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Abstract

The main objective of this thesis is the development of personalised diastolic cardiac

mechanics models for the study of dilated cardiomyopathy. A model personalisation

pipeline is developed, which deals with two core challenges in patient-specific modelling,

namely data integration and parameter identifiability. Important modelling aspects of

the pipeline are selected based on the potential and limitations of the data at hand,

following systematic investigation using in silico and in vivo tests.

To assist in the model development process, numerical schemes for dealing with in-

compressibility / near incompresibility in the heart are compared in terms of accuracy

and efficiency. In silico testing is extended to a parameter identifiability study, where

commonly used passive constitutive laws are compared in terms of identifiability and

model fidelity, using synthetic 3D tagged MRI.

The model personalisation pipeline is developed based on these modelling considera-

tions, with a focus on optimising the use of the available data to improve model fidelity.

The proposed pipeline is tested on a group of volunteers and patients, enabling an as-

sessment of modelling attributes which can improve model accuracy and parameter

identifiability in vivo. Finally, the developed patient-specific models are employed for

a comparative analysis of diastolic heart function, in patients with dilated cardiomy-

opathy and healthy volunteers.
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1 Introduction

Dilated cardiomyopathy (DCM) is a cardiac disorder characterised by the progressive

deterioration of the heart’s pumping efficiency. Associated with poor survival rates

(25% mortality rate over one year and 50% mortality rate over five years54), DCM has

been the focus of significant research interest from both clinical and engineering points

of view. The basis of the present research effort is that obtaining a better understanding

of the mechanisms responsible for the development and progression of this condition

will assist therapeutic planning and improve treatments.

The wealth and quality of medical imaging data available nowadays offers a powerful

tool for studying and characterising the human heart in DCM. Capable of providing

comprehensive information on cardiac anatomy, blood flow through the heart’s cham-

bers and great vessels as well as regional myocardial motion, medical imaging enables

an accurate quantification of the kinematics of the heart, identifying potential abnor-

malities. While medical imaging allows for the assessment of cardiac function and

pathology, linking the kinematics of the heart to specific physiological mechanisms

that could explain the progression of disease and determining their impact remains a

challenge.

Filling this gap, mathematical models of heart function allow for the quantification

of important functional metrics related to observed kinematics, which can in turn be

linked to underlying mechanisms. By describing heart function based on fundamental

laws of physics, a simplified quantifiable representation of the heart behaviour is cre-

ated. This produces the ideal framework for testing hypotheses, assessing the role of

model parameters and quantitatively characterising the heart function in a systematic

way.

Over the last few decades, advances in image processing, numerical techniques, and

availability of computational power have enabled the joint use of comprehensive medical

images and mathematical models of the heart function, for the creation of personalised

cardiac models. Incorporating personalised geometries, boundary conditions and model

parameters, patient-specific modelling allows for the identification of individual patient

characteristics that could be clinically relevant. Furthermore, it enables personalised

in silico tests of potential treatments or surgical procedures, assisting tailored and ul-
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1. Introduction

timately effective therapy strategies. Personalised heart models of varying complexity,

focus and scale have been developed, to investigate the complex physical phenomena

occurring over a heart beat. The focus of this work is on personalised cardiac me-

chanics models and specifically models covering the diastolic part of the cycle. Due

to the significant remodelling observed in myocardial tissue in DCM patients, cardiac

mechanics provide a convenient framework for answering questions on the development

of the disease.

Developing personalised cardiac models, however, is not an easy task. This is foremost

due to the inevitable inability to accurately represent a highly complex organ with a

mathematical structure, suggesting the need for a careful consideration of modelling

decisions. Moreover, the accuracy of the personalised model will always be restricted by

the quantity and quality of the data at hand. For instance, due to the absence of relevant

data, important modelling attributes such as the fibre distribution or the reference

geometry, are likely to be based on assumptions which need to be thoroughly examined.

Additional modelling aspects (degree of compressibility, constitutive law) need to be

carefully selected taking into account the available clinical data and acknowledging its

limitations.

On other practical aspects, even though image quality is continuously improving, res-

olution is not always sufficient and noise is present. Furthermore, patient’s motion

and breathing are likely to introduce inconsistencies between the available imaging

sequences. Therefore, a core challenge in model personalisation is integrating the avail-

able data in an optimal way, i.e. maximising the use of the data at hand without

introducing artefacts due to poor quality / incomplete data into the model.

The work presented in this thesis is part of the BHF funded project, “BHF Integrated

mathematical modelling and imaging study” during which comprehensive imaging data

from a group of volunteers and DCM patients were acquired. The main aim of this

thesis is the integration of these data into personalised diastolic LV models to be used for

the study of DCM. Taking the above-mentioned challenges into account, this involves

developing a pipeline for bridging the gap between the available images and models.

This pipeline has to be:

1. efficient, to allow for the study of multiple cases,

2. robust, so that it is applicable to all volunteers and patients with potentially low

quality / noisy data,

3. reliable, to enable comparisons between cases, and safe conclusions.

The proposed pipeline is developed through careful selection of modelling attributes

based on the data at hand. A key objective is to optimise the use of the available

data in order to improve model accuracy, while ensuring unique parametrisation. This
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1. Introduction

fundamental step for reliable model outcomes and model parameters, lays the ground

for comparisons between volunteers and DCM patients.

With these goals in mind, the remaining sections of the Introduction provide a brief

review of the cardiac anatomy, behaviour and pathophysiology in DCM, along with

previous work in cardiac mechanics modelling. Section 1.1 presents an introduction to

the basics of heart structure and function, focusing on the aspects that are relevant for

modelling studies. A brief overview of DCM and the current state of knowledge on the

disease are presented in section 1.2. Subsequently, section 1.3 outlines the significant

advances made over the last decades in the fields of tissue mechanics, while section 1.4

focuses on the progress made in personalised cardiac models as well as the challenges

the field is currently facing. Finally, section 1.5 provides a short outline of the thesis’

structure.

1.1 Review of cardiac anatomy and function

1.1.1 Cardiac anatomy

The heart is a remarkably complex and efficient mechanical pump, designed to deliver

blood to the entire body through the circulatory system. Blood provides the body with

essential nutrients and oxygen, and transfers metabolic waste products and carbon

dioxide from body’s tissues and organs to the lungs, where they are expelled. As

the heart is responsible for blood circulation it has been deservedly described as “the

beginning and author, the fountain and original of all the things in the body, the primary

cause of life” (William Harvey, 1628).

The human heart has the dual role of circulating both oxygenated and deoxygenated

blood, by supplying blood to the two compartments of the cardiovascular system, the

systemic and pulmonary networks. The pulmonary arterial network is responsible for

carrying deoxygenated blood to the lungs, where carbon dioxide is released from the

blood, which is subsequently enriched with oxygen during respiration. The pulmonary

venous system carries the oxygenated blood back to the heart, where it is then delivered

to the entire body’s organs and tissues through the systemic arteries. Systemic veins

return deoxygenated blood back to the heart.

Because of this dual function, the human heart is divided into two functional halves

(Fig. 1.1), the left and right heart, driving the systemic and pulmonary systems,

respectively. Each side is comprised of two chambers, the atrium and the ventricle,

which vary significantly in structure and function. The atria are thin-walled reservoirs

receiving blood from the venous system, whereas ventricles are thick-walled pumps,

ejecting blood to the arterial system. The heart is also equipped with four valves which
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Figure 1.1 Schematic diagram of the heart and main vessels attached to it. IVC and
SVC are the inferior and superior vena cava, respectively.

work to promote unidirectional blood flow and prevent back flow.

The right atrium (RA) collects deoxygenated blood coming from the inferior and supe-

rior vena cava. Blood is then directed to the right ventricle (RV) through the tricuspid

valve, and subsequently to the pulmonary artery and lungs through the pulmonary

valve. The now oxygenated blood returns to the heart through the pulmonary veins

and enters the left atrium (LA). It then flows to the left ventricle (LV) via the mitral

valve, where it is subsequently redirected to the aorta through the aortic valve. Finally,

through the aorta and its branches, the blood is delivered to the entire body’s tissues

and organs. The heart muscle itself receives blood and nutrients through the coronary

circulation.

The two sides of the heart differ significantly in function, a distinction which is also

reflected in their structure. The LV must develop a high cavity pressure in order

to overpass the high aortic pressure (approximately 110mmHg) and effectively pump

blood to the entire systemic circulation. In contrast, due to lower pressure in the

pulmonary artery (approximately 30mmHg), the RV has significantly lower pressure.

This substantial difference in pressure requires increased wall thickness for the LV

(approximately two times thicker than the RV). Interestingly, the atria have quite

similar blood pressures (approximately 10mmHg for both LA and RA). A lower pressure

is required in atria compared to ventricles, as their main function is to act as compliant

reservoirs, collecting blood to assist ventricular filling.
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1. Introduction

1.1.2 Description of the cardiac cycle

The cardiac cycle is the periodic filling and ejection of blood from the ventricles, de-

fined by the time interval between two successive RR peaks (approximate duration of

0.7 − 1s). It is characterised by four distinct phases: diastole (ventricular filling), iso-

volumic contraction (IVC), systole (ejection) and isovolumic relaxation (IVR). These

phases and changes in volume and pressure are commonly illustrated through Wigger

plots (Fig. 1.2). During the cardiac cycle, the tissue and bulk behaviour of the heart

vary significantly. The repetition of the cardiac cycle is responsible for the rhythmical

pumping function of the myocardium and for delivering blood to the entire body. The

cardiac cycle description that follows focuses on the left ventricle, which is of interest

in this work.
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Figure 1.2 Wigger diagram, showing LV, LA and aortic pressures as well as LV volume,
through the phases of the cardiac cycle.

Diastole is the portion of the cycle during which blood from the left atrium fills the

left ventricle, leading in an increase in ventricular volume. Diastole, covering approxi-

mately two thirds of the cycle, is commonly divided into three regimes, early diastole,

diastasis and end diastole. During early diastole, rapid active tension decay increases

the pressure difference between LA and LV, causing opening of the mitral valve. This

phase is characterised by rapid blood flow and accounts for 70% of ventricular filling.

As ventricular volume increases, ventricular pressure rises during diastasis, causing a

drop in the pressure gradient and thus in blood flow into the LV. Subsequently, atrial

systole occurring at end diastole causes a peak in atrial pressure providing an additional

20% of ventricular filling (atrial kick)84.

Isovolumic contraction is the period during which LV pressure rises without correspond-
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ing volume change. Due to active tension development and ventricular contraction, LV

pressure increases but is still lower than aortic pressure and thus not sufficiently high to

open the aortic valve. The increase in pressure causes the mitral valve to shut, keeping

LV volume constant during this period.

Once LV pressure increases sufficiently due to contraction, the aortic valve opens, ini-

tiating systole. During early systole blood is expelled rapidly out of the LV and into

the aorta. Due to contraction, the mitral valve is pulled towards the apex, causing

atrial elongation and initiating atrial filling. As the contraction continues, ventricular

pressure and aortic flow peak during mid-systole. Once maximal contraction occurs,

ventricular pressure and blood velocity start declining, leading to the closure of aortic

valve at end systole.

Finally, during isovolumic relaxation, the LV starts to relax as active tension decays and

contraction ends. As both mitral and aortic valves are closed, the release of potential

energy accumulated during contraction is restricted by the constant ventricular volume,

leading to a rapid pressure decrease. In parallel, LA pressure becomes higher than

LV pressure, causing the opening of the mitral valve and the onset of a new heart

cycle.

1.1.3 Myocardial tissue structure

The heart wall is composed of three layers with different functional properties. The

inner layer, or endocardium, is a thin lining between the wall and the cavities also

covering the heart valves. The outer layer, or epicardium, is encased by the thin,

fibrous pericardium which acts as a protective sac around the heart. The middle layer

of the heart wall, called myocardium, is the functional part of the wall, responsible for

the heart’s ability to contract and deliver blood to the entire body.

The architecture of the myocardial tissue is a major determinant of both the passive

and active cardiac behaviour. As such, the myocardial structure has been studied ex-

tensively over the last century and several theories have been proposed with significant

variations. Early qualitative studies by MacCallum143 and Mall145 and later Robb207

suggested that the ventricles are made of distinct fibre bundles, running from apex to

base and spiralling near the apex. This theory was questioned by Grant80, who demon-

strated branching of fibres and suggested the presence of a complex helical array.

Further quantitative studies by Streeter238,239, Greenbaum81 and Fernandez-Teran68

suggested that the myocardium can be more appropriately described as a continu-

ous fibrous structure, a theory adapted by the majority of studies for more than two

decades. Most importantly, these studies observed the transmural variation of fibre ori-

entation, in porcine, canine and human hearts. They reported a fibre angle (measured
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from the base) varying from +60◦ to −60◦ from endocardium to epicardium as well as

circumferential fibre rings around the heart base.

A series of studies by LeGrice134,133 offered a more detailed analysis of the rat and

canine heart tissue, focusing on the laminar myocardial structure. Their work high-

lighted that the myocardium should not be considered as a continuous structure, as it

is instead composed of discrete sheets of fibres – usually four to six cells thick. The

sheets, or laminae, are located across the ventricular wall in an almost radial direc-

tion and are separated by cleavage planes. They are loosely bounded by perimysial

collagen which allows relative movement between adjacent sheets. Recent advances in

confocal microscopy have further enhanced and confirmed our understanding of my-

ocardial structure, by enabling more comprehensive and accurate studies of myocardial

tissue132,216,287. All these works contributed to establishing a generic modelling frame-

work for incorporating fibre structure into finite element cardiac models170, where the

myocardium is described with respect to a fibre-oriented coordinate system.

Muscle fibre

(a)

(b)

Sheet

Collagen

Figure 1.3 Schematic representation of myocardial structure by LeGrice134,230. (a)
Trasmular variation of fibre orientation, and (b) close up to the laminar structure of the
myocardium in which the sheets are composed of aligned fibres, bound by perimysial
and endomysial collagen.

Even though the studies described above provided a comprehensive image of the ven-

tricular architecture, they focused on canine and rat hearts. Early works by Green-

baum81 and Fernandez-Teran68 on human hearts provide important information on

fibre architecture, yet they are based on gross tissue sections. Recent developments in

diffusion tensor magnetic resonance imaging (DTMRI) have enabled the direct quan-

tification of fibre and laminar structure of the human heart. Rohmer208 et al. have

performed a comprehensive analysis of ventricular fibre architecture from ex vivo hu-

man DTMRI data, predicting a transmural distribution similar to experimental animal
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studies. Furthermore, preliminary studies of human in vivo DTMRI data by Toussaint

et al. exhibited good agreement with ex vivo studies251. Although further work is

required in order to allow for detailed regional and anatomical information, DTMRI

derived fibres have alrealy been used within cardiac models266.

All these works have contributed to a better understanding of the complex tissue struc-

ture and its significance on cardiac behaviour. Even though alternative theories have

been proposed, the most popular being the band theory by Torrent-Guasp et al.250,

the comprehensive data of LeGrice et al.134,133 on the fibre and laminar structure of

the heart, along with the fibre distribution proposed by Streeter et al.239 remain the

gold standard in most mathematical heart models.

1.1.4 Activation and contraction

Myocardial contraction is due to contractile forces generated by myocytes – or mus-

cle cells – after electrical excitation. This process is initiated by electrical activation

waves starting from the self-stimulating cells at the sinoatrial node and propagating

through the atria. The waves then travel across the atria, causing atrial contraction,

which assists the final stage of ventricular filling. The ventricles are electrically in-

sulated from the atria, except at the atrioventricular (AV) node. Conduction is slow

through the AV node, allowing sufficient time for ventricular filling prior to contrac-

tion. The depolarisation wave then stimulates the His bundle and the fast conducting

Purkinje fibres, which rapidly depolarise the myocardial wall. Individual muscle cells

generate contractile forces as the waves travel through them, leading to ventricular

contraction.

In the microscopic level, cellular contraction is caused by the depolarisation wave prop-

agating through a myocyte. The depolarisation wave causes a change in the myocyte’s

electrical potential, which in turn causes release of stored calcium. As the levels of

cytosolic calcium rise, they enable compression of the myocyte’s contractile unit, com-

posed of actin, myosin, tropomyosin and titin. This initiates the “cross-bridge cycle”,

responsible for generating contractile force and cellular contraction. The synchronous

activation of myocytes across the myocardium creates a contraction wave, generating

the force responsible for driving blood flow around the circulatory system.
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1.2 Dilated cardiomyopathy (DCM)

1.2.1 Description of DCM

Dilated cardiomyopathy (DCM) is a chronic myocardial disease characterised by the

enlargement of the left ventricle and the gradual reduction in the pumping efficiency of

the heart, that often leads to heart failure. It is the most common type of non-ischemic

cardiomyopathy, occuring in 5-8 cases per 100,000, annually23 and it affects more men

than women. Low survival rates – 25% mortality rate over one year and 50% mortality

rate over five years – suggest the need for a better understanding of the disease and

the mechanisms underpinning its development and progression.

The currently limited understanding of this condition can be justified by the many het-

erogeneous diseases of varying etiologies that are associated with DCM. In fact, more

than 75 known conditions can present the DCM phenotype23. The onset and progres-

sion of DCM can be attributed to viral infections4, alcohol / drug abuse, genetics,

thyroid disease, etc, but in most cases no specific etiology can be identified (idiopathic

DCM). Due to the multi-factorial development of the disease, determination of its origin

– and thus appropriate treatment for each patient – is a challenging task.

Numerous treatments have been suggested for DCM, ranging from pharmacological

therapies to invasive procedures. DCM patients are commonly administered beta-

blockers and ACE inhibitors to control blood pressure and abnormal heart rhythm.

Beta-blockers, such as metoprolol, have been found to increase ejection fraction and

stroke volume, and in some cases cause reverse remodelling for DCM patients66. Posi-

tive inotropic agents such as pimobendan have also been reported to have a beneficial

effect on DCM patients, by increasing calcium sensitivity of myofilaments and enhanc-

ing cardiac contractility59. Furthermore, vasodilator drugs, such as nitroprusside, have

been shown to decrease pressures and improve ejection fraction89. In general, studies

report that reverse LV remodelling is possible, provided that the patients receive tai-

lored neurohormonal treatment, and highlight the importance of early diagnosis and

frequent individualised follow up156.

Invasive surgical procedures have also been used to treat DCM patients. Left ventricu-

loplasty – also known as Batista procedure – is based on the hypothesis that removal

of the non-viable part of the myocardial tissue would lead to constructive ventricular

reverse remodelling and thus result in a more efficient heart279. As the effectiveness of

this operation has been questioned, the procedure has been abandoned201. Other in-

vasive treatments include pacing devices, applied in either one or both ventricles. Kass

et al. reported enhancement in cardiac contractile function, especially with single-site

pacing at the part of myocardial wall with greatest conduction delay118, while Nelson et

al. highlighted the low cardiac energy cost of this process172, contrary to drug therapies
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which tend to increase energy expenditure in an already inefficient heart. Recently, a

woven polyester jacket placed around the ventricles has been suggested as a potential

mechanism for reversing the progressive remodelling associated with DCM, presenting

promising results in heart failure patients147,272.

1.2.2 The biomechanics of DCM

Recent studies have sought to provide insights into the changes occurring in the heart

as DCM develops and progresses, from cellular3,16,150 to organ level190,284.

The main characteristic reported by most studies is the enlargement of the left ventricle

(Fig. 1.4), with dilation also observed for left atrium and right ventricle206. Focusing on

the left ventricle, both end-diastolic and end-systolic volumes increase significantly5,284,

often leading to a decrease in the stroke volume166. Cardiac dilation is accompanied by

moderate wall thinning116,284, while the shape of the ventricle changes from elliptical

to spherical128,149,87.

Healthy heart DCM heart

Figure 1.4 The effect of DCM on the geometry of the heart. The LV is significantly
dilated and the myocardial wall becomes thinner and weaker. Enlargement is often
observed in all cardiac chambers.

Anatomical remodelling occurring in DCM has a strong effect on heart function, during

both the diastolic and systolic phases206 of the cardiac cycle. The mechanical efficiency

of the heart is severely impaired with ejection fraction as low as 20− 25%114. The sys-

tolic phase can be significantly affected, characterised by intraventricular conduction

delay3, reduction in contractility87, and prolonged relaxation time89. Diastolic func-

tion is also compromised, associated with abnormalities in LV filling due to low intra-

ventricular pressure gradients283,138. Furthermore, both end-systolic and end-diastolic

pressures are elevated128,34, causing a shift to the pressure-volume loop (Fig. 1.5).

Significant increase has also been reported for end-systolic and end-diastolic stresses in

DCM cases89,116.

Myocardial wall motion in DCM has been studied extensively based on observations
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from various imaging modalities (echocardiography128, speckle tracking echocardio-

graphy60, MRI284). Several studies highlight that the wall is hypokinetic in DCM

patients89, both during systole and diastole114,42. Young284, Joseph114 and Chuang42

tracked 2D tagged MRI to better capture the wall motion and reported significant

reduction in strains. These studies also highlighted the regional variability in displace-

ments and strains in DCM patients, observing larger deterioration in the septal wall

compared to the lateral wall. In fact, Young reported thinning and lengthening on

the septal wall during systole. Studies have also highlighted decreased LV torsion in

DCM patients284,42, which might also occur in the opposite direction compared to

normals184.

Heterogeneity appears to be a key feature in DCM, with regional variability reported

for myocardial perfusion116, systolic function166, asynchrony89 and myocardial work279.

In fact, these heterogeneities are likely linked to the increased myocardial oxygen con-

sumption reported in DCM52,126. Combined with the reduced external work observed

in DCM hearts5, cardiac mechanoenergetics have been identified as a major deter-

minant of the disease, with studies highlighting that DCM hearts fail to satisfy the

increased metabolic demand126. Elevated wall stress has also been recognised as an

important indicator of DCM related to increased oxygen consumption52 and regional

variations in wall motion abnormalities and contractility116,279,114.
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Figure 1.5 The effect of DCM on the pressure-volume loop. Dashed line shows the
normal relationship.

Due to the complex structure of the heart and specifically the multifactorial nature of

DCM, studies have investigated various aspects of the disease. At the cellular level,

lengthening and transverse slippage of myocytes result in ventricular dilation, while

interstitial fibrosis occurs in 20% of the tissue16. At the same time, a shift in the com-

position of myosin isoforms has been reported for DCM patients, which also correlated

with elevated circumferential stress95. From the coronary hemodynamics point of view,

24



1. Introduction

coronary flow is depressed in DCM resulting in reduced myocardial oxygen availabil-

ity171. Particular focus has been given in DCM intraventricular hemodynamics with

fluid dynamics models142 reporting blood vortices of low intensity in DCM cases19,34.

As diastolic vortices assist LV filling with minimal energetic or pressure cost, weaker

vortices significantly damage diastolic function in DCM148,19. Finite element models

have also been used to study the mechanics of DCM in mice190,47 and dogs272,201.

Omens190 and Costandi47 used these models to study chamber compliance and tissue

stiffness, suggesting that the changes in compliance and stiffness observed in DCM

could be in part responsible for the ventricular dysfunction in DCM hearts.

These studies have provided valuable insight into the changes in heart function and

anatomy in DCM patients, contributing to a better understanding of the disease.

Imaging studies have highlighted the LV dilation, reduction in ejection fraction and

hypokinetic wall observed in DCM, yet they lack the mechanistic interpretation of

these changes. On the other hand, studies aiming at linking the observed kinematics to

specific mechanisms are often based on rough estimates of wall stress206,89,284 or bulk

measures such as pressure-volume loops240,5, which cannot explain how abnormalities

in heart function can affect cardiac performance.

Mathematical modelling can be used to link specific mechanisms to corresponding

changes in cardiac function, by isolating the effect of individual parameters. Fur-

thermore, it can provide important metrics which would otherwise require invasive

measurements. Existing DCM cardiac models are limited and are usually restricted

to animal studies47,190 or in silico cases13,142. The development of comprehensive

patient-specific models could provide a better understanding of the effect of increased

stiffness, heterogeneity and mechanoenergetics, already identified as important features

of DCM. Furthermore, recent advances in medical imaging, such as the development

of 3D tagged MRI, offer a more detailed description of the heart kinematics, allowing

for improved accuracy in model personalisation and thus more reliable model outcomes

and interpretation.

1.3 Cardiac models

The cardiac cycle, which occurs 100,000 times per day, is actually based on very complex

physical phenomena which occur across various spatial and temporal scales. Therefore,

cardiac models of different focus have been developed, aiming to provide an under-

standing of the individual processes occurring during a heart beat. Spanning from

microscopic to macroscopic heart function, these models include descriptions of cellu-

lar mechanisms, tissue mechanics, blood flow and coronary flow. All these phenomena

are fundamentally interlinked, and thus models of coupled electromechanics and fluid-

solid interaction have been developed.
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1.3.1 Cardiac mechanics models

The manner in which the heart deforms, the tissue stiffness and the stress developed

over the cardiac cycle are all important determinants of heart function and pathology.

For instance, increased stiffness and stress, a common characteristic of diastolic dys-

function, are observed in many cardiac conditions (heart failure, DCM, hypertension,

etc). As a result, models of cardiac mechanics relying on the basic conservation laws

and principles of solid mechanics have been extensively employed for the study of heart

behaviour in health and disease. Through decades of valuable research effort, cardiac

mechanics have evolved drastically to incorporate realistic geometries and physiolog-

ically accurate constitutive behaviour. Owing to the development of finite elements

for solid mechanics and the increased availability of computational power, as well as a

plethora of experimental data on tissue behaviour, state of the art cardiac mechanics

models are now a powerful tool for studying heart function.

The work described in this thesis relies on heart mechanics for studying and under-

standing the mechanisms behind DCM. Due to the significant remodelling observed in

myocardial tissue in DCM patients as well as changes in tissue stiffness, cavity pressures

and wall stresses, cardiac mechanics provide a convenient framework for an assessment

of the disease.

1.3.1.1 Previous work on cardiac mechanics

Quantification of ventricular wall stress has been extensively studied, as stress is con-

sidered an important factor in cardiac pathophysiology. First attempts at quantifying

stress in cardiac mechanics started with the pioneering work of Woods in 1892275,

who modelled the heart as a thin walled sphere. Even though significantly simplified,

Woods’ model inspired further applications of Laplace’s law on thin walled spherical

heart models136, which identified ventricular size and shape as contributors to myocar-

dial performance27. Building on this approach, Sandler215 and Fry70 derived analytical

expressions for wall stress of a thin walled ellipsoidal heart model, providing a more

accurate geometric representation of the LV56.

Although these early heart models provided important insights into ventricular me-

chanics, they were unable to capture any transmural wall stress variation. Circum-

venting this issue, Wong and Rautaharju273 and Ghista75 modelled the left ventricle

as a thick walled ellipsoid, and estimated nonlinear stress distribution through the my-

ocardial wall. Mirsky160 extended this work to include transverse shear and bending

moments. Thick walled studies provided a notable improvement in describing heart

mechanics. Furthermore, they elucidated the importance of accounting for large defor-

mations162 and nonlinear constitutive laws161,165 in wall stress estimation, reporting a
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10-fold increase in endocardial stress compared to the result predicted by linear elas-

ticity161.

Increasing experimental data highlighted the material and geometric nonlinearities, het-

erogeneity and anisotropy of the heart, suggesting the need for an alternative solution-

approach. The advent of the finite element method (FEM) enabled more realistic

models, by allowing regional variations, more complex geometries and nonlinear con-

stitutive laws. In 1972, Gould et al 79 proposed a rotationally symmetric, isotropic 3D

finite element model based on a patient-specific geometry, which showed that stresses

are affected by variations in wall curvature - a result that could not be predicted by

simpler models. Pao et al. extended this work to allow for variable wall thickness

and reported a nonlinear stress distribution transmurally194. In parallel, Janz and

colleagues developed a series of finite element models, reporting significant effects of

heterogeneity111, nonlinear constitutive laws112 and large deformations113 on myocar-

dial mechanics. More realistic model conditions were considered by Heethaar et al.90,

who developed the first biventricular, non-axisymmetric, finite element model and re-

ported compressive stresses at the septal wall. Furthermore, Panda et al. examined

the influence of fibre orientation on an orthotropic finite element model193, observ-

ing a significant difference in stress distributions. These first FEM studies highlighted

the importance of geometry, fibre architecture and constitutive behaviour on cardiac

mechanics.

As experimental quantification of stress was deemed unreliable280, validation of these

models and further understanding of cardiac behaviour was sought through experi-

mental and mathematical studies of ventricular strain. A series of studies on biaxial

tests55,153,282 demonstrated the anisotropic behaviour of the tissue, while finite elements

and homogeneous strain theory were used to analyse the strain distributions153,154.

Particular attention was attributed in understanding the relation between fibre ar-

chitecture and myocardial deformation261, revealing that maximum epicardial strains

are observed in the fibre direction154 while maximum endocardial strains occur at the

cross-fibre direction189. Additionally, several studies hypothesised that the fibre distri-

bution is optimised to enable uniform fibre strain and stress distributions82,6,46 while

being energetically efficient259. Bovendeerd tested this hypothesis in a finite element

model and predicted a fibre configuration to uniformly distribute fibre stresses, which

compared well with experimental data22. The “optimality” hypothesis106 was also ex-

tended to suggest that the laminar heart architecture facilitates shear and thickening

during contraction. Specifically, Arts6 tested the hypothesis that laminae are aligned

with planes of maximum shear – a mechanism that would allow large shear strains

without similar increases in shear stress – predicting a sheet distribution matching well

with histological data.

Further experimental detail239,55,282 led to the development of more physiologically ac-
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curate finite element models. Several studies focused on the effect of fibre architecture

on mechanical response22, following Nielsen’s framework for incorporating the heart’s

fibrous structure into a finite element model177. Within this framework, a number of

trasversely isotropic and orthotropic constitutive laws were proposed82,44,170,98 which

significantly improved matching between model and experimental results188,183. Fur-

ther development in numerical methods and computational power allowed for more

accurate and efficient finite element models, which used refined260 or higher order

elements170 and included an accurate representation of both left and right ventri-

cles236.

Experimental studies also revealed the presence of residual stress and strain in the un-

loaded myocardium, since a radial cut causes a ring of tissue to open into an arc187.

Two- and three-dimensional strain measurements suggested the presence of a compres-

sive circumferential endocardial stress187,45 which could reduce the peak endocardial

stresses predicted by nonlinear models187 and a tensile epicardial stress. Costa et al. re-

ported a similar trend for fibre strains, while it has been hypothesised that the residual

stresses act to evenly distribute fibre stress across the myocardial wall82. Residual stress

is typically neglected in models of cardiac mechanics, due to the additional theoretical

considerations and assumptions required. Wang et al. used a modified constitutive law

accounting for residual stress, to investigate its effect, and reported a non-negligible

effect on the stress distribution during diastole263. This formulation, however, requires

an estimation of the reference / unloaded domain, which, in turn, introduces further

complexity and requires additional assumptions.

Finally, the latest advances in medical imaging, numerical techniques and cardiac mod-

els have made the creation of patient-specific mechanics models possible. Over the

last decade, models were significantly improved to include anatomically accurate ge-

ometries127,8,278, and personalised fibre distributions266. At the same time, boundary

conditions on the base268,266 and apex276 were prescribed directly from tagged and cine

MRI data, enabling a more accurate representation of individual cases. Furthermore,

model parameters were estimated by matching simulation results with data-extracted

deformation,266,265,278,73 providing a marked improvement when contrasted with ear-

lier parametrisation studies relying on bulk measures such as pressure-volume loops or

experimental data from excised myocardium.

Despite the remarkable advances made in the cardiac mechanics field since the early

work of Woods275, significant research effort is still required to improve model accu-

racy and enable safe assessment of cardiac pathologies. Unresolved modelling issues,

such as the estimation of the unloaded geometry, the degree of tissue compressibility

and the personalised fibre distribution, require further investigation and development

to enable improved model accuracy. Moreover, systematic investigation of parameter

identifiability complimenting patient-specific applications might be useful in ensuring
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reliable – and potentially clinically useful – parameters.

1.3.1.2 Passive constitutive laws

Early finite element cardiac models assumed linear elasticity111,79, a theory soon

deemed inappropriate for ventricular mechanics280. Uniaxial200 and biaxial tests55 on

isolated sections of ventricular myocardium showed a disproportionally rapid increase in

stress for large strains. Furthermore, morphological studies on tissue structure238,239,134

revealed a complex fibre architecture which significantly affects mechanical response57.

These experimental findings led to the development of a series of nonlinear, hyperelas-

tic constitutive laws, most of them defined with respect to a fibre-aligned coordinate

system in order to capture the dependence of strains on fibre orientation. Table 1.1

summarises some of the cardiac constitutive laws proposed and used throughout the

cardiac mechanics literature.

One of the first nonlinear constitutive laws used in cardiac models was an exponential

law proposed by Fung to model biological tissues71. Several transversely isotropic laws

were then developed which accounted for the fibrous structure of the myocardium282.

Humphrey proposed a transversely isotropic exponential law composed of matrix and

fibre terms104. Horowitz proposed a similar strain energy function incorporating further

structural detail100. The material parameters of Humphrey and Horowitz’s constitutive

laws were estimated based on data from biaxial tests. Experimental data were also

used to tune a transversely isotropic Fung type law proposed by Guccione82, which

was expressed with respect to strains in the fibre coordinate system.

Model Structure Par No Data Ref Year

Humphrey & Yin TISO 4 BA282 104 1987
Horowitz TISO 8 BA282 100 1988

Humphrey TISO 5 BA183 103 1990
Guccione TISO 5 ES154 82 1991
Lin & Yin TISO 4 MA 137 1998
Criscione TISO – – 49 2001

Costa ORTH 7 – 44 2001
Pole-zero ORTH 18 LV, BA229 169 2001

Kerckhoffs* TISO 4 BA183, PV178 119 2003
Holzapfel & Ogden ORTH 8 SH57, BA282 98 2009

Table 1.1 Table of sample of cardiac constitutive equations published and used
in the literature (Chabiniok et al.32). Abbrv: ISO=isotropic, TISO=transversely isotropic,
ORTH=orthotropic, UA=uni-axial, BA=bi-axial, MA=multi-axial, SH=shear, PV=pressure-volume,
ES=epicardial strains, LV=various literature values
*law also contains additional parameters for modelling tissue compressibility not included in the table

As more complete experimental data on myocardial tissue became available, models
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were able to better capture the complex constitutive behaviour of the heart. Trans-

versely isotropic models were replaced by structurally more accurate orthotropic mod-

els, as Dokos and LeGrice demonstrated that the orthotropy assumption is more suit-

able for the myocardial tissue134,57. The orthotropic extension of the Guccione law by

Costa et al. has been widely used to model the myocardial tissue44. Although charac-

terised as the more appropriate and robust constitutive law for the myocardial tissue

by Schmid et al.219, it is known to present parameter coupling due to its functional

form278.

Nash and Hunter circumvented this parameter coupling by introducing the orthotropic

pole-zero law which expresses the strain energy function as a sum of its individual

strain contributions170. In this formulation, the strain energy grows rapidly as the

strain approaches the limit in each axis, and the constitutive parameters are fitted

from uniaxial and biaxial data.

An alternative approach was to express the strain energy as a function of strain in-

variants. This approach was used by Humphrey who proposed a polynomial function

of two strain invariants and tuned the five material parameters based on biaxial tests

data103. Kerckhoffs et al. introduced a model involving invariants’ dependence as well

as a fibre strain dependence to account for the increased material stiffness in the fi-

bre direction119. Holzapfel and Ogden proposed a structurally based orthotropic law

based on invariants, which has been used extensively in models of cardiac mechanics.

The parameters were tuned based on existing data on shear and biaxial deformation98,

while parameter coupling is limited, due to its structural form as a sum of individual

strain contributions.

With a range of proposed cardiac constitutive laws, varying notably in structure, com-

plexity and function (as indicated in table 1.1), the choice of an appropriate constitutive

law is determined by the scope of each application.

1.3.1.3 Active constitutive laws

While the focus of this thesis is on the passive behaviour of the heart, the active com-

ponent is equally important, characterising ventricular contraction which drives the

cardiac cycle. Early models of myocardial contraction were based on the skeletal mus-

cle model by Hill94 and Huxley108. As more accurate experimental data and detailed

calcium models became available246, complex, biophysically based contraction models

were developed. Models of varying complexity are used nowadays, depending on the

needs of specific applications. Simple active tension models such as those proposed

by Kerchkoffs119 and Niederer175, aim to capture the basic characteristics of the me-

chanics of active contraction, namely the nonlinear development of active tension and

its dependence on sarcomere length and rate of extension. The comparatively small

30



1. Introduction

number of parameters, makes these models attractive for patient-specific applications

where limited data are available.

More complex models include a more detailed description of the cellular mechanisms

responsible for contraction258,269,182, by modelling the calcium concentration through

an ODE system. Active tension development is then related to fibre length and ac-

tivation level. The HTM model proposed by Hunter et al.105 has also been used in

patient-specific applications267,277. In the majority of these models, the active ten-

sion is incorporated into the three-dimensional heart model through the addition of

an active stress component along the fibre direction. Usyk254,255 also included trans-

verse components of the active stress tensor, following conclusions drawn from biaxial

experimental data.

1.3.1.4 Incompressibility/near incompressibility in cardiac mechanics

The myocardial tissue – like other muscle tissues – is traditionally considered incom-

pressible. The various components of the solid myocardium, along with the blood

flowing through it, are in fact incompressible materials281. At the same time, studies

have shown that the volume of the myocardium changes through the cycle due to the

extensive perfusion of blood through myocardial tissue. Based on their findings, the

vascular network – constituting 10 − 15% of the myocardial volume – is squeezed or

extended96,141 depending on the cardiac phase, leading to changes up to 5−10% in the

total myocardial volume64,110,115. Additionally, studies performed by Taber et al.244

suggest that assuming compressibility can better approximate the results from torsion

experiments in the myocardium.

As the degree and influence of compressibility on heart mechanics remains unclear,

this ongoing debate concerning the incompressibility of the myocardium is commonly

discussed78,281. Indeed, models representing the myocardial tissue as both compress-

ible119,254,255,78,88 and incompressible231,236,170,44,188 are found throughout the litera-

ture.

While the choice of modelling the cardiac tissue using incompressible or nearly incom-

pressible formulations is inherently based on tissue behaviour, it also relies on numerical

considerations concerning the scheme employed for enforcing incompressibility / near

incompressibility. A range of numerical schemes have been applied in heart models,

one of the most popular being the penalty method, which, however, is linked to lock-

ing phenomena. Mixed formulations such as the Lagrange multiplier (LM) and the

Perturbed Lagrangian (PL) methods are also commonly used in models of cardiac

mechanics, however, they incur larger computational cost due to the introduction of

additional variables. Nevertheless, the LM method is commonly employed to enforce

incompressibility in heart mechanics, as it provides an accurate and efficient option for
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the solution of moderate size problems.

1.3.2 Other types of cardiac models

1.3.2.1 Electromechanics models

An important component of the heart function is the electrical activation, responsible

for the myocardial contraction which drives the cardiac cycle. As electrical activa-

tion and tension generation are interlinked130,176 (tension depends on the current state

of deformation, and can alter calcium buffering which, in turn, affects tension gen-

eration), coupled electromechanics models have been developed which allow feedback

mechanisms between the electrophysiological and mechanical functions of the heart.

Tension is commonly expressed as a function of strain, strain rate, calcium concentra-

tion and electrophysiology state variables (see section 1.3.1.3), whose dynamics are in

turn expressed as ODE systems depending on transmembrane potential120,182.

Coupled electromechanics models are mainly categorised by their level of coupling. In

weakly coupled models256,221, the electrical activation is computed separately using

Eikonal mapping248 or the solution of mono- or bi- domain equations74. The electrical

activation time is then passed to an active tension model, which is used within the finite

element framework to provide tissue deformation. In strongly coupled models233,173, the

active tension, tissue deformation and electrical activation are solved simultaneously,

thus implicitly capturing feedback mechanisms between deformation and electrophysi-

ology, which weakly coupled models may neglect. This of course comes at an increased

computational cost for the strongly coupled models. Nevertheless, recent advances in

parallel implementation of finite element electromechanical models257,2 and increased

available computational power alleviate this issue.

1.3.2.2 Models of blood flow and fluid-solid interaction

The flow of blood through the heart is typically modelled using the Navier-Stokes

equations, assuming that, at the macro-scale, the blood is a Newtonian fluid. Several

models of blood flow have been proposed, using the finite difference58,197, finite vol-

ume212 or finite element53 solution methods and showing similar qualitative behaviour

to experimental data213,218. Recent advances have also enabled patient-specific blood

flow models53. These models however are limited, as increased interest in understand-

ing the interplay of mechanical energy between blood and tissue led to the development

of several fluid-solid coupled cardiac models.

Coupling blood flow and ventricular mechanics usually requires enforcement of kine-

matic and traction compatibility conditions on the endocardial boundary of the wall
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and cavity domains182. One of the first coupled fluid-solid heart models was the pi-

oneering work of Peskin and McQueen who used an immersed boundary method and

included both left and right ventricles and heart valves155,198. Following this approach,

Lemmon and Yoganathan created an idealised left heart model to study the blood

flow behaviour between left atrium and ventricle135. A series of finite element cou-

pled fluid-solid models were also developed, one of the first being the two-dimensional

model by Chahboune33. More detailed constitutive laws were used by Watanabe269,

while Cheng40 developed a more numerically rigorous fluid-solid LV model. Further

advances were introduced by Nordsletten181,182 and McCormick152 who incorporated

patient-specific geometries and anisotropic tissue constitutive laws on resolved non-

conforming computational grids. Recently, Gao et al. used the immersed boundary

method to develop a diseased LV finite element model which considered heterogeneous

material parameters72.

Fluid-solid interaction models provide quantitative information on blood flow patterns

within the LV cavity, assisting the study of valve-related cardiac conditions. Due to

low blood viscocity, shear stresses on the endocardial wall are small, hence traction

is predominately affected by intraventricular blood pressure. As spatial variation of

intraventricular pressure is small over the cardiac cycle62, ventricular mechanics are

not significantly affected by the blood flow distribution.

1.3.2.3 Coronary blood flow models

Coronary vasculature is intimately integrated into myocardial structure and function.

Recent advances in computational methods and medical imaging of coronary vascu-

lature91,235 have encouraged the creation of several models studying the mechanical

interaction between coronary flow and the myocardial wall. These include continuum

mechanics models, where the Navier-Stokes equations are solved on coronary vascular

meshes232,249. One-dimensional approximations107,234,232 are currently the preferred

approach, as they are able to capture the basic features while remaining computation-

ally tractable131. 3D models have also been developed and applied in patient-specific

applications249,271, but they are limited due to their high computational demands.

Finally, the poroelastic modelling approach was employed in order to capture phenom-

ena in the micro-circulation scale109,43,37,151. Replacing wall and fluid domains with

one complex structure, this approach can capture basic flow features and investigate

fluid-solid interaction without the need to consider individual vessels.

Coronary blood flow models provide valuable insight into the factors contributing to

coronary heart disease, the leading cause of death worldwide. While accounting for

the contribution of coronary blood flow might elucidate important aspects of transport

processes, in particular transport of metabolites, the impact of perfusion on ventricular
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mechanics is not yet well characterised.

1.4 Patient-specific models of cardiac mechanics

Recent advances in medical imaging, image analysis and computational methods have

driven the development of patient-specific cardiac mechanics models. Patient-specific

geometries, loading and boundary conditions are combined to provide a mathematical

representation of individual hearts. Patient-specific models hence allow the transition

from population-based theoretical studies to more physiologically accurate, personalised

investigations. This enables the estimation of clinically relevant metrics, otherwise

inaccessible in vivo, and provides a framework for personalised in silico tests of potential

treatments and outcomes.

1.4.1 Available clinical data

A variety of cardiac imaging techniques have been developed and evolved over the last

four decades. Offering detailed quantitative and qualitative information on the heart’s

structure and behaviour, cardiac imaging creates a reliable basis for patient-specific

modelling.

Echocardiography (simply referred to as echo) has been extensively used to capture

myocardial motion and hemodynamics. It is the most common diagnostic tool in cardi-

ology, providing a wealth of information on heart’s morphology, efficiency and potential

damage or pathology. Due to its nonivasive, risk-free nature combined with its low cost

compared to CT or MRI, echocardiography is routinely used in clinical practice, de-

spite its low signal-to-noise ratio and limited image quality. Multiple studies have

used echo data to study heart function, personalise geometries1 and compute cavity

volumes throughout the cycle124. Furthermore, the development of speckle tracking

echocardiography157,48 has enabled quantification of regional cardiac motion and tis-

sue deformation.

Cardiac CT has also been used to provide detailed, high resolution images of the heart.

In several cases, an iodine-based contrast dye is used to highlight blood flow, resulting

in accurate images of the heart morphology. Cardiac CT is often recommended to assist

the diagnosis of coronary heart disease, pulmonary embolism, or general problems with

heart function. CT images have been used to provide personalised geometries for

patient-specific models159,124, while automatic tracking algorithms have been applied

to provide the endocardial and epicardial motion throughout the cardiac cycle199. The

use of CT for research purposes and wider use in the clinic is restricted by the radiation

risks associated with this modality.
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Cardiac MRI is increasingly used in research and clinical practice to acquire high res-

olution and accurate images of the heart. Combined with ECG synchronisation, it

provides detailed static and dynamic images of the heart throughout the cardiac cy-

cle. More sophisticated techniques such as cine MRI253, steady-state free precession

(SSFP) cine sequences217 offer more detailed dynamical and morphological character-

istics. Due to the sufficient contrast between tissues, cine MRI provides information

on tissue characteristics such as scar and fibrosis. Used together with automatic track-

ing algorithms which accurately extract the motion of myocardial surfaces during the

cardiac cycle, cardiac MRI has gained significant popularity in cardiology and cardiac

mechanics community266,276. As opposed to CT, it is not harmful, yet it requires long

acquisition times and is more expensive than echo and CT.

Although cardiac MRI and tracking algorithms can provide detailed information of

the endocardial and epicardial motion, limited information is available on through-wall

motion, torsion or shear effects. The development of tagged MRI (SPAtial Modulation

of Magnetisation, SPAMM)289,11,205 has addressed these issues. Enabling the detailed

assessment of regional cardiac motion in vivo, tagged MRI reveals local characteristics

such as wall thickening, torsion and shear. The technique is based on a periodic satura-

tion of magnetisation within the heart wall resulting in a set of dark lines (signal void)

which deform with the myocardial wall. The motion and deformation of the heart wall

can then be reconstructed through tracking of the tag grid using mainly harmonic phase

analysis (HARP)191,192,7, or image registration methods285,225. The translation from

2D to 3D tagging techniques211 has enabled a direct extraction of full 3D displacement

field of the myocardium leading to simultaneous quantification of radial, circumferential

and longitudinal motion225,192. This technique, along with cine MRI will be discussed

further in the following chapters, as the personalised models developed in this thesis

are based on cine and tagged MRI data.

Another MRI technique is Diffusion Tensor MRI (DTMRI). DTMRI relies on the dif-

ferent diffusion properties of water into different structures (tissue, bone, etc) to reveal

the fibrous and laminar structure of the heart. This non-invasive technique has started

to gain popularity after exhibiting good matching with experimental data, both ex

vivo 208 and in vivo 251.

Additionally, MRI can provide a detailed quantification of blood flow through the

valves and ventricles. Recent advances in 3D velocity encoding and 4D Phase Contrast

MRI (4D PCMRI)252,14 have enabled a comprehensive characterisation of blood flow

patterns and potential abnormalities. 2D PCMRI has also been used to provide a quick

characterisation of unidimensional flow through mitral and aortic valves and the main

vessels.

Complimenting the wide variety of imaging data, ventricular pressure is a critical de-

terminant of cardiac function and as such is often recorded through catheters. Due to
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the invasiveness of this procedure, alternative techniques have been devised such as em-

pirical curves which provide estimates of the end-diastolic pressure122 or the pressure

trace throughout the cycle210. End-diastolic pressure can also be estimated through

measurements of the early diastolic velocity of the flow through the mitral valve and

velocity measures in the mitral valve plane167. 4D PCMRI data have been combined

with modelling to provide intraventricular pressure gradients125. Relative pressure can

also be assessed through microbubble-based ultrasound contrast agent51. Moreover,

transformation functions applied on radial artery pressure provide estimates of cen-

tral blood pressure117, which in turn provides an estimate for systolic intraventricular

pressure.

1.4.2 Model personalisation

1.4.2.1 Personalised geometry

The wide range of clinical data has served as a basis for the creation of patient-specific

finite element LV models. The most common use of imaging data in modelling studies

is towards the personalisation of the model geometry. Echocardiography60, CT159 and

MRI9 images have been used in many patient-specific models. Commonly, manual or

automatic segmentation63,290 of the end-diastolic frame provides a mask which is then

processed in meshing software127 to provide the final patient-specific mesh. Incorpo-

rating personalised geometries is crucial for accuracy, as wall curvature79, thickness194

and cavity volume have a significant effect on cardiac behaviour and pathophysiol-

ogy. The recent advent of DTMRI has also enabled the construction of personalised

fibre distributions which have been incorporated in patient-specific meshes266. An al-

ternative approach is the use of statistical atlases for both the geometry99 and fibre

distributions76, for the creation of personalised geometries.

1.4.2.2 Personalised boundary conditions

Clinical data also assist in model personalisation by providing appropriate boundary

conditions for the finite element model. The choice of boundary conditions is a crucial

but challenging step in model development, as the heart is not isolated in the human

body but instead constrained by the surrounding organs, diaphragm and large ves-

sels. Boundary conditions are usually applied on the endocardial, epicardial and basal

boundaries of the LV model.

Traditionally, endocardial boundary conditions are responsible for driving diastolic

simulations. Most commonly, pressure measurements are applied on the endocardial

boundary to simulate diastolic filling266,276. Data-derived volume trace has also been

used as an endocardial boundary condition to drive the LV simulation through the whole
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cycle9,85. Volume and flow data are also used as boundary conditions on Windkessel

models, which provide a representation of the systemic and pulmonary circulations and

in turn can act as boundary conditions for the LV model269,121.

Epicardial and basal boundary conditions have been used to incorporate data-derived

motion into the model. These can be applied through Dirichlet boundary conditions,

however, strict enforcement of the boundary condition might yield hydrostatic pressure

singularities or unphysiological stresses. Recently proposed basal boundary conditions

which are based on weak enforcement of data constraints through Lagrange multipliers

have provided promising results, restricting localised stress and pressures peaks9.

1.4.2.3 Parameter estimation

A critical step in model personalisation is the estimation of model parameters based

on the available clinical data. This process is essential as it enables the best match

between the model and the data, making the model a more accurate representation

of the data and thus more reliable. Moreover, it allows the quantification of model

parameters which are often linked to cardiac behaviour and can be used as clinical

biomarkers of health or disease.

The main idea is retrieving the parameter set that minimises a metric of “difference”

or “distance” between the model-predicted outcome and the available data. Different

approaches have been used, depending on the data available in each application. Wang

et al. estimated passive parameters by matching end-diastolic volume between model

and data268, while Asner et al. used the cavity pressure to estimate passive and active

parameters throughout the cardiac cycle9. The transition from bulk metrics, such as

cavity pressure and volume, to more detailed metrics, such as tissue displacement and

strain, allowed for more accurate parameter estimation. Gao et al. estimated pas-

sive parameters combining information from volume measurements and circumferential

strains from short-axis cine MRI73. Chabiniok et al. estimated tissue contractility

in multiple regions based on the extracted motion of the endocardial and epicardial

surfaces from cine images30. 2D tagged MRI were also used in parameter estimation

applications, offering detailed information on regional motion221,266. The transition to

3D tagged MRI has enabled an accurate whole-heart 3D deformation field, creating

an ideal setting for estimation of model-based parameters using tissue displacement

observations278,277,8.

Various methodologies have been proposed for parameter estimation, including varia-

tional186,241,276 approaches which usually involve iterative processes such as SQP10,266,

adjoint methods223, or similar nonlinear least square methods262. Filtering assim-

ilation approaches have also been used in cardiac mechanics. These incorporate

information regarding measurement noise and model error in the estimation pro-
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cess163,164,276,274,140.

1.4.3 Challenges of patient-specific modelling

Patient-specific cardiac models have evolved dramatically in the last few decades, and

are now able to incorporate accurate geometries, data-derived boundary conditions

and personalised model parameters. Nevertheless, particular modelling aspects remain

unclear and require further investigation and improvement.

1.4.3.1 Parameter identifiability

Naturally, the main difficulties of patient-specific modelling stem from the complexity

of the cardiac motion. The nonlinear behaviour of the tissue, combined with the highly

interlinked complex processes occurring during a cardiac cycle, make an accurate rep-

resentation of the heart behaviour a challenging task. The detailed experimental data

available today have enabled the development of several passive and active constitutive

laws that are able to capture the basic characteristics of the heart behaviour. Further-

more, in order to decrease the inevitable error between model and data, more complex

constitutive laws need to be employed which naturally increase the computational cost

of the problem.

The choice of constitutive laws becomes more elaborate when model parameters are also

of interest. These are often related to physical properties of the heart, such as stiffness

or contractility, and can therefore be used as clinical biomarkers of disease264,30. As a

result, there is a strong need for reliable parameter estimates, an issue which depends

on both the underlying cardiac constitutive model as well as the available clinical

data. Clearly, as the model complexity and number of parameters increase to better

approximate tissue behaviour, estimating model parameters uniquely and accurately

becomes an increasingly challenging task278. This raises the important question of

structural identifiability for the various constitutive laws, i.e. whether it is possible to

uniquely determine parameter values, given infinite well-defined noise-free data41,203.

Structural identifiability is a property of the model itself and does not depend on the

available data. It can be compromised by coupling between model parameters and

nonlinear dependence of the model on the parameters. Lack of structural identifiability

hinders the ability of any data assimilation method to accurately estimate parameter

values.

In a clinical setting, the estimation process is further compromised by limited data

resolution and quality, leading to the issue of practical identifiability, i.e. whether

we can determine unique parameter estimates given a particular type of data214. The

absence of structural or practical identifiability in a cardiac law given a set of data
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leads to unreliable parameter estimates which can no longer provide clinically relevant

information. The choice of an appropriate cardiac constitutive law should therefore

balance the need for model fidelity, i.e. the ability of the model to accurately represent

cardiac function, with the requirement for reliable, identifiable parameters.

1.4.3.2 Reference configuration

Another challenging aspect in building personalised heart models is the choice of the

reference domain. Even though no stress-free state of the heart exists during the cardiac

cycle, a common approach is to assume one from the observed motion states266,278.

Attempts have been made to estimate the reference state – or unloaded geometry –

usually based on assumptions regarding the constitutive law, parameters, boundary

conditions, end-diastolic pressure, etc 277,124,263. The estimated reference domain is

therefore dependent on the assumptions which might in turn affect the estimated model

parameters, model deformation and response. Through consideration of different data

frames as reference domain, the effect of this assumption on the parameter identifiability

and estimates can be assessed.

1.4.3.3 Data integration

The available clinical data provide the opportunity for model personalisation, yet their

integration into cardiac models requires careful consideration and processing. A dif-

ficulty arises from potential inconsistencies between available imaging modalities, in-

troducing the need for their spatio-temporal registration. Additionally, data often

suffer from noise or artefacts due to patient’s motion or breathing and are likely to be

further compromised by processing artefacts. Incorporating incomplete / noisy data

into the model using commonly employed boundary conditions often results in non-

physiological outcomes. This issue can be alleviated through the use of appropriate

boundary conditions9, essentially relaxing the data constraint and avoiding strict ad-

herence to non-physiological data.

1.5 Thesis outline

This thesis is divided into two main parts. Part I deals with theoretical considerations

and in silico tests, performed to assist the choice and development of a patient-specific

cardiac mechanics model, which can be customised in an optimal way using the available

medical data. Part II extends the developed personalised model to in vivo applications,

where the proposed pipeline is tested.
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Chapter 2: The objective of this chapter is to briefly present the fundamental math-

ematical and engineering background necessary for the derivation of the mechanical

heart model. The basics of finite elasticity – within which cardiac mechanics are stud-

ied – are presented, along with the Galerkin finite element method, employed for the

solution of all mechanical tests throughout this thesis.

Chapter 3: The degree of compressibility as well as the solution approach for enforcing

it are unresolved issues in heart modelling. This chapter aims to analyse and compare

solution approaches for enforcing incompressibility / near-incompressibility in cardiac

mechanics. Commonly used methods (penalty and Lagrange multiplier methods) along

with a modified displacement-only formulation are compared in terms of accuracy and

efficiency. The modifications introduced in the latter approach to enhance its efficiency

are also presented.

Chapter 4: The choice of a suitable constitutive law is of particular importance for

personalised cardiac mechanics. Focusing on the need for a constitutive law which

provides a balance between model fidelity and parameter identifiability, this chapter

compares the identifiability of various cardiac constitutive laws, when the available

data source is 3D tagged MRI. The considered models are also compared with respect

to their ability to accurately capture heart behaviour, resulting in identifying a model

that combines these basic requirements.

Chapter 5: Applying the modelling considerations investigated in previous chapters,

this chapter describes the pipeline followed for the development of personalised models

for the study of DCM. Emphasis in this chapter is placed on optimising the use of the

available data through the choice of appropriate boundary conditions while ensuring

reliable estimation of passive parameters.

Chapter 6: The aim of this chapter is to test and validate the proposed pipeline.

Of interest are modelling attributes that can improve model accuracy and parameter

identifiability in vivo, mainly the assumed fibre distribution and the employed boundary

conditions. Systematic investigation of these modelling aspects over several volunteers

and patients enables an accurate assessment of their effect, and examines the robustness

of the pipeline.

Chapter 7: This chapter focuses on comparisons between DCM patients and normals.

Initially, data-derived metrics are compared over the two groups. Of particular impor-

tance are model passive parameters, and their variation in patients and normals. Ad-

ditional insight is obtained through examination of regional strain distributions.

Chapter 8: The work presented in this thesis is summarised in the last chapter, where

directions for future research are discussed. Emphasis is on utility of the personalised

models considered in improving our understanding of DCM.
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Model Development
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2 Finite element cardiac models

Mathematical modelling is a powerful tool for studying and understanding the complex

biological processes occurring during the cardiac cycle. Based on fundamental laws of

physics as well as empirical knowledge of myocardial behaviour, mathematical cardiac

models provide a simplified – yet quantifiable – representation of heart function. The

framework in which models of cardiac mechanics models are developed and studied is

continuum mechanics, where continuum representations of fundamental quantities and

conservation laws are used to characterise myocardial function.

This chapter presents the derivation of a continuum mechanics cardiac model – solved

using the Galerkin finite element method – which will be used throughout the thesis

as a basis for studying the behaviour of the heart. Building on the generic frame-

work presented in this chapter, personalised cardiac mechanics models will be used to

analyse the differences in function and behaviour between DCM patients and healthy

volunteers.

Initially, a description of a model problem is presented (section 2.1), to assist the deriva-

tion of the equations governing cardiac mechanics. Section 2.2 provides a brief overview

of important kinematic quantities, which are utilised in the definition of conservation

laws, governing the behaviour of the mechanical system (section 2.3). Deformation

and strain metrics are also essential for the characterisation of the passive myocardial

behaviour, through hyperelastic constitutive laws (section 2.4). Owing to the material

and geometrical nonlinearities of the cardiac mechanics problems considered through-

out this work, the finite element method is employed for the their solution. Within

the finite element framework, the governing equations are recast in their weak forms

(section 2.5), while geometry and primary variables are approximated by their finite-

dimensional variants (section 2.6). The mechanics problems considered in this thesis

are solved using the software package, CHeart (section 2.7).
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2. Finite element cardiac models

2.1 Preliminaries

In this section, we consider the motion of a body, under the action of certain loading

constraints (Fig. 2.1). The description of this model problem will be used throughout

the chapter for the study of kinematics, and conservation principles.

←

Figure 2.1 The reference (Ω0) and deformed (Ω) domains under consideration. Γ =
ΓD∪ΓN represent the boundaries in the deformed domain, subject to Dirichlet (g) and
Neumann (traction t) conditions, respectively.

The body under consideration is initially defined by the reference domain Ω0, and

initial coordinates X ∈ Ω0. At time t, as the body deforms, it can be described by its

physical domain Ω(t), using the coordinates of its current position x. The displacement

or deformation of the body can then be obtained as u = x −X. The motion of the

body through the time interval I = [0, T ] can be expressed mathematically through a

bijective mapping φ,

φ : Ω0 → Ω(t), x = φ(X, t), ∀X ∈ Ω0, ∀t ∈ I, (2.1)

which maps points in the undeformed domain to their position in the deformed domain.

Additionally, the mapping is defined so that regions on the reference boundary (Γ0 =

ΓD0 ∪ ΓN0 ) are mapped to regions on the physical boundary (Γ = ΓD ∪ ΓN ).

The body deforms under the action of a body force f : Ω → Rd, d ≥ 1, per unit

volume, some boundary traction t : ΓN → Rd, per unit area and a Dirichlet boundary

condition, such that u = g|ΓD . Here, d is the spatial dimension of the body, which

for the remaining chapter is assumed d = 3, as mainly 3-dimensional problems are

considered throughout this thesis.

Most quantities in models throughout the work presented are described with respect to

the undeformed domain X, although in certain cases – where convenient – quantities

are expressed with respect to the physical domain. A function f : Ω0 → R, can be
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represented on the deformed domain Ω(t) as:

f̂ : Ω(t)→ R, f̂(x, t) := f(X, t) = f(φ−1(x), t), ∀x ∈ Ω, ∀t ∈ I. (2.2)

For convenience, functions in the deformed domain are denoted by their notation in

the undeformed domain (i.e. f instead of f̂).

The standard mathematical notation is used throughout the thesis to describe vectors,

vector spaces, tensors and operations21,202,25. For example the usual definitions are

used for the Lp and Sobolev function spaces38,202, where for x ∈ Ω the Lp function

space is defined as:

Lp(Ω) =

{
h :

∫
Ω
|h(x)|p dv <∞

}
, 1 ≤ p <∞, (2.3)

and the Sobolev space is defined as:

W 1,p(Ω) =

{
h ∈ Lp(Ω) :

∂h

∂xi
∈ Lp(Ω), 1 ≤ i ≤ 3

}
. (2.4)

Furthermore, considering two column vectors a ∈ R3 and b ∈ R3, the dyadic21 or outer

product a⊗ b which transforms the vectors to a tensor field, is written as:

a⊗ b = baT , (a⊗ b)ij = ajbi, i, j ∈ [1, 3]. (2.5)

Similarly, the Hadamard product or double contraction21 of two tensors A ∈ R3×3 and

B ∈ R3×3 which transforms tensors to a scalar value, can be expressed as:

A : B = tr(ATB) = tr(ABT ) =

3∑
i,j=1

AijBij . (2.6)

2.2 Kinematics

Continuum mechanics can be used to characterise the motion of the body in section 2.1,

through time and space. Mathematical characterisation of motion through different

deformation and strain metrics is essential for cardiac mechanics, as kinematics are

utilised in conservation laws and stress characterisation.

In order to quantify deformation, it is important to consider the change in infinitesimal

vectors, which can be obtained using the deformation gradient F . The deformation

gradient21 is the spatial gradient of mapping φ, and is defined as:

F =
∂φ

∂X
=

∂x

∂X
= ∇Xu+ I, (2.7)
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where ∇X denotes differentiation with respect to the undeformed domain. The defor-

mation gradient can map infinitesimal vectors in the reference domain into infinitesimal

vectors in the physical space (dx = F dX), characterising the change in their length

and direction.

F can also be used to relate infinitesimal areas and volumes in the undeformed domain

to their deformed equivalents, since infinitesimal areas and volumes may be expressed

by operations on infinitesimal vectors. Accordingly, undeformed area dA = dA N can

be related to the deformed area da = da n, using Nanson’s formula168:

da = JF−TdA, (2.8)

where N and n are the undeformed and deformed normal vectors to the surface, re-

spectively. Similarly, local volumes before and after deformation can be related using

the determinant of the deformation gradient (J = detF ):

dv = J dV, (2.9)

where dV and dv are infinitesimal volumes in the reference and deformed domain,

respectively. Based on this expression, if the mapping φ conserves volume (i.e. dv =

dV ) it follows that J = 1. Therefore, the constraint J = 1 needs to be satisfied in

incompressible materials.

In order to determine strain, it is essential to consider the change in length of an

infinitesimal vector. The length of the deformed vector dx can by obtained by:

||dx||2 = dxTdx = (F dX)T (F dX) = dXTF TF dX = dXTCdX (2.10)

where C is the right Cauchy-Green deformation tensor, relating squared lengths before

and after deformation. Similarly, the left Cauchy-Green deformation tensor is defined

as B = FF T .

Strain can then be expressed as the change in squared lengths:

1

2
(dx · dx− dX · dX) = dX ·EdX, E =

1

2
(C − I), (2.11)

where E is the Lagrangian or Green strain tensor.

The internal forces in a body are assumed to be dependent on the distance between

particles. Therefore, deformation and strain metrics form the basis for the develop-

ment of several constitutive laws describing the relation between stresses and internal

kinematics in solid mechanics21,168.
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2.2.1 Invariants

When considering constitutive laws (introduced in section 2.4.2), it is often convenient

to express their functional form with respect to principle invariants of deformation and

strain metrics, which do not change under coordinate rotation (objectivity). The first

three invariants of a general matrix A ∈ R3×3 are defined as:

IA := A : I = tr(A) (2.12)

IIA := A : A = tr(ATA) (2.13)

IIIA := det(A) (2.14)

For isotropic hyperelastic materials, constitutive laws can be expressed solely as a

function of invariants21. Invariants can also be used for the formulation of constitutive

laws for anisotropic materials such as the cardiac tissue (as will be discussed in section

2.4.2), even though additional information is usually incorporated to include the effect

of the tissue microstructure.

2.2.2 Isochoric variants

When dealing with incompressible and nearly incompressible materials, it is advisable

to separate the volumetric and distortional / isochoric components of deformations,

as this decoupling facilitates characterisation of constitutive behaviour. It is therefore

common, to express constitutive laws as a function of the isochoric definitions of the

deformation gradient and the right Cauchy-Green deformation tensor:

F̂ = III
−1/3
F F = J−1/3F , Ĉ = III

−1/3
C C = J−2/3C. (2.15)

which ensure that the isochoric components F̂ and Ĉ are invariant to volume change

(i.e. det(F̂ ) = 1). The invariants of F̂ and Ĉ can consequently be expressed as:

IF̂ = J−1/3IF , IIF̂ = J−2/3IIF , IIIF̂ = 1, (2.16)

IĈ = J−2/3IC , IIĈ = J−4/3IIC , IIIĈ = 1. (2.17)

2.3 Stress equilibrium and conservation laws

Having defined the kinematic framework, necessary for finite deformation analysis, the

next step is to consider the fundamental physical principles governing the behaviour

of material bodies. Conservation laws provide a mathematical description of physical
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laws, enabling quantitative analysis of material behaviour. For instance, the continuum

equations describing the deformation of a body are based on the conservation of mass

and momentum. Before considering these equations, it is essential to define stress

tensors and their importance in governing equations.

2.3.1 Stress tensors

A central concept in solid mechanics is the Cauchy stress tensor, a key component

in conservation laws of linear and angular momentum. The Cauchy stress tensor, σ,

describes the force per unit deformed area acting on an infinitesimal surface in the

deformed domain. The Cauchy stress tensor transforms a normal to a surface vector n

into the traction t applied on that surface21:

t = σ · n, (2.18)

where σ, t and n are defined with respect to the current configuration. As will be dis-

cussed in section 2.3.4, σ is required to be a symmetric tensor, to enable conservation

of angular momentum. Unlike the kinematic quantities introduced in the previous sec-

tions, the Cauchy stress tensor is dependent on the material and is commonly expressed

through constitutive relations which are empirically driven.

However, the determination of the Cauchy stress tensor using experimental data is

a challenging task as it involves knowledge of the exact geometry of the deformed

domain. To circumvent this issue, alternative stress measures have been introduced

to allow for characterisation of the material behaviour with respect to its undeformed

geometry. These mainly include the first and second Piola-Kirchhoff stress tensors,

defined respectively as:

P = JσF−T , S = JF−1σF−T . (2.19)

The first Piola-Kirchhoff stress tensor relates area vectors in the undeformed domain

to their corresponding force vectors after deformation. On the other hand, the sec-

ond Piola-Kirchhoff stress is a purely material tensor, representing the force per unit

undeformed area, acting on an infinitesimal surface in the undeformed domain. Note

that, due to the dependence of P on F , symmetry of σ does not guarantee that P

is symmetric, while S maintains the symmetry of the Cauchy stress tensor. Similarly,

defining S to be symmetric ensures symmetry of the Cauchy stress tensor, whereas if

P is symmetric, careful consideration is required to ensure symmetry of σ 146,21.
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2.3.2 Mass conservation

The conservation of mass is a balance law for the mass density, ρ. For problems

of continuum mechanics assuming incompressibility, mass can neither be created nor

destroyed while the body deforms:∫
Ω0

ρ0 dV =

∫
Ω
ρ dv =

∫
Ω0

Jρ dV, (2.20)

where ρ0 and ρ are the densities of the undeformed and deformed bodies, respec-

tively168. Therefore, assuming ρ is a spatiotemporal constant (ρ = ρ0), the mass

conservation can be expressed simply by the incompressibility constraint, i.e.:

J − 1 = 0, ∀X ∈ Ω0. (2.21)

2.3.3 Conservation of linear momentum

Conservation of linear momentum is a generalisation of Newtonian mechanics. Consid-

ering an arbitrary volume Ω′ in the body in Fig. 2.1, the sum of all forces acting on

the body should equal the rate of change of the total linear momentum:∫
Γ′
t da+

∫
Ω′
f dv =

∂

∂t

∫
Ω′
ρv dv, (2.22)

where v is the velocity vector and Γ′ is the boundary of the domain Ω′. Models of

cardiac mechanics commonly assume quasi-static elasticity231,276,266. The assumption

of quasi-static elasticity, also employed here, neglects momentum effects based on the

fact that inertial effects are small relative to stress and body force terms. Hence,

assuming the body is under static equilibrium, using Cauchy’s formula (Eq. 2.18) and

Gauss theorem,∫
Γ′
t da+

∫
Ω′
f dv = 0⇔

∫
Γ′
σ · n da+

∫
Ω′
f dv = 0⇔∫

Ω′

(
∇x · σ + f

)
dv = 0.

(2.23)

Taking the limit of the volume of Ω′ to zero, Eq. 2.23 should hold point-wise:

∇x · σ + f = 0, ∀x ∈ Ω. (2.24)

This expression, also known as the conservation of linear momentum under static equi-

librium, or Cauchy’s first law of motion, governs most systems in continuum mechan-

ics.
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2.3.4 Conservation of angular momentum

Another important conservation law governing the behaviour of mechanical systems is

the conservation of angular momentum. For any closed system, the sum of moments of

all body and traction forces about any arbitrary origin must be zero. It can be shown21

that as long as linear momentum is conserved, rotational equilibrium depends only on

the symmetry of the Cauchy stress tensor,

σ = σT . (2.25)

Even though the form of the Cauchy stress tensor is commonly experimentally deter-

mined, its functional form is typically restricted to guarantee symmetry. Consequently,

conservation of angular momentum is satisfied simply through satisfaction of the linear

momentum conservation and symmetry of the constitutive law.

2.4 Constitutive laws and hyperelasticity

The myocardial tissue is most often modeled as an anisotropic hyperelastic material.

The choice of anisotropic consitutive laws, is based on experimental data showing a

different tissue response in different material axes55,282. Furthermore, the assumption

of hyperelasticity is based on the strong elastic response of the tissue112. It should be

noted that, although the myocardial tissue also exhibits viscoelastic behaviour55, this

effect is not accounted by the models in this work, due to modelling challenges and

absence of accurate experimental data.

This section deals with hyperelastic solids and presents the constitutive laws used

throughout this thesis.

2.4.1 Hyperelastic solids

Hyperelastic materials are a special case of elastic materials, in which the material

response can be represented by a stored strain energy function146, Ψ : R3×3 → R. The

second Piola-Kirchhoff stress tensor is then derived from the strain energy function,

as21,146:

S = 2
∂Ψ

∂C
=
∂Ψ

∂E
. (2.26)

The strain energy function Ψ is usually expressed as a function of basic deformation

and strain tensors (F , C, B, E) to account for the tendency of the material to return

to its undeformed state after applied loading is removed. As the strain energy function

represents the amount of energy needed to deform the material to a given state, it
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is restricted to positive values (Ψ ≥ 0). Further, under no loading the body should

be stress-free, implying that Ψ = 0 at the undeformed geometry. In practice, this

condition is not always satisfied due to residual stresses observed in several biological

tissues including the myocardium187.

For the case of incompressible or nearly incompressible materials, the strain energy

function is often expressed as a sum of a deviatoric (Ψd) and a volumetric energy U

component. As will be discussed in chapter 3, different approaches have been proposed

to deal with incompressible and nearly incompressible materials. For the remaining

of this chapter, the myocardial tissue is assumed to be incompressible and the incom-

pressibility constraint is enforced through a Lagrange multiplier, p:

Ψ = Ψd + U = Ψd + p(J − 1), (2.27)

where the multiplier p is referred to as the hydrostatic pressure. The Cauchy stress

tensor in this case can be expressed as21:

σ = σd + pI = 2J−1F
∂Ψd

∂C
F T + pI, (2.28)

where σd is the deviatoric Cauchy stress component, Sd = 2∂Ψd
∂C , and σd was derived

using Eq. 2.19.

Details on the Lagrange multiplier method and other formulations for enforcing incom-

pressibility / near incompressibility can be found in chapter 3.

2.4.2 Cardiac constitutive laws

The majority of the mechanics problems considered in this work are heart models,

thus, only three-dimensional hyperelastic constitutive laws are presented in this section.

The hyperelastic constitutive laws are presented through their deviatoric strain energy

functions and stresses, as discussed in section 2.4.1. It should be noted, however, that

some of the constitutive laws presented in this section are not defined as functions of

isochoric quantities and are thus not fully deviatoric (though often the introduction of

a hydrostatic pressure is still applied).

Perhaps the simplest hyperelastic law is the neo-Hookean law, an extension of Hooke’s

law in finite elasticity. This well-known isotropic law has also been employed in cardiac

models40. The deviatoric strain energy function Ψd for an incompressible neo-Hookean

material is defined as:

Ψd =
µ

2
(IĈ − 3), (2.29)

where µ is the stiffness of the material, analogous to the shear modulus of linear elas-

ticity and IĈ is the first invariant of Ĉ (Eq. 2.17). The deviatoric Cauchy stress can
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then be expressed as:

σd =
µ

J
(B̂ −

IĈ
3
I). (2.30)

Despite the simplicity of the neo-Hookean law which makes it an attractive option, it is

rarely used in cardiac mechanics. The majority of cardiac constitutive laws are defined

with respect to myocardial architecture to account for the anisotropic nature of the

heart tissue. This is commonly achieved by defining the continuous fibre, sheet and

sheet-normal fields throughout the heart177. The constitutive laws can then be written

with respect to strains and deformation in the fibre-oriented coordinate system which

is aligned with the fibre f0, sheet s0 and sheet-normal n0 unit vectors. Introducing the

orthonormal transformation matrix,

Q = (f0, s0,n0), (2.31)

and its inverse, enables transformation of quantities defined in the local microstructure

directions to their equivalent quantities in the Cartesian coordinate system and vice

versa. The introduction of the fibre-oriented system and transformation matrix provides

a convenient way for defining constitutive laws based on the observed deformations with

respect to myocardial architecture.

Following this approach, the well-known transversely isotropic exponential law by Guc-

cione82 et al. is defined with respect to a fibre-oriented Green-Lagrange strain tensor

EF :

EF = QTEQ =

 Eff Efs Efn

Esf Ess Esn

Enf Ens Enn

 . (2.32)

The strain energy function is then defined as:

Ψd =
1

2
C(eQ − 1), Q = (a ◦EF ) : EF =

∑
i,j∈[1,3]

(aijEij)Eij , (2.33)

where a is a matrix of constants describing the degree of anisotropy in each compo-

nent:

a =

 bf bfs bfs

bfs bt bt

bfs bt bt

 .

The deviatoric Cauchy stress tensor can then be derived as described in Appendix B,

as:

σd =
CeQ

J
FQ(a ◦EF )QTF T . (2.34)

The Guccione law has been used extensively in models of cardiac mechanics, due to its

relatively small number of parameters and its ability to reproduce cardiac behaviour.
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However, due to its functional form, the parameters are strongly coupled.

An alternative approach is the structurally-based orthotropic model proposed by

Holzapfel and Ogden98. Its functional form as a sum of individual strain invariants’

contributions, leads to less coupling between the passive parameters. The deviatoric

form of the strain energy function is defined as:

Ψd =
a

2b
{exp[b(IC − 3)]− 1}+

af
2bf
{exp[bf (ICf − 1)2]− 1}

+
as
2bs
{exp[bs(ICs − 1)2]− 1}+

afs
2bfs

[exp(bfsI
2
Cfs

)− 1],
(2.35)

where a, b, af , bf , as, bs, afs and bfs are positive material parameters, associated with

the tissue bulk (a and b) and microstructural (af , bf , as, bs, afs and bfs) behaviour.

In this definition ICf = C : f0 ⊗ f0 = f0 · (Cf0), ICs = C : s0 ⊗ s0 = s0 · (Cs0) and

ICfs = C : f0 ⊗ s0 = f0 · (Cs0) denote invariants associated with the fibre, sheet and

cross-fibre directions, respectively. It should be noted that the invariants ICf and ICs

are only included in the computation of the strain energy if they are larger than 1 (i.e.

if ICf > 1 and ICs > 1). This adjustment, suggested in the definition of the constitutive

law98, accounts for the fact that fibres do not support compressive loads.

The deviatoric stress is described by98:

σd = a exp[b(IC − 3)]B + 2af (ICf − 1) exp[bf (ICf − 1)2]f ⊗ f

+ 2as(ICs − 1) exp[bs(ICs − 1)2]s⊗ s + afsICfs exp(bfsI
2
Cfs

)(f ⊗ s + s⊗ f),

(2.36)

where f = F f0 and s = F s0 denote the deformed fibre and sheet vectors, respec-

tively.

Following the invariants’ approach, the isotropic neo-Hookean law can be augmented

with a fibre-dependent component. The enhanced version, which will be refer to as

the neo-fibre law, is a transversely isotropic model which can present different response

over the fibre direction. The strain energy function for the neo-fibre model is defined

as:

Ψd =
1

2(a+ 1)
(C1 − C2)(IĈf − 1)a+1 +

C2

2
(IĈ − 3), (2.37)

where a = 1 or 2. In this definition IĈf represents the first invariant of Ĉ in the fibre

direction, defined as

IĈf = J−2/3ICf , (2.38)

and C1, C2 are material parameters, with C2 being equivalent to neo-Hookean stiffness
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µ. The deviatoric Cauchy stress for the neo-fibre law is then expressed as:

σd =J−
5
3
[
C2B + (C1 − C2)(IĈf − 1)af ⊗ f − 1

3

(
C2IC + (C1 − C2)(IĈf − 1)aIĈf

)
I
]
.

(2.39)

The derivation of the deviatoric stress tensor is shown in Appendix B.

The considered constitutive laws are employed in in silico and in vivo applications

throughout this thesis. We note, however, that several other constitutive laws have been

proposed and used for modelling the myocardial tissue varying significantly in functional

form, anisotropy assumptions and complexity, as discussed in section 1.3.1.2.

2.5 Principle of stationary potential energy

Having introduced hyperelastic solids and their strain energy functions, we can derive

the weak form of the equilibrium equation (Eq. 2.24), using the principle of stationary

potential energy. This approach, which is equivalent to the principle of virtual work,

provides a framework for conveniently introducing additional model components – such

as different volumetric energies or boundary constraints – into the mechanical problem,

as will be shown in sections 3.1.1 and 5.3.2. The reformulation of the equilibrium

equation into its variational or weak form, is an essential step in the finite element

method, which will be outlined in section 2.6.

Following the principle of stationary potential energy, the deformation u and pressure p

solutions of the body under consideration in section 2.1 and Fig. 2.1, can be obtained by

considering the functional, Π : (UD×W )→ R, describing the total potential energy of

the body. The deformation and hydrostatic pressure of the body are sought in function

spaces UD = {v ∈ U |v|ΓD = g} and W , respectively, where U and W are selected

to ensure that the strain energy function (and its directional derivatives) are bounded,

i.e.

U ={v ∈ [W 1,4(Ω0)]3×3
∣∣ Ψd(v) ∈ L1(Ω0),

∂Ψd(v)

∂F
∈ [L2(Ω0)]3×3,

J ∈ L2(Ω0),
∂J

∂F
∈ [L4(Ω0)]3×3},

W =L2(Ω0),

(2.40)

where Lp(Ω0) and W 1,4(Ω0) denote the usual Banach and Sobolev spaces, respec-

tively25,38, defined in Eq. 2.3 and 2.4.

The body force f0 = Jf and traction vector t0 = tJ
√
N ·C−1N are now expressed

with respect to the undeformed domain21, where N is the normal vector in the unde-

formed domain. Assuming that the traction and body forces are not functions of the
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displacement, then under static equilibrium, the total potential energy for a hypere-

lastic body may be expressed as a sum of the internal and external potential energy

as,

Π(v, λ) = Πint(v, λ) + Πext(v) (2.41)

Πint(v, λ) =

∫
Ω0

(Ψd(v) + λ(J − 1)) dV, Πext(v) = −
∫

Ω0

f0 · v dV −
∫

Γ0

t0 · v dA,

(2.42)

where v and λ denote the displacement and pressure variables, respectively, and Ψd

represents the deviatoric strain energy function defined in section 2.4.1. According

to the principle of stationary potential energy, the body will deform in a way that

minimises its total potential energy Π, over the space of incompressible displacements.

The displacement u and pressure p solutions are then obtained as the saddle-point of

the energy functional:

Π(u, p) = inf
v∈UD

sup
λ∈W

Π(v, λ). (2.43)

The derivation of the weak form can be regarded as equivalent to obtaining the direc-

tional derivatives of the functional Π(v, λ) with respect to displacement and pressure,

and requiring that they vanish, for all arbitrary increments δu and δp. These arbitrary

increments can be regarded as the test functions of the weak form. The directional

derivative of the total potential energy functional Π(v, λ) with respect to the displace-

ment u in an arbitrary direction δu can be expressed as21,

DΠ(v, λ)[δu] = lim
ε→0+

Π(v + εδu, λ)−Π(v, λ)

ε
, (2.44)

with ε being an arbitrarily small positive parameter. Analysing each contribution, the

directional derivative with respect to displacement can be written as:

DΠ(v, λ)[δu] =
∂

∂ε
Π(v + εδu, λ)|ε=0 =

∂

∂ε

[ ∫
Ω0

Ψd(F (v + εδu)) + λ(J(v + εδu)− 1) dV

−
∫

Ω0

f0 · (v + εδu) dV −
∫

Γ0

t0 · (v + εδu) dA
]
|ε=0 =∫

Ω0

∂Ψd

∂F
: DF [δu] + λDJ [δu] dV −

∫
Ω0

f0 · δu dV −
∫

Γ0

t0 · δu dA =∫
Ω0

P d : ∇Xδu+ λDJ [δu] dV −
∫

Ω0

f0 · δu dV −
∫

Γ0

t0 · δu dA,

where P d is the deviatoric first Piola-Kirchhoff stress tensor. Noting that DJ [δu] =

JF−T : ∇Xδu 21 and requiring that the directional derivative vanishes in all arbitrary

directions δu ∈ U0
97:∫

Ω0

(P d+λJF−T ) : ∇Xδu dV −
∫

Ω0

f0 ·δu dV −
∫

Γ0

t0 ·δu dA = 0 ∀δu ∈ U0. (2.45)

Note that the previous relation can also be expressed in the deformed domain Ω using
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Eq. 2.19 as:∫
Ω

(σd + λI) : ∇δu dv −
∫

Ω
f · δu dv −

∫
Γ
t · δu da = 0, ∀ δu ∈ U0. (2.46)

Similarly, requiring that the directional derivative of the energy functional vanishes for

any arbitrary direction δp ∈W :

DΠ(v, λ)[δp] =

∫
Ω0

δp(J − 1)dV = 0, ∀δp ∈W. (2.47)

Combining the directional derivatives of the energy functional with respect to the dis-

placement and pressure variables (Eq. 2.45 and 2.47) the solution to the saddle-point

problem in Eq. 2.43 can be expressed as:∫
Ω0

(P d + λJF−T ) : ∇Xδu+ δp(J − 1) dV −
∫

Ω0

f0 · δu dV −
∫

Γ0

t0 · δu dA = 0,

∀ (δu, δp) ∈ (U0,W ).

(2.48)

2.6 Finite element method

In order to obtain the displacement and hydrostatic pressure for the problem described

in section 2.1, the weak form introduced in section 2.5 must be solved. Following an

analytic approach might be possible for simplified problems of nonlinear mechanics

with regular geometries and known deformation modes (see for example, Appendix

D). However, for the more practical applications considered in this work with irregular

domains, or more complex loading and boundary conditions, a numerical approach is

essential. For cardiac mechanics, this numerical approach is typically the finite element

method.

Accordingly, the nonlinear weak formulation of the finite elasticity equation presented

in section 2.5 can then be solved within the finite element framework. An essential

component of the FEM procedure is the discretisation of the domain and function

spaces, resulting in a finite-dimensional system of equations which are then solved

using a Newton-Raphson iterative method.

The methodology presented in this section involves displacement and hydrostatic pres-

sure as primary variables, providing the process for solving problems considered in

chapters 3 and 4. Even though, more complex applications with additional variables

(usually additional Lagrange multipliers) are used in chapters 5 - 7, the presented ap-

proach can be easily extended to the solution of problems with additional primary

variables, as illustrated in section 5.3.2.
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Figure 2.2 Discretisation Th(Ω0) of domain Ω0 into a hexahedral mesh. Nodes are
denoted by black and grey dots for the linear and quadratic hexahedral element, re-
spectively.

2.6.1 Discretisation

In the FEM framework, the undeformed domain Ω0 in Fig. 2.2 is subdivided into a

finite number of non-overlapping elements (τ) which form the mesh or discretisation

Th(Ω0) ⊂ R3,

Th(Ω0) =
{
τ1, τ2, ...., τn

}
, (2.49)

where h is the mesh size and n is the number of elements forming the mesh. Different

definitions can be used for the mesh size depending on element type, and these will be

given in relevant sections.

For convenience, we define the approximation of the state variables of the problem

(displacement u and hydrostatic pressure p are considered here) over a basic reference

element, τM (triangular, tetrahedral, quadrilateral and hexahedral master elements

were used throughout this thesis). Let Pk(τM ) and Qk(τM ) denote the standard nodal

Lagrange basis functions of degree k on the triangular / tetrahedral and quadrilateral /

hexahedral master elements, respectively. Each basis function on the reference element

is then parametrically mapped into elements τm of the mesh, through a mapping φm :

τM → τm, τm ∈ Th. The mapping φm is actually a function (usually in Pk(τM ) or

Qk(τM )), defining how the master element is mapped into reference domain Ω0. φm

can be a linear transformation (as in the cases of tetrahedral meshes in chapters 5

- 7) or a non-linear transformation leading to curvilinear elements in the mesh (as in

hexahedral meshes in section 3.2.1.2 and chapter 4). The basis functions on any element

τm on the mesh are given by Pk(τm) = Pk(φ−1
m (τM )) or Qk(τm) = Qk(φ−1

m (τM )).

The displacement and pressure variables in the weak formulation (section 2.5) can now

be interpolated with functions in Uh ⊂ UD and W h ⊂ W , respectively, assuming

conformity of the discretised and continuous boundaries. The discrete function spaces
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Uh and W h consist of a set of piecewise polynomial functions defined over the mesh,

i.e.:

Uh := {vh ∈ C(Ω0)| vh|τ ∈ Pku(τ), ∀τ ∈ T (Ω0)}, (2.50)

W h := {λh ∈ C(Ω0)| λh|τ ∈ Pkp(τ), ∀τ ∈ T (Ω0)}, (2.51)

where ku and kp denote the order of interpolation used for the displacement and pressure

variables, respectively, and P can be replaced with Q, depending on the discretisation

selected.

The displacement and pressure variables can then be expressed as a weighted sum of

the variables’ nodal values and basis functions,

uh(X) =
3∑
i=1

Nu∑
k=1

eiu
k
i φ

k
u(X), X ∈ Th(Ω0), (2.52)

ph(X) =

Np∑
k=1

pkφkp(X), X ∈ Th(Ω0), (2.53)

where
{
e1, e2, e3,

}
denote the standard unit basis of R3 and Nu and Np denote the

number of nodes used for the displacement and pressure approximations, respectively.

Additionally, uki is the nodal value of the displacement component i for the kth basis,

pk is the nodal value of the pressure for the kth basis and φku and φkp are the kth

basis functions of the interpolation used for the displacement and pressure variables,

respectively.

Rearranging the vector coefficients,

U =
(
u1

1, u
1
2, u

1
3, ..., u

Nu
1 , uNu2 , uNu3

)T
, Φu =

(
φ1
u, φ

1
u, φ

1
u, ..., φ

Nu
u , φNuu , φNuu

)T
, (2.54)

P =
(
p1, ..., pNp

)T
, Φw =

(
φ1
p, ..., φ

Np
p

)T
, (2.55)

the resulting displacement and pressure variables can more conveniently be represented

as uh(X) = U ·Φu(X) and ph(X) = P ·Φw(X), respectively.

Finally, in the Galerkin finite element method employed, the basis functions are also

chosen as test functions. Therefore, using the finite element approximation of the

displacement and pressure variables, the weak formulation in Eq. 2.48 can be written

in its discrete form as:∫
Ω0

(P h + phJhF h−T ) : ∇Xδuh + δph(Jh − 1) dV −
∫

Ω0

f0 · δuh dV

−
∫

Γ0

t0 · δuh dA = 0, ∀ (δuh, δph) ∈ (Xh,W h).

(2.56)
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where F h and P h are distinguished from their continuous forms simply because they

are computed using the interpolated function uh.

2.6.2 Global System

The discrete weak form presented in section 2.6.1 can be conveniently rewritten in

terms of a functional s as:

s(uh, ph,δuh, δph) =

∫
Ω0

(P h + phJhF h−T ) : ∇Xδuh + δph(Jh − 1) dV

−
∫

Ω0

f0 · δuh dV −
∫

Γ0

t0 · δuh dA = 0, ∀ (δuh, δph) ∈ (Xh,W h).

(2.57)

This equation can be reformulated by defining z to represent the interpolated displace-

ment and pressure variables, as z = [uh, ph], Z = [U ;P ] and Φ = [Φu; Φw]. As Eq.

2.57 should hold for all test functions δY = Y ·Φ, and noting the linear dependence

of s on the test functions,

s(z, δY ) = s(z,Y ·Φ) = Y ·R(z) = 0, (2.58)

where R is the residual vector. As the last relation must hold for every choice of Y ,

the residual vector R must vanish in all components.

R(z) = 0. (2.59)

The use of the finite dimensional approximation space Uh allows the infinite constraints

on s in Eq. 2.57 to be replaced by a finite number of constraints, thus simplifying the

problem. The displacement and pressure solutions are the root of the residual vector

R in Eq. 2.59 and can be iteratively computed using the Newton-Raphson method,

as discussed in the following sections. Additionally, it is often convenient to consider

R = R(Z). The Newton-Raphson solution for the coefficient vector Z = [U ;P ] must

then be dotted with Φ to provide the approximation to the state variables.

2.6.3 Solution with Newton-Raphson Method

Given the finite dimensional system in Eq. 2.59, the displacement and pressure coeffi-

cient vector Z can be iteratively obtained, using the Newton-Rapson method. Assum-

ing an initial guess Z0 and using Taylor’s expansion, the residual vector R(Z) can be

approximated by:

R(Z) = R(Z0) +∇ZR(Z0) · (Z −Z0) +
1

2
∇Z
[
∇ZR(Z0) · (Z −Z0)

]
· (Z −Z0) + ...

(2.60)
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Assuming the initial guess Z0 is sufficiently close to the solution Z so that (Z−Z0) is

small, the third term in the previous equation can be neglected due to its second order

dependence on (Z −Z0). Substituting Eq. 2.59 into Eq. 2.60:

R(Z0) +∇ZR(Z0) · (Z −Z0) ≈ 0. (2.61)

This results in the linear matrix system with only Z as the unknown,

Z = Z0 − [∇ZR(Z0)]−1 ·R(Z0). (2.62)

The last equation can be extended to give the Newton-Raphson iterative process, where

given an initial guess Z0 sufficiently close to Z, the coefficient vector Zn can be itera-

tively updated67:

Zn = Zn−1 − [∇ZR(Zn−1)]−1 ·R(Zn−1), (2.63)

to create the sequence {Zn}n which approximates the coefficient vector Z

Z = lim
n→∞

Zn. (2.64)

Here, ∇ZR(Zn) denotes the Jacobian matrix at the n-th iteration:

∇ZR(Zn) = ∇ZR(Z)|Z=Zn . (2.65)

Derivation of the entries of the Jacobian matrix for the Lagrange multiplier method is

presented in Appendix A.

The classic Newton-Raphson iterative process in Eq. 2.63, requires an initial guess Z0

to be sufficiently close to the actual solution to guarantee convergence of the sequence

{Zn}n. If the initial guess is not sufficiently close, then {Zn}n might diverge and not

give a finite limit (i.e. an approximate solution).

2.6.3.1 Global Newton-Raphson iteration

A variant of the Newton-Raphson method, the global Newton-Raphson, reduces the risk

of divergence which is present in the classic Newton-Raphson method (section 2.6.3),

by ensuring convergence of the sequence of iterations of the residual vector {R(Zn)}n.

Introducing the scaling parameter an and following the Newton-Raphson definition in

Eq. 2.63, the update coefficient vector Zn is given by

Zn = Zn−1 − an[∇ZR(Zn−1)]−1 ·R(Zn−1), (2.66)
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where an is chosen at every iteration to ensure that the residual decays, i.e.:

max
an∈[0,1]

||R(Zn)|| ≤ ||R(Zn−1)||. (2.67)

Eq. 2.67 is usually solved approximately using a line search algorithm. Even though

this method presents improved convergence properties over the classic Newton-Raphson

method, convergence of the sequence {Zn}n is not guaranteed, as the method does not

allow for non-monotonic convergence.

2.6.3.2 Shamanskii-Newton-Raphson method

The estimation of the update vector in Eq. 2.63 and 2.66 requires the computa-

tion and inversion of the global Jacobian matrix, which are often challenging, due

to nonlinear dependence on the primary variables, and computationally expensive. To

reduce this computational cost we can employ the Shamanskii-Newton-Raphson ap-

proach224,152 which re-uses the Jacobian matrix computed at previous Newton-Raphson

iterations.

Following the process oultined in McCormick et al.152, over successive iterations the

update vector

δZn = −an[∇ZR(Zn−1)]−1 ·R(Zn−1), (2.68)

is relatively small compared to the approximate solution Zn, we can therefore deduce

that the Jacobian matrix should not change significantly. Exploiting this property,

we can compute the updated approximate solution using the Jacobian and its inverse

computed at a previous iteration (or timestep) β,

Zn = Zn−1 − an[∇ZR(Zβ)]−1 ·R(Zn−1). (2.69)

As will be shown in chapter 3, this re-use can significantly improve the efficiency of the

system. This approach can provide a reliable update as long as the previously computed

Jacobian is not significantly different to the one corresponding to the current approxi-

mate solution. Therefore, an additional convergence criterion is introduced,

||R(Zn)||
||R(Zn−1)||

≤ K, K ≤ 1, (2.70)

ensuring decay of the residual for successive iterations, or otherwise requiring compu-

tation of the updated Jacobian matrix at the next iteration.
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2.7 CHeart

The mechanics problems presented in this thesis are solved following the numerical

methods described in the current chapter. The considered problems are solved using

CHeart, a multi-physics finite element solver developed by Nordsletten179 and ex-

panded by the CHeart team at KCL∗. Briefly, CHeart supports the finite element

solution of a range of mechanical problems, including solid, fluid, fluid-solid interaction,

electrophysiology, Windkessel and poro-mechanics. When applicable, combinations of

these problems can be coupled and solved together.

CHeart is written in FORTRAN 90 and uses parallel computing to enable the so-

lution of large systems and computationally expensive coupled problems. Specifically,

CHeart uses Message Passing Interface (MPI) to enable inter-process communication.

Mesh decomposition – a determinant of the efficiency of the parallelisation in FEM ap-

plications – is performed using graph partitioning, whereby the domain is divided into

a number of regions depending on the number of processors used. Graph partitioning in

CHeart is done using existing library ParMETIS†. The graph partitioning scheme used

ensures efficient decomposition across domain and potential surface domains. More-

over, CHeart integrates with linear algebra libraries PETSc‡, MUMPS§, SuperLU¶

to effectively solve linearised systems in parallel. Furthermore, it enables coupling be-

tween physics problems defined on different topologies, allowing for a diverse range of

applications.

A more detailed description of the implementation can be found in Nordsletten179 and

McCormick152 and Lee et al.129.

∗http://cheart.co.uk/
†http://glaros.dtc.umn.edu/gkhome/metis/parmetis
‡http://www.mcs.anl.gov/petsc/
§http://mumps.enseeiht.fr/
¶http://crd-legacy.lbl.gov/ xiaoye/SuperLU/
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3 Compressibility/incompressibility in

cardiac mechanics

An issue commonly discussed in cardiac mechanics is the choice of modelling the my-

ocardium using incompressible or nearly incompressible formulations (section 1.3.1.4).

As a possible degree of compressibility remains an unresolved issue in the cardiac

mechanics community, both compressible119,254,88 and incompressible231,170,188 mod-

els have been proposed, showing non-negligible differences in results. Although in-

herently based on tissue behaviour, the choice of modelling the cardiac tissue using

incompressible or nearly incompressible formulations is also dependent on numerical

considerations: nearly incompressible formulations are often employed as a simplified

approximation to incompressible behaviour.

A range of such numerical schemes has been applied in heart models, one of the most

popular being the penalty method260,254,255,119. An advantage of this approach is its

simplified form, requiring only the solution of the tissue displacement. However, when

applied in the FEM framework, displacement-based formulations near the incompress-

ible limit exhibit locking, leading to sub-optimal convergence rates and poor numerical

approximations in classic elastic models25,242,97,69. Critically, the penalty method lacks

monotonic convergence to the incompressible solution as the bulk modulus is increased,

making it challenging to employ as an approximate model to an incompressible cardiac

material model.

The development of numerical strategies circumventing these issues has been a field

of significant research effort in the solid mechanics community. Among others, the

B-Bar method introduced by Hughes101, the reduced or selective integration tech-

niques292,69,144, and augmented Lagrangian methods77,227 have all been successfully

employed to enforce incompressibility while tackling the numerical difficulties asso-

ciated with the penalty formulation. An alternative approach used extensively in

solid mechanics is the class of multi-field variational principles93,245,185. The most

common of these mixed formulations is the Lagrange Multiplier (LM) method, a

two-field variational approach which has been used widely to enforce incompressibil-

ity of the myocardium by introducing a variable to respresent the hydrostatic pres-

sure188,169,44,231,247. While the LM method is known to improve numerical conver-
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gence21,270,97,243, the use of an additional variable results in increased computational

cost and enhanced complexity in the linear algebra involved, due to the indefinite nature

of the resulting stiffness matrix25,21.

The perturbed Lagrangian (PL) formulation was introduced to address this issue, by

augmenting the energy functional of the LM approach with a penalty/compressibility

term38,36,18. The PL is a two-field variational approach suitable for the solution of

nearly incompressible problems, where pressure and displacement are treated as in-

dependent variables. Sussman and Bathe243 introduced a generalised form of the

PL approach, the u/p formulation, which has been used extensively in the compu-

tational mechanics literature139,26,38 and has also been applied in the myocardium247.

Similarly, the well established three-field Hu-Washizu formulation by Simo et al 226

extends the PL formulation by introducing pressure and dilatation as independent

variables227,270,139,158. This approach has also been employed in cardiac mechanics78

(though this procedure comes with the cost of computing an additional variable). The

use of a separate interpolation for the independent variables, allows efficient and ac-

curate approximations, alleviating the numerical difficulties associated with both the

penalty and LM methods. The efficiency of these methods was also enhanced with the

use of discontinuous interpolation for the pressure and dilatation fields (static conden-

sation)18,243,228,270 allowing the computation of these fields on element level and leading

to a generalised displacement-only formulation.

The objective of this chapter is to compare some of these techniques in terms of their

accuracy and numerical efficiency. Specifically, the statically condensed Perturbed La-

grangian formulation of Bercovier18 and others38,36 is considered, which may be con-

veniently thought of as a weakly penalised form with an optional choice of projection

operator. In this generalised form, the constraint might be strengthened or weakened,

with an appropriate choice of the projection operator, resulting in the PL, LM or

penalty formulations. A discontinuous pressure field is used for the weakly penalised

approach which enables the solution of the projection problem on an element level,

leading to an efficient displacement-only formulation. The weakly penalised approach

is further augmented and restructured to improve nonlinear convergence properties,

particularly for high values of the bulk modulus.

Initially, the general minimisation problem is illustrated (section 3.1.1) indicating how

both penalty and LM formulations may be thought of equivalently as weakly penalised

constraints in the continuous setting. The basis for locking is then reviewed in sec-

tion 3.1.2, motivating the introduction of the weakly penalised approach. Modifications

introduced to the mechanical system to enhance convergence behaviour are discussed

in section 3.1.3. The numerical convergence of these different methods is then com-

pared, using a 2D model problem and cardiac mechanics problems (section 3.2). The

results, which show significant variations between the numerical schemes, are discussed

63



3. Compressibility/incompressibility in cardiac mechanics

in section 3.3.

The work presented in this chapter has been published in Hadjicharalambous et

al.86.

3.1 Numerical formulations for incompressibility / nearly

incompressibility

In order to understand and compare the numerical behaviour of the considered methods,

this section shows how in the continuous setting LM and penalty formulations can be

viewed uniformly through a weakly penalised form (PL) (section 3.1.1). Subsequently,

the discretised forms used within the FEM framework are introduced, illustrating the

deviation of the two schemes and the resulting locking phenomena in FEM penalty

applications (section 3.1.2). These motivate the use of an alternative discretisation

strategy, leading to a displacement-only formulation. The solution to this system is

then demonstrated and optimised to accommodate the numerical stiffening due to the

weakly penalised terms.

3.1.1 Continuous minimisation problem

Problems of static (or quasi-static) solid mechanics involve finding the deformation,

u, of a body defined over a domain Ω0, described in section 2.1. According to the

principle of stationary potential energy in section 2.5, the body will deform in a way

that minimises its total potential energy Π. This problem can be expressed as,

Π(u) = inf
v∈U

Π(v), (3.1)

where u is the function producing the minimum potential energy compared to all other

functions v in function space U . In the case of incompressibility, the deformation is

required to preserve the determinant of the deformation gradient21 F , as discussed in

section 2.2,

J − 1 = 0, J = |F | = |∇v + I|.

In this case, the solution is found, which satisfies,

Π(u) = inf
v∈UJ

Π(v), (3.2)

UJ = {v ∈ U |J − 1 = 0, a.e. on Ω0}. (3.3)

As it is not, in general, straightforward to construct the space UJ , it is often preferable

to seek the solution in the entire U space.
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3.1.1.1 Weakly penalised form and the penalty / LM / PL methods

For later comparisons, this section introduces a weakly penalised form of the mechanical

problem and shows its equivalence with both penalty and LM formulations. Here we

introduce the projection operator πW : L2(Ω0) → W which, for any function g ∈
L2(Ω0), denotes the orthogonal projection onto W , i.e.

(g − πW (g), q) :=

∫
Ω0

[g − πW (g)] q dV := 0, ∀q ∈W, (3.4)

where the constraint on πW is satisfied weakly, through test functions q in function space

W . In this way, g may be represented coarsely or finely by adjusting the selection of

the space W (as will be discussed further in the following sections). ΠP denotes the

weakly penalised total potential energy functional,

ΠP (v) =

∫
Ω0

Ψd(v) +
1

2
k[πW (J − 1)]2dV + Πext(v), (3.5)

where Ψd is the deviatoric strain energy function in section 2.4.1. Here, an additional

penalty term has been included, representing the growth in energy resulting from mate-

rial compression, as is typical for many penalty methods. The degree of compressibility

is introduced through the penalty parameter k. However, the presence of the projection

operator πW within the penalty term enables the selective weakening or strengthening

of the constraint by allowing the constraint to hold weakly through Eq. 3.4. When

J ∈W for any v ∈ U (for example, when W := L2(Ω0), as is the case for the continuous

mechanical system38), then

πW (J − 1) = J − 1, (3.6)

and Eq. 3.5 is reduced to the classic total potential energy functional for the penalty

method,

Πk(v) =

∫
Ω0

Ψd(v) +
1

2
k(J − 1)2dV + Πext(v), (3.7)

where the k-dependent term denotes the volumetric penalty term often used in cardiac

mechanics260,119. The perturbed Lagrangian formulation may be derived by introduc-

ing an additional variable, λ ∈W , such that,

λ := kπvW . (3.8)

Substituting the orthogonal projection with the added variable, and adding the

Galerkin orthogonality condition (Eq. 3.4) the PL functional can be derived
18,243,38,228:

Πλ(v, λ) =

∫
Ω0

Ψd(v) + λ(J − 1)− λ2

2k
dV + Πext(v). (3.9)
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This general purpose formulation has been employed for the solution of nearly in-

compressible solid mechanics243,18,38,36 and has also been used in cardiac mechan-

ics247. Note that, as k → ∞, the previous formulation becomes the classic LM

method25,97,

ΠLM (v, λ) =

∫
Ω0

Ψd(v) + λ(J − 1)dV + Πext(v). (3.10)

In the continuous setting, the solution u ∈ U satisfies,

ΠP (u) := inf
v∈U

ΠP (v) (3.11)

Πk(u) := inf
v∈U

Πk(v) (3.12)

Πλ(u, λ) := inf
v∈U

sup
q∈W

Πλ(v, q) (3.13)

for all approaches and all values of k, therefore all methods are equivalent. However,

this equivalence is often lost in the discrete setting, as different strategies are applied

to discretise the function space, U , and the orthogonal projection, πW .

3.1.2 Finite element approximation

In the FEM framework (see section 2.6), used in the solution of problems in Eq. 3.11-

3.13, the domain Ω0 is subdivided into a finite number of non-overlapping elements291.

The displacement is then interpolated with functions in Uh ⊂ U and the displacement

solution is then expressed as the weighted sum introduced in Eq. 2.54,

uh = U ·Φu, U ∈ RNu , (3.14)

with Φu an Nu vector function comprised of basis functions. In all approaches, the

minimisation of the total potential energy occurs over Uh ⊂ U .

The primary point of departure between the penalty and PL formulations comes in

the choice of orthogonal projection. In the case of the penalty method, the orthogonal

projection πW : L2(Ω0) → W remains on the continuous space W = L2(Ω0), leaving

the total potential energy Πk unchanged. In contrast, the PL approach given in Eq.

3.9 and 3.13 requires a numerical approximation of the pressure variable, λ by λh,

it is hence natural to introduce the discrete function space W h ⊂ W , defined in Eq.

2.51.

Numerical approximation of λ is equivalent to introducing the projection operator

πWh : L2(Ω0)→W h, which satisfies the Galerkin orthogonality condition (Eq. 3.4) on

W h. This change means that πWh projects the incompressibility onto a discrete set of

polynomials of degree kp, effectively relaxing strict satisfaction of the constraint. The
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spaces Uh and W h are often selected to satisfy the inf-sup condition (where we note

kp < ku), which ensures uniqueness in the multiplier for all k 12,25,174,20,202. Additionally,

for appropriately selected spaces W h – such as Qku−Qkp with ku = kp+1 – convergence

rates in the energy norm are optimal (i.e. O(hku)).

It is well known that penalty and Lagrange multiplier methods need not be equivalent

in the discrete setting, as can also be confirmed by the presence of locking phenomena

in penalty applications25,242. These facts can also be observed through the dependence

of the methods on the penalty parameter k. As k → ∞, the PL becomes the classic

LM method, and the approximation spaces are reduced to the subsets,

Uh
k = {vh ∈ Uh|πW (Jh − 1) = 0}, (3.15)

Uh
λ = {vh ∈ Uh|πWh(Jh − 1) = 0}, (3.16)

for the penalty and LM methods, respectively. In this case, Jh denotes the discrete J ,

distinguished from its continuous form because it is computed using the interpolated

functions vh. These spaces are nested, i.e.

Uh
k ⊆ Uh

λ ⊆ Uh, (3.17)

illustrating the more restrictive subset of functions over which the minimisation problem

can be considered. As a consequence, the space Uh
k of the penalty method is typically

a small subset of Uh and can be too restrictive. This is because a small violation of

the incompressibility constraint can cause a significant increase in the strain energy

even though the approximate solution may have a minor degree of error from the true

solution.

In contrast, while the LM approach effectively weakens the satisfaction of the constraint,

it also has proven optimal convergence rates when Uh and W h are chosen to satisfy

the inf-sup condition25. Therefore, the use of the LM approach circumvents over-

constraining of the approximation space, but comes at the expense of computing an

additional variable.

3.1.3 Discrete weakly penalised form

In the discrete setting, the projection operator πWh : L2(Ω0) → W h introduced in

Eq. 3.4 can be written in a matrix form as,

(g − πhW (g), qh) := QT (Rg −Mπ) := 0, ∀qh ∈W h (3.18)

where qh = Q·Φw is a test function in W h and πhW (g) = π·Φw denotes the projection of

g on W h, with Φw a vector function composed of basis functions as defined in Eq. 2.55
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and Q and π the nodal values’ vectors of the test function and projection, respectively.

Moreover, M is the W h-mass matrix,

[M ]ij :=

∫
Ω0

φiw φ
j
wdV, φiw, φ

j
w ∈W h, (3.19)

where φiw is the i−th basis function of W h and Rg is the weighted function over the

test space W h,

[Rg]j =

∫
Ω0

φjwgdV, φjw ∈W h. (3.20)

Therefore, the introduced term in Eq. 3.5 can be written as∫
Ω0

1

2
k[πW (J − 1)]2dV =

1

2
kπTMπ, (3.21)

where here π ·Φw = π(Jh − 1). Following from Eq. 3.18 and noting the requirement

that the projection holds for qh ∈W h is equivalent to requiring it holds for all Q ∈ RNw

(where Nw is the dimension of the discrete space W h), π can be seen to satisfy the

linear system,

Mπ = RJ , (3.22)

where M is given in equation 3.19 and

[RJ ]j =

∫
Ω0

φjw(Jh − 1)dV, φjw ∈W h. (3.23)

Inverting M in Eq. 3.22 and substituting into Eq. 3.21, the weakly penalised system

(Eq. 3.5) may be written in discrete form as,

ΠP (vh) =

∫
Ω0

Ψd(v
h)dV +

1

2
kRT

JM
−1RJ + Πext(v

h). (3.24)

This form, also used by Bercovier18 and others38,36, reduces the system into a single

minimisation problem on Uh. However, the presence of M−1 requires the solution of

Eq. 3.22, incurring similar computational cost as computing the PL solution. Con-

sidering the discrete weak form and its solution (as will be shown later), this weakly

penalised term requires matrix-matrix products which are (1) expensive, (2) nonlin-

early dependent on the solution and (3) generally of a more dense sparsity than the

standard penalty system.

The practical issues presented above, stem from the choice of global orthogonal projec-

tion, πWh , which unfortunately complicates the computation. However, the choice of

πWh is essentially arbitrary and should ideally balance the need for accuracy with ease

of computation. An improved alternative approach would be to use a local orthogonal
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projection, πWh
loc

, satisfying

M τπl = RJ,τ , ∀τ ∈ T , (3.25)

where M τ and RJ,τ are the mass matrix and the weighted constraint vectors on the

element τ . Essentially, the local orthogonal projection, πWh
loc

satisfies Eq. 3.4 on the

piecewise discontinuous space,

W h
loc := {qh ∈ L2(Ω0)| qh|τ ∈ Pkπ(τ), ∀τ ∈ T (Ω0)}. (3.26)

Using this locally continuous, but globally discontinuous interpolation space, the total

potential energy for the body becomes,

ΠP (vh) =

∫
Ω0

Ψd(v
h)dV +

k

2

∑
τ∈T

RT
J,τM

−1
τ RJ,τ + Πext(v

h), (3.27)

which by construction enables the computations of the constraint and mass matrix

on each element and then incorporates the contribution of each element in the total

potential energy of the system.

This localised projection, also known as static condensation, has been employed by

Sussman and Bathe243, Bercovier18 and Simo et al.226,227 to enhance the efficiency

of the formulation. Indeed, by localising the projection, computations remain on the

element level, reducing the computational cost relative to Eq. 3.24. Moreover, localisa-

tion of the penalty term preserves sparsity of the penalty system, significantly reducing

sparsity to that resulting from Eq. 3.24. These practical improvements come at the

cost of restricting the approximation space. Again, as k →∞, the approximation space

of the weakly penalised formulation in equation 3.27 is restricted to the space,

Uh
P = {vh ∈ Uh|πvh

Wh
loc

= 0}. (3.28)

which we note is,

Uh
k ⊆ Uh

P ⊆ Uh
λ. (3.29)

Though the weakly penalised form in Eq. 3.27 does not mandate the inf-sup condition,

usage of inf-sup stable spaces (such as Nicolaides-Boland20 or Crouzeix-Raviart50 ele-

ments) with globally discontinuous pressure enables optimal convergence. However, as

will be demonstrated, even for some spaces which are not inf-sup stable (for instance

Q2 −Q1
loc), this weakening of the constraint is sufficient to restore convergence.
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3.1.4 Discrete weak form of the weakly penalised formulation

The discrete weak form for the weakly penalised formulation can be obtained as dis-

cussed in section 2.5, by requiring that the directional derivative of the total potential

energy functional vanishes in all arbitrary directions δuh ∈ U0
h at uh, i.e.

DΠP (uh)[δuh] = 0, ∀δuh ∈ U0
h, (3.30)

with U0
h the homogeneous zero Dirichlet subspace of Uh. Following this procedure,

the discrete weak form can be written in operator notation as,

A(uh, δuh) + C(uh, δuh) = F (δuh). (3.31)

The residual function R is defined as,

R(uh, δuh) := A(uh, δuh) + C(uh, δuh)− F (δuh) = 0, (3.32)

where the operators A, F , and C are defined as,

A(uh, δuh) =

∫
Ω0

F hSh : ∇XδuhdV,

F (δuh) =

∫
Ω0

f0 · δuhdV +

∫
Γ0

t0 · δuhdA,

C(uh, δuh) = k
∑
τ∈T

δUT
τ B

T
τM

−1
τ RJ,τ ,

where F h = ∇uh + I and Sh are the discrete deformation gradient and second Piola

stress tensors, respectively21. Here, δU τ represents the local basis coefficients for δuh

on the element, and the element matrix Bτ denotes the linearised constraint, derived

from the PL functional, i.e.

[Bτ ]ij = Bτ (φiw,u
h,φju) =

∫
τ
φiwJ

hF h−T : ∇XφjudV (3.33)

with (φiw,φ
j
u) ∈W h

loc ×U
h. Note that M τ and RJ,τ are identical to those in Eq. 3.19

and 3.23, with φiw ∈W h
loc.

The weak forms for the penalty, LM and PL formulations can be similarly derived as

outlined in appendix A.

3.1.4.1 Non-linear solution and Jacobian

The global Shamanskii-Newton-Raphson (SNR) method224, described in section 2.6.3.2

is employed in the solution of the mechanical system introduced in equation 3.32 (as
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well as the others discussed in Appendix A). This method has been shown to be

effective for problems in fluid-structure interaction152, enabling faster computation by

re-using the Jacobian matrix over multiple time / load steps.

As both penalty and LM formulations have been outlined elsewhere, the focus in this

section is on the Jacobian and residual evaluations for the weakly penalised approach.

Following the SNR approach, n denotes the current iteration and β denotes a previous

iteration at which the Jacobian was computed. Note that J ∈ RNu×Nu and R ∈ RNu

may be written as,

J(Uβ) = Aτ
Aτ (Uβ) +Cτ (Uβ), (3.34)

R(Un) = Aτ
RA,τ (Un) +RP,τ (Un), (3.35)

where A is the FEM assembly operator, the subscript τ denotes vector, matrices or

operators constructed on the element and RP,τ and RA,τ are element-level residual

contributions, stemming from the projection term and all other terms, respectively.

Introducing a short-hand notation, i.e. Cβ
τ = Cτ (Uβ), we can express the element-

level Jacobian contributions Aτ and Cτ as,

[Aβ
τ ]ij =

1

ε

[
Aτ (uhβ + εφju,φi)− Fτ (uhβ + εφju,φi)−Aτ (uhβ − εφju,φi)

+ Fτ (uhβ − εφju,φi)
]
,

Cβ
τ = k[Bβ

τ ]TM−1
τ B

β
τ ,

[Rn
A,τ ]j = Aτ (uhn,φ

j
u)− Fτ (φju),

Rn
P,τ = k[Bn

τ ]TM−1
τ R

n
J,τ .

The element-level matrix Aτ denotes the terms resulting from the elasticity stress /

boundary contributions∗ and is evaluated using central finite differencing (typically

ε = 10−4h, where h is the mesh size). Cτ denotes those terms which result from the

weakly penalised form. The linearisation of the C operator introduced in section 3.1.4,

assumes that Bτ , defined in equation 3.33, is independent of u. This linearisation

does not seem to impact convergence of the Newton scheme and preserves symmetric

positive semi-definiteness of the weakly penalised matrix term. Cτ is comprised of the

local element mass matrix M τ and the linearised constraint Bτ introduced in the pre-

vious section (Eq. 3.33). It should be noted that as M τ and its inverse are linear, they

may be computed once for the entire simulation. On the other hand, the linearised con-

straint must be re-computed due to its nonlinear dependence on the solution. However,

computing this matrix is quick, as it does not require differencing.

∗Note that, as the traction t typically depends on the physical domain, the operator Fτ often
depends on u and is included in the Jacobian.
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3.1.4.2 Residual modifications for the nonlinear solution of the weakly pe-

nalised system

This section presents modifications introduced in the weakly penalised formulation to

improve its nonlinear convergence. As mentioned in section 3.1.1.1, the weakly pe-

nalised system can be thought of as a generalised formulation from which the PL,

penalty or statically condensed PL formulations can be derived, depending on the

choice of the projection operator. The equivalence of these methods under the weakly

penalised regime, allows us to combine and take advantage of the good characteristics

of each method. For instance, the weakly penalised formulation combines the simpli-

fied structure of the penalty method with the convergence characteristics of the PL

formulation. However, due to the stiffness of the linear system at high values of the

bulk modulus, the penalised formulations (classic penalty / weakly penalised) exhibit

deteriorated nonlinear convergence. This stands in stark contrast to the PL method,

which (for inf-sup stable schemes) exhibits fast convergence even for high bulk modulus.

However, it has been observed that, when the choice of πh provides equivalence with

the discrete PL method, the scheme presents poor nonlinear convergence, although, in

principle, the convergence should be similar. Examining the update formulae for both

weakly penalised and PL approaches (see Appendix C), we observe that deteriorated

convergence stems from: (1) initial residual amplification, and (2) the k-dependence of

the residual.

The first factor contributing to poor convergence results from non-monotonicity in the

residual. This manifests particularly early during the nonlinear solution after the first

iteration. This is particularly evident with Dirichlet conditions on a stiff material,

where the norm of the boundary displacement (for example) may be much smaller

than the updated residual, due to stiffness in the material. This issue, which is not

observed in the PL solution, is circumvented in the Newton-Raphson procedure and

the SNR procedure outlined in section 2.69, by enabling an initial amplification of the

residual and relaxing strict requirements on monotonicity, through relevant parameters

of the scheme.

A less trivial issue to address, is the amplification of the residual of the weakly penalised

formulation (Eq. 3.35) resulting from large k, which can lead to poor convergence or

stalling in the iterative solve. This increased residual, due to strong dependence on

the weakly penalised term, often does not imply divergence but rather results from a

k-dependent scaling of the projection problem and its nonlinear dependence on uh, as

shown in Appendix C. This issue is, however, not observed in the PL approach, where

the projection constraint is not scaled by k.

The weakly penalised residual contribution in Eq. 3.35 can be rewritten in terms of
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the linearised guess and a remainder,

Rn
P,τ = RP ∗,τ + k[Bn

τ ]TRe,τ , (3.36)

RP ∗,τ = k[Bn
τ ]TM−1

τ (Rn−1
J,τ +Bn−1

τ δUn−1
τ ), (3.37)

Re,τ = M−1
τ (Rn

J,τ −Rn−1
J,τ −B

n−1
τ δUn−1

τ ). (3.38)

where RP ∗,τ and Re,τ are the element contributions of the terms introduced in the PL

linearised system for β = n (Eq. C.8).

Here the first term approximates the current linearised guess of the projection, while

the second examines how well the current guess satisfies the projection problem. In

other words, the first term denotes the hydrostatic contribution to momentum, while

the second represents the error remaining in the projection problem amplified by the

bulk modulus k. For large k, the latter term can become disproportionately scaled,

making nonlinear convergence more challenging. Considering Eq. C.3, the residual

terms are actually RA +RP ∗ and Re, where the latter term is not scaled by k in this

case. Therefore, poor convergence stemming from the hydrostatic constraint is avoided

in the PL formulation.

To circumvent this issue, the Newton-Raphson scheme of the weakly penalised formu-

lation is modified to measure convergence of ‖RA + RP ∗‖ instead of ‖RA + RP ‖ .

Clearly, ‖Rn
P ∗,τ −Rn

P,τ‖ → 0 as ‖δUn‖ → 0; however, measuring convergence of RP ∗

avoids issues due to high bulk modulus.

Furthermore, extending this form to the penalty formulation to enable fair comparisons,

we must select the projection πh : L2(Ω0) → L2(Ω0). As, in this case, the rank of M

is no longer finite dimensional, the modified penalty form may instead be written in its

equivalent integral form, i.e.

Rn
P,τ = RP ∗,τ +Re,τ , (3.39)

(RP ∗,τ )i =

∫
Ω0

k(Jn−1 + Jn−1(F n−1
h )−T : ∇Xδuh,n−1)Jn(F n

h)−T : ∇XφidV (3.40)

(Re,τ )i =

∫
Ω0

k(Jn − Jn−1 − Jn−1(F n−1
h )−T : ∇Xδuh,n−1)Jn(F n

h)−T : ∇XφidV.

Similarly to the modifications introduced in the weakly penalised approach, in the

modified penalty formulation we measure the convergence of ‖R + RP ∗‖ instead of

‖R+RP ‖. In this way, amplification of the error in the second term of the residual is

avoided, allowing better nonlinear convergence of the scheme.
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3.1.4.3 Residual modifications for the SNR solution of the weakly pe-

nalised system

While the Shamanskii-Newton-Raphson scheme can significantly enhance the perfor-

mance of the PL scheme, acceleration in the SNR approach for penalised methods is

minimal or even worse than standard Global Newton-Raphson. This deterioration in

performance is predominantly due to the stiffness of the system for high k and the

inevitable inaccuracies introduced in the descent direction by the re-used Jacobian. In

contrast, this deterioration in performance is not observed in either PL or LM for-

mulations, which can take significant advantage of matrix re-use (as will be shown in

section 3.2). Once more, by examining the equivalence between weakly penalised and

PL formulations (section 3.1.4.2), we observe this deterioration may be circumvented

using the modified form,

Rn
P,τ = RP ∗,τ + k[Bβ

τ ]TRe,τ , (3.41)

RP ∗,τ = k[Bn
τ ]TM−1

τ (Rn−1
J,τ +Bβ

τ δU
n−1
τ ), (3.42)

Re,τ = M−1
τ (Rn

J,τ −Rn−1
J,τ −B

β
τ δU

n−1
τ ). (3.43)

Note that, as ‖δUn‖ → 0, the difference in the constraint residual ‖Rn
J,τ −Rn−1

J,τ ‖ → 0

and, as a result,

Rn
P,τ → k[Bn

τ ]TM−1
τ R

n
J,τ ,

which represents the standard residual resulting from equation 3.32. Therefore, as the

scheme converges, the modified residual RP,τ converges to the residual obtained by

evaluating C. Furthermore, if β = n, the first term in the definition RP,τ drops away,

resulting to the expected residual.

The modifications introduced to the residual of the weakly penalised formulation can

also be applied in the penalty method to improve its nonlinear convergence behaviour,

by once more selecting the projection operator πh : L2(Ω0) → L2(Ω0), and using the

equivalence of the weakly penalised / penalty forms. Expressing these modifications

in integral form, the modified penalty form can be expressed by the following residual

contributions:

Rn
k,τ = Rk∗,τ +Rek,τ , (3.44)

(RP ∗,τ )i =

∫
Ω0

k(Jn−1 + Jβ(F β
h)−T : ∇Xδuh,n−1)Jn(F n

h)−T : ∇XφidV (3.45)

(Re,τ )i =

∫
Ω0

k(Jn − Jn−1 − Jβ(F β
h)−T : ∇Xδuh,n−1)Jβ(F β

h)−T : ∇XφidV.

With the introduced modifications in the residual monitored for convergence, the mod-

ified penalty method is able to significantly exploit matrix re-use, and substantially
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improve its computational efficiency.

3.2 Numerical results

In this section, the various formulations outlined in section 3.1 are compared on a simple

two-dimensional problem as well as on cardiac mechanics problems. The convergence

behaviour of the LM, PL, penalty and weakly penalised formulations is assessed in the

solution of incompressible mechanics problems, for varying values of k. Furthermore,

these approaches are compared on nearly-incompressible solid mechanics problems,

assuming various values for the bulk modulus. The considered formulations are also

examined with respect to their numerical efficiency.

3.2.1 Mechanical tests

3.2.1.1 Elongation of a two-dimensional square domain

The convergence behaviour of the LM, penalty and weakly penalised methods was

compared on the simple case of the stretch of a square domain (Fig. 3.1a). The body

was assumed to be made of a neo-Hookean material, described by the deviatoric strain

energy / Second-Piola stress tensor21,

Ψd(C) =
µ

2

(
IC

III
1/2
C

− 2

)
, Sd =

µ

III
1/2
C

(
I − IC

2
C−1

)
, (3.46)

where the material parameter µ is analogous to the shear modulus of linear elastic-

ity.

→

→→

(a)

Mesh 1 2 3 4 5 6 7

no. elem. 16 64 256 1,024 4,096 16,384 262,144
no. DOFS† 187 659 2,467 9,539 37,507 148,739 5,875,363
no. DOFS‡ 162 578 2,178 8,450 33,282 132,098 4,924,738

(b)

Figure 3.1 Discretisation of the two-dimensional square domain: (a) A neo-Hookean
material in a square domain (1×1) under no slip (bottom edge), no traction (side walls),
and vertical displacement of 20% (top edge). A shear modulus of µ = 100Pa was used.
(b) Number of elements and degrees of freedom (DOFS) in each discretisation for the
(†) LM / PL and (‡) weakly penalised / penalty methods.

The domain was discretised using six different meshes of inf-sup stable Q2−Q1 Taylor-
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Hood quadrilateral elements25. For the weakly penalised formulation, a quadratic

interpolation was used for the displacement field and a discontinuous linear interpola-

tion was used for the pressure. The actual solution was approximated using the LM

and PL solution (for the incompressible and nearly-incompressible comparison, respec-

tively) on a finer mesh (mesh7), with a cubic interpolation for the displacement and a

quadratic interpolation for the pressure. Fig. 3.1b presents the number of elements in

all seven meshes, and the corresponding degrees of freedom when the LM, PL, penalty

and weakly penalised methods were used.

3.2.1.2 Cardiac mechanics in the left ventricle

The three methods were also tested on a model of the passive inflation of a left ventricle

under diastolic loading conditions. The left ventricle (LV) was modeled as a thick-walled

truncated ellipsoid (Fig. 3.2a). A standard generic heterogeneous fibre field was used

to represent the structure of the tissue134, where the fibre angle varied linearly between

60◦ and −60◦, from endocardium to epicardium244.

(a) Idealised LV model

Mesh 1 2 3 4

no. elem. 56 448 3,584 28,672
no. DOFS† 1,914 13,160 97,260 747,092
no. DOFS‡ 1,815 12,555 93,075 716,067

Error on mesh 1 2 3 4

PEN* 72.7% 24.7% 12.6% –
WP* 69.7% 15.9% 7.4% –
LM* 70.6% 17% 8.1% –

† LM / PL methods, ‡ weakly penalised / penalty methods
* Error=maxt{||∇u(t)−∇uinc(t)||/||∇uinc(t)||}

(b)

Figure 3.2 Discretisation of the cardiac model: (a) The idealised LV was modeled as
a thick-walled ellipsoid truncated at 3

4 of the total height. Typical cardiac dimensions
were used (semi-major axis=8cm, semi-minor axis=5.5cm, wall thickness= 0.5cm at
the apex, 1cm at the base). The red and blue curves denote the epicardium (fepi) and
endocardium (fendo) fibre directions, respectively. Zero traction condition was applied
on the epicardial surface, and the base was held fixed. (b) Number of elements and
degrees of freedom (DOFS) in each discretisation, and error in displacement solution of
the three methods when used in the cardiac cycle test (k = 107 for the penalty (PEN)
and weakly penalised (WP) methods). The error is computed on meshes 1 − 3 with
respect to the incompressible LM solution uinc(t) on mesh4.

The LV was modeled using the transversely isotropic Guccione law82 as defined in

76



3. Compressibility/incompressibility in cardiac mechanics

Eq. 2.33 and the parameters used260 were C = 1760Pa, bf = 18.5, bt = 3.58, bfs =

1.63. The endocardial surface of the ventricular model was passively loaded to 3kPa

(22.5mmHg), to describe both normal and pathological LV functions at end diastole.

The LV was inflated using 150 equal load steps, by setting the boundary traction equal

to the product of the pressure and the deformed surface normal.

In order to simulate a cardiac cycle, the heart model was modified to include myocardial

contraction through an active tension generation model175. Active tension generation

was incorporated into the cardiac model by the addition of the active stress in the fibre

direction of the stress tensor. The LV model was also coupled to a Windkessel model

representing the systemic circulation, using the parameters given by Korakianitis et al.
123. The coupling was enabled through the use of a Lagrange multiplier which enforced

the same rate of change of LV volume in the two models.

The LV was discretised using four different meshes of hexahedral elements (Fig. 3.2b).

On the first three discretisations, a quadratic interpolation was used for the displace-

ment. The pressure field was interpolated using linear continuous (for the LM / PL

methods) and discontinuous ( for the weakly penalised formulation) Lagrange polyno-

mials. In the cardiac tests, the results on the first three meshes were compared with

the LM and PL solution on mesh4 (for the incompressible and compressible comparison

respectively), where a quadratic-linear interpolation scheme was employed.

3.2.2 Numerical solution

The solid mechanics tests presented in section 3.2.1 were initially used to assess quali-

tative differences of the methods discussed, and subsequently to test their convergence

behaviour. The convergence rate of each method was acquired by observing the change

in the error between a high resolution benchmark solution and the approximate solution,

with mesh refinement. As compressible methods may be selected as an approximation

to incompressible behaviour, we tested the convergence characteristics of the penalty

and weakly penalised approaches to the incompressible LM solution (Eq. 3.10). We

also examined the ability of these approaches to model compressible behaviour, com-

paring the results with a fine grid compressible solution(s) (PL solution(s)). The error

tolerance for these tests was set to 1 × 10−9. The problems under consideration were

solved in CHeart (section 2.7).
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(a) k = 100 (b) k = 1000 (c) k = 107 (d) LM

Figure 3.3 Deformation of the two-dimensional domain under elongation, when the
penalty ((a) k = 100, (b) k = 103, (c) k = 107) and (d) LM methods are used. Each
figure also illustrates the strain in the horizontal direction (Exx) on each point on the
domain, ranging between: (a) -0.0092 (blue) and 0 (red), (b) -0.24 (blue) and 0 (red),
(c) -0.29 (blue) and 0 (red), (d) -0.36 (blue) and 0 (red). The black contours connect
points of the same horizontal strain.

(a) k = 100 (b) k = 1000 (c) k = 107 (d) LM

Figure 3.4 Deformation of the two-dimensional domain under elongation, when the
weakly penalised ((a) k = 100, (b) k = 103, (c) k = 107) and (d) LM methods are
used. Each figure also illustrates the strain in the horizontal direction (Exx) on each
point on the domain, ranging between: (a) -0.0094 (blue) and 0 (red), (b) -0.28 (blue)
and 0 (red), (c) -0.34 (blue) and 0 (red), (d) -0.36 (blue) and 0 (red). The black
contours connect points of the same horizontal strain.

Initially, the methods considered were compared over the solution of the elongation 2D

problem, on the same discretisation (mesh 4). Qualitative differences can be deduced

through comparisons of strains and deformation in figures 3.3 and 3.4. The behaviour

of the methods with increasing values of the penalty parameter is examined. In order

to assess the degree of compressibility introduced for the different values of the penalty

parameter, figure 3.5 presents the ratio between deformed and undeformed surface area.

In this case, a ratio of 1 would imply incompressible deformation.

Similarly, examining the different effects of the methods on cardiac mechanics, we solved

each model over a single cardiac cycle, comparing the differences in their behaviour,

using the LM method as the point of reference. The cardiac cycle was solved on an

intermediate mesh (mesh2), using a quadratic-linear interpolation scheme for the dis-

placement and pressure variables. Fig. 3.6 illustrates the pressure-volume loop derived

from the coupled Windkessel-ventricle model as well as the differences between the LM
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model and both penalty and weakly penalised methods (with k = 107) throughout the

cycle.
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Figure 3.5 Ratio of deformed (Ak) over undeformed (Aref ) surface area (degree of
compressibility = 1 - Ak/Aref ) for the 2D elongation problem, for different values of
the penalty parameter k. Penalty (in black) and weakly penalised (in red) approaches
are considered here. The ratio for the LM method is presented in grey, although not
dependent on k. The ratio is reported over different values of the ratio between penalty
parameter k and stiffness value µ.
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Figure 3.6 Comparison over the cardiac cycle: (a) Pressure-volume loops of the weakly
penalised solution of the cardiac cycle on the first three meshes. These pressure-volume
loops are converging to the pressure-volume loop of the LM solution on mesh4. (b) The
L2 norm (top) and H1 semi-norm (bottom) comparison of the displacement between
the penalty and weakly penalised formulations (k = 107) in different phases of the
cardiac cycle on mesh2. Letters A, B, C, D map the time in cycle to cardiac phase on
the pressure-volume loop.
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3.2.3 Numerical results for the convergence rates

The convergence behaviour of the LM, penalty and weakly penalised formulations was

compared using their convergence rates with mesh refinement, over the incompressible

formulation of the elongation problem (section 3.2.1.1). Fig. 3.7 compares the error of

the penalty and weakly penalised methods in the solution of the incompressible elonga-

tion problem, measured over the entire domain as well as a horizontal patch excluding

the corners (where singularities in the solution occur). Finally, the importance of inter-

polation order is highlighted in Fig. 3.8, where linear interpolation was used for both

penalty and weakly penalised formulations (where the local orthogonal projection was

selected as the set of piecewise-discontinuous constants).

Similar results can be observed in the passive inflation problem detailed in sec-

tion 3.2.1.2. In this case, convergence of the L2-norm displacement error in the differ-

ent methods is shown in Fig. 3.9 for approximation to the fine grid incompressible (for

k ∈ [104, 107]Pa) passive inflation problem. The LM, penalty and weakly penalised

methods were also compared using the cardiac cycle model, showing consistent results

to those illustrated in the passive inflation test. Representative results of this compar-

ison are illustrated in Fig. 3.2b, while Fig. 3.6a illustrates convergence of the weakly

penalised pressure-volume loops with mesh refinement.
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Figure 3.7 Error between the (a) penalty and (b) weakly penalised approaches (u)
and the incompressible fine grid solution (uinc) for six different values of the bulk
modulus k. Convergence of the LM method is shown in black for comparison (the
slope of these curves is denoted by a), whereas the red line represents the highest value
of k. (c) Illustration of the error for the penalty / weakly penalised (k = 107Pa)
approaches, measured over a subset of the domain, excluding the region around the
four corners of the square.
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Figure 3.8 Comparison of the convergence behaviour of the penalty and weakly pe-
nalised formulations when a lower order interpolation scheme is used: The errors be-
tween the penalty (in red) and weakly penalised (in black) forms (u) and the fine grid
solution to the incompressible (uinc) elongation problem using linear interpolations are
illustrated.
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Figure 3.9 Comparison of the L2-norm displacement error of (a) penalty and (b)
weakly penalised methods as approximation to the incompressible passive inflation
problem (LM solution) for different k values. The black line presents the LM conver-
gence rate, while α denotes the slope of the LM curves.

Finally, convergence rates were also used to assess the behaviour of the various for-

mulations in the solution of compressible problems. Both the elongation (Fig. 3.10)

and cardiac problems (Fig. 3.11) were considered, and the error was computed with
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respect to the PL solution on the finest discretisation, for the specific value of the bulk

modulus.
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Figure 3.10 Comparison of the convergence behaviour of the 3 methods on the two-
dimensional compressible problem: The error between the penalty, weakly penalised
and PL approaches (u) and the compressible fine grid solutions (uref ) for (a) k =
100Pa and (b) k = 107Pa.
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Figure 3.11 Comparison of the L2-norm displacement error of the different methods
when used as an approximation to compressible passive inflation problems (PL solution)
for (a) k = 104Pa and (b) k = 107Pa. The black line presents the PL convergence
rate, while α denotes the slope of the PL curves.
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3.2.4 Numerical results for the efficiency of the different formula-

tions

The PL, penalty and weakly penalised formulations were also compared in terms of their

nonlinear convergence behaviour. Representative values for the number of iterations of

the Newton-Rapson scheme, the number of Jacobian matrix computations (and their

respective times) along with the linear solution time and total time are presented in

table 3.1. The change in the efficiency of the different methods when the SNR scheme

is applied is presented as well. Finally, the effect of the modifications introduced in

the SNR scheme for the penalty method can be deduced as the table compares the

application of the SNR scheme to the penalty method with and without the introduced

modifications. Note that although not presented here, the nonlinear behaviour of the

weakly penalised system when the SNR is applied without the introduced modifications

is similar to that of the penalty method without the introduced modifications (PEN).

Similar observations can be made using Fig. 3.12, which compares the number of

Jacobian and residual computations when the classic Newton-Raphson and the SNR

scheme are used for the different methods.

Newton-Raphson
J c. time [s]* J c/s* R c. time [s]* R c/s* Solve time [s]* Total time [s]*

PEN 181.55 4 1.93 4 47.51 231.13
WP 242.05 3.81 2.42 3.81 41.46 286.06
PL 246.77 3.88 2.49 3.88 45.36 294.75

Shamanskii-Newton-Raphson
J c. time [s]* J c/s* R c. time [s]* R c/s* Solve time [s]* Total time [s]*

PEN 25.80 0.46 11.67 10.82 7.2 44.81
PEN-MOD 10.14 0.113 14.07 9.51 1.76 26.08
WP-MOD 3.95 0.047 13.19 9.79 1.18 18.47
PL 4.66 0.053 13.43 9.88 1.37 19.61

* Times / Iterations given as the average per load step

Table 3.1 Comparison of average number of Newton-Raphson iterations and Jacobian
computations (c/s) per load step, as well as their respective average times between
Newton-Raphson and Shamanskii-Newton-Raphson schemes. The efficiency of the SNR
scheme with (PEN-MOD) and without (PEN) the introduced modifications on the
penalty method is presented as well. The computational time (c.time), total solve time
per load step and the total time per load step are also illustrated. This comparison
was performed on the passive inflation test (section 3.2.1.2) on mesh2 (k = 107 for
the penalty, weakly penalised and PL methods), the simulations were run on a single
processor and a direct solver was used.
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Figure 3.12 Comparison of the number of Jacobian and residual computations for (a)
the penalty, (b) the weakly penalised and (c) the PL formulation. The methods are
compared over the passive inflation simulation (section 3.2.1.2) on mesh2 (k = 107 for
the penalty, weakly penalised and PL methods). The solid black line represents the
number of Jacobian and residual computations for the classic Newton-Raphson scheme
and the dotted lines represent the number of Jacobian (black line) and residual (red
line) computations when the SNR scheme is applied.

3.3 Discussion

3.3.1 Comparison of the methods for modelling incompressibil-

ity

The LM, penalty and weakly penalised formulations were initially compared qualita-

tively over the incompressible formulation of the elongation problem (section 3.2.1.1),

on mesh4. The method used for the solution of the incompressible problem and the

values of the penalty parameter chosen have an important impact on the ability of ap-

proximating the actual incompressible solution. Fig. 3.3 and 3.4 illustrate the solution

of the penalty and weakly penalised formulations, respectively, for increasing values

of the penalty parameters, along with the solution of the classic LM method. Based

on both figures, the solutions of the weakly penalised formulation appear to converge

towards the LM solution as k increases, which is not as clear based on the qualitative

behaviour of the penalty method. Furthermore, comparing the values of the horizontal

component of strain, for higher values of k, the weak penalisation appears to be closer

to the LM solution, compared to the penalty method.

Examining the ability of all approaches to model imcompressibility (section 3.1.1.1),

the most straightforward is the incompressible LM method which enforces weak incom-

pressibility. However, we could consider the compressible penalty and weakly penalised

approaches as approximations to the incompressible system. With this in mind, from

Eq. 3.9, the error for any method should converge to zero with a rate proportional to

1/k. Based on Fig. 3.7a and Fig. 3.9a the error of the penalty method relative to the

incompressible solution was generally higher and increased with increasing k, as a result
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of the well-known locking phenomena associated with displacement-only formulations.

In the cardiac model, with k = 107, the error was actually uniformly worse than all

other values of the parameter at almost all levels of refinement, making the selection

of an appropriate k to model incompressible behaviour non-trivial.

As discussed in section 3.1.2, it was initially hypothesised that issues affiliated with the

penalty method could be circumvented by projecting the constraint using an orthogonal

projection operator, πWloc
, resulting in the displacement-based formulation suggested

by Bercovier18 and others38,36. Indeed, it can be deduced based on Fig. 3.7b and

Fig. 3.9b, that as k increased, the error in the approximation decreased proportionally

to 1/k and became indistinguishable from the convergence of the LM method. The

existence of a k-dependent error bound for the weakly penalised approach enables

regulation of the error by an appropriate choice of k. Moreover, due to its dependence

on the discretisation, the error showed a plateauing behaviour for values of k which

incurred an error smaller than the error associated with the discretisation.

The locking behaviour of the penalty method was observed to worsen with lower inter-

polation order, as shown in Fig. 3.8, where linear elements were used. In this case, as

the bulk modulus increased, the rate of convergence observed in the penalty method

deteriorated to nearly zero. In contrast, the weakly penalised approach exhibited con-

sistent linear convergence for k > 105.

An interesting observation stems from the degree of compressibility actually intro-

duced as the penalty parameter varies. Based on Fig. 3.5, near incompressibility can

be achieved even with moderate values of the penalty parameter, for the 2D elon-

gation problem. Specifically, a ratio k/µ = 10 is sufficient to introduce less than

5% compressibility. It could therefore be possible to select a moderate value for the

penalty parameter in the penalty method, which would produce only a small degree

of compressibility while at the same time avoid locking issues associated with larger

values. Nevertheless, even though a penalty value offering a balance between the degree

of compressibility and numerical accuracy could be possible, its existence and actual

value would be dependent on the specific application.

Additionally, for both elongation / cardiac problems, the rates of convergence from all

methods were not optimal as would be expected based on the error estimates202. Based

on the fact that sub-optimal convergence rates appeared in the application of all meth-

ods, it can be deduced that this was not a method-dependent issue. It is hypothesised,

however, that sub-optimal rates are due to singularities in the two problems which

limit convergence. In the elongation problem, singularities occurred at all corners of

the domain. Measuring convergence in a horizontal patch excluding corners as shown

in Fig. 3.7c, for k = 107 the rate of convergence in the weakly penalised method was

restored to the expected order O(h2) (for the H1 semi-norm). In contrast, due to lock-

ing, no improvement to the rate of convergence was observed in the penalty approach.
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In the cardiac model, sub-optimal convergence likely stemmed from the strict boundary

condition on the base plane of the model and the singularity in the fibre field near the

apex. Even though the specific boundary condition and fibre field incur singularities,

they were chosen because of their frequent use in cardiac models.

3.3.2 Comparison of the methods for modelling compressibility

The application of the PL, penalty and weakly penalised formulations in the solution

of compressible problems lead to conclusions similar to the incompressible behaviour.

In compressible problems, the three formulations should provide consistent results for

low and moderate values of k, as observed in Fig. 3.10a and 3.11a. While for k = 104,

flattening of the convergence behaviour to the incompressible solution was observed for

both penalty and weakly penalised methods (and, though not shown, for PL), in the

compressible problem, uniform and consistent convergence to the compressible solution

was observed.

Increasing k, however, caused deterioration in the convergence of the penalty method as

shown in Fig. 3.10b and 3.11b. Here, the error increased significantly (two and almost

one order of magnitude increase for the two-dimensional and cardiac problems, respec-

tively), while convergence remained consistent between the PL and weakly penalised

methods.

3.3.3 Comparison over the cardiac cycle

In Fig. 3.6b, all methods are compared over a cardiac cycle, by plotting the difference

between both penalty and weakly penalised approaches (with k = 107) and the incom-

pressible LM method on the same discretisation. In this case, the LM and penalty

methods differed by up to 20% in the H1 semi-norm (which is indicative of errors we

could expect in strain), while the peak difference between weakly penalised and LM ap-

proaches remained below 8%. These differences occurred primarily during the systolic

phase, with decreased error through the rest of the cardiac cycle.

The influence of these effects is heavily dependent on the k chosen for the model.

Considering convergence (i.e. mesh3 with fine grid mesh4) of the compressible model

over the cardiac cycle (even though not shown here), the maximum error for k = 107 was

∼ 1% for the weakly penalised and LM methods, and ∼ 10% for the penalty method.

However, for k = 105, the error for weakly penalised and LM methods remained around

∼ 1%, while the error observed in the penalty method dropped to ∼ 3%. As the bulk

modulus represents the tissue’s resistance to compression, its value is tied to the other

cardiac constitutive parameters. Thus, the influence of locking in the penalty method

depends on the level of compressibility which is acceptable in the model. In general,
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based on the results presented, as k/C > 103, where C is the bulk scaling on the strain

energy in section 3.2.1.2, locking becomes increasingly more predominant.

3.3.4 Comparison of linearised systems and efficiency of formula-

tions

The solution procedure for the weakly penalised formulation was outlined in sec-

tion 3.1.4.1, illustrating that the linearised system involves only the body displacement,

uh. Considering the Jacobian for the LM (Jλ) and penalty methods (Jk), shown in

equation 3.47, the LM formulation has an indefinite saddle point structure, while the

penalty method adds to the principle A−block,

Jλ =

(
A B

B̂ 0

)
, Jk = A+ P . (3.47)

Similar to Jk, the Jacobian of the weakly penalised formulation shown in Eq. 3.34, also

augments the A−block with a matrix C which, by construction, is symmetric positive

semi-definite. Furthermore, the Jacobian of the PL method augments the zero block

matrix with a k-dependent term, avoiding the indefinite nature of the LM Jacobian

(the Jacobians of the different formulations are outlined in Appendix A).

The structure of these systems has a significant impact on their solution. While the

actual system sizes (shown in Fig. 3.1b and 3.2b) are not substantially different, the

indefinite structure of Jλ makes it more challenging to solve, requiring direct methods,

“sophisticated” preconditioners or splitting schemes17. In contrast, the penalty, PL

and weakly penalised strategies are more straightforward in structure, making them

more amenable to classic preconditioning strategies. However, as the bulk modulus k

increases, care must be taken to deal with the conditioning of the linear system.

Based on table 3.1, in addition to having contrasting linear structure, the methods

also exhibited differing convergence behaviour in the Newton-Raphson scheme†. In

general, the non-linear convergence of the weakly penalised formulation averaged ∼ 3.81

iterations per load step when the classic Newton-Raphson scheme was employed (table

3.1). The modifications introduced in the weakly penalised form (section 3.1.4.1),

enhanced the numerical ability of the scheme, which exhibited marginally better non-

linear convergence behaviour than that of the PL method.

Furthermore, the PL and weakly penalised forms were able to exploit the Jacobian

re-use strategy (Shamanskii-Newton-Raphson scheme), leading to approximately 93%

†We note that in the examples presented in this work, the cost of computing the Jacobian is larger
than the Newton-Raphson solution process, due to the quadratic interpolation used for the displacement
and the higher order quadrature rule applied
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decrease in the computational time of the Jacobian matrix J (build and solution) and

a 94% reduction in the total time per loading step (for the weakly penalised form).

By modifying the weakly penalised scheme to avoid the high sensitivity to the bulk

modulus associated with displacement formulations, the weakly penalised formulation

allows efficient re-use of the Jacobian matrix, whereas the performance of the penalty

formulation (PEN) is not significantly improved when the SNR scheme is applied.

When these modifications were also extended to the penalty method (PEN-MOD), they

resulted in significant improvements in both the computational time of the Jacobian

matrix J (87% decrease) and the total time per loading step (89% decrease), compared

to the classic Newton-Raphson scheme.

Similar conclusions can be deduced from Fig. 3.12, which compares the number of

Jacobian and residual computations over the iteration number, with and without the

SNR scheme. Based on these results, the SNR scheme significantly reduced the number

of Jacobian computations for all methods. Furthermore, the introduced modifications

ensured monotonic residual convergence after the first step for all methods, avoiding the

non-monotonic convergence observed in penalised formulations (section 3.1.4.2). It is

important to note that these observations were consistent in all formulations, indicating

that the introduced modifications in the SNR scheme for both the weakly penalised

and penalty formulations, were able to significantly improve the performance of the

methods.

3.3.5 Weakly penalised formulation

Section 3.1.1.1 illustrated how the energy functional for a hyperelastic solid can be

written consistently for both penalty and LM methods, by choosing both an appropri-

ate space of solutions, U , and orthogonal projection, πW . Furthermore, in the finite

element context, the LM method required discretisation of both U and πW as both the

displacement and pressure variables need to be computed. In the penalty formulation,

however, the orthogonal projection is not necessarily discretised, as the only unknown

variable is the displacement (section 3.1.2). As previously discussed, this selection of

discretisation of the orthogonal projection can restrict the approximation space Uh for

high values of k.

To circumvent this issue while retaining the single field approach, a displacement-only

formulation introduced by Bercovier18 and others38,36 was applied in section 3.1.3,

which uses a localised discrete orthogonal projection operator, πWloc
. Similar to aug-

mented Lagrangian and reduced integration techniques25, the aim of the discrete pro-

jection is to weaken the compressible / incompressible constraint, thereby enhancing

the approximation space in the limit as k gets large. Furthermore, by appropriate

restructuring of the weakly penalised system, the poor nonlinear convergence for high
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bulk modulus associated with displacement-only formulations was avoided. As shown

in Figs. 3.7, and 3.9, the weakly penalised formulation restores convergence behaviour

while maintaining the simplicity of a single field approach. Finally, viewing the various

methods under the same generalised framework enabled the extension of the SNR mod-

ifications of the weakly penalised form to the penalty approach, significantly improving

the computational performance of the scheme.

A convenient feature of the weakly penalised approach is that it enables more straight-

forward analysis by tapping into known finite element spaces. Although for uniqueness

inf-sup stability is not necessary, this condition ensures optimal convergence in the null

space of πW for linear problems, for appropriately chosen spaces86. In the examples

presented here, the projection was chosen to be one polynomial order less and piece-

wise discontinuous. Although this pairing is not inf-sup stable, for the quadrilateral

and hexahedral elements considered, this restored convergence. Another convenient

choice are Nicolaides-Boland20 elements, which give consistent results to those pre-

sented here.

3.4 Summary

This chapter compared the use of different methods for approximating incompressible

and compressible tissue mechanics in the heart. Noting that the choice of model is

governed by both model validity and numerical considerations, the use of Lagrange

(LM and PL) and penalty methods as models of both incompressible and compressible

behaviour was assessed. Motivated by the classic locking phenomena observed for linear

mechanics25,242, an enhancement of the Bercovier18 formulation was introduced which

enables the single field approach while providing similar convergence behaviour to the

LM method. Furthermore, the comparison of different approaches for incompressibility

/ compressibility has not been performed on cardiac mechanics before, and could be

useful in indicating the appropriate approach for the specific application.

The convergence behaviour of the methods discussed highlighted the fact that the

LM and penalty methods, although often used equivalently in cardiac mechanics, may

present significant variations in results. This is due to the deterioration of the conver-

gence behaviour of the penalty method for large values of the bulk modulus. Indeed,

in both the 2D elongation problem and the cardiac models, the penalty method gener-

ally exhibited a larger error compared to the other two methods, for all values of the

bulk modulus. In contrast, the single field weakly penalised approach provided both

improved rates of convergence and avoided issues associated with locking phenomena

over these test problems. Further modifications introduced in this work enhanced the

computational performance of the numerical scheme, by allowing efficient application

of the SNR re-use strategy, which significantly reduced the computational time.
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Taking all into account, the choice of an appropriate numerical scheme should be based

on the specific application under consideration. As all approaches behave similarly

for compressible, low bulk modulus problems, the penalty formulation may be an at-

tractive option for such applications, due to its straightforward structure and imple-

mentation. For incompressible and nearly-incompressible applications, however, the

penalty method should be avoided due to its deteriorated convergence behaviour. In-

stead, the LM, PL and weakly penalised formulations are all accurate and efficient

options which can be reliably employed for incompressible and nearly-incompressible

problems. Finally, the simple structure of the weakly penalised approach – compared

to the indefinite structure of the LM Jacobian – makes it an appealing alternative for

large systems’ solutions.
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4 Analysis of passive cardiac constitu-

tive laws using synthetic 3D tagged

MRI

An important step in the creation of personalised models of cardiac mechanics is the

choice of an appropriate passive constitutive law. Although this choice is determined

by the scope of the specific application, it is often based on balancing the need for

an accurate description of the passive myocardial behaviour with the requirement for

uniquely identifiable parameters, tunable from available clinical data. Parameter iden-

tifiability is a crucial aspect in patient-specific applications, as passive parameters are

important determinants of cardiac function – with the potential of providing clinical

biomarkers – and as such, need to be uniquely and accurately estimated. Specifically,

the tissue remodelling observed in DCM patients128,16,190, is expected to be reflected in

the passive parameters as well, therefore reliable parameter estimation is of particular

importance in this work.

This chapter aims to assist the choice of an appropriate constitutive law when the

main data source is 3D tagged MRI – part of the data available through the DCM

study. Constitutive laws commonly employed in cardiac mechanics are considered,

keeping in mind the basic requirements for capturing passive myocardial behaviour

(model fidelity) as well as providing unique and accurate parameter estimates (parame-

ter identifiability). The analysis is focused on 3D tagged MRI, which offer a framework

for estimation of model-based parameters, using tissue-displacement observations. In

order to gain insights into the parameter estimation process, synthetic tagged MRI

are created directly from simulation results, resembling actual 3D tags. Through in

silico simulations and parameter sweeps, the behaviour of a minimisation criterion (J )

over the parameter space is examined for the constitutive laws considered. The various

models are further compared with respect to their ability in representing physiological

cardiac deformation and end-diastolic pressure-volume relation (EDPVR), in order to

identify a model balancing between practical identifiability and adequate representation

of cardiac behaviour.

The following sections describe the approach used for investigating practical identifiabil-
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ity and model fidelity for the laws considered. The process for characterising practical

identifiability and model fidelity for each one of the considered models, is reviewed in

section 4.1. The proposed workflow is employed for in silico tests of diastolic filling

using an idealised left ventricle (section 4.2).

Large part of the work presented in this chapter, was included in a publication by

Hadjicharalambous et al.85.

4.1 Methodology for parameter identifiability study

In this section, the process followed in this work for assessing the practical identifiability

of various laws is presented. As described in Fig. 4.1, the process focuses on the

creation of synthetic tags, the motion extraction algorithm used and the parameter

sweeps performed to retrieve the parameter values over minimisation (section 4.1.1).

The cardiac model of LV diastolic filling used is then described, as well as the various

cardiac constitutive laws considered (section 4.1.2). Finally, the general theoretical

framework for the inverse problem of parameter estimation using 3D tags is presented

(section 4.1.3), focusing on the concepts of structural and practical identifiability, and

the factors that influence them (data, constitutive laws, objective function).
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Figure 4.1 Workflow followed for the in silico study of practical identifiability using
synthetic 3D tags.

4.1.1 In silico tagging and assessment protocol

A primary goal of this study is to assess the potential of using 3D tagged MRI in

parameter estimation applications. Even though 3D tagged MRI offer a rich dataset

for parametrisation, the process may be compromised by low resolution or noisy data
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Figure 4.2 Comparison between synthetic (left) and real (right) 3D tags at beginning
of diastole, short-axis view on top figures, long-axis view on bottom figures.

and any error introduced during the motion tracking procedure. In order to investi-

gate this issue, synthetic 3D tagged images were generated directly from simulation

results. Within this controlled environment, the actual parameters of the heart model

are known, allowing for an assessment of the error between actual and estimated pa-

rameters. Furthermore, as the synthetic tags approximate real 3D tagged images (Fig.

4.2), within this framework we can quantify the error associated with various aspects

of 3D tags such as resolution, noise in the data, and error introduced by the tracking

algorithm.

Initially, a simulation of LV diastolic filling was run for each constitutive law, choos-

ing parameters which produced a physiological end-diastolic volume. Synthetic 3D

tags were then created from the resulting deformation and the myocardial motion was

extracted and propagated on a mesh. These deformed meshes were then treated as

data and were used directly for comparisons with simulation results. By performing

parameter sweeps, computing and minimising an objective function or minimisation

criterion J over a bounded parameter space, parameter estimates were obtained and

the behaviour of J was quantified.
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4.1.1.1 LV diastolic filling

Several constitutive laws (section 4.1.2.2) were employed to model the passive behaviour

of the tissue (step “SIMULATION” in Fig. 4.1), and the simulated diastolic deforma-

tion in each case was compared with diastolic data to provide parameter estimates. The

LV was modeled as a thick-walled truncated ellipsoid of typical cardiac dimensions. The

domain was discretised using a mesh composed of 56 hexahedral elements with two el-

ements transmurally, and a quadratic-linear interpolation scheme was employed for

the displacement and pressure variables, respectively. A generic heterogeneous fibre

field was applied, with the fibre angle varying linearly between 60◦ and −60◦ from

endocardium to epicardium. A zero traction condition was enforced on the epicardial

surface, while the base plane was fully fixed. Finally, the endocardial surface of the

LV model was passively inflated to a typical end-diastolic pressure of 1.5kPa, using 50

uniform loading steps.

4.1.1.2 In silico assessment protocol

As the focus of this chapter is passive cardiac parameters, synthetic tags were generated

(step “SYNTHETIC TMRI” in Fig. 4.1) from a passive inflation simulation of a model

left ventricle (section 4.1.1.1) using the various constitutive laws which will be described

in section 4.1.2.2. Using rasterisation, a binary mask of the mesh was created, and tag

planes were generated within the image222,61, resulting in a final 3D tagged image

with a resolution of 1 × 1 × 1 mm. Simulated deformations were then mapped and

interpolated within the image, producing a 3D-tagged representation of the passive

inflation simulation. For the remaining steps of the parameter estimation study, these

synthetic tags served as data and were treated as real 3D tags.

In order to assess the effect of data noise, Gaussian noise was added to the simulation

results, prior to the in silico tagging (step “UNBIASED NOISE” in Fig. 4.1). The

mean value of the added Gaussian noise was zero and the variance was a percentage

(usually 5− 20%) of the maximum deformation of the diastolic simulation.

4.1.1.3 Motion extraction of synthetic tagged MRI

Myocardial motion was extracted from in silico tagged images (step “MOTION

TRACKING” in Fig. 4.1) using the Image Registration Toolkit∗. This software uses

a non-rigid registration technique proposed by Rueckert et al.209,220 and subsequently

extended to tracking of cardiac motion35,225. The registration algorithm, which is based

on free-form deformations and optimisation of the similarity between two subsequent

∗http://www.doc.ic.ac.uk/∼dr/software
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images, allows tracking any point within the myocardium throughout the cardiac cycle,

and provides the deformation field with respect to the beginning of systole. The ob-

tained deformation fields were then applied on an initial mesh and propagated through

time, resulting in a set of deformed meshes which were used as the observations within

the parameter estimation process.

4.1.1.4 Mechanical simulations and J characterisation

The parameter estimates for the constitutive laws considered were obtained by param-

eter sweeps (step “PARAMETER SWEEP” in Fig. 4.1). Specifically, for each law,

passive inflation simulations (section 4.1.1.1) were performed for parameter combina-

tions within a neighbourhood of the actual parameters. The parameter estimates were

then obtained as the set of values that minimised the objective function J over the

parameter space. Within this process, 10 synthetic tagged frames were used as obser-

vations. The objective function employed – defined and discussed in section 4.1.3.2 – is

discerning and thus able to provide a unique minimum, assuming that the constitutive

law is practically identifiable. Note that, as the same constitutive law is used for both

the generated data and simulations, the estimation process does not suffer from model

fidelity issues, leading to safe conclusions about practical identifiability.

4.1.2 Cardiac mechanics

4.1.2.1 Finite elasticity

The passive diastolic filling of the LV considered in this work was simulated within

the finite elasticity framework (section 2.4.1) due to the large deformation of the my-

ocardium during the cardiac cycle98.

We consider here a body defined over a reference domain Ω0 (similarly to Fig. 2.1),

which deforms under the action of a traction t (such as the endocardial pressure) on

a subset ΓN of the boundary Γ, with Ω denoting the current configuration. Given a

set of parameters θ related to the employed constitutive law, the mechanics problem

can be written as: Find the deformation and hydrostatic pressure pair x = (uθ, pθ) in

W 0 = H1
0(Ω)× L2(Ω) such that

F(θ;x, y) = 0, ∀y ∈W 0, (4.1)

where

F(θ;x, y) =

∫
Ω

(σd(θ;u) + pI) : ∇v dv −
∫

ΓN
t · v da+

∫
Ω0

q(J − 1) dV, (4.2)
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following the weak form derivation described in section 2.5, and x = (u, p) and

y = (v, q) represent the state solutions and test functions, respectively. In this case,

the myocardial wall is assumed to be an incompressible material. As the size of the me-

chanics problems under consideration was relatively small, use of the weakly penalised

approach (section 3.1.3) would not have a significant computational benefit over the

LM approach, so for simplicity incompressibility is enforced using the classic Lagrange

multiplier method (Eq. 3.10).

In the finite elasticity framework considered here, σd denotes the deviatoric Cauchy

stress tensor, which depends on the passive behaviour of the material and the consti-

tutive law chosen to describe it (section 2.3.3). As the myocardium is most typically

modeled as a hyperelastic material, the mechanical behaviour is expressed using a strain

energy function, whose deviatoric component is denoted here by Ψd (as described in sec-

tion 2.4). The deviatoric component of the Cauchy stress tensor can then be obtained

through the expression

σd =
2

J
F
∂Ψd

∂C
F T . (4.3)

The cardiac mechanics problem (4.1) was then solved using the finite element method,

which is based on discretisation of the continuous domain and function spaces, as

described in section 2.6.

4.1.2.2 Constitutive laws

In order to decide on a suitable constitutive law providing an accurate representation

of heart function as well as identifiable parameters, constitutive laws of progressively

increased complexity were considered. Initially, the neo-Hookean law was employed, a

well-known isotropic hyperelastic law, which has also been used in cardiac models40.

The strain energy function and deviatoric stress for the neo-Hookean law are given by

Eq. 2.29 and 2.30, respectively.

A more structurally accurate model was then examined, by augmenting the neo-

Hookean law with a fibre-dependent component102. This enhanced version, which will

be referred to as the neo-fibre law, is defined with respect to a fibre coordinate system

(Eq. 2.37, 2.39), and the exponent a was chosen to be 1 or 2.

To better capture the exponential response of the myocardial tissue, the study was then

extended to the structurally-based orthotropic law by Holzapfel and Ogden98, described

in Eq. 2.35 and 2.36. Restricting the study to constitutive laws with a small number of

parameters to allow for better identifiability, a reduced version of the Holzapfel-Ogden

law was used within the tests examined in the current chapter. Specifically, in the

reduced Holzapfel-Ogden model, microstructural material parameters as and afs were

set to zero and the exponents b and bf were kept constant. A similar formulation has
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previously been applied by Caruel et al.28 in 0-D and 1-D models, demonstrating its

ability to fit experimental data and thus reproduce physiological cardiac behaviour.

The values of the exponents (b = 5 and bf = 5) were chosen so that the model would

be able to provide a physiological EDPVR (see section 4.2.3 and Fig. 4.13), as for

several combinations of b and bf a physiological EDPVR could not be produced for

any values of the scaling parameters α and αf . Nevertheless, it should be noted that,

there is a range of values that would be appropriate for the choice of exponents, as an

interdependence between the exponents and scaling constants can be assumed similar

to that of the Guccione law276. The added value of this formulation over the Guccione

law is that, due to its structure as a sum of individual exponential terms, it can be

reduced into a form with uncoupled parameters. For this reduced version, the deviatoric

strain energy function is given as:

Ψd =
a

2b
(exp[b(IC − 3)]− 1) +

af
2bf

(
exp[bf (ICf − 1)2]− 1

)
, (4.4)

where ICf = C : f0 ⊗ f0 = f0 · (Cf0) denotes the invariant associated with the fibre

direction. Similarly, the deviatoric Cauchy stress tensor can be derived as:

σd =
[
a exp[b(IC − 3)]B + 2af (ICf − 1) exp[bf (ICf − 1)2]f ⊗ f . (4.5)

Finally, the well-known transversely isotropic exponential law by Guccione et al. was

examined, whose strain energy function and Cauchy stress tensor are given by Eq. 2.33

and 2.34, respectively.

4.1.3 Parameter estimation

In patient-specific mechanics simulations, models are often tuned or parametrised based

on measurement data (observations). Supposing we have N parameters which govern

the material behaviour, a common approach is to try and parametrise based on objective

function minimisation. For example, we aim to find a set of N parameters θmin which

satisfies, for an objective function Jθ,

Jθ(θmin) < min
θ∈P\θmin

Jθ(θ) (4.6)

where P ⊆ RN is a subset of vectors of real numbers which constitute the admissible

parameters for the problem. The behaviour of the model, the observations (or data)

over which the behaviour is considered, and the objective function itself, all play an

important role in the behaviour of the minimisation problem and uniqueness of the

minimiser. This is particularly important in clinical contexts, where the obtained set

of parameters θmin is used to, in some sense, provide an indicator of the health / state

of the myocardium. This section examines how these factors – the model, observations
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and objective – can influence the identifiability of θmin.

4.1.3.1 Model identifiability

To understand the behaviour of the minimisation problem, it is important to first

understand the behaviour of the model and its parameters. Assuming Ns loading

conditions are imposed on the model shown in Eq. 4.1, the total model problem can

be written using the operator Fs, adding each quasi-static equilibrium state defined in

Eq. 4.1,

Fs(θ;X,Y ) =

Ns∑
k=1

∫
Ωk

σd(θ;uk) : ∇vk dv +

∫
Ωk

pk∇ · vk dv

+

∫
Ω0

qk(J(uk)− 1) dV −
∫

ΓNk

tk · vk da. (4.7)

In this notation, {t1, . . . tNs} denotes the set of Ns loading conditions (boundary trac-

tions) and

X = {u1, . . .uNs} × {p1, . . . pNs}

Y = {v1, . . .vNs} × {q1, . . . qNs}

denote the set of state solutions and test functions for each load state k. Solution spaces

can be composed by setting X,Y ∈W s
0, where the spaceW s

0 =
[
H1

0(Ω)
]Ns×[L2(Ω)

]Ns
is an extension of space W 0 accounting for the multiple loading states.

Using this notation, the quasi-static mechanics problem is (given a set of parameters

θ): find an Xθ ∈W s
0 such that,

(P1) Fs(θ;Xθ, Y ) = 0, ∀Y ∈W s
0.

Here, Xθ constitutes the state solution composed of displacements and pressures at

each of the Ns loading conditions. Additionally, all solutions to (P1) can be collected

to construct a space of solutions V ⊂W s
0, i.e.

V = {X ∈W s
0| ∃θ ∈ P s.t. (X,θ) satisfy (P1)}.

Based on the definition of V , it is possible to identify pairings between a subset of

PV ⊆ P and the space of state solutions V . These pairings, in general, have no well-

defined properties. Indeed, V and PV may be empty. Here, it is assumed that (P1)

induces a surjective mapping on the parameter space P to the space of state solutions

V (see Fig. 4.3), i.e.

ϕ : P 7→ V , ϕ(θ) = Xθ, (θ, Xθ) ∈ P × V
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Figure 4.3 Schematic representation of the objective function J over the solution
space W0 for a given parameter set θ. The bijectivity of mapping ϕ between parameter
space (P ) and space of solutions (V) ensures practical identifiability85.

This assumption is equivalent to assuming that there exists a unique Xθ ∈ V for every

θ ∈ P . If ϕ : P 7→ V , it implies that for any θ ∈ P there is an Xθ ∈ V . In other words,

it implies there exists a (Xθ,θ) satisfying (P1). Moreover, non-uniqueness of solutions

would imply that for some θ ∈ P the mapping ϕ would be written as:

ϕ(θ) = {X1
θ , X

2
θ , . . .} ⊆ V .

This possibility is precluded, however, by the surjective assumption (implying unique-

ness). Though it is not proven for general cardiac mechanics boundary value problems,

it is often assumed in these applications that, given the admissible set of loading states

and parameters, the solution Xθ to (P1) exists and is unique.

However, this condition is insufficient to guarantee unique parameter identifiability in

Eq. 4.6. A stronger condition, which, as will be shown, can ensure unique parameter

identifiability, occurs when the mapping ϕ is in fact bijective, i.e. there exists a ϕ−1

where

ϕ−1 : V 7→ P, ϕ−1(Xθ) = θ.

In the case of bijectivity of ϕ we can ensure that the transition from state to parameters

is well defined.

Two important determinants of the properties of ϕ stem from the behaviour of the

constitutive law itself and the set of loading states. The parameter dependence of

the constitutive law – whether it is linear or nonlinear – can significantly influence

a model’s ability to uniquely identify parameters. It may also influence the range of

loading states (and, as a result, deformations) which must occur to elucidate parameter

dependencies. The final set of Ns loading states {t1, . . . tNs} then defines this scope of

deformations.

These considerations lead to a basic property required of a model, referred to as struc-
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tural identifiability 203,204. A model is said to be structurally identifiable if there ex-

ists an arbitrarily large set of NT loading states {t1, . . . tNT } such that the mapping

ϕ : P 7→ V is bijective. As can be shown (see Theorem 2 and Appendix D), this prop-

erty is easily demonstrated for constitutive laws with linear parameter dependence, but

becomes more complex when this dependence is nonlinear.

However, in most in vivo scenarios, model parametrisation is limited to a given set of

loading states which cannot be arbitrarily selected, leading to the concept of practical

identifiability. A model is said to be practically identifiable if, for a given set of Ns

loading states {t1, . . . tNs}, the mapping ϕ : P 7→ V is bijective. The key difference here

is that limited observations comprise a set of loading states that ensure identifiability

of all parameters, θ. For personalised cardiac models, these represent the in vivo

states observed through the cardiac cycle, which must be sufficient to yield practical

identifiability of all parameters of the law.

For general nonlinear cardiac models, practical identifiability of passive parameters is

difficult to prove a priori, as it fundamentally depends on the structural identifiability

of the model and the set of loading states and observations provided by the data.

However, these considerations dictate the choice of model best-suited for a given set of

material deformations.

In general, bijectivity can be ensured by a coercivity assumption, i.e.:

Theorem 1. Suppose ϕ : P 7→ V is a surjection (i.e. the solution to (P1) exists and

is unique). Then, if for α > 0, any X ∈ V and a pair of parameter sets θ1,θ2 ∈ P ,

α‖θ1−θ2‖P ≤ sup
Y ∈W u

0,Div

|Fs(θ1;X,Y )−Fs(θ2;X,Y )|
‖Y ‖W u

0

then ϕ is bijective.

Proof. The proof follows from contradiction. Suppose that θ1,θ2 ∈ P both happen to

satisfy (P1) when paired with the solution states X. Then, by (P1),

0 = Fs(θ1;X,Y )−Fs(θ2;X,Y ), ∀Y ∈W u
0 .

Dividing both sides by ‖Y ‖W u
0

and taking the absolute value and supremum, the co-

ercivity assumption ensures,

0 ≥ ‖θ1 − θ2‖P

or that the parameters θ1 and θ2 are, in fact, the same. Hence, any solution X has a

single pair θ ∈ P .

A much simpler case occurs when the model depends linearly on Np parameters, in

which case, the properties of ϕ are easier to decipher. In this case, the model may be
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written as:

σd(θ;u) =

Np∑
n=1

θnσn(u), (4.8)

where σn is the stress tensor (which may nonlinearly depend on u) scaled by the nth

parameter. In this case, the bijectivity of ϕ can be ensured by guaranteeing that it is

possible to construct N -constraints by using different Y ′s in (P1). Due to the linear

parameter dependence, the constraints may then be written as a matrix system, where

the invertibility of the matrix ensures ϕ is bijective (see Theorem 2).

Theorem 2. Suppose ϕ : P 7→ V is a surjection (i.e. the solution to (P1) exists and

is unique). If there exists a set of functions {Y1, . . . YN}, Yi ∈W u
0,Div with

Yi = {vi1, . . .viNs}

such that the matrix A with entries

Aij =

Ns∑
k=1

∫
Ωk

σj(uk) : ∇vik dv

is invertible, then ϕ is bijective.

Proof. The proof may be shown, again, by contradiction. Suppose there are two sets

of non-identical parameters θ,ψ ∈ P which result in the same state X. Then, by (P1),

0 = Fs(θ;X,Y )−Fs(ψ;X,Y )

=

Np∑
n=1

(θn − ψn)

Ns∑
k=1

∫
Ω
σn(uk) : ∇xvk dv (4.9)

for any Y ∈W u
0,Div × (W p ∩ 0). Hence, choosing {Y1, . . . YNp}, Equation 4.9 may be

re-written as

A(θ −ψ) = 0 ⇒ θ = ψ

due to the invertibility of A.

Theorem 2 depends on a sufficient number of deformation states such that A gains

linearly independent rows. Then, any test functions in W u
0,Div can further accentu-

ate differences in material response, providing a flexible source from which to select

constraints. Using this theorem, the structural identifiability for the neo-Hookean,

neo-fibre and reduced Holzapfel-Ogden law which have a linear dependence on their

parameters can be demonstrated (see appendix D).
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4.1.3.2 Objective function-based minimisation

In data-based parameter estimation procedures, the choice of parameters is often guided

by some objective function. Since the parameters are not observed in most cases,

parameter estimation instead relies on comparing states with observations. In these

cases, it is necessary that the objective function J : V → R obtains a unique minimum

(a discerning objective).

Using 3D tagged data, where the states are usually displacements, the natural choice

of objective function is to use the L2 norm over all states, i.e.

J (X) =
|||X −Xd|||
|||Xd|||

(4.10)

where Xd = {u1, . . .uNs} are observations on the displacements in the myocardium,

divided through by the overall scale of displacements, so that J gives a percentage

error. In this case, ||| · ||| is a norm on W 0 defined as,

|||X||| = ((X,X))1/2, ((X,Y )) =

Ns∑
k=1

(uk,vk)

where (·, ·) is the L2−inner product on the reference domain Ω0. We then look to

minimise the objective, finding Xmin ∈ V where

J (Xmin) < min
X∈V\Xmin

J (X). (4.11)

As ||| · ||| acts as a norm on displacements in V (and a semi-norm on the entire space),

if the observed displacements in the state Xd constitute a set of displacements X̃ ∈ V ,

then J is automatically a discerning objective, as the norm has a unique zero by

definition (and is strictly non-negative).

This is, however, unlikely to occur in a real context due to two dominant factors: (1)

data noise and resolution, and (2) model fidelity. The introduction of noise, or degra-

dation in data due to image resolution, introduces offsets which make the likelihood of

Xd being a member of V , minimal. In addition, the fidelity of the model can strongly

influence whether or not the model can capture the behaviour observed in the data,

making it possible that one or more than one minima exist.

Supposing that the model is a good representation of the tissue in vivo, then the

observed deformation can be expressed as Xd = X̃ + ε. In this case, assuming that ε

is, in fact, some random unbiased noise which satisfies

((X, ε)) ≈ 0, ∀X ∈ V , (4.12)
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then we observe that the noise does not bias our minima, but instead introduces a

constant offset in J , i.e.

J (X) =
|||X −Xd|||
|||Xd|||

=

(
|||X − X̃|||2 + |||ε|||2

)1/2

|||Xd|||
. (4.13)

The assumed relation in Eq. 4.12 is a reasonable assumption when the noise fluctuations

occur over a small spatial scale compared to the change of the state solutions X near

the minima.

The offset in Equation 4.13 does not influence the minimisation on V and, as a result, J
remains a discerning objective. Obtaining a unique minimum in V is essential, as, even

if a model is practically identifiable based on loading constraints, multiple minima for J
guarantee multiple minima in parameter space. However, with a discerning objective,

we then rely on the bijectivity (or practical identifiability) of ϕ, so that the objective

formed through composition,

Jθ(θ) = J ◦ ϕ(θ), (4.14)

also obtains a unique minimum

Jθ(θmin) < min
θ∈P\θmin

Jθ(θ). (4.15)

In practice, a discerning objective and a set of load states giving practical identifia-

bility are sufficient conditions to ensure that the set of parameters θmin are uniquely

identifiable.

4.1.3.3 Parameter coupling

Characterising the behaviour of the objective function J over the parameter space is

critical for the performance of the parameter estimation process. The behaviour of

J around the minimum value (a distinct localised minimum instead of a wide valley)

indicates a discerning objective function, which would allow data assimilation methods

to retrieve the parameter estimate. Furthermore, the landscape of J over the param-

eter space provides important information regarding the practical identifiability of the

constitutive law, revealing the presence of a unique or multiple minima or possible

inter-parameter coupling.

Coupling can also be deduced by the Hessian matrix of the objective function at the

obtained minimum. Using the Taylor expansion of J around the obtained minimum

θmin,

J (θmin + ε) = J (θmin) +∇θJ (θmin)T ε+
1

2
εT∇θ

(
∇θJ (θmin)

)
ε+O(||ε||3).
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Due to the gradient being zero at the minimum θmin,

J (θmin + ε) = J (θmin) +
1

2
εTHε+O(||ε||3), (4.16)

whereH denotes the Hessian matrix. As can be deduced by this expression, the Hessian

matrix can provide important information as it enables mapping between local growth

in J to local perturbations in the parameters. Further, to allow comparison between

laws with varying parameters’ scale, a scaled Hessian H̃ was used, defined as:

H̃ij = Hijθiθj , (4.17)

where θi and θj correspond to the i− th and j− th components of θmin. By then using

ε = ε̃ ◦ θmin, Eq. 4.16 can be expressed as

J (θmin + ε) = J (θmin) +
1

2
ε̃T H̃ε̃+O(||ε||3),

which is now dealing with parameter percentages, enabling comparison between the

different laws. The scaled Hessian H̃ can then characterise the sensitivity of J to

the parameters and demonstrate possible inter-parameter coupling. Specifically, the

minimum diagonal value of H̃ indicates that J is least sensitive to the corresponding

parameter, as a large error in the parameter can result in an insignificant change in

J , suggesting poor sensitivity to the parameter under consideration. Similarly, the

minimum eigenvalue of H̃ indicates the parameter combination that J is least sensitive

to. Accordingly, the ratio of the minimum diagonal value of H̃ over the minimum

eigenvalue λ(H̃)

R =
min{diag(H̃)}

min{λ(H̃)}
(4.18)

represents a metric of the degree of coupling between parameters. Specifically, large

values of R indicate that there is a parameter combination whose possible error will

cause a smaller change in J than error in each parameter separately, suggesting inter-

parameter coupling. Similarly, coupling ratios close to 1 suggest that there is no sig-

nificant coupling between parameters.

4.2 Results and discussion

4.2.1 Comparison of practical identifiability using 3D tags

For each of the considered constitutive laws, the behaviour of J over the parame-

ter space was examined, and the error between actual and estimated parameters was

quantified. For each law, a ground truth set of parameters was selected to give physio-

logically reasonable pressure / volume response, and synthetic 3D tags were generated
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from an LV inflation simulation. The extracted myocardial motion applied on meshes

was then used as data, and compared with simulations with varying parameter com-

binations, to provide the landscape of the objective function and an assessment of the

error in the parameter estimates. This process enabled the characterisation of the prac-

tical identifiability of each law and the assessment of its potential use in patient-specific

applications.

4.2.1.1 J characterisation of the neo-Hookean law
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Figure 4.4 a: J over neo-Hookean stiffness µ, for different data noise levels. The
original stiffness value (µ = 10kPa) is marked with a red asterisk. The minimum
was obtained among 100 simulations with different stiffness values. b: J over scaled
µ for four different original stiffness values. 100 simulations were performed for each
parameter sweep, with an average computational time of 20.518 s.

Firstly, the practical identifiability of the neo-Hookean law was investigated by exam-

ining the behaviour of J over a range of stiffness values. Due to the simple structure of

the law and its linear parameter dependence, it is expected that, given some deforma-

tion, good identifiability characteristics should be possible. Specifically, J is expected

to have a unique and distinct minimum, and it is anticipated that the incorporation of

unbiased noise should not affect the behaviour of J or the estimated parameter, but

only cause a shift towards larger J values.

Indeed, as illustrated in Fig. 4.4a, the objective function J has a unique and distinct

minimum at the initial stiffness value (µ = 10kPa). Furthermore, the actual stiffness

value is retrieved even in the case of noisy data (5% and 20% Gaussian noise), and

the overall behaviour of J remains the same, with just a small shift towards larger

values. These results suggest that, using 3D tags, the stiffness value can be uniquely

and accurately estimated.

The neo-Hookean in silico test was extended to study the influence of the actual pa-

rameter value on the estimation process. Using the same inflating pressure, increased
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stiffness would result in smaller deformation, that might be insufficient to allow for pa-

rameter estimation. We therefore performed four passive inflation simulations, where in

each case the inflating pressure was adjusted to provide the same end-diastolic volume.

We note that, as can be observed in Eq. 4.1 (where the inflating pressure is introduced

through traction as the product of pressure and deformed surface normal vector), due

to the linear dependence of the law on the parameter, the inflating pressure required to

produce the same deformation was simply scaled by the ratio between the stiffness val-

ues. Fig. 4.4b presents the behaviour of the objective function J over scaled stiffness

(µ over the initial stiffness for each case), showing consistent behaviour for any initial

stiffness value. This fact confirms practical identifiability of the neo-Hookean law using

3D tags for any initial stiffness.

4.2.1.2 J characterisation of the neo-fibre law
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Figure 4.5 Landscape of objective function J of neo-fibre (a = 1) over parameter
space. The actual parameters (C1 = 30kPa, C2 = 5kPa) used in the simulation are
shown by a yellow cross and estimated parameters by a red star. Figures on the right
show a “zoom-in” near the estimated values, where a denser grid of parameters was
used. 20% Gaussian noise was added in the data, in the bottom right figure. 11 × 11
simulations were performed for each parameter sweep, with an average computational
time of 51.120 s.

Figures 4.5 and 4.6 illustrate the behaviour of the objective function J over the pa-

rameter space of the neo-fibre law, for a = 1 and a = 2, respectively. As can be

deduced from Fig. 4.5, the neo-fibre law (a = 1) maintains the practical identifiability
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of the neo-Hookean law (distinct minimum) and provides accurate parameter estimates.

Even in the case of noisy data, the landscape of J remains similar and maintains a

clear distinct minimum, with a small error (6.7%) only in the fibre parameter.
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Figure 4.6 Landscape of objective function J of neo-fibre (a = 2) over parameter
space. The actual parameters (C1 = 50kPa, C2 = 5kPa) used in the simulation are
shown by a yellow cross and estimated parameters by a red star. Figure on the right
shows a “zoom-in” near the estimated values, where a denser grid of parameters was
used. 10 × 10 simulations were performed for each parameter sweep, with an average
computational time of 60.546 s.

When the exponent, a, is increased to 2 (Fig. 4.6), however, the practical identifiability

of the neo-fibre law is compromised (presence of valley) and the error between actual

and estimated parameters increases significantly (2% and 16% for the isotropic and

fibre parameters respectively). Note that, as no noise is added in this case, this error

is created during the tagging process, due to the combination of limited resolution of

the tags and higher non-linearity of the law.
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Figure 4.7 Neo-fibre J over (a) the isotropic parameter C2 and (b) fibre-parameter
C1, for a = 1 and a = 2.
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Furthermore, Fig. 4.7 examines the behaviour of J over a range of values for each

parameter separately. The steeper slope of J around the minimum value in the case

of parameter C2 suggests that the isotropic parameter has better identifiability than

the fibre-parameter. This issue is even more prominent in the a = 2 case, due to

the increased nonlinearity in the fibre dependence. Based on Theorem 2, the neo-

fibre law is structurally identifiable due to its linear parameter dependence, suggesting

that the deterioration of the identifiability of the fibre parameter is due to insufficient

deformation in the data. In fact, even though not presented here, when the end-diastolic

pressure was increased to 3kPa instead of 1.5kPa, the error in the fibre parameter

decreased from 16% to 12%.

4.2.1.3 J characterisation of the reduced Holzapfel-Ogden Law

The practical identifiability of the reduced Holzapfel-Ogden model (see definition in 4.5)

was tested on a simulaton where the values of the exponents (b = 5 and bf = 5) were set

to provide a physiological EDPVR (see section 4.2.3 and Fig. 4.13). Fig. 4.8 presents

the landscape of the objective function J over the parameter space, indicating a clear

and unique minimum for the objective function. Even though the fibre parameter af

presents deteriorated identifiability characteristics compared to the isotropic parameter

a (as also observed in the neo-fibre case), the parameter values were retrieved with small

relative errors (4% and 2% for the isotropic and fibre parameters, respectively).
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Figure 4.8 Landscape of objective function J of reduced Holzapfel-Ogden law over
parameter space. The actual parameters (α = 1kPa, αf = 1kPa) used in the simulation
are shown by a yellow cross and estimated parameters by a red star. Figure on the right
shows a “zoom-in” near the estimated values, where a denser grid of parameters was
used. 12 × 14 simulations were performed for each parameter sweep, with an average
computational time of 56.705 s.
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Figure 4.9 J over parameter ratio a/af for the reduced Holzapfel-Ogden law. The
actual ratio is marked by a circle.

Additionally, to assist comparisons with in vivo models in chapter 6, Fig. 4.9 illustrates

J over the parameter ratio a/af for varying a, for a volume-driven simulation. In this

case, the volume constraint was enforced weakly through a Lagrange multiplier (as will

be discussed in section 5.3.3.1). Fig. 4.9 indicates the presence of a unique distinct

minimum at the actual parameter, suggesting that the reduced Holzapfel-Ogden law

presents good identifiability characteristics in this setting as well.

4.2.1.4 J characterisation of the Guccione Law

The practical identifiability of the transversely isotropic Guccione law was tested using a

simulation where, the parameters were chosen to fit an empirical end-diastolic pressure-

volume relation (EDPVR), proposed by Klotz et al.122(see Figure 4.13). In order to

assess the effect of noise in the data, 5% Gaussian error was added in the simulation

results, prior to in silico tagging.

Table 4.1 presents the 5 parameter combinations with the smallest J values, with

and without 5% Gaussian noise in the data. These combinations vary significantly,

suggesting the presence of multiple minima. Indeed, the presence of 5% noise in the

data results in a different estimate of parameters, compared to the non-noisy data. Note

that this estimate, which has a larger difference from the actual simulation parameters,

compensates for the increase in C with a decrease in bf , suggesting an inter-parameter

dependence.

In order to examine this issue, the Guccione law was reformulated as suggested by Xi

et al.276:

bf = αr1, bt = αr2, bfs = αr3, r1 + r2 + r3 = 1,

where parameter α denotes the sum of bf , bt, bfs. Parameter sweeps were performed

over parameters C and α while keeping the ratios between bf , bt, bfs and α constant
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C bf bt bfs

Actual 180 27.75 5.37 2.445

No Gaussian noise

150 35 6 3
250 25 4 3
250 25 4 5
200 35 4 3
300 25 4 2

5% Gaussian noise

250 25 4 3
150 35 6 3
250 25 4 5
200 35 4 3
300 25 4 2

Table 4.1 Actual (in bold) and estimated parameters (in red) for the Guccione law.
Furthermore, Guccione parameter combinations with 5 smallest error values are pre-
sented, with and without 5% noise in the data. Parameter sweeps were performed
over 6 different values for each of the four parameters, resulting to 1296 parameter
combinations.

(r1 = 0.5, r2 = 0.3, r3 = 0.2). Fig. 4.10 illustrates the behaviour of the objective

function J over a range of the parameters C and α. The exponential shape of the

blue valley representing model parameters resulting in small J values, verifies coupling

between C and α as previously reported by Xi et al.276,277. The presence of inter-

parameter dependence is also demonstrated in table 4.3, which shows a significantly

larger coupling ratio R (as discussed in section 4.1.3.3) for the Guccione law. Coupling

may significantly deteriorate the parameter estimation process, as any noise in the data

is likely to result in a large error in the estimated parameters (in this case 5.6% for

both α and C). The coupling in the Guccione law therefore suggests that we can not

guarantee unique and reliable parameter estimates using 3D tags.

4.2.1.4.1 Identifiability of fibre angle

The fibre distribution is an important determinant of cardiac function, and as a result,

incorporating an accurate fibre field into a cardiac model is of great significance. In

an attempt to estimate the fibre angle along with the Guccione parameters of table

4.1, the fibre angle was added as an additional unknown parameter in the estimation

process. (In this test, the fibre angle θ represents the maximum and minimum angle of

the fibre distribution, i.e. a fibre angle of θ = 40◦ describes a fibre field varying linearly

between −40◦ on the epicardium and 40◦ on the endocardium).
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Figure 4.10 J over Guccione parameters C and α. The actual parameters (α =
38, C = 180Pa) used in the simulation are shown by a yellow cross and estimated
parameters by a red star. Figure on the right shows a “zoom-in” near the estimated
values, where a denser grid of parameters was used. 12 × 12 simulations were performed
for each parameter sweep, with an average computational time of 66.158 s.
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Figure 4.11 J over the fibre angle θ for 5 (C, bf , bfs, bt) parameter combinations of
the Guccione law.

Based on Fig. 4.11, which shows the behaviour of J over the fibre angle for different

parameter combinations, the presence of a parameter-fibre angle coupling can be de-

duced. The estimated fibre angle is dependent on the parameter combination assumed,

as a change in fibre angle can be compensated by a shift in the parameters. This

coupling is most likely present in the other fibre-dependent constitutive laws as well,

suggesting that the fibre angle can not be retrieved through this process. This issue

will be discussed in further detail in the in vivo models in chapters 5 and 6.
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4.2.1.5 Effect of noise in the 3D tagged data

The practical identifiability of the constitutive laws considered may be significantly

compromised by the presence of noise in the data. In order to assess this effect, noisy

data were considered, where unbiased Gaussian noise was added in the simulation

results prior to in silico tagging. Due to the limited resolution of the data, the addition

of noise is expected to deteriorate the behaviour of J , especially for parameters with

very low sensitivity. The presence of noise resulted in increased J values (see Fig.

4.4a and 4.5) and larger errors in the parameter estimates as indicated in tables 4.1

and 4.2. However, the landscape of J was not significantly altered due to the uniform

noise used, as indicated by the representative case of neo-fibre a = 1 in Fig. 4.5.

Nonetheless, unbiased noise caused a minor change to the topology of the objective

function in the parameter space, as can be deduced by the increase in the coupling

ratio in table 4.3.

neo-Hookean neo-fibre a = 1 neo-fibre a = 2 r. HO Guccione

P.E 0 ± 10% 0 ± 3.33% 16 ± 2% 4 ± 2% 5.56 ± 5.56%
2 ± 2% 2 ± 2% 2 ± 2% 5.56 ± 5.56%

P.E (20 % noise) 0 ± 10% 3.33 ± 3.33% 16 ± 2% 4 ± 2% 5.56 ± 5.56%
0 ± 2% 0 ± 2% 6 ± 2% 0 ± 5.56%

Table 4.2 Percentage error (P.E.) between actual and estimated parameters for each
law. The interval used in each parameter sweep is used as the uncertainty in each case.
The first row corresponds to the error of the first parameter for each law.

neo-Hookean neo-fibre a = 1 neo-fibre a = 2 r. HO Guccione

Gradient -1.2516e-05 -2.6958e-07 4.8918e-08 -5.7794e-06 -2.7133e-04
-2.4444e-06 7.7456e-06 -8.8705e-07 -2.2966e-03

R 1.3962 1.1848 1.0041 16.596
R (20 % noise ) 1.4006 1.2019 1.1201 20.883

Table 4.3 Gradients at the obtained minima, for the considered constitutive laws. The
first row corresponds to the gradient with respect to the first parameter for each law.
Coupling ratios R are also presented, for data with and without 20% unbiased noise.

4.2.2 Comparison of models’ fidelity

Keeping in mind that the choice of an appropriate constitutive law should balance

between parameter identifiability and model fidelity, the constitutive laws described in

section 4.1.2.2 were also tested with respect to their ability to represent physiological

cardiac deformation. Furthermore, the behaviour of the objective function for any

constitutive law is also influenced by model fidelity (as discussed in section 4.1.3.2), as

a model which can not provide a good approximation to data can lead to unreliable
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parameters. It is worth noting that, even though model fidelity does not affect the

in silico tests in section 4.2.1, where the same constitutive law is used for generated

data and simulations, it is an issue for in vivo cases, where the model should represent

cardiac deformation.

For the purposes of this comparison, Guccione deformations were considered as the

ground truth for physiological cardiac deformation. In order to cover a range of possible

deformation modes during the cardiac cycle, 18 widely varying parameter combinations

were used. For each of these combinations, a parameter sweep was performed for each

law to provide the parameter that minimised the difference between simulations and

the ground truth cardiac deformation. The comparison was performed on simulations

with the same end-diastolic volume through volume-prescribed loading to reduce the

parameter space by 1.

neo-Hookean neo-fibre a = 1 neofibre a = 2 r. Holzapfel-Ogden

Minimum error 0.089 0.063 0.084 0.054
Maximum error 0.625 0.261 0.251 0.259
Average error 0.503 0.197 0.152 0.122

Figure 4.12 Neo-Hookean, neo-fibre (a = 1 and a = 2) and reduced Holzapfel-Ogden
laws are compared in terms of their ability to approximate physiological cardiac de-
formation. 18 Guccione parameter combinations are used as ground truth. Deformed
meshes denote ground truth cardiac deformation in black and model deformation in
red, for the ground truth deformation that presented the maximum difference from the
model response. The table presents minimum, maximum and average J values over
the 18 Guccione combinations for the various laws.

Fig. 4.12 compares the minimum, maximum and average errors between the vari-

ous laws considered and ground truth deformation. The neo-Hookean law exhibits a

significant variation compared to ground truth deformation. This is mainly due to

the inability of the neo-Hookean law to produce adequate elongation and twist, which

are important characteristics in cardiac deformation. On the other hand, the added

fibre-dependence in the neo-fibre law allows for a more accurate approximation to phys-

iological cardiac motion, as the lower average and maximum errors indicate that the

neo-fibre can, on average, reproduce most of the deformation modes considered. The

approximation to cardiac motion is further improved as the exponent α increases. Fi-

nally, the reduced form of the Holzapfel-Ogden law presents the smallest average and

minimum errors between the deformations produced using a given constitutive law and

the Guccione law, confirming that the values used for the exponents b and bf are ap-
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propriate and allow for physiological cardiac deformation. These observations can also

be made qualitatively, using the meshes in Fig. 4.12, which present the maximum dif-

ference from Guccione combinations. For the neo-fibre and reduced Holzapfel-Ogden

models, even the maximum difference from the ground truth is small, as indicated by

the close match between model and ground truth cardiac deformation.

4.2.3 Comparison of models’ EDPVRs

End-diastolic pressure-volume relation (EDPVR) is an important determinant of car-

diac function, therefore the considered constitutive laws were compared with respect

to their ability to reproduce a physiological EDPVR. For this comparison, the em-

pirical EDPVR proposed by Klotz et al. was chosen as the ground truth physio-

logical EDPVR, as it is considered capable to represent healthy and diseased cases.

The EDPVR is derived from a single set of end-diastolic pressure (EDP) and volume

(EDV) measurements, which, for the in silico tests, were chosen as EDP= 11mmHg

and EDV= 140ml.
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Figure 4.13 Typical end-diastolic pressure-volume curves for the constitutive laws
considered and ground truth Klotz curve. While the reduced Holzapfel-Ogden and
Guccione laws are able to reproduce the Klotz curve, the neo-Hookean and neo-fibre
laws can not produce a physiological pressure-volume response.

Figure 4.13 illustrates typical EDPVRs for the various constitutive laws considered. As

indicated by the curve, the neo-Hookean and neo-fibre laws were not able to reproduce

a physiological EDPVR, even though case a = 2 gives a better approximation for the

neo-fibre law. On the contrary, the exponential Guccione and the reduced Holzapfel-

Ogden laws were able to provide a physiological EDPVR as indicated by the close
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match to the Klotz curve.

4.2.4 Additional tests using the reduced Holzapfel-Ogden law

Based on the results described above, the reduced Holzapfel-Ogden law combines good

identifiability characteristics with a sufficiently accurate representation of the heart

function. As such, it comprises a suitable choice for a cardiac constitutive law, there-

fore additional tests were performed employing this model as the constitutive law, to

elucidate the effect of important modelling considerations.

4.2.4.1 Effect of mesh resolution on J behaviour

A relatively coarse, lower order mesh was used for the in silico examples in section

4.2.1.3. This choice was based on the small computational time per simulation, which

allowed for the large number of simulations performed to provide the landscape of

the objective function over the parameter space. Nevertheless, this section examines

whether the mesh resolution used was sufficient to examine parameter identifiability

characteristics in the in silico models considered.

To investigate this aspect, the in silico characterisation of the reduced Holzapfel-Ogden

law presented in section 4.2.1.3 was repeated on a uniformly refined mesh (448 elements,

instead of 56 elements used in the initial test). As can be deduced by the similarity

in both the landscape of J and the estimated values between Fig. 4.8 and 4.14, the

coarser mesh used for the in silico tests is able to characterise the identifiability of the

considered constitutive laws.
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Figure 4.14 Landscape of objective function J of reduced Holzapfel-Ogden law over
parameter space, when a finer mesh consisting of 448 elements is used.
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4.2.4.2 Effect of reference configuration on J behaviour

A common approach in in vivo cardiac mechanics models is to assume that the ref-

erence configuration is known and corresponds to a specific frame of diastole. This

section investigates the effect of choosing a different diastolic frame as a reference con-

figuration on the behaviour of the objective function. Specifically, an in silico test

was used to examine the effect of the reference configuration on the identifiability of

the parameter ratio of the reduced Holzapfel-Ogden law, in a volume-prescribed dias-

tolic filling simulation. Five different reference configurations were considered for the

simulations performed over parameter sweeps: the initial reference mesh and meshes

corresponding to loading steps 10, 20, 30 and 40 of the simulation used for the creation

of the synthetic tags. In each case, the number of loading steps and thus observations

was adjusted, so that each observation would correspond to 5 loading steps.
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Figure 4.15 J over the parameter ratio a/af for the reduced Holzapfel-Ogden law.
Five different reference configurations are used, corresponding to different diastolic
phases.

Fig. 4.15 compares the behaviour of the objective function J when different diastolic

phases are used as the reference configuration. Based on the similar behaviour of the

curves, the identifiability of the parameter ratio is not sensitive to the assumed reference

configuration. Interestingly, the parameter ratio is relatively consistent (20% maximum

error between actual and estimated ratio), irrespective of the reference domain. It

should be noted however, that this might be an artefact of the idealised geometry used

or other simplifications inherent in the model produced data.

4.2.4.3 Effect of in silico tagging and tracking on J behaviour

The process of synthetic tags’ generation and the tracking algorithm are likely to intro-

duce a biased influence into the parameter estimates and the landscape of the objective
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function. To investigate this effect, simulations with parameter sweeps were compared

with the original simulation results, before any processing had been applied.
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Figure 4.16 Landscape of objective function J of reduced Holzapfel-Ogden law over
parameter space, when the simulations are compared to the unprocessed data.

Based on Fig. 4.16, the processing steps do not seem to incorporate significant bias as

the landscape of the objective function is similar to Fig. 4.8. As anticipated, the error

at the estimates is much smaller (0), and in general the minimum is more localised

(sharper variation around the minimum). In general, the tagging and tracking process

does not seem to significantly alter the topology of the objective function over the

parameter space, although the identifiability behaviour moderately deteriorates.

4.2.5 Study limitations

Even though the effect of unbiased noise was examined, some aspects of the process or

the data that may introduce a biased influence on the study outcomes, have not been

examined. For instance, the resolution and number of tagged lines in the data are likely

to incorporate consistent error in the parameter estimation process. The boundary

conditions used in the simulations are also likely to influence the identifiability and

model fidelity results. Understanding these attributes is important for patient-specific

personalisation, therefore further work may be useful in clarifying the influence of

these factors on the landscape of the objective function and the estimation process in

general.

Furthermore, only one objective function has been considered, even though other ob-

jective functions may be able to elucidate other characteristics of the behaviour of

the various laws. Other objective functions have not been considered here, as such a

study would require proving that a potential objective function is discerning. If non-

discerning, proving that unique parameter identification is achievable becomes chal-

lenging, as it must then rely on the observations exposing uniqueness of the objective
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function. Nevertheless, the chosen J uses an L2 norm on the displacements, which

is generally considered as a robust criterion and should be able to provide adequate

information and accurately describe the identifiability characteristics of each law.

Finally, only in silico tests have been considered in the present chapter, thus further

work is needed to examine effects in vivo, such as noisy or low resolution data, or

diseased cases where the cardiac deformation is likely to differ significantly and data

quality is likely to be compromised. Furthermore, model fidelity is not an issue in

these in silico tests, but would likely affect identifiability in in vivo models, where

matching between the model and the data will always be imperfect. However, the in

silico tests performed provide a standard, representing the “best case scenario” which

can be anticipated when using real data. Moreover, parameter identifiability and model

fidelity in in vivo applications will be examined and discussed in detail in the following

chapters (chapters 5 and 6).

4.3 Summary

In this chapter, the practical identifiability and model fidelity of a range of cardiac

constitutive laws using 3D tagged MRI as the available data was examined. In order

to investigate the practical identifiability of the laws considered and examine the po-

tential of using 3D tags in parameter estimation applications, synthetic 3D tags were

generated directly from simulation results, and the behaviour of the objective function

over the parameter space was assessed through parameter sweeps. The laws consid-

ered were also compared with respect to their ability to represent physiological cardiac

motion and EDPVR, elucidating the primary components that should guide the choice

of an appropriate cardiac constitutive law – namely reliable parameters and adequate

representation of cardiac deformation and function.

The results presented in the present chapter verify the reported coupling of the tran-

versely isotropic Guccione law, suggesting the need for a law with better identifiability

characteristics that would allow for reliable parameter estimates. The neo-Hookean

law is shown to have good identifiability characteristics, due to linear parameter de-

pendence. The stiffness parameter is identifiable, provided adequate deformation is

present in the available data. However, due to its isotropy, neo-Hookean deformation

misses key characteristic deformation modes, mainly long-axis elongation and twist.

Furthermore, it can not reproduce physiological pressure-volume response.

Building on the neo-Hookean model, the neo-fibre law maintains the good identifiability

characteristics, while reproducing physiological cardiac deformation. Both parameters

are identifiable, even though sufficient deformation is required to allow identifiability of

the fibre parameter, due to the structure of the constitutive law. However, use of the
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neo-fibre law leads to an inaccurate pressure-volume response, which can not match

the empirical Klotz curve.

On the other hand, the reduced Holzapfel-Ogden law, combines all important attributes

considered, offering a balance between practical identifiability and adequate represen-

tation of cardiac deformation and EDPVR. Additional tests in which good identifiabil-

ity characteristics are maintained, support the conclusion that the reduced Holzapfel-

Ogden law offers a suitable choice in patient-specific applications with 3D tagged MRI

data.
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Application to personalised

models
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5 Development of personalised diastolic

models

In order for personalised cardiac models to be a viable clinical tool, they need to provide

an accurate representation of individual hearts, producing reliable metrics suitable for

clinical interpretation. Optimal use of the available data in model personalisation is

a crucial step in model accuracy, thus a lot of current efforts in the cardiac mechan-

ics community are focused on bridging the gap between imaging data and developed

mathematical models.

Developing accurate personalissd models is a challenging task, strictly dependent on –

and limited by – the available clinical data. The accuracy of the personalised geometry

and architecture, for example, is determined, among others, by the imaging modalities

available, while passive material laws need to be selected to ensure parameter identifia-

bility using the data at hand. At the same time, essential image processing steps need

to be followed to reduce inconsistencies between different imaging modalities and allow

for translation from the qualitative characteristics observed in images to quantitative

information that can be used by mathematical models.

Boundary conditions, although often given little attention, can be used for incorporating

data into the model thus improving model fidelity. The choice of boundary conditions is

also important in personalised models, as a naive choice might lead to non-physiological

model outcomes or over-constraining of the problem. Nevertheless, specific boundary

conditions can be selected which regulate the level of adherence to the data, reducing

non-physiological model deformations due to strict enforcement of the constraint or

incomplete / low resolution data.

This chapter presents the pipeline followed in this thesis for the development of per-

sonalised models for the study of DCM. Emphasis is largely on optimising the use

of the available data to improve model accuracy while ensuring reliable estimation

of passive parameters. Based on novel boundary conditions, a computational model

and parametrisation paradigm are presented, which are using strictly non-invasive

data.

Initially, the clinical project and available data are presented (section 5.1), followed
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by essential image processing steps aiming at limiting data inconsistencies (section

5.2). Modelling considerations studied through in silico tests in previous chapters

are now extended to personalised in vivo models (section 5.3) incorporating patient-

specific geometries. Furthermore, the boundary conditions employed enable driving the

diastolic LV filling simulations with cavity volumes from imaging data – overcoming the

need for invasive pressure measurements – and incorporate data-derived motion into

the model. Finally, passive parameters are estimated using data-derived displacements

and an end-diastolic pressure clinical surrogate (section 5.4). The proposed pipeline

provides the framework for investigating important aspects such as model accuracy

and parameter identifiability which will be discussed in chapter 6. This analysis is

an essential step, enabling reliable comparisons between DCM patients and healthy

volunteers.

5.1 BHF Integrated mathematical modelling and imaging

study

A significant portion of the work presented in this thesis is part of the BHF funded

project, “BHF Integrated mathematical modelling and imaging study”. The main aim

of the project is to integrate comprehensive imaging data into mathematical models

of heart function to develop personalised cardiac models for the study of dilated car-

diomyopathy (DCM).

During this project, imaging data from two cohorts was collected. Specifically, 20

healthy volunteers with normal heart function and 16 DCM patients were recruited,

aged 25-65. DCM patients recruited for the study were selected to have moderate DCM-

related heart failure (defined as NYHA class I/II). Both male and female volunteers /

patients were recruited.

All participants had MRI scans during which a series of images, ECG recordings, heart

rate and non-invasive blood pressure measurements were acquired. Each data-set was

then collected and anonymised, before being used for the construction of personalised

mathematical models. Data collection was performed by myself and research and clin-

ical collaborators, at Guys hospital, London.

5.1.1 Description of available data

A range of imaging data was acquired for each participant to allow for a detailed

personalisation of the cardiac models. Each imaging modality has a different scope

elucidating particular aspects of cardiac function and contributing to a complete picture
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of heart kinematics. Cardiac MRI scans were performed on a 1.5T Philips Achieva

system. Below, the data acquired for each participant are discussed.

5.1.1.1 Cine MRI

Cine bSSFP (balanced steady-state free precession) sequences were acquired using ret-

rospective ECG gating, with a reconstructed spatial resolution of 1.5×1.5×8 mm and a

temporal resolution of 40 time frames per cardiac cycle. The acquisition was performed

in respiratory navigated breath-holds. The left and right ventricles were covered by a

short-axis cine stack (Fig. 5.1a), while the long axis views of the LV were also captured

in standard 2-, 3- and 4-chamber views (Fig. 5.1b, 5.1c and 5.1d, respectively). An

MRI breathing navigator was used for the short-axis scan to reduce artefacts due to

non-reproducible breath-holds.

(a) (b) (c) (d)

Figure 5.1 Cine MRI in (a) short-axis, (b) 2-chamber, (c) 3-chamber and (d) 4-
chamber long-axis views at end diastole.

Cine MRI images provide detailed morphological characteristics of the heart and are

therefore commonly used for construction of personalised model geometries278,9. Fur-

ther, existing tracking algorithms can quantify the motion of myocardial surfaces

through the cardiac cycle, which can also be used for parameter estimation30,73.

Within the model personalisation process considered in this chapter, cine images pro-

vided the personalised geometry (section 5.2.2).

5.1.1.2 3D tagged MRI

3D tagged MRI covering mainly the LV was acquired in three breath-holds, with

prospective ECG triggering using the sequence presented in Rutz et al 211. The ac-

quired spatial resolution was 3.4 × 7.7 × 7.7 mm for the three components of the tag

planes. These were then reconstructed on the Philips scanner to a final 3D tagged

image (Fig. 5.8) of resulting spatial resolution of 1× 1× 1 mm and approximate tem-

poral resolution of ∼ 30 ms, providing approximately 20-25 time frames per cardiac

cycle.
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(a) (b) (c)

Figure 5.2 (a)Reconstructed 3D tagged MRI in (b) long-axis and (c) short-axis views
at end systole.

3D tagged MRI provide a detailed quantification of regional myocardial deformation,

as well as through wall motion, torsion and shear. Offering a 3D whole-heart deforma-

tion field, 3D tagged MRI has been used in parameter estimation applications278,266.

The extracted motion can also provide data-derived boundary conditions278 as well as

loading constraints for personalised models9.

Within the presented pipeline, motion extracted from 3D tagged MRI provides cavity

volumes for driving simulations as well as deformations used for boundary conditions

and parametrisation.

5.1.1.3 4D PCMRI

(a) (b) (c) (d)

Figure 5.3 Snapshots of 2D PCMRI through (a) the aortic valve, (b) inferior vena
cava, (c) superior vena cava. (d) Snapshot of 4D PCMRI image on a 4-chamber
long-axis view. Coloured lines depict the direction and magnitude of flow.

4D Phase Contrast MRI data (also refered to as 4D PCMRI or 4D flow) was acquired

using prospective ECG triggering (Fig. 5.3d). The acquisition was performed during

free breathing using an MRI breathing navigator to restrict artefacts due to respiratory

motion. The images had a spatial resolution of 2.3×2.3×2.3 mm and 24 time-frames per

cycle were acquired. Data acquisition was accelerated using a nominal spatio-temporal
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acceleration factor of 8 and the resulting data were reconstructed using the kt PCA

technique196.

4D PCMRI images provide a detailed characterisation of blood flow, thus identify-

ing potential abnormalities. Further, combined with modelling, they can be used for

estimation of cavity pressure gradients125.

In this work, 4D PCMRI was used for an approximation of peak early diastolic flow

velocity, which can be used for an estimate of end-diastolic pressure (section 5.4)

5.1.1.4 2D PCMRI

2D PCMRI data was acquired at planes orthogonal to the blood flow at the aortic

valve, inferior vena cava and superior vena cava (Fig. 5.3a-5.3c). These images had a

spatial resolution of 1.5× 1.5 mm and 40 frames per cycle were acquired.

2D PCMRI images enable a quick characterisation of unidimensional flow through

mitral and aortic valves and main vessels. This information can also be used within

Windkessel models or to provide boundary conditions in 3D models.

5.1.1.5 3D SSFP

Detailed anatomical 3D SSFP images were acquired at diastole and systole, with a

reconstructed spatial resolution of 1 × 1 × 1 mm. Acquisition was performed during

free-breathing, using a breathing navigator.

Due to their high resolution, 3D SSFP can be used for the construction of detailed

personalised geometries. In order to avoid misalignment issues – due to the fact that

3D SSPF was acquired during free-breathing as opposed to 3D tagged MRI – 3D SSFP

images were not used for the creation of personalised meshes.

5.1.1.6 Pressure measurements

Throughout the acquisition of the above-mentioned images, cuff measurements of blood

pressure were recorded using a Centron cBP301 device∗. Through this non-invasive

process, central pressure was computed by applying a transformation on the acquired

brachial cuff pressure waveform83,24. This step involved an empirically derived gener-

alised transfer function (based on a fast Fourier transform in the frequency domain83)

which was calibrated using mean and diastolic peripheral pressure. This technique was

shown to estimate the peak systolic central pressure with satisfactory accuracy24.

∗http://www.suntechmed.com/centron-cbp301
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Peak systolic central pressure provides an estimate of peak systolic cavity pressure, it

can therefore be used as a loading constraint and as an observation in parameter esti-

mation applications. This data was not used within the diastolic personalised models,

as central pressure is irrelevant to diastole, unless a full-cycle curve is assumed.

5.1.1.7 Outline of data used in model personalisation

The wealth of available clinical data offer the opportunity for the creation of differ-

ent types of personalised cardiac models including mechanics, fluid-solid interaction

and Windkessel models. For the specific requirements of the personalised diastolic me-

chanics models considered throughout this work, cine images, 3D tagged MRI and 4D

PCMRI data were used. A summary of the available data used in model personalisation

is presented below:

Non-invasive dataset

For every participant considered, the data required for developing and simu-

lating a personalised cardiac mechanics model include:

1. Short-axis, 2-, 3- and 4-chamber long axis cine images used for creating

computational mesh

2. 3D tagged MRI, providing :

• cavity volumes (Vlv(t)) through the cycle used to drive the model

• reference geometry (Ω0) at end systole

• base plane displacements for basal boundary condition

• epicardial displacements at the RV attachment region for epicardial

boundary condition

• base plane displacements for estimating early diastolic velocity at

the mitral valve (Ea)

• diastolic displacements (ud) for estimation of passive parameters

3. 4D PCMRI for estimating peak early diastolic flow velocity through the

mitral plane (E)
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5.2 Outline of proposed personalisation pipeline

A summary of the process followed in this work for incorporating the available data into

personalised models is presented in this section. The pipeline is also summarised in Fig.

5.4, where each step is linked to the relevant section in the text. Initially, the various

images were registered spatially and temporally to enable accurate use of data in model

development. End-diastolic cine images were used to create a mesh, on which motion

extracted from tagged MRI was propagated through the cardiac cycle. Personalised

models were driven by the cavity volume trace extracted from this data. Data-derived

boundary conditions were also applied, making the models a more accurate represen-

tation of the data. Finally, parameter estimates were acquired by matching simulated

deformations with motion extracted from 3D tagged MRI, providing a basis for com-

parisons between DCM patients and normals. Each step of the pipeline is presented in

more detail in the following sections.

5.2.1. REGISTRATION 

5.2.2. MESH 

5.2.3. TRACKING 

P 

V 
5.3.3. BOUNDARY 

CONDITIONS 

5.3. PERSONALISED 
MODELS 

5.4. PARAMETER 
ESTIMATION 

6-7. DIASTOLIC 
SIMULATIONS 

Figure 5.4 Worflow followed for the development and analysis of personalised diastolic
heart models.

5.2.1 Image registration

An essential step in order to enable the use of the available data and optimise the

personalisation of the patient-specific models is the spatial registration of the avail-

able images. The considered sequences (sections 5.1.1.1 and 5.1.1.2) were acquired at

different phases in the cardiac cycle. Additionally, the volunteer or patient scanned

was likely to change position during the acquisition of different sequences, resulting in
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misaligned images. Moreover, some of the sequences were acquired under breath-holds

whilst others were free-breathing, which introduced misalignment between the images.

Misalignment was likely accentuated by artefacts due to respiratory motion.

These issues were resolved through appropriate image registration and selection of im-

ages (focusing on breath-hold images). Initially, the short-axis cine stack was registered

to a 3D template image – in this case the 3D tagged MRI image – through rigid regis-

tration using Image Registration Toolkit †, as described for synthetic 3D tags in section

4.1.1.3. This step also corrected potential slices’ misalignment which could be caused

due to non-reproducible breath-holds – even though this misalignment was limited due

to the use of a breathing navigator during acquisition of short-axis cine stack. This

registration step also required a mask of the myocardial wall and cavity, created using

ITK-SNAP ‡ 288. The resulting registered short-axis image (Fig. 5.5a) was used for

the registration of 2-, 3-, 4-chamber views and 4D PCMRI data, using the same rigid

registration algorithm (Fig. 5.5b and 5.5c).

(a) (b) (c)

Figure 5.5 (a) Registration of short-axis cine stack to 3D tagged MRI. (b) Registra-
tion of 4-chamber long-axis view to the registered short-axis image (c) All cine images
and tagged MRI are registered.

5.2.2 Construction of personalised mesh

A personalised geometry is a very important component of patient-specific applications

as wall thickness and curvature have a significant influence on heart behaviour. For

the cases considered, LV meshes were created using segmentations of end-diastolic cine

images. End-diastolic frames are commonly used for the creation of personalised geome-

tries as the myocardial wall and cavity are better distinguishable compared to systolic

frames where papillary muscles complicate segmentations. Myocardial wall and cavity

segmentations of short-axis (Fig. 5.6a) as well as 2-, 3- and 4-chamber (Fig. 5.6b) long

axis images were created using ITK-SNAP. These segmentations were then merged into

one mask which was further refined and smoothed. The resulting mask was compared

†https://www.doc.ic.ac.uk/∼dr/software
‡www.itksnap.org
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to cine images, in order to test its proper alignment to images. A template surface

mesh∗ based on a statistical atlas99 was then fit to this mask and truncated at the

base. Subsequently, a personalised linear tetrahedral mesh was created (Fig. 5.6c and

5.6d), using Cubit meshing software†.

(a) (b) (c) (d)

Figure 5.6 Segmentation of (a) short-axis and (b) 4-chamber cine images, used for
the creation of personalised mesh presented here in (c) short-axis and (d) long-axis
views.

5.2.3 3D tagged MRI motion tracking

Myocardial wall motion was extracted from 3D tagged MRI images using IRTK motion

tracking described in section 4.1.1.3. The extracted motion was then propagated on

the end-diastolic personalised mesh, resulting in a set of deformed meshes following the

heart motion throughout the cardiac cycle.

Preliminary 3D tagged MRI tracking tests resulted in non-physiological deformations

with sharp variations throughout the myocardial wall, especially around the base of the

LV mesh. The use of a myocardial wall mask during motion tracking proved beneficial

for the deformed meshes. By restricting the field of interest, the use of a mask reduced

the effect of the surrounding tissues and organs in the extracted motion, resulting in

qualitatively accurate deformation fields (comparing to tagged and cine MRI), while

previously observed non-physiological deformation was restricted.

Furthermore, strict adherence to the 3D tagged data often resulted in sharp corners in

the deformed domain due to noisy data. Therefore, a weaker adherence to the data

was employed by modifying an appropriate penalty parameter within the registration

algorithm. The described setting was used for motion tracking for all cases consid-

ered.

∗http://www.cistib.upf.edu/cistib/index.php/downloads
†https://cubit.sandia.gov/
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5.2.3.1 Extracted motion processing

Through preliminary analysis of the extracted motion, large variation in myocardial wall

volume was observed over the cardiac cycle. According to experimental results, the wall

volume is expected to vary by no more than 10% as discussed in section 1.3.1.4. In the

considered cases, however, the wall volume was reduced by as much as 30% between end

diastole and systole, as illustrated in a representative example of wall volume through

the cycle in Fig. 5.7a. Such a significant variation in wall volume cannot be considered

physiological, and was likely an artefact of either 3D taggged MRI data itself, or –

more likely – the tracking algorithm used to extract motion (which does not ensure

deformations are volume conserving). Based on direct comparisons between the data

and the extracted motion, higher accuracy in long-axis motion compared to short-axis

motion was observed. It is hypothesised that this was due to insufficient number of

transverse tag lines covering the myocardial wall compared to the longitudinal lines. It

is thus likely that wall thickening was not captured to its full extent by 3D tags and

motion tracking, leading to inordinate decrease in wall volumes over systole.
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Figure 5.7 (a) Wall volume of the unprocessed data through the cycle. (b) Percentage
difference between projected and unprocessed data.

Acknowledging this as a limitation of the motion tracked data at hand, an additional

processing step was introduced to ensure physiological outcomes. As assuming a poten-

tial compressibility degree would be arbitrary, the processed data were instead assumed

to be incompressible. Specifically, the motion tracked deformation field was modified to

ensure that wall volumes were kept constant throughout the cycle and equal to the wall

volume at end diastole. In order to ensure a close match to the original data, at each

time-step the processed deformation field (up) was obtained through an H1 projection

of the original tracking data (ud) on the space of incompressible deformations. In this

process, the endocardial boundary was kept weakly the same, ensuring that important

metrics such as stroke volume and ejection fraction were maintained, and a relaxed

boundary condition was introduced on the base boundary (see section 5.3.3.2). The
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volume-preserving deformation field up was obtained by the solution of the following

saddle-point problem:

Π(up, λ,λ`,λb) = inf
v∈U

sup
q∈W

sup
µ`∈γ`U

sup
µb∈γbU

Π(v, q,µ`,µb), (5.1)

where subscripts ` and b refer to the lumen and basal boundaries. The boundary

conditions are enforced through Lagrange multipliers λ` and λb, as discussed in section

5.3.3.2. The volume constraint is enforced through Lagrange multiplier λ as described

in 3.10. Moreover, displacement and multipliers solutions are sought in function spaces

U , W , γ`U and γbU , introduced in section 5.3.3.2. The functional Π at any point in

time is given by:

Π(up, λ,λ`,λb) =

∫
ΩED

|up − ud|2 + α|∇(up − ud)|2dV +

∫
Γ`ED

λ` ·
(
up − ud) dA

+

∫
ΓbED

λb ·
(
up − ud −

1

2
εbλb

)
dA+

∫
ΩED

λ(Jp − 1) dV.

(5.2)

The first integral term deals with the data projection, and α = 100 was selected to

provide equal weighting between the L2 norm andH1 semi-norm terms. The second and

third terms are enforcing the original data motion on endocardial and basal boundaries,

respectively. The final term is enforcing the incompressible deformation, where Jp is

the determinant of the deformation gradient related to the projected displacement up.

Here, ΩED is the myocardial wall domain at end diastole, and Γ`ED and ΓbED denote

the endocardial and basal boundary domains at end diastole, respectively. Details on

the boundary condition terms can be found in section 5.3.3.2.

The resulting deformed meshes (referred to as data in the following sections) were used

as the main data source for the remaining steps of model development. Fig. 5.7b

illustrates the difference between the data before and after processing, computed as
||up−ud||
umaxd

, where umaxd = ||ud||L∞(I,L2(ΩED)) is the maximum data-derived displacement

over the cardiac cycle. The relatively large difference (20%) is indicative of the error

that could be anticipated if the unprocessed (non volume-preserving) data where used

in the personalisation of incompressible models.

5.3 Personalised models

5.3.1 Reference geometry

The reference geometry is a significant component of mechanics models, yet a non-

trivial process for patient-specific cardiac models. As no undeformed, unstressed state
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is encountered during the cardiac cycle, the reference geometry needs to be either as-

sumed or computed by solving an inverse problem. Estimating the reference geometry,

however, is a challenging task, as it is inherently dependent on the constitutive law

chosen as well as the unknown passive parameters, which in turn require the reference

geometry in order to be estimated. Furthermore, the inverse approach must also deal

with boundary conditions uncertainties. This approach was therefore not attempted

in this work, but instead the reference configuration was assumed to be known and

corresponded to a specific data frame. This is a common approach also used in other

studies, for example by Wang et al266, Gao et al.73 and Xi et al276.

In this study, the end-systolic frame of the data was chosen as the reference config-

uration. Using the cavity volume trace from the tagged MRI motion tracking, the

end-systolic frame was chosen as the point of minimal cavity volume (red circle in Fig.

5.8a). The effect of assuming the specific data frame as the reference domain on pa-

rameter identifiability, parameter estimates and model fidelity is discussed in section

6.3.
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Figure 5.8 (a) Cavity volume over a cardiac cycle, starting at end diastole. The
end-diastolic frame is added after the last frame to complete the cycle (green circle),
as the atrial kick is often missing in 3D tagged MRI. The red circle denotes the end-
systolic frame, used as the reference geometry. Blue curve denotes the frames through
the cycle identified as diastolic (b) Long-axis and (c) short-axis view of the reference
geometry at end systole. Streamlines through the fibre field in the model left ventricle
are presented, where colour indicates fibre angle, ranging from red (−60◦) to blue (60◦).

5.3.1.1 Fibre distribution

Due to the absence of DTI data on the fibre architecture of each participant’s heart,

a rule-based fibre distribution was applied for all cases. As described in section 2.4.2,

a fibre coordinate system needs to be defined to allow for the employment of fibre-

dependent constitutive laws. Therefore, the fibre, sheet and sheet-normal directions

were defined throughout the myocardial wall and were interpolated using linear piece-

wise discontinuous elements. The fibre distribution was created by first determining
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the long-axis direction and defining a trasmular coordinate, varying between 0 on the

endocardial boundary and 1 on the epicardial boundary. At each transmural position,

the fibre angle was then obtained as a function of the transmural coordinate and the

maximum angle magnitude, which was prescribed. The fibre direction at each point,

was then determined as the tangent vector to the surface that formed an angle of the

prescribed magnitude with the long-axis.

The fibre direction was assumed to vary linearly transmurally, with an angle of 60◦ →
−60◦ from endocardium to epicardium (Fig. 5.8b and 5.8c). Although this is the

default distribution usually employed for heart mechanics models, other distributions

were also considered (sections 6.1 and 6.1.3).

5.3.2 Cardiac mechanics model

In the patient-specific models under consideration, the myocardial tissue was modelled

as a hyperelastic incompressible material. The incompressibility assumption was em-

ployed in accordance with several experimental and modelling studies as discussed in

section 1.3.1.4. The Lagrange multiplier approach presented in Eq. 3.10 was employed.

This was mainly to avoid the estimation of the penalty parameter which is present in

the PL and weakly penalised formulations introduced in chapter 3, which would require

an estimate of wall volume change through the cycle. As mentioned before, this kind

of information could not be accurately retrieved from the available data. Further, the

problems solved were not large enough to gain significant benefit by the use of the

displacement-only weakly penalised approach.

The mechanics of the personalised models considered were solved using the principle of

stationary potential energy, where the deformation and Lagrange multipliers solutions

were found as the critical point of the elastic potential energy of the body. Following

the potential energy functional in section 2.5, the potential energy Π of the myocardium

can be expressed as a sum of its internal and external energy, Π = Πint + Πext.

The internal energy of the myocardium is given as a function of the hyperelastic

deviatoric strain energy modelling the passive constitutive behaviour. The reduced

Holzapfel-Ogden law (Eq. 4.5) was chosen to model the passive myocardium in the

personalised models considered. This choice was dictated by one of the basic aims

of this project, namely accurate parameter estimation, which would enable reliable

comparisons and conclusions about DCM. Obtaining reliable parameter estimates is

dependent both on the identifiability characteristics of the constitutive law, as well as

on its ability to accurately represent the available data. Based on the in silico tests

presented in sections 4.2.1 - 4.2.3, the reduced Holzapfel-Ogden law combines good

identifiability characteristics with the ability to adequately capture passive heart func-

tion. This model was identified as a suitable choice for patient-specific applications

133



5. Development of personalised diastolic models

where the main observation source is 3D tagged MRI, and was therefore employed in

the in vivo models presented.

The external potential energy is comprised of the sum of external boundary-based

energies. Boundary conditions are commonly applied on the endocardial, epicardial

and basal boundaries of the mesh. Boundary conditions are introduced through the

use of Lagrange multipliers resulting in the following form for the external energy,

Πext(u,λ) =
∑

k∈(b,`,e)

Πk
ext(u,λk), (5.3)

where λk denote the Lagrange multipliers introduced on the base (b), lumen or endo-

cardial (`) and epicardial (e) boundaries. Each boundary condition will be discussed

in detail in the following sections.

5.3.3 Personalised boundary conditions

5.3.3.1 Volume-driven simulation

A common approach in cardiac mechanics models is to drive diastolic simulations us-

ing cavity pressure, which is considered to dominate all other forces exerted on the

endocardial boundary (for example due to papillary muscles tension). Assuming a ho-

mogeneous distribution for the cavity blood pressure Plv, the diastolic filling is driven

by prescribing pressure as a surface traction on the endocardial boundary, i.e.

Π`
ext(u) = −Plv

∫
Γ`

u · n da, (5.4)

where Γ` denotes the endocardial boundary in the deformed domain and n is the de-

formed normal unit vector. This boundary condition has been used extensively in

cardiac mechanics models278,266,47, owing to its straightforward nature. However, this

constraint relies on knowledge of the pressure through diastole, and thus requires inva-

sive measurements.

On the contrary, cavity volumes can be easily extracted from routinely acquired images,

providing a non-invasive means of driving simulations. To this end, in this work dias-

tolic simulations were driven by cavity volumes extracted directly from imaging data.

Specifically, the cavity volume trace computed from the extracted tagged MRI motion,

was used to inflate end-systolic meshes to the measured end-diastolic volume. This

can be achieved by ensuring that the lumen volume matches the data-derived cavity

volume at every time step, using a Lagrange multiplier-based boundary condition on
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the endocardial surface, i.e.

Π`
ext(u, λ`) = λ`

(
V (u)− Vlv

)
, (5.5)

where the Lagrange multiplier λ` ∈ R is identified as the cavity pressure required to

inflate the LV to the desired volume. Here V (u) is the mesh cavity volume and Vlv

is the cavity volume computed from the data. In order to avoid the construction of a

cavity mesh, the cavity volume V (u) can be conveniently calculated on the endocardial

boundary of the LV mesh using Gauss theorem and choosing a function f such that its

divergence is 1 on the LV cavity domain Ωlv. Specifically,

V (u) =

∫
Ωlv

1 dv =

∫
Ωlv

∇ · f dv =

∫
Γlv

f · n da, (5.6)

where Γlv = Γ` ∪ Γt is the boundary of the cavity in the deformed domain (Γt is the

cavity top) and n is the normal vector. A typical choice for the function f is f = x
3 ,

leading to the following form for the volume calculation:

V (u) =
1

3

(∫
Γ`

x · n da+

∫
Γt

x · nb da
)
, (5.7)

where nb is the normal vector to the base plane. A difficulty, however, arises from the

fact that the top of the cavity Γt is not part of the LV mesh. The related integral

term is often neglected, assuming that the base motion is comparatively small. This

effect can also be reduced by re-orienting the base plane with the z = 0 plane and

aligning the normal vector with z− unit vector. This formulation, however, is likely

to introduce significant error in the volume computation in case of substantial base

motion. Moreover, simulations using this formulation require re-orientation of the mesh

and additional mapping of the displacements which are incorporated through boundary

conditions.

An alternative approach is to constraint the rate of change of volume instead to match

the data-derived rate of volume change ∂Vlv
∂t . In order to derive an expression for the

rate of change of volume, it is convenient to consider a mapping φ : Ωlv
0 → Ωlv, between

the reference and deformed cavity domains. The mapping is required to satisfy:

φ(X) = u(X) +X, ∀X ∈ Γ`0, (5.8)

maintaining the motion of the mesh on the endocardial boundary, and Jφ corresponds

to the Jacobian of this mapping. The rate of change of volume is then computed using
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the space conservation law (
∂Jφ
∂t = Jφ∇ · ∂u∂t ), as

∂V

∂t
=
∂

∂t

∫
Ωlv

dv =
∂

∂t

∫
Ωlv0

Jφ dV =

∫
Ωlv0

Jφ∇ ·
∂u

∂t
dV =

∫
Ωlv

∇ · ∂u
∂t

dv =∫
Γ`

∂u

∂t
· n da+

∫
Γt

∂ub
∂t
· nb da,

(5.9)

where ∂ub
∂t denotes the velocity of the base plane and Ωlv

0 is the reference cavity domain.

Similarly to the previous approach, the base motion is typically considered small so the

base plane velocity is assumed to be zero.

The endocardial boundary energy can in this case be expressed as

Π`
ext(u, λ`) = λ`

(∫
Γ`

∂u

∂t
· n da− ∂Vlv

∂t

)
, (5.10)

at every time step through the cycle.

The introduced volume calculation techniques in Eq. 5.7 and 5.10 are accurate and used

equivalently for problems with negligible base motion. However, as will be shown in

subsequent sections, they are bound to introduce a bias in patient-specific applications

where the base plane moves significantly throughout the cardiac cycle, leading to an

over-estimation of the enforced volume during diastole. In order to account for the

substantial base motion, the function f can instead be selected so that long axis motion

of the base plane is properly incorporated following Asner et al 9. The choice

f = Ibx, Ib =
1

2
(I − nb ⊗ nb), (5.11)

where nb is the normal vector to the base plane, ensures that∫
Γt

f · nb da = 0. (5.12)

The cavity volume can now be accurately calculated on the endocardial boundary Γ`

as:

V (u) =

∫
Γ`

Ibx · n da. (5.13)

5.3.3.1.1 Accuracy of endocardial boundary conditions

Section 5.3.3.1 presented different approaches for driving simulations with data-derived

cavity volumes. To facilitate the selection of an appropriate method, the considered

techniques were compared in terms of their accuracy against the gold standard pressure-

inflation approach, which has been employed extensively in cardiac mechanics.

Specifically, the following boundary conditions were compared:
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• Pressure inflation (PI): The LV cavity is inflated to an end-diastolic pressure by

setting the endocardial traction equal to the intraventricular pressure applied in

the normal to the surface direction, as described in Eq. 5.4.

• Simplified volume inflation (SVI): The LV is inflated to an end-diastolic volume

by prescribing the cavity volume, as presented in Eq. 5.7. This boundary con-

dition assumes that the base motion has a negligible effect on the volume and

requires the base plane to be aligned with the z = 0 plane.

• Volume rate inflation (VRI): The cavity is inflated by prescribing the rate of

change of volume as presented in Eq. 5.10. This approach also assumes negligible

effect of the base motion on the volume calculation.

• Volume inflation (VI): The LV is inflated by prescribing the cavity volume, as

described in Eq. 5.13. This boundary condition is constructed such that the

volume calculation accounts for the base motion.
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Figure 5.9 Comparison of the endocardial boundary conditions in an in vivo case. (a)
Pressure-volume plots of the simplified volume inflation (SVI), volume rate inflation
(VRI), volume inflation (VI) and pressure inflation (PI) simulations. (b) Error between
data-derived volume and volume of the SVI, VRI and VI simulations over time. (c)
Error in pressure between ground truth PI values and the SVI, VRI and VI simulations’
λ` over time.

These methods were employed on diastolic filling simulations of a personalised mesh.

For their comparison, both cavity volume and pressure traces were assumed to be known

throughout the cycle. The base motion was prescribed directly from the extracted

myocardial deformation as a Dirichlet boundary condition. For each simulation the

volume of the inflated ventricular cavity was computed, while the Lagrange multiplier λ`

provided the intraventricular pressure. The accuracy of the SVI, VRI and VI boundary

conditions was assessed by comparing their volume and pressure outcomes, with the

ground truth results of the pressure inflation (PI) case.
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The application of the techniques under consideration in diastolic simulations drew

interesting conclusions concerning their accuracy as volume constraints, but also their

effect on intraventricular pressures (Fig. 5.9). Clearly, the base motion has a significant

effect on the cavity volume computation, leading the SVI and VRI boundary conditions

– which consider this effect to be negligible – to large volume errors (maximum per-

centage error 7.2% and 12.2%, respectively). The approaches consistently overestimate

volumes as the base plane tends to move away from the apex and elongate during di-

astole. Interestingly, this bias is also propagated in the intraventricular pressure, with

even more pronounced errors (errors of the order of magnitude of ground truth values).

Both volume and pressure errors might in turn cause significant errors in parameter

estimates, when used in personalised applications.

Nevertheless, the VI approach presents equivalent results with the gold standard PI

method, with errors less than 10−4% in both volume and pressure (errors are not 0

due to the tolerances set). Due to its accurate incorporation of base motion, the VI

volume computation technique leads to accurate volume and pressure outcomes, and

was therefore selected for the considered patient-specific cardiac models.

5.3.3.2 Basal boundary condition

Due to the truncation of the myocardial model at the base plane, a boundary condition

on the basal boundary was essential to allow for physiological motion and outcome

of the LV models. In order to optimise model fidelity, motion of the base plane was

prescribed directly from the data. As will be discussed in chapter 6, strict enforcement

of displacements through Dirichlet boundary conditions is known to cause pressure and

stress peaks. Therefore, a different approach was employed following Asner et al 9,

where the basal boundary energy is expressed as

Πb
ext(u,λb) =

∫
Γb0

λb ·
(
u− ud −

1

2
Kbλb

)
dA. (5.14)

Here ud is the data-extracted displacement, Γb0 is the reference basal boundary domain

and λb ∈ γbU is an introduced Lagrange multiplier on the base boundary (γbU is

the trace space of U on Γb0). In this formulation, Kb is a relaxation matrix, defined

as

Kb = εb(I − nb ⊗ nb). (5.15)

The relaxation matrix Kb ensures that displacements in the long-axis direction are

exact, while it allows relaxed enforcement of the short-axis motion. The important

benefit of this approach is that it allows us to regulate the degree of adherence of the

model to the data, based on how accurate we consider the data we are prescribing to be.

For instance, in the case of noisy data, artefacts in the model such as non-physiological
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motion, pressures or stresses can be reduced by selecting a large value for the param-

eter εb (e.g. εb = 10−4). A relaxed adherence to the data also improves convergence

of simulations, as preliminary tests requiring strict adherence to data suffering from

tracking errors, caused simulations to fail. Likewise, in the case of high quality data

where strict adherence to the data would be desirable, small εb can be selected, e.g.

εb = 10−10.

In practice, a relaxation parameter εb ∼ 10−7 enables sufficient model fidelity, while

avoiding non-physiological motion, as will be illustrated and discussed in section

6.2.1.

5.3.3.3 Epicardial boundary condition

In preliminary tests, the external energy at the epicardial energy was set to zero, i.e.

Πe
ext = 0. This is a common practice in cardiac patient-specific applications, stem-

ming from the simplifying assumption that the epicardial boundary energy is negligible

compared to the endocardial energy which provides the main driving force for the simu-

lations. Furthermore, lack of experimental results leads to uncertainties as to the forces

acting on the epicardial boundary of the LV.

However, preliminary tests using a zero-traction condition on the epicardial boundary,

exhibited significant errors between models and data. Naturally, as the LV is not

isolated, surrounding tissues and organs – mainly the pericardium, the diaphragm and

the RV – are bound to have an influence on the external energy of the epicardial

boundary. The RV in particular must exert a substantial force on the septal wall of the

LV, due to stresses concentrated at the region of attachment to the RV wall. Further,

typical RV diastolic cavity pressures of the order of magnitude of their LV counterpart

are expected to have a significant effect on the entire LV.

To account for the influence of the stresses due to RV attachment, a different boundary

condition was enforced on the epicardium. Introducing a Lagrange multiplier on the

epicardial boundary and following the relaxation approach used for the basal boundary

(section 5.3.3.2), the region of attachment to the RV was set to deform following the

data. The region of attachment to the RV was initially defined using an ITK-SNAP

segmentation. The segmentation was then used to create a spatial field H on the

personalised mesh, varying smoothly between 0 and 1, marking the RV attachment

points (1). The following form was used for the epicardial boundary energy,

Πe
ext(u,λe) =

∫
Γe0

λe ·
(

(u− ud)H −
1

2
εeλe

)
dA, (5.16)

where Γe0 is the undeformed epicardial boundary domain, ud is the data displacement

and λe ∈ γeU is the introduced Lagrange multiplier on the epicardial boundary (γeU
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denotes the trace space of U on Γe0). The relaxation parameter εe regulates the level

of adherence to the data, allowing either strict adherence for high quality data or weak

adherence for noisy or low resolution data. For the data at hand, a relaxation parameter

of εe = 5 × 10−6 was shown to improve model fidelity without over-constraining the

model and causing deterioration of parameter identifiability (section 6.2.2). As will

be discussed in following chapters (sections 6.1, 6.1.2), the use of the RV-epicardial

condition results in substantial reductions in model error.

5.3.4 Numerical solution

5.3.4.1 Weak form of cardiac mechanics models

Taking into account the mechanics and boundary conditions described in sections 5.3.2-

5.3.3.3, the state variables introduced can be obtained through the solution of the

saddle-point problem,

Π(u, p, λ`,λb,λe) = inf
v∈U

sup
λ∈W

sup
µ`∈R

sup
µb∈γbU

sup
µe∈γeU

Π(v, λ, µ`,µb,µe), (5.17)

where the total potential energy Π can now be written as a sum of the internal energy

and the individual external boundary energies:

Π(u,p, λ`,λb,λe) =

∫
Ω0

Ψd(u) + p(J − 1) dV + λ`

(∫
Γ`

Ibx · n da− Vlv
)

+

∫
Γb0

λb ·
(
u− ud −

1

2
Kbλb

)
dA+

∫
Γe0

λe ·
(

(u− ud)H −
1

2
εeλe

)
dA

(5.18)

The weak form of this formulation can then be derived by taking the directional deriva-

tives with respect to the state variables u, p, λ`, λb and λe, leading to the following

form for the saddle-point problem:

DuΠ[δu] +DpΠ[δp] +Dλ`Π[δλ`] +DλbΠ[δλb] +DλeΠ[δλe] = 0,

∀(δu, δp, δλ`, δλb, δλe) ∈ (U ,W,R, γbU , γeU).
(5.19)

140



5. Development of personalised diastolic models

Briefly,

DuΠ[δu] =

∫
Ω0

(P + pJF−T ) : ∇Xδu dV +

∫
Γb0

λb · δu dA+

∫
Γe0

Hλe · δu dA

+λ`

∫
Γ`

δu · n da

DpΠint[δp] =

∫
Ω0

δp(J − 1) dV,

Dλ`Π
`
ext[δλ`] =δλ`

(∫
Γ`

Ibx · n da− Vlv
)
,

DλbΠ
b
ext[δλb] =

∫
Γb0

δλb ·
(
u− ud −Kbλb

)
dA,

DλeΠ
e
ext[δλe] =

∫
Γe0

δλe · ((u− ud)H − εeλe) dA,

(5.20)

where the contribution of DuΠ`
ext[δu] can be expressed using the definition of the

endocardial energy in Eq. 5.5, as follows:

DuΠ`
ext[δu] =λ`DuV (u)[δu] = λ`Du

∫
Ωlv0

Jφ dV [δu] =

λ`

∫
Ωlv0

DuJφ[δu] dV = λ`

∫
Ωlv0

Jφ∇ ·
[
Duφ[δu]

]
dV =

λ`

∫
Ωlv

∇ ·
[
Duφ[δu]

]
dv = λ`

∫
Ωlv

∇ · δu dv =

λ`

(∫
Γ`

δu · n da+

∫
Γt

δu · nb da
)

= λ`

∫
Γ`

δu · n da,

(5.21)

where φ is the mapping between reference and deformed cavity domains, introduced

in Eq. 5.8. Here, δu · nb = 0, due to implicit Dirichlet conditions in the normal to

base direction. Additionally, the directional derivative of Jφ with respect to u was used

(DuJφ[δu] = JφF
−T
φ : ∇Xδu = Jφ∇ · δu21).

The weak formulation of the system can then be written as:∫
Ω0

(P + pJF−T ) : ∇Xδu+ δp(J − 1) dV + λ`

∫
Γ`

δu · n da

+ δλ`

(∫
Γ`

Ibx · n da− Vlv
)

+

∫
Γb0

λb · δu+ δλb ·
(
u− ud −Kbλb

)
dA

+

∫
Γe0

Hλe · δu+ δλe · ((u− ud)H − εeλe) dA = 0

∀(δu, δp, δλ`, δλb, δλe) ∈ (U ,W,R, γbU , γeU).

(5.22)
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5.3.4.2 Finite element solution of personalised models

The solution to this weak formulation was approximated using the finite element

method. Specifically, in all personalised models considered in this thesis, a quadratic-

linear interpolation scheme was employed for the displacement and pressure variables

(quadratic and linear tetrahedral elements, respectively). The base and epicardial mul-

tipliers (λb and λe) were approximated with quadratic triangular elements, and the

endocardial multiplier was a scalar.

Basic characteristics of the meshes used for each case are presented in table 5.1, while

Fig. 5.10 presents the distribution of mesh size over a representative mesh. Considering

that tetrahedral meshes require a refined discretisation compared to hexahedral meshes

to achieve similar levels of accuracy15, the number of elements used in each discretisa-

tion (12148 in average) was sufficiently large when compared with convergence analysis

results in Asner et al. on hexahedral meshes9.
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Figure 5.10 Histogram of a typical mesh used for personalised simulations. The mesh
size, given in meters, was computed as h = det(F )1/3, F being the mapping between
elements in mesh and the unit master element.

Moreover, the typical mesh size used was sufficiently small to allow for accurate param-

eter estimation. Asner et al. examined parameter error between a coarse hexahedral

mesh and two uniform refinements of it (h = 12mm, h = 6mm, h = 3mm, respectively)

and reported less than 2% parameter error between the two finer discretisations9. The

typical mesh size used within the personalised simulations presented in this chapter

(h = 3.7mm) was closer to the finest discretisation, suggesting that the meshes are of

adequate resolution to enable reliable parameter estimation. Additionally, the typical

mesh size used for the personalised models enabled the large number of simulations re-

quired to provide a characterisation of parameter identifiability (see section 6.1).

All the patient-specific simulations were carried out using CHeart (section 2.7), on
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Personalised meshes

Case V1 V2 V3 V4 V5 P1 P2 P3

Elements 17153 18896 8038 6787 7795 10740 17047 10731

LNodes 4048 4375 2327 2050 2088 2747 4173 2986

QNodes 27589 30068 14580 12657 13499 18104 28012 19025

h (mm) 3.33 2.98 4.43 3.88 4.34 3.90 3.47 3.45

STD(h) (mm) 0.53 0.27 1.09 0.82 0.34 0.56 0.53 0.67

Table 5.1 Basic characteristics of the personalised meshes used. Elements: number
of elements, LNodes: number of linear nodes, QNodes: number of quadratic nodes, h:
mesh size in mm, STD(h): standard deviation of mesh size in mm.

a quad-core (Intel R© 4th Generation CoreTM i7-4790 CPU @ 3.60GHz), on an 2.1GHz

AMD OpteronTM Interlagos 32 processor and on an SGI with 640 2.67GHz processors

(Intel R© Xeon R© CPU E7- 8837). The error tolerance for all simulations was set to

1× 10−9.

Computational time per diastolic simulation varied notably depending on the case,

number of diastolic frames, mesh size and passive parameter values. Nevertheless,

the average computational time per simulation on 8 processors, was under 20 min-

utes.

5.4 Passive parameter estimation

The next essential step in the model personalisation process is the estimation of pas-

sive parameters. The objective is to obtain the parameter set (a, af ) of the reduced

Holzapfel-Ogden law (Eq. 4.5) that produces the best match between the model and

the available data. In this work, the main data-source used in the estimation process

was 3D tagged MRI, as they provide a detailed 3D deformation field, creating an ideal

setting for parameter estimation.

The estimation of passive parameters was performed through minimisation of the ob-

jective function J , a metric of error between model-predicted and data-derived dis-

placements. The objective function introduced for the in silico tests in Eq. 4.10 was

employed, based on the L2(Ω0) norm of the error through time,

J =


N+1∑
n=1
||un − udn||2

N+1∑
n=1
||udn||2


1/2

, (5.23)
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where N is the number of diastolic frames identified in the available 3D tagged MRI

data (e.g. where the cavity volume is increasing). As tagged MRI data does not cover

the whole cycle, the end-diastolic mesh created from cine segmentation was included

in the diastolic observations (frame N + 1) enriching the observation space.

In volume-driven simulations, estimation of both a and af parameters is not possible

using displacement observations only. This is due to the linear nature of the reduced

Holzapfel-Ogden model, employed as the constitutive law. Specifically, due to the linear

parameter dependence, scaling of the passive parameters leads to the same scaling in

cavity pressure λ` (and other multipliers), without affecting the displacements outcome.

This implies that parameter combinations with the same ratio a/af would produce the

same deformation outcome, and also scale multipliers by the same amount. Essentially,

passive parameters and multipliers are unique to a constant. Taking advantage of this

linear relationship between parameters and pressure, we can restrict the parameter

space to only one unknown, the parameter ratio γ = a/af . The actual parameter

values can then be recovered using a known cavity pressure value at a specific time

frame, in our case cavity pressure at end diastole (EDPest).

Specifically, γ was estimated through parameter sweeps, which – even though compu-

tationally costly – provide a characterisation of the identifiability of the material law

employed. It should be noted, that when identifiability has been established, com-

putational efficiency can be achieved using data assimilation techniques such as the

reduced-order unscented Kalman filter30,163,276. The objective function in Eq. 5.23 was

used in the parameter sweeps to assess the error between simulated and data-derived

deformation. 23 values were considered for the ratio γ = a/af , ranging between 0.3 and

2. The parameter sweeps were performed by keeping the fibre parameter af constant

(asimf = 1000Pa) while the isotropic parameter a varied between 30 and 2000. The

choice of varying a instead of af was based on the improved identifiability character-

istics of the isotropic parameter compared to af , as observed in Fig. 4.8 in section

4.2.1.3. To retrieve the absolute values of the estimates, both parameter estimates

(asimf , asim) and pressure (λ`ED) were multiplied by the ratio of experimentally derived

and simulated end-diastolic pressures (EDPest/λ`ED).

The end-diastolic pressure was estimated based on the E/Ea ratio (EDPest = 1.9 +

1.24 E/Ea) as proposed by Nagueh et al.167. Here E denotes the peak early diastolic

flow velocity through the mitral valve, which was measured from 4D PCMRI data, using

GyroTools GTFlow software‡. Ea denotes the early diastolic velocity of the mitral valve

measured on the lateral basal site which was computed using the motion extracted from

3D tagged MRI.

‡http://www.gyrotools.com/products/gt-flow.html
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5.5 Summary

This chapter presented the pipeline followed in this work for the development of per-

sonalised cardiac mechanics models, using strictly non-invasive data. The developed

approach was focused on dealing with two core challenges: data integration and model

parametrisation. The proposed approach for bridging the gap between imaging and

modelling was outlined, mainly comprised of essential image processing steps aiming at

accurate use of the data, along with carefully chosen boundary conditions. Boundary

conditions were selected to enable optimal use of the available data for model personal-

isation while avoiding artefacts due to noisy data. A summary of the proposed pipeline

is presented below.

Workflow summary

For every volunteer / patient considered, the main steps followed for the cre-

ation of personalised cardiac mechanics model include:

1. Image registration

2. Construction of anatomical mesh at end diastole

3. 3D tagged MRI motion extraction and propagation on mesh through the

cycle

4. Processing deformed mesh states to ensure incompressibility

5. Estimation of end-diastolic pressure using E/Ea

6. Generation of rule-based fibre distribution on reference geometry at end

systole

7. Parameter sweeps to estimate γ

8. Scaling of passive parameters and pressures to their correct absolute

values

9. Simulation with correct absolute parameter values to recover all primary

variables

The proposed workflow for personalisation of diastolic models of LV mechanics is anal-

ysed in the following chapters. With a clear emphasis on enhancing model fidelity while

maintaining practical identifiability and unique parametrisation, the outlined approach
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is tested in several volunteers and patients. Through the inclusion of diseased and

healthy cases the effectiveness and robustness of the pipeline is assessed, and pipeline

aspects that need to be refined are elucidated.

146



6 Investigation of in vivo models

A core objective of this thesis is ensuring unique parametrisation for the developed per-

sonalised heart models. As discussed in section 4.1.3, parameter identifiability depends

on the model, the available data and the objective function used within the parametri-

sation process. Briefly, to allow for parameter identifiability the cardiac model needs to

be a sufficiently accurate representation of the data at hand (model fidelity). Further-

more, the available data should be of adequate quality and capture important modes of

deformation able to characterise model material parameters. The final requirement is

for a discerning objective function, able to stratify deformations from different material

parameters.

With the objective of unique parametrisation in mind, the reduced Holzapfel-Ogden

law was employed for each of the patient-specific models, based on the in silico results

in chapter 4, which illustrate that the law combines adequate model fidelity with iden-

tifiable parameters using 3D tagged MRI. However, the idealised in silico framework

employed in section 4.2.1, provided the best-case scenario which can be anticipated.

With data originating from simulations, model fidelity issues were alleviated allowing

for accurate analysis of the identifiability behaviour of each law. At the same time,

the synthetic data created were not compromised by motion artefacts and effects of

surrounding tissues which are typically present in real 3D tagged MRI images, likely

causing tracking artefacts.

In an in vivo environment, however, such an analysis is significantly hindered by both

data artefacts and model fidelity issues. Contrary to the in silico tests, important

modelling aspects such as the fibre distribution or the reference geometry are unknown

in in vivo applications. Additional modelling assumptions – concerning for instance the

material law and suitable boundary conditions – have to be made, leading to a model

which would not necessarily be able to reproduce the available data. This issue is

likely accentuated by significant variations in data quality and amount of deformation,

between cases.

With these concerns in mind, the sections that follow investigate the effect of important

modelling assumptions on the parameter identifiability and model accuracy and look

for ways to improve on these. Focus is largely on the effect of the assumed fibre
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distribution, which as an important determinant of cardiac behaviour, is expected to

be a key factor in model accuracy. Different boundary conditions are examined as

well, as a means of incorporating data into the model and improving model fidelity.

Additionally, the effect of data processing assumptions is assessed.

Due to large variability in heart behaviour and data quality between cases, a systematic

analysis of these aspects on several cases was considered essential. Through application

of the pipeline proposed in chapter 5 on several volunteers and patients, the robustness

of the approach, suitability of modelling assumptions and quality of data are investi-

gated.

Initially, parameter identifiability and model accuracy are compared in personalised

simulations with different fibre distributions and epicardial boundary conditions, iden-

tifying a combination of fibre field and boundary conditions that provides improved

characteristics (section 6.1). Subsequently, the employed basal and epicardial bound-

ary conditions are investigated (section 6.2). Furthermore, the influence of the data

frame assumed as the reference domain on model fidelity and parameter identifiability

is discussed and analysed in section 6.3. Finally, the effect of data processing assump-

tions is examined in section 6.4. Throughout this analysis potential limitations of the

pipeline are identified and these are discussed in section 6.5.

6.1 In vivo identifiability and model accuracy

The personalised heart models within this thesis were developed following the model

personalisation pipeline presented in chapter 5. The main aim of the current chapter

is to test and evaluate the proposed pipeline, focusing on model fidelity and parameter

identifiability in vivo. These concepts can be examined through characterisation of the

behaviour of an objective function over the parameter space.

Specifically, the pipeline employs the reduced Holzapfel-Ogden law (Eq. 4.5) for dias-

tolic simulations which are driven by cavity volume (Eq. 5.13). Following section 5.4,

due to the linear dependence of the employed law on the passive parameters (a and af )

and the volume-driven simulation used, it is not possible to estimate both parameters

solely from deformations. Instead, the parameter ratio γ = a/af can be estimated (as

suggested by in silico tests in Fig. 4.9), while the absolute parameter values can be

obtained using an estimate of end-diastolic pressure.

Taking the above-mentioned into account, model fidelity and parameter identifiability

can be investigated through parameter sweeps over the parameter ratio γ. Model

accuracy (or model error) can be assessed through the values of the objective function

J (Eq. 5.23), which was chosen as a strict metric over deformation, to provide detailed

information and enable identifiability.
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6.1.1 Numerical results

Personalised models of five volunteers (V1 -V5) and three DCM patients (P1-P3) were

developed and analysed. Basic metrics, potentially relevant to parameter identifiabil-

ity are presented in table 6.1 to assist later analysis. Important clinical metrics are

presented, namely end-diastolic and end-systolic LV cavity volume, stroke volume and

ejection fraction (highlighted in the table). Of interest are also the number of dias-

tolic frames used in the parameter estimation process as well as metrics of deformation

between end systole and end diastole. Complementary information concerning the

participants is presented in table 7.1.

Participants’ general information

Case EDV(ml) ESV(ml) SV(ml) EF |||ud||| × 103 T/s ||udED|| × 103

V1 129.50 64.57 64.93 0.50 0.234 14 0.089
V2 100.85 47.67 53.18 0.54 0.226 14 0.083
V3 152.55 67.43 85.12 0.56 0.411 16 0.136
V4 93.19 45.99 47.20 0.51 0.202 12 0.085
V5 120.36 53.51 66.85 0.56 0.244 15 0.094

P1 141.12 81.91 59.21 0.42 0.241 15 0.088
P2 179.26 95.15 84.11 0.47 0.259 16 0.098
P3 136.19 79.88 56.31 0.41 0.178 16 0.072

Table 6.1 Participants’ information relevant to parameter identifiability for the vol-
unteers and patients considered, are presented. Clinical metrics (EDV: end-diastolic
volume, ESV: end-systolic volume, SV: stroke volume, EF: ejection fraction) and other
diastolic motion characteristics (|||ud|||: L2 norm of the deformation summed over time,
T/s: number of diastolic timesteps, ||udED||: L2 norm of end-diastolic deformation) are
shown.

For all cases, parameter identifiability and model accuracy were examined using param-

eter sweeps, for three fibre distributions, which varied linearly between (−50◦, 50◦),

(−60◦, 60◦) and (−70◦, 70◦) from epicardium to endocardium. Two different epicar-

dial boundary conditions were considered through these tests, a zero traction condition

(“Zero-traction epicardial BC”) and the boundary condition described in Eq. 5.16,

where at the region of attachment to the RV wall, the motion is prescribed directly

from the data (“RV-epicardial BC ”).

Figures 6.1a - 6.8a illustrate the behaviour of the objective function J over the param-

eter ratio γ, for the 5 volunteers and 3 patients considered, respectively. For all cases,

the behaviour of J was characterised for the three different fibre distributions and

the two epicardial boundary conditions employed. Accordingly, each data-point within

these graphs represents a specific diastolic simulation assuming a unique combination

of parameter ratio, epicardial boundary condition and fibre distribution. Additionally,
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table 6.2 summarises the parameter ratio (γ) estimates for all cases, for different fi-

bre distributions and epicardial boundary conditions. Table 6.3 presents the second

derivative of J at the estimated ratios, providing a measure of the local behaviour of

J .

This systematic investigation of local and global identifiability behaviour enables the de-

convolution of the effects of individual modelling components and data-derived metrics,

on parameter estimates and identifiability. These effects will be discussed in sections

6.1.2, 6.1.3 and 6.1.4, while the actual parameter estimates will be discussed in detail

in chapter 7, section 7.2.

An initial observation is that for every case there is at least one fibre distribution

that presents a unique and distinct minimum. Combined with the monotonic objective

function for the cases where the lowest error is observed in the lowest ratio, this suggests

that the parameter identifiability of the reduced Holzapfel-Ogden law is maintained in

vivo. To investigate this observation further and delineate the factors that contribute to

it, additional tests are required and performed in the remainder of this chapter.

150



6. Investigation of in vivo models

Volunteer 1 (V1)
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Figure 6.1 (a) J over the parameter ratio γ, for V1, for three fibre distributions and
two epicardial boundary conditions. Also presented are data-derived and simulated
deformation at end diastole using the estimated γ for fibres with a maximum angle
of 50◦, (b) with zero-traction and (c) RV-epicardial boundary conditions. Lines show
data-derived deformation, while the solid mesh presents simulated end diastole, and is
coloured based on the magnitude of the error between the simulated and data-derived
displacements, given in metres.
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Volunteer 2 (V2)
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Figure 6.2 (a) J over the parameter ratio γ, for V2, for three fibre distributions and
two epicardial boundary conditions. Also presented are data-derived and simulated
deformation at end diastole using the estimated γ for fibres with a maximum angle
of 50◦, (b) with zero-traction and (c) RV-epicardial boundary conditions. Lines show
data-derived deformation, while the solid mesh presents simulated end diastole, and is
coloured based on the magnitude of the error between the simulated and data-derived
displacements, given in metres.
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Volunteer 3 (V3)

0 0.5 1 1.5 2
0.4

0.5

0.6

γ

J

0 0.5 1 1.5 2

0.2

0.3

0.4

γ

J

0 0.5 1 1.5 2
0.4

0.5

0.6

γ

J

0 0.5 1 1.5 2

0.2

0.3

0.4

γ

J

0 0.5 1 1.5 2
0.4

0.5

0.6

γ

J

0 0.5 1 1.5 2

0.2

0.3

0.4

γ

J

Zero−traction epicardial BC RV−epicardial BC
θ
=

5
0
◦

θ
=

6
0
◦

θ
=

7
0
◦

(a)

(b) (c)

Figure 6.3 (a) J over the parameter ratio γ, for V3, for three fibre distributions and
two epicardial boundary conditions. Also presented are data-derived and simulated
deformation at end diastole using the estimated γ for fibres with a maximum angle
of 50◦, (b) with zero-traction and (c) RV-epicardial boundary conditions. Lines show
data-derived deformation, while the solid mesh presents simulated end diastole, and is
coloured based on the magnitude of the error between the simulated and data-derived
displacements, given in metres.
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Volunteer 4 (V4)
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Figure 6.4 (a) J over the parameter ratio γ, for V4, for three fibre distributions and
two epicardial boundary conditions. Also presented are data-derived and simulated
deformation at end diastole using the estimated γ for fibres with a maximum angle
of 50◦, (b) with zero-traction and (c) RV-epicardial boundary conditions. Lines show
data-derived deformation, while the solid mesh presents simulated end diastole, and is
coloured based on the magnitude of the error between the simulated and data-derived
displacements, given in metres.
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Volunteer 5 (V5)
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Figure 6.5 (a) J over the parameter ratio γ, for V5, for three fibre distributions and
two epicardial boundary conditions. Also presented are data-derived and simulated
deformation at end diastole using the estimated γ for fibres with a maximum angle
of 50◦, (b) with zero-traction and (c) RV-epicardial boundary conditions. Lines show
data-derived deformation, while the solid mesh presents simulated end diastole, and is
coloured based on the magnitude of the error between the simulated and data-derived
displacements, given in metres.
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Patient 1 (P1)
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Figure 6.6 (a) J over the parameter ratio γ, for P1, for three fibre distributions and
two epicardial boundary conditions. Also presented are data-derived and simulated
deformation at end diastole using the estimated γ for fibres with a maximum angle
of 50◦, (b) with zero-traction and (c) RV-epicardial boundary conditions. Lines show
data-derived deformation, while the solid mesh presents simulated end diastole, and is
coloured based on the magnitude of the error between the simulated and data-derived
displacements, given in metres.
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Patient 2 (P2)
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Figure 6.7 (a) J over the parameter ratio γ, for P2, for three fibre distributions and
two epicardial boundary conditions. Also presented are data-derived and simulated
deformation at end diastole using the estimated γ for fibres with a maximum angle
of 50◦, (b) with zero-traction and (c) RV-epicardial boundary conditions. Lines show
data-derived deformation, while the solid mesh presents simulated end diastole, and is
coloured based on the magnitude of the error between the simulated and data-derived
displacements, given in metres.
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Patient 3 (P3)
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Figure 6.8 (a) J over the parameter ratio γ, for P3, for three fibre distributions and
two epicardial boundary conditions. Also presented are data-derived and simulated
deformation at end diastole using the estimated γ for fibres with a maximum angle
of 50◦, (b) with zero-traction and (c) RV-epicardial boundary conditions. Lines show
data-derived deformation, while the solid mesh presents simulated end diastole, and is
coloured based on the magnitude of the error between the simulated and data-derived
displacements, given in metres.
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θ = 50◦ θ = 60◦ θ = 70◦

Case NT BC RV BC NT BC RV BC NT BC RV BC

V1 0.1 0.15 * 0.05 * *

V2 0.6 0.5 0.4 0.3 0.3 0.2

V3 0.05 0.1 * * * *

V4 0.4 0.3 0.05 0.15 0.05 0.1

V5 0.3 0.3 0.1 0.2 * 0.1

P1 1.2 0.3 1.1 0.2 0.9 0.15

P2 0.9 0.7 0.5 0.5 0.2 0.3

P3 0.3 0.3 0.1 0.1 * *

Table 6.2 Parameter ratio γ estimates for the volunteer and patient cases. Three
different fibre distributions were considered, with a maximum angle of θ = 50◦, θ = 60◦

and θ = 70◦. Two epicardial boundary conditions were analysed, a no-traction (NT
BC ) and an RV-epicardial (RV BC ) boundary condition. Stars (* ) denote cases where
the lowest error was observed in the lowest ratio tested.

J Second derivative

Case V1 V2 V3 V4 V5 P1 P2 P3

θ = 50◦ 3.2E-06 2.5E-07 5.6E-06 4.5E-07 1.4E-06 5.0E-07 1.8E-07 8.6E-07

θ = 60◦ 1.0E-05 4.9E-07 * 1.1E-06 1.7E-06 7.0E-07 2.3E-07 4.8E-06

θ = 70◦ * 6.6E-07 * 1.9E-06 3.6E-06 2.9E-06 5.3E-07 *

Table 6.3 Second derivatives of J at the estimated ratio, when the RV-epicardial
boundary condition was employed. Three fibre distributions were considered. Stars (* )
denote cases where the lowest value of J was observed at the lowest ratio considered.

6.1.2 Epicardial boundary condition

Two different epicardial conditions were examined, namely a zero-traction condition

and an RV-epicardial condition, accounting for the stresses exerted on the region of

attachment of the LV model to the RV wall. Observing the behaviour of the objective

function over the parameter ratio γ in Fig. 6.1a- 6.8a, the application of the data-

derived motion on the region of attachment to the RV, proved superior compared to

the simplified zero-traction epicardial boundary condition. For all cases and all fibre

distributions, the minimum J error was significantly lower when the RV-epicardial

boundary condition was employed, compared to the zero-traction boundary condition.

Specifically, the average error in J reduced from approximately ∼ 45% to ∼ 25% and

from ∼ 51% to ∼ 26%, in the volunteer and patient groups, respectively. The reduc-

tion in the error in deformation between the data and the model is also qualitatively

illustrated in figures 6.1(b, c) - 6.8(b, c).

159



6. Investigation of in vivo models

This significant reduction in error (the error was nearly half of the no-traction case),

combined with the very high error values for the zero-traction case, suggest that the

enforcement of this constraint is important for the accuracy of the personalised models.

Based on direct comparisons of simulated results with both epicardial conditions on

actual images, it appears that the zero-traction condition could not sufficiently restrict

the deformation, causing a slight shift of the geometry which might lead to the LV

wall crossing the RV wall or other tissues (see for example Fig. 6.9). If, instead,

the RV motion was taken into account through the RV-epicardial boundary condition,

the simulated deformation was restricted on a more anatomically accurate position in

space, leading to significantly more accurate outcomes.

(a) (b)

Figure 6.9 Simulated end-diastolic deformation with zero-traction epicardial boundary
condition (yellow mesh lines) and RV-epicardial boundary condition (red solid mesh),
for (a) V1 and (b) P1.

An equally important benefit of using the RV-epicardial condition is the improved

parameter identifiability characteristics, presented in the majority of cases. Specifically,

the variation in J (difference between maximum and minimum J values), increased

when the RV-epicardial condition was applied, especially as the maximum fibre angle

increased. The improvement in J behaviour stems from the fact that sufficient model

fidelity is a requirement for parameter identifiability. This is clearly illustrated in P1

and P2 (Fig. 6.6a and 6.7a, respectively), where J is practically constant for a wide

range of ratios when the zero-traction condition is used. This deteriorated identifiability

does not imply that the model is not sensitive to γ, but rather that model fidelity is

insufficient (errors up to 60%), with essentially a wide range of ratios leading to equally

large errors. However, accounting for the effect of the RV through the application of

the RV-epicardial boundary condition, allowed for sufficient model accuracy enabling

significantly improved identifiability.
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6.1.3 Fibre distribution

The fibre architecture is known to be an important determinant of cardiac function,

and as such, it is a key factor in model accuracy. Due to the absence of personalised

fibre distributions, a standard fibre field was employed, with the fibre angle varying

linearly from endocardium to epicardium (maximum angles of θ = 50◦, θ = 60◦ and

θ = 70◦ were used). As expected, the three fibre distributions employed lead to notable

variation in model behaviour and parameter estimates.

Based on the parameter ratio estimates presented in table 6.2, γ estimates are strongly

coupled to the assumed fibre distribution. Briefly, for the same epicardial boundary

condition, an increase in fibre angle θ resulted in a decrease in the parameter ratio γ.

This can be justified by noting that an increase in fibre angle leads to less elongation in

deformation (the stiffer direction is now closer to the long-axis direction). Additionally,

a decrease in the parameter ratio causes increased elongation and more anisotropic

deformation. Therefore, as θ increases, the parameter ratio is forced to a smaller

value to allow for more elongation and better matching to the data. Interestingly, the

tendency for a decrease in γ with larger fibre angles led to cases with the lowest error

appearing at the lowest ratio examined. In these cases, J was monotonic suggesting

a potential minimum at a lower value, yet ratios lower than 0.03 were considered non-

physiological and therefore not examined.
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Figure 6.10 Landscape of J over parameter ratio γ and fibre angle θ. Yellow cross
denotes the combination presenting the minimum error.

This coupling between γ and θ can also be observed in Fig. 6.10, where notably different

combinations of fibre angles and parameter ratios resulted in similar error values. The

presence of a wide valley with small error values suggests that the fibre angle could

not be identified through this process, as already suggested through the in silico test

in section 4.2.1.4.1, when the Guccione law was employed. The graph also confirms

the tendency for an increase in the parameter ratio for smaller fibre angles. Although
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the minimum here was observed for θ = 40◦, the difference in error from the θ = 50◦

case was negligible. As a maximum fibre angle of θ = 40◦ varies substantially from the

standard distribution of θ = 60◦ that is commonly employed in cardiac mechanics, this

fibre distribution was not analysed further.

Interestingly, the fibre distribution used, appears to also affect parameter identifiability,

as can be deduced by Fig. 6.10 and 6.1a - 6.8a. While global J variation (difference in

maximum and minimum values) appeared to increase for smaller θ, local variation in

J was deteriorated, i.e. a wider neighbourhood about the minimum presented similar

errors. Deterioration in local identifiability with decreased θ can also be deduced by the

second derivative of J at the parameter estimates for the cases under consideration,

in table 6.3. Nevertheless, the actual effect of this issue might be less pronounced if

percentage parameter errors are considered, taking into account that estimated γ is

larger for smaller fibre angles.

Another interesting finding stems from the observation that in the majority of cases

employing the RV-epicardial boundary condition, the lowest error was obtained with

a fibre angle of θ = 50◦. This observation holds for all volunteer cases with a mean

decrease in J of 4.2% and 1.3% when θ = 50◦ was assumed, compared to θ = 70◦

and θ = 60◦, respectively. This observation was less pronounced for DCM patients,

where the relevant mean decrease in error between θ = 50◦ and θ = 70◦ was 1.4%.

Furthermore, P1 presented a marginally lower error for θ = 60◦.

Although as discussed, θ could not be estimated using the available data, a specific

fibre distribution had to be selected to allow for consistent comparisons between cases.

The presence of a consistently lower error when θ = 50◦ was assumed, combined with

the large J variation observed, led to the use of the specific fibre distribution for the

personalised models analysed in the remainder of this chapter, and chapter 7.

6.1.4 Parameter identifiability

This section focuses on parameter identifiability for the volunteer and patient cases

analysed. Despite the small number of cases and the complex inter-related factors

contributing to parameter identifiability (model fidelity, data quality and quantity), an

attempt was made to decipher the identifiability behaviour and contributing factors.

The analysis that follows focuses on models employing the RV-epicardial boundary

condition and a fibre distribution of θ = 50◦ – a combination shown to reduce modelling

error – to enable easier comparisons of other aspects.

Observing Fig. 6.1a - 6.8a which present the behaviour of the objective function over

the parameter ratio, we can deduce that for the majority of cases good identifiability

characteristics were presented. Specifically, for all volunteers and patients, J varied
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smoothly over the parameter space and had a unique and distinct minimum. The pres-

ence of a clear minimum, combined with reasonable model errors (range of error at

the estimated ratio was (0.17 − 0.34) and (0.18 − 0.33) for volunteers’ and patients’

groups, respectively) suggest that at the personalised models considered, the reduced

Holzapfel-Ogden law maintained the good identifiability characteristics observed in in

silico tests. This implies that the model assumptions made enabled sufficient model

accuracy, without which parameter identifiability would not had been possible. Fur-

thermore, it suggests that the data used for model personalisation were of sufficient

quality.

Despite the generally satisfactory identifiability behaviour of J , certain aspects of it

differed between cases. For instance, the variation between the minimum and maxi-

mum J value was notably different from case to case. J variation can be thought of

as a measure of identifiability, as a large J variation between parameters that differ

significantly makes a large error in the parameter estimate less likely. Combining ob-

servations from J for the different cases and information from table 6.1, J variation

appeared to mainly depend on the magnitude of the deformation, whether at end di-

astole (||udED||) or summed over time (|||ud|||). This dependence is attributed to the

fact that substantial deformation is required for parameter identifiability. Accordingly,

on average, patients presented reduced J variation (mean variation 0.13 in patients

over 0.18 in volunteers) compared to normals, as the heart is known to be hypokinetic

in DCM89. Similarly, V4 who presented the smallest deformation amongst volunteers,

also presented the lowest J variation.

Differences can also be observed in the local J behaviour. The behaviour of J in a

neighbourhood about the estimate is another measure for identifiability. Specifically,

a sharp variation about the minimum provides confidence in the parameter estimate,

contrary to the presence of a valley with similar J values. The local behaviour can be

observed in J plots for the different cases, as well as in table 6.3, showing the second

derivative of J at the estimate. The second derivative can be related to the sensitivity

of J to the passive parameter ratio, thus the larger the value of the second derivative,

the better the parameter identifiability. With these ideas in mind, DCM patients saw

deteriorated local identifiability compared to normals. Similar to J variation, this could

again be attributed to reduced deformation which is common in DCM. Likewise, the

deteriorated local identifiability of V2 could be justified by the fact the V2 presented

the lowest ||udED|| among volunteers.

It is worth noting, that based on these findings, identifiability was not markedly affected

by bulk functional heart metrics such as ejection fraction and stroke volume, but was

mostly influenced by the degree of deformation present in the data. Furthermore, due

to the dependence of J on the deformation (Eq. 5.23), cases with small deformation

were also related to larger model errors.
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6.2 Investigation of employed boundary conditions

The sections that follow examine the suitability of the boundary conditions employed

within the proposed pipeline, and investigate their effect on parameter identifiability

and model accuracy.

6.2.1 Investigation of basal boundary condition

As discussed in section 5.3.3.2, the basal boundary condition employed (Eq. 5.14) was

selected mainly to reduce artefacts introduced because of strict enforcement of motion

through a Dirichlet boundary condition. Specifically, strict enforcement of deformation

constraints is known to cause non-physiological pressure peaks. The aim of this section

is to verify – via a representative example – that the relaxed basal boundary condition

reduces pressure peaks associated with Dirichlet boundary conditions, while allowing

for sufficient model accuracy and parameter identifiability.
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Figure 6.11 Landscape of J over parameter ratio γ for V5, for different values of
the relaxation parameter in the basal boundary condition. A Dirichlet basal boundary
condition is considered as well.

Fig. 6.11 compares the behaviour of J over γ for three values of the relaxation parame-

ter εb in Eq. 5.14. For all cases, identifiability was maintained while the ratio retrieved

was the same. As expected, the highest εb, at which relaxation of the constraint was

substantial, resulted in the largest error (Fig. 6.11 and 6.12d). Interestingly, the ap-

plication of the Dirichlet boundary condition did not result in the lowest error, as the

strict enforcement of the constraint caused not only local pressure peaks but also non-

physiological deformation near the base (Fig. 6.12a). These artefacts in both pressure

and deformations were reduced as the constraint was progressively relaxed (Fig. 6.12b,

6.12c and 6.12d). The value εb = 10−7 used for the personalised simulations in sec-

tion 6.1 provided an adequate model accuracy – consequently allowing for parameter

identifiability – while in parallel restricting regional pressure peaks.
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(a) (b) (c) (d)

Figure 6.12 Simulated end-diastolic deformation for V5, with (a) Dirichlet basal
boundary condition and relaxed basal boundary condition, with a relaxation parameter
of (b) εb = 10−9, (c) εb = 10−7 and (d) εb = 10−5. Mesh lines show the data-derived
deformation, while the coloured solid mesh presents the wall pressure (Pa).

6.2.2 Investigation of RV-epicardial boundary condition

The application of the RV-epicardial boundary condition was shown to be critical for

both model accuracy and parameter identifiability. Both aspects however, are depen-

dent on the value chosen for the relaxation parameter εe in Eq. 5.16. These attributes

were investigated via a representative example (application on V5) presented in this

section.
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Figure 6.13 Landscape of J over parameter ratio γ for V5, for different values of the
relaxation parameter in the RV-epicardial boundary conditions.

As anticipated, a lower value for εe, requiring a strict enforcement of the constraint, re-

duced model error remarkably (Fig. 6.13 and 6.14). However, a strict condition might

in parallel lead to over-constraining of the parameter estimation problem, causing dete-

rioration of identifiability. This is obvious in Fig. 6.13, where the strict enforcement of

motion for the lowest value of εe forced a wide range of parameter ratios to produce very

similar deformation – and hence error – and in this way diminished parameter iden-

tifiability. Instead, εe = 5 × 10−6 (as selected for the considered personalised models

in section 6.1) provided a balance between model accuracy and parameter identifiabil-
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ity.

(a) (b) (c)

Figure 6.14 Simulated end-diastolic deformation for V5, with a relaxation parameter
of (a) εe = 5 × 10−8, (b) εe = 5 × 10−6 and (c) εe = 5 × 10−4 for the RV-epicardial
boundary condition. Mesh lines show the data-derived deformation, while the coloured
solid mesh presents the error between model and data (m).

6.3 Effect of reference configuration

Estimation of the reference / undeformed geometry is undoubtedly one of the biggest

challenges in cardiac mechanics. As no such state exists in the cardiac cycle, a com-

mon approach is to use one of the available data frames as the reference configuration.

Within this work, the end-systolic frame was employed as the reference configuration

for all personalised models considered. The aim of this section is to assess the effect of

this assumption on model accuracy and parameter identifiability / estimates. However,

as the reference geometry is unknown, this effect cannot be directly assessed. Instead,

this section considers different diastolic frames as the reference configuration and inves-

tigates the effect of this assumption on the behaviour of the objective function.
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Figure 6.15 Objective function J over the parameter ratio γ, with three different data
frames (end-systolic (ES), the second and fourth after ES) assumed as the reference
geometry, for (a) V1 and (b) P1.
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Fig. 6.15 compares the behaviour of J when different diastolic frames (end-systolic,

second and fourth after end-systolic) were used as the reference geometry, for a vol-

unteer and a patient case. In both cases, J presented a unique, distinct minimum

for all assumed reference configurations, suggesting that γ identifiability is feasible,

independent of the diastolic frame used as reference. The error between model and

data increased when later diastolic frames were used as reference domains, an effect

that could be accredited to the smaller deformation observed between reference and

end-diastolic frames. Unlike the in silico test in section 4.2.4.2 where γ estimates

were relatively consistent, there is a notable difference between γ estimates using the

end-systolic and fourth after end-systolic frames. Nevertheless, based on the consis-

tency in behaviour in the two cases (γ appeared to increase when later diastolic frames

were employed as the reference), we can deduce that the choice of a different diastolic

frame introduces a consistent bias in the results, maintaining the ability for reliable

comparisons between cases.

6.4 Effect of extracted motion processing

Based on preliminary tests with motion extracted from 3D tagged MRI data, the wall

volume appeared to change significantly over the cardiac cycle. Regarding this volume

change as non-physiological, an additional processing step was considered essential as

discussed in section 5.2.3.1, over which the extracted motion was processed to maintain

constant wall volume through the cycle. The processed or projected data were con-

structed to ensure a close match to unprocessed data, maintaining important metrics

such as stroke volume and ejection fraction and restricting the processing effect mainly

to wall volume.
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Figure 6.16 (a) Landscape of J over parameter ratio γ for V3, when unprocessed and
processed data are used. Models assume a fibre distribution with θ = 50◦ and employ
the RV-epicardial condition. (b) Simulated end-diastolic deformation for V3, with
unprocessed and (c) processed data. Mesh lines show the data-derived deformation,
while the coloured solid mesh presents the error between model and data (m).

Even though the processed data are close to the original data and maintain impor-
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tant characteristics, acknowledging that this processing assumption might alter the

outcomes and introduce a bias into our model, this section aims to shed some light

onto the effect of this post-processing step. To this end, model accuracy and parameter

identifiability / estimates were investigated using both unprocessed and processed data.

Here, an example of a healthy volunteer is presented.

Firstly, as illustrated in Fig. 6.16a and 6.16c, data projection enabled lower model er-

rors, as also observed in the majority of cases analysed. This is mainly attributed to the

inability of incompressible models to match data whose volume changes dramatically

over the diastolic part of the cycle (Fig. 6.16b). Furthermore, parameter identifiability

was maintained and – in several cases – improved, possibly due to the smaller difference

between model and processed data. Based on table 6.4, parameter estimates did not

change dramatically, with the exception of cases V2 and P2, which however presented

deteriorated identifiability throughout the tests. Nevertheless, based on reduced J val-

ues, the parameter estimates retrieved from the processed data are likely to be more

accurate.

Parameter ratio estimated with unprocessed and processed data

Case V1 V2 V3 V4 V5 P1 P2 P3

Unprocessed data 0.15 0.8 0.15 0.4 0.4 0.4 0.9 0.2

Processed data 0.15 0.5 0.1 0.3 0.3 0.3 0.7 0.3

Table 6.4 Parameter ratio (γ) estimates, when unprocessed and processed data are
used. Models assume a fibre distribution with θ = 50◦ and employ the RV-epicardial
condition.

6.5 Study limitations

The systematic analysis followed in this chapter elucidated modelling aspects, con-

tributing to, and improving model accuracy and parameter identifiability for the con-

sidered personalised models. The findings of this analysis, which to the best of our

knowledge have not been examined before, could be of use to similar patient-specific

applications. As illustrated, exploiting these modelling attributes led in significant

improvement in results, with errors of 17 − 34%, which are within satisfactory levels,

considering the strict metric used for J . Nevertheless, the presence of non-negligible

errors suggests the need for further investigation of modelling and data processing

aspects.

Perhaps the most obvious source of error might stem from the choice of material law.

Even though a more complex orthotropic law might be able to better capture cardiac

deformation and reduce modelling error, the simplified version of the reduced Holzapfel-
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Ogden law used, was selected to allow for parameter identifiability. The presence of a

unique and distinct J minimum for all cases considered suggests that the constitutive

law selected was a suitable choice, although additional patient cases should be analysed

to confirm that this choice is appropriate for DCM cases.

Furthermore, based on the results presented, for certain cases and fibre distributions

the lowest error was observed at the lowest ratio examined. This issue might indicate

that the employed fibre distribution was not appropriate for the specific cases, not only

in terms of fibre angle but mainly in terms of spatial variability. In the absence of

personalised fibres though, a consistent fibre distribution had to be assumed to enable

comparisons.

As previously discussed, the reference geometry was assumed to be known and corre-

spond to the end-systolic data frame. This assumption was partially investigated by

analysing the effect of choosing a different diastolic data frame as the reference config-

uration. A much more elaborate approach must be employed in order to estimate the

actual reference state and thus assess the effect of this assumption. In fact, based on

Asner et al., including the reference domain as an unknown in the estimation process,

resulted in deteriorated identifiability in the passive parameters, due to their coupling

with the reference configuration8. Nevertheless, here it is hypothesised that potential

bias in the parameter estimates introduced by this assumption, would be consistent,

thus enabling comparisons between cases.

In the presented analysis, the objective function was computed over all data frames

(including end-diastolic frame) after end systole. The number of diastolic image frames

used in other studies is variable with authors considering all or part of diastole. This

variability is due to assumptions on residual active tension, the presence of which is

confirmed by decreasing cavity pressures even after the opening of the mitral valve,

as discussed in Pasipoularides et al 195. As a result, it is possible that early diastolic

frames (including the end-systolic frames used as refence geometry) do not contain

purely passive tissue behaviour, but also contain residual active stress. This effect was

neglected during the passive parameter estimation, mainly because of the inability of

accurately determining the presence of active tension in the data. However, parameter

identifiability should be robust to this effect, an assumption also supported by the

fact that active tension undergoes exponential decay through early stages of diastole,

limiting its impact on the motion. Nevertheless, this hypothesis can be corrected for,

by subsequent estimation of the active tension. Passive estimation can then be adjusted

based on the frames identified as purely passive by the estimation results during this

period, as discussed in Asner et al 8.

Additionally, the data itself or the data processing might also be responsible for the

modelling error observed. Even though the use of a mask during the motion extrac-

tion process significantly reduced non-physiological tracking outcomes, the extracted
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deformation was not quite smooth, an effect which the considered models would not

be able to – and should not – reproduce. Yet, when compared against cine images, the

extracted deformation was physiological through the cycle.

Despite the limitations of the pipeline discussed here, the resulting modelling error is

actually within satisfactory levels, if the simplicity of the model employed is contrasted

with the complexity of the human heart. Considering the main scope of this work

for personalised models balancing accuracy with parameter identifiability, the current

findings suggest that the proposed pipeline has been successful with respect to the

objectives set.

6.6 Summary

This chapter presented tests and evaluations of the pipeline proposed in chapter 5

for the development of personalised passive cardiac mechanics models. Emphasis was

largely on investigating parameter identifiability of the reduced Holzapfel-Ogden law in

an in vivo setting. Of interest were modelling aspects that can improve model fidelity

and parameter identifiability, namely fibre distribution and boundary conditions. Ad-

ditional assumptions (reference domain, data processing) were analysed with respect

to their effect on the results.

The thorough analysis performed over a number of volunteer and patient cases enabled

safe conclusions on the factors contributing to model fidelity and parameter identifiabil-

ity. Specifically, both model accuracy and parameter identifiability were significantly

improved when the effect of the RV was taken into account through an appropriate

epicardial boundary condition. Additionally, based on the available data and the ma-

terial law employed, the fibre angle could not be retrieved, yet a fibre distribution of

θ = 50◦ was shown to consistently present the lowest error, compared to θ = 60◦ and

θ = 70◦ distributions. This fibre angle is similar to values reported in ex vivo 208,65

and in vivo 251,237 human DTMRI studies, although the studies report variation in an-

gle magnitude between endocardium and epicardium, and between basal and apical

regions. Through systematic investigations of the fibre distribution, boundary condi-

tions and additional aspects on several cases, important modelling assumptions can

now be replaced by informed decisions, optimising the model’s accuracy and parameter

identifiability.

Additionally, variations in identifiability behaviour and model fidelity between cases

highlighted their dependence on the available data. Specifically, in cases with larger

diastolic deformation, identifiability was improved as the rich deformation field al-

lowed for better stratification of parameters outcomes. This observation highlights the

importance of adequate deformation and sufficient data quality for unique parametri-
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sation.

Throughout all the volunteers and patients cases considered, the objective function

presented a unique and distinct minimum confirming that parameter identifiability for

the reduced version of the Holzapfel-Ogden law is maintained in vivo. Combined with

errors within acceptable levels for all cases, these findings suggest that the employed

material law is suitable for the personalised models considered. Further, the consistency

in results with respect to both model fidelity and parameter identifiability demonstrate

a robust and reliable pipeline, while the large number of cases – and sub-cases – analysed

confirms its efficiency. In summary, the systematic analysis presented ensures a reliable

and efficient pipeline for model personalisation, setting the foundation for case-by-case

comparisons, considered in chapter 7.
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Dilated cardiomyopathy (DCM) is a progressive cardiac disorder associated with en-

larged ventricles128,52, and an overall deterioration of the heart’s contractile function

characterised by reduced ejection fraction and contractility166,89 (section 1.2). Studies

have suggested that significant LV remodelling is observed in DCM, including changes

in LV size and shape128,87, as well as tissue composition16,39, architecture16,190 and

stiffness47,190. This adverse remodelling affects not only contractile, but also diastolic

cardiac performance, rendering diastolic function a key determinant in the develop-

ment of DCM. Despite significant research interest into the disease, little is understood

about the mechanisms contributing to it and particularly the role of diastolic dysfunc-

tion.

The personalised models developed through the pipeline proposed in chapter 5, provide

a framework for comparisons between DCM patients and healthy volunteers with the

ultimate goal of assisting in a better understanding of the disease. The systematic eval-

uation in chapter 6, indicated a robust pipeline enabling sufficient model accuracy and

unique parametrisation. This observation suggests that the developed patient-specific

models can be used as a reliable tool for a preliminary assessment of the disease.

The aim of the this chapter is to present some preliminary comparisons between DCM

patients and healthy volunteers, leading the way for thorough analyses of the mecha-

nisms underpinning DCM. Initially, important clinical metrics are derived directly from

the available imaging data, providing valuable information on structural and functional

differences between DCM patients and normals (section 7.1). Subsequently, compar-

isons are extended to personalised models developed through the proposed pipeline,

which provide information, inaccessible solely through clinical data. Comparisons fo-

cus on passive parameters estimates – a key component and indicator of diastolic func-

tion – and the factors influencing the estimates (section 7.2). Additional information

about DCM characteristics is obtained through comparisons of regional strain distri-

butions (section 7.3). Further, data-to-model strain comparisons provide an additional

means for testing the proposed pipeline and modelling assumptions, strengthening the

preliminary findings discussed (sections 7.4 and 7.5).

172



7. Comparative analysis of in vivo cases

7.1 Analysis of data-derived information

The wealth of clinical data available as part of the present study provides valuable

insights into individual hearts’ anatomy and kinematics. Following the data processing

pipeline in section 5.2, quantified information was extracted, allowing for of comparisons

of basic clinical metrics between DCM and normals. Clinical metrics derived from the

available data and used throughout the model personalisation process are presented in

table 7.1 along with basic information on the volunteers and patients.

Case Age G HR EDV ESV SV EF tED tES
LA
SA

LAED−LAES

LAED
EDPest

(yrs) - (bpm) (ml) (ml) (ml) - (mm) (mm) - - (mmHg)

Volunteers

V1 28 M 66 129.50 64.57 64.93 0.50 8.03 10.61 1.35 0.13 10.46

V2 29 F 73 100.85 47.67 53.18 0.53 7.09 9.07 1.59 0.14 16.09

V3 48 M 62 152.55 67.43 85.12 0.56 8.73 12.1 1.40 0.15 10.23

V4 35 F 77 93.19 45.99 47.20 0.51 6.58 8.74 1.59 0.13 8.76

V5 41 M 64 120.36 53.51 66.85 0.56 8.38 11.38 1.33 0.14 11.35

Mean 36.2 - 68.4 119.29 55.84 63.46 0.53 7.76 10.34 1.45 0.14 11.38

SD 8.4 - 6.35 23.63 9.74 14.60 0.03 0.90 1.45 0.13 0.01 2.79

DCM Patients

P1 28 F 60 141.12 81.91 59.21 0.42 7.92 10.11 1.23 0.12 16.27

P2 55 M 63 179.26 95.15 84.11 0.47 7.94 10.33 1.21 0.10 17.57

P3 43 F 64 136.19 79.88 56.31 0.41 6.54 8.24 1.24 0.10 11.55

Mean 42 - 62.3 152.19 85.65 66.54 0.43 7.46 9.56 1.22 0.11 15.13

SD 13.5 - 2.08 23.57 8.29 15.28 0.03 0.80 1.15 0.18 0.01 3.17

Table 7.1 Participant’s general information are considered (age and gender (G)). Clin-
ical metrics derived from the available data are presented as well (HR: heart rate (beats
per minute), EDV: end-diastolic volume, ESV: end-systolic volume, SV: stroke volume,
EF: ejection fraction, tED and tES : wall thickness at end diastole and end systole,
LA/SA: ratio of long-axis to short-axis dimensions at end diastole, LAED−LAES

LAED
: long-

axis shortening, EDPest: end-diastolic pressure estimate).

The reported heart rate was measured during the acquisition of the tagged MRI se-

quence. End-diastolic and end-systolic volumes were computed from the deformed

meshes which followed the 3D tagged MRI motion, using the approach described in

section 5.3.3.1 and Eq. 5.13. Stroke volume and ejection fraction were directly com-

puted from the cavity volumes (SV = EDV − ESV , EF = EDV−ESV
EDV ). It should be

noted that the reported volumes differ from standard clinical volume metrics, due to

the truncation of the LV mesh at a plane lower than the valve plane.

Wall thickness at end diastole and end systole was approximated by the ratio of the

wall volume over the mean surface area of encocardial and epicardial surfaces. The

long-axis length was computed as the maximum distance of an epicardial node to the
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centre point of the base. The short-axis dimension was computed as twice the mean

distance of each epicardial node to the long-axis. The end-diastolic cavity pressure

was estimated using a surrogate measure based on the E/Ea ratio167, as described in

section 5.4.
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Figure 7.1 Comparison of (a) end-systolic volume normalised over long-axis length
at end diastole, (b) ejection fraction, (c) end-diastolic pressure estimate, (d) ratio of
long-axis to short-axis dimensions at end diastole, (e) wall thickening over end-systolic
thickness (f) long-axis shortening over long-axis length at end diastole, between the
volunteer and patient groups. Red lines show the median, the boxes’ edges denote 25th

and 75th percentiles, while black lines show extreme data points.

Differences in the presented quantities between healthy volunteers and DCM patients
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were assessed through comparisons of the mean and standard deviation of each group,

also presented in table 7.1. Additionally, unpaired t−tests were performed to assess the

statistical significance of these differences, although in certain cases the sample size was

too small to allow for statistical significance. For ease of presentation, this information

is also presented graphically per group in Fig. 7.1, allowing for easier comparisons

between DCM patients and healthy volunteers.

Despite the small number of volunteers and patients, distinct differences were identified

within the two groups (table 7.1 and Fig. 7.1). Pronounced increases were observed in

end-diastolic and end-systolic cavity volumes in DCM hearts (table 7.1), as extensively

reported in literature5,284,128. To avoid biased comparisons due to cavity volumes com-

puted after mesh truncation, comparisons were also performed over the end-diastolic

and end-systolic volumes, normalised by the end-diastolic long-axis length. Normalised

end-diastolic volumes were notably higher in the patient group compared to the vol-

unteer group (1930.5 ± 215.4 ml/m vs. 1425.5 ± 246.7 ml/m, p = 0.03 ), due to the

ventricular dilation which is a key characteristic of DCM. Even more pronounced was

the difference in normalised end-systolic volumes (Fig. 7.1a) which were significantly

higher for DCM patients compared to normals (1088.2 ± 60.5 ml/m vs. 668.0 ± 105.5

ml/m, p ≤ 0.001 ). Stroke volume did not present strong differences as anticipated,

based on the increase in both end-diastolic and end-systolic volumes. Nevertheless,

ejection fraction (Fig. 7.1b) was markedly lower in the patient group (0.43 ± 0.03

vs. 0.53 ± 0.03, p ≤ 0.005 ), marking the deteriorated contractile and diastolic filling

function typically associated with DCM.

Additional geometrical differences between normals and DCM patients can be observed

through the ratio of long-axis to short-axis dimensions. The decrease in ratio (Fig.

7.1d) for DCM hearts (1.22 ± 0.18 vs. 1.45 ± 0.13, p = 0.03) is characteristic of

the change in shape from elliptical to spherical observed in DCM128,87. Moreover, wall

thickness was moderately decreased in DCM patients compared to normals both at end

diastole and end systole – though this difference was not statistically significant – as

also reported by other studies190,42. Nevertheless, a more evident trend (p = 0.07) was

observed in the wall thickening ratio (tES − tED)/tES , with the ratio decreasing in the

DCM group (Fig. 7.1e). Similar findings have been reported in the literature42,284,279,

indicating reduced wall thickening during contraction and thus impaired contractile

function in the presence of DCM. Similarly, normalised long-axis shortening (Fig. 7.1f)

was significantly decreased in the DCM group (p ≤ 0.005)

Another key distinction was observed in the estimated end-diastolic pressure (EDPest).

In accordance with previous studies128,5,89 and despite outliers, EDPest was notably

higher in the DCM group (15.15 ± 3.17 mmHg) compared to normals (11.34 ± 2.79

mmHg), although this difference did not reach statistical significance (p = 0.13).
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7.2 Passive parameter estimation

This section extends the comparisons between DCM and normals to metrics derived

from personalised diastolic models. Building on the findings of chapter 6, the RV-

epicardial boundary condition and a fibre distribution of θ = 50◦ were employed for the

creation of the personalised models considered in this chapter. The models employ the

reduced Holzapfel-Ogden law (Eq. 4.5), shown to provide adequate model fidelity and

parameter identifiability in vivo (section 6.1.4). To allow for more accurate parameter

estimates, parameter sweeps were repeated considering values closer to the γ estimates

obtained in the parameter identifiability study in section 6.1 and presented in table 6.2

(γ = a/af ). The absolute values of the parameters a and af were retrieved through

scaling by the ratio between the estimated (EDPest) and the simulated (λED` ) end-

diastolic cavity pressure, as described in section 5.4. Parameter estimates and quantities

relevant for the parameter estimation process are presented in table 7.2

Case γ λED` EDPest/λED` EF a af

- (mmHg) - - (Pa) (Pa)

Volunteers

V1 0.13 4.73 2.21 0.50 278.91 2214.73

V2 0.51 13.49 1.19 0.53 608.31 1192.78

V3 0.09 7.55 1.36 0.56 121.98 1355.35

V4 0.25 6.87 1.28 0.51 318.98 1275.90

V5 0.29 13.68 0.83 0.56 240.71 830.02

Mean 0.26 9.27 1.38 0.53 315.58 1373.75

SD 0.17 4.08 0.51 0.03 179.97 511.26

DCM Patients

P1 0.29 3.71 4.39 0.42 1273.21 4390.41

P2 0.65 8.65 2.03 0.47 1320.83 2032.05

P3 0.26 2.59 4.46 0.41 1160.59 4463.80

Mean 0.40 4.99 3.63 0.43 1251.55 3628.75

SD 0.22 3.22 1.38 0.03 82.29 1383.27

Table 7.2 Parameter ratio γ estimates for the volunteers and patients under consider-
ation. The simulated LV end-diastolic pressure (λED` ) and the ratio between measured
and simulated end-diastolic pressure (EDPest/ λED` ) are presented as well, providing
the absolute values for the parameters a and af . Ejection fraction (EF) is presented
again, to assist comparisons.

Based on table 7.2, the values of the parameter ratio γ = a/af are in all cases strictly

lower than 1, indicating that the isotropic parameter a is consistently lower than the
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fibre parameter af . Noting the equal values for the exponents b and bf in Eq. 4.5, this

suggests that the tissue is stiffer in the fibre direction, for all cases considered. This

observation is in agreement with various experimental188,57 and modelling82,266 studies

reporting that the cardiac tissue is stiffer in the fibre direction.

However, the values of the parameter ratio γ show notable variation, ranging between

(0.09 − 0.65). Moreover, no significant difference in γ can be noted between the vol-

unteer and patient groups. Although the mean ratio is higher for the patient group,

the large variation within groups does not allow for statistical significance and definite

conclusions. These observations indicate that γ, a measure of the degree of anisotropy,

is not a constant / consistent quantity between cases. More importantly, it is possi-

ble to suggest based on these findings, that the degree of anisotropy is not markedly

affected by the significant ventricular remodelling occurring in the DCM hearts. Never-

theless, a larger sample might accentuate the differences between the groups, ultimately

suggesting a change in the degree of anisotropy with DCM.

The estimation of the actual values of a and af though, provides more distinct dif-

ferences allowing for more reliable conclusions (table 7.2, Fig. 7.2). Specifically, the

isotropic parameter a is distinctly higher in the DCM group compared to normals

(1251.55 ± 82.29 Pa vs. 315.58 ± 179.97 Pa, p = 0.0002). A similar strong trend is

also observed in the fibre parameter af (3628.75± 1383.27 Pa vs. 1373.75± 511.26 Pa,

p = 0.014). With both isotropic and fibre parameters significantly higher in the DCM

group, it is suggested that the cardiac tissue becomes stiffer in DCM models.
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Figure 7.2 Comparison of (a) isotropic parameter a and (b) fibre parameter af
between the volunteers’ and patients’ groups. Red lines show the median, the boxes’
edges denote 25th and 75th percentiles, while black lines show extreme data points.

Analysing this observation further, we can consider the estimation of the absolute values

of the parameters a and af as described in section 5.4, with asimf = 1000Pa, which can
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be summarised as,

a = 1000γ
EDP est

λED`
, af = 1000

EDP est

λED`
. (7.1)

These relations suggest that the parameters are affected by several possibly inter-related

factors. Taking advantage of the clearly outlined pipeline and modelling assumptions

used, an interpretation of the increased stiffening in DCM models was attempted.

Firstly, with only a directly dependent on the estimated ratio γ, the increase in both

parameters should be mainly attributed to the ratio of estimated to simulated cavity

pressures (EDP est/λED` ), which based on table 7.2 was found to be significantly higher

in DCM (3.63 ± 1.38 vs. 1.38 ± 0.51, p = 0.014). This dependence is again two-fold:

the parameters are directly related to the measured EDPest and inversely proportional

to the simulated λED` . As EDPest is higher in DCM (although this observation did not

reach statistical significance), this factor can be considered partially responsible for the

increase in parameter values.

The second dependence stems from the simulated cavity pressure (λED` ), which is no-

tably lower in the DCM group (even though this difference was not statistically signif-

icance with p = 0.17). This factor appears to be strongly dependent on the ejection

fraction (p = 0.03), yielding higher λED` for higher ejection fractions. This relation

can be attributed to the fact that increased cavity pressure is required for a more pro-

nounced LV inflation. The inverse relation between parameters and ejection fraction

can justify the higher parameter estimates for DCM hearts, where ejection fraction is

significantly lower. Similarly, V1 who presented the lowest ejection fraction amongst

volunteers, also had a notably higher af . Finally, λED` is also affected by the parameter

ratio, since for a constant af , a larger a would yield a stiffer heart thus requiring a

higher pressure for inflation to the same end-diastolic volume. The dependence of λED`
on the ratio is mainly affecting af , since in the estimation of a this effect is counteracted

by scaling by γ whose influence appears to be stronger. The inverse relation between

af and γ justifies the fact that P2 who presented the highest parameter ratio between

patients also had the lowest af .

Taking the results discussed above into account, the absolute values of the passive

parameters a and af are affected by several factors of the proposed pipeline, the most

important being the measured end-diastolic pressure, the ejection fraction and the

parameter ratio estimate γ. The higher end-diastolic pressure, low ejection fraction and

increased parameter ratio γ observed in the DCM cases all contribute to the increased a

and af values. The factors hypothesised to contribute in a and af values are summarised

in table 7.3.
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γ EF EDPest λED`

a ⇑ ⇓ ⇑ ⇓

af ⇓ ⇓ ⇑ ⇓

λED` ⇑ ⇑ - ⇑

Table 7.3 Schematic representation of factors possibly contributing in the estimation
of passive parameters a and af . Upward arrows in each row indicate an increase in
the a, af and λED` with an increase in γ, ejection fraction, EDPest and λED` . Similarly,
downward arrows denote decrease in row-quantities with increase in column-quantities.

7.3 Preliminary analysis of strain distributions

The analysis of data- and model-derived information presented so far has provided im-

portant insights in global characteristics of motion and behaviour. In order to allow for

assessment of regional cardiac behaviour in both normals and DCM, this section focuses

on the estimation of regional strain distributions. Analysis of regional behaviour might

elucidate important information, inaccessible from global metrics. Further, comparing

strain distributions between data and model will provide a means for assessing model

accuracy.

Each personalised geometry was divided in 16 regions according to the American Heart

Association (AHA) recommendations29 as illustrated in Fig. 7.3. The apex was not

included as a separate 17th region due to the inability of accurately identifying its

location. Strains were therefore computed on the first 16 AHA regions, for both data

and model, for all volunteers and patients considered.
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Figure 7.3 Display of the name and location of the 17 AHA segments of the LV29.
Regions marked with grey, blue and black colour correspond to the basal, mid-ventricle
and apical regions, respectively.
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Based on the Lagrange-Green definition of strain (E = 1
2(C − I)), strain is dependent

on spatial derivatives of data-derived displacement, which is very sensitive to noise.

Taking into account the potential local non-smooth deformations extracted from 3D

tagged MRI, this noise sensitivity could have a severe impact on strain distributions.

In order to avoid this sensitivity to noise and possibly non-physiological outcomes, an

alternative way of computing strain was employed.

Considering the fundamental definition of the deformation gradient (dx = F dX), F

maps infinitesimal vectors dX in the undeformed domain to their corresponding vectors

dx in the deformed domain. Instead of computing F at every node in the geometry, an

approximate value F̄ per AHA region was estimated. Specifically, for each mesh node

of the AHA region, the “infinitesimal” vectors dx̄ and dX̄ were computed with respect

to the centroid of the region in the deformed and undeformed domain, respectively. F̄

for every AHA region was then computed as the tensor that satisfied dx̄ = F̄ dX̄ for

all nodes k in the region, in a least-squares sense:

F̄ = min
A∈R3×3

∑
k

||dx̄k −AdX̄k||2. (7.2)

Strain was subsequently computed using the approximated deformation gradient per

region as

E =
1

2
(F̄

T
F̄ − I). (7.3)

The use of definition 7.3 for strain avoids bias introduced by noise-sensitive derivative

estimates. Combined with the use of mean quantities per AHA region, this strain

definition should reduce noise sensitivity, providing physiological strains.

7.3.1 Characterisation of average data-derived strain

Strains were approximated using the above-mentioned definition (Eq. 7.3) for each

AHA region for all volunteers and patients. For all cases, the reported values correspond

to strains at end diastole with respect to end systole. Strain in the radial (Err =

Er · r), longitudinal (Ell = El · l) and circumferential (Eθθ = Eθ · θ) directions were

computed for each region, with r, l and θ the unit vectors in the radial, long-axis

and circumferential directions, respectively. The spectral norm of the strain tensor was

computed as well (||E||2 =
√
λmax(EE)), providing a global strain estimate.

Average values of strain metrics over all regions were considered, to provide overall de-

formation characteristics (table 7.4). Average radial strain at end diastole was negative

for all cases, due to wall thinning while active tension gradually decays over diastole.

In contrast, average longitudinal and circumferential strains were positive for all cases,

indicative of LV lengthening and dilation observed during diastole. The average strain

values obtained for the volunteers’ group (−0.14±0.02, 0.18±0.05, 0.18±0.02, for Err,
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Ell and Eθθ, respectively) are in agreement with values reported by Young et al. for

healthy volunteers (0.15± 0.07, −0.17± 0.02, −0.2± 0.02, for Err, Ell and Eθθ, respec-

tively), where strains were reported at end systole with respect to end diastole286.

The average strain metrics reported enable direct comparisons between the volunteer

and patient groups. As indicated by the decrease in ||E||2 in the DCM group (0.29±0.03

vs. 0.24±0.003, p = 0.02), strain was decreased in DCM hearts. In fact, strain in radial

and circumferential directions was notably reduced in the patients’ group (p < 0.1 for

both Err and Eθθ). Decrease was also observed in longitudinal strain, even though not

statistically significant.

Case Err Ell Eθθ ||E||2
Volunteers

V1 -0.13 0.19 0.17 0.27

V2 -0.13 0.13 0.19 0.28

V3 -0.18 0.26 0.18 0.34

V4 -0.14 0.14 0.17 0.30

V5 -0.15 0.19 0.19 0.29

Mean -0.14 0.18 0.18 0.29

SD 0.02 0.05 0.01 0.03

DCM Patients

P1 -0.13 0.16 0.14 0.24

P2 -0.12 0.15 0.17 0.25

P3 -0.12 0.14 0.15 0.24

Mean -0.12 0.15 0.15 0.24

SD 0.006 0.01 0.01 0.003

Table 7.4 Average data strain at end diastole with respect to end systole for all
volunteers and patients under consideration. Strain in the radial (Err), longitudinal
(Ell) and circumferential (Eθθ) directions along with strain norm (||E||2) are presented.

7.3.2 Regional strain characterisation

In order to provide an assessment of regional myocardial behaviour, strain per AHA

region was computed from data for all volunteers and patients considered. Figures of

radial, longitudinal and circumferential strain per AHA region for all cases are presented

in Appendix E. Notable variations in both regional distribution and magnitude were

observed between the cases considered, hindering the identification of consistencies

between cases or differences between groups.

Nevertheless, certain observations appear to be consistent in the majority of cases and
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are also validated by Fig. 7.4 which displays strains per AHA region, averaged over the

volunteers and patients groups. Specifically, for most cases considered, the maximum

(in magnitude) radial strains were observed in the equatorial region, as also indicated

in the average distribution in Fig. 7.4a. This observation has also been reported in

the literature in healthy volunteers286 as well as DCM cases42,60. Additionally, in the

majority of cases, minimum longitudinal strain was observed in the basal-septal region,

while maximum circumferential strain was observed in the basal-lateral region of the

LV. These observations are in agreement with average quantities in Fig. 7.4b and 7.4c,

respectively.

(a) (b) (c)

Figure 7.4 Average strain values per AHA region over all volunteers (top row) and
patients (bottom row) considered in (a) radial, (b) longitudinal and (c) circumferential
directions.

7.3.2.1 Data-model strain comparisons

Strain per AHA region was also computed for the personalised models created, to enable

qualitative regional comparisons between data and model. Data and model strains

per AHA region were computed for all volunteers and patients and are presented in

Appendix E. Representative examples of one volunteer (V5) and one patient (P3) cases

are presented in Fig 7.5 and 7.6, respectively.

Based on Fig. 7.5 and 7.6 and Appendix E, notable similarities can be observed be-

tween spatial distributions of data and model strains. Despite differences in magnitude,

the regions of maximum and minimum strains are – in most cases – consistent between

model and data. The similarity in strain distributions between data and model sug-
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gests that the personalised models developed, reasonably reflect the true data-derived

strains.

Interestingly, the most notable differences between data and model occur at regions of

sharp variations in data-derived strain. Due to the global passive parameters and ho-

mogeneous endocardial boundary condition used, along with the continuum mechanics

framework employed, model-deformation would most likely be more smooth than data-

derived deformation. To this end, models are not likely to replicate sharp variations

present in data, while maximum and minimum strain values are mediated in the model

compared to data.

Another interesting observation stems from the longitudinal strain of V2 and V4 (Fig.

E.2c, E.4c, respectively). In only these two cases, longitudinal strain was negative in

the basal region, suggesting that this part of the LV was shortening instead of length-

ening over diastole. This issue was possibly due to data / motion tracking artefacts.

Interestingly, as the model is not set up to reproduce such a behaviour, this could be

a reason for higher modelling errors and deteriorated identifiability observed for these

two volunteers in chapter 6. In fact, V2 and V4 also presented the largest errors in Err

and Ell between model and data.
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Volunteer 5 (V5)

(a) (b)

(c) (d)

(e) (f)

Figure 7.5 Strain for V5 at end diastole per AHA region in (a, b) radial, (c, d)
longitudinal and (e, f) circumferential directions. Strain is computed for (a, c, e)
data and (b, d, f) model with respect to end systole.
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Patient 3 (P3)

(a) (b)

(c) (d)

(e) (f)

Figure 7.6 Strain for P3 at end diastole per AHA region in (a, b) radial, (c, d)
longitudinal and (e, f) circumferential directions. Strain is computed for (a, c, e)
data and (b, d, f) model with respect to end systole.
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7.4 Discussion and study limitations

7.4.1 Parameter estimation

The increase in stiffness observed for the DCM models analysed in this chapter, has

also been reported for mice190,47. Omens et al. deduced increased stiffness based on

pressure-volume analysis, as well as by an increase in the Guccione82 scaling parame-

ter, required to match simulated and measured epicardial strains190. Similarly, using

the same DCM model for genetically engineered mice, Costandi et al. estimated the

Guccione scaling parameter based on pressure-volume data, reporting progressively in-

creased values for later stages of the disease47. The observed increased stiffness which

is consistent with increased collagen, is thought to be linked to structural changes in

cellular and tissue level which contribute to the disease’s progression190. Further, Co-

standi et al. have proposed that the elevated stiffness in early stages of DCM acts as

a compensatory mechanism, temporarily improving systolic function. Based on this

result, increased stiffness is thought to be a key determinant in the development of

DCM190,138,47.

The personalised models analysed in this chapter extend the observation of increased

stiffness in humans and provide a framework for further research and understanding of

this aspect. For instance, exploiting the outlined model personalisation process, factors

contributing to the elevated parameter values were identified. More importantly, the

observation of increased stiffness was based on a carefully selected model personali-

sation process focusing on unique parameterisation, which provides confidence in the

parameter estimates and conclusions.

Nevertheless, the parameter estimates can only suggest increased stiffness within the

modelling framework employed. As the modelling assumptions are likely to introduce a

bias into the parameter estimates, parameter identifiability does not necessarily imply

parameter accuracy. An important model assumption, for instance, is the employed

fibre distribution which even though selected based on model fidelity and parameter

identifiability arguments (section 6.1.3), might differ notably from the actual fibre archi-

tecture. This variation is likely to be more pronounced in DCM, with studies reporting

structural changes affecting fibre architecture92,190 and observing larger fibre angles for

DCM hearts65.

Exploiting the clearly outlined modelling framework which enabled an assessment of

the effect of modelling assumptions, we can hypothesise the impact of a different fibre

distribution on the parameter estimates. Accordingly, assuming a larger fibre angle for

DCM models would lead to a decrease in γ estimate (section 6.1.3), which based on

table 7.3 would, in turn, result in an increase in af . With the effect of γ on a being

less pronounced, assuming a fibre distribution of a larger fibre angle for DCM models
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would still suggest increased stiffness compared to normals.

Finally, parameter estimates are also dependent on the end-diastolic pressure. In the

absence of invasive pressure measurements, a surrogate measure was used based on the

ratio E/Ea. Even thought the parameter estimates are sensitive to this approximation,

the use of this ratio as an estimate of end-diastolic pressure has been verified over a

range of healthy volunteers and patients, including DCM cases167.

7.4.2 Strain characterisation

Comparisons of different average strain metrics in section 7.3.1 have suggested reduced

strains for DCM patients compared to normals. The observation of a hypokinetic LV

wall in DCM has often been reported in the literature in the form of both reduced

ejection fraction as well as decreased strains. Several studies have reported reduced

radial strains, focusing on the deteriorated contractile function indicated by the reduced

wall thickening284,190,42. Omens et al. also reported reduction in longitudinal strains190

compared to normals, while Duan et al. observed significant reductions in longitudinal,

radial and circumferential strains60.

Even though average strains measures provided a clear distinction between normals

and patients, characterisation of regional strain distributions was more challenging.

Significant variations in strain patterns were observed between cases, hindering the

identification of consistent behaviours. Although some regional strain similarities were

discussed in section 7.3.2, more volunteers and patients need to be considered to allow

for a thorough analysis of strain regional distribution. Nevertheless, it is likely that

motion might vary significantly between individuals, hampering a generic strain distri-

bution. Perhaps, normalisation of strains to account for differences in wall thickness

and curvature might elucidate a more consistent strain pattern.

7.5 Summary

This chapter has presented some preliminary analysis of the developed personalised

models, enabling comparisons between normals and DCM patients. Notable discrep-

ancies between patients and volunteers were identified directly from available data in-

cluding increased end-diastolic and end-systolic cavity volumes and a change of shape

from elliptical to spherical, all characteristic attributes of the disease. Further, reduced

ejection fraction and wall thickening were observed in DCM, indicating deteriorated ef-

ficiency in DCM hearts, both in contractile and diastolic function. Diastolic dysfunction

was also suggested by elevated estimated end-diastolic pressure in DCM patients.
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7. Comparative analysis of in vivo cases

Building on the valuable observations from clinical data, personalised models can pro-

vide important information on tissue stiffness, through the estimation of passive param-

eters. The presented analysis suggested higher stiffness for DCM hearts – previously

shown on a mice model47,190 – based on significant increase in both passive parameters.

Taking advantage of the fact that models enable a clearer interpretation of individual

effects, an attempt was made to delineate the effect and correlations of different at-

tributes resulting in increased stiffness. To this end, end-diastolic pressure, ejection

fraction and anisotropy were identified as having a synergistic effect leading to in-

creased stiffness in DCM models. Moreover, the thorough analysis and validation of

the personalisation pipeline in chapter 6 ensures that the obtained parameter estimates

are unique. Having confidence in the parameter values, we can then draw conclusions

on stiffness’ difference between DCM patients and normals.

Additional information distinguishing healthy volunteers and DCM patients was ob-

tained through comparison of regional strain. Radial, longitudinal and circumferential

strains were reduced in DCM hearts compared to normals, in accordance with stud-

ies reporting hypokinetic LV wall in the presence of DCM. Furthermore, estimation of

strains per AHA segment revealed regional data abnormalities, not distinguishable from

global metrics. Finally, data-to-model strain comparisons showed notable consistencies

in regional strain distributions, providing an additional validation of the personalised

models.

In summary, this chapter provided a preliminary analysis of the considered person-

alised models, identifying significant variations between DCM patients and normals.

The increased stiffness observed in DCM models combined with elevated end-diastolic

pressures are likely to be key determinants in the onset and progression of the disease,

and as such future research needs to be directed towards understanding their inter-

action along with their effect on the development of DCM. Finally, the development

and analysis of more personalised models for both healthy volunteers and patients is

required to enable a careful statistical analysis and allow for safe conclusions.
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8 Conclusions and future directions

The primary aim of the work presented in this thesis was the development of patient-

specific diastolic models for the study of DCM. Due to the large number of volunteer

and patient models that had to be created, the development of a consistent, robust

and efficient pipeline was considered essential to allow for fair comparisons and safe

conclusions. Emphasis was largely placed on achieving optimal use of the available

data, to assist in model personalisation and enable reliable model outcomes. Therefore,

with the potential and limitations of the available data in mind, significant part of the

work was devoted to investigating important modelling aspects of the pipeline, initially

using in silico studies and subsequently in vivo tests.

Initially, the choice of a numerical scheme for approximating incompressibility or near

incompressibility was examined. Owing to the controversial degree of myocardial com-

pressibility along with numerical issues hindering solution approaches, various numer-

ical schemes are used throughout the cardiac mechanics literature. In order to iden-

tify a suitable solution approach, depending on the scope of the specific application,

commonly used numerical methods were compared in terms of their accuracy and ef-

ficiency. Particularly, the well-known penalty and Lagrange multiplier (LM and PL)

methods were compared with a modified displacement-only weakly penalised formu-

lation, structured to avoid locking phenomena associated with the penalty approach.

Numerical comparisons highlighted the fact that – although often used equivalently –

penalty and Lagrange formulations might result in markedly different outcomes due

to over-constraining of the solution space in the case of the penalty formulation. Fur-

thermore, due to its simple structure as a single field approach, the weakly-penalised

formulation provides an accurate alternative to the LM method in the case of large

systems. The systematic comparison of the considered formulations elucidates the

strengths and weaknesses of each approach, facilitating the selection of an appropriate

solution method based on the needs of the specific application.

Another modelling aspect of critical import is the material law chosen to represent

passive myocardial behaviour. With a range of available constitutive laws varying in

structure and complexity, this choice is also based on the objectives of the individual

applications. Naturally, a fundamental requirement for a constitutive law is the ability
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8. Conclusions and future directions

to capture and reproduce the main characteristics of heart behaviour, in order to allow

for an accurate assessment of cardiac function. An additional condition posed within

this work, is the unique identifiability of the constitutive law’s parameters, based on the

available data. Particularly, passive parameters are speculated to be key determinants

of function in DCM, due to the significant ventricular remodelling and diastolic dys-

function associated with this condition. Therefore, there is a strong need for ensuring

unique and accurate passive parameter estimates, which would enable valid compar-

isons between healthy volunteers and DCM patients.

Accordingly, to assist the choice of an appropriate constitutive law when the available

data is 3D tagged MRI – the main data source for parametrisation within this work –

the practical identifiability and model fidelity of commonly used passive material laws

were investigated. The practical identifiability of each law was examined by generating

synthetic 3D tags from in silico simulations, enabling mapping of the objective function

over the parameter space as well as assessment of the error in parameter estimates.

Keeping in mind the need for an adequate representation of the cardiac behaviour,

model fidelity was tested by comparing the models considered with the extensively

used Guccione law and by characterising their passive end-diastolic pressure-volume

relation. These in silico tests identified a reduced version of the Holzapfel-Ogden

law as the suitable choice for our requirements, providing the best balance between

identifiability and model fidelity across the tests considered.

In a clinical setting however, parameter identifiability is significantly hindered by both

data quality and model fidelity issues. Contrary to the presented in silico tests where

data originated from simulations, important modelling aspects such as the suitability

of the constitutive law, the fibre distribution and the loading and boundary conditions

are unknown in in vivo models. With these concerns in mind, parameter identifiability

for the reduced Holzapfel-Ogden law was investigated in an in vivo setting. Impor-

tant modelling attributes such as fibre distribution, boundary conditions and reference

configurations were investigated, with the objective of improving model accuracy and

parameter identifiability. A systematic analysis of these aspects on several cases high-

lighted the importance of accounting for the RV effect and indicated that a maximum

fibre angle of θ = 50◦ produced a consistently lower model error. More importantly,

the application on both volunteers and patients where unique parametrisation was

combined with acceptable levels of model error, suggested that the employed modelling

assumptions were a suitable choice for the considered personalised models.

The systematic investigation of the above-mentioned modelling attributes has also en-

abled testing and evaluation of the proposed pipeline, which focuses on two core chal-

lenges in patient-specific applications: data integration and parameter identifiability.

The novel boundary conditions used enabled selective relaxation or strengthening of

data integration constraints, thus avoiding non-physiological outcomes due to errors in
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8. Conclusions and future directions

data processing. Combined with processing steps reducing data inconsistencies, they

have enabled a successful application of the pipeline on several cases, with data varying

in quality and consistency. Furthermore, unique passive parameters were obtained for

all cases using strictly non-invasive data. Moreover, the consistency in results with

respect to both model fidelity and parameter identifiability demonstrated a robust,

efficient and reliable pipeline, suitable for case-to-case comparisons.

Naturally, the proposed pipeline was then employed for comparisons between DCM

patients and volunteers with healthy heart function. Initially, important clinical met-

rics derived from the available data illustrated notable differences between patients and

normals, including discrepancies in cavity volumes, ejection fraction, ventricular shape

and estimated end-diastolic pressure. Personalised models were then analysed, produc-

ing marked increase in both passive parameters in DCM patients compared to normals.

Within the modelling framework, factors contributing or related to the increased stiff-

ness were identified, an analysis that would not be possible solely through clinical data.

Further, the careful testing of the model personalisation pipeline provides confidence in

the parameter estimates, thus supporting the validity of the increased stiffness finding

in DCM hearts within the employed modelling framework.

8.1 Future directions

The work presented has provided insights into important attributes of patient-specific

modelling, while in parallel indicating clear directions for further investigation. These

are mainly identified in a more thorough investigation of DCM hearts, and improve-

ments in the personalised models.

8.1.1 Future research for DCM assessment

Firstly, keeping in mind the key objective for a thorough study of DCM through per-

sonalised cardiac mechanics models, there is a clear need for processing of additional

volunteers and patients. The development and analysis of patient-specific models for

the 20 volunteers and 16 patients cases available will strengthen the statistical signif-

icance of the metrics considered in previous chapters, and might elucidate significant

discrepancies that have not been identified through the models analysed.

Although the focus of the presented work was the diastolic part of the cycle, significant

variations – reduced contractility, intra-ventricular conduction delay – are reported

in DCM hearts over systole. The systolic component of the considered personalised

models has been developed in parallel with this work by our group8. In silico and

in vivo tests8 have verified unique parametrisation of the active tension through the
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cycle, allowing for comparison between cases, over both diastole and systole. Therefore,

comparisons related to contractile function of normals and DCM patients are a readily

available addition, potentially elucidating significant variations in DCM.

Further, the increased stiffness combined with elevated end-diastolic pressures observed

in the DCM cases analysed, are considered key determinants of diastolic function and as

such are likely to have a significant influence on the onset and progression of the disease.

Costandi et al. suggested that in early disease stages, dilation, end-diastolic pressure

and stiffness act together as compensatory mechanisms, initially improving systolic

function47. Based on experiments on genetically engineered mice, they observed that

in later stages of DCM the end-diastolic pressure decreased approaching normal values,

while increased stiffness was observed throughout the disease’s progression. Therefore,

analysis of additional patient cases with varying levels of severity or progression of

the disease, might assist deciphering whether these attributes are responsible for DCM

development, or ramifications of it.

Passive parameters and ratio could also be investigated with respect to potential corre-

lation to ventricular twist and torsion. The increased ratio and absolute values might be

related to the decreased torsion observed in DCM hearts42,184. Hence further investiga-

tion of these aspects might provide important information on LV torsion and its poten-

tial relation to diastolic dysfunction and impaired filling efficiency of the heart.

Additional information on DCM can be provided through the investigation of changes

introduced in cardiac behaviour after administration of beta blockers. The clinical

protocol described in section 5.1, was repeated after administration with esmolol, a

beta blocker with a short duration of action. The rationale for these scans was that,

the development of personalised models before and after esmolol administration, will

assist into a better understanding of the clinically reported benefits of lowering heart

rates in DCM patients. Differences in tissue stiffness and contractility after esmolol

administration might suggest a possible reverse remodelling resulting in the reported

improvement of the condition. In fact, based on these data, Chabiniok et al. have

reported reduction in contractility under esmolol infusion31. Furthermore, important

information can potentially be obtained through investigation of cardiac energetics,

which are hypothesised to be key determinants in DCM. Systematic comparisons could

show that lower heart rates result in an improved energy dissipation in DCM and

elucidate the underlying mechanisms responsible.

An ultimate goal of patient-specific models such as the ones presented, is their trans-

lation to the clinic. This is, however, a long and challenging process, firstly due to the

difficulties associated with data-model integration, as discussed throughout the the-

sis. Additionally, personalised models must be able to translate their mathematical

outcomes into clinically relevant metrics, providing critical information that could not

had been predicted through existing techniques. Once these requirements are met, the
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model-derived metrics need to be tested and validated through extensive clinical trials.

As significant progress needs to be achieved before usage of personalised models in

the clinic is possible, there is a growing number of patient-specific cardiac applications

contributing towards this goal.

8.1.2 Future research in model development

Future work could also be directed towards improving model accuracy. Even though

the systematic investigations of several modelling attributes led to a marked decrease

in modelling error, modifications to the modelling pipeline could result in further error

reductions. Model accuracy could for instance be improved by allowing for spatially

varying parameters. Considering heterogeneous passive parameters might also provide

a justification for the particularly deteriorated function observed on the septal wall in

DCM284,114.

Furthermore, a rule-based fibre distribution was employed throughout the developed

personalised models, which is likely to vary significantly from the true individual fibre

architectures. Variation is likely to be more pronounced in DCM hearts, with structural

changes reported for DCM patients92,65. Therefore, consideration of different fibre dis-

tributions, varying in both magnitude and distribution, might enable improved model

fidelity and more physiologically accurate model outcomes.

A very interesting, yet challenging, future direction would be towards the validation of

the proposed personalised models. Despite the wealth of information from the avail-

able imaging data, strict model validation is not possible for the study presented, as a

number of modelling assumptions had to be made, which are likely to introduce signif-

icant bias in model results. The validity or effect of the modelling assumptions made –

such as reference domain and fibre distribution – could, however, be tested through ex

vivo and in vivo animal experiments. For example, an animal study providing both in

vivo clinical data (cine MRI, 3D tagged MRI, DTMRI, LV pressure) and ex vivo data

including biaxial / shear tests would provide an ideal setting for the development and

validation of personalised models. Within this environment, the effect of model assump-

tions could be directly assessed, as the actual fibre distribution, for instance, would be

known. Moreover, model parameters fit to experimental data could be compared with

estimated values, evaluating the accuracy of the parameter estimates.

Finally, owing to a broad applicability of the methodology proposed in this work (tested

on volunteers and patients, and to data of different quality), the pipeline can be ex-

tended to the study of other cardiac conditions as well. As a result, the work presented

provides a small step towards physiologically accurate personalised models of cardiac

mechanics. Such models have the potential of evolving into a valuable clinical tool,

assisting in both improved understanding and treatment of cardiac conditions.
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A Discrete weak forms / Jacobian ma-

trices for the penalty, PL and LM

methods

The aim of this section is to provide the discrete weak forms of the formulations imple-

mented and used in this work. A detailed derivation of the weak forms of the penalty,

LM and PL methods is provided in various textbooks21,97. Specifically, the weak form

for the penalty method is acquired by requiring that the directional derivative of the

penalty functional Πk vanishes for all arbitrary directions δuh in the homogeneous zero

Dirichlet space X0
h, i.e.

DΠk(u
h)[δuh] = 0, ∀δuh ∈X0

h. (A.1)

Similarly, the PL method requires that,

DΠλ(uh, λh)[δuh, δqh] = 0, (A.2)

for every (δuh, δqh) ∈X0
h×W h. The discrete weak forms for the penalty,PL and LM

systems can also be written in operator notation as,

A(uh, δuh) + P (uh, δuh) = F (δuh), (A.3)

A(uh, δuh) +B(ph,uh, δuh) + B̂(uh, δph)− 1

k
M(ph, δph) = F (δuh), (A.4)

A(uh, δuh) +B(ph,uh, δuh) + B̂(uh, δph) = F (δuh), (A.5)
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A. Discrete weak forms / Jacobian matrices for the penalty, PL and LM methods

where the operators A, P , F , B, B̂, M , and C are defined as,

A(uh, δuh) =

∫
Ω0

F hSh : ∇XδuhdV,

P (uh, δuh) =

∫
Ω0

kJh(Jh − 1)F h
−T : ∇XδuhdV,

F (δuh) =

∫
Ω0

f · δuhdV +

∫
∂Ω0

t · δuhdA,

B(λh,uh, δuh) =

∫
Ω0

λhJhF h
−T : ∇XδuhdV,

B̂(uh, δqh) =

∫
Ω0

δqh(Jh − 1)dV,

M(λh, δqh) =

∫
Ω0

λhδqhdV,

where F h = ∇uh + I and Sh represent the discrete deformation gradient and second

Piola stress tensors, respectively.

The Jacobian of these formulations is then derived by taking the directional deriva-

tive of the discrete weak forms with respect to displacement (and pressure). For the

penalty method, the Jacobian can not be derived analytically due to the nonlinearity

of hyperelastic laws and is usually estimated by the finite difference approximation of

the gradient of the operators A, P and F :

Jk = A+ P , (A.6)

[A]ij =
1

ε

(
A(uh + εφju,φi)− F (uh + εφju,φi)

−A(uh − εφju,φi) + F (uh − εφju,φi)
)
,

[P ]ij =
1

ε
(P (uh + εφju,φi)− P (uh − εφju,φi)) (A.7)

where the operator F is included in the Jacobian estimation as it often depends on

u.

The Jacobian of the PL method is written in matrix form as

JPL =

(
A B

B̂ −1
k M

)
, (A.8)

where the block matrices A B and B̂ are defined as

[A]ij =
1

ε

(
A(uh + εφju,φi) +B(λh,uh + εφju,φi)− F (uh + εφju,φi)

−A(uh − εφju,φi)−B(λh,uh − εφju,φi) + F (uh − εφju,φi)
)
,
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A. Discrete weak forms / Jacobian matrices for the penalty, PL and LM methods

[B]ij = B(φjw,u
h,φiu) (A.9)

[B̂]ij = B(φiw,u
h,φju) (A.10)

The block matrix M is the mass matrix defined in Eq. 3.19.

The Jacobian matrix of the LM formulation can be derived from the Jacobian of the

PL formulation by assuming k →∞, as

Jλ =

(
A B

B̂ 0

)
, (A.11)

where the 0 block matrix results in a non-positive definite Jacobian matrix which may

cause numerical difficulties.
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B Stress derivation for Guccione and

neo-fibre laws

Following Nordsletten179, the stress tensors for the Guccione law can be conveniently

derived by considering the deviatoric second Piola-Kirchhoff in the fibre coordinate

system SdF :

SdF (EF ) =
1

2

(
∂Ψd

∂EF
+
∂Ψd

∂ET
F

)
, (B.1)

where Ψd is the deviatoric strain energy function in Eq. 2.33. Following the definition

of Ψd and the chain rule:

SdF =
C

4
eQ(EF )

(
∂Q

∂EF
+

∂Q

∂ET
F

)

=CeQ(EF )

 bfEff bfsEfs bfsEfn

bfsEsf btEss btEsn

bfsEnf btEns btEnn

 .

(B.2)

Using Eq. 2.19 and the rotation matrix Q, the Cauchy stress tensor with respect to

the reference coordinate system can be derived:

σd =
CeQ(EF )

J
FQ

 bfEff bfsEfs bfsEfn

bfsEsf btEss btEsn

bfsEnf btEns btEnn

QTF T . (B.3)

The deviatoric Cauchy stress tensor for the neo-fibre law, defined by Eq. 2.37, can

be derived following the approach of Nordsletten et al.180 for constitutive laws which

are functions of invariants. For the case of the neo-fibre law, Ψd(IĈ , IĈf ), so using the

chain rule and formulas in180, the second Piola-Kirchhoff stress tensor can be expressed

as:

Sd = 2

(
∂Ψd

∂IĈ

∂IĈ
∂Ĉ

:
∂Ĉ

∂C
+
∂Ψd

∂IĈf

∂IĈf

∂Ĉ
:
∂Ĉ

∂C

)
. (B.4)
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B. Stress derivation for Guccione and neo-fibre laws

Considering each contribution separately:

∂Ψd

∂IĈ

∂IĈ
∂Ĉ

:
∂Ĉ

∂C
=
∂Ψd

∂IĈ

1

III
1/3
C

(
I − IC

3
Ĉ
−1
)

=
C2

2J2/3
(I −

IĈ
3
Ĉ
−1

), (B.5)

∂Ψd

∂IĈf

∂IĈf

∂Ĉ
:
∂Ĉ

∂C
=
∂Ψd

∂IĈf

1

III
1/3
C

(
f0 ⊗ f0 −

ICf
3
C−1

)
=

(C1 − C2)

J2/3
(IĈf − 1)a

(
f0 ⊗ f0 −

IĈf
3
Ĉ
−1

)
.

(B.6)

The deviatoric Cauchy stress tensor can then by expresed using σd = 1
JFSdF

T and

Eq. B.4, as:

σd =J−
5
3
[
C2B −

1

3
C2ICI + (C1 − C2)(IĈf − 1)aF f0 ⊗ f0F

T

− 1

3
(C1 − C2)(IĈf − 1)aIĈf I

]
,

leading to the formulation in Eq. 2.39:

σd = J−
5
3
[
C2B + (C1 − C2)(IĈf − 1)af ⊗ f − 1

3

(
C2IC + (C1 − C2)(IĈf − 1)aIĈf

)
I
]
.
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C Derivation of the residual modifica-

tions

As mentioned in chapter 3, the weakly penalised formulation is a generalisation of the

PL method, and as such should be able to present similar nonlinear behaviour. To

this end, the residual of the weakly penalised approach in sections 3.1.4.2 and 3.1.4.3

is modified based on the residual derived from the PL method, in order to achieve

the same nonlinear convergence. The static condensation used in the weakly penalised

system follows the linear algebra used in this section in order to eliminate the pressure

variable from the PL formulation. We can therefore use the PL formulation in order

to study and understand the sources of poor nonlinear convergence for the weakly

penalised formulation.

For later comparison, we first present the linearised system for the weakly penalised

formulation, when the SNR scheme is applied, without the modifications introduced in

this work. Based on equation 2.69, the update δUn for the n-th iteration of the weakly

penalised formulation is given by

J(Uβ)δUn = −R(Un), (C.1)

where the Jacobian is computed at a previous iteration β ( the parameter αn will be

added in later through the minimisation step). Using Eq. 3.34, the linearised system

for the weakly penalised formulation can be written as

(Aβ + k[Bβ]TM−1Bβ)δUn = −RA(Un) + k[Bn]TM−1Rn
J = −Rn

A −Rn
P , (C.2)

The linearised system for the (n + 1) − th iteration of the PL method when the SNR

scheme (section 2.6.3.2) is applied, can be expressed as(
Aβ [Bβ]T

Bβ −1
k M

)(
δUn

δpn

)
=

(
−Rn

A − [Bn]T pn

−Rn
J + 1

kMpn

)
, (C.3)

where we use the Jacobian matrix of the PL system (equation A.8) computed at a

previous iteration β in the SNR iterative process. The updates for the displacement
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C. Derivation of the residual modifications

and pressure at the (n) − th iteration are given by vectors δUn and δpn. The right

hand side of the matrix equation C.3 denotes the residual at the n-th iteration, where

Rn
A denotes the residual used in equation 3.35 and Rn

J refers to the residual defined in

equation 3.20.

The matrix equation C.3 the matrix Eq. C.3 can be decomposed into the following

equations:

AβδUn + [Bβ]T δpn = −Rn
A − [Bn]T pn, (C.4)

δpn = kM−1BβδUn + kM−1Rn
J − pn. (C.5)

Combining the two equations we obtain

(Aβ + k[Bβ]TM−1Bβ)δUn+1 = −Rn
A + [Bβ]T pn − k[Bβ]TM−1Rn

J − [Bn]T pn.(C.6)

Note that if β = n always, this equation matches equation C.2 of the weakly pe-

nalised approach thus the convergence behaviour of the two formulations should be the

same.

Taking into account Eq. C.5, we can see that pn = pn−1 + δpn−1 = kM−1(BβδUn−1 +

Rn−1
J ), which represents the linearised estimate for Rn

J . Using this estimate,

(Aβ + k[Bβ]TM−1Bβ)δUn+1 = −Rn
A − k[Bn]TM−1(BβδUn−1 +Rn−1

J )

+k[Bβ]TM−1(Rn−1
J +BβδUn−1 −Rn

J), (C.7)

where for later comparison we introduce Rβ
P ∗ and Rβ

e

(Aβ + k[Bβ]TM−1Bβ)δUn+1 = −Rn
A −R

β
P∗ − k[Bβ]TRβ

e . (C.8)

The last formulation can be used for a better understanding of the poor nonlinear

convergence behaviour of the weakly penalised formulation.
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D Structural identifiability of cardiac

constitutive laws

In this section we examine an application of Theorem 2, where we study the structural

identifiability of the constitutive laws considered in chapter 4. Specifically, we consider

a block of tissue (Fig. D.1), and show that for the neo-Hookean, neo-fibre and reduced

Holzapfel-Ogden laws which have a linear dependence on their parameters, a single

pure tension experiment is sufficient to prove the bijectivity of their ϕ mapping, thus

ensuring their structural identifiability.

We can consider a block of incompressible tissue (Fig. D.1), under pure tension in

one of the three directions. The body is fully constrained at (0, 0, 0) and is under the

influence of zero traction on the side boundaries.

For the case of the neohookean law, due to its isotropy, pure tension in any of the three

directions is sufficient to ensure structural identifiability. Specifically, for elongation in

the X direction the deformation gradient F and left Cauchy-Green deformation tensor

can be expressed as

F =


λ 0 0

0 1√
λ

0

0 0 1√
λ

 , B =

 λ2 0 0

0 1
λ 0

0 0 1
λ

 (D.1)

where λ denotes the stretch of the body in the X direction, and the deformation in the

X

Y

Z

Figure D.1 The block of tissue under consideration. The red lines show the deformed
configuration
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D. Structural identifiability of cardiac constitutive laws

Y and Z components is derived from the symmetry and incompressibility of the body.

As the neo-Hookean law has only one parameter, expression 4.8 becomes σ = µσ1,

where using definition 2.29 and J = 1,

σ1 = (λ2 − 1

λ
)


2
3 0 0

0 −1
3 0

0 0 −1
3

 . (D.2)

If we choose the test function v =
[

1
2x,−

1
4y,−

1
4z
]
, A in Theorem 2 is now a non-zero

scalar
(
A = 1

2(λ2 − 1
λ)
)
, for any non-zero elongation (λ 6= 1). This ensures that φ is

bijective, suggesting structural identifiability of the neo-Hookean law.

The neo-fibre and reduced Holzapfel-Ogden law can also be shown to be structurally

identifiable through a pure tension experiment, where the elongation is exerted in the

cross-fibre direction Y = 0 (Note that for elongation in the fibre direction, the matrix

A becomes singular for any choice of test functions v ∈ W u
0,Div). The deformation

gradient and left Cauchy-Green tensor in this case are described by

F =


1√
λ

0 0

0 λ 0

0 0 1√
λ

 , B =


1
λ 0 0

0 λ2 0

0 0 1
λ

 (D.3)

where λ represents stretch in the cross-fibre direction, and f0 = [1 0 0]. According

to 4.8, the stress tensors for the neo-fibre and reduced Holzapfel-Ogden law can be

written as σ = C2σ1 + C ′1σ2 and σ = ασ1 + 2αfσ2 respectively, where for simplicity

C ′1 = C1 − C2. Taking the specific deformation mode into account, f = [ 1√
λ

0 0],

IĈf = 1
λ and the two stress components for the neo-fibre law are

σ1 = (λ2 − 1

λ
)

 −
1
3 0 0

0 2
3 0

0 0 −1
3

 (D.4)

σ2 =
1

λ
(
1

λ
− 1)α


2
3 0 0

0 −1
3 0

0 0 −1
3

 . (D.5)

Similarly, the two stress component for the reduced Holzapfel-Ogden law can be ex-

pressed as

σ1 = exp[5(λ2 +
2

λ
− 3)](λ2 − 1

λ
)

 −
1
3 0 0

0 2
3 0

0 0 −1
3

 (D.6)
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D. Structural identifiability of cardiac constitutive laws

σ2 = exp[5(
1

λ
− 1)2]

1

λ
(
1

λ
− 1)


2
3 0 0

0 −1
3 0

0 0 −1
3

 . (D.7)

Clearly, the two components of the neo-fibre and reduced Holzapfel-Ogden law have

the same matrix structure which can be represented as

σ1 =

 α1 0 0

0 β1 0

0 0 α1

 , σ2 =

 α2 0 0

0 β2 0

0 0 β2

 (D.8)

If we then choose our test functions to be v1 =
[

1
2x,−

1
4y,−

1
4z
]

and v2 =
[
−

1
4x,

1
2y,−

1
4z
]
, matrix A in Theorem 2 becomes

A =

[
1
4(α1 − β1) 1

2(α2 − β2)
1
2(β1 − α1) 1

4(β2 − α2)

]
, (D.9)

whose determinant |A| = 3
16(α1 − β1)(α2 − β2) is non-zero due to the structure of

σ1 and σ2. Based on Theorem 2, the invertibility of A ensures the bijectivity of ϕ

for the neo-fibre and reduced Holzapfel-Ogden laws, proving that they are structurally

identifiable.
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E In vivo data and model strains

This section presents strain distributions per AHA region, computed using the strain

definition in 7.3. Strain was computed for both data and models, elucidating regional

differences. The presented model strain was computed on models with a fibre distribu-

tion of a maximum angle of θ = 50◦, employing the RV-epicardial condition and using

the estimated parameters. Strain is presented in radial, longitudinal and circumferen-

tial directions.
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E. In vivo data and model strains

Volunteer 1 (V1)

(a) (b)

(c) (d)

(e) (f)

Figure E.1 Strain for V1 at end-diastole per AHA region in (a, b) radial, (c, d)
longitudinal and (e, f) circumferential directions. Strain is computed for (a, c, e)
data and (b, d, f) model with respect to end-systole. Region 1 was not part of the
volumetric mesh and therefore not presented here.
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E. In vivo data and model strains

Volunteer 2 (V2)

(a) (b)

(c) (d)

(e) (f)

Figure E.2 Strain for V2 at end-diastole per AHA region in (a, b) radial, (c, d)
longitudinal and (e, f) circumferential directions. Strain is computed for (a, c, e)
data and (b, d, f) model with respect to end-systole.
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E. In vivo data and model strains

Volunteer 3 (V3)

(a) (b)

(c) (d)

(e) (f)

Figure E.3 Strain for V3 at end-diastole per AHA region in (a, b) radial, (c, d)
longitudinal and (e, f) circumferential directions. Strain is computed for (a, c, e)
data and (b, d, f) model with respect to end-systole.
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E. In vivo data and model strains

Volunteer 4 (V4)

(a) (b)

(c) (d)

(e) (f)

Figure E.4 Strain for V4 at end-diastole per AHA region in (a, b) radial, (c, d)
longitudinal and (e, f) circumferential directions. Strain is computed for (a, c, e)
data and (b, d, f) model with respect to end-systole.
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E. In vivo data and model strains

Patient 1 (P1)

(a) (b)

(c) (d)

(e) (f)

Figure E.5 Strain for P1 at end-diastole per AHA region in (a, b) radial, (c, d)
longitudinal and (e, f) circumferential directions. Strain is computed for (a, c, e)
data and (b, d, f) model with respect to end-systole.

210



8. In vivo data and model strains

Patient 2 (P2)

(a) (b)

(c) (d)

(e) (f)

Figure E.6 Strain for P2 at end-diastole per AHA region in (a, b) radial, (c, d)
longitudinal and (e, f) circumferential directions. Strain is computed for (a, c, e)
data and (b, d, f) model with respect to end-systole.
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L., Moreno, M., Serrano, J. A., Muñoz, R., and Garćıa-Fernández, M. A. (2005). A noninvasive method for

assessing impaired diastolic suction in patients with dilated cardiomyopathy. Circulation, 112(19):2921–2929.

[284] Young, A. A., Dokos, S., Powell, K. A., Sturm, B., McCulloch, A. D., Starling, R. C., McCarthy, P. M.,

and White, R. D. (2001). Regional heterogeneity of function in nonischemic dilated cardiomyopathy. Car-

diovascular Research, 49:308–318.

[285] Young, A. A., Kraitchman, D. L., Dougherty, L., and Axel, L. (1995). Tracking and finite element analysis

of stripe deformation in magnetic resonance tagging. IEEE T Med Imaging, 14(3):413–21.

[286] Young, A. A., Kramer, C. M., Ferrari, V. A., Axel, L., and Reichek, N. (1994). Three-dimensional left

ventricular deformation in hypertrophic cardiomyopathy. Circulation, 90(2):854–867.

[287] Young, A. A., Legrice, I. J., Young, M. A., and Smaill, B. H. (1998). Extended confocal microscopy of

myocardial laminae and collagen network. Journal of Microscopy, 192(November):139–150.

[288] Yushkevich, P. A., Piven, J., Hazlett, H. C., Smith, R. G., Ho, S., Gee, J. C., and Gerig, G. (2006).

User-guided 3D active contour segmentation of anatomical structures: Significantly improved efficiency and

reliability. NeuroImage, 31(3):1116–1128.

[289] Zerhouni, E. A., Parish, D. M., Rogers, W. J., Yang, A., and Shapiro, E. P. (1988). Human heart: tagging

with MR imaging–a method for noninvasive assessment of myocardial motion. Radiology, (2):59–63.

[290] Zhuang, X., Rhode, K. S., Razavi, R. S., Hawkes, D. J., and Ourselin, S. (2010). A registration-based

propagation framework for automatic whole heart segmentation of cardiac MRI. IEEE Transactions on

Medical Imaging, 29(9):1612–1625.

224



BIBLIOGRAPHY

[291] Zienkiewicz, O. C. and Taylor, R. L. (2000). The Finite Element Method. Volume 1: The Basis.

Butterworth-Heinemann.

[292] Zienkiewicz, O. C., Taylor, R. L., and Too, J. M. (1971). Reduced integration technique in general analysis

of plates and shells. International Journal for Numerical Methods in Engineering, 3(2):275–290.

225




