedated (25 − 50mg/kg

oral chloral hydrate) for the scan. At the baseline scan of the preterm cohort,

no sedation was administered. During the scan each infant’s vital signs, i.e.

pulse oximetry, temperature and heart rate, were monitored. Additionally,

MRI safe hearing protection was used for each infant (President Putty, Coltene,

Whaledent, MiniMuffs, Natus Medical Inc.).

T2-weighted fast-spin echo MRI were acquired on a Philips 3T scanner,

using a 8 channel phased array head coil with the following parameters: TR:

8670 ms; TE: 160 ms; flip angle 90◦; slice thickness 1 mm; field of view: 220 mm;
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Table 2.1: Summary of the demographic information of the preterm cohort.
ID PMA at scan (weeks) GA at birth Weight Sex

Baseline Follow-up (weeks) (g)
P1 29 42 24.43 770 m
P2 25.29 42 24.86 800 –
P3 29 41.86 25.29 800 f
P4 30.14 42 25.57 800 –
P5 28.29 40.71 26 750 f
P6 29.71 41.71 26.14 950 f
P7 27.71 43.29 26.14 810 f
P8 28.14 40.71 26.29 895 m
P9 31.29 39.41 26.43 980 f
P10 32 40.43 26.57 1020 –
P11 31.86 38.86 26.57 955 f
P12 31.14 40.57 26.71 1010 f
P13 31.14 40.57 26.71 930 f
P14 29.86 42.56 26.86 – m
P15 30 42.43 27.71 900 f
P16 31.14 42.71 28.29 1010 f
P17 31.56 43.14 28.86 – –
P18 32.56 41.14 29.14 970 f
P19 30.71 43 29.14 1170 f
P20 30.71 39.56 29.43 980 m
P21 33 40.29 30 1740 m
P22 33 41.29 30 1690 –
P23 33 42 30.43 1440 m
P24 32.86 40.71 30.86 1390 m
P25 31.57 39.57 31 1330 m
P26 32.29 41.29 31.29 2020 m
P27 32.71 40.56 31.86 1530 f
P28 32.71 40.56 31.86 1400 m

matrix: 256 × 256 (voxel size: 0.86 × 0.86 × 1 mm).

BET [134] was used to skull strip the T2 brain images. Subsequently, N4

inhomogeneity correction was performed [150] to eliminate intensity inhomo-

geneity. The corrected images were then aligned with non-rigid registration

[123, 129] to age-specific template priors [130]. Age-appropriate tissue proba-

bility maps were transformed from template space to the individual T2 images.

This allowed the extraction of grey and white matter masks for each infant,

which were used in remainder of this work.

32-direction dMRI data were successfully acquired for each infant and each

time point. Single shot echo planar imaging dMRI data were acquired in

the transverse plane in 32 directions using the following parameters: TR:

8000 msec; TE: 49 msec; slice thickness: 2 mm; field-of-view: 224 mm; ma-

trix: 128×128 (voxel size: 1.75×1.75×2 mm); b-value: 750 sec/mm2; SENSE

factor of 2. A reference volume was also acquired (b-value: 0 sec/mm2).

24



2.3. Subject and Imaging Data

Motion artefacts were visually assessed for each gradient volume and af-

fected volumes were removed before preprocessing. Consequently, 17 of 28 sub-

jects of the premature cohort had at least one gradient removed (maximum: 4,

mean: 2.35) in their baseline scan. No artefacts were found at term-equivalent

age or in the term-born control group. All diffusion volumes were aligned to

the reference volume and motion correction was performed. Corresponding b-

vectors were then rotated accordingly. Diffusion data were registered to the T2

space and BedpostX [20] (two fibre population) was applied to each subject’s

diffusion data, which allowed the use of ProbtrackX [23, 119], a probabilistic

tractography algorithm, in later chapters.
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Chapter 3

Network Analysis

Network theory is a growing area of interest in modern science and has found

applications in diverse areas, such as social interactions [43], economics [64],

flavours in recipes [3] and gene-disease relations [56]. In particular through

the small world phenomenon, sometimes conveyed through the expression “six

degrees of separation”, network theory was popularised. The small world phe-

nomenon, studied in the famous experiment by Travers and Milgram in 1969,

shows that a message to an unacquainted person, by relaying it through the

social network from the sender to the receiver, will only take a small number

of “hops” to reach its destination [149]. This experiment was repeated more

recently by Dodds, Muhamad and Watts with similar results [43].

But what exactly is a network? David and Kleinberg describe it in the most

basic sense as a “collection of objects in which some pairs of these objects are

connected by links” [45]. The collection of objects may represent, for example,

human beings, products, ingredients, diseases or brain regions, whereas the

links are relationships or structural connections. Figure 3.1 shows a simple

representation of a network, which can also be called a ‘graph’.

The objects in a network are called nodes. In Figure 3.1 they are shown

as red circles labelled with the letters a-f . The edges are represented as black

lines. In general, edges can also encode a weight and a direction of a connec-

tion. In the case of a social network, the weight may represent the strength

of a friendship, meaning a connection is stronger if two people are better ac-

quainted. In this application of graph theory the graph may also be directed.

Two people, though considering each other as friends, might see the strength

of the friendship differently. Another example can be drawn from the U.S.
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a b

c
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Figure 3.1: Representation of a general undirected graph with six nodes (cir-
cles) and seven edges (lines).

airport network, where the individual nodes may represent airports and edges

the existence of flights between two airports. The weight of these edges can

subsequently be defined, for example, as the number of seats per day available

on the flights connecting different airports [107]. Figure 3.2 shows one possible

weighted and directed representation of the graph seen in Figure 3.1.

a b
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d

e

f

Figure 3.2: Representation of a general directed and weighted graph with six
nodes. The weight is represented by the thickness of the connection, while the
direction is represented by arrows.

In this work, a graph is denoted by G = {V, E, W}, where V is the set

of vertices/nodes, E is the set of edges and W the set of assigned weights.

Additionally, an edge between two nodes i, j ∈ V is denoted by ij ∈ E and

wij ∈ W represents the corresponding edge weight. The weight matrix W

represents the connectivity matrix, which is usually derived from data. A

matrix A, with aij = 1, if ij ∈ E and 0 otherwise, is called an adjacency

matrix. The neighbourhood Ni of node i is given by the set of its edge-wise

neighbours {j ∈ V : j 6= i, ij ∈ E} and it is assumed that graphs are simple,

i.e. that they have no multiple edges or self-loops.

In general a graph can be either binary and undirected (bu), binary and
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directed (bd), weighted and undirected (wu) or weighted and directed (wd).

Real-world networks often fall into the category of wd graphs. However, under

certain circumstances wd graphs may be converted to another category [121],

thereby simplifying the problem.

The rest of this chapter will introduce the basic terminology for networks,

as well as some underlying principles. An introduction to these concepts can

also be found in [103]. In the following the most commonly investigated net-

work measures, organisational principles associated with network structures

and random graph models are discussed (sections 3.1– 3.6). In addition, the

contributions of network theory to neuroscientific investigations are outlined

in section 3.7.

3.1 Degree

The degree of the individual nodes is a simple but important measure on

graphs. In a directed graph, one can divide the degree into in- and out-degree.

The in-degree kin of a node is the number of links with direction towards the

node, whereas the out-degree kout of a node is the number of links leaving the

node. Figure 3.3 shows a representation of a node in a directed network and

the distinction between in- and out-degree.

Figure 3.3: Distinction between in and out-degree. The image represents the
in- (black) and outgoing (red) edges of a node s (gold).The in- and out-degree
of s is kin(s) = 3 and kout(s) = 4, respectively.

In case of wu and bu, links are bi-directional. Therefore the in- and out-

degree of a node become a single degree measure, k(s), and the adjacency and

weight matrices become symmetric. In case of the binarised graphs the degree

represents the count of links, whereas in weighted graphs the degree may be

defined as the sum over the weights of the corresponding links. The average
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degree, where the average is taken over all nodes in the network, can serve as

a summary measure for the network investigated.

3.2 Distance

Some network measures require the calculation of shortest paths between sets

of nodes. Calculating all pairwise shortest distances efficiently is a well known

problem in graph theory. One of the most commonly used algorithms to cal-

culate pairwise distances between nodes in a weighted graph was developed by

Dijkstra in 1959 [42]. A description of the algorithm can be found in [103].

The Dijkstra algorithm takes initial distance values for each edge ij ∈ E of a

given graph G = {V, E, W} as input. These distances may be problem specific

distances, as they can be found, for example, in transport networks, where dis-

tances represent physical distances such as road length, or flight distances. In

other areas the weight of edges may not be related to physical distances, neces-

sitating a method for converting edge weights into distances. Areas where this

may apply are, for example, friendship or brain networks. Two nodes, meaning

two friends or two brain areas respectively, may be considered “closer”, if the

edge connecting the two nodes has a higher weight compared to others in the

network. The intuition behind this is that if a connection between nodes i and

j is strong, information will take less time to travel along ij and the topological

distance will be shorter. In this case a mapping from strength to distance is

required, which maps high edge weights to small distances. Distances within

a graph may be set, for example, to the reciprocal connection strength [121].

3.3 Network Measures

In terms of network analysis, there are two intrinsic levels at which measures

can be compared [99]. Local metrics within a graph represent measures which

are either associated with individual nodes or with pairs of nodes, whereas

global metrics characterise the entire network as a whole. A summary of

network measures commonly used to characterise brain networks is given by

Rubinov and Sporns [121]. This section describes the network measures which

are used in the following chapters.
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3.3.1 Clustering Coefficient

The clustering coefficient is one of the most important network metrics that

has been used in a wide range of studies and was first introduced by Watts and

Strogatz in the context of small world networks [169] (see section 3.4). It can

be seen as the probability that neighbours of a node i ∈ V are also neighbours

of each other. In a friendship network it can therefore be interpreted as a

measure of how many friends of a person’s friends are also friends themselves

and thus measures the extent of how cliquish friendship circles are.

The clustering coefficient C(s) of a node s represents the ratio of triangles

containing s to the maximum number possible [50] and is given by

C(s) =
2 ts

k(s) (k(s) − 1)
, (3.1)

where ts is the number of triangles around node s and k(s) is its degree. If

a node has less than 2 neighbours, it’s clustering coefficient is set to 0. The

clustering coefficient C of a network can then be calculated as the average of

C(s) over all nodes s. It can be interpreted as the predominance of clustered

components around nodes.

Figure 3.4 shows the clustering coefficients of nodes in a small network.

Only when the neighbourhood of a node is fully connected will the clustering

coefficient be equal to one. This contrasts with the network in Figure 3.1, in

which all nodes have a clustering coefficient of zero.

a b
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d

f
0
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3
2
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3

Figure 3.4: Sample graph with corresponding clustering coefficients of each
node given in blue. Node f has the highest clustering coefficient, as its neigh-
bourhood is fully connected. In contrast, for nodes c and d, there is one
connection among their neighbours missing (bf 6∈ E), resulting in a reduced
coefficient. For node a the clustering coefficient is zero by definition.
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3.3. Network Measures

3.3.2 Transitivity

A common criticism of the average clustering coefficient is that it places more

weight on nodes with low degree, compared to high degree nodes. Therefore it

has been argued that the average of the clustering coefficient, as suggested by

Watts and Strogatz [169], might not be representative of the amount of closed

triangles in a network due to the dominance of the low degree nodes. This

issue is illustrated in Figure 3.5.
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Figure 3.5: Graph to illustrate a shortcoming of using the average clustering
coefficient to represent a network. The average clustering coefficient is 0.87
and 0.67 for the graph on the left and right respectively. This example shows
that the average clustering coefficient of the network can be reduced by closing
additional triangles in the graph.

An alternative definition of a global clustering coefficient which eliminates

this bias, usually referred to as transitivity is given by [106]

T =
∑

s∈V 2 ts
∑

s∈V k(s) (k(s) − 1)
. (3.2)

In contrast to the average clustering coefficient, where each nodal clustering

coefficient is normalised individually and then averaged, the transitivity of a

network is normalised collectively, i.e. that the total number of closed triangles

is normalised by the total number of closed and open triangles in the network.

Transitivity therefore reflects the ratio of closed triangles in the network to

the total number of closed triangles possible. When comparing the graphs

shown in Figure 3.5 the average clustering coefficients/transitivity are given by

0.87/0.60 and 0.67/0.67 for the left and right graph respectively, which means

that transitivity can accurately reflect the closing of additional triangles in the

network. Both measures are widely used in the literature, however, one needs

to be aware of the difference in their meaning.
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3.3.3 Modularity

Modularity tries to determine how well a network can be separated into in-

dividual modules or communities. In a graph with two modules labelled ±1,

modularity can be calculated by [104]

Q =
1

4m
sT Bs, (3.3)

where si is the module label to which node i belongs and B the so called

modularity matrix. B is defined as

Bij = Aij −
k(i)k(j)
∑

i∈V k(i)
, (3.4)

which represents the number of edges between nodes i and j minus the ex-

pected number of edges, if all edges in the graph were randomly distributed.

Commonly networks contain more than two modules, and subsequently this

approach is recursively repeated for each subnetwork defined by a module,

where the incremental modularity for the subnetwork is estimated. When Q is

maximised, the algorithm stops. In general modularity Q is estimated for non-

overlapping modules [38]. Figure 3.6 shows an example graph and its partition

into two modules.
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Figure 3.6: Sample graph which illustrates the definition of modules in a net-
work.

It should be noted that the definition of modules is not always unique.

Node a in the example in Figure 3.6 can be assigned to either module without

altering the value of Q.
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3.3.4 Characteristic Path Length

The characteristic path-length, λ(s), of a node s is defined as average shortest

path-length between s and all other nodes in the network. It can be interpreted

as a measure of integration of a particular node in the network and is given by

λ(s) =
1

|V | − 1

∑

t6=s

dst, (3.5)

where dst is the shortest distance between nodes s, t ∈ V and |V | is the total

number of nodes. The mean measure, λ, taken over all nodes s, is referred to

as global characteristic path-length.

3.3.5 Efficiency

The efficiency E(s) of node s is computed similarly to the characteristic path-

length. In this case, however, the average is taken over the reciprocals of the

shortest paths. The advantage of efficiency over characteristic path-length lies

in the meaningful computation for multi-component networks, as infinite paths

between nodes in disconnected components have zero efficiency. The overall

efficiency of a network can be expressed by the mean of E(s) over all nodes s,

where E(s) is given by

E(s) =
1

|V | − 1

∑

t6=s

d−1

st . (3.6)

3.3.6 Eccentricity and Diameter

The eccentricity of a given node is defined as the longest of all the shortest

paths connecting it to the remaining nodes in the network. The diameter of a

network is given by the maximum shortest path distance within the network,

or the maximum of all per node eccentricity measures, and is representative

of the size of the network. In case of information flow, assuming a constant

transmission speed, a global eccentricity measure, given by the average of all

nodal eccentricity values, can therefore represent the average time it takes

for information to spread from one node to the remainder of the network.

Subsequently, the diameter is representative of an upper bound for the time

it may take for information to reach any node from any other node. Both

measures are calculated based on extreme values within the network structure

and are therefore susceptible to outliers or small perturbations.
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3.4. Small-World Networks

3.3.7 Betweenness Centrality

Betweenness centrality provides a measure of a node’s importance by counting

how many of all shortest paths, not starting or ending at that particular node,

pass through the node. A node s in a graph has BC(s) given by

BC(s) =
1

(|V | − 1)(|V | − 2)

∑

r,t:r 6=s 6=t

κrt(s)

κrt
, (3.7)

where κrt is the number of shortest paths from r to t and κrt(s) is the num-

ber that pass through s. The betweenness centrality of the network can be

characterised by the mean of BC(s) over all nodes. In case of multiple (n)

shortest paths having equal length, a fraction (1/n) will be assigned to each

node for each of the multiple paths passing through the node. The principle

of betweenness centrality was first published by Freeman in 1977 [54]. For a

recent analysis including the computational costs, see for example [77].

In a network with a flow of information or messages from node to node along

its edges, betweenness centrality is a measure which relates to the amount of

information passing through a certain node, assuming that information trav-

els along the shortest paths. In contrast to centrality measures like degree,

betweenness centrality considers the load of a node, instead of how well it is

connected, and therefore represents a measure of importance with respect to

network functionality. Consequently, a node with just two connections might

have a high betweenness centrality in a network, for example, if it connects

two communities of the network (see Figure 3.7).

3.4 Small-World Networks

Almost three decades after Travers and Milgram identified the small-world

phenomenon [149], Watts and Strogatz described the underlying principles of

small-world networks [169]. A network which exhibits the small world property

lies between completely random and completely ordered (lattice) networks. In

a completely random network the existence of an edge may be independent of

the nodal properties. An approach for generating such networks is described in

section 3.6.1. The lattice network on the other hand only connects nodes that

are considered close with each other. One can achieve such a network by, for

example, arranging nodes in a circle and adding edges between the neighbours

along its circumference.
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Figure 3.7: Sample graph with corresponding betweenness centrality values
of each node. Node a has the highest betweenness centrality value, as it is
the node that connects the two communities. If node a were eliminated, the
network structure would break down into two smaller networks.

Small world networks share properties of both random and ordered net-

works. They generally exhibit large local clustering like the lattice network,

combined with short path lengths found in random graphs. One way of gen-

erating networks with small world characteristics is by starting out from the

lattice network and rewiring local connections (edges connecting a node to its

neighbourhood) to form long-range connections (edges among nodes that are

not part of the same neighbourhood), in order to create short-cuts. Watts

and Strogatz [169] showed that the small world phenomenon already emerges

after rewiring only a small fraction of the edges and over the years it has been

shown that many real-world networks, for example those found in the brain

(see section 3.7), exhibit a small-world structure.

One of the attributes which make small-world networks an attractive net-

work model is their efficiency. Information transport can proceed very rapidly,

due to the short path lengths and the high clustering. Additionally this net-

work structure allows for a cost-efficient way of creating a network, allowing

large networks to keep up a high processing speed, with orders of magnitude

fewer edges [169]. Two ways to characterise the small-worldness of a network

is either to individually look at the clustering coefficient, characteristic path

length and efficiency (compared to random networks), or by using the small

world coefficient σ, introduced by Humphries and Gurney [67]. The small-

world coefficient is given by

σ =
Cnorm

λnorm
, (3.8)
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where Cnorm and λnorm are the observed network measures normalised by val-

ues taken from random realisations of the network.

3.5 Rich-Club Organisation

Another organisational principle focuses on the subnetwork consisting of nodes

with a large percentage of connections within the network (hubs), which are

densely inter-connected [180]. This subnetwork is “rich” in edges and is subse-

quently termed rich-club. In general the rich-club can be seen as a highly inter-

connected set of nodes which forms a backbone of the network structure [162]

and its network-theoretical importance was shown with respect to nodal spe-

cialisation, functional integration and resilience to attacks [35, 36, 97]. In order

to determine the rich-club members in a given graph G(V, E, W ), first nodes

are ranked according to some nodal richness coefficient r, which is usually set

to the nodal degree (weighted or unweighted). Subsequently a subnetwork

Gr0
(Vr>r0

, Er0
, Wr0

) is defined containing all nodes in the original graph with

a richness parameter greater than a given value r0, where Er0
is the remainder

of the edges E connecting all nodes Vr>r0
with weights Wr0

. In a next step,

a rich-club parameter is estimated, which is defined as the sum over Wr0
, di-

vided by the sum over the ‖Er0
‖ highest weights in the original graph, where

‖Er0
‖ defines the number of edges in Er0

[107]. In unweighted graphs on the

other hand, the rich-club parameter is equivalent to the edge density, i.e. the

number of existing edges divided by the maximum possible number of edges

in the subnetwork Gr0
[180]. This process is repeated for all possible values of

r0 and the set of all rich-club parameters should then be compared to those of

randomised versions of the observed networks [35], which can be generated, for

example, as described in the following section. A simple example of rich-club

organisation is shown in Figure 3.8.

After defining the rich-club within a network, edges can be categorised

depending on the connectivity profile [162]. In Figure 3.8 rich-club edges are

shown in gold. Edges that connect a non-rich-club member to a rich-club node

are defined as ‘feeder’ (red), which feed information to the rich-club. All other

edges are ‘local’. Similarly nodes may be classified as rich-club (gold), feeder

(red) and local (black) nodes.
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Figure 3.8: Sample graph with rich-club organisation. The set of the central
nodes (grey circle) form a rich-club, as they are densely inter-connected. Nodes
can subsequently be categorised as rich-club (gold), feeder (red) and local
(black) nodes.

3.6 Random Networks

Generating random graphs can be very useful for analysing network struc-

tures. They allow for a simple representation of complex networks which helps

to analyse properties and dynamics of networks in general. In particular, when

analysing complex networks, it is important to assess if the observed quanti-

ties are just random, or if there is some underlying process which shapes these

measures. Random realisations of networks may therefore provide data for

null hypotheses, for example whether a measure is simply random, and allows

to estimate the significance of a measure in the observed networks. Addition-

ally, one may use network measures on a random realisation of a network as

means of normalising the observed network measure. This enables a mean-

ingful comparisons across networks on an intra- and inter-subject level (see

chapter 4).

There are many methods for generating random surrogate networks from a

graph. The first binary random graph model was presented by Erdös-Rényi in

1959 [47] and will be discussed in more detail in section 3.6.1. Other models

have been proposed in order to recreate some aspects of observed networks,

37



3.6. Random Networks

such as degree distribution [96] (see section 3.6.2) or the small-world property

as described in section 3.4. Another set of random graphs based on the recre-

ation of properties of an observed network are called exponential random graph

models (ERGM). The user can define specific graph parameters, such as the

network measures described in section 3.3, and ERGM draw graphs randomly

from the distribution of all graphs which share these parameters (see [133]

for an application of ERGMs in relation to brain networks). These methods

describe static network models, i.e. the number of nodes (and edges) are pre-

defined and do not allow an easy incorporation of new nodes based on growth.

However, Barabàsi et al. [9] noted that real world networks incorporate new

nodes over time and created a network model based on evolutionary changes

over time. In their model, also referred to as preferential attachment model, a

new node nn is introduced to the network and connected to an existing node

ne based on a probability which is related to the degree of ne. One example of

such a network can be found when investigating citation networks for scientific

publications [9].

This section will focus on reviewing the basic properties of the Erdös-Rényi

model (ER) and the pairwise switching algorithm (PS), due to the simplicity

and historical significance of the former [103] and, according to Rubinov and

Sporns [122], the prevalence in the literature of the latter.

3.6.1 Erdös-Rényi

An ER random graph relies on the assumption that the existence of an edge is

independent of all node and edge properties. It can be generated, for example,

by specifying the total number of edges and then adding edges at random, until

the target number is reached. An alternative definition of ER graphs relates

to a probability p of an edge existing in a graph of n nodes. In this definition,

however, it is difficult to fix the total number of edges and subsequently the

density in the network. For this reason the former model will be referred to as

ER graph for the remainder of this work.

A basic property of the ER graph is the binomial degree distribution, which

represents the probability distribution of the nodal degree for each node over

the entire network. Unfortunately, unlike real-world networks, the ER model

does not generate hubs, where a few nodes have many more edges than the

average in the graph, due to the uniform probability of the edge assignment.

Another interesting property of the ER model is the emergence of a giant com-

ponent. When the average number of edges per node of the graph reaches one,
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a very large portion of the graph will be connected creating the so-called giant

component. In particular, with respect to information (or disease) transfer,

the giant component allows for an extensive spread.

3.6.2 Pairwise Switching

The generation of random realisations of a graph is often carried out while aim-

ing to preserve some of its network properties. In particular pairwise switching

of the edges generates random graphs while keeping the unweighted degree of

the nodes constant, thereby preserving aspects of the underlying graph struc-

ture [96, 117].

For pairwise switching, nodes r and s are picked randomly from V and

nodes t and u are chosen randomly from the neighbourhoods Nr and Ns re-

spectively. The edges rt and su are removed from E and ru and st are added if

the graph remains simple, i.e. fully connected without multiple edges between

any pair of nodes and without self-loops. For weighted graphs, it is possible

to switch the weights together with the edges [121]. In this case, although the

weighted degree distribution is not preserved, the average weighted degree and

the number of edges connected to each node remain constant. The principle

of pairwise switching is shown in Figure 3.9.

Figure 3.9: General principle of pairwise switching for generating random re-
alisations of a given network.

3.7 Network Analysis in Brains

There has been a rapid expansion in applications of network theory to a vari-

ety of scientific fields, enabling simple representations and analyses of complex
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systems. Viewing the human brain as a network, i.e. as regions/nodes con-

nected by structural pathways, originated at the end of the 19th century [172]

(for a recent review see for example [33]). However, neuroimaging applications

of network and graph theoretical techniques are comparatively recent (for an

overview see [138]). The nodes of a graph or network can represent brain

structures across a range of levels, from synapses to entire brain regions [21].

Once brain nodes are defined, the edge structure or connectivity between them

can model structural connectivity (axonal fibres or fibre-bundles) or functional

connectivity (based on statistical or causal associations among functional sig-

nals) [141].

Network theoretic analyses of brain imaging data increased after it was

shown that the brain exhibits small-world characteristics, combining local seg-

regation with global integration [15]. Further organisational principles have

since been characterised and analysed, such as rich-club organisation [8, 36,

163] and differences in hub organisation between species [86]. It has also been

proposed that network-based analyses may be used to reveal biomarkers for

neurodevelopmental and neurodegenerative diseases [62, 87, 165, 168]. In this

part, the challenge of defining nodal scales and edge weights in the human

brain are discussed, followed by a review of the literature describing brain

topology, the application of network measures to determining disease states,

the evolution of network metrics in the developing brain, as well as multi-scale

analyses in brain networks.

3.7.1 Nodal Scales

One of the challenges when applying network theory to brain image data is the

definition of nodes. Over the past few decades a variety of macroscopic defini-

tions of regions of interest were developed based on anatomical landmarks and

functional coherence (atlases such as Automated Anatomical Labeling [155])

or stochastic approaches that define regions based on criteria such as equal

region size [7, 59, 154].

The developing brain however is particularly challenging with respect to

a definition based on atlases due to developmental processes such as myelina-

tion and cortical folding [93], as described in section 2.1. Subsequently, some

pipelines developed to parcellate the adult human brain, such as Freesurfer,

may not work in the neonatal brain [58]. The following section reviews atlases

and random parcellation schemes with a focus on Poisson disk sampling.
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Atlases

In general, a brain atlas is a map of the human brain which divides it into re-

gions of interest. The most prominent was defined by Brodmann in 1909 [28],

which divides the brain into about 50 regions based on their cytoarchitecture.

Studying cytoarchitecture is traditionally an invasive process, however, current

research on identifying cytoarchitectonic units within the brain using MRI is

being conducted [120]. These analyses, though allowing for in-vivo examina-

tion, are limited by the spatial and temporal resolution of MRI sequences [120]

and therefore the inference of cytoarchitecture remains a challenge, especially

in very young subjects.

Another approach to define regions of interest in the brain is by using its

functional activation, which may be measured using functional MRI. One atlas

which is based on functional activation patterns was introduced by Tzourio-

Mazoyer et al. in 2002 [155]. In their work, they defined an Automated

Anatomical Labeling (AAL) approach to delineate 45 functionally coherent

regions of interest (ROIs) in each hemisphere using the underlying sulcation

patterns of the brain.

Various studies have used anatomical templates such as the AAL atlas to

investigate brain networks in typical and atypical development [17, 41, 52, 178].

However, most brain atlases are defined for adults and thus the mapping of

the considerable changes in the developing brain is problematic. Manually

segmenting MR images can be time consuming and lead to inter- and intra-

observer variability, which motivated the development of neonatal brain atlases

(see e.g. [89, 105]). However, there is a lack of consensus on which parcellation

scheme should be used [153].

Random Parcellations: Poisson disk sampling

The biological changes of the developing brain furthermore raises the funda-

mental question of whether the relative size and position of the regions in

the developing brain are equivalent to those defined on the adult brain [153].

Additionally, due to the incomplete sulcation in the developing brain (see sec-

tion 2.1), the difficulties in registration poses a limitation on using atlas based

segmentations in developmental studies [153]. These challenges and the before

mentioned lack of consensus on which parcellation scheme to use, motivates

the application of random parcellation schemes such as Poisson disk sampling.

Poisson disk sampling defines regions based on a distance threshold between

region centres and can be applied to any surface or volume [27]. The princi-
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ple for generating Poisson disk sampled regions in two dimensions is shown in

Figure 3.10.

b)

Figure 3.10: Principle of Poisson disk sampling in two dimensions. The surface
(a) is divided into approximately equal sized regions (g) by randomly picking a
first region centre (b). Subsequent region centres are placed with the condition
that they cannot be closer than a minimum distance (indicated by grey circles)
from all previously placed region centres (c-f). After all region centres are
placed all points of the surface are assigned to their closest region centre,
resulting in a random parcellation of the given surface (g).

In the brain, Poisson disk sampling can be applied to the grey matter

structures. All grey matter voxels are stored in a list and initially considered as

possible region centres. First a distance threshold rmin is defined and an initial

region centre c1 is randomly selected from the set of all grey matter voxels.

Each voxel i with a distance di
c1

< rmin to c1 is removed from the list of possible

region centres. The next region centre is then randomly selected from the set of

voxels {j} with rmin < dj
c1

< 2 rmin. This process is repeated until there are no

voxels in the list of possible region centres remaining. Subsequently, each voxel

in the grey matter structure is assigned to its closest region centre, resulting

in a random parcellation of the grey matter volume into approximately equal

sized regions. The framework is illustrated in Figure 3.11.

One benefit of this parcellation scheme lies in the fact that it does not rely

on anatomical features or landmarks and can thus be easily applied to neona-

tal grey matter structures, where the sulcation is incomplete and landmarks

are difficult to determine. However, with Poisson disk sampling, the resulting

number of nodes may vary due to the random nature of the approach. Fig-

ure 3.12 shows a histogram of the number of region variation for N = 100

repetitions of a single grey matter mask parcellated with a target number of

500 regions.
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Figure 3.11: Framework of applying Poisson disk sampling to the grey matter
structures of the human brain. The process of generating random parcellations
is repeated N times.

Figure 3.12: Histogram of Poisson disk sampling, repeated 100 times on the
same grey matter mask with a target number of 500 regions. This shows the
variation in the total number of regions.

Other random parcellation methods have been proposed. Hagmann et

al. [59] used a similar two step approach, where they randomly choose a voxel

on the grey/white-matter boundary and assign its nearest neighbours (voxels)

to the first region of interest until it reaches a specified size. This procedure

is repeated with region centres close to the previously defined ROIs until the

entire boundary is assigned. In a second step they reassign all voxels to their

closest region centres, which are given by their centre of mass. A different ap-

proach was presented by Tymofiyeva et al. [153], where they treat the brain as

a sphere, parcellate the sphere into equally sized regions and apply the mask to

the cortex. This approach however does not distinguish between hemispheres

and may lead to regions defined across hemispheres, meaning it is possible for

a single region to belong both to the left and right hemisphere of the brain.
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3.7.2 Edge weights

Networks may have weights assigned to their edges, where the weight cor-

responds to the strength of the connection. There are a variety of methods

with which the weights of an edge in the human brain can be determined,

however, there is no consensus on which approach is the most appropriate.

Weights in structural brain networks are associated with, for example, frac-

tional anisotropy [87, 157, 161], fibre count [59, 87, 157] or measurements of

myelin content [161], whereas functional networks may use correlations be-

tween regions as weights [165].

These measurements, however, are difficult to interpret when using proba-

bilistic tractography. Two regions within the brain may be connected by two

streamlines inferred from probabilistic tractography with different probabilities

(see section 2.2.2) [20]. The question that arises is how the individual stream-

lines should be weighted, considering that the low probability streamline may

be erroneous. One way to incorporate the probability information from the

probabilistic tractography with biological features, such as anisotropy, was pro-

posed by Robinson et al. [119]. Applying probabilistic tractography between

two regions in the brain results in a set of sampled voxels. Subsequently each

sampled voxel’s anisotropy in the direction of the streamline can be weighted

by the number of times the voxel was sampled, divided by the total number

of samples. The sum of all the measurements in the voxels that are traversed

when inferring a tract can then be assigned as weight of the tract. This ap-

proach for creating weights in networks is used in the remainder of this work.

3.7.3 Degree distribution and hubs

Networks can be assessed according to their degree distribution - a histogram

of the number of connections each node in the network has [10]. In particular

in brain networks it has been shown that this degree distribution follows a

heavy-tail pattern [59, 159], as illustrated in Figure 3.13.

This pattern emerges due to the existence of a small number of nodes

which are integrated in the network with a relatively large proportion of edges

(hubs). In general, hubs within a network may be identified using a variety of

network theoretical measures beyond nodal degree, such as high betweenness

centrality and short characteristic path-length [14, 139, 160, 161]. It has to be

noted that no single measure may be sufficient for defining network hubs [158]

and subsequently a combination of multiple measures may be used to define a
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Figure 3.13: Heavy-tail degree distribution of a structural network in a prema-
ture baby scanned at 29 weeks post menstrual age. To define the regions Pois-
son disk sampling was used (see section 3.7.1; target: 500 regions). The heavy-
tail on the right side indicates that there is a small number of regions/nodes
with a large number of edges connecting them to the rest of the network (hubs).

hub-score (see for example [161]).

Network hubs have been of key interest while investigating brain networks,

in particular with respect to their importance to network architecture and

function (for a recent review see [158]). Sporns et al. [139], for example,

analysed structural and functional networks in both cat and macaque monkey

networks and related the structural role of hubs to their functional role. Their

work suggests that these hubs play a central part in the overall brain network

organisation and function, in particular with respect to local segregation and

global integration.

3.7.4 Rich-Club Organisation

The brain is thought to conserve wiring costs as an important selection pres-

sure [29]. The formation of highly connected rich-club nodes, which represents

a high-cost architectural feature [36, 148], may seem surprising at first, how-

ever, the cost has to be offset against its cognitive value [30, 36]. It has been

suggested that rich-club organisation has important consequences for efficient

communication and functional integration across the brain [148, 157, 158].

Rich-club organisation has been shown to exist across species, starting

with relatively simple brain architectures as found in C. elegans [148]. Further

studies have been conducted in cat [39] and macaque monkey [63] brains with

similar results, suggesting that the rich-club organisation is a general architec-

tural principle for brain network organisation. Moreover van den Heuvel and

Sporns [157] showed that the identification of the rich-club was possible in hu-
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man structural brain networks on two scales (82 and 1170 regions) suggesting

that the organisational principle is retained across scales.

3.7.5 Small-World Networks

The small-world phenomenon has become an interesting research topic in the

human brain. The human brain is likely to exhibit small-world characteristics,

as it is a complex network on multiple levels and over time, supports segregated

and distributed information processing and has most likely evolved to maximise

efficiency while minimise wiring cost [15]. In a study applying small-world

topology to a neural network machine learning algorithm, it has also been

shown that small-world networks allow for high rates of information processing

and learning [132].

Structural networks. In 1998, Watts and Strogatz investigated the net-

work structure of C. elegans, the first brain network to be fully mapped. By

calculating the clustering coefficient and characteristic path length of this net-

work, they determined that the C. elegans’ brain network exhibited small-world

characteristics [169]. Similar experiments were conducted in the brain of the

macaque and the cat, showing small world architecture [65]. The small-world

topology of the human brain was further investigated by Hagmann et al. [59] in

a diffusion spectrum study. They revealed small-world structures in the human

brain, as well as the existence of central hubs and a structural core [59, 60].

Functional networks. Various studies have investigated the small-world

architecture of functional connectivity in the human brain. These properties

were shown, for example, by Salvador et al. [124]. In a fMRI study with 90

cortical regions, they showed that functional human resting state networks

exhibit small-world topology. Similar results have been shown to be present

at the voxel level [159]. Overall, the small-world architecture of human brain

networks allows simultaneous segregated and distributed information process-

ing, while making the functional network more resilient to targeted attacks on

their hubs, i.e. their underlying grey matter regions [1].

3.7.6 Injury and Disease

Head injuries are considered a major health issue [73] and subsequently it would

be beneficial to understand the underlying effects of these types of injuries on

brain networks. One type of head injury that can affect network function in

the brain is traumatic brain injury (TBI; see for example [131]). Pandit et
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al. [109] studied the effect of TBI on network topology in the human brain.

They showed that the functional networks of TBI patients shift away from a

small-world configuration through an increase in average path-lengths and no

significant change in clustering coefficients. Moreover they suggest, by using

dMRI data, that TBI and related traumatic axonal injuries are related to the

impairment of long-range connections. Fagerholm et al. [49] further showed

that the nodes impaired by traumatic axonal injuries are central hubs within

the brain networks and that betweenness centrality of these nodes may be

affected due to (partial) disconnections.

In order to improve diagnoses of diseases it is highly desirable to iden-

tify suitable biomarkers. In this context, network theory has been applied in

studies for conditions such as Alzheimer’s disease (AD) and attention deficit

hyperactivity disorder (ADHD), where most studies focus on functional brain

networks [14]. In general, the most prominent candidate as a biomarker seems

to be the small-world coefficient and the correspondingly related network mea-

sures, such as clustering coefficient, characteristic path length and efficiency.

The first study in children of pathology-related variations in brain network

topology considering ADHD was presented by Wang et al. [168]. They investi-

gated 90-node networks generated using the AAL atlas (see section 3.7.1; [155])

and the functional connectivity matrices were symmetrised and binarised over

a wide variety of thresholds. They investigated small-world architecture and

efficiency in ADHD patients compared to a control group and suggested that

the network structure becomes more lattice-like by increasing the local effi-

ciency. This supports the idea of an increased disease tolerance, which can be

interpreted as a defence mechanism [168]. Despite these changes the overall

degree distribution remained the same and the small-world topology in ADHD

patients, even though reduced, did not vanish.

In comparison with other diseases, research on AD is more prevalent. Su-

pekar et al. [144] utilised a 90-node undirected functional network, based on

regions defined by anatomical templates, in order to test the effects of AD on

the small-world characteristics and efficiency of the network. They found that

the clustering coefficient of the functional network provided a good biomarker,

as patients showed a general decrease compared to the control group, while the

characteristic path length stayed roughly the same, resulting in a decreased

small-world coefficient [144]. Lo et al. [87], on the other hand, investigated the

structural networks of AD patients. They constructed networks with 78 nodes

and connections were considered to be present, if fibre bundles either passed
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through or ended in one of these regions. Weight was assigned to each connec-

tion by multiplying the number of fibres with the mean fractional anisotropy

along the way. They showed that both AD and control networks exhibit promi-

nent small-world topologies. However, due to the increased characteristic path

length, the small-world coefficient and global efficiency of the AD patients were

lower than in the control group, while the local efficiency was increased [87].

3.7.7 Human Brain Development

There are relatively few studies of the developing brain, as they face chal-

lenges, such as poor data quality due to movement, small head sizes and lack

of a standard scheme for parcellating the cortex (see section 3.7.1). Nonethe-

less the network analysis of the developing brain is of great interest as it is

clinically and neuroscientifically important to characterise the “normal” devel-

opmental trajectory. This will ultimately help with the detection and diagnosis

of pathological development and diseases at an early stage. For a recent review

on the development of brain networks see [151].

In general it has been shown that the developing human brain shows in-

teresting characteristics, such as an asymmetry between the left and right

hemisphere in respect to their network measures, as well as differences related

to the sex of the subject [41, 178]. The results for the latter are still incon-

clusive as there are only a few studies focusing on that particular aspect, but

studies suggest that females have a higher global and regional efficiency, as well

as a higher clustering coefficient, resulting in a higher small-world coefficient

compared to males [41, 178].

One interesting area of analysis is the determination of the network struc-

ture of the cortical network. However, the exact network type of the brain

has not been determined yet. Nonetheless, studies suggest that the degree

distribution follows either a power-law decay [141], a power-law decay with

a sharp cut-off [178] or an exponential decay [59], allowing for small-world

characteristics and resilience to random failure.

Community structure. It has been suggested that brain networks de-

velop from a local to distributed organisation [51, 178]. Long-distance connec-

tions are generally rare in biological networks [141]. However, they allow for

short-cuts within the network and are essential for efficient information trans-

port. Starting from a local anatomical network, the architecture becomes more

distributed during development, evolving from a more segregated to a more

integrated network structure [141, 178]. While structural modules remain com-
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posed of spatially adjacent regions, their interconnectivity with distant regions

strengthens with the maturation of long fibre paths [178]. This is most likely

due to the change of connection strength during the myelination process, as it

has been indicated by post-mortem studies that there is no new fibre creation

after birth [178].

It has also been suggested that the structural modules of brain networks

do not undergo major reorganisation after two years of age [61]. However,

Dennis et al. [41] suggested that the structural clustering coefficient decreases

with age. Similar to the structural network analyses, it has been suggested

that there are no major changes in functional modularity over the range from

8-25 years [52]. Further studies and better community structure finding algo-

rithms are necessary in order to reveal the general trend during development,

in particular in the early stages.

Rich-Club Organisation. A first investigation of the development of the

rich-club organisation in the developing human brain was presented by Ball

et al. [8]. They showed that the rich-club already existed in premature born

babies at 30 weeks post menstrual age and that the connections between the

members of the rich-club were already present at that time. This suggests that

rich-club organisation is established before normal birth. On the other hand,

feeder and local connections were still developing.

Small-World Networks. Studies agree on the existence of small-world

topology in neural networks over all developmental stages [51, 52, 178]. How-

ever, it has been shown that the efficiency increases with age [52, 178]. This is

most likely due to the myelination process within the brain, which allows the

impulse propagation speed to increase. On the other hand, the structural clus-

tering coefficient appears to decrease with age [61]. Combining various studies,

it seems that the small-world phenomenon in the human brain becomes more

pronounced up to an age of two [178] and then decreases at later developmental

stages of life [41, 61], suggesting a plateau during development. These results

agree with the determined cost efficiency of the studied networks, which seems

to reach its most efficient point at the age of two [52].

3.7.8 Multi-scale analysis

This work distinguishes between the mapping of the connectome over multi-

ple levels such as micro- and macroscopic scales as discussed by Leergaard et

al. [81], and the multi-scale analysis based on varying the number of regions

defined over grey matter as discussed in section 3.7.1. In most of the previously
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mentioned studies, networks are defined over a single scale, by using for ex-

ample an atlas template. However, the resulting networks are strongly depen-

dent on the number of nodes/regions over which they are defined [153], which

makes comparisons across studies difficult. In particular, it has been shown

that network measures vary according to the networks scale, which poses chal-

lenges for comparisons within a study that uses various scales [127, 164, 179]

or across different studies that use different atlases with varying number of re-

gions [46, 99, 127, 146]. Figure 3.14 illustrates this dependence for a commonly

used network measure (characteristic path-length) in weighted brain networks

of a single preterm neonate (see section 2.3). Most recent studies acknowl-

edge this dependence, however, a consensus on how to address this challenge

is yet to be established, necessitating further investigation in the context of

neuroimaging studies of a range of cohorts. Network normalisation has been

proposed to alleviate this challenge and will be further discussed in chapter 4.

Figure 3.14: Dependence of the characteristic path-length on the number of
regions in weighted brain networks of a single neonate (33 weeks GA). Left:
Sets of different parcellations of the same subject with around 100, 250 and
500 regions. Right: Detailed view around 500 regions, with a fitted linear
regression and 95% confidence intervals.

The application of nodal multi-scale approaches has also become of interest.

Cammoun et al. [31] introduce a multi-scale framework using an atlas based

segmentation of the grey matter with 66 regions and subdivided these regions

further into four additional sets of about 125, 250, 500 and 1000 regions with

approximately equal region size. By doing so they aimed to define represen-

tative connectivity matrices over multiple scales, however, they did not inves-

tigate changes of network measures as introduced in section 3.3. Additional

studies have compared networks defined over multiple scales in both structural

and functional data in adults and the developing brain [53, 157, 176, 179].

These studies mainly investigate whether the conclusions based on network
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measures are stable across scales and emphasise that a comparison of results

across studies should be made with reference to scale.

Other multi-scale approaches applied to the macroscopic level include, for

example, a wavelet representation of a line graph [76], a graph where the role of

edges and vertices are switched, in order to find a representation for each vertex

in form of a multi-scale descriptor. In this case however, the term multi-scale

is based on the effect of bandpass filters applied to the wavelet transformed

line graph and thus not on the definition of the number of regions. Another

definition in the framework of community detection stems from the use of

Markov random walkers [25], which have an intrinsic time scale after which

the walker stops. Betzel et al. [25] define multi-scale as variation of random

walker time scales in order to separate communities on local (small) and global

(large) scales within a network.
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Chapter 4

Random Parcellations for

Network Analysis

4.1 Motivation

Network analysis of brain imaging data typically begins by defining a set of

regions within the brain, which serve as nodes. A variety of approaches may be

used to define these regions, as described in section 3.7.1. In case of structural

connectivity, the corresponding edges in the graph can be determined and

possibly weighted based on tractography analyses of diffusion MRI (dMRI)

data [44, 60, 140].

This work applies methods for the analysis of structural connectivity in the

developing brain. This field of research is of particular interest, as it has been

shown that preterm birth is associated with adverse neurocognitive outcome

in later life (see section 2.1.1). Understanding the development and forma-

tion of structural connectivity after preterm birth is therefore an important

goal, however, there are particular challenges in structural network analyses

for neonatal groups. The acquisition of high quality dMRI data in neonates

is difficult, because their brain sizes are much smaller than in an adult and

additional care has to be taken for temperature maintenance, monitoring and

immobilisation to reduce motion [147]. A particular challenge lies in the ab-

sence of a standardised anatomical delineation, which can be used to define

network nodes (see section 3.7.1). The lack of such a standard is partly related

to the significant morphological changes that the neonatal brain undergoes

(see section 2.1). This makes the use of randomly generated parcellations as

52



4.1. Motivation

described in section 3.7.1 an attractive alternative, as these approaches rely

on fewer assumptions regarding the presence and boundaries of functionally

coherent regions [7, 8, 151, 152].

4.1.1 Poisson disk sampling

A common criticism of applying random parcellation schemes to brain imaging

data is the potential reduction of functional coherence within a defined region.

This is assumed to be present, for example, in the Automated Anatomical

Labeling (AAL) atlas (see section 3.7.1). To motivate the analysis of brain data

using random parcellations, a comparison of global structural brain network

measures obtained using Poisson disk sampling (see section 3.7.1) and using

the AAL was carried out.

In a preparatory analysis, a set of global network measures calculated for

networks generated using Poisson disk sampling were compared with those

generated using the AAL atlas of the cortex. Figure 4.1 shows the comparison

of all network measures evaluated for Poisson disk sampling and for AAL.

Each data point represents a global network measure either generated using

Poisson disk sampling (green) or AAL (blue). Considering that AAL defines

78 cortical regions (39 per hemisphere), it was ensured that the parcellations

obtained using Poisson disk sampling generated comparable numbers of regions

and investigated scales between 68 and 88 regions.

Figure 4.1: Comparison of global network measures generated using Poisson
disk sampling (green) and AAL (blue). The results show that global network
measures calculated from AAL parcellations fall in the same range as those
calculated from Poisson disk sampled parcellations.
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Figure 4.1 shows that networks created using Poisson disk sampling show

similar global characteristics to those created using AAL. The results created

using Poisson disk sampling fluctuate due to the stochastic nature of the ap-

proach and only one parcellation has been used per scan at each scale. By

analysing random parcellations over a range of scales around the atlas scale,

it was possible to demonstrate the comparability of the network measures.

A subsequent comparison of the results at the atlas scale (78 nodes) using a

paired t-test for each measure and all subjects shows p-values of p > 0.1 for

all global network measures, indicating the comparability of global network

measures obtained from both parcellation schemes. A more extensive analysis

could use multiple random parcellations per scan at each scale to characterise

fluctuations of the Poisson disk sampling more fully.

Using a set of 16 brain networks, five random parcellations per subject at

the AAL scale are compared with results generated using the atlas, as shown in

Figure 4.2. Values calculated from Poisson disk sampled parcellations broadly

agree with those calculated from AAL parcellations.

Figure 4.2: Comparison of global network measures generated using multiple
instances of Poisson disk sampling (PDS) per subject at the atlas scale and the
AAL atlas. Global network measures calculated using Poisson disk sampling
broadly agree with the measures calculated from AAL parcellations.

The comparison of the results using a paired t-test for each measure and

all subjects shows p-values of p ≥ 0.1 for all global network measures, except

for betweenness centrality (p < 0.01). This could be explained due to changes

in betweenness centrality that could occur if the definition of regions does not
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correspond with the underlying connectivity profile, as illustrated in Figure 4.3.

These changes may result in a smaller betweenness centrality value as shown

in Figure 4.2.

Figure 4.3: Small changes in the definition of the regions of interest (top) can
lead to different topology of the estimated network (bottom). Reassigning the
edge shown in green causes a reduction of global betweenness centrality.

The results shown in Figure 4.2 allow the use of two-sample t-tests for

each subject with respect to the results generated using AAL and Poisson disk

sampled parcellations. Table 4.1 summarises the results of the paired t-tests

into number of significant and not significant tests. Non-significant results

indicate that there is no benefit of using an atlas based parcellation over the

use of Poisson disk sampled parcellation.

Table 4.1: Number of significant t-tests when comparing each subject’s global
network measure based on its’ AAL parcellation to the distribution estimated
using five Poisson disk sampled parcellations.

BC k C Q λ E ecc dia T
not significant 7 10 10 7 13 14 15 16 10

significant 9 6 6 9 3 2 1 0 6

The results show that for each network measure most comparisons on the

subject level are not significant, except for betweenness centrality (BC) and

modularity (Q). Only five random parcellations were used to represent the

distribution of measures and subsequently the distribution may not be well es-

timated. Additional network measures generated using Poisson disk sampled

parcellations could be used to achieve a better estimate. In general, generating

multiple parcellations for network analysis has to be set off against the com-

putational costs and needs to be guided by the research question at hand. In
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case of extracting a single network measure for each subject at a given scale,

multiple parcellations are recommended to ensure that the obtained measure

is an acceptable representative of the distribution generated by random par-

cellations.

Importantly, Poisson disk sampling allows for a relatively easy generation

of brain parcellations at arbitrary scales, while still being able to capture global

network properties at the atlas scale. This furthermore allows comparisons of

networks generated at different scales. When using probabilistic tractogra-

phy however, higher scales can lead to an increase of erroneous connections.

Recent papers, which explore networks over multiple scales as described in

section 3.7.8, investigate scales with more than 1000 nodes in adult data (see

for example [53, 157, 179]). However, considering the small brain sizes and in-

complete myelination of the subjects of interest in this work, a middle ground

between the AAL atlas scale and the highest scales in the literature was deemed

empirically to be most suitable. Under these considerations, the work in this

chapter was carried out using around 500 brain regions per parcellation.

4.1.2 Network Measures: Normalisation and Correla-

tions

It has been shown that the number of nodes in a parcellation influences the re-

sulting network measures of the brain and subsequently a comparison between

studies may be influenced by the definition of nodal scales (see section 3.7.8).

Network normalisation may be utilised to compare subjects or groups in a

manner which is assumed to be less biased by the number of nodes on which

a graph is defined. Such an approach can normalise a measure m(G) for an

observed graph G against the value of m(G′), where a graph G′ is generated

from G by randomly perturbing its edge structure and/or its edge weights.

Although these randomised networks may not represent physiologically plau-

sible networks, their network measures act as a reference point for the observed

measure m(G). This chapter evaluates the suitability of different normalisation

approaches, including established methods, and quantifies their effectiveness

over a range of around 470 − 530 nodes/regions. The range of regions was a

result of using Poisson disk sampling to generate parcellations with a target

number of 500 regions per parcellation (see Figure 3.12). In this chapter it

is also shown that established random graph approaches that rely on rewiring

can lead to unsuitable normalisations for measures such as characteristic path-

length by considering the non-linear correlation between the number of regions
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and the network measures of interest.

The aim of this work is to obtain a single measure for a structural network,

which is effectively sampled through a variety of parcellations with different

numbers of regions generated randomly using Poisson disk sampling. In con-

trast to previous studies [164], which state the dependence of the results on

the number of nodes and the degree in network analyses, this work tries to

solve the number of node dependency for the case of Poisson disk sampling,

by generating a random network which shares some properties of each sample.

This approach is in contrast to the comparison of independently generated net-

works with the same topology at multiple scales, as the topology of observed

networks may change, when varying the scale [164].

Furthermore, associations have been shown among many common network

measures obtained from brain data, and therefore they may have overlapping

representations of the underlying network topology [71, 85]. This motivates

the definition of a maximal set of independent network measures in order to

describe an observed network. The majority of analyses of network measure

inter-dependence rely on linear correlation (see for example [88]). However,

some of the analytic solutions for network measures in binarised networks ex-

hibit non-linear relationships and it has been suggested that the inter-measure

relationships for weighted networks are also non-linear [85].

In order to determine a meaningful subset of measures, the non-linear cor-

relations among the network measures themselves is investigated and strong

associations among a set of commonly used network measures are confirmed.

Based on these results, a compact set of network measures is propsed to char-

acterise brain development. This chapter concludes by validating the proposed

method by applying it in an investigation of the change of network measures

over time in a serial dMRI dataset of 28 premature neonates.

4.2 Methods and Material

4.2.1 Subject and Image Data

Multiple random parcellations of each cortex of the preterm cohort, as de-

scribed in section 2.3, were obtained at both time points using Poisson disk

sampling (see section 3.7.1). The use of a probabilistic parcellation method is

well motivated as an established number of brain regions in neonatal network

analyses is not determined. For all parcellations, a probabilistic diffusion trac-
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tography algorithm (ProbtrackX [23, 119]) was applied in order to generate

structural networks (see section 2.2.2). An edge between a pair of regions in

the structural networks was assumed to be present if at least one streamline

reached a target region from a source region. Streamlines were excluded if they

left the brain mask, entered voxels containing cerebrospinal fluid or exceeded

a curvature threshold.

Each edge was weighted by the average of the integrated anisotropy along

the streamlines connecting the two regions [119] (see secton 3.7.2). In general,

this approach returns a directed graph without multiple edges and/or self-

loops, which is then symmetrised. To remove the direction dependence between

two nodes r and s, the mean of their connection weights w′ = (wrs + wsr)/2 is

assigned to both edges, creating a weighted and undirected graph.

4.2.2 Network randomisation

This section summarises the methods used to generate random networks in this

chapter, based on methods to determine the edge structure and edge weights.

Edge structure

In the following, two established algorithms to create random surrogate net-

works for comparison are investigated, using either an Erdös-Rényi model

(ER) [47] or pairwise switching of the edges (PS) [96], an algorithm which keeps

the number of edges connecting each node constant (see section 3.6). Keeping

the edge structure without alteration will be referred to as ’edge preserving’

(EP). The principle of “altering” the edge structure during randomisation is

shown in Figure 4.4.

Weight assignment

As this work is based on weighted graphs, it is necessary to define methods for

assigning weights to the edges of a randomised graph derived from an observed

graph. The original weights set (OW) may be redistributed naturally in case of

PS and ER by carrying them along with the edges [121], or randomly permuted

for EP [107]. In case of PS the switching of edges can also be restricted by

preserving individual weighted degrees (WDP). A switch in the PS algorithm

is then only executed if the resulting switch will preserve the weighted degree

of the nodes involved. In order to improve the amount of randomisation using
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Figure 4.4: General principle of the three possible edge structure adjustment
methods used to generate randomised realisations from an observed network
G. In case of EP, the randomisation step is solely due to the randomisation of
the edge weights.

a weighted degree preserving pairwise switching scheme, an alteration of up to

5% of the original weighted degree is permitted.

Weights are also drawn uniformly (UNI) from the interval (0, wmax], where

wmax is the maximum weight in the original graph. Finally weights are drawn

at random from the weight set calculated from the shortest path distances

between all node pairs in the original graph, which are calculated using the

Dijkstra algorithm (D) (see section 3.2). For the last method, distances along

each edge {ij} may be represented by 1/wij [121]. The resulting shortest

distances between all node pairs are then converted back to weights, again as

reciprocals, to generate a complete weighted graph matrix. The elements of

this matrix are randomly drawn for assignment to the randomised version of

the graph. The abbreviations for all the network randomisation schemes used

are summarised in Table 4.2.

Table 4.2: Abbreviations of the random network generation schemes used.
Original Uniform Disjkstra Weighted nodal
weights degree preserving

Pairwise switching PS-OW PS-UNI PS-D PS-WDP
Erdös-Rényi ER-OW ER-UNI ER-D

Edge preserving EP-OW EP-UNI EP-D
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4.2.3 Network measures

This study uses global network measures commonly thought to represent lo-

cal segregation, global integration and the prevalence of important nodes (see

chapter 3). Table 4.3 broadly subdivides the measures investigated into these

categories. All measures were calculated using the Brain Connectivity Tool-

box 1.

Table 4.3: Categories of investigated network measures.
Category Measure
Local segregation Clustering coefficient (C), Transitivity (T)
Global integration Charactersitic path-lenth (λ), Efficiency (E)

Diameter (dia), Degree (k)
Node importance Betweenness centrality (BC)

4.2.4 Graph normalisation

The presented methods normalise a measure m(G) on a graph G against the

value of m(G′), where G′ is obtained by randomly perturbing the structure

of G, modifying its edge structure and/or edge weights, as described above.

These randomised networks may be seen as a reference point that can be used

to assess the significance of network measures obtained from observed data

according to their departure from this point. The normalisation framework is

schematically illustrated in Figure 4.5.

4.2.5 Measure correlations

Previous analyses have focused only on linear correlation [85], however, in order

to allow for non-linear correlations Spearman’s rank correlation coefficient is

used. In addition, the inter-measure correlation before and after normalising

the network measures is assessed to see the effect of the normalisation. This

helps to characterise how the dependence on the number of regions affects the

observed inter-measure correlations.
1BCT [121], http://www.brain-connectivity-toolbox.net
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Figure 4.5: Processing pipeline for removing the number of region dependence
for one subject. The normalisation of a network measure m(G) for a particular
parcellation may be carried out using multiple randomisations of the network
it defines. This is then repeated for all the parcellations for the subject.

4.3 Results

4.3.1 Region dependence of network measures

The performance of the different normalisation schemes, each comprising a

method for modifying the edge structure and a method for assigning weights

(see Table 4.2), is assessed in a series of experiments. Using Spearman’s rank

correlation coefficient, the correlation of each measure with the number of re-

gions is calculated for parcellations around 500 regions (target: 500; range:

470 − 530) in eight of the subjects (mean age at scan: 30.5 ± 1.5 weeks PMA).

The normalisation process was repeated ten times and the result for each pro-

cess were recorded. The average correlation coefficients for all measures anal-

ysed for all randomisation combinations using eight subjects with 100 networks

each are given in Table 4.4.

The normalisation schemes which draw weights from a uniform distribu-

tion between zero and the maximum weight of the original matrix performed

generally well, compared to the other weight assigning methods. In particular,

for clustering coefficient and characteristic path-length, the uniform weight

assignment out-performed the commonly used ER-OW and PS-OW schemes.

The results suggest that preserving the edges, while drawing weights from
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Table 4.4: Spearman rank correlation coefficient of measures with the number
of regions. Bold numbers mark the correlation coefficient closest to zero, indi-
cating the greatest reduction of the correlation between network measure and
number of regions.

BC k C λ E dia T

Before 0.90 0.08 -0.66 0.57 -0.62 0.10 -0.59
OW 0.44 0.06 0.60 0.30 -0.33 0.04 0.64

ER UNI 0.53 -0.08 0.18 0.12 -0.11 0.06 0.18
D 0.21 0.43 0.59 -0.16 0.26 -0.03 0.60

OW 0.36 0.06 0.62 0.34 -0.40 -0.01 0.67
WDP -0.63 0.08 -0.67 0.57 -0.63 -0.60 0.15

PS UNI 0.49 -0.08 0.08 0.11 -0.10 0.04 0.09
D 0.19 0.42 0.63 -0.19 0.31 -0.06 0.62

OW 0.09 0.05 -0.08 0.15 -0.19 -0.04 0.14
EP UNI 0.29 -0.08 -0.08 0.08 -0.08 0.01 -0.07

D 0.00 0.43 0.40 -0.32 0.40 -0.10 0.39

a uniform distribution between zero and the maximum weight of the original

graph (EP-UNI) achieved, on average, the greatest reduction in correlation of

the measures with the number of regions. Further analyses therefore focuses

on randomisation schemes based on uniformly drawn weights, while preserving

the edge structure. The normalisation scheme was applied to a serial dMRI

dataset of 28 subjects with 100 parcellations at a target number of 500 regions

each by generating one random realisation of the observed network. Repeating

the normalisation multiple times with varying random graphs did not yield

major improvements.

Using the EP-UNI scheme, the correlation of network measures with fur-

ther properties of the networks, the number of edges and the network density

(defined as the ratio of number of existing edges to the number of possible

edges), were assessed. Spearman’s rank correlation coefficient was calculated

for all subjects and for each measure and subsequently averaged over all sub-

jects. The results are given in Table 4.5 and show a substantial reduction in

correlation between all network measures and numbers of edges (equivalent

to 66 ± 23%), as well as network density (equivalent to 76 ± 14%), further

underlining the potential of the proposed approach.

Additionally, a breakdown threshold was estimated, below which the nor-

malisation approach does not yield major improvements, starting from around

500 nodes. To do so, one subject was parcellated 100 times over a range

of around 100 − 530 regions (steps of five, with one repetition at each step).

Subsequently, a quality factor q was assessed. The quality factor was
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Table 4.5: Average Spearman rank correlation coefficient of measures with the
number of edges and with network density. The average was calculated over 28
subjects at two time points with 100 networks each for all measures analysed
using EP-UNI.

Number of Edges Density
Before After Before After

BC -0.80 0.29 0.25 -0.13
k 0.52 -0.09 0.60 0.10
C -0.50 -0.08 0.55 0.11
λ 0.26 0.09 -0.68 -0.11
E -0.31 0.09 0.77 0.10

dia 0.04 0.04 -0.18 -0.06
T -0.44 -0.10 0.59 0.08

defined as

q = 1 − ‖corrn‖/‖corrr‖,

where ‖corrr‖ and ‖corrn‖ are the absolute values of the correlation before and

after normalisation, respectively. If the correlation after normalisation reaches

zero, the quality factor reaches 1, whereas if there is no change in correlation

after normalisation, the quality factor will be 0.

Number of regions were estimated for which the quality factors were below

values in the range of q ∈ [0, 1] for each measure. The results are shown in

Figure 4.6. In case of a quality factor of q = 0.5, the number of regions at
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
um

be
r 

of
 r

eg
io

ns

100

200

300

400

500
BC
k
C
λ

E
T
dia

Figure 4.6: Number of regions estimate at which the normalisation scheme
breaks down, depending on the quality factor. In the graph 500 regions means
no improvement beyond the quality factor.

which the normalisation scheme breaks down, calculated as the average over

all measures, was determined to be 400 regions. In case of network degree, it

should be noted that there is only a small improvement after normalisation,

as indicated in Table 4.4.
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4.3.2 Inter-measure correlations

In order to determine a useful set of network measures to help characterise

changes in the developing brain, correlations among the measures of all sub-

jects were verified by calculating the Spearman rank correlation coefficient

between each pair of measures. To assess the effect of the number of region de-

pendence, the data set was analysed before and after applying normalisation,

using the EP-UNI scheme. Group-wise correlation coefficients are summarised

by calculating the mean over all subjects. The results are given in Table 4.6.

Standard deviations before and after normalisation were on average below 0.1.

Table 4.6: Average inter-measure correlations before (top) and after (bottom)
the normalisation, where the average was taken over 28 subjects at two time
points with 100 networks each using the EP-UNI scheme.

Before k C λ E T dia
BC −0.8 −0.6 0.8 −0.7 −0.6 0.7

k 0.9 −1.0 1.0 0.9 −0.9
C −0.9 0.9 1.0 −0.8

λ −1.0 −0.9 0.9
E 0.9 −0.9

T −0.8

After k C λ E T dia
BC −0.1 −0.1 0.1 −0.1 −0.1 0.1

k 1.0 −1.0 1.0 1.0 −0.4
C −1.0 1.0 1.0 −0.4

λ −1.0 −1.0 0.5
E 1.0 −0.5

T −0.4

These results show that the correlation among the measures is high be-

fore normalisation. After normalisation the inter-measure correlation between

degree, clustering coefficient, characteristic path-length, efficiency and transi-

tivity increases to values close to ±1.0 in each case. However the correlation

of betweenness centrality and diameter with all other measures decreased, in-

dicating that both measures genuinely represent contrasting aspects of the

network topology. The general trends between pairs of measures before and

after normalisation are shown in Figure 4.7.

In general, these results suggest that commonly used measures in the lit-

erature provide overlapping information on the topological features of brain

networks. Furthermore, based on the trends in Figure 4.7, this analysis shows

64



4.3. Results

Figure 4.7: Plots of pairs of measures taken on all networks from 28 subjects
with two time points and 100 networks each against each other before (top)
and after (bottom) normalisation. Each data point corresponds to a measure
taken from one network of one subjects.

that some relationships are non-linear, as suggested, for example, by Li et

al. [85]. The accentuation/attenuation of the correlations after normalisation

are likely due to the elimination of the shared number of region dependence.

In view of the correlations among degree, clustering coefficient, character-

istic path-length, efficiency and transitivity, it is unnecessary to calculate all

measures individually, as they can be summarised by any one measure. Con-

sidering that the degree of a network is the least computationally expensive,

the remaining analysis focuses on the subset of measures consisting of degree,

betweenness centrality and diameter.

65



4.4. Conclusion

4.3.3 Change of network measures with age

EP-UNI was applied to a serial dMRI dataset of 28 subjects with 100 parcella-

tions each at each time point with a target number of 500 regions. Figure 4.8

shows the changes over time for all measures after normalisation. The results

are assessed in terms of their change over time by calculating the corresponding

p-values, based on paired t-tests. From about 30 to 40 weeks of age, the degree

increases (P < 0.01), whereas betweenness centrality and diameter decrease

(P < 0.001).

Figure 4.8: The figures show the median normalised values of network mea-
sures determined from 100 parcellations per subject at two time points plotted
against the subjects PMA. Each colour-marker combination represents one
infant with the distribution of measures from multiple randomly parcellated
networks connected by a dashed line. Measures with a P value of P < 0.01
and P < 0.001 are indicated by one and two stars respectively. All measures
show a significant change over the age interval studied.

4.4 Conclusion

4.4.1 Network normalisation

This work presented methods for generating random graphs for normalising

network measures derived from weighted and undirected brain connectivity

graphs. The results indicate that preserving the edge structure, while draw-

ing the weights from a uniform distribution between zero and the maximum

weight wmax in the observed graph (EP-UNI) can outperform other proposed

approaches, such as ER-OW and PS-OW, with respect to the reduction in the

number of region dependence of various topological measures. On average the

absolute value of the correlations after normalisation is below 10% (compared
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to an average of approximately 50% before normalisation), indicating that a

more meaningful summary measure for each network measure can be deter-

mined around 500 regions. It should be emphasised though that some of the

other normalisation schemes, such as EP-OW, perform similarly to EP-UNI.

Notably, there exists a larger variability of random network measures for

EP-UNI compared to the other randomisation methods, which may cause a re-

duction or masking of the signal of interest (see section 7.1). Furthermore, by

determining the most appropriate normalisation scheme based on the reduc-

tion of number of region dependence alone, it is possible that further masking

may occur. Due to the lack of an appropriate null model for brain networks

the assessment of the extent to which this occurs is challenging. A comparison

of changes in network measures with expected biological changes may be used

on a qualitative level to indicate if the signal of interest remains, however,

the quantitative characterisation remains an open challenge. Nonetheless, the

results suggest that a randomisation in the weights beyond altering the edge

structure may form an important part of generating random networks for nor-

malisation of weighted graphs.

In contrast to the work presented here, the approach of Van Wijk et al. [164]

investigates the number of region dependence by analysing sequences of lattice,

random and small-world networks of different sizes. In particular, although the

networks within each sequence are of the same type, they are independently

generated from one another, albeit using the same underlying process. Im-

portantly, their work shows that the number of node dependence will not be

eliminated using standard normalisation schemes, even if the topology is kept

the same over multiple scales. As for the application to observed networks, a

comparison over a range of scales is desirable, especially in the case of neonatal

brain data. In this case, however, differences in scale may lead to changes in

the topology of the networks, which contrasts to the comparison of a single

network topology over multiple scales. In the proposed scheme for generating

random graphs, by preserving the adjacencies of the observed network at each

scale, changes in network topology due to scale may be reflected in the random

graphs to some extent. This may be another important aspect in normalising

observed networks and would be an interesting topic for future work.

The reduction of correlation between the number of regions and the network

measures, as presented in this work, allows for a better local comparison for

measures taken from graphs with around 500 regions. It should be noted that,

with fewer regions, the variation in both observed and normalised network
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measures increases. This emphasises the difficulty of comparing results based

on the different scales, as they are commonly used in atlas-based methods [164].

This work focuses on, but is not limited to, solving inherent challenges with

random parcellation schemes. In the case of neonatal cohorts, where the “true”

number and location of regions is difficult to determine, random parcellation

approaches may provide a less biased (with respect to number and location of

regions) inference of changes in network measures.

Calculating a “breakdown criterion” showed that some dependence on the

number of regions remains over a larger scale of 100-500 regions. This criterion

with a starting point around 500 regions is only a first estimate for the point

at which the random graphs generated for normalisation lose some of their

representational power. In general, reducing the dependence on the number of

regions enables network measures to be compared, not only across subjects and

over time, but also across studies using different parcellation schemes, which

is an important aspect of network analysis. Furthermore, it should be noted

that there exist other methods for generating random surrogate networks than

those discussed in section 3.6, however,the widely used Erdös-Rényi and pair-

wise switching methods were chosen due to their historical significance and

prevalence in the literature. A more comprehensive analysis is an appropri-

ate topic for further investigation. Nonetheless, the normalisation schemes

presented, besides allowing for an intra-/inter-subject comparison, may fur-

thermore assist in determining the reproducibility of results based on network

measures in case of atlas based work, in which atlases with varying number of

regions are used [146].

4.4.2 Measure Correlations

This work highlights the inter-measure dependence between commonly used

measures in network-based brain analyses which, in turn, demonstrates the dif-

ficulty of measuring the underlying topological features of a network. Based on

the definitions of network measures, correlations are to be expected, regardless

of any normalisation scheme. One assumption in weighted network analysis

is that stronger connections correspond to shorter path-lengths which enable

more efficient information transport. Taking this into consideration, an in-

crease of average weighted degree (k) within a graph naturally leads to greater

average efficiency (E). Similar reasons, again based on the network measure

definitions, can be argued to underpin at least part of the observed correlations

among them. It would be beneficial, for computational and analytic reasons,
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to find a maximally independent set of network measures to characterise the

brain. The selection of an independent set of network measures may be carried

out using techniques such as independent component analysis or the analyti-

cal derivation of the relationships between weighted measures. However, the

presented results allowed for a set of measures to be proposed, which can be

used to describe features of early brain development. This set may then be

used in second order analyses at the population level.

4.4.3 Developmental changes within structural

brain networks

The application of the EP-UNI normalisation scheme to a serial dMRI dataset

of 28 subjects agrees with previously suggested increase of network integra-

tion [141, 178] (see section 3.7.7). The increase in degree can be interpreted as

an increase in connection strength, due to an increase in anisotropy with age.

Although myelination is not apparent in the developing telencephalon during

the preterm period, this time represents a period of significant development

during which a number of maturational processes alter white matter organi-

sation over time (see section 2.1). A strengthening of the connections during

development is desirable, as it allows more efficient information exchange be-

tween brain regions. Similarly the decreasing diameter in both network types

suggests an increased global integration of all network nodes/regions and thus

more rapid information transport throughout the entire network. These re-

sults suggest that the brain develops towards a higher efficiency with respect

to information flow on a local and global scale within the first few weeks after

birth.
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Chapter 5

Multi-Scale Network Analysis

5.1 Motivation

Network theoretical approaches for brain image analysis rely on the defini-

tion of edges and nodes in order to generate graphs. As mentioned in sec-

tion 3.7.1, in adults these nodes may be defined as brain regions (or parcels),

which are commonly assumed to be functionally coherent or anatomically cor-

respondent across subjects. However, recent studies have proposed the use

of multi-granular parcellation methods, where the number of regions can be

varied (see for example [100]). In particular in neonates, the lack of a standard

parcellation and the unknown (and possibly varying) number of regions in the

developing brain strongly motivates the use of random parcellation approaches

across scales (see section 3.7.1).

Changes in global network measures have served as a basis to compare

networks, however, the dependence on the network size makes quantitative

comparisons of such measures across studies difficult (section 3.7.8). Figure 5.1

shows this dependence for betweenness centrality as the number of regions

varies over a range of 100-550 regions for two subjects, each scanned at 31

weeks post menstrual age (PMA) and 41 weeks PMA.

Figure 5.1 demonstrates potential pitfalls, when the number of region de-

pendence is ignored. It suggests that determining which subject or which time

point has the higher value for betweenness centrality is dependent on the net-

work size. A possible approach for trying to eliminate such dependence is

by normalising a measure obtained from an observed network with a network

measure gained from a randomised surrogate network (see chapter 4). How-
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Figure 5.1: Betweenness centrality taken from multiple brain networks defined
over a range of 100-550 regions/nodes for two subjects S1 and S2, each with a
baseline scan (∼ 31 weeks post menstrual age (PMA)) and a follow-up scan (∼
41 weeks PMA). The fit for each subject at each scan is based on a logarithmic
function.

ever, as shown in Figure 5.1, the betweenness centrality of individual subjects

at individual time points seem to have a different behaviour as the scale on

which they are calculated is varied [128]. This might reflect a change in net-

work topology, as different types of networks exhibit different behaviour (see

section 7.3). Additionally, a possible change in network topology raises the

question of whether normalisation, when using the same null-model for each

subject, is suitable to eliminate a network’s dependence on the scale (see chap-

ter 4). These aspects show the importance of analysing networks over multiple

scales and further raises the question of whether these differences can be used

to distinguish between groups in a network analysis.

The idea of investigating brain connectivity across scales has gained more

attention in recent years (see section 3.7.8). Multi-scale studies try to either

find representative connectivity matrices over multiple scales [31, 76] or analyse

multiple networks individually to confirm that results are stable over various

scales [53, 176, 179]. However, these studies only investigate predefined scales

of parcellations and do not characterise the changes in network measures as a

function of scale (see section 3.7.8). Furthermore it has been suggested that

brain networks undergo basic topological changes, such as subtle randomisa-

tion, and that these changes may be indicative of disease where structural

changes are likely to occur, for example in schizophrenia [122]. Significant

structural changes which are likely to be reflected in the brain’s structural
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network topology also occur during mid to late gestation (see section 2.1),

raising the question of how to quantify such change.

This chapter proposes the use of a multi-scale framework for commonly

used network measures in order to describe changes in the developing brain.

This form of multi-scale analysis characterises networks by the dependence of

their measures on the number of regions. It is shown that certain changes in

structural brain networks can be investigated independently of a specific par-

cellation of the brain by describing the dependence of the network measures

over varying numbers of regions. Applying the framework to serial dMRI data

acquired from preterm subjects, where the subjects were scanned after birth

and at term equivalent age, as well as a healthy control group, its poten-

tial to differentiate between groups is demonstrated. Moreover, the proposed

framework allows the characterisation of changes in early development with-

out the bias due to the number of regions, employing both parametric and

non-parametric comparisons.

5.2 Methods and Materials

5.2.1 Subject and Image Data

Baseline (B) and follow-up scan (F) of the preterm dataset, as well as the term

control cohort (Con) were used for this analysis (see section 2.3). For each scan,

random parcellations Πr,s of the cortex at multiple scales (s ≈ 100, 150, ..., 550)

with two samples at each scale (r ∈ [1, 2]) are generated, where regions within

a segmentation are kept to an approximately equal size and the size is varied

across segmentations. Poisson disk sampling is particularly useful for this task,

as it allows distinct parcellations across a large number of regions to be readily

generated and produces comparable results at the atlas scale (see section 4.1.1).

Networks were then estimated as described in section 4.2.1.

5.2.2 Network measures

This analysis focuses on three types of weighted network measures, commonly

thought to describe local segregation, global integration and the prevalence of

important nodes (see chapter 3). Table 5.1 broadly subdivides the measures

investigated in this chapter into these categories. The measures were calculated

using the Brain Connectivity Toolbox1 [121].

1BCT, http://www.brain-connectivity-toolbox.net
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Table 5.1: Categories of investigated network measures.
Category Measure
Local segregation Clustering coefficient (C), Transitivity (T),

Modularity (Q)
Global integration Characteristic path-length (λ), Efficiency (E),

Diameter (dia), Eccentricity (ecc), Degree (k)
Node importance Betweenness centrality (BC)

5.2.3 Multi-scale analysis

The multi-scale analysis begins by estimating weighted structural networks,

based on the tractography and dMRI data for each subject and each parcella-

tion (see section 2.2.2). Subsequently, global network measures are calculated

in these weighted networks (see Table 5.1), which provide connectivity informa-

tion at a variety of different scales. In the following, the complete set of values

for a measure at the different scales for an individual scan will be referred to

as a ‘trajectory’. Examples of these trajectories are given by Figure 5.1. In or-

der to characterise differences between subjects, trajectories may be compared

using non-parametric and parametric approaches. The multi-scale framework

is illustrated in Figure 5.2.
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Figure 5.2: A framework for multi-scale analysis. Brain images are parcellated
at multiple scales from a coarse (low number of regions) to a fine scale (high
number of regions). Structural networks are estimated based on the subject’s
dMRI data and subsequent network measures are calculated across scales to
give a trajectory for the subject. After repeating this for all subjects the
trajectories can be used in a group level analysis.
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Non-parametric comparison

Non-parametric comparisons use features of the trajectories directly, which can

then be used for group analysis. For each network measure (see Table 5.1),

the set of trajectory features, given by Table 5.2, consists of the sum (S) and

standard deviations (σ) of the network measure and its first (d) and second (d2)

derivative, as well as the maximum value (max), the curvature of the trajectory

(c) and the arc-length (a). However, due to the random parcellation process,

not every subject has parcellations at the same scale. In order to compensate

for potential biases due to these differences, the calculated trajectory values

are linearly interpolated onto a regular grid at numbers of regions from 125

to 500 in steps of 25. After calculating the trajectory features a multivariate

analysis of variance (MANOVA) is applied for group comparison.

Table 5.2: Trajectory features for non-parametric comparison. These features
were calculated for each measure and subsequently used for group comparison.

Feature Description
S Sum of trajectory values
Sd Sum of first derivative of trajectory values
Sd2 Sum of second derivative of trajectory values
σ Standard deviation of trajectory values
σd Standard deviation of first derivative of trajectory values
σd2 Standard deviation of second derivative of trajectory values
c Curvature
a Arclength

max Maximum of trajectory values

Parametric comparison

Parametric comparisons can be achieved by fitting a model to the trajectory.

This approach can readily accommodate different choices of models, which can

retrospectively be evaluated based on the quality of fit. The function

m(n) = am · log(n) + bm (5.1)

was found to be appropriate for describing the trajectory of each measure,

where m(n) is a network measure calculated for a set of graphs, with varying

numbers of nodes n. In this case am and bm are the model parameters for

measure m that can be estimated by standard fitting algorithms. Instead of

using the network measures for a subject directly, parameters am and bm can
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serve as summary features, characterising a subjects network measures over

all scales. This leads to a set of model parameters am and bm, which are then

used as multi-scale features for subsequent group level analysis.

Moreover, utilising the results of the parametric comparison allows the

investigation of the consistency of differences in network measures across scales.

This can be done by inquiring about intersections between trajectories from

each scan and each group for each network measure. If, for a given pair of

scans, i and j, the conditions

bj
m < bi

m and ai
m < aj

m. (5.2)

are satisfied, then the measure trajectories for this pair intersect for a positive

number of nodes. This is illustrated in Figure 5.3.
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Figure 5.3: Illustration of consistency condition. Under the assumption that
the number of nodes n is nonnegative, one can differentiate between the cases
of ai = aj , ai > aj and ai < aj . For ai ≥ aj group/scan i returns a measure
mi > mj for all nodal scales n. For ai < aj , however, the relationship between
mi and mj is dependent on n.

In terms of single scale analysis this means that it is possible to find two

scales for which comparisons show opposing results. Therefore this result is de-

scribed as inconsistent, as it can subsequently lead to opposing results between

studies. If these conditions are not satisfied, the result is called consistent, i.e.

the comparison between scans/groups will stay the same across scales.
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5.3 Results

5.3.1 Non-Parametric Comparison

Before applying the proposed non-parametric comparison to the data, global

network measures are estimated for the regular spaced sequence of regions

between 125 and 500 with a spacing of 25 using linear interpolation. Trajectory

features, as described in Table 5.2, are then calculated, thereby generating

sets of nine features per network measure and subject. Some of the features

used to perform MANOVA are correlated. Figure 5.4 shows, for example,

the relationships between the trajectory features, as well as their individual

distributions for all groups investigated in case of betweenness centrality.

Figure 5.4: Scatter plots of the trajectory features taken from trajectories of
all subjects plotted against another for betweenness centrality. The diagonal
shows the histograms of each feature.

One of the assumptions of MANOVA is that the dependent variables in-

vestigated exhibit medium correlations among each other. In order to ensure

this, the average absolute value of the correlation among the trajectory fea-

tures was investigated, where the average was taken over all network measures.

The average correlations are given in Table 5.3 and show that some features

are strongly correlated, necessitating the definition of a subset as input for

MANOVA.

A subset of trajectory features was determined for which the absolute value

of the inter-measure correlation was between 0.3 and 0.9. One possible combi-
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Table 5.3: Average absolute value of the inter-measure correlation for trajec-
tory features, where the average was taken over all network measures.

Sd Sd2 c a m σ σd σd2

S 0.71 0.40 0.62 0.68 0.98 0.79 0.70 0.55
Sd 0.46 0.53 0.74 0.77 0.93 0.67 0.48

Sd2 0.28 0.44 0.42 0.40 0.46 0.28
c 0.70 0.66 0.62 0.81 0.93

a 0.75 0.83 0.94 0.78
m 0.85 0.76 0.59

σ 0.76 0.58
σd 0.86

nation of features is given by (S, Sd, c, a). This subset was subsequently used

as input for MANOVA, where Pillai’s trace was evaluated in each case to de-

termine statistical significance. All tests showed p < 0.001, indicating that

the differences among the three groups are highly statistically significant with

respect to every network measure.

Stability assessment

The stability of the non-parametric approach was assessed by recalculating

the p-values 100 times using subsets of the original data for re-estimating

the trajectory features. The data for each subject consists of parcellations

Πr,s, where r ∈ [1, 2] represents the index to the samples of the repeated

parcellation at each of the ten target scales s ≈ 100, 150, ..., 550. This allowed

the definition of subsets Mi. Each Mi consists of a set of 10 data points,

one for each scale, with r chosen randomly from {1, 2}. Each subject can

then be represented by the trajectory features of its subset Mi, which is then

used as input for MANOVA. This was repeated for i = 1, . . . , 100. All p-

values were less than 0.001, suggesting that the group comparison remains

highly statistically significant. Taking these results into account suggests that

the approach does not rely on any given parcellation directly and that no

parcellation is favoured over any other. This suggests that the non- parametric

comparison is parcellation independent.

5.3.2 Parametric Comparison

The differences between the groups were further investigated by applying the

proposed parametric comparison to the described dataset. This required fitting

the model given by equation 5.1 to the global network measures, which allowed
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an estimation of the parameters am and bm for the baseline and follow-up scan

of the preterm group, as well as the control group. The combined results are

shown in Figure 5.5.

Figure 5.5: Box-plots for the model parameters am (top) and bm (bottom)
for each measure for the baseline (B), follow-up (F) and control (Con) group.
Values represent the group at each scan, where the subjects of the baseline,
follow-up and control group were scanned at 30.8±1.9, 41.2±1.2 and 41.9±1.7
weeks PMA, correspondingly.

Paired and two-sample t-tests were performed for each combination of the

groups with each parameter, where paired t-tests were used for the results

of the baseline and follow-up scan of the preterm group. All p-values were

below p < 10−4, except for parameter bm in case of degree (p < 0.05 for

follow-up and control), characteristic path-length (p < 0.001 for follow-up and

control) and modularity Q (not statistically significant for all combinations).

In case of modularity Q, differences in parameter aQ were found not statisti-

cally significant when comparing the follow-up and control groups, but had a
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p-value below p < 0.01, when comparing the baseline and follow-up scans of

the preterm group.

In order to assess the quality of the fit, the coefficient of determination R2

was calculated for each measure and each subject. R2 ∈ [0, 1] represents the

amount of variation in the data explained by a given model. The results are

given in Table 5.4 and show that the logarithmic model accounts on average

for 96% of the variation within the data for a trajectory, where the average

was taken over all subjects and all measures.

Table 5.4: Coefficients of determination R2 and corresponding interquartile
range IQR after model fitting for each network measure averaged over all
subjects.

BC k C Q λ E ecc dia T
R2 0.98 0.91 0.99 0.99 0.98 0.99 0.90 0.88 0.99

IQR 0.01 0.07 0.01 0.01 0.01 0.00 0.07 0.06 0.00

Stability assessment

The stability of the parameter estimation can be assessed by using a sampling

approach similar to the one used for the non-parametric comparison. Consid-

ering that there are two samples at each of the ten scales (≈ 100, 150, ..., 550),

parameters am and bm were estimated for all 210 combinations that use one

sample at each scale, i.e. a total of ten data points per fit. This analysis cre-

ates parameter distributions for am and bm for each subject. As an example,

the individual distributions for betweenness centrality are shown in Figure 5.6,

where each box corresponds to the parameter distribution of one subject. Each

group was ordered with respect to their age, plotting the youngest subject of

the group to the left and the oldest to the right.

For each group the variance within each group was calculated by using

the mean values of each subjects’ distribution, as well as the average within

subject variance of all subjects belonging to the group. The results for each

group were summarised by calculating the ratio of the average within subject

variance to the within group variance and are shown in Table 5.5.

On average the ratio was determined to be 0.08 ± 0.07 and 0.12 ± 0.11

for parameters am and bm, respectively, where the average was taken over all

groups and all measures investigated. This suggests that the uncertainty of

parameters am and bm of individual subjects from sampling are small compared

to their variance within the group, suggesting that the parametric analysis at
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Figure 5.6: Parameter distributions for all subjects in case of betweenness cen-
trality based on a leave-N-out approach. At each scale (s ≈ 100, 150, ..., 550)
one of two sample points was selected for fitting, resulting in 210 possible
combinations. Parameters am and bm were then estimated for each of the
combination resulting in a parameter distribution for each parameter and each
subject. Each box represents the parameter distribution of an individual sub-
ject and the subjects within the groups were sorted ascending with age (left
to right).

the group level is to a certain extent independent of individual parcellations.

Note that for eccentricity (ecc) and diameter (dia) the within subject to within

group ratio are relatively large compared to other measures (0.36 ± 0.04 and

0.54 ± 0.06 for parameters am and bm, respectively). However, both measures

are sensitive to small disturbances in the network structure (see section 3.3),

which are to be expected using random parcellations. The effect might be

mitigated by using more than ten data-points when calculating the fitting

parameters.

Consistency assessment

With the results from the parameter estimation for each group, as shown in

Figure 5.5, it is possible to evaluate the consistency of the differences between

groups by using the groupwise averaged values for am and bm. Applying the

consistency test based on the conditions 5.2 to the groups investigated suggests

that separate single scale analyses may be inconsistent for all measures and

all combinations of groups. This means that it might be possible to find two

scales of parcellations at which the determined network measure differences in

a group analysis will provide opposing results, emphasising the need for multi-
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Table 5.5: Ratio of average within subject variance to within group variance
for parameters am (top) and bm (bottom) for all measures and each group,
where the average was taken over all subjects within each group.

a BC k C Q λ E ecc dia T
Baseline 0.01 0.02 0.02 0.09 0.02 0.02 0.06 0.06 0.02

Follow-up 0.03 0.01 0.01 0.02 0.03 0.02 0.42 0.35 0.01
Control 0.12 0.02 0.01 0.10 0.05 0.02 0.34 0.32 0.01

b BC k C Q λ E ecc dia T
Baseline 0.01 0.04 0.01 0.06 0.08 0.01 0.09 0.10 0.01

Follow-up 0.02 0.02 0.01 0.01 0.06 0.01 0.62 0.48 0.01
Control 0.09 0.04 0.01 0.16 0.10 0.01 0.55 0.52 0.01

scale analyses, such as the ones described in this and the following chapter.

5.4 Conclusion

This work introduced a multi-scale framework for analysing network measures

which can be used to characterise changes in brain networks, helping to reduce

the bias due to a parcellation scale. Network analyses commonly estimate mea-

sures at a single scale when comparing subjects or groups, implicitly assuming

that the network measure is constant over a variety of number of regions. In-

stead of comparing network measures calculated at a single scale, i.e. specific

number of regions, the framework allows for analyses that use a parametric

and a non-parametric approach.

Applying the non-parametric analysis using MANOVA showed the poten-

tial to differentiate between groups using a set of trajectory features. The

inclusion of other measures may furthermore improve the ability of the multi-

scale framework to differentiate between the groups, if required. One challenge

using the non-parametric approach lies in the assumption of smoothness for

the measure trajectories, which is required by the linear interpolation of the

global network measures to generate a regular spaced sampling. Visually in-

specting the behaviour of the individual trajectories for each subject suggests

that this is an appropriate assumption. Uncertainties due to the interpolation

can be prevented by using the same number of regions for each subject, how-

ever, this is more time consuming due to the random parcellation approach,

which often needs multiple executions before the target number is reached (see

section 3.7.1). Future developments in regards to multi-granular brain atlases

might help to alleviate this challenge and reduce the uncertainty due to the
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interpolation.

The parametric approach allows for an analysis in two ways using a loga-

rithmic model. First, the offset parameter bm can be viewed in a similar way

to traditional global network measure analyses, assuming am = 0, however,

the benefit of this approach lies in the independence to changes in parcellation

scale. The second model parameter, am, on the other hand may provide insight

into the underlying network type. Results presented by Van Wijk et al. [164]

show graphs describing the changes in clustering coefficient and characteristic

path-length in random, small-world and lattice networks, when the number

of nodes is altered. These graphs indicate that the trajectories of different

network topologies exhibit different shapes (see section 7.3), which may be

described by parameter am in the framework and subsequently help to identify

changes in network topology. A more comprehensive analysis of the model

parameters will be the aim of future work and is outlined in section 7.3.

Investigating the stability of the proposed multi-scale framework showed

that it offers reproducible results when varying the parcellations used for es-

timating the model parameters, making the approach effectively parcellation

independent. Furthermore, by analysing the data using the consistency condi-

tions from equation 5.2, the results suggest that it might be possible to produce

inconsistent network measure results using single scale analyses in the dataset.

This further emphasises the need for a multi-scale framework when analysing

brain networks.

Using the presented multi-scale framework on a preterm serial dMRI dataset,

as well as a control group, it was possible to show group differences with the

non-parametric approach, as well as both parameters of the parametric ap-

proach for commonly used network measures. Moreover, the results suggest

that the differences in network measure trajectories are indicative of develop-

mental differences in structural brain networks. These developmental differ-

ences seem to be dependent on both age and environment, as indicated by the

group differences between the baseline and follow-up, as well as the follow-

up and control group. In particular the changes in am suggest differences in

topology, as outlined in section 7.3, indicating that the network type is altered

in the preterm group compared to the control group. This agrees with re-

sults suggesting that the connectivity pattern of brain networks changes with

age [178]. Further investigation is necessary to show in more detail if these

changes in the parameters can be used as biomarkers to detect differences in

brain networks in development or disease.
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Chapter 6

Learning Coarse Scale Informa-

tion from Fine Scale Networks

6.1 Motivation

Various challenges face the use of global network measures for network anal-

ysis. This work already discussed the dependence of measures on the number

of nodes in a given network and how it can be reduced using normalisation

(chapter 4) or utilised in a multi-scale framework (chapter 5). The latter, how-

ever, necessitates the generation of networks at multiple scales, and therefore

the execution of multiple tractography steps which can lead to a high compu-

tational cost. It would be beneficial to use only a small number of networks,

which allows the derivation of multi-scale information for network analysis.

One possible approach is to estimate properties at a coarser scale from a fine

scale network.

Merging nodes has been investigated in relation to creating random binary

networks. Kim et al. [75] and Alava et al. [4], for example, generate random

networks based on the preferential attachment model (see section 3.6), allowing

for two nodes in the network to merge. Due to the simultaneous introduction

of new nodes, however, the size of the network is maintained. Importantly they

show that in this model properties, such as a power-law degree distribution

and the existence of hubs, are a result of merging nodes, however, they did

not use this framework to compare networks over multiple scales. The idea of

merging nodes is illustrated in Figure 6.1.

As indicated in Figure 6.1, network properties and measures can change
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Figure 6.1: Principle of merging nodes, where nodes c and e are merged into
a combined node.

after a merge of two nodes. In this network, for example, the average cluster-

ing coefficient increases from C = 0 to C ≈ 0.53. Changes also occur for other

network measures. By successively merging pairs of nodes, one can create a

set of networks with decreasing numbers of nodes. For each of these networks,

network measures can be calculated and subsequently collected over the range

of regions considered. Additionally, multi-scale analyses, as presented in chap-

ter 5, may be applied to the resulting data.

This chapter proposes the use of a node merger approach in order to collapse

a binarised network with a high number of regions to a lower number of regions.

A benefit of the approach is the need for only one observed network, from which

all lower scale networks can be derived. The approach allows for subjects to be

compared over a large number of regions, revealing aspects of the network for

which there might be insufficient information at a local scale. The framework’s

potential in describing changes in network characteristics with age is shown

by analysing a serial dMRI dataset of prematurely born infants, scanned after

birth and at term equivalent age, as well as a control group scanned at term.

6.2 Methods and Materials

6.2.1 Network measures

This chapter focuses on a set of three network measures commonly thought to

describe local segregation, global integration and the prevalence of important

nodes (see chapter 3). Table 6.1 broadly subdivides the measures investi-

gated into these categories. The measures were calculated using the graph-tool

python library1 [111].

1graph-tool, https://graph-tool.skewed.de
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Table 6.1: Categories of investigated network measures.
Category Measure
Local segregation Transitivity (T)
Global integration Efficiency (E)
Node importance Betweenness centrality (BC)

6.2.2 Network collapse

The proposed approach begins with the binarised and undirected structural

network with s nodes, estimated from the tractography of the dMRI data for

each subject and Poisson disk sampling. At each step of the node merger a

hemisphere and a base node b within that hemisphere are selected randomly.

Subsequently the spatial neighbourhood of b, Nb is determined, i.e. the regions

which share a border with b in the parcellated brain image (see Figure 6.2).

ba

f

e

dc

g

b

g
f

e

d

a

c

Figure 6.2: Spatial neighbourhood of a node b in a brain parcellation, given
by Nb = a, c, d, e, f .

The smallest node from the nodes in Nb is then picked as the merge partner.

This choice is motivated by the principle that smaller nodes are unlikely to

occur, when using fewer regions with Poisson disk sampling. The process

returns a network of size s−1 and serves as a new input to the next node merger

step. Edges are determined based on a logical or decision and it was enforced

that the resulting networks remain simple, i.e. without multiple edges or self-

loops. This provides a number of networks at each scale from the original size

s down to a user-defined lower limit and thus a number of measures of network

connectivity can be derived over all scales for the subject. As this approach

relies on the random selection of nodes, the network collapse is repeated for

each subject 100 times, resulting in a distribution of network measures for

each scale and each subject. The framework of the network collapse is shown

schematically in Figure 6.3.

In order to simplify comparisons, the trajectory for each subject is defined

using the mean network measure of the 100 repetitions at each scale. It should

be noted that the variability in network measures increases, the more the

generated network size departs from the original size, i.e. as more merge steps
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Figure 6.3: Framework for network collapse analysis. Each brain image is
parcellated at a high number of regions and the structural network is estimated.
Within the structural network two spatially adjacent regions are picked for
merging, creating a new network with one node less than the observed network
and which serves as new input to the node merger. This process is repeated
until the user specified lowest number of nodes is reached.

are carried out. This is illustrated in Figure 6.4.

6.2.3 Data

This chapter uses the same data as described in section 5.2.1. These consist

of preterm infants scanned shortly after birth (B) and at term equivalent age

(F), as well as a control group (Con). For each subject parcellations were

created at multiple scales (s ≈ 100, 150, ..., 550) with two samples at each

scale. Additionally one subject was parcellated at five scales below 60 regions,

where networks were estimated as described in section 4.2.1.

Additionally the behaviour of synthetic networks is studied, models in

which each hemisphere is represented by the surface of half a sphere with

a radius and width of 160 and 1 voxels respectively. Each voxel is assigned a

value of one and treated as a grey matter voxel for parcellations. The surfaces

are subsequently parcellated using Poisson disk sampling with a target number

of 500 regions, resulting in a total of 499 regions with average size of 15 voxels.

Connectivity is subsequently estimated by connecting each region to its direct

spatial neighbours. The graph density is then increased by calculating the

shortest path distances in the binarised spatial neighbourhood graph among

all regions and connections are added to each region’s n-neighbourhood, where

n is the number of steps (see for example Figure 6.2, where node g is part of the

2-neighbourhood of node b). This generates two independent lattice networks
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Figure 6.4: Distribution of network measures after successive mergers starting
from a 584 node network of one subject. Here, different step-sizes for sampling
were used to reduce the computational cost, resulting in gaps at higher number
of regions. Each point of the 100 repetitions was assigned an opacity value of
0.01, resulting in a shading of the distribution. The average measure at each
scale (solid black line) is used for comparison between subjects. The 5-th and
95-th percentile of the measures are indicated as dashed lines.

for each hemisphere. Subsequently p% of the existing connections are then ran-

domised, allowing for the existence of long-range connections. In this study

the parameters n and p were chosen to be n ∈ [2, 3, 4] and p ∈ [1%, 10%, 100%],

where the values of p represent lattice-like, small-world and Erdös-Rényi (ER)

random network topologies. The principle of generating synthetic networks is

shown in Figure 6.5.

6.3 Results

6.3.1 Network Collapse in Brain Networks

In order to assess the consistency of the framework with tractography results,

each subject’s brain image was parcellated 20 times with regions ranging from
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Figure 6.5: A framework to generate synthetic networks. Two surfaces of
half spheres, each representing a brain hemisphere, are randomly parcellated
using Poisson disk sampling. Spatial adjacency serves as an initial connectivity
profile, representing a 3D lattice network. Density may be increased by adding
edges to regions which are n steps away from a given region, calculated using
the spatial adjacency. Subsequently p% of the edges are randomised.

around 100 to 550 regions and the network measures shown in Table 6.1 were

calculated at each scale. In addition, starting from the network with the high-

est number of regions in the parcellations used for tractographic analysis, the

proposed network collapse was applied and 100 data points at each number

of regions considered were generated for each subject. To reduce computa-

tional cost, a variable step size was used, i.e. the number of mergers that were

executed before network measures were calculated. In general, there was less

variance at higher numbers of regions and subsequently network measures were

calculated after every 10 mergers, until the resulting network had fewer than

300 regions, where the step size was set to 1. The results derived from the net-

work collapse were then compared with those calculated using tractography at

the parcellated scales. Figure 6.6 shows the results of the collapse for one sub-

ject, compared to results based on tractography, and indicates good agreement

between measures estimated using the collapse framework and those obtained

from tractography.

All subjects showed similar trends between measures derived from the col-

lapse framework and tractographic computation, suggesting that one network

obtained from tractography at a high number of regions can be used to derive

measures for fewer numbers of regions. In the following the results based on
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Figure 6.6: Results based on the network collapse (black lines) in comparison
to tractography (blue circles). The results of the collapse are summarised
by the mean (solid line) and 5-th and 95-th percentile (dashed lines) of the
network measures, respectively.

the 100 executions of the network collapse for each network measure at each

scale will be summarised by its average, as illustrated in Figure 6.4. Figure 6.7

shows the average measure trajectories for all subjects investigated.
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Figure 6.7: Average network measure trajectories for each measure and each
subject derived using the node merger. The colours represent the preterm
cohort scanned at birth (B), term equivalent age (F) and the control group
(Con).

The results show that there are differences between all groups, and results

for the follow-up scan of the preterm cohort generally lie between the preterm

baseline (B) scan and the control group data. Applying a non-parametric

multi-scale comparison, as described in chapter 5, indicates statistically sig-

nificant differences between the three groups (p < 0.001). The per group
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average curves with corresponding standard deviations (±1std) are shown in

Figure 6.8.

Figure 6.8: Group-wise average trajectories for each measure with correspond-
ing standard deviation (±1std) for the baseline (B) and follow-up (F) scan of
the preterm cohort, as well as the control group (Con).

Figure 6.8 indicates the presence of a peak for betweenness centrality. The

existence of a peak in betweenness centrality in the tractography based results

is investigated by additionally parcellating one subject at five scales below 60

regions. Figure 6.9 shows the comparison of results based on tractography

with the results of the network collapse at scales between 25 and 300 regions.
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Figure 6.9: Detailed comparison between tractograhy based results and net-
work collapse for betweenness centrality at scales between 25 and 300 regions.
Both tractography and network collapse results indicate a peak in betweenness
centrality.
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6.3.2 Network Collapse in Synthetic Networks

In order to investigate the behaviour of the three network measures, synthetic

networks are created to represent lattice, small-world and random topology at

three different densities (see section 6.2.3). Figure 6.10 shows the results of

applying the collapse framework to these networks with 100 repetitions each.

Figure 6.10: Results of applying the collapse framework to synthetic networks
representing lattice, small-world and random topology at three different den-
sities. The subscript at each network measure indicates the order of spatial
neighbourhood connected before p% of the edges were randomised.
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6.4 Discussion

6.4.1 Network Collapse in Brain Networks

The results presented in Figure 6.8 suggest that, on average, the control group

exhibits lower global betweenness centrality, higher transitivity and higher

efficiency than the other groups. Furthermore, when comparing the preterm

baseline scan and the control group, it indicates over all scales that the brain

may develop to reduce the average betweenness centrality, while increasing

transitivity and efficiency. This development seems to be altered as an effect

of premature birth, as shown when comparing the follow-up scan of the preterm

cohort and control group.

One striking feature in Figure 6.8 and Figure 6.9 is the existence of maxima

for the trajectories of betweenness centrality. Comparing the three groupwise

trajectories, the maxima occur at different numbers of nodes for each group.

One possible reason for this behaviour could be an effect of sampling. Given

a network of size so, it is possible to represent this network with sover > so

or sunder < so nodes. This representation can be interpreted as an over- or

undersampling of the network. The idea of sampling a network is represented

in Figure 6.11, where possible sampling schemes of a given topology (middle)

at a lower and higher number of nodes are shown, assuming that each subunit

of a region shares the connectivity profile of the region itself (see Figure 6.12).

given topology

more 

regions

fewer

regions

BC

BC

BC

Figure 6.11: Possible effects on betweenness centrality of over- and under-
sampling, i.e. changing the number of nodes used to represent a network.
Given a network (middle) one can over-/undersample this network by increas-
ing/reducing the number of nodes or regions. Subsequently the average value
of betweenness centrality will change, with a general decrease, for higher num-
bers of nodes and a possible increase or decrease for lower numbers of nodes.

This suggests a possible reason for the maxima in the case of betweenness

centrality. In order to assess this effect, seven synthetic “ground truth” net-

works, as shown in Figure 6.5, were created at scales between 90 and 180 nodes

92



6.4. Discussion

and oversampled the networks at scales of 499 and 762 nodes. In order to over-

sample these networks, it was assumed that every voxel within a region shares

the region’s connectivity profile. The principle of oversampling is illustrated

in Figure 6.12.

Region level Voxel level

v1

v2

v3

v4

v5

Oversampling

Figure 6.12: Principle of oversampling a network (left), where the region shown
in red is represented by two independent regions in the oversampled network
(right). It assumes that each voxel vi in a region shares the global connectivity
profile of the region itself and does not include intraregional connections. This
approach can be used to model oversampling in synthetic networks.

Subsequently the node merger is used in order to collapse the oversampled

networks to a number of nodes below the “ground truth” network size. This

procedure is repeated 100 times and the location of the peak of the average

collapse trajectory is recorded. Figure 6.13 shows the results of plotting the

number of nodes of the ground truth against the location of the peak found

from the network collapse.

The results show a clear correlation between the number of nodes of the

ground truth and the location of the peak. This means that it might be

possible to infer a native scale of the network by investigating the behaviour of

betweenness centrality over multiple scales. Many other factors, however, may

contribute to the shape of the curves as seen in Figure 6.8, such as network

density and network type. The next section investigates these effects further

based on synthetic networks which are thought to represent lattice, small-world

and random topology at a variety of densities.

6.4.2 Network Collapse in Synthetic Networks

The results in Figure 6.10 show that the average betweenness centrality, for

high densities and high number of regions is almost equal in all synthetic

network types. The differences between the individual models is only apparent

at lower scales. However, it supports the intuition that completely random
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Figure 6.13: Plot of the number of regions on which the ground truth was
defined against the location of the peak determined by the network collapse
for betweenness centrality. The black line indicates the line of equality between
the peak location and the ground truth.

networks (p = 100%) will have the lowest prevalence of important nodes.

Similarly, efficiency shows the expected behaviour, where lattice-like networks

have a lower average efficiency over all scales, compared to small-world and

ER random networks.

Transitivity, the global clustering of the network, shows the expected be-

haviour at the higher scales, where random networks have a low transitivity,

whereas the highest value can be found in lattice-like networks. Importantly

the results show, that after collapsing the network below 200 regions, the

random networks exhibit a higher transitivity than lattice-like or small-world

networks. In particular, the random graphs retain high efficiency, resulting in

the highest efficiency and highest transitivity of all networks below 100 regions.

This further emphasises the importance of taking the scale at which a network

is observed into account, as the lower scales effectively correspond to a coarser

parcellation scheme and subsequently random graphs could be interpreted as

having small-world topology.

The results show that, in case of binarised networks, different network

types exhibit different trajectories in their network measures as a function of

scale. Consequently, it may be possible to use these trajectories themselves

to investigate the type of an observed network in more detail. A possible

approach will be outlined in section 7.3.
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Furthermore, with respect to the peak for the betweenness centrality, the

results shown in Figure 6.10 suggest that it occurs and becomes more pro-

nounced at higher levels of network density and is dependent on the network

type, i.e. the percentage of randomisation. This suggests that the peak is not

simply a function of the “ground truth” network scale, but that other factors

may play a role in the trajectories exhibiting this feature. Consequently, the

peak in betweenness centrality might not reflect the existence of a native scale

of an observed network.

6.5 Conclusion

This work investigated the feasibility of learning coarse scale network infor-

mation from a single fine scale starting point. It showed that by using node

merger to collapse binarised brain networks down from around 500 regions,

one can produce results comparable to those generated using tractography. It

should be noted though that the starting point of this process is very impor-

tant, as uncertainties accumulate at each merging step. This means that the

starting scale needs to be fine enough in order to characterise the investigated

network. For example, starting at around 100 regions, where the variation in

the observed network measures is comparatively high between parcellations, it

may prove difficult to capture the behaviour at fewer regions accurately.

With the proposed framework, starting around 500 regions, it was possible

to show qualitative and quantitative group/scan differences in measure trajec-

tories between a preterm cohort scanned at birth and at term equivalent age,

as well as a control group. The results show that network differences exist

over all scales and that the control group, compared to the preterm cohort,

exhibits higher transitivity and efficiency, as well as lower betweenness cen-

trality. These results suggest differences in network development, where the

exposure to the extra-uterine environment may impair the development of a

more efficient network topology.

In general it would be beneficial to find an optimal parcellation scale for

network analysis. It has been indicated that observed network properties are

possibly the result of merging nodes, such as the heavy-tail degree distribution

and the preferential connectivity between nodes with similar degree [4, 75]. In

particular the latter could mean that organisational principles, such as the rich-

club, might emerge from a random network by merging nodes. Investigating

these effects further will be the aim of future work. Importantly, if the scales
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at which a brain is analysed are “too coarse”, this could result in an inaccurate

assessment of structure, as nodes are effectively merged in these investigations.

By using the collapse with respect to the measure betweenness centrality,

it was shown that the indicative peaking of the measure after collapsing may

be correlated with a native scale that defines a network. However, it should be

emphasised that this feature is also correlated with the density of the network

and the network type. Decoupling these aspects will be an important part of

future studies.

Additionally the synthetic networks used to analyse this feature rely on

a node within a network being split into two subunits. This study chose to

retain the connectivity profile of the original node for each subunit, without a

connection between them, however, other schemes have been proposed. Alava

et al. [4], for example, split the nodes connectivity profile randomly and assign

each of its subunits a part of the connectivity profile, with or without con-

necting the subunits. In their work, however, each node represents an ’atom’,

which, after splitting, loses its original properties. In the brain, on the other

hand, multiple fibres form a bundle which allow regions to be interconnected.

Each axon in these bundles originates from a single neuron, which resembles

the atom in a brain network. Considering that a brain region consists of many

such atoms, the region may be subdivided while broadly keeping the same con-

nectivity profile. Nonetheless, investigating different methods for subdividing

nodes in order to oversample a given network may be an interesting area of

research in the future, as it possibly allows fine scale information to be inferred

from coarse scale information.
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Chapter 7

Limitations and Future Work

The approaches presented in this work can be used to distinguish between

groups with less bias towards the scale at which network analysis is done.

Network normalisation, discussed in chapter 4, can be used to compare net-

works at a single or local scale and it was shown that using uniform weight

randomisation reduces the number of node dependence the most. However,

even though determining the best normalisation scheme based on the number

of node dependence alone may be a good starting point, other properties of

the network may play an important role in finding good surrogate models for

normalisation.

In contrast, the multi-scale framework presented in chapter 5 utilises the

dependence on the number of nodes for group comparison using the trajectories

of network measures across scales. Each network measure calculated at a given

scale, however, has an uncertainty due to the multiple random parcellations

which can be generated at the same scale. Chapter 5 did not characterise

these uncertainties, as they require estimating the measure distribution a given

scale and subsequently need many random parcellations and tractography runs.

This may form the basis of future work.

The network collapse discussed in chapter 6 infers coarse scale network

information from a single fine scale network, by successively merging pairs

of nodes. This approach is dependent on the initial fine scale starting net-

work. Subsequently, variations in estimating the starting network may lead

to variations at each merging step. Using probabilistic tractography may lead

to erroneous connections, in particular at fine scales, which may then lead to

variations in the average collapse trajectories.
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7.1. Scale Dependence in Surrogate Networks

This chapter focuses on discussing the scale dependence in surrogate net-

works used for network normalisation and the reliability of network estimation.

In addition, some potential methods that can be used to place a network on a

scale between lattice networks and random networks are outlined, which will

be the aim of future work.

7.1 Scale Dependence in Surrogate Networks

The results of the network normalisation methods presented in chapter 4 sup-

port the use of uniformly drawn weights when generating surrogate networks

for normalisation. The normalisation step divides an observed network mea-

sure by those calculated from random realisations of the observed network.

Assuming that the scale dependence can be eliminated using this approach,

i.e. resulting in an approximately constant value after normalisation, the ob-

served network measure mo(N) would satisfy the relationship

mo(N) ≈ c ms(N), (7.1)

where c is a constant and ms(N) is the network measure taken from the surro-

gate network as a function of the number of nodes N . Subsequently a normal-

isation method to eliminate the dependence on the number of nodes would use

surrogate measures with a similar dependence as the original data. This was

assessed by investigating surrogate measures calculated from random networks

as presented in section 4.2.2.

Each random network used for normalisation is generated using a combina-

tion of a method for assigning edges and a method for assigning edge weights.

Three types of edge assignments were investigated, based on an Erdös-Rényi

model (ER), pairwise switching of the edges (PS), and preserving the edge

structure of the observed network (EP). Weights were assigned based on the

original edge weights (OW), using uniform random numbers between zero and

the maximum weight in the observed network (UNI) and weights generated

based on shortest paths in the network (D). Additionally, in case of pair-

wise switching, the weighted nodal degree can be preserved, when executing

a switch (WDP). For each of these randomisation schemes, random network

realisations are calculated for the 28 preterm subjects subjects at both time

points (baseline and follow-up scan) with 100 networks each (see section 2.3).

In order to assess the trends of the network measures, scatter graphs of

them are plotted for each method against the number of regions, where each
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7.1. Scale Dependence in Surrogate Networks

point represents a network based on a single random parcellation for one sub-

ject. The trends in the scatter plots can then be compared to the observed

network measures. In order to make the results comparable, due to the dif-

ferences in the offset of the individual surrogate measures, the median was

subtracted from the data within each subject. The results for one of the net-

work measures (characteristic path-length) are shown in Figure 7.1.

Figure 7.1: Scatter plots for characteristic path-length for 56 subjects with
100 random parcellations each and each randomisation scheme against the
number of regions. In addition the observed network measures are plotted
for comparison (bottom right). The data were shifted to the same scale by
subtracting the median for each subject.

As indicated by the results, it is not clear if the randomisation schemes

using uniformly drawn weights follow the same trend as the observed network

measures due to the relatively large variation of the network measure in the

surrogate networks. Notably this spread of data is biggest for the uniformly

drawn weights, compared to all other methods.

To confirm that the normalisation reduces the number of region depen-

dence, as outlined in chapter 4, the normalised values for each scheme are

plotted against the number of regions. Assuming that the normalisation suc-

cessfully eliminated the number of region dependence, one would expect to see

a slope of zero with scattering around a mid-line. To allow for easier com-

parison, due to the differences in offset and scale, the median was subtracted

and the results were divided by the inter-quartile range for each subject. The

results for characteristic path-length are shown in Figure 7.2.
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7.1. Scale Dependence in Surrogate Networks

Figure 7.2: Scatter plots of characteristic path-length of 56 subjects with 100
random parcellations each against the number of regions after applying nor-
malisation and of the observed network measures (bottom right). The data
was put on the same scale by subtracting the median and dividing by the
inter-quartile range for each subject.

The results indicate that a trend in characteristic path-length remains for

most of the normalisation schemes. Based on these plots, drawing weights

uniformly (UNI) or simply reshuffling the weights (EP-OW) eliminates the

dependence the most, i.e. exhibits a slope closer to zero, which is in agreement

with the calculated Spearman rank correlation coefficients (Table 4.4).

Intuitively, a random surrogate network is expected to follow a similar

trend as the observed network measure, as in equation 7.1. However, the

apparently best schemes for normalisation (UNI), do not appear to follow the

same trend as the observed network, as shown in Figure 7.1. It is not obvious,

why a normalisation by measures that do not appear to match the original

trend should decrease the number of region dependence. One explanation

could be that the increased variation in the randomised graph measures might

conceal the trend after normalisation. If this was the case, however, there

should not be an increase in inter-measure correlations, as shown in Figure 4.7.

Furthermore, it is possible that the comparison with multiple independent

surrogate networks may reduce the overall scattering in case of the uniform

weighting schemes.

This work focused on using only one surrogate network per observed net-

work for normalisation. By investigating multiple realisations of surrogate net-
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works, however, one can estimate the underlying network measure distribution

associated with a given randomisation scheme. A first analysis by generating

ten realisations per randomisation scheme did not improve the reduction of

the dependence of a given network measure with the number of nodes, com-

pared to using one sample. However, by using more than ten samples, the

distribution of network measures may be better estimated. This approach

might reveal the overall trend of the uniform weighted normalisation schemes

more clearly and show a better agreement with the trend of observed network

measures. However, estimating the measure distribution is computationally

very expensive as many random surrogate networks are needed and weighted

network measure calculation is, compared to unweighted network measure cal-

culations, relatively slow. A more detailed investigation of using many random

network realisations for normalisation is needed in future work.

7.2 Reliability of Network Estimation

Group comparisons based on network theory are highly dependent on the

framework for estimating networks. Here, dMRI data and a probabilistic trac-

tography algorithm were used [23]. This section will briefly discuss limitations

which may arise from the tractography algorithm ProbtrackX.

Due to the iterative step-wise nature of many tractography algorithms,

the overall errors in estimating streamline trajectories can accumulate. Trac-

tography algorithms have to deal with many uncertainties when estimating

pathways between brain regions, such as the inability to determine precise end

points in the cortex and effects due to the use of termination criteria [72].

Additionally it has been pointed out that probabilistic tractography estimates

short range connections, i.e. connections between brain regions that are spa-

tially close, with greater confidence than long range connections [72]. More-

over, it was shown recently that, even though probabilistic tractography may

provide better long range connectivity information than deterministic tractog-

raphy (see section 2.2.2), the amount of missed long range connectivity might

be in the order of 50% [118].

Due to the relatively coarse resolution of dMRI data with typical voxel sizes

of 2×2×2 mm3 [126] and axonal diameters typically of less than 10 µm [101],

some fibre patterns are particularly difficult to distinguish. One example of

patterns that are difficult to distinguish is given by kissing and crossing fibres,

as illustrated in Figure 7.3. Methods such as super-resolution can improve the
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7.2. Reliability of Network Estimation

resolution of diffusion data to some extent [126], however, resolving the issue

of distinguishing between these patterns remains an open challenge.

Kissing fibres Crossing fibres

Diffusion information

One PDD Two PDD

Figure 7.3: Illustration of kissing and crossing fibres in a single voxel. Both
patterns produce the same diffusion information, which is dependent on the
number of principal diffusion directions (PDD) that are modelled.

Furthermore, by using a probabilistic tractography algorithm, there may

be differences between separate runs of the algorithm. It is therefore important

to assess the effect of this variation in the networks. In a stability analysis of

the networks generated, the agreement between two runs of ProbtrackX for

the same diffusion data was investigated. Note that ProbtrackX uses a fixed

random seed for its sampling that leads to identical output from repeated

runs. Figure 7.4 shows scatter plot comparisons of the edge weights produced

by two independent tractography runs, i.e. with different random seed, at

three different network scales. The mean integrated anisotropy along all paths

is used as weight of each edge (see section 3.7.2). In this weighted analysis,

differences between two estimated networks can be seen, as all points would

lie on a straight line if the two iterations completely agree.

If a similar analysis is conducted on the binarised networks, i.e. on the net-

works adjacency matrices, a percentage of agreement on how many connections

were found in both executions of the tractography algorithm can be estimated.

Table 7.1 shows the result of the agreement in percent at the different scales.

Table 7.1: Percentage of agreement between two independent tractography
executions using the networks adjacency matrix.

Scale 100 300 500
Agreement 94% 95% 96%

Note that the values are given as percentages and that the total number of

edges increases with the number of regions. However, independent tractogra-
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Figure 7.4: Comparison of two network estimates obtained by separate trac-
tography runs at three different scales using ProbtrackX. Each connection with
its weight w1 in the first run is plotted against its counterpart from the second
run with weight w2. The counts for all weight pairings is encoded in the colour
scheme.

phies agree on average on 95 ± 1% of the connectivity profile over all scales

investigated.

In general, it is possible to estimate the overall effect of these variations

in network estimation on measures. A detailed analysis of the variation, by

estimating the structural connectivity profile multiple times from independent

tractography executions is an appropriate topic for future work.

Further work could also seek to determine the accuracy of the tractogra-

phy algorithm used and optimise network theoretical approaches in the hu-

man brain by finding the most appropriate algorithm. Bastiani et al. [16],

for example, propose a method for estimating if the tractography algorithm

produces “acceptable” results, by comparing estimated connections between

brain regions with connections biologically known to be present. However,

this method relies on the exact delineation of regions of interest, which, as

described in section 2.1, is challenging in a neonatal cohort. Further develop-

ment in tractography algorithms and validation using tracer studies may help

to alleviate this challenge by providing more accurate connectivity profiles of

the developing human brain.

103



7.3. Characterising Network Type with Multi-Scale Analyses

7.3 Characterising Network Type with Multi-

Scale Analyses

One striking feature in the observed network measures that motivated the use

of multi-scale frameworks (chapters 5 and 6) was the difference in the shapes

of the network measure trajectories. As previously described, results presented

by Van Wijk et al. [164] show graphs of network measures taken on random,

small-world and lattice network topologies over multiple scales. These graphs

suggest that different network topologies exhibit different shapes of the network

measure trajectories. Figure 7.5 shows network trajectories for betweenness

centrality and characteristic path-length taken from random (ER; p = 100%),

small-world (SW; p = 10%) and lattice-like (L; p = 1%) network topologies

over scales of s = 50, 60, . . . , 400 regions using the framework presented in

section 6.2.3 and with weights drawn randomly from a Gaussian distribution.

Figure 7.5: Measure trajectories of betweenness centrality (BC) and charac-
teristic path-length (λ) for lattice (L), small-world (SW) and random (ER)
network topologies for weighted undirected graphs over multiple scales.

The results show that trajectories of different network topologies over mul-

tiple scales have different shapes. The effect appears to be more pronounced

for characteristic path-length than for betweenness centrality. Moreover, de-

termining the network type of an observed network is an important goal when

comparing healthy populations and patients, as deviations of it may be indica-

tive of disease. For example, work presented by Rubinov et al. [122] suggest

a subtle randomisation in schizophrenia. During the early development of the

human brain substantial changes occur with regard to the structural connec-

tivity profile (see section 2.1) and it is possible that events such as premature

birth may influence the structural network topology (see for example [8]).
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This section outlines two possible approaches to determine the type of a

network by placing it on a scale between lattice and random networks. The first

approach is directly related to the network trajectories investigated in chap-

ter 6 and determines the best fit to binarised surrogate networks evaluated over

multiple scales. The second approach introduces the concept of measure land-

scapes, which will be refer to as m-scapes. M-scapes are a mapping of network

scale and randomisation percentage to investigated network measures and an

approach that may be used to determine the extent of network randomisation

is described.

7.3.1 Shape of Measure Trajectories

The first approach starts by creating trajectories from surrogate networks that

are on a scale between lattice and random network topologies. This can be

achieved by using the approach outlined in section 6.2.3 and applying the

network collapse framework discussed in chapter 6 to generate measure values

over multiple scales. The surrogate networks are size and density matched to

the observed network, allowing for individual differences in network density to

be factored out.

In order to match the density of surrogate networks in the context of sec-

tion 6.2.3, the density of the observed network is calculated and subsequently

the neighbourhood order of connected nodes in the surrogate lattice network is

increased until its density either matches or exceeds that of the observed net-

work. If the observed density was exceeded, edges in the network are randomly

deleted, until the required density is reached. In general, the whole process

could be repeated multiple times, each time generating a density matched net-

work with slightly different topology. In this section, however, only one sample

of the density matched networks is used.

After the density matched lattice network has been generated, randomisa-

tion of edges can be iteratively executed. This creates a spectrum of density

matched surrogate networks with equal size to the observed network with vary-

ing degrees of randomisation. Each of these networks can then used as input to

the network collapse framework. Network measure calculations over all steps

of the collapse provide trajectories corresponding to the surrogate networks

and in turn for each level of randomisation. The framework is illustrated in

Figure 7.6.

The change of network measure trajectories while altering the randomisa-

tion percentage between p = [1, 4, . . . , 100] is shown for in Figure 7.7. Entire
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Figure 7.6: Framework for comparing network measure trajectories. An ob-
served measure trajectory is generated using the network collapse model. Sepa-
rately, a density matched lattice network is estimated and multiple randomised
realisation of the lattice network are generated. These are used as input to the
network collapse. Each resulting trajectory may subsequently be compared to
the trajectory of the observed network.

trajectories may subsequently be compared by calculating their L1 distance.

The randomisation value of the surrogate network that best describes the ob-

served trajectory, i.e. with the smallest distance, is then used to provide an

estimate of the randomisation in the observed network. In order to focus

on the shapes of the trajectories, each network measure’s trajectory may be

zero-centred by subtracting the mean of the trajectory value.

In a first analysis, the framework was applied to a group of term born

infants (see section 2.3) by generating a total of 34 density matched surrogate

networks per subject with randomisation levels of p = [1, 4, . . . , 100]%, which

were used to estimate the percentage of randomisation of each subject. Each

network was used 10 times as a starting point for the collapse framework.

The average trajectory over the ten repetitions was subsequently compared

to the average collapse trajectory of the observed network (again from ten

repetitions). In order to speed up the process of the network collapse, the

number of consecutive mergers before network measures were calculated was

set to 25, until the number of nodes was below 200, where it was reduced

to 10. The node merger was used until the resulting network was below a

scale of 25. Figure 7.8 shows the randomisation percentage estimated for each

subject, where each scatter point represents the randomisation estimated for
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Figure 7.7: Change of betweenness centrality, transitivity and efficiency tra-
jectories as the network type is randomised between p = [1, 4, . . . , 100]%. Each
trajectory can serve as a reference, against which a trajectory from observed
brain data can be compared.
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Figure 7.8: Estimated percentage of network randomisation in 15 control group
infants, using betweenness centrality (BC), transitivity (T) and efficiency (E).

The results show that the estimation of the randomisation percentage is
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relatively stable across measures. Table 7.2 summarises the average percentage

estimated for each network measure, where the average was taken over all

subjects.

Table 7.2: Average percentage of randomisation and standard deviation esti-
mated in the term control group.

Measure BC T E
Estimated Randomisation (%) 12.7 ± 2.4 13.5 ± 1.7 15.5 ± 2.5

The estimated randomisation percentages based on the three different net-

work measures suggest a randomisation of approximately 14% for the control

group. Note that the randomisation percentages p were coarsely sampled.

This offers an opportunity for improvement when estimating the scale of ran-

domisation, by using smaller step sizes in p. Additionally, the resolution of

the collapse framework can be improved by using smaller numbers of merg-

ers executed before a network measure is calculated. The application of this

framework to a preterm cohort will be the aim of future work. Also, the inves-

tigation of group differences in a larger sample of subjects with known clinical

or demographic information may be useful to demonstrate the utility of the

randomisation level estimation as presented here. It should be noted that this

framework is not limited to neonatal cohorts and that it may be used to deter-

mine topological changes in brain networks in development and disease more

generally.

7.3.2 M-Scapes

In a second approach, an analysis based on measure landscapes, or m-scapes,

is proposed, which map out the behaviour of a given network measure as the

size and randomisation percentage of the network are altered.

M-Scape Creation

In order to create an m-scape for a measure m, one starts out by generating a

lattice network at a scale s. Subsequently multiple randomised networks are

generated by randomising p% of the edges. At each step of randomisation, the

value of the network measure is recorded. The entire set of network measures

calculated with different randomisations at scale s subsequently represents a

row in the m-scape. Afterwards the scale s is changed and the process repeated.

The framework is illustrated in Figure 7.9.
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Figure 7.9: Framework used for generating m-scapes. After a lattice network
at scale s is generated, multiple randomised networks are generated by ran-
domising p% of the edges. For each network the global network measure is
recorded. Subsequently the scale is altered and the process repeated. The set
of all measures represents a measure landscape (m-scape).

With this procedure it is possible to create m-scapes for all network mea-

sures of interest. Figure 7.10 shows the m-scapes and measure distributions

for betweenness centrality, transitivity and efficiency, evaluated at scales of

s = 50, 60, ..., 500 and randomisation levels of p = 1, 2, .., 100%. The net-

works used to calculate the network measures are created using the approach

presented in section 6.2.3 with n = 2.

Figure 7.10: M-scapes for betweenness centrality, transitivity and efficiency
(top). Each point is calculated at a given scale s, i.e. number of regions, with
a given percentage of randomisation. The overall distribution of each network
measure is represented by the corresponding histogram (bottom).
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Estimating Randomisation Percentage

The goal is to estimate the randomisation percentage found in an observed net-

work by finding its’ position in the m-scape. When applying network analysis

to real data, the scale of the observed network is usually known. Consequently

it becomes unnecessary to compare the entire m-scape with an observed net-

work measure and it is sufficient to extract the row in the m-scape that cor-

responds to the scale of the observed network for comparison. The line profile

of a row in an m-scape can therefore be used to estimate the randomisation

percentage, at which the measure value is found. This principle is illustrated

in Figure 7.11.

Figure 7.11: Estimating the randomisation percentage, based on an observed
network measure value. From a given m-scape the line profile at the scale
of the observed network is extracted and used for finding the randomisation
percentage rm corresponding to the observed measure value mo.

In order to test this framework five networks are created as described earlier

(see section 6.2.3, n = 2). The scales of each network were chosen randomly

and the set of scales is given by s = {60, 182, 271, 344, 457}. In addition, five

randomly chosen levels of edge randomisation are investigated for each of these

networks given by p = {28, 31, 47, 63, 92}%. For the resulting 25 networks their

global betweenness centrality, transitivity and global efficiency were calculated.

For each network measure the line profile of the m-scapes as shown in

Figure 7.11 was extracted and the randomisation percentage for each of the

25 networks was estimated. This approach results in a set of three estimates

per network, one per network measure, as shown in Figure 7.12.

The results for the three different network measures show varying efficacy

of predicting the percentage used to generate the test networks. In general the

estimation at low percentages of randomisation seems to be more accurate than

for high percentages for all measures. Betweenness centrality and efficiency also

seem to underestimate the randomisation scale at higher percentages, whereas

transitivity seems to result in a good estimate with small variations around

the percentage used for generating the networks. Notably the randomisation

estimates for each of the 25 networks did not agree on a single value across

110



7.3. Characterising Network Type with Multi-Scale Analyses

25 50 75 100
Input (%)

25

50

75

100

E
st

im
a
te

d
 (

%
)

0

BC

0 25 50 75 100
Input (%)

T

0 25 50 75 100
Input (%)

E

Figure 7.12: Results of estimating randomisation percentage of test networks
using m-scapes. Points indicate the estimated percentage in comparison to the
percentage used to generate each of the 25 networks (input) for each of the
three network measures.

measures. Using the average for each set, however, showed a good agreement

with an error of approximately 6%, compared to the original values.

Uncertainties in M-Scapes

M-scapes as shown in Figure 7.10 are not unique. Multiple executions of the

randomisation process will result in slight variations in the calculated network

measures for each combination of scale and randomisation level. This variance

can be used to create a confidence interval at each point in the m-scape. Subse-

quently, when placing an observed network measure value in the m-scape, this

confidence interval can be taken into account to achieve a better estimate of

the randomisation percentage. Placing a network measure within an m-scape

that includes a confidence interval leads to a range of randomisation percent-

age estimates, so that the observed value ro
m ∈ [rlo

m, rhi
m ]. Figure 7.13 shows the

principle of estimating the randomisation percentage of an observed network,

while incorporating the confidence interval of the m-scape.

For this work, however, only one m-scape was generated and therefore the

confidence interval was defined empirically for use with each point in the m-

scape. This can be achieved, for example, by rounding the network measure

values in the m-scape and the observed network to their second significant

digit.

Using the 25 networks described earlier, their randomisation percentage was

estimated with this approach. For each network measure the corresponding

randomisation intervals rBC , rT and rE were determined. Subsequently, the

observed network was assigned a range of randomisation percentage

ro
comb = rBC ∩ rT ∩ rE (7.2)

111



7.3. Characterising Network Type with Multi-Scale Analyses

Figure 7.13: Principle of estimating a networks randomisation percentage with
uncertainties in m-scapes. Uncertainties in the network measures derived from
repetitions of m-scape creation may be used to identify a range of randomisa-
tion percentages within which an observed network can be placed.

given by the intersection of all ranges. A point estimate for the randomisation

level of a network may then be given by the centre of the combined range ro
comb.

For four out of the 25 networks the intersection of all three measures was

empty and therefore no randomisation percentage was estimated. This could

result from the predefined confidence interval ǫ being too small or a coarse m-

scape grid being used. The remaining 21 networks’ randomisation percentages

were predicted with an average error of 3% compared to their original values.

These results, shown in Figure 7.14, suggest that the approach can be used to

estimate the randomisation percentage of an observed network.
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Figure 7.14: Results of estimating randomisation percentage of test networks
using m-scapes including a confidence interval. Points indicate the consen-
sus estimated percentage from three network measures in comparison to the
percentage used to generate each of the 21 networks (input).
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7.3. Characterising Network Type with Multi-Scale Analyses

Uncertainties in Network Scale

The scale of an observed network is usually known. However, it is possible

that an observed network has a latent scale at which network theory is most

descriptive of the network’s properties. In this case, the number of nodes of the

observed network may not correspond to the latent scale and subsequently us-

ing the row in the m-scape corresponding to the scale of the observed network

may not be the best approach. M-scapes, however, map scale and randomisa-

tion percentage to network measure values. Subsequently it is possible to use

an m-scape to determine a combined estimate for the randomisation percent-

age and scale.

Given an observed network measure value, one can estimate regions or

bounds of agreement in the m-scapes incorporating the confidence intervals

as discussed above. Figure 7.15, for example, shows of the bounds for the

network measure corresponding to (s = 280, p = 51%) in the m-scapes for

each measure.

Figure 7.15: Regions of approximately equal network measures value corre-
sponding to the value of the network with 280 regions and 51% randomisation
for each network measure (enclosed by white lines). Subsequently the intersect
of the regions can be estimated (bottom right).

The intersection of all regions defined by the bounds can then be used to

estimate the observed network scale and randomisation level based on a con-

sensus vote (see Figure 7.15, bottom right). That means that one determines
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7.3. Characterising Network Type with Multi-Scale Analyses

the combined area Ao
comb given by

Ao
comb = ABC ∩ AT ∩ AE, (7.3)

where ABC , AT and AE are defined as indicated in Figure 7.15 (bottom right) in

red, green and blue, respectively. Again, a point estimate for the randomisation

level and scale of a network may then be given by the centroid of the combined

region Ao
comb.

In the case presented in Figure 7.15, the point estimate is given by

(284,53%). It should be emphasised that the resolution in scale of the m-scapes

as presented above is relatively low, with one sample taken every ten regions

along the scale axis. Nonetheless, the overall agreement with the selected point

is good. This process was applied to the 25 test networks and for 24 out of the

25 networks randomisation percentage and scale could be estimated. For one

network there was no intersection between all three regions. The results of the

comparison between estimated randomisation percentage and scale, compared

to the values used to generate the test networks are shown in Figure 7.16.
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Figure 7.16: Results of estimating randomisation percentage and scale of test
networks using m-scapes. Scatter points indicate the consensus of the esti-
mated randomisation percentage (top) and scale (bottom) from three network
measures in comparison to the randomisation percentage and scale used to
generate each of the 21 networks (input).

The average error of the estimated scale and randomisation percentage is

given by 2% and 3%, respectively. It should be noted that the set of test

networks were not enforced to have a scale equal to those used to generate
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7.3. Characterising Network Type with Multi-Scale Analyses

the m-scapes. Nonetheless, this approach was able to determine both scale

and randomisation percentage using a coarse grid. The networks tested in

this approach are already generated at their native scale. Investigating the

possibility of inferring the native scale if a network was over-/under-sampled,

as discussed in chapter 6, will be the aim of future work.

Application to Brain Data

A network derived from brain data may be characterised according to its posi-

tion in the m-scape of each measure by finding its randomisation percentage as

presented in this section. A possible framework of applying this approach to

brain data could subsequently involve the following steps. First, generate the

structural brain network of a subject at a medium scale, for example, s = 250

regions. This network’s density can then be used to generate density matched

surrogate networks, which serve as the baseline to estimate the subject’s m-

scapes including confidence intervals. A consensus vote between the rows of

the m-scape can be determined and subsequently the network’s randomisation

percentage may be estimated, which may then serve as a measure of network

type. Such an application to human data, will be the aim of future work.
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Chapter 8

Conclusion

Challenges arise when trying to use network theory, if the definition of the

nodes is uncertain, as it is the case in the developing brain. Due to the signif-

icant biological changes in the structural connectivity profile and grey matter

structure in the early stages of development, it becomes difficult to register

adult based definitions of brain regions to the developing brain. Nonethe-

less, investigating brain development, in particular after premature birth is

an important area of research, as it has been shown that approximately 50%

of all infants born prematurely suffer from negative cognitive outcome [175],

such as motor [94, 95], auditory [94, 125], visual [37, 94] and cognitive im-

pairments [94]. Finding biomarkers in order to identify infants at risk of such

impairments is an important goal and network theory is a promising tool for

achieving this [62, 87, 165, 168].

With the challenge of registering atlases to the developing brain and the

lack of a consensus on which parcellation scheme to use, stochastic approaches

provide a potential alternative, as they rely on fewer assumptions compared to

atlas based definitions [6, 151, 153]. One random parcellation scheme, which

allows the relatively easy definition of regions in the brain at arbitrary scales

is based on Poisson disk sampling. The application of random parcellation

schemes such as Poisson disk sampling, however, may lead to the comparison

of networks at different scales which is a non-trivial task, due to the network

measures’ dependence on the number of nodes in a graph [127, 164, 179]. This

dependence has lead to a recent increase in studies using network analysis at

multiple scales, in order to ensure that the observed trends are valid across

scales.
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8. Conclusion

The aim of this thesis was to develop methods to compare networks based

on unknown number, location and size of brain regions, which define the nodes

in the networks. Chapter 4 investigated the use of network normalisation,

where an observed network measure is normalised by those calculated on a

randomised surrogate network. This approach showed that, using an appro-

priate method for creating these surrogate networks, the region dependence can

be reduced at a local scale, i.e. over a small variation in number of regions.

Observing the trends of the investigated network measures over multiple

scales and for different subjects, however, revealed that the measures taken

for individual subjects show a different dependence on the number of nodes.

Chapter 5 showed that this dependence can be characterised and used for

group comparison, by investigating the combined information of a relatively

small number of networks created at a variety of scales. However, this approach

may be computationally expensive, as it necessitates the use of tractographies

at multiple scales. In order to alleviate this computational cost, chapter 6

proposed the use of a node merger, starting from a network with a high number

of regions (high scale), in order to infer low scale network information.

The work presented was used to compare structural brain networks esti-

mated in a serial dMRI dataset of prematurely born infants, where the infants

were scanned at birth and term equivalent age, as well as a control cohort of

term born babies. It showed that network normalisation, multi-scale and col-

lapse frameworks can be used for comparing groups with statistical significance.

This suggests that it may be possible to use these approaches to investigate

possible biomarkers for neurodevelopmental and neurodegenerative diseases.

Overall, the methods developed may help to alleviate the challenges due to

unknown location, size and number of nodes in a brain network and may pro-

vide additional information on developmental difference in terms of network

topology due to premature exposure to the extra-uterine environment.
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