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The aim of this thesis is to evaluate correlation functions of twist fields in mixed states

in two-dimensional integrable models of quantum field theory (QFT). We construct the

“Liouville space” for general models of QFT in general mixed states associated to diagonal

density matrices, and define mixed-state form factors in Liouville space. We then specialize

to two concrete models: the Ising model and U(1) Dirac model. Using a novel method

based on deriving and solving a system of nonlinear functional differential equations, we

obtain exact mixed-state form factors of twist fields, in both models. These form factors are

in agreement with finite-temperature form factors which correspond to the thermal Gibbs

state. We then write down mixed-state correlation functions for these fields in terms of

the full form factor expansions with respect to the vacuum in Liouville space. Under weak

analytic conditions on the eigenvalues of the density matrix, they are exact large-distance

expansions. We apply the results in the Ising model to analyze large-distance behaviours

of two-point functions of order and disorder fields in generalized Gibbs ensembles and non-

equilibrium steady states. In particular, we find non-equilibrium form factors have branch

cuts in rapidity space and the leading large-distance behaviour of two-point functions

admit oscillations in the log of the distance between fields. Using the results in the Dirac

model and the relation between the Ising and Dirac models, we deduce the Réyi entropy

for even integer n. Finally, as an extra work, we deduce the high- and low-temperature

limit of the exact current at non-equilibrium steady states in general integrable models of

quantum field theory with diagonal scatterings.
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7.5 Rényi entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

8 Conclusion 142

8.1 Work done . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

8.2 Future developments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

A Extra work: high- and low-temperature limit of the exact current in
non-equilibrium steady states in integrable QFT 146

A.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

A.2 Physical situation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148



Contents vi

A.2.1 Physical description . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

A.2.2 Steady state in massive QFT . . . . . . . . . . . . . . . . . . . . . . 149

A.3 The non-equilibrium steady state TBA equations . . . . . . . . . . . . . . . 150

A.4 High-temperature limit of the current . . . . . . . . . . . . . . . . . . . . . 152

A.5 Low-temperature expansion of the current . . . . . . . . . . . . . . . . . . . 156

Bibliography 162



List of Figures

2.1 3 particle −→ 3 particle scattering processes . . . . . . . . . . . . . . . . . . 13

vii



Chapter 1

Introduction

Quantum field theory (QFT), since its birth, has witnessed a rapid evolution over the years

and has occupied a central position in the description of modern theoretical physics. This

is partly due to the principle of universality which is a primary property of all local inter-

actions and which naturally arises from the analysis of the renormalization group. Thanks

to the principle of universality, it is possible for a given model of quantum field theory

to describe the large-distance physics of various systems with very different microscopic

details. Moreover, a vast variety of successful applications are also responsible for the

popularity of quantum field theory. Originally developed to describe elementary particles

and their interactions, quantum field theory has been shown to be a very powerful and

efficient method for describing condensed matter physics, especially for the case of low di-

mensional and strongly correlated systems where traditional methods fail. Quantum field

theory also found its applications in quantum electrodynamics (QED), in the description

of weak and strong interactions, and in statistic mechanics.

Among the objects in a model of quantum field theory, correlation functions are of crucial

importance since they encode in principle all physical information including the dynamics

of the physical systems and the response of the model to external perturbations. Corre-

lation functions are the key allowing us to leave the frame of pure theoretical formalism

and get into the real world of experiments. For instance, correlation functions, interpreted

from statistical mechanics, correspond to linear responses to applied local external fields,

which can be directly measured in lab, and the measurement of which is one of the main

approach to study a material. Moreover, the computation of all quantities of interest in

a model can be in principle achieved from the knowledge of correlation functions. In this

sense, we could say that the main problem in the study of a model of quantum field theory

can be seen as the reconstruction of its correlation functions.
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Unfortunately, it is usually non-trivial to obtain numerically accurate results for correla-

tion functions of a model of quantum field theory. In addition, most models of relativistic

quantum field theory, from the mathematical point of view, is not well-defined. However,

there exist two types of models in which these two obstacles can be overcome. These

two exceptions are quantum field theory for free relativistic particles and two-dimensional

quantum field theory with conformal invariance. In the context of these exceptions, corre-

lation functions of more complicated models can be studied with the help of perturbative

methods and physical arguments.

Besides models in conformal field theory and free field theory, a special family of two-

dimensional massive integrable models of quantum field theory [1–3, 17, 18] is also a very

populous research field in modern physics. These models admit the presence of an infinite

number of conserved charges and it is these conserved charges that open the possibility

for exact evaluations of many quantities, such as scattering matrix, form factors (ma-

trix elements of local fields), and correlation functions, giving rise to a rich mathematical

structure to build upon. Successes for these models have been made over the last two

decades on the determination of vacuum correlation functions via form factor bootstrap

approach. For instance, large distance expansions of two-point correlation functions, which

are hardly accessible by perturbation theory, can be obtained by form factor expansion

(Källen-Lehmann expansions) [1–3] under the factorized scattering theory and both their

large-distance and short-distance asymptotic behaviors agree with general QFT expecta-

tions (see for instance, [4, 5]).

In recent years, correlation functions in general mixed states have attracted growing con-

cerns and triggered an enormous amount of work, because of their wide scope of appli-

cations both of theoretical and experimental interest. For instance, correlation functions

in thermal Gibbs state, which can be related to correlation functions on an infinite cylin-

drical geometry [6], have been the subject of intense study in general QFT [7], and have

been studied more precisely in massive integrable QFT [8–15]. In particular, the Ising

model at finite temperature has been widely investigated by employing several approaches

including form factor expansions [19–23], integrable differential equations [24, 25], semi-

classic methods [26], and the finite volume regularization method [15, 16, 27–30]. On the

other hand, more mixed states have been explored, including generalized Gibbs ensembles

(GGEs) which have been predicted to occur after quantum quench in integrable models

[31–35], non-equilibrium steady states [36–40] and others.

From these works, the structure of finite-temperature two-point correlation functions is

relatively well known, although much work still needs to be done in integrable QFT in

order to get as powerful large-distance or large-time expansions as for vacuum two-point
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functions. The study of expectation values and correlation functions in generalized Gibbs

ensembles is however much more recent. Analytic leading-asymptotic results for two-point

functions are available in the Ising model [34, 41] and series expansions for expectation

values in GGEs of general integrable models [42]. Concerning correlation functions in

non-equilibrium energy-carrying steady states, there are even fewer results, including a

leading-decay result at large distances in the XY spin chain [43]. Hence, obtaining exact

QFT expansions for general diagonal mixed states would shed much light onto the structure

of correlation functions.

This thesis aims to obtain the exact result for correlation functions of twist fields in general

mixed states with diagonal density matrices. The concept of twist fields was originally

introduced in [44] as the Z2 monodromy field of the Majorana fermion, corresponding to

the spin operator of the Ising model. It has been shown late in [45] and [46] that the twist

fields in the n-copy Ising model can be used to study the quantum entanglement entropy.

In fact, twist fields exist in any model possessing a global internal symmetry and each twist

field is associated to one element of a symmetry group. Twist fields are “interacting fields”

since they are not local with respect to the fundamental fields in quantum field theory.

Therefore, correlation functions of twist fields usually exhibit non-trivial behaviors and

should contain parts of the complicated structure of correlation functions in integrable

models of interacting particles. It has been demonstrated in various ways that these non-

trivial correlation functions can be obtained as solutions to non-linear differential equations

[47–50]. Correlation functions of twist fields associated to the U(1) symmetry can also be

obtained from re-summing the form factor expansion in terms of Fredholm determinants

[47, 48, 51, 52]. At zero temperature, from those existing results, large-distance behaviors

of correlation functions of twist fields can be analyzed efficiently. At finite temperature or

on the cylinder, correlation functions of twist fields can be described by partial differential

equation in the coordinates on the cylinder [24, 53, 54], but these equations do not provide

a very useful tool for calculating correlation functions and analyzing their large-distance

behavior. In general mixed states, results are even less known. This thesis will constitute

one step towards this direction.

In this thesis, we consider three integrable models of quantum field theory. The first

model is the Ising model, which describes the scaling limit of the Ising quantum chain

near the critical value hc of the external transverse magnetic field h. In this model, the

twist fields are associated to the Z2 symmetry and they represent the scaling limit of the

order parameter in the ordered (h > hc) and disordered (h < hc) regimes. The second

model is the free Dirac fermion theory, which is equivalent with “doubled” Ising model.

In this model, the twist fields are associated to the U(1) symmetry. Finally, we consider a

model which is composed of n non-interacting copies of the Ising model. In this model, the
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twist fields are called branch-point twist fields and they correspond to the Zn symmetry

of the model.

The correlation functions we will obtain in this thesis admit the expressions which can

be adapted to a large family of mixed states and offer an efficient way to analyze their

large-distance behavior. In the Ising model, for the case of generalized Gibbs ensembles,

we will find agreement with leading large-distance results derived in [41], and we will

calculate new subleading terms; for the case of non-equilibrium steady state, although our

expansion needs further regularization, the leading large-distance behavior indeed agrees

with the well-known results presented in [43], and we will conjecture the existence of

logarithmic oscillating subleading factors.

Our results are derived by the “Liouville-space method”. This method was initially es-

tablished in [21, 23] in order to derive finite-temperature spin-spin correlation functions,

and then further developed in [55] to obtain general diagonal mixed-state spin-spin corre-

lation functions, both in the Ising model of QFT. The Liouville space construction [56–61]

is based on the GNS construction [62, 63] of C∗-algebras (see the book [64]) and it has

applications in thermal and non-equilibrium physics. In the present thesis, we will apply

this method to integrable models of quantum field theory. We will define and evaluate the

mixed-state form factors of twist fields, and then formulate mixed-state two-point func-

tions of these fields using form factor expansion with respect to the vacuum in Liouville

space.

This thesis is organized as follows:

• In chapter 2, based on [65–68], we will start by providing a detailed review of the most

important and most relevant properties of the two-dimensional integrable quantum

field theory. After this general part, we will specialize to two particular integrable

models: the Ising model, where a fairly rigorous analysis of the connection between

the Ising quantum chain and the free massive Majorana field theory will be carried

out, and the U(1) Dirac model.

• In chapter 3, based on [66], we will give the explanation of the twist fields in general

through the path integral formulation of quantum field theory. Two types of twist

fields and their form factors will be reviewed. In addition, we will introduce the

branch-point twist fields in the n -copy Ising model and their relation with the U(1)

twist fields in the n-copy Dirac model will be reviewed.

• In chapter 4, we will introduce the Liouville space in general, including its construc-

tion and properties, and illustrate the concept of mixed-state form factors. Within



5

this framework, we will then construct the Liouville space in the Ising model and in

the Dirac model, and define the associated mixed-state form factors.

• In chapter 5, we will give a review of a method employed in [21], which is to determine

finite-temperature form factors of twist fields in the Ising model by setting up and

solving a Riemann-Hilbert problem. Following similar lines, we will then derive a

similar Riemann-Hilbert problem for twist fields in the Dirac theory. With the help

of low temperature expansions, we will calculate the finite-temperature form factors

of U(1) twist fields.

• In chapter 6, we will present the exact results for mixed-state form factors of twist

fields in the Ising model and in the Dirac theory. Thereafter, we will derive a system

of non-linear first-order functional differential equations for mixed-state form factors

of twist fields and verify that the exact form factors we obtain indeed satisfy these

equations. We close this chapter by presenting a general solution as integral-kernel

to this system of equations, which serves as an alternative expression for the mixed-

state form factors of twist fields.

• In chapter 7, we will apply our exact results for mixed-state form factors to the

evaluation of the corresponding mixed-state correlation functions of twist fields in

the Ising model and the Dirac theory, which is the main goal of these thesis. Then, the

first application of the general mixed-state correlation functions will be to the Gibbs

thermal state in the Ising model, where we will show that our thermal correlation

functions indeed reproduce the large-distance correlation functions on the circle.

After this, we will enter, in the Ising model, the analysis of the analytic properties

of form factors of twist fields and large-distance behaviors of two-point functions,

in non-equilibrium steady state. We will also study the large-distance behaviors of

two-point functions in the state described by the generalized Gibbs ensemble after

a quantum quench. Finally, we will obtain the Rényi entropy for integer n in the

Ising model, in virtue of our mixed-state correlation functions of U(1) twist fields.

This result can be directly used to compute the bipartite entanglement entropy for

the Ising model.

• In chapter 8, we will summarize the main works carried out in this thesis and point

out some open problems for future investigations.

• In the appendix A, we will present an extra work concerning the high- and low-

temperature limit of the energy current obtained in [69] for non-equilibrium steady

states in general integrable models of relativistic quantum field theory with diagonal

scattering.



Chapter 2

Two-dimensional massive

integrable quantum field theory

2.1 Exact S-matrices

2.1.1 Asymptotic states and scattering matrix

Two-dimensional massive integrable quantum field theory, which we will focus on in this

thesis, is built on a basis of the Hilbert space, namely asymptotic states (see, for instance,

[70]). With the assumption that interactions in our theory are short-ranged, an asymptotic

state represents a set of well-defined particles that are infinitely separated from each other

in the infinite past or infinite future, behaving like a collection of free propagating particles.

This is an eigenstate of the Hamiltonian as it has a well-defined energy. The n-particle

asymptotic states can be written as

|Aa1(θ1) · · ·Aan(θn)〉

where we denote by Aai(θi) the particle of type ai traveling with rapidity θi. Note that it

is convention, in two-dimensional QFT, to characterise the momentum of on-shell particles

by invariable θ called rapidity. For a particle of mass mi, we have

p0
i = mi cosh θi, p1

i = mi sinh θi (2.1)

with pµ = (p0, p1) its momentum. Asymptotic states consist of two types of states: in-

and out-states. In-states are given by particles at t → −∞ and out-states by particles

at t → ∞. In two-dimensional QFT, particles move on a line and this means that, for

6
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interactions to happen at finite time, particles must be ordered in space from left to right,

with decreasing values of rapidities, in the infinite past t → −∞, while they must be

in opposite order, in the infinite future t → ∞. According to this physical situation,

we consider Aai(θi) as non-commuting symbols, whose orders are associated to the space

orderings of the particles they represent. In this way, in- and out-states can be written

respectively as

|Aa1(θ1) · · ·Aan(θn)〉in , with θ1 > · · · > θn , (2.2)

and

|Aa1(θ1) · · ·Aan(θn)〉out , with θ1 < · · · < θn . (2.3)

The asymptotic states are constructed, as a fundamental assumption, by a set of in-and

out-operators of creation and annihilation type, which we denote by A†a(θ)(in,out) and

Aa(θ)
(in,out), representing a particle whose quantum numbers are labeled by a and which

has rapidity θ. These operators satisfy the canonical (anti-)commutation relations[
Aa(θ)

(in,out), A†a′(θ
′)(in,out)

]
= 4πδaa′δ(θ − θ′)[

Aa(θ)
(in,out), Aa′(θ

′)(in,out)
]

=
[
A†a(θ)

(in,out), A†a′(θ
′)(in,out)

]
= 0 . (2.4)

The operators A†a(θ)(in,out) and Aa(θ)
(in,out) define the space of physical states. The vac-

uum state is defined as the one annihilated by any of these operators

Aa(θ)
(in,out)|vac〉 = 0 = 〈vac|A†a(θ)(in,out) . (2.5)

The n-particle states are generated by the action of n in- or out-operators on the vacuum

state. These states are not linearly independent due to the algebra (2.4) and a certain

prescription is needed in order to select out a basis of independent states. In fact, the

asymptotic state introduced above is a natural choice and it is generated by acting in-

operators with a decreasing ordering of rapidities in the infinite past or out-operators with

an increasing ordering of rapidities, on the vacuum state. Since in-and out-operators are

eigenoperators of the Hamiltonian and the momentum[
H,A†ai(θi)

(in,out)
]

= mai cosh θiA
†
ai(θi)

(in,out) , (2.6)[
P,A†ai(θi)

(in,out)
]

= mai sinh θiA
†
ai(θi)

(in,out), (2.7)
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the asymptotic states created by these in- and out-operators are eigenstates of the Hamil-

tonian and the momentum

H|Aa1(θ1) · · ·Aan(θn)〉in,out =

n∑
k=1

mak cosh θk|Aa1(θ1) · · ·Aan(θn)〉in,out , (2.8)

P |Aa1(θ1) · · ·Aan(θn)〉in,out =

n∑
k=1

mak sinh θk|Aa1(θ1) · · ·Aan(θn)〉in,out . (2.9)

In this sense, the Hilbert space is the Fock space over the algebra of all such in-operators,

which is isomorphic to the Fock space over the algebra of all out-operators.

Note that if we find a state with a definite number of particles at definite rapidities in the

infinite past, then we can find in the infinite future a superposition of such states. This

can be implemented by the scattering matrix or the S-matrix which provides the mapping

between the in-state basis and out-state basis. Take a two-particle in-state for example,

|Aa1(θ1)Aa2(θ2)〉in =
∞∑
n=2

∑
b1,...,bn

∑
θ′1<···<θ′n

Sb1···bna1a2
(θ1, θ2; θ′1, . . . , θ

′
n)|Ab1(θ′1) · · ·Abn(θ′n)〉out

(2.10)

where θ1 > θ2 and the sum over θ′i generally involves a number of integrals, with the

rapidities constrained by the overall conservation of left- and right-lightcone momenta:

ma1e
±θ1 +ma2e

±θ2 = mb1e
±θ′1 + · · ·+mbne

±θ′n (2.11)

So we can see that the scattering matrix is the overlap between the associated in-state

and out-state, representing the scattering amplitude from the in-state to the out-state

Sb1···bma1···an (θ1 · · · θn; θ′1 · · · θ′m) = out〈Ab1(θ′1) · · ·Abm(θ′m)|Aa1(θ1) · · ·Aan(θn)〉in . (2.12)

2.1.2 Higher spin conserved charges, elasticity and factorisability

The very common conserved quantities in QFT are the energy H and momentum P , which

transform under the Lorentz group as scalars and vectors. They are both local and can

be expressed as

H =

∫
dx h(x), P =

∫
dx p(x) (2.13)
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where h(x) and p(x) are energy density and momentum density, respectively. They are

diagonalised by the basis of asymptotic multi-particle states:

H|Aa1(θ1) · · ·Aan(θn)〉in,out =

(
n∑
k=1

mak cosh θk

)
|Aa1(θ1) · · ·Aan(θn)〉in,out (2.14)

P |Aa1(θ1) · · ·Aan(θn)〉in,out =

(
n∑
k=1

mak sinh θk

)
|Aa1(θ1) · · ·Aan(θn)〉in,out .(2.15)

Beyond these, in integrable models there exist also higher spin conserved charges which

transform as tensors of higher rank under the Lorentz group

Qs → ΛsQs (2.16)

where Λ is a Lorentz boost characterised by a velocity v or a rapidity θ

Λ =

√
1 + v

1− v
= eθ

and integer s is called the (Lorentz) spin of Qs. These conserved charges Qs are regarded

as tensors of rank s, and, in particular, Q±1 coincide with the light-cone components

p± = p0 ± p1 of the energy-momentum operator pµ = (p0, p1). In this thesis we will

consider only the local conserved charges Q which are integrals of local charge densities

q(x)

Q =

∫
dx q(x) (2.17)

In fact, some integrable models also possess non-local conserved charges which are of-

ten associated to operators with fractional spin [71–79]. Taking into account relativistic

covariance, the local conserved charges Qs act as follows on asymptotic in- and out-states:

Qs|Aa(θ)〉in,out = ξ(s)
a

(
mae

θ
)s
|Aa(θ)〉in,out (2.18)

where ξ
(s)
a is a non-vanishing Lorentz scalar that depends on quantum number a of the

particle and the spin s, and ξ
(s)
a (ma)

s is the one-particle eigenvalue of the charge Qs on

the particle a. The set of spin s and the one-particle eigenvalue ξ
(s)
ai (mai)

s are model-

dependent and hence are good fingerprints for an integrable model. Due to the locality,

the conserved charges Qs act additively on multi-particle asymptotic states:

Qs|Aa1(θ1) · · ·Aan(θn)〉in,out =

[
n∑
i=1

ξ(s)
ai

(
maie

θi
)s]
|Aa1(θ1) · · ·Aan(θn)〉in,out . (2.19)
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It can be seen from (2.19) that the conserved charges Qs are simultaneously diagonalised

by the basis of asymptotic multi-particle states. As a result, they are also in involution

[Qs, Qn] = 0 (2.20)

for all s, n.

The existence of these higher spin local conserved charges has profound consequences on

the scattering processes in QFT. In 1967 S. Coleman and J. Mandula demonstrated in

their paper [80] that the existence of even just one conserved charge of spin higher than

one leads to trivial S-matrix, namely S = ±1, in a model of QFT in more that one space

dimension. This statement does not hold for two-dimensional QFT, but, in this case,

an infinite number of conserved charges do impose a series of stringent conditions on the

scattering processes [81–85], which are listed below:

• there is no particle production in any scattering process, namely the number of

particles in the in- and out-states is the same; ;

• the set of the initial momenta of the particles is the same as that of the finial

momenta, namely the scattering processes are purely elastic;

• any n-particle S-matrix can be factorized into sums of products of two-particle S-

matrices.

These conditions enable us to find the full S-matrices of two-dimensional models. Follow-

ing the Refs mentioned above, I shall give a couple of arguments to explain why these

constraints follow from the existence of infinitely many conserved charges. In fact, it has

been shown in [86] that the existence of only two conserved charges of spin higher than one

is sufficient to lead to these constraints on the S-matrices in two-dimensional models of

QFT. But we will employ only the arguments based on the presence of an infinite number

of conserved charges.

To explain the first two properties, let us now consider a scattering process with n incoming

particles and m outgoing particles, and the scattering amplitudes are

Sb1,...,bma1,...,an (θ1, . . . , θn; θ′1, . . . , θ
′
m) = out〈Ab1(θ′1) · · ·Abm(θ′m)|Aa1(θ1) · · ·Aan(θn)〉in .

The conserved charges act on the associated in- and out-states as

Qs|Aa1(θ1) · · ·Aan(θn)〉in =

[
n∑
i=1

ξ(s)
ai

(
maie

θi
)s]
|Aa1(θ1) · · ·Aan(θn)〉in
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and

Qs|Ab1(θ′1) · · ·Abm(θ′m)〉out =

[
n∑
i=1

ξ
(s)
bi

(
mbie

θ′i
)s]
|Ab1(θ′1) · · ·Abm(θ′m)〉out

respectively. In accordance with the fact that Qs are conserved quantities

dQs
dt

= 0 , (2.21)

an initial eigenstate of Qs with a given eigenvalue must evolve into a superposition of

states all with the same eigenvalue, and this imply a sequence of equations that involves

the sum of the higher powers of the momenta of the initial and final particles

n∑
i=1

ξ(s)
ai

(
maie

θi
)s

=

m∑
i=1

ξ
(s)
bi

(
mbie

θ′i
)s

. (2.22)

The number of these equations is infinite since we assume the existence of infinitely many

conserved charges. Thus the only solution to these infinite numbers of equations with

different values of s is that

n = m, θi = θ′i , ξ(s)
ai (mai)

s = ξ
(s)
bi

(mbi)
s , (2.23)

for i = 1, . . . , n. Therefore, there is no particle production and the set of momenta of the

particles in in- and out-states coincide. But this does not suggest that the outgoing set of

quantum numbers {b1, . . . , bn} must be equal to the ingoing set {a1, . . . , an}. The possible

exchange of quantum numbers between ingoing particles and outgoing particles is allowed

in the case of degenerate spectrum in which more than one particle share the same mass.

It should be mentioned that, in some models, there exist also some solutions with n 6= m

to those equations (2.22). However, these solutions can be only found for some special

sets of initial momenta in the presence of bound states [98].

In addition to being elastic, the scattering processes in two-dimensional integrable QFT are

also factorised [81–86]. The proof of the S-matrix factorisability requires the assumption

that any asymptotic one-particle state |Aai(θi)〉 can be represented by a localised wave

packet Ψai

(
x0, x1

)
Ψai

(
x0, x1

)
= N

∫
dp1ef(p

1)

f
(
p1
)

= −a(p1 − p1
ai)

2 + i
[
p1
(
x1 − x1

ai

)
− p0

ai

(
x0 − x0

ai

)]
(2.24)

where pµai = (p0
ai , p

1
ai) is the energy-momentum of the particle ai and

(
x0
ai , x

1
ai

)
the coor-

dinates of the central position of the wave packet, namely the approximated time-space
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position of the particle ai. N is a normalisation constant and a is a constant express-

ing the spreading on the velocity of the wave packet. Even though the wave function

formalism is not valid in the context of relativistic QFT due to particle production and

annihilation, we can exploit it in the framework of asymptotic states in which particles

are propagating freely without interactions. In this way, we can associate to each particle

in the multi-particle in-states or out-states a localised wave packet like (2.24). According

to the wave packet description, the physical scattering matrix also depends on the impact

parameters, which are the central positions of the particles with respect to each other in

the asymptotic states. In our construction of the asymptotic states, for convenience, we

choose the impact parameters of the scattering so that all particles collide at one point

under an extrapolation of their free trajectories, namely the central positions of the wave

packets of all particles are same. We could also define the asymptotic states with the cen-

tral position of each wave packet shifted slightly, which means that some particles could

collide first in an extrapolation of the free trajectories. Hence the scattering matrix, which

is formed by the overlap between the associated in- and out-states, is different for different

choices of impact parameters. Now, let us consider the action of an operator eiαQs for free

parameter α on the wave function (2.24) and this amounts to shifting the coordinates of

the center of the wave packet as follows

x0
ai −→ x0

ai + αsξsai

(
maie

θi
)s−1

, (2.25)

x1
ai −→ x1

ai + αsξsai

(
maie

θi
)s−1

. (2.26)

It is worth noting that the shift mentioned above is in general rapidity-dependent, ex-

cluding the case s = 1 for which all wave packets are shifted by the same amount α.

Consequently, it is feasible, via such an operator with s > 1, to make an asymptotic multi-

particle state in which each wave packet has its central position independently shifted. In

this way, the higher spin conserved charges lead to alterations in the impact parameters.

According to this formalism, we can demonstrate the feature of the factorization of the

S-matrix by analyzing 3 particle −→ 3 particle scattering processes depicted in Fig. 2.1

The central positions of wave packets can be shifted enough by the action of the operator

eiαQs so that as time evolves a well-defined first sub-process takes place, in which two wave

packets collide while the other one propagate freely. The set of momenta is preserved due

to the absence of particle production and hence there is still a well-defined momenta con-

figuration after the collision. Since particles propagate on a line in one space dimension,

this two-particle scattering procedure will be repeated until all wave packets have their

order inverted. The full scattering process will consists of three two-particle scattering

sub-processes separated by free propagation. These two-particle scattering processes will

occur in different orders for different ways of shifting central positions of wave packets.
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Figure 2.1: 3 particle −→ 3 particle scattering processes

In the case of 3 −→ 3 scattering, there are two different ways to shift central positions of

wave packets, which are depicted as B and C in Fig. 2.1.

In a general QFT, the three processes in Fig. 2.1, including the simultaneous collision of

the three particles, are not related to each other and their associated scattering amplitudes

are not same. However, the situation is different for a QFT with the presence of higher

spin conserved charges. Since the conserved charges Qs commute with the hamiltonian of

the system, their action must result in equivalent physical situation. This means that the

scattering amplitude must be invariant under any transformation generated by conserved

charges

Sb1,...,bna1,...,an = e−αQsSb1,...,bna1,...,ane
αQs . (2.27)

In this spirit, the three scattering processes in Fig. 2.1 should share the same scattering

amplitude. The equality of the amplitude B and C leads to a constraint on the two-particle

S-matrices, known as the so-called Yang-Baxter equation [87]

Skpa1a2
(θ12)Sb1rka3

(θ13)Sb1b2pr (θ23) = Srb3a1k
(θ13)Spka2a3

(θ23)Sb1b2rp (θ12) (2.28)

where a repeated index implies a summation. In particular, if the particle spectrum is

non-degenerate, the quantum numbers of the particles are also preserved in the scattering

processes. In this case, the S-matrix is diagonal and the Yang-Baxter equation becomes

trivial. It is also obvious that the same argument can be applied to any n −→ n scattering

process in which the scattering matrix will factorise into a product of n(n − 1)/2 two-

particle scattering matrices. Finally, from the above arguments, we can see that in any

two-dimensional IQFT, with the presence of an finite numbers of local conserved charges,

the scattering matrix does not depend on impact parameters.
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The factorization properties of the S-matrix can be implemented by assuming the asymp-

totic operators of creation and annihilation type to obey the highly non-trivial algebra

Aai(θi)Aaj (θj) =
∑
bi,bj

S
bibj
aiaj (θi − θj)Abj (θj)Abi(θi) , (2.29)

A†ai(θi)A
†
aj (θj) =

∑
bi,bj

S
bibj
aiaj (θi − θj)A

†
bj

(θj)A
†
bi

(θi), (2.30)

Aai(θi)A
†
aj (θj) =

∑
bi,bj

S
bibj
aiaj (θj − θi)A

†
bj

(θj)Abi(θi) + 2πδaiaj (θi − θj) . (2.31)

where we dropped out the subindices in or out in these operators since definitions (2.2)

and (2.3) allow to distinguish the set of incoming and outgoing particles by the ordering

of the rapidities. This algebra is known as Zamolodchikov’s algebra [82] and named also

as Faddeev-Zamolodchikov algebra [88]. This algebra provides the generalization of the

usual bosonic and fermionic algebraic relations. These asymptotic operators define the

space of physical states in integrable QFT: the in-basis is formed by products of these

operators with rapidities in decreasing order from left to right; the out-basis is formed by

similar products of these operators with rapidities in increasing order. Since the S-matrix

is involved in this algebra, any commutation of these operators can be interpreted as a

scattering process. It is worth noting that the two-particle S-matrix only depends on the

rapidity difference of scattering particles because of its Lorentz invariance. The explicit

form of this algebra depends on the S-matrix involved which varies with different theories.

2.2 Analytic structures of the two-particle S-matrix

In light of the properties of elasticity and factorisability, the S-matrix theory of a two-

dimensional massive integrable model is drastically simplified and the problem of finding

the exact full S-matrices has been reduced to the determination of all two-particle S-

matrices which are associated with the different 2 −→ 2 scattering processes in the model.

The explicit expression of two-particle S-matrices can be obtained by solving, in addition

to the highly non-trivial Yang-Baxter equation following from quantum integrability, a set

of restrictive equations [82, 89] which arise from general physical principles of QFT:

• Hermitian analyticity:
(
Sb1,b2a1,a2(θ)

)∗
= Sa2,a1

b2,b1
(−θ∗)

• Unitarity: Sb1,b2a1,a2(θ)Sc1,c2b1,b2
(−θ) = δc1a1

δc2a2

• Crossing symmetry: Sb1,b2a1,a2(iπ − θ) = Sb1,ā2

a1,b̄2
(θ).
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Let us begin with a detailed discussion of the physical requirements listed. In a gen-

eral model of QFT, the scattering matrix is usually expressed in terms of the so-called

Mandelstam variables s, t and u, which are defined as

s = (p1 + p2)2, t = (p1 − p3)2, u = (p1 − p4)2 (2.32)

with s + t + u =
∑4

i=1m
2
i for a scattering process of the type 1 + 2 −→ 3 + 4. In two-

dimensional integrable models, the variable u vanishes, namely u = 0, due to the elasticity

of the scattering process. Therefore, only one of these three variables is independent

and it is convention to focus on s. Consider now a two-particle elastic scattering process

a1 +a2 −→ b1 +b2 with the scattering amplitude Sb1,b2a1,a2(s) = Sb1,b2a1,a2(θ). In terms of rapidity

difference θ = θ1 − θ2, we have

s = m2
a1

+m2
a2

+ 2ma1ma2 cosh θ . (2.33)

For a physical process, both θ and s are real. We can analytically continue s to the complex

plane, and the two-particle S-matrix, as a function of s, is a multi-valued function. The

branch points of Sb1,b2a1,a2(s) start at the values s = (ma1 + ma2)2 , and the corresponding

branch cuts are on the portions of the real axis s ≤ (ma1 −ma2)2 and s ≥ (ma1 +ma2)2.

Therefore, Sb1,b2a1,a2(s) is not a meromorphic function. The first sheet of the full Riemann

surface for Sb1,b2a1,a2(s) is called physical sheet. The physical values of Sb1,b2a1,a2(s) are just above

the cut [(ma1 + ma2)2,∞] and this “just above the cut” prescription is in the spirit of

Feynman’s iε prescription in perturbation theory. The simple poles are in the interval

[(ma1 −ma2)2, (ma1 +ma2)2] of the real line and they correspond to possible bound states

in the scattering process.

Let us turn our attention from the Mandelstam variable s to the rapidity difference θ, via

transformation

θ = cosh−1

(
s−m2

a1
−m2

a2

2ma1ma2

)
= log

[
1

2ma1ma2

(
s−m2

a1
−m2

a2
+
√

(s− (ma1 +ma2)2) (s− (ma1 −ma2)2)
)]

.

(2.34)

Since s(θ) = s(−θ), the mentioned branch cuts do not occur in the θ-plane, and therefore

the two-particle S-matrix is a meromorphic function of θ. The physical sheet corresponds

to the region Im θ ∈ [0, π] and this region is called physical strip. The poles corresponding

to bound states are located on the imaginary axis Re(θ) = 0 in the physical strip.
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Hermitian analyticity [90–92] is one of general principles of QFT and it postulates that the

complex conjugate of the S-matrix on the physical sheet is equivalent with the S-matrix

on the complex conjugate argument still on the physical sheet:(
Sb1,b2a1,a2

(θ)
)∗

= Sa2,a1

b2,b1
(−θ∗) . (2.35)

Since we are looking at models of relativistic QFT, the assumption of charge-parity-time-

reversal (CPT) invariance should be considered

Sb1,b2a1,a2
(θ) = S b̄1,b̄2ā1,ā2

(θ), C (2.36)

Sb1,b2a1,a2
(θ) = Sb2,b1a2,a1

(θ), P (2.37)

Sb1,b2a1,a2
(θ) = Sa2,a1

b2,b1
(θ), T. (2.38)

Hermitian analyticity, together with time-reversal invariance (2.38), leads to real analyt-

icity (
Sb1,b2a1,a2

(θ)
)∗

= Sb1,b2a1,a2
(−θ∗) . (2.39)

In general QFTs, the total probability of producing an arbitrary out-state from any in-

state is postulated to be one. This probability conservation condition requires the S-matrix

to be unitary

SS† = 1 . (2.40)

This should be interpreted as a matrix equation, with a sum over a complete set of inter-

mediate states hiding between S and S†. In principle, with sufficiently high energy, any

n-particle intermediate state can be allowed in the sum. However, in integrable models,

integrability restricts intermediate states to two-particle states, meaning that the ampli-

tudes of producing intermediate states with more than two particles are all zero. In this

case, for real θ, unitarity reads

Sb1,b2a1,a2
(θ)
(
Sb1,b2c1,c2 (θ)

)∗
= δc1a1

δc2a2
. (2.41)

In virtue of PT invariance (2.37), (2.38), and real analyticity, this can be rewritten as

Sb1,b2a1,a2
(θ)
(
Sc1,c2b1,b2

(−θ)
)

= δc1a1
δc2a2

(2.42)

which is usually called unitarity for two-particle S-matrix in integrable models. By analytic

continuation to the complex plane, the relation (2.42) is assumed to hold for any complex

value of θ.
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Crossing symmetry is a fundamentally relativistic property of QFT. In the process of

two-particle scattering a1 + a2 −→ b1 + b2, any particle involved can be replaced by

its antiparticle, which is interpreted as the particle traveling back in time with opposite

momentum. A new two-particle scattering a1 + b̄2 −→ b1 + ā2 can be anticipated from

this fact, where the overbar indicates the antiparticle, and crossing symmetry states that

the scattering amplitude for this process can be obtained as the analytic continuation of

the previous one to negative energies. In terms of equations, crossing symmetry can be

expressed as

Sb1,b2a1,a2
(iπ − θ) = Sb1,ā2

a1,b̄2
(θ) (2.43)

and this relation can be understood via the following consideration. For the two-particle

scattering Sb1,b2a1,a2(θ1 − θ2), we rotate the time and space arrow by π/2, which, since the

slope of the world line of the particle j is coth θj , amounts to θj 7→ iπ/2 − θj . After this

rotation, particle a2 and b2 seem like propagating back in time. Then we transform them,

with the help of time-reversal symmetry, into their antiparticles which propagate correctly,

and this gives crossing symmetry (2.43).

Finally, in the presence of bound states, a set of additional conditions, called “bootstrap

equations” [81, 93, 94], will arise in the integrable theory to further constrain the S-

matrix. A bound state is manifested by a virtual particle, which is created in a two-particle

scattering process and identified as an asymptotic particle already in the spectrum of the

theory, and it generates in the S-matrix a pole lying on the imaginary axis in the physical

strip 0 < Im(θ) < π. For the scattering process a1 + a2 −→ c, the corresponding pole in

the S-matrix is given by

θ = i arccos

(
m2
c −m2

a1
−m2

a2

2ma1ma2

)
. (2.44)

In fact, the bootstrap equations not only restrain the S-matrix but also affect the masses of

the particles, the set of spin s of the conserved charges and the eigenvalues of the conserved

charges [93, 95–97] (see the review [98]).

In light of internal symmetries and bootstrap equations, the work of reconstructing the

S-matrix and the spectrum of particles has been performed in several models [99, 100]. In

general, it is not trivial to obtain the S-matrix as the solution to those conditions mentioned

above. However, the spectrum and S-matrix can sometimes be exactly evaluated by the

method of Bethe ansatz [101–104] or the quantum inverse scattering [105] (see also the

book [106]).
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2.3 Form factors and correlation functions

The scattering matrix is not directly useful for most calculations related to experimental

situations. The objects that are of direct importance are the correlation functions of local

fields which encode all physical information. In particular, the two-point function

〈vac|O1(x, t)O2(0, 0)|vac〉

is a quantity often required, as it is related to the response function of the system at one

point once it is disturbed at another point. In principle, all quantities of interest in a model

can be obtained from the knowledge of correlation functions. Therefore, the main problem

in the study of a model of quantum field theory can then be seen as the reconstruction of

its correlation functions. In general, the computation of correlation functions is a difficult

task, usually achieved with partial success through perturbative methods. Probably the

most fruitful idea is to start from a representation of the two-point function coming from

inserting a complete set of energy eigenstates between the operators:

〈vac|O1(x, t)O2(0, 0)|vac〉

=

∞∑
n=0

∑
a1,...,an

∫
θ1>···>θn

dθ1 · · · dθn
(2π)n

e−iEnt+ipnx
[
〈vac|O1(0, 0)|θ1, . . . , θn〉a1,...,an

a1,...,an〈θ1, . . . , θn|O2(0, 0)|vac〉
]

(2.45)

for En =
∑n

j=1maj cosh θj and pn =
∑n

j=1maj sinh θj . This is the basis for the usual

Källen-Lehmann spectral decomposition. The in-states are, as we define, wave packets

at minus infinite time with particles ordered from left to right by decreasing rapidity. Of

course, we could have used as well the out-basis. Using the fact that these bases are not

independent, we can rewrite (2.45) in terms of all bases:

〈vac|O1(x, t)O2(0, 0)|vac〉

=

∞∑
n=0

∑
a1,...,an

∫
dθ1 · · · dθn

(2π)nn!
e−iEnt+ipnx

×〈vac|O1(0, 0)|θ1, . . . θn〉a1,...,an a1,...,an〈θ1, . . . , θn|O2(0, 0)|vac〉

(2.46)

where the factors 1/n! come from overcounting repeated intermediate states. Note that we

will from now on employ the notation |θ1, . . . , θn〉a1,...,an to represent an n-particle state

instead of the notation |Aa1(θ1) · · ·Aan(θn)〉. The matrix elements between the vacuum
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state and an n-particle state

〈vac|O1(0, 0)|θ1, . . . θn〉a1,...,an

are called form factors, which are the central quantities in integrable theories. It is con-

vention to denote by

fOa1,...,an(θ1, . . . , θn)

the form factors of a certain operator O. Thanks to crossing symmetry and the S-matrix,

it is possible to deduce all matrix elements of O between asymptotic states in terms of the

form factors. Hence, we can completely describe the local field once its form factors are

known. The form factors fOa1,...,an(θ1, . . . , θn), as tensor-value functions, can be analytically

continued to complex values of θi and it has been shown in [3] that the analytically

continued form factors of a local field must satisfy a set of axioms, which arise as the direct

consequences of factorized scattering and general principles of QFT. Therefore, similarly

to the construction procedure of S-matrices for integrable massive 1+1-dimensional QFTs

described before, the form factors associated to a certain operator can be obtained as

the solutions to a set of consistency equations. These consistency equations form what is

called Riemann-Hilbert problem and are formulated as follows:

1. Meromorphicity: the form factor fOa1,...,an(θ1, . . . , θn), as function of the variable

θi − θj , for any i, j ∈ {1, . . . , n}, is analytic inside the strip 0 < Im(θ) < 2π, apart

from some simple poles corresponding to the bound states.

2. Relativistic invariance:

fOa1,...,an(θ1 + β, . . . , θn + β) = esβfOa1,...,an(θ1, . . . , θn) ,

where s is the spin of O.

3. Generalized Watson’s theorem:

fOa1,...,aj ,aj+1,...,an(θ1, . . . , θj , θj+1, . . . , θn) =

S
bj ,bj+1
aj ,aj+1(θj − θj+1)fOa1,...,bj+1,bj ,...,an

(θ1, . . . , θj+1, θj , . . . , θn) .

4. Monodromy:

fOa1,...,an(θ1 + 2πi, . . . , θn) = (−1)fOfΨe2πiω(O,Ψ)fOa2,...,an,a1
(θ2, . . . , θn, θ1)

where fO = 1 if O is fermionic, fO = 0 if O is bosonic, Ψ is the fundamental field

that creates the particle an, and ω(O,Ψ) is the semi-locality index of O with respect
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to Ψ, which is the phase factor arising in correlation functions when one of the fields

is turned once around another field counterclockwise and was originally introduced

in [107].

5. Kinematic pole: the form factor fOa1,...,an(θ1, . . . , θn), as function of the variable θn,

has some simple poles, called kinematic poles, at the points θn = θj + iπ for j ∈
1, . . . , n− 1, with residues

ifOa1,...,an(θ1, . . . , θn) ∼ Can,bj
fO
b1,...,b̂j ,...,bn−1

(θ1, . . . , θ̂j , . . . , θn−1)

θn − θj − iπ
×[

δb1a1
· · · δbj−1

aj−1S
bj+1,cj
aj+1,aj (θj+1 − θj)S

bj+2,cj+1
aj+2,cj (θj+2 − θj) · · ·S

bn−1,bj
an−1,cn−3(θn−1 − θj)−

(−1)fOfΨe2πiω(O,Ψ)δbn−1
an−1
· · · δbj+1

aj+1S
cj ,bj−1
aj ,aj−1(θj − θj−1)S

cj−1,bj−2
cj ,aj−2 (θj − θj−2) · · ·Sbj ,b1c3,a1(θj − θ1)

]
.

6. Bound state: the form factor fOa1,...,an(θ1, . . . , θn), as function of the variable θi − θj ,
in the presence of bound states of mass m, has some simple poles at the points

θi − θj = i arccos

(
m2−m2

ai
−m2

aj

2maimaj

)
∈ i[0, π].

Axiom 1 is required by the analytic properties of the general QFT. Axiom 2 is a direct

consequence of relativistic invariance. Axiom 3 is obtained by the braiding relation (2.30),

which means that a commutation of two asymptotic operators is equivalent to a scattering

process. Axiom 4 results from the analysis based on LSZ reduction formulae [108] and it

states the discontinuity of the form factors at the cuts θ1i = 2πi. Concerning axiom 5 and

axiom 6, they describe the pole structure of the form factors. Two kinds of simple poles

are involved in the form factors. The first are kinematical poles and they come from the

one-particle state realized by the three-particle clusters, which corresponds to the crossing

channel of the S-matrix. Kinematical poles do not depend on the existence of bound states.

The second are poles coming from the two-particle cluster and they are related to bound

states of the S-matrix. It is worth noticing that both types of poles of the form factors are

determined by the underlying scattering theory and they are operator-independent. Such

pole structure plays a very crucial role in finding exactly the solutions to the form factor

consistency equations, since form factors with different number of particles can be related

by the residues of these poles. This point can be made more clear in the case of diagonal

scattering where two sets of recursion relations, relating the (n + 2)- and the n-particle

form factors and the (n + 1)- and the n-particle form factors respectively, arise from the

poles mentioned in axiom 5 and 6. Notice that if we assume the S-matrix to be diagonal,

in virtue of Axiom 3, Axiom 4 can be rewritten as

fOa1,...,an(θ1 + 2πi, . . . , θn) = (−1)fOfΨe2πiω(O,Ψ)
n∏
i=2

Sai,a1(θi1)fOa1,...,an(θ1, . . . , θn) (2.47)
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which turn out to be a set of recursion relations relating the n- and n-particle form factors.

Form factors associated to a certain operator can be obtained as the solution to the

set of consistency equations summarised above. Once the solution has been found, the

identification of the operator it corresponds to is required, due to the fact that some of the

consistency equations, namely axiom 1, 4, 5 and possibly 6 in the presence of bound states,

do not refer to any particular nature of the operator involved. It is an assumption that

each solution to the form factor consistency equations corresponds to a particular local

operator [1, 109]. Based on this assumption, the work of identifying and constraining the

specific content of the operator has been carried out in numerous papers [1, 3, 4, 108–114],

by exploiting various methods including investigating asymptotic behaviours, performing

perturbation theory, taking symmetries into account and formulating quantum equations

of motion.

The locality of the operator is a fundamental requirement which needs to be proved in

order to guarantee that we are looking at a well-defined QFT. Even though the locality

of the operator has been encoded in the form factor consistency equations, since there

exists no well established proof for it and several consistency equations do not require any

information of the operator content, the verification of it can be of great interest. Inspired

by the definition of the locality of bosonic or fermionic operators

[O1(x1, t1),O2(x2, t2)] = 0 or {O1(x1, t1),O2(x2, t2)} = 0 (2.48)

with (x1, t1), (x2, t2) causally disconnected points in Minkowski’s space and O1, O2 lo-

cal operators of the QFT, we can verify the locality property by evaluating correlation

functions of the form

〈vac| [O1(x1, t1)O2(x2, t2)] |vac〉 or 〈vac|{O1(x1, t1)O2(x2, t2)}|vac〉 (2.49)

via the spectral representation series involving form factors associated to the operators

O1, O2. If such correlation functions vanish for all causally disconnected points (x1, t1),

(x2, t2), the locality of the operators O1, O2 will be confirmed.

The work of reconstructing form factors from the form factor consistency equations was

initiated, in the context of two-dimensional QFT’s, by P. Weisz and M. Karowski [1, 109].

Then, the development of the form factor approach has been performed to a large extent

by several authors including F. A. Smirnov, J. L. Cardy and G. Musssardo [3, 110, 115–

121]. It turns out that this approach is very powerful within two-dimensional integrable

QFT’s due to its wide range of applications like determining form factors associated to
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certain operators, evaluating correlation functions, characterizing the operator content of

the perturbed conformal field theory.

As mentioned before, once the matrix elements of the operators, namely the form factors,

are known, their correlation functions can be recovered in terms of spectral representation

series (2.46). It is worth mentioning that these series present remarkable convergence prop-

erties. The form factors, in contrast with Feynman formalism, employ from the beginning

all the physical parameters of the theory and hence divergences of the perturbative series

can be avoided. Also, it has been proved that these form factor expansions in integrable

models allow for evaluating correlation functions in a wide rage of energies with a high

numerical precision, and together with conformal perturbation theory they give correlation

functions at all energy scales. By using space-time translation and relativistic invariances,

form factor expansions (2.46) at space-like separations can be rewritten as

〈vac|O1(x, t)O2(0, 0)|vac〉

=

∞∑
n=0

∑
a1,...,an

∫
dθ1 · · · dθn

(2π)nn!
e−r

∑
j maj cosh θj

×〈vac|O1(0, 0)|θ1, . . . , θn〉a1,...,an a1,...,an〈θ1, . . . , θn|O2(0, 0)|vac〉

(2.50)

where r is the Minkoswki distance r =
√
x2 − t2 with x2 > t2. This representation is more

useful since it is a large-distance expansion, which converges well at large r and describes

the large-distance behaviour of the two-point functions, and which is hardly accessible by

perturbation theory.

2.4 Ising model

2.4.1 Ising quantum chain

Let us commence with the generic XY model defined by the infinite-length quantum chain

of spin-1
2 degree of freedom and the Hamiltonian of the total system is expressed as

HXY = −J
2

∑
n

[
1 + κ

2
σxnσ

x
n+1 +

1− κ
2

σynσ
y
n+1 + hσzn

]
. (2.51)

The σin with i = x, y, z are pauli matrices at site n with the representation

σx =

(
0 1

1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0

0 −1

)
. (2.52)
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There exists a two-dimensional Hilbert space of spin-1
2 degree of freedom at each site of

the chain and the full quantum space is the tensor product of all such two-dimensional

spaces, for all sites of the chain. In this spirit, σin can be considered as the operator acting

on the n-th site of the chain

σin = 1⊗ 1⊗ · · · ⊗ σi ⊗ · · · ⊗ 1 (2.53)

with 1 the identity operator. At the n-th site, the basis of the associated two-dimensional

quantum space is given by

| ↑〉n =

(
1

0

)
, | ↓〉n =

(
0

1

)
(2.54)

which are the two eigenstates of the operator σzn with eigenvalues 1 and −1, respectively.

The operator σxn are off-diagonal in the basis of these states and their eigenstates are given

by a linear superposition of these basis states

| →〉n = (| ↑〉n + | ↓〉n) /
√

2

| ←〉n = (| ↑〉n − | ↓〉n) /
√

2 (2.55)

with eigenvalues ±1. The operators σi at different sites will commute with each other,

namely [
σin, σ

j
m

]
= 0 , n 6= m (2.56)

with i = x, y, z and j = x, y, z, because they act on different spin states. κ ∈ [−1, 1] is

the anisotropy parameter and h is the dimensionless parameter representing the external

transverse magnetic field. Due to the invariance of the Hamiltonian (2.51) under the

operation (h, κ) 7→ (−h,−κ), we can focus on without loss of generality the region (h ≥
0, κ ≥ 0). J is an energy coupling constant describing the relative interaction between

the nearest two sites. The absolute value of J determines the energy scale and the sign of

it sets the type of interactions between the spins. In this thesis, we restrict ourselves to

the regime J > 0, namely the ferromagnetic regime, in which the spins have lower energy

when the neighbors are polarized parallel.

At the special value κ = 1, the XY model is reduced to the quantum Ising model in a

transverse field with the Hamiltonian

H = −J
2

∑
n

[
σxnσ

x
n+1 + hσzn

]
. (2.57)

One of the most interesting feature of the quantum Ising model is that it exhibits a second
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order phase transition at a special point h = hc, which is called the critical point. Generally

speaking, second order phase transitions are those at which the characteristic energy scale

of fluctuations above the ground state goes to zero as h approaches hc. Let us denote by

∆ the energy gap between the lowest excitation and the ground state. In most cases, it

can be shown that as h approaches hc, ∆ vanishes as

∆ ∼ J |h− hc|zv (2.58)

where zv is a critical exponent. This feature of quantum phase transition is called as a

level-crossing between the energy level of the ground state and of the lowest excited state.

Moreover, the ground state energy, which is a smooth function of h, is not analytic at

the critical point h = hc. It is worth mentioning that the above level-crossing does not

generally occur for the case of a finite lattice. Instead, there is an avoided level-crossing

between the energy levels of the lowest excited state and the ground state. However, as

the lattice size increases, the avoided level-crossing gets sharper and give rise to a point of

nonanalyticity at h = hc in the infinite lattice limit. In this sense, the above level-crossing

can be seen as the limiting case of an avoided level-crossing.

In addition to the vanishing energy gap between the ground state and the lowest excited

state, and the nonanalyticity in the ground state energy, a second order quantum phase

transition is usually accompanied by a diverging correlation length ξ. Correlation length

is the length scale which determines the exponential decay of equal-time correlation func-

tions in the ground state and describes the system around the criticality. For instance,

in the region h > hc, it has been demonstrated by sophisticated calculations that corre-

lation functions for two separated sites are short-ranged decreasing exponentially at large

separations:

〈0|σxnσxm|0〉 ∼ e−|n−m|/ξ , |n−m| → ∞ (2.59)

where we denote by |0〉 the ground state of the system. The correlation length is a function

of h and as h approaches hc it diverges as

ξ ∼ 1

|h− hc|v
(2.60)

Considering (2.58) and (2.60), we can relate the energy gap ∆ with the correlation length

ξ:

∆ ∼ ξ−z (2.61)

from which z is called dynamic critical exponent. At the critical point h = hc, the

correlation length become infinite and a system exhibiting this type of behaviour is said

to undergo a critical phase transition. Correlation functions at the critical point, due to
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the divergent correlation length, display an algebraic decay with the power law:

〈0|σxnσxm|0〉 ∼ |n−m|−2d , |n−m| → ∞ (2.62)

where d is a critical exponent with positive value and it is usually referred to as scaling

dimension of the observable. It is worth mentioning that the exponents in (2.58), (2.60)

and (2.62) are universal, which means that they do not depend on the microscopic details

of the Hamiltonian. This is universality and it arises in the scaling limit which will be

introduced later. The assertion of universality is that the thermodynamic properties of a

system in the scaling limit show the insensitivity to the microscopic details of the system

and depend only on a small number of features, such as dimensionality and symmetry. In

light of universality, it is plausible to describe different and physically unrelated phenomena

with the same theory. In the Ising model, the critical exponents zv, v and d are in the

Ising universality class and their effective values are called Ising values.

Then let us turn our attention to the local magnetization Mx along the x-axis. This

quantity is defined as the expectation value of σxn in the ground state:

Mx = 〈0|σxn|0〉

and this definition does not depend on the position because of translation invariance. The

local magnetization Mx determines the physical properties and characterizes two different

phases in which the system displays very different responses to the external disruption,

namely the transverse maganetic field, and which are divided by the critical point hc. In

the region h < hc, the expectation value Mx is non-zero. This is called ordered phase. On

the other hand, in the region h > hc, there is no magnetization along the x-axis, namely

the expectation value Mx is zero. This is called disordered phase. Since these two phases

are characterized by the value of Mx, this quantity is termed order parameter. The above

arguments (concerning the qualitative change in the ground state) can made more clear by

considering two limiting cases h→ 0 and h→∞ since the ground state of the Hamiltonian

(2.57) depends only on the value of h. In the limit h → ∞, the second term in (2.57)

dominates and the ground state is simply

|0〉 =
∏
n

| ↑〉n . (2.63)

Since the σxn are off-diagonal in the basis of states, the order parameter Mx = 0, which

means that the magnetization of the system along x-axis is zero and the system is magnet-

ically disordered. As a result, the correlation functions 〈0|σxnσxm|0〉 in this ground state are

short-ranged and their large-distance behaviours are described by the exponential decay
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(2.59). The ground state in this phase possesses a symmetry under an exact global Z2

symmetry transformation:

σxn → −σxn , σzn → σzn (2.64)

which is generated by the unitary operator Πnσ
z
n and which leaves the Hamiltonian (2.57)

invariant. Because of the symmetric ground state, the disordered phase is also called

symmetric phase. On the other hand, in the limit h→ 0, the external transverse magnetic

field vanishes and the first term in Hamiltonian (2.57) dominates. The system has two

possible ground states

|0〉 =
∏
n

| →〉n or |0〉 =
∏
n

| ←〉n (2.65)

in which the spins are either up or down along the x-axis. Since these two ground states

are both eigenstates of σxn, the order parameter Mx = ±1, which implies that the system

is magnetically ordered and the correlations of σxn are long-ranged:

〈0|σxnσxm|0〉 = 1 , |n−m| → ∞ . (2.66)

Again, the Hamiltonian (2.57) is invariant under the transformation (2.64). But, the

symmetry of the ground state has been broken and the two possible ground state are

mapped into each other by the transformation (2.64). The system can choose any of these

two states as the ground state since they are physically equivalent. This is usually referred

to as spontaneously breaking of the Z2 symmetry. The degeneracy of the ground state can

survive even when a small density of external magnetic field h is applied to the system

thanks to the Z2 symmetry.

Now we have observed that there is no possibility that the ground states obeying (2.66)

and (2.59) can be transformed into each other analytically as a functions of h. There must

be a critical point h = hc at which the large-distance behaviour of the two-point correlation

function changes from (2.66) to (2.59) and which marks the boundary between the two

qualitatively different phases discussed above. At this point, the two-point function obey

(2.62). This is the position where a second order quantum phase transition occurs. For

the Ising model, the value of critical point is specialized as hc = 1. We focus for now on

the zero temperature case, so that any phase transition will be driven only by quantum

effects, and the system will be in a pure state rather than a thermal ensemble. We take

the system to be in its ground state.
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2.4.2 Ising model in the scaling limit

As we introduced before, the correlation length can be varied by varying the external

magnetic field h. When the system is close sufficiently to the critical point, namely h→ hc,

the correlation length tends towards infinity, leading to the long-ranged correlations of the

system. Along with the divergent correlation length, the energy gap between the lowest

excitation and the ground state becomes almost null in the limit h → hc, leading to a

gapless energy spectrum at h = hc. This implies that near the criticality excitations

at arbitrarily low energy are allowed and the system is dominated by the low-energy

physics. Compared to the infinite correlation length, the lattice space we denote by a,

setting the microscopic length-scale of the system, become infinitesimal, a � ξ. We can

take the lattice space as zero, a → 0, which amounts to looking at large distances, and

this is a continuum limit, in which the configurations of the system can be considered as

sufficiently smooth on the lattice spacings. It is then natural to assume that the system can

be described in the language of the relativistic quantum field theory which are continuous

and which looks at sufficiently low energy. In another word, a second order quantum phase

transition defines a quantum field theory in the continuum. The process of getting closer to

the critical point where a second quantum phase transition happens while looking at large

distance is the scaling limit. A lattice system, in the scaling limit, will exhibit a number of

features which are independent of the microscopic details of the underlying lattice system.

This is universality. In light of universality, it is plausible that various models close to a

second order quantum phase transition will share the same set of universal properties, and

these models fall into universality classes which are characterized by the critical exponents

of models. It turns out that the quantum field theory, as the result of the scaling limit of

lattice systems, provides the most natural formulation for the quantitative study of those

universal properties in the vicinity of the quantum critical point and for the description of

universality classes. Let us make the above argument more explicit. In the scaling limit,

the lattice spacing is reduced to zero while the correlation length goes to infinity. There

is a charateristic length of the system and it can be defined as

ξ̂ = a ξ(h) . (2.67)

The scaling limit must be taken in such a way that the characteristic length is kept constant

ξ̂ = lim
a→0
h→hc

a ξ(h) = const (2.68)

in order to preserve the physics of the system. In fact, we can define the characteristic

length in arbitrary way, but no matter in which definition the two limits h→ hc or ξ →∞
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and a → 0 must be taken keeping length ξ̂ fixed. Besides the correlation length, all the

lengths must be rescaled. For instance, the position of the site n can be rescaled as x = an

and to keep x intact the limit n→∞must be performed. Consider the correlation function

of local operators σxn, σ
x
m at positions n,m:

〈0|σxnσxm|0〉 .

We take the scaling limit

h→ hc, a→ 0, n,m→∞ (2.69)

and the correlation function, in this limit, vanishes as a2d → 0. But, the correlation

function multiplied by (mξ)2d, where m is defined by m = 1/ξ̂, in the same limit, will be

non-zero and it can be written in terms of a two-point correlation function in a quantum

field theory with the mass scale m:

lim
h→hc

lim
a→0

[
(mξ)2d〈0|σxnσxm|0〉

]
= 〈vac|O(x)O(y)|vac〉 (2.70)

where O(x) is a local field of QFT and it corresponds to the operator σxn in the lattice

model with the identification x = an. The quantity m can be interpreted as the mass of

the lightest particle in QFT due to its correspondence with the dimensionful mass gap in

a relativistic theory. The positive number d making the limit finite is called the dimension

of the local field O. The correlation function on the righ-hand side of (2.70) is a scaling

function and the resulting QFT is a scaling theory. The quantum field theory, associated

with a Hamiltonian defined in the continuum, is a simplification of the lattice theory, as

it has no intrinsic short distance or high-energy cutoff and focuses only on the low-energy

physics. Notice that the quantum chain, before the scaling limit is performed, can be

treated as a regularisation of the quantum field theory, and taking the scaling limit leads

to the renormalisation process.

Now we consider the quantum Ising model in a transverse field in the scaling limit. In

this model, the Ising quantum chain of spin-1
2 particles can be mapped, through the

Jordan-Wigner transformation [122–124], to a system of free spinless fermions with the

Hamiltonian

H = −J
2

∑
n

[(
c†n − cn

)(
c†n+1 + cn+1

)
− h

(
c†n − cn

)(
c†n + cn

)]
. (2.71)

c†n and cn are fermionic operator satisfying the canonical anti-commutation relation

{cn, c†n′} = δnn′ , {cn, cn′} = {c†n, c
†
n′} = 0 (2.72)
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To relate (2.71) with a free Majorana Hamiltonian, we can rewrite (2.71) as

H = −iJ
∑
n

[
Ψ̄(n) (Ψ(n+ 1)−Ψ(n))− (h− 1)Ψ̄(n)Ψ(n)

]
(2.73)

where we define the two components of a Majorana spinor

Ψ(n) =
c†n + cn√

2
, and Ψ̄(n) =

c†n − cn√
2i

. (2.74)

It can be seen from (2.72) that these two components also satisfy the canonical anti-

commutation relation

{Ψ(n), Ψ̄(n′)} = δnn′ , and {Ψ(n),Ψ(n′)} = {Ψ̄(n), Ψ̄(n′)} = 0. (2.75)

The energy spectrum of this free-fermion model is described by fermionic excitation modes

of energies

εφ = J
√

1 + h2 − 2h cosφ (2.76)

where φ ∈ [−π, π] is the wave number. The lowest excitation, equivalent with the energy

gap, occurs at φ = 0:

εmin = J |h− 1| . (2.77)

We see that the model is gapless at the critical point h = 1, implying that it is the

critical point h = 1 that marks the phase boundary between order and disorder phase. In

this regime, fermions with low momenta are permitted to carry arbitrarily low energies.

The critical point is in the Ising universality class and it is described by the Ising model

of conformal field theory with central charge c = 1/2 [159], which is the massless free

Majorana field theory.

Further, it is also possible to describe the Ising model close to the criticality by a free

massive quantum field theory which is expressed in terms of fermion fields . To achieve

this, we take the scaling limit, namely the limits a→ 0 and h→ 1. We define the velocity

of the excitations v = Ja and their mass m = J(h − 1). In order to obtain a gapped

scaling theory, another limit J →∞ needs to be taken in such a way that the mass m is

constant. In the continuum limit a → 0, we replace the fermionic operators Ψ(n), Ψ̄(n)

by the continuum Fermi fields Ψ(x), Ψ̄(x) which obey the continuum anti-commutation

relations

{Ψ(x),Ψ(x′)} = δ(x− x′) , {Ψ̄(x), Ψ̄(x′)} = δ(x− x′) , (2.78)

identifying the coordinates x = na. We perform all the aforementioned limits while holding

m, v, Ψ(x) and Ψ̄(x) fixed. In these limits, with the replacement
∑

n →
∫
dx, we expand

in (2.73) the continuum fields Ψ(x), Ψ̄(x) to their first order in the spacial gradients, and
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we then obtain a continuum Hamiltonian

H = −i
∫
dx
(
vΨ̄(x)∂xΨ(x)−mΨ̄(x)Ψ(x)

)
(2.79)

leading to the vanishing of the irrelevant short wavelength degrees of freedom. We then

perform the replacement

ψ(x) =
Ψ(x) + Ψ̄(x)√

2
, ψ(x) =

Ψ(x)− Ψ̄(x)√
2

(2.80)

where ψ(x) and ψ̄(x) are a new set of Majorana components satisfying anti-commutation

relations

{ψ(x), ψ(x′)} = δ(x− x′) , {ψ̄(x), ψ̄(x′)} = δ(x− x′) , (2.81)

and this gives rise to the free massive Majorana field theory with the Hamiltonian

H = −i
∫
dx
[v

2

(
ψ̄(x)∂xψ̄(x)− ψ(x)∂xψ(x)

)
+mψ(x)ψ̄(x)

]
. (2.82)

where in the following we set v = 1.

2.4.3 The free massive Majorana theory

In the free Majorana theory with mass m, fermion operators evolving in real time t can

be expressed in terms of mode operators a(θ) and a†(θ):

ψ(x, t) =
1

2

√
m

π

∫
dθ eθ/2

(
a(θ) eipθx−iEθt + a†(θ) e−ipθx+iEθt

)
ψ̄(x, t) = − i

2

√
m

π

∫
dθ e−θ/2

(
a(θ) eipθx−iEθt − a†(θ) e−ipθx+iEθt

)
(2.83)

where pθ and Eθ are the relativistic momentum and energy associated to the rapidity θ

and with mass m

pθ = m sinh θ , Eθ = m cosh θ (2.84)

and where the mode operators a(θ) and their Hermitian conjugate a†(θ) obey the canonical

anti-commutation relations

{a(θ), a(θ′)} = {a†(θ), a†(θ′)} = 0 , {a(θ), a†(θ′)} = δ(θ − θ′) . (2.85)

The fermion operators are the solution of the equation of motion

∂̄ψ(x, t) =
m

2
ψ̄(x, t) , ∂ψ̄(x, t) =

m

2
ψ(x, t) (2.86)
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with

∂ ≡ ∂x − ∂t , ∂̄ ≡ ∂x + ∂t

and they satisfy the equal-time anti-commutation relations

{ψ(x), ψ(x′)} = δ(x− x′) , {ψ̄(x), ψ̄(x′)} = δ(x− x′) (2.87)

with other anticommutators vanishing. The Hamiltonian (2.82) can also be given in terms

of mode operators:

H =

∫
dθm cosh θ a†(θ)a(θ) (2.88)

and it is bounded from below on H. Similarly the momentum operator is

P =

∫
dθm sinh θ a†(θ)a(θ) . (2.89)

The spectrum of the free massive Majorana theory contains only one particle type. The

space of in-states is a Fock space H over the canonical anti-commutation relations (2.85)

which is in agreement with Zamolodchikov’s algebra for the Ising model with two-particle

scattering matrix −1. With the vacuum state |vac〉 defined by a(θ)|vac〉 = 0, the n-particle

asymptotic in-states are identified as

|θ1, . . . , θn〉 = a†(θ1) · · · a†(θn)|vac〉 , θ1 > · · · > θn

and the same state with different rapidity orderings can be obtained via the canonical

anti-commutation relations (2.85). The inner products are normalized as follow

〈θ′1, . . . , θ′n|θ1, . . . θn〉 =
n∏
i=1

δ(θi − θ′i), θ′1 > · · · > θ′n and θ1 > · · · > θn, (2.90)

where we denote 〈θ1, . . . , θn| ≡ |θ1, . . . , θn〉†. As we discussed before, the vacuum correla-

tion functions can be obtained via the spectral decomposition which follows the statement

that the basis of asymptotic states can be used to resolve the identity. In the Ising model,

the resolution of the identity is given by

1 =

∞∑
n=0

1

n!

∫ ∞
−∞

dθ1 · · ·
∫ ∞
−∞

dθn |θ1, . . . , θn〉〈θ1, . . . , θn| (2.91)

where n! in the denominator comes from overcounting the same state with different order-

ings of rapidities.
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2.5 U(1) Dirac model

In the free massive U(1) Dirac theory, fermion operators with evolution in real time t are

given in terms of mode operators D±(θ) and D†±(θ):

ΨR(x, t) =
√
m

∫
dθeθ/2

(
D†+(θ)eitEθ−ixpθ − iD−(θ)e−itEθ+ixpθ

)
ΨL(x, t) =

√
m

∫
dθe−θ/2

(
iD†+(θ)eitEθ−ixpθ −D−(θ)e−itEθ+ixpθ

)
(2.92)

where

Eθ = m cosh θ ,

pθ = m sinh θ .

The Hermitian Conjugation of fermion operators can be obtained by directly taking Her-

mitian Conjugation of (2.92):

Ψ†R(x, t) =
√
m

∫
dθeθ/2

(
iD†−(θ)eitEθ−ixpθ +D+(θ)e−itEθ+ixpθ

)
Ψ†L(x, t) =

√
m

∫
dθe−θ/2

(
−D†−(θ)eitEθ−ixpθ − iD+(θ)e−itEθ+ixpθ

)
. (2.93)

The creation and annihilation operators satisfy canonical anti-commutation relations:

{D†+(θ1), D+(θ2)} = δ(θ1 − θ2)

{D†−(θ1), D−(θ2)} = δ(θ1 − θ2) (2.94)

with other anti-commutators vanishing. The fermion operators satisfy the equations of

motion

∂̄ΨR = mΨL, ∂ΨL = mΨR

∂̄Ψ†R = mΨ†L, ∂Ψ†L = mΨ†R (2.95)

and their anti-commutation relations are

{ΨR(x1),Ψ†R(x2)} = 4πδ(x1 − x2)

{ΨL(x1),Ψ†L(x2)} = 4πδ(x1 − x2) (2.96)
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with other anti-commutators vanishing. The Hamiltonian and momentum operators are:

H =

∫
dθm cosh θ

(
D†+(θ)D+(θ) +D†−(θ)D−(θ)

)
,

P =

∫
dθm sinh θ

(
D†+(θ)D+(θ) +D†−(θ)D−(θ)

)
. (2.97)

The spectrum of the free massive U(1) Dirac theory contains two types of particle with

charges ±. The space of in-states is simply the Fock space H over algebra (2.94) with

vacuum state defined by D±|vac〉 = 0 and with multi-particle states denoted by

|θ1, . . . , θN 〉ν1,...,νN := D†ν1
· · ·D†νN |vac〉, θ1 > · · · > θN (2.98)

where νi are signs (±), corresponding with particle type. Again, the asymptotic states

with different rapidity orderings can be obtained from the associated in-state by the anti-

commutation relations (2.94). The inner products are normalized as follows:

ν′1,...,ν
′
N
〈θ′1, . . . , θ′N |θ1, . . . , θN 〉ν1,...,νN =

N∏
i=1

δνiν′iδ(θi − θ
′
i) (2.99)

with the notation ν1,...,νN 〈θ1, . . . , θN | ≡ |θ1, . . . , θN 〉†ν1,...,νN . The resolution of the identity

are then written as:

1 =
∞∑
N=0

1

N !

∑
ν1,...,νN

∫ ∞
−∞

dθ1 · · ·
∫ ∞
−∞

dθN |θ1, . . . , θN 〉ν1,...,νN ν1,...,νN 〈θ1, . . . , θN | (2.100)

where N ! in the denominator comes from overcounting the same state with different or-

derings of rapidities.



Chapter 3

Twist fields in free fermion models

3.1 General definition

In QFT, if a field O(x) commutes with the Hamiltonian density h(x′), related to the

Hamiltonian by

H =

∫
dxh(x),

at space-like distances:

[O(x), h(x′)] = 0 , x 6= x′ , (3.1)

this field is called a local field. Locality means quantum mechanical independence with

respect to the energy field at space-like distances. Let us then introduce the concept of

mutual locality: if two fields O1(x), O2(x′) commute (for bosonic fields) or anticommute

(for fermionic fields) at space-like distances

[O1(x),O2(x′)] = 0 or {O1(x),O2(x′)} = 0 , x 6= x′ , (3.2)

they are called local with respect to each other. On the other hand, if two fields O1(x),

O2(x′) neither commute nor anticommute at space-like distances and they satisfy

O1(x)O2(x′) = (−1)fO1
fO2e−2πiω(O1,O2)Θ(x−x′)O2(x′)O1(x) , x 6= x′ (3.3)

or

O1(x)O2(x′) = (−1)fO1
fO2e2πiω(O1,O2)Θ(x′−x)O2(x′)O1(x) , x 6= x′ (3.4)

where ω(O1,O2) is the semi-locality index we introduced before, Θ(x− x′) is Heaviside’s

step function (Θ(x− x′) is 1 for x > x′ and 0 for x < x′) , fO = 1 for O fermionic, fO = 0

for O bosonic, they are called semi-local with respect to each other. Generalizing the

34
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relation (3.3) and (3.4) for semi-locality, we introduce the twist field: it is the field which

is associated with a global internal symmetry of a QFT model and exhibit the property of

semi-locality generated by this symmetry transformation. To be more explicit, we consider

a twist field Tg associated to a global internal symmetry g. If gO 6= O, where O is a local

field, then the twist field Tg is said to be semi-local with respect to O. The property of

this semi-locality is described by the equal-time exchange relation

O(x)Tg(x
′) = (−1)fTgfOgΘ(x−x′)Tg(x

′)O(x) , x 6= x′ (3.5)

or

O(x)Tg(x
′) = (−1)fTgfOg−Θ(x′−x)Tg(x

′)O(x) , x 6= x′. (3.6)

Hence, the twist field Tg is an interacting field. Now we can see that the semi-locality

defined through (3.3) or (3.4) is just a special case in which g is the U(1) symmetry.

In order to gain more intuition into the semi-locality of twist fields, we consider it in

Feynmann’s path integral formulation of QFT, in which a product of operators inside

a correlation function 〈vac|O1(x1, t1) · · · On(xn, tn)|vac〉 is required to be time-ordered so

that its correlation function can be defined through the functional integral:∫
[dΨ]eiS[Ψ]O1(x1, t1) · · · On(xn, tn) . (3.7)

In this way, the semi-locality of the twist field can be reformulated by the following

lim
ε→0+

[∫
[dΨ]eiS[Ψ]

(
· · · O(x, ε)Tg(x

′, 0) · · ·
)]

= lim
ε→0+

[∫
[dΨ]eiS[Ψ]

(
· · · g±Θ(±(x−x′))O(x,−ε)Tg(x′, 0) · · ·

)]
, x 6= x′ (3.8)

where O is a local field and · · · represents insertions of other local fields at different

space-time points. The sign ± is synchronized and only one choice of sign can be chosen,

which is valid for both bosonic and fermionic fields. To further interpret this semi-locality,

we exploit the imaginary time formalism, since with an imaginary time two operators

are always separated by a space-like distance. The equation (3.8) is then rewritten by

replacing ε with −iε:

lim
ε→0+

[∫
[dΨ]eiS[Ψ]

(
· · · O(x,−iε)Tg(x′, 0) · · ·

)]
= lim

ε→0+

[∫
[dΨ]eiS[Ψ]

(
· · · g±Θ(±(x−x′))O(x, iε)Tg(x

′, 0) · · ·
)]

, x 6= x′ (3.9)
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which is allowed in Feynmann’s path integral formalism. To be more precise, we consider

the functional integral

F (x, t) =

∫
[dΨ]eiS[Ψ] (· · · O(x, t)Tg(0, 0) · · ·) (3.10)

as a function of x and t, and analytically continue it in the variable t from a space-like

region |x| > |t| to the purely imaginary region of time t = −iτ , with τ real. Employing

the complex coordinates z = x+ iτ and z̄ = x− iτ , the semi-locality of the twist field can

be interpreted by the discontinuity of the function F when going once around the point

x = 0, τ = 0 anti-clockwise:

F
(
e−iφz, eiφz̄

) ∣∣∣
φ:07→2π

= F ′(z, z̄) (3.11)

where

F ′(z, z̄) =

∫
[dΨ]eiS[Ψ] (· · · gO(z, z̄)Tg(0, 0) · · ·) .

This implies that the function F is defined on a multi-sheeted covering of R2 with a branch

point at (0, 0) and it should have a branch cut on z ∈ R+ or on z ∈ R− according to the

synchronized sign ± in (3.9). From this, the twist field Tg can be interpreted as a branch

point of a cut through which any other local field transforms inside the correlation function

as

O 7→ gO. (3.12)

Let us denote by O(x, τ) the fields O(x,−iτ) in Euclidean theory which are analytically

continued from the space-like region as discussed above and we then can formally define

a twist field through the path integral∫
[dΨ]eiS[Ψ]Tg(0, 0)O1(x1, τ1) · · · On(xn, τn) =

∫
C(0,0)

[dΨ]eiS[Ψ]O1(x1, τ1) · · · On(xn, τn)

(3.13)

where C(0, 0) is a quasi-periodicity condition imposed on the fundamental fields Ψ in the

functional integral:

C(0, 0) :

{
Ψ(x, 0+) = gΨ(x, 0−) (x > 0)

Ψ(x, 0+) = Ψ(x, 0−) (x < 0).
(3.14)

As we see, in order for the functional integral (3.13) to represent the insertion a twist field,

we have to take a cut in the plane over which the integration is taken. This cut starts at

the point (0,0) where the twist field Tg is inserted in the functional integral, and it ends

at the infinity point. The fundamental fields or any other fields O such that gO 6= O are

discontinuous across this cut. The twist field Tg is local with respect to the Hamiltonian



37

density, namely it is a local field, due to the invariance of the Hamiltonian density under

the symmetry transformation g. As a consequence of this, the functional integral (3.13)

is independent of the shape of the cut x > 0 and the shape changing only produces g

transformations of the fields that the cut may cross while moving. To make this more

explicit, let us consider two cuts l1 and l2 both of which start from (0, 0) and end at the

infinity, with l3 = l1 ∪ l2 a closed path, and the quasi-periodicity condition is satisfied on

the each side of the two cuts. We suppose that the cut l1 is above the cut l2. When the

cut in the path integral is moving from l1 to l2 clockwise, all the fields inside l3 transform

according to the symmetry g, adding a contribution to the path integral:∫
l1

[dΨ]eiS[Ψ]O1(x1, τ1) · · · On(xn, τn) =

∫
l2

[dΨ]eiS[Ψ]e
−
∫
C3
dsµjνεµνO1(x1, τ1) · · · On(xn, τn)

(3.15)

where dsµ is the line element along path l3, jν is the Noether current associated to the

symmetry g, and the action in the isolated region is preserved under the transformation g.

The extra contribution has the effect of performing the transformation g of the fields inside

the path l3. Now we get a similar path integral with the new cut l2, across which the quasi-

periodicity condition still holds, and the only difference stems from the transformation g

of all the fields present inside the path l3.

Now let us turn our attention on the uniqueness of the twist field. It is possible that a set of

fields have the same twist-field effect, for instance, the quasi-periodicity condition (3.14),

but they have different scaling dimensions. In the language of conformal field theory,

among the twist fields associated to the same global symmetry, the one with the lowest

scaling dimension is called the primary twist field and those with higher dimensions are

called its descendants. Primary twist fields can be uniquely defined by the semi-locality

condition (3.5) or (3.6), and the condition that it has the lowest scaling dimension and

be invariant under all symmetries of the model that commutes with g. In this thesis, we

focus on the primary twist fields.

In the following sections, we will introduce twist fields in the Ising model, in the U(1) Dirac

model, and in the n-copy Ising model, which are associated to different global symmetries.

3.2 Twist fields in the Ising model

As we introduced before, a correlation function of local operators in the Ising lattice model

can reproduce in the scaling limit a correlation function of local fields in the QFT, with a

correspondence between the local fields and the local operators, for instance, (2.70). For

the Hamiltonian (2.57), the observable σx is related, in the scaling limit, to two fields in
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the Majorana theory: twist fields σ and µ associated with Z2 symmetry:

(ψ, ψ̄) 7→ (−ψ,−ψ̄) (3.16)

which preserves the Euclidean action

SE [ψ, ψ̄] = −i
∫
d2x [ψ∂̄E ψ − ψ̄∂E ψ̄ + 2mψψ̄] (3.17)

with notations ∂E ≡ (1/2)(∂/∂x− i∂/∂τ) and ∂̄E ≡ (1/2)(∂/∂x+ i∂/∂τ). The twist field

σ is obtained in the order phase h → 1+ and hence called order field. The order field

σ only generates even numbers of particles and hence is of bosonic statistics. The order

field σ has nonzero vacuum expectation value since it couples states with even numbers of

particles. By contrast, the twist field µ is called disorder field since it is obtained in the

disorder phase h→ 1−. The disorder field µ only generates odd numbers of particles and

hence is of fermionic statistics. The disorder field µ has vanishing vacuum expectation

value since it couples states with odd numbers of particles. However, order field σ and

disorder field µ share the same scaling dimension 1/8. These field represent the endpoint

of branch cuts through which other fields are affected by the Z2 symmetry transformation

(3.16). These branch cuts, in principle, can be taken arbitrarily. Here, for convention, we

denote by σ+, µ+ twist fields with branch cuts running towards the right direction, and

by σ−, µ− those with branch cuts running towards the left direction. These two types of

twist fields are related to each other by an unitary operator

Z := exp

[
iπ

∫
dθ a†(θ)a(θ)

]
(3.18)

which implements the Z2 symmetry transformation and we then have

σ−(x, t) = σ+(x, t)Z , µ−(x, t) = µ+(x, t)Z . (3.19)

where the multiplication by Z does not change the scaling dimension. Twist fields ση and

µη, with η = ±, are semi-local with respect to the free Majorana fermion fields and this

semi-locality is charaterized by their twist conditions:

ψ(x)ση(0) =


(−δη− + δη+)ση(0)ψ(x) (x < 0)

(−δη+ + δη−)ση(0)ψ(x) (x > 0)

(3.20)
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and

ψ(x)µη(0) =


(+δη− − δη+)µη(0)ψ(x) (x < 0)

(+δη+ − δη−)µη(0)ψ(x) (x > 0)

(3.21)

with similar twist conditions holding with the replacement ψ 7→ ψ̄. These twist conditions

are in agreement with the relation (3.19). Along with the requirement that twist fields σ±

and µ± be of the lowest scaling dimension, these fields can be uniquely defined, up to the

normalization, by their twist conditions (3.20) and (3.21).

Even though the Ising model is free-fermion model with a trivial scattering matrix, the

twist field ση and µη are interacting fields rather than free fields. As a result, the form

factors of these twist fields are nontrivial. Thanks to the twist conditions (3.20) and (3.21),

the form factors of order fields ση and disorder fields µη [5, 21, 126] are given by

fσ
η
(θ1, . . . , θN )

N even
=

(
i√
2π

)N
〈σ〉

∏
1≤i<j≤N

tanh

(
θj − θi

2

)
(3.22)

fµ
η
(θ1, . . . , θN )

N odd
= η

1√
i

(
i√
2π

)N
〈σ〉

∏
1≤i<j≤N

tanh

(
θj − θi

2

)
(3.23)

where 〈σ〉 := 〈vac|ση|vac〉 is the vacuum expectation value and it has been computed

as m
1
8 2

1
12 e−

1
8A

3
2 with A a Glaisher’s constant [125]. The order fields ση have nonzero

form factors for even particle numbers only and the disorder fields µη have nonzero form

factors for odd particle numbers only. All other matrix elements can be evaluated by using

crossing relations [1, 3, 5, 126], and that [21]

(ση)† = ση, (µη)† = ηµη . (3.24)

The explicit matrix elements for the fields ση and µη, provided as above, can be seen as

another way of uniquely defining these fields. The form factors (3.22), (3.23) as well as

their normalizations are in agreement with (3.19).

Lastly, it is worth noting that higher-particle form factors of the twist fields ση can be

obtained using Wick’s theorem on the particles, with a contraction given by the two-

particle form factor of ση. Similarly, the twist fields µη with higher number of particles

can also be factorized into a product of one-particle form factors of µη and two-particle

form factors of ση with the help of Wick’s theorem. The factorization of form factors

indicates that the twist fields ση and µη are normalized exponentials of bilinear expressions

in fermion operators (the overall normalization is made finite by normal ordering). For
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instance, the order fields ση can be expressed as

ση = 〈σ〉 : exp

[∑
ε1,ε2

∫
dθ1dθ2 F

η
ε1,ε2(θ1, θ2)aε1(θ1)aε2(θ2)

]
: (3.25)

where

F ηε1,ε2(θ1, θ2) = −1

2

i

2π
e−ε1

iπ
4 e−ε2

iπ
4 tanh

(
θ2 − θ1 + ηi(−ε2 + ε1)

2

)ε1ε2
(3.26)

are the matrix elements of ση on the Hilbert space, up to the factor − 1
2〈σ〉 . This expres-

sion along with the twist conditions (3.20) provide a third way to uniquely define, up to

normalization, the order fields ση. Similar argument holds for the disorder fields µη.

3.3 Twist fields in the U(1) Dirac model

3.3.1 Bosonic primary twist fields

The Dirac theory possesses a U(1) internal symmetry ΨR,L 7→ e2πiαΨR,L where for now we

consider 0 ≤ α < 1 and there exists a family of primary twist fields σα(x, t) associated with

this symmetry, which are local, Lorentz spinless, and U(1) neutral, with dimension α2 [48].

These fields generate even number of fermions and hence are of bosonic statistics. The

bosonic primary twist fields with negative index can be defined by Hermitian conjugation:

σ†α = σ−α , 0 ≤ α < 1 . (3.27)

Twist fields σα are associated with branch cuts through which other fields are affected by

U(1) symmetry transformation. These branch cuts, in principle, can be taken arbitrarily.

Here, for convention, we denote by σ+
α the twist fields with branch cuts running towards the

right direction, while by σ−α the ones with branch cuts running towards the left direction.

These two types of twist fields are related to each other by an unitary operator

Z := exp

[∑
ν

2πiνα

∫
dθD†ν(θ)Dν(θ)

]
(3.28)

which implements the U(1) symmetry transformation and we have

σ−α (x, t) = σ+
α (x, t)Z . (3.29)
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Twist fields σηα with η = ± are semi-local with respect to the Dirac fermion fields, and are

characterized by equal-time exchange relations

ΨR,L(x)σηα(0) =

{ (
δη,−e

2πiηα + δη,+
)
σηα(0)ΨR,L(x) (x < 0)(

δη,+e
2πiηα + δη,−

)
σηα(0)ΨR,L(x) (x > 0)

(3.30)

and

Ψ†R,L(x)σηα(0) =

{ (
δη,−e

−2πiηα + δη,+
)
σηα(0)Ψ†R,L(x) (x < 0)(

δη,+e
−2πiηα + δη,−

)
σηα(0)Ψ†R,L(x) (x > 0) .

(3.31)

Thanks to these twist conditions, two-particle form factors of twist fields σηα for −1 < α < 1

can be fixed, up to normalization, [44, 132–134] (see also appendix A of [47]):

〈vac|σηα(0)|θ1, θ2〉ν1,ν2 = δν1,−ν2 ν1
sin(πα)

2πi

eν1α(θ1−θ2)

cosh θ1−θ2
2

〈σα〉 (3.32)

where 〈σα〉 := 〈vac|σηα|vac〉 = cαm
α2

is the vacuum expectation value. The dimensionless

constants cα are computed in [135, 136]. All other higher-particle form factors can be

obtained by Wick’s theorem due to the fact that twist fields σηα can be expressed as

normal-ordered exponentials of bilinear expressions in Dirac fermion operators:

σηα = 〈σα〉

: exp

 ∑
(ν1,ε1)(ν2,ε2)

∫
dθ1dθ2F

η
(ν1,ε1)(ν2,ε2)(θ1, θ2)Dε1

ν1
(θ1)Dε2

ν2
(θ2)

 :

 (3.33)

where

F η(ν1,ε1)(ν2,ε2)(θ1, θ2) = −1

2

[
δε1,ε2δν1,−ν2 ν1ε1

sin(πα)

2πi

eν1ε1α(θ1−θ2)

cosh( θ1−θ22 )
+

δε1,−ε2δν1,ν2 iν1
sin(πα)

2πi

eν1ε1α(θ1−θ2)e−iπην1α

sinh
(
θ1−θ2+ηi(ε1−ε2)0+

2

)
 . (3.34)

are the matrix elements of σηα on the Hilbert space, up to the factor − 1
2〈σα〉 . Note that

twist fields σηα have non-zero form factors only for even particle numbers since they are

U(1) neutral. Other matrix elements can be evaluated using crossing symmetry. Finally,

it is natural for us to define twist fields σα for all α ∈ R \ Z∗ by noticing that their form

factors for fixed rapidities are analytic functions of α on α ∈ C \Z∗, with general poles on

Z∗ := Z \ {0}.
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3.3.2 Fermionic primary twist fields

In the U(1) Dirac theory, there also exist two families of primary twist fields of fermionic

statistics, which can be obtained as the coefficients occurring in the operator product

expansions (OPEs) of primary twist fields σα with the Dirac fields ΨR and Ψ†R, for all

α ∈ R \ Z∗:

σα+1,α(x, t) = lim
z→w

(z − w)αΨ†R(x′, t′)σα(x, t) (3.35)

σα−1,α(x, t) = lim
z→w

(z − w)−αΨR(x′, t′)σα(x, t) (3.36)

where z = −1
2(x′ − t′) and w = −1

2(x− t) with time ordering t′ > t. The factors (z −w)α

and (z − w)−α are taken on the principal branch. Twist fields σα±1,α have charges ∓ ,

spins ±α+ 1/2, and dimensions α2 ± α+ 1/2. Their Hermitian conjugations are given by

σ†α±1,α = σ−α∓1,−α . (3.37)

Again, we define two types of fermionic primary twist fields: σ+
α±1,α with branch cuts on

the right and σ−α±1,α with branch cuts on the left, which are related to each other by the

unitary operator Z

σ−α±1,α = σ+
α±1,αZ . (3.38)

From the definitions (3.35) (3.36) and twist properties of σηα (3.30) (3.31), these twist fields

should also be parameterized by non-trivial equal-time exchange relations with respect to

the Dirac fermion fields

ΨR,L(x)σηα±1,α(0) =

{
−
(
δη,−e

2πiηα + δη,+
)
σηα±1,α(0)ΨR,L(x) (x < 0)

−
(
δη,+e

2πiηα + δη,−
)
σηα±1,α(0)ΨR,L(x) (x > 0)

(3.39)

and

Ψ†R,L(x)σηα±1,α(0) =

{
−
(
δη,−e

−2πiηα + δη,+
)
σηα±1,α(0)Ψ†R,L(x) (x < 0)

−
(
δη,+e

−2πiηα + δη,−
)
σηα±1,α(0)Ψ†R,L(x) (x > 0) .

(3.40)

One-particle form factors of these twist fields can be deduced in the OPEs [49]:

〈vac|σηα+1,α(0)|θ〉ν = δν,+
e−iπα/2e2πiναδη,−

Γ(1 + α)
mα+1/2e(α+1/2)θ〈σα〉 (3.41)

〈vac|σηα−1,α(0)|θ〉ν = −iδν,−
eiπα/2e2πiναδη,−

Γ(1− α)
m−α+1/2e(−α+1/2)θ〈σα〉 . (3.42)
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Any higher-particle form factors can be factorised into a product of the associated one-

particle form factor and two-particle form factors due to Wick’s theorem. Other matrix

elements can be obtained by crossing symmetry.

It is worth noting that we can obtain the same families of fermionic primary twist fields

σα,α−1 and σα,α+1 [49, 50] by shifting α 7→ α − 1 in σα+1,α and shifting α 7→ α + 1 in

σα−1,α respectively. These fields are just a relabeling of the same fermionic primary twist

fields.

3.4 Twist fields in the n-copy Ising model

The branch-point twist fields originally arose in CFT, in the context of evaluating partition

functions on Riemann surfaces [127]. But their most important application is probably in

the evaluation of entanglement entropy [45, 46, 128–131]. In this section, we will present

a brief review of the branch-point twist fields, which is mainly based on the literature [46].

Consider a model which is formed by n independent copies of the Ising model. Particles

on different copies do not interact. The lagrangian density of this n-copy Ising model is

the sum of the lagrangian density of every copy and it can be written as

L(n)[ψ1, . . . , ψn](x) = L[ψ1](x) + · · ·+ L[ψn](x) (3.43)

where ψi is the free Majorana field on the ith copy of the model. It is obvious that this

model possesses a Zn symmetry under cyclic exchange of the copies:

L(n)[gψ1, . . . , gψn](x) = L(n)[ψ1, . . . , ψn](x) (3.44)

where g is the transformation that permutes the copy numbers cyclically:

gψi = ψi+1 (3.45)

with i = 1, · · · , n, n+ 1 ≡ 1. The branch-point twist field T is the twist field associated to

the symmetry g. Denoting by T + and T − the twist fields with branch cuts on the right

and on the left, respectively, their equal-time exchange relations with respect to the free

Majorana fields are:

ψi(x)T η(0) =

{
T η(0) (δη+ψi(x) + δη−ψi+1(x)) (x < 0)

T η(0) (δη−ψi(x) + δη+ψi+1(x)) (x > 0)
(3.46)



44

with η = ±. In addition, we can define another branch-point twist field T̃ which is

associated to the symmetry g−1 under the opposite cyclic exchange g−1ψi = ψi−1 with

i − n = i. Similarly, we denote by T̃ + and T̃ − the twist fields with branch cuts on the

right and on the left, respectively. They also have the equal-time exchange relations with

respect to the free Majorana fields:

ψi(x)T̃ η(0) =

{
T̃ η(0) (δη+ψi(x) + δη−ψi−1(x)) (x < 0)

T̃ η(0) (δη−ψi(x) + δη+ψi−1(x)) (x > 0)
(3.47)

with the identification i−n = i. It is implied from (3.46) and (3.47) that the branch-point

twist field T̃ η is the Hermitian conjugate of the branch-point twist field T η:

T̃ η = (T η)† . (3.48)

These twist fields are spinless and they are primary fields with the lowest possible scaling

dimension (they have the same scaling dimension) [127]:

dn =
1

24
(n− 1

n
) . (3.49)

The branch-point twist fields T η and T̃ η, defined by (3.46) and (3.47) respectively, can

be uniquely fixed by the requirement that they have the lowest scaling dimension given

by (3.49) and they are invariant under all symmetries of the n-copy Ising model which

commute with g. For our limited purpose, we will not review in this section the form

factors of branch-point twist fields. We refer the reader to the papers [46, 131].

It has been shown in [46] that there exists a relation between the branch-point twist fields

in the n-copy Ising model and the U(1) twist fields in the n-copy Dirac theory. To see this

relation, we construct an n-copy free Dirac fermion model by doubling the n-copy Ising

model. We denote the fundamental real Majorana fermion fields for each n-copy Ising

model by ψa,j , ψ̄a,j and ψb,j , ψ̄b,j for j = 1, · · · , n, respectively, and the fundamental Dirac

spinor fermion field by

Ψj =

(
ΨR,j

ΨL,j

)
.

Then we have the identification:

ΨR,j =
1√
2

(ψa,j + iψb,j), ΨL,j =
1√
2

(ψ̄a,j − iψ̄b,j) . (3.50)
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In order for different copies of the Dirac fermions to anti-commute with each other, we

define a new basis 
Ψac

1
...

Ψac
n

 (3.51)

with scattering matrix −1 among different copies. Accordingly, the branch-point twist field

in the n-copy Dirac theory, which we denote by T ηDirac, has modified exchange relations

with respect to the Dirac fermions:

Ψac
j (x)T +

Dirac(0) =


T +

Dirac(0)Ψac
j (x) for j = 1, · · · , n (x < 0)

T +
Dirac(0)Ψac

j+1(x) for j = 1, · · · , n− 1 (x > 0)

−T +
Dirac(0)Ψac

1 (x) for j = n (x > 0)

(3.52)

and

Ψac
j (x)T −Dirac(0) =


T −Dirac(0)Ψac

j (x) for j = 1, · · · , n (x > 0)

T −Dirac(0)Ψac
j+1(x) for j = 1, · · · , n− 1 (x < 0)

−T −Dirac(0)Ψac
1 (x) for j = n (x < 0) .

(3.53)

Then, we diagonalise the branch-point twist fields in the n-copy Dirac theory by performing

a SU(n) transformation of the basis (3.51) and the new basis after this transformation

can be considered as n independent Dirac fermions. In this new basis, the branch-point

twist fields can be written as a product of U(1) twist fields acting on these independent

Dirac fermions from different copies:

T ηDirac =
∏
k

ση(k,αk) (3.54)

where k = −n
2 + 1, · · · , n2 represents the copy number and αk = 2k−1

2n is associated with

the U(1) element e2πiαk , for αk ∈ [0, 1]. It is worth mentioning that the relation (3.54) is

only valid in the case of even n. For n odd, the dimension of the branch-point twist field

constructed from this factorisation relation does not agree with (3.49) which is predicted

by the conformal field theory. More details of the derivation of (3.54) can be found in

Appendix B of [46]. On the other hand, from the point of view that the n-copy Dirac

theory is a doubled n-copy Ising model, the branch-point twist field T ηDirac has the relation

T ηDirac = T ηa ⊗ T
η
b (3.55)

where T ηa and T ηb are the branch-point twist fields in the copies a and b of the n-copy Ising

model, respectively.



Chapter 4

Liouville space and form factors in

mixed states

In quantum field theory, correlation functions in mixed states can be described via a trace

expression involving the density matrix ρ:

〈O(x, t) · · ·〉ρ :=
Tr (ρO(x, t) · · ·)

Tr (ρ)
(4.1)

where O is a local field and · · · represents other local fields at different positions. The

density matrix can have different forms according to different mixed states it describes.

For instance, in thermal equilibrium with a Gibbs ensemble, the (un-normalized) density

matrix is specialized as

ρ = ρβ := e−βH ,

where β is the inverse temperature and H is the Hamiltonian. In the Ising model, the

density matrix for a non-equilibrium steady state sustaining a constant energy flow, admits

the form [39]

ρ = ρness := e−βl
∫∞
0 dθm cosh θ a†(θ)a(θ)−βr

∫ 0
−∞ dθm cosh θ a†(θ)a(θ) (4.2)

where β−1
l and β−1

r are the left- and right-temperatures of the asymptotic baths driving

the steady state, and where a†(θ) and a(θ) are asymptotic operators of creation and anni-

hilation type. Further, it has been argued that after quantum quenches, the density matrix

becomes the exponential of a linear combination of local conserved charges (generalized

Gibbs ensemble) [31, 32], and this has been demonstrated in the Ising model [34, 35]. Since

local conserved charges in the Ising model have the form
∫
dθ esθ a†(θ)a(θ), the density

matrix in this case is also the exponential of an integral over particle densities a†(θ)a(θ).

46
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Mixed-state correlation functions can be evaluated from the trace expression (4.1) by

using the knowledge of the matrix elements of local fields in the vacuum. However, this

method exhibits great difficulty, for instance, in the calculation of correlation functions

for twist fields. This difficulty stems from two problems. One is that the re-summation

of infinite number of states is required in order to gain the full temperature dependence.

Another problem comes with the realization that summing explicitly over diagonal matrix

elements generically suffers from divergencies at colliding rapidities. To overcome these two

problems, we employ a novel approach based on the Liouville space and the mixed-state

form factors.

4.1 Liouville space in general

Recall that at zero temperature, correlation functions are vacuum expectation values in

the Hilbert space, and the large-distance form factor expansion (2.50) can be obtained

by using the completeness of the basis of asymptotic states. Thanks to the Gelfand-

Naimark-Segal (GNS) construction (see for instance the book [64]), a new Hilbert space

can be constructed above a vacuum associated with a density matrix (or more precisely

with a state, seen as a linear functional on a C∗-algebra), so that mixed-state correlation

functions are vacuum expectation values in this space. The resulting Hilbert space is

basically the space of operators (more precisely, a certain completion of a certain quotient

of the C∗-algebra), and it is referred to as the Liouville space (sometimes referred to as

the associated Hilbert space) [56–58]. In this fashion, mixed-state correlation functions

can be obtained, using the resolution of the identity with respect to the Liouville space,

in terms of a “form factor expansion”. The idea of Liouville space arises from the theory

of thermo-field dynamics. To our knowledge, it was in [21, 23] that the Liouville-space

idea was applied for the first time to the form factor program in integrable quantum field

theory. It is not our intention to go into the delicate details of how to construct a C∗-

algebra in order to mathematically have the ingredients necessary for the application of the

GNS construction. We will rather provide some basic principles in a slightly different but

equivalent formulation in order to explain some of the subtleties involved in the process

of obtaining a form factor expansion. Combining arguments in [23] and [55], we will

provide in this section an introduction of the Liouville space for general mixed states with

diagonal density matrices in general integrable models of quantum field theory and define

the associated mixed-state form factors.
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4.1.1 Formal structure

We consider the space of operators with basis formed by the product of a set of asymptotic

operators of creation and annihilation type V ε1
a1

(θ1) · · ·V εN
aN

(θN ) with θ1 > . . . > θN , εj =

±, aj representing particle types, and N ∈ N. Here and below, we use

V +
a (θ) := V †a (θ), V −a (θ) := V (θ).

As introduced in section 2.1, these asymptotic operators construct the basis of asymptotic

states of Hilbert space and for general integrable models of QFT they satisfy Zamolod-

chikov’s algebra

Vai(θi)Vaj (θj) =
∑
bi,bj

S
bi,bj
ai,aj (θi − θj)Vbj (θj)Vbi(θi) , (4.3)

V †ai(θi)V
†
aj (θj) =

∑
bi,bj

S
bi,bj
ai,aj (θi − θj)V

†
bj

(θj)V
†
bi

(θi), (4.4)

Vai(θi)V
†
aj (θj) =

∑
bi,bj

S
bj ,aj
aj ,bi

(θj − θi)V †bj (θj)Vbi(θi) + δai,ajδ(θi − θj) . (4.5)

This space is called Liouville space Lρ. It is an inner-product space based on End(H),

with inner product specified by the density matrix ρ. With A,B ∈ End(H), we denote the

corresponding Liouville states by |A〉ρ, |B〉ρ respectively, and we set the inner product to

be
ρ〈A|B〉ρ =

Tr
(
ρA†B

)
Tr (ρ)

. (4.6)

We restrict ourselves to density matrices ρ which are diagonal on the asymptotic state

basis:

ρ = exp

[
−
∫
dθ
∑
a

Wa(θ)V
†
a (θ)Va(θ)

]
(4.7)

where the functions Wa(θ) are integrable on the real line and they guarantee a well-

defined density matrix. These choices of density matrix include the usual Gibbs state at

finite temperature or chemical potential, as well as the non-equilibrium steady state (4.2)

and the generalized Gibbs ensembles. We will consider two cases: the untwisted and the

twisted cases. In the untwisted construction, we consider the density matrix (4.7). In the

twisted construction, we consider the density matrix ρ] with the presence of an unitary
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operator which implement the U(1) symmetry:

ρ] = exp

[
−
∫
dθ
∑
a

W ]
a(θ)V †a (θ)Va(θ)

]

= exp

[
−
∫
dθ
∑
a

Wa(θ)V
†
a (θ)Va(θ)− 2πiαQ

]
, α ∈ (0, 1) (4.8)

where Q is the Hermitian conserved charge associated with the U(1) symmetry, given by

Q =

∫
dθ
∑
a

u(a)V †a (θ)Va(θ), (4.9)

with u(a) the charge of the excitation a, and hence W ](θ) = W (θ) + 2iπαu(a). Note that

we could actually employ in the twisted density matrix a more general operator which

is associated with any global symmetry of QFT models. But, due to the limited models

considered in this thesis, we will consider only the density matrix of the form (4.8) in the

twisted case.

For convenience, we define the basis of states in the Liouville space in terms of the usual

annihilation and creation operators, but with a particular normalization:

|vac〉ρ ≡ 1, |θ1, . . . , θN 〉ρ(a1,ε1)···(aN ,εN ) ≡ Q
ρ
(a1,ε1)···(aN ,εN )(θ1, . . . , θN )V ε1

a1
(θ1) · · ·V εN

aN
(θN ),

(4.10)

where the normalization factors are given by

Qρ(a1,ε1)···(aN ,εN )(θ1, . . . , θN ) :=

N∏
i=1

ε
1−fai
i

(
1− (−1)faie−εiWai (θi)

)
(4.11)

with fa corresponding to the statistics of the particle of type a (fa = 1 for the fermionic

particle and fa = 0 for the bosonic particle) and where we refer to a doublet (a, ε) as

representing the type of a “Liouville particle” of rapidity θ. The Liouville space can be

physically interpreted as the space of different types of particles and holes excitations

created from the Liouville vacuum consisting of a finite density of particles with statistical

distribution determined by ρ. In this sense, a basis element |θ1, . . . , θN 〉ρε1,...,εN represents

the presence of N Liouville particles including particles (aj , εj = +) or holes (aj , εj = −)

above the finite density. The choice of the normalization (4.96) leads to nice analytic

properties which will be explained below. To avoid overcounting states with the same

set of rapidities, we need to choose an ordering, for instance, θ1 > · · · > θN . In fact, it

is convenient to define states with other orderings of rapidities by exchanging Liouville

particles. It is worth mentioning that we define states with colliding rapidities as exactly



50

zero:

|θ1, . . . , θN 〉ρ(a1,ε1)···(aN ,εN ) = 0, θi = θj for i 6= j and ai = aj . (4.12)

This means that the exchange of Liouville particles will not give rise to any delta-function

“contact terms” and the Liouville space is formed by a continuous basis without discrete

(or delta-function) part at colliding rapidities. Then the resolution of the identity in

Liouville space can be “symmetrized”, and re-expressed through integrals over the full

line,

1 =
∞∑
N=0

∑
a1,...,aN

∑
ε1,...,εN

∫ ∞
−∞

dθ1 · · · dθN
N !
∏N
i=1 ε

1−fai
i

(
1− (−1)faie−εiWai (θi)

)
×|θ1, . . . , θN 〉ρ(a1,ε1)···(aN ,εN )

ρ
(a1,ε1)···(aN ,εN )〈θ1, . . . , θN | (4.13)

where the colliding-rapidity submanifold of RN has zero measure in a decomposition of

the identity, and where the factor N ! in the denominator arises from overcounting states.

Generally, the basis of states are not orthonormal. However, in the case of diagonal

scattering (and this is the only case which will be considered from now on)

Sb1,b2a1,a2
(θ) = δb1a1

δb2a2
Sa1,a2(θ) (4.14)

(without summation over repeated indices), it is possible to calculate, using the cyclic

property of the trace and Zamolodchikov’s algebra, the following quantities

〈Va(θ)V †a′(θ
′)〉ρ = eWa(θ)〈V †a′(θ

′)Va(θ)〉ρ

= eWa(θ)
(
Sa′,a(θ

′ − θ)〈Va(θ)V †a′(θ
′)〉ρ + (−1)1−faδa,a′δ(θ − θ′)

)
=

δa,a′δ(θ − θ′)
1− (−1)fae−Wa(θ)

(4.15)

and

〈V †a (θ)Va′(θ
′)〉ρ = e−Wa(θ)〈Va′(θ′)V †a (θ)〉ρ

= e−Wa(θ)
(
Sa,a′(θ − θ′)〈Va(θ)V †a′(θ

′)〉ρ + δa,a′δ(θ − θ′)
)

=
(−1)1−faδa,a′δ(θ − θ′)

1− (−1)faeWa(θ)
(4.16)

where (−1)fa ≡ Sa,a(0) = ± and (−1)1−fa = ∓, corresponding to the statistics of the

particle of type a. Following the same recipe, we can further write down the inner products
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of basis states

ρ
(a1,ε1)···(aN ,εN )〈θ1, . . . , θN |θ′1, . . . , θ′N 〉

ρ
(a′1,ε

′
1)···(a′N ,ε

′
N )

=
N∏
i=1

[
Qρai,εi(θi)δai,a′iδεi,ε′iδ(θi − θ

′
i)
]

(4.17)

where we assume the ordering θ1 > · · · > θN and θ′1 > · · · > θ′N . In fact, this is equivalent

with using Wick’s theorem applied to traces of products of asymptotic operators with

contractions given by

〈V ε1
a1

(θ1)V ε2
a2

(θ2)〉ρ =
δε1,−ε2δa1,a2δ(θ1 − θ2)

Qρa1,−ε1(θ1)
. (4.18)

It can seen from (4.17) that the states in Liouville space are not “canonically” normalized

due to the existence of normalization factors.

In order to describe in a convenient way the states in Liouville space, we define Liouville

operators Za,ε(θ) and its hermitian conjugate Z†a,ε(θ) (sometimes referred to as “superop-

erators”) such that

Za,ε(θ)|vac〉ρ = 0, |θ1, . . . , θN 〉ρ(a1,ε1)··· ,(aN ,εN ) = Z†a1,ε1(θ1) · · ·Z†aN ,εN (θN )|vac〉ρ. (4.19)

These operators satisfy the following exchange relations

Zai,εi(θi)Zaj ,εj (θj) = Sγi,γj (θi − θj)Zaj ,εj (θj)Zai,εi(θi) (4.20)

Z†ai,εi(θi)Z
†
aj ,εj (θj) = Sγi,γj (θi − θj)Z†aj ,εj (θj)Z

†
ai,εi(θi) (4.21)

Zai,εi(θi)Z
†
aj ,εj (θj) = Sγj ,γi(θj − θi)Z†aj ,εj (θj)Zai,εi(θi) +Qρai,εi(θi)δai,ajδε1, ε2 δ(θi − θj)

(4.22)

where we denote the Liouville particle types by the couples γ = (a, ε) and where

Sγi,γj (θi − θj) =
{ Sai,aj (θi − θj) (ε1 = ε2)

Saj ,ai(θj − θi) (ε1 = −ε2).
(4.23)

It can be checked that this algebra is in agreement with the inner products (4.17). The

space Lρ can be identified with the Fock space over this algebra (it is sometimes referred to

as a “Liouville-Fock” space [59]) and it is this algebra that describes the way how Liouville

particles scatter.
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4.1.2 Liouville left- and right-actions

To each operator A ∈ End(H), one can define two operators, A` ∈ End(Lρ) and Ar ∈
End(Lρ), by left- and right-action of A, respectively:

A`|B〉ρ = |AB〉ρ, Ar|B〉ρ = |BA〉ρ. (4.24)

The left-action linear map A 7→ A` is an algebra homomorphism, (AB)` = A`B`; the right-

action linear map A 7→ Ar is an algebra anti-homomorphism, (AB)r = BrAr. Recalling

the definition (4.6), we consider the quantity :

ρ〈B|A`|C〉ρ = ρ〈B|AC〉ρ = 〈B†AC〉ρ = ρ〈A†B|C〉ρ (4.25)

and this implies that left-action Liouville operators act on conjugate vectors as

ρ〈B|A` = ρ〈A†B|. (4.26)

Similarly, we consider the quantity:

ρ〈B|Ar|C〉ρ = ρ〈B|CA〉ρ = 〈B†CA〉ρ = 〈ρ−1AρB†C〉ρ = ρ〈BρA†ρ−1|C〉ρ (4.27)

and this implies that right-action Liouville operators act on conjugate vectors as

ρ〈B|Ar = ρ〈BρA†ρ−1|. (4.28)

It is obviously that left- and right-action Liouville operators commute with each other,

A`Br = BrA`. (4.29)

The Hermitian conjugation of operators on H can also be translated by left- and right-

action linear maps onto that of operators on Lρ. In particular, we find, by conjugating

the equations (4.26) and (4.28), that, for every A ∈ End(H),

(
A`
)†

=
(
A†
)`
, (Ar)† =

(
ρA†ρ−1

)r
. (4.30)

Hence, the Hermitian conjugation commutes with the left-action map, but not not with

the right-action map. Specializing to operators V ε
a (θ) and using

ρ V ε
a (θ) ρ−1 = e−εWa(θ)V ε

a (θ) (4.31)
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as well as linearity of the right-action map, we obtain

(
V ε
a (θ)r

)†
= eεWa(θ)V −εa (θ)r. (4.32)

In the Liouville space, there should also be generators of symmetry transformations on Lρ
or Hermitian conserved charges. Let us consider left- and right-action of the Hermitian

conserved charge Q (4.9) of H: Q` and Qr. We act Q` on a Liouville state with n particles:

Q`|θ1, . . . , θN 〉ρ(a1,ε1)···(aN ,εN ) =

N∏
i=1

(
1 + e−εiWai (θi)

)
|QV ε1

a1
(θ1) · · ·V εN

aN
(θN )〉ρ

=
N∏
i=1

(
1 + e−εiWai (θi)

)
|V ε1
a1

(θ1) · · ·V εN
aN

(θN )Q〉ρ

+
N∑
i=1

εiu(ai)

N∏
i=1

(
1 + e−εiWai (θi)

)
|V ε1
a1

(θ1) · · ·V εN
aN

(θN )〉ρ

= Qr|θ1, . . . , θN 〉ρ(a1,ε1)···(aN ,εN )

+

N∑
i=1

εiu(ai)|θ1, . . . , θN 〉ρ(a1,ε1)···(aN ,εN ) (4.33)

where we use [Q,V ε
a (θ)] = ε u(a)V ε

a (θ) in the second step. As we see, the Liouville operator

Q` −Qr is diagonal on Liouville eigenstates and has eighenvalue
∑N

i=1 εiu(ai). It is then

natural to define the Hermitian conserved charge on Lρ as

Q := Q` −Qr =
∑
a

∑
ε

∫
dθ ε u(a)

Z†a,ε(θ)Za,ε(θ)

Qρa,ε(θ)
. (4.34)

The Hamiltonian and momentum can also be defined in this way:

H := H` −Hr, H|θ1, . . . , θN 〉ρ(a1,ε1)···(aN ,εN ) =

N∑
i=1

εimai cosh θi|θ1, . . . , θN 〉ρ(a1,ε1)···(aN ,εN )

P := P ` − P r, P|θ1, . . . , θN 〉ρ(a1,ε1)···(aN ,εN ) =
N∑
i=1

εimai sinh θi|θ1, . . . , θN 〉ρ(a1,ε1)···(aN ,εN )

In terms of the operators Za,ε(θ) and Z†a,ε(θ), they read

H := H` −Hr =
∑
a

∑
ε

∫
dθ εma cosh θ

Z†a,ε(θ)Za,ε(θ)

Qρa,ε(θ)
(4.35)

P := P ` − P r =
∑
a

∑
ε

∫
dθ εma sinh θ

Z†a,ε(θ)Za,ε(θ)

Qρa,ε(θ)
. (4.36)
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The Hamiltonian generates time evolution and the momentum generates spatial transla-

tion. For any A ∈ Lρ, we have

A(x, t) = eiHt−iPxAe−iHt+iPx. (4.37)

This is in agreement with the left- and right-action maps: withA(x, t) = eiHt−iPxAe−iHt+iPx

we have

A(x, t)` = A`(x, t), A(x, t)r = Ar(x, t) (4.38)

where we used the homomorphism and anti-homomorphism properties of the left- and

right-action maps, respectively, as well as the fact that left- and right-action Liouville

operators commute with each other. It is also in agreement with the correspondence

between Hilbert space operators and Liouville space vectors:

|A(x, t)〉ρ = eiHt−iPx|A〉ρ. (4.39)

We can also construct the left- and right-actions of the Hilbert space creation and annihila-

tion operators V ε
a (θ) by the operators Za,ε(θ) and Z†a,ε(θ). Let n =

∑
a

∑
ε

∫
dθ

Z†a,ε(θ)Za,ε(θ)

Qρa,ε(θ)
∈

End(Lρ) be the number operator of the Liouville space, with

n|θ1, . . . , θN 〉ρ(a1,ε1)···(aN ,εN ) = N |θ1, . . . , θN 〉ρ(a1,ε1)···(aN ,εN ). (4.40)

Taking into account the action of the operator V ε
a (θ)` on Liouville states and on their

Hermitian conjugate

V ε
a (θ)`|θ1, . . . , θN 〉ρ(a1,ε1)···(aN ,εN ) =

1

Qρa,ε(θ)
|θ, θ1, . . . , θN 〉ρ(a,ε)(a1,ε1)···(aN ,εN )

=
Z†a,ε(θ)

Qρa,ε(θ)
|θ1, . . . , θN 〉ρ(a1,ε1)···(aN ,εN )

and

ρ
(a1ε1)···(aN ,εN )〈θ1, . . . , θN |V ε

a (θ)` = ρ
(a,−ε)(a1ε1)···(aN ,εN )〈θ, θ1, . . . , θN |

1

Qρa,−ε(θ)

= ρ
(a1ε1)···(aN ,εN )〈θ1, . . . , θN |

Za,−ε(θ)

Qρa,−ε(θ)
,

we have

V ε
a (θ)` =

Z†a,ε(θ)

Qρa,ε(θ)
+

Za,−ε(θ)

Qρa,−ε(θ)
. (4.41)
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Similarly, considering

V ε
a (θ)r|θ1, . . . , θN 〉ρ(a1,ε1)···(aN ,εN ) =

1

Qρa,ε(θ)
|θ1, . . . , θN , θ〉ρ(a1,ε1)···(aN ,εN )(a,ε)

=
(−1)N

Qρa,ε(θ)
|θ, θ1, . . . , θN 〉ρ(a,ε)(a1,ε1)···(aN ,εN )

=
Z†a,ε(θ) (−1)n

Qρa,ε(θ)
|θ1, . . . , θN 〉ρ(a1,ε1)···(aN ,εN )

and

ρ
(a1,ε1)···(aN ,εN )〈θ1, . . . , θN |V ε

a (θ)r = ρ
(a1,ε1)···(aN ,εN )(a,−ε)〈θ1, . . . , θN , θ|

eεWa(θ)

Qρa,−ε(θ)

= ρ
(a,−ε)(a1,ε1)···(aN ,εN )〈θ, θ1, . . . , θN |

(−1)N

Qρa,ε(θ)

= ρ
(a1,ε1)···(aN ,εN )〈θ1, . . . , θN |

(−1)nZa,−ε(θ)

Qρa,ε(θ)
,

we have

V ε
a (θ)r =

1

Qρa,ε(θ)

(
Z†a,ε(θ)− Za,−ε(θ)

)
(−1)n (4.42)

(the result for this operator, presented in [55] is incorrect). From Zamolodchikov’s algebra,

using the homomorphism and anti-homomorphism properties of the left- and right-map,

we should have the following algebras

V εi
ai (θi)

` V
εj
aj (θj)

` = Sγi,γj (θi − θj)V
εj
aj (θj)

` V εi
ai (θi)

` + ε
1−faj
j δai,ajδεi,−εjδ(θi − θj)(4.43)

V εi
ai (θi)

r V
εj
aj (θj)

r = Sγj ,γi(θj − θi)V
εj
aj (θj)

r V εi
ai (θi)

r + ε
1−faj
i δai,ajδεi,−εjδ(θi − θj).(4.44)

One can verify that operators defined by (4.41) and (4.42) indeed reproduce these algebras,

using relations

Sγi,γj (θi − θj) = Sγ̄i,γ̄j (θi − θj) = Sγ̄j ,γi(θj − θi) = Sγj ,γ̄i(θj − θi) (4.45)

where γ̄ = (a,−ε) for γ = (a, ε), and

1

Qρa,ε(θ)
+

(−1)1−fa

Qρa,−ε(θ)
= ε1−fa . (4.46)

Moreover, they agree with relations

(V ε
a (θ)`)† = (V −εa (θ))`, (V ε

a (θ)r)† = e−εWa(θ)(V −εa (θ))r
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due to the fact that the number operator n is Hermitian

n† = n.

Note that we will consider from now on only the left-action, which is sufficient for the

purpose of this thesis.

4.1.3 Mixed-state form factors

Definition

After the setup of the Liouville space, we can see that mixed-state correlation functions

are then vacuum expectation values in Lρ:

〈A〉ρ = ρ〈vac|A`|vac〉ρ. (4.47)

Hence, using (4.13), two-point functions should have a spectral decomposition on Lρ where

left-action matrix elements are involved. This gives rise to the definition of mixed-state

form factors associated to ρ: they are the matrix elements

fρ;O
(a1,ε1)···(aN ,εN )(θ1, . . . , θN ) := ρ〈vac|O`|θ1, . . . , θN 〉ρ(a1,ε1)···(aN ,εN ) (4.48)

(or more precisely, analytic functions of the rapidities continued from the region θ1 > · · · >
θN ), where O is implicitly at the space-time point (0,0). These form factors satisfy, from

the algebra (4.21), the relation

fρ;O
(a1,ε1)···(aj ,εj)(aj+1,εj+1)···(aN ,εN )(θ1, . . . , θj , θj+1, . . . , θN )

= Saj ,aj+1(θj − θj+1)fρ;O
(a1,ε1)···(aj+1,εj+1)(aj ,εj)···(aN ,εN )(θ1, . . . , θj+1, θj , . . . , θN )(4.49)

which allows us to extract the scattering matrix by analytic continuing mixed-state form

factors to different orderings of the rapidities. In addition, it can be inferred from the

cyclic property of the trace that

ρ
(a1,ε1)···(aN ,εN ) 〈θ1, . . . , θN |O`|vac〉ρ = fρ;O

(aN ,−εN )···(a1,−ε1)(θN , . . . , θ1). (4.50)

From this definition, mixed-state form factors can be considered as traces with insertions

of operators V ε
a (θ), up to the overall factor Qρ(a1,ε1)···(aN ,εN )(θ1, . . . , θN ), and up to the

subtraction of contact terms at colliding rapidities. Let us illustrate this more explicitly.
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Traces of products of creation and annihilation operators are evaluated by using Wick’s

theorem (this follows from cyclicity of the trace and Zamolodchikov’s algebra) with con-

tractions given by

Qρ(a1,ε1)(a2,ε2)(θ1, θ2)〈V ε1
a1

(θ1)V ε2
a2

(θ2)〉ρ = ρ
(a2,−ε2) 〈θ2|θ1〉ρ(a1,ε1).

Traces with a further insertion of a local field, expressed through creation and annihila-

tion operators, are evaluated similarly. This leads in a standard way to a diagrammatic

expression, associating a single vertex to the local field. In this sense, mixed-state form

factors are obtained by summing over connected diagrams,

fρ;O
(a1,ε1)···(aN ,εN )(θ1, . . . , θN ) =

[
Qρ(a1,ε1)···(aN ,εN )(θ1, . . . , θN )〈O V ε1

a1
(θ1) · · ·V εN

aN
(θN )〉ρ

]
connected

.

Take two-particle form factors for example,

fρ;O
(a1,ε1)(a2,ε2)(θ1, θ2) = Qρ(a1,ε1)(a2,ε2)(θ1, θ2)〈O V ε1

a1
(θ1)V ε2

a2
(θ2)〉ρ − 〈O〉ρ ρ

(a2,−ε2) 〈θ2|θ1〉ρ(a1,ε1).

(4.51)

Using cyclicity of the trace, other matrix elements for two particles are written as

ρ
(a2,ε2) 〈θ2|O`|θ1〉ρ(a1,ε1) = fρ;O

(a1,ε1)(a2,−ε2)(θ1, θ2) + 〈O〉ρ ρ
(a2,ε2) 〈θ2|θ1〉ρ(a1,ε1) (4.52)

ρ
(a2,ε2)(a1,ε1)〈θ2, θ1|O`|vac〉ρ = fρ;O

(a1,−ε1)(a2,−ε2)(θ1, θ2) + 〈O〉ρ ρ
(a2,ε2) 〈θ2|θ1〉ρ(a1,−ε1) .(4.53)

Similar equations for many particles can be obtained in the same fashion.

Mixing phenomenon

Consider local fields O that are expressed through normal-ordered products of finitely

many asymptotic operators Va(θ) and V †a (θ). It is a simple matter to evaluate the traces

defining mixed-state form factors (or to evaluate any correlation functions) for such fields

O by using Wick’s theorem. For instance, one can check explicitly in the Ising model that

for the Majorana fermionic field ψ we have

fρ;ψ
ε (θ) =

{
〈vac|ψ|θ〉 (ε = +)

〈θ|ψ|vac〉 (ε = −)
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and that for the energy field ε = i : ψ̄ψ : we have

fρ;ε
− (−) =

m

π

∫ ∞
0

dθ
1

1 + eW (θ)
, fρ;ε

ε1,ε2(θ1, θ2) =


〈vac|ε|θ1, θ2〉 (ε1 = ε2 = +)

〈θ2|ε|θ1〉 (ε1 = +, ε2 = −)

〈θ2, θ1|ε|vac〉 (ε1 = ε2 = −)

where the zero-particle form factor fρ;ε
− (−) of the field ε is just its expectation value 〈ε〉ρ

(all other form factors are zero). It can be inferred from these formulas that the mixed-

state form factors of ψ and of ε are equal to matrix elements on H of the fields

U(ψ) := ψ, U(ε) := ε+ 〈ε〉ρ1 (4.54)

respectively, where the matrix element taken depends on the Liouville particle types. This

is a mixing phenomenon and it is in fact completely general: a local field is transformed

(or mixed) into a linear combination involving its “ascendants” under Zamolodchikov’s

algebra.

This phenomenon of mixing suggests the existence of a mixing map U on the space of local

fields such that the following relation holds:

fρ;O
(a1,+)···(aj ,+)(aj+1,−)···(aN ,−)(θ1, . . . , θj , θj+1, . . . , θN )

= aN ,...,aj+1〈θN , . . . , θj+1|U(O)|θ1, . . . , θj〉a1,...,aj (4.55)

where there are j plus signs and N − j minus signs as indices on the left-hand side. Note

that matrix elements of O on H can be considered as the pure-state limits Wa(θ) → ∞
(uniformly on θ) of mixed-state form factors. For instance, inside the trace defining the

mixed-state form factor

fρ;O
(a1,+)···(aj ,+)(aj+1,−)···(aN ,−)(θ1, . . . , θj , θj+1, . . . , θN ),

we can bring all operators Va(θ) to the left while keeping all operators V †a (θ) to the right

of O, by using the cyclic property of the trace. After taking the pure-state limit, we see

that

lim
Wa→∞

fρ;O
(a1,+)···(aj ,+)(aj+1,−)···(aN ,−)(θ1, . . . , θj , θj+1, . . . , θN )

= aN ,...,aj+1〈θN , . . . , θj+1|O|θ1, . . . , θj〉a1,...,aj . (4.56)
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This holds for all values of rapidities such that θj 6= θk for j 6= k, and thanks to (4.49) we

may evaluate the limit for other choices of signs. From this, we can denote by

fO(a1,ε1)···(aN ,εN )(θ1, . . . , θN ) := lim
Wa→∞

fρ;O
(a1,ε1)···(aN ,εN )(θ1, . . . , θN ) (4.57)

the matrix elements of O on H which are obtained from taking pure-state limits of general

mixed-state form factors. In particular, the usual form factors, with excited states on the

right and the vacuum on the left, are fO(a1,+)...(aN ,+)(θ1, . . . , θN ). In this sense, the relation

(4.55) can be generalized as

fρ;O
(a1,ε1)···(aN ,εN )(θ1, . . . , θN ) = f

U(O)
(a1,ε1)···(aN ,εN )(θ1, . . . , θN ). (4.58)

It will be convenient to use a notation for form factors with general Liouville states |A〉ρ:

fρ;O[|A〉ρ] = ρ〈vac|O`|A〉ρ. (4.59)

We will also use the notation

fO
[
|A〉ρ

]
:= lim

Wa→∞
fρ;O[|A〉ρ

]
. (4.60)

With these notations, (4.58) becomes

fρ;O[|A〉ρ] = fU(O)
[
|A〉ρ

]
(4.61)

One consequence of (4.61) is that mixed-state form factors of local fields which are normal-

ordered products of finitely many asymptotic operators Va(θ) and V †a (θ) are entire func-

tions of the rapidities, no matter the analytic properties of W (θ). This is the reason for our

choice of the normalization factor (4.96). Note that this argument holds for non-interacting

fields, for instance, local fields O. But we expect that it is still true for interacting fields,

including twist fields and general local fields in integrable interacting models.

We recall that when evaluating vacuum form factors of local fields given by normal-ordered

products, there can be no contractions inside the field. However, when evaluating mixed-

state form factors, there exist contractions

〈V †a1
(θ1)Va2(θ2)〉ρ =

δa1,a2δ(θ1 − θ2)

Qρa1,−(θ1)

inside such fields. It is the map U which implements these additional “internal” contrac-

tions. Since a local field O can be seen as a state in Liouville space, U is also a map that

translates the Liouville state |O〉ρ to another Liouville state which is a linear combination
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of |O〉ρ and those with lower numbers of Liouville particles. From this point of view, the

map U can be represented conveniently by the action of an operator on the Liouville space

|U(O)〉ρ = U|O〉ρ. (4.62)

It turns out that the operator U performing the necessary Wick contractions is given by

U = exp

[∑
a

∫
dθ

Za,−(θ)Za,+(θ)

Qρa,−(θ)

]
. (4.63)

We may also see these additional contractions as arising from a change of normal ordering,

from one with respect to the usual vacuum |vac〉 to one with respect to the Liouville vacuum

|vac〉ρ. The normal ordering in Liouville space is defined to bring all operators Z†a,ε(θ) to

the right of all operators Za,ε(θ) without taking any delta-function term but taking all S-

matrices involved in the exchanges. If we denote by ◦
◦ · ◦

◦ the normal ordering with respect

to |vac〉ρ, then we have

|O〉ρ = U ◦
◦O` ◦

◦ |vac〉ρ. (4.64)

In order to prove (4.64), let us consider the normal-ordered operators

O = V †a1
(θ1) · · ·V †ak(θk)Vak+1

(θk+1) · · ·Van(θn) :=
∏
i

V εi
ai (θi) (4.65)

for fixed n and k, with all nonegative integers n ≥ k ≥ 0. Using (4.41) and the definition

of normal-ordering ◦
◦ · ◦

◦ , we have

◦
◦O` ◦

◦ |vac〉ρ =
∏
i

Z†ai,εi(θi)

Qρνi,εi(θi)
|vac〉ρ (4.66)

ρ〈vac| ◦◦O` ◦
◦ = ρ〈vac|

∏
i

Zai,−εi(θi)

Qρνi,−εi(θi)
(4.67)

Further, direct calculation shows that

UZ†a,ε(θ)U
−1 = Z†a,ε(θ) + εfa

Qρa,ε(θ)

Qρa,−(θ)
Za,−ε(θ) (4.68)

where we used Zamolodchikov’s algebra and the property Sai,aj (θi− θj)Saj ,ai(θj − θi) = 1.

Then, on the right-hand side of (4.64), using (4.66), (4.68) and U−1|vac〉ρ = |vac〉ρ , we

have

U ◦
◦O` ◦

◦ |vac〉ρ =

k∏
i=1

(
Z†ai,+(θi)

Qρai,+(θi)
+

Zai,−(θi)

Qρai,−(θi)

)
n∏

i=k+1

(
Z†ai,−(θi)

Qρai,−(θi)
+ εfa

Zai,+(θi)

Qρai,−(θi)

)
|vac〉ρ
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and on the left-hand side, using (4.99), we have

O`|vac〉ρ =
k∏
i=1

(
Z†ai,+(θi)

Qρai,−(θi)
+

Zai,−(θi)

Qρai,+(θi)

)
n∏

i=k+1

(
Z†ai,−(θi)

Qρai,+(θi)
+

Zai,+(θi)

Qρai,−(θi)

)
|vac〉ρ .

These are equal, in light of the fact that Zai,+(θi)Z
†
aj ,−(θj) = Sai,aj (θi−θj)Z

†
aj ,−(θj)Zai,+(θi)

and that Za,+(θ)|vac〉ρ = 0. The relation (4.64) plays an essential role in expressing mixed-

state form factors of local fields O in terms of matrix elements on Hilbert space. On one

hand, the Hermitian conjugation of (4.64) leads immediately to the relation

fρ;O[|A〉ρ] = ρ〈vac| ◦◦O` ◦
◦U
†|A〉ρ. (4.69)

On the other hand, using (4.64) and the definition (4.62) of the map U, we obtain

O`|vac〉ρ = ◦
◦U(O)` ◦

◦ |vac〉ρ. (4.70)

Hermitian conjugating (4.70) and considering U(O†) = U(O)†, we have

ρ〈vac|O` = ρ〈vac| ◦◦U(O)` ◦
◦ . (4.71)

This gives rise to the relation

fρ;O[|A〉ρ] = ρ〈vac| ◦◦ U(O)` ◦
◦ |A〉ρ. (4.72)

Due to (4.67), (4.22) and (4.19), it can be shown that

ρ〈vac| ◦◦O` ◦
◦ |A〉ρ = fO

[
|A〉ρ

]
. (4.73)

Putting together (4.69), (4.72) and (4.73), we finally obtain

fρ;O[|A〉ρ] = fU(O)
[
|A〉ρ

]
= fO

[
U†|A〉ρ

]
. (4.74)

where (4.61) is reproduced and hence the existence of the map U is confirmed.

From the above proof, we can see that the relation (4.64) indeed play an essential role.

But (4.64) can not be proved without the equation (4.68). To make sure the equation

(4.68) holds, the operator U is required to have the form U = eB with B satisfying

[B,Z†a,ε(θ)] = εfa
Qρa,ε(θ)

Qρa,−(θ)
Za,−ε(θ), [B,Za,ε(θ)] = 0, B|vac〉ρ = 0.

This is the reason why the operator U is written as (4.63).
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Now we summarise the above arguments. First, we observe the mixing phenomenon that

mixed-state form factors of local fields O can be obtained as the known vacuum form

factors of a linear combination of O and their ascendants. Then we suspect there exists

a map U such that mixed-state form factors can be evaluated by the relation (4.58). We

define the map U through the relation (4.62) which involves an operator U acting on the

Liouville space. With the explicite form of U (4.63), we prove the relation (4.58) and

hence the existence of the map U. To sum up in a word, we find a map U or an operator

U which provides a way of evaluating mixed-state form factors from the known vacuum

form factors.

Finally, as stated in [55], this technique of employing the map U in order to evaluate mixed-

state form factors is in parallel with the exponential conformal change of coordinates in

conformal field theory, which is used to calculate finite-temperature correlation functions

from zero-temperature correlation functions. However, we focus in this these on massive

models with general density matrices of the form (4.7). It would be interesting to gain a

fuller geometric or algebraic understanding of it.

4.2 Ising model

In the Ising model, the fundamental fields are free Majorana fermionic fields which are

real, and the spectrum contains only one particle type. The untwisted density matrix

describing mixed states for this model is given by

ρ = exp

[
−
∫
dθW (θ) a†(θ)a(θ)

]
(4.75)

where a(θ) and a†(θ) are mode operators of free Majorana fields, and the integrable func-

tion W (θ) ensures that the result is a well-defined density matrix. In the twisted construc-

tion, the density matrix ρ] involves the unitary operator Z (3.18) that implements the Z2

symmetry (2.64): W ](θ) = W (θ) + iπ. We assume W (θ) in the twisted construction to be

uniformly positive:

inf
θ∈R

W (θ) > 0, (4.76)

and we will explain this in section 7.1.1. The Liouville space associated to the Ising model

is spanned by the basis that is the product of a set of creation and annihilation operators

of the free Majorana fields:

|vac〉ρ ≡ 1, |θ1, . . . , θN 〉ρε1,...,εN ≡ Q
ρ
ε1,...,εN

(θ1, . . . , θN ) aε1(θ1) · · · aεN (θN ), (4.77)
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where we use the notations

a+(θ) := a†(θ), a−(θ) := a(θ),

where the ordering of the rapidities is chosen as θ1 < · · · < θN , and where the normalization

factors are simply related to the Fermi filling fractions,

Qρε1,...,εN (θ1, . . . , θN ) :=

N∏
i=1

(
1 + e−εiW (θi)

)
. (4.78)

Since the Ising model is a free model with simple S-matrix S(θ) = −1, these creation

and annihilation operators satisfy the canonical anti-commutation relations (2.85). Using

Wick’s theorem on traces of products of mode operators aε(θ), the inner product in Lρ is

evaluated as

ρ
ε1,...,εN

〈θ1, . . . , θN |θ′1, . . . , θ′N 〉
ρ
ε′1,...,ε

′
N

=
N∏
i=1

[(
1 + e−εiW (θi)

)
δεi,ε′iδ(θi − θ

′
i)
]

(4.79)

where we assume the ordering θ1 > · · · > θN and θ′1 > · · · > θ′N . Thus, we have the

resolution of the identity on Lρ:

1 =

∞∑
N=0

∑
ε1,...,εN

∫ ∞
−∞

dθ1 · · · dθN
N !
∏N
j=1

(
1 + e−εjW (θj)

) |θ1, . . . , θN 〉ρε1,...,εN
ρ

ε1,...,εN
〈θ1, . . . , θN |.

(4.80)

The associated Liouville operators of aε(θ) can be obtained through Liouville left-action

and they are written as

aε(θ)` =
Z†ε(θ)

1 + e−εW (θ)
+

Z†−ε(θ)

1 + eεW (θ)
(4.81)

where Zε(θ) and Z†ε(θ) are Liouville mode operators and they are defined such that

Zε(θ)|vac〉ρ = 0, |θ1, . . . , θN 〉ρε1,...,εN = Z†ε1(θ1) · · ·Z†εN (θN )|vac〉ρ. (4.82)

These Liouville mode operators obey anti-commutation relations

{Zε(θ),Zε′(θ′)} = {Z†ε(θ),Z
†
ε′(θ
′)} = 0, {Zε(θ),Z†ε′(θ

′)} =
(

1 + e−εW (θ)
)
δε,ε′δ(θ − θ′)

(4.83)

which gives the canonical anti-commutation relations

{
aε(θ)`, aε

′
(θ′)`

}
= δε,ε′ δ(θ − θ′) (4.84)
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that Liouville operators aε(θ)` should satisfy. In terms of these operators, the Hamiltonian

and momentum in Lρ are given by

H =
∑
ε

∫
dθ εEθ

Z†ε(θ)Zε(θ)

1 + e−εW (θ)

P =
∑
ε

∫
dθ ε pθ

Z†ε(θ)Zε(θ)

1 + e−εW (θ)
. (4.85)

Averages in the density matrix ρ are vacuum expectation values in Lρ:

〈A〉ρ = ρ〈vac|A`|vac〉ρ. (4.86)

Using the resolution of the identity (4.80), we can obtain form factor expansions for mixed-

state two-point functions. The form factors in Lρ are defined as the matrix elements of

Liouville left-action operators:

fρ;O
ε1,...,εN

(θ1, . . . , θN ) := ρ〈vac|O`|θ1, . . . , θN 〉ρε1,...,εN . (4.87)

Due to the algebra (4.83), these form factors satisfy the relation

fρ;O
ε1,...,εN

(θ1, . . . , θj , θj+1, . . . , θN ) = −fρ;O
ε1,...,εN

(θ1, . . . , θj+1, θj , . . . , θN ), (4.88)

and the cyclic property of the trace implies

ρ
ε1,...,εN

〈θ1, . . . , θN |O|vac〉ρ = fρ;O
−εN ,...,−ε1(θN , . . . , θ1). (4.89)

Mixed-state form factors are traces with insertions of operators aε(θ), up to the overall

factor Qρε1,...,εN (θ1, . . . , θN ), subtracting off all “external” contraction terms in terms of

Qρε1,ε2(θ1, θ2)〈aε1(θ1)aε2(θ2)〉ρ = ρ
−ε2〈θ2|θ1〉ρε1 .

at colliding rapidities, and they are obtained by summing over connected diagrams,

fρ;O
ε1,...,εN

(θ1, . . . , θN ) =
[
Qρε1,...,εN (θ1, . . . , θN )〈O aε1(θ1) · · · aεN (θN )〉ρ

]
connected

. (4.90)

For instance,

fρ;O
ε1,ε2(θ1, θ2) = Qρε1,ε2(θ1, θ2)〈O aε1(θ1)aε2(θ2)〉ρ − 〈O〉ρ ρ

−ε2〈θ2|θ1〉ε1 . (4.91)
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Using cyclicity of the trace, we obtain other matrix elements of O` for two particles

ρ
ε2〈θ2|O`|θ1〉ρε1 = fρ;O

ε1,−ε2(θ1, θ2) + 〈O〉ρ ρ
ε2〈θ2|θ1〉ρε1 , (4.92)

ρ
ε2,ε1 〈θ2, θ1|O`|vac〉ρ = fρ;O

−ε1,−ε2(θ1, θ2) + 〈O〉ρ ρ
ε2〈θ2|θ1〉ρ−ε1 . (4.93)

Similar equations generalize (4.91)-(4.93) to matrix elements for many particles.

4.3 Dirac theory

The spectrum of the Dirac theory contains two particle types which we denote by ν = ±.

The untwisted density matrix is

ρ = exp

[
−
∫
dθ
∑
ν

Wν(θ)D†ν(θ)Dν(θ)

]
(4.94)

where Dν(θ) and D†ν(θ) are mode operators of free U(1) Dirac fields, and Wν(θ) are

integrable functions ensuring the density matrix is well-defined. In the twisted case, we

consider there exist in ρ] two extra unitary operators e2πiνα
∫
dθD†ν(θ)Dν(θ) which implement

the U(1) symmetry and hence W ]
ν(θ) = Wν(θ) + 2πiνα. It is worth attention that it is

not necessary in the Dirac theory to impose a positive condition like (4.76) to functions

Wν(θ). We will provide an argument for this in subsection 7.1.2. The Liouville space is

spanned by a set of products of creation and annihilation operators in Hilbert space with

some particular normalization:

|vac〉ρ ≡ 1, |θ1, . . . , θN 〉ρ(ν1,ε1)···(νN ,εN ) ≡ Q
ρ
(ν1,ε1)···(νN ,εN )(θ1, . . . , θN )Dε1

ν1
(θ1) · · ·DεN

νN
(θN ),

(4.95)

with the ordering θ1 > · · · > θN , where

Qρ(ν1,ε1)···(νN ,εN )(θ1, . . . , θN ) :=

N∏
i=1

(
1 + e−εiWνi (θi)

)
(4.96)

and we use notations

D+
ν (θ) := D†ν(θ), D−ν (θ) := Dν(θ).

Applying Wick’s theorem on traces of products of mode operators Dε
ν(θ), the inner product

of basis states can be deduced as

ρ
(ν1,ε1)···(νN ,εN ) 〈θ1, . . . , θN |θ′1, . . . , θ′N 〉

ρ
(ν′1,ε

′
1)···(ν′N ,ε

′
N )

=
N∏
i=1

[(
1 + e−εiWνi (θi)

)
δνi,ν′i δεi,ε′i δ(θi − θ

′
i)
]

(4.97)
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with the ordering θ1 > · · · > θN and θ′1 > · · · > θ′N . The resolution of the identity on Lρ
is then given by

1 =

∞∑
N=0

∑
ν1,...,νN

∑
ε1,...,εN

∫ ∞
−∞

 dθ1 · · · dθN
N !
∏N
j=1

(
1 + e−εjWνi (θj)

)
×|θ1, . . . , θN 〉ρ(ν1,ε1)···(νN ,εN )

ρ
(ν1,ε1)···(νN ,εN ) 〈θ1, . . . , θN |

]
. (4.98)

To Dε
ν(θ), their associated left-action Liouville operators are

Dε
ν(θ)` =

Z†ν,ε(θ)

1 + e−εWν(θ)
+

Zν,−ε(θ)

1 + eεWν(θ)
(4.99)

where Z†ν,ε(θ) and Zν,ε(θ) are both defined as Liouville mode operators satisfying anti-

commutation relations

{Zν,ε(θ),Z†ν′,ε′(θ
′)} =

(
1 + e−εWν(θ)

)
δν,ν′ δε,ε′ δ(θ − θ′) (4.100)

{Zν,ε(θ),Zν′,ε′(θ′)} = {Z†ν,ε(θ),Z
†
ν′,ε′(θ

′)} = 0 . (4.101)

The Liouville space can be seen as the Fock space over this algebra,

Zν,ε(θ)|vac〉ρ = 0, |θ1, . . . , θN 〉ρ(ν1,ε1)···(νN ,εN ) = Z†ν1,ε1(θ1) · · ·Z†νN ,εN (θN )|vac〉ρ. (4.102)

With the definitions above, it is obvious to see that the mixed-state averages of operators

on H are vacuum expectation value on Lρ:

〈O〉ρ = ρ〈vac|O`|vac〉ρ. (4.103)

Using the resolution of the identity (4.98), two-point functions, such as

〈O(x, τ)O†(0)〉ρ = ρ〈vac|O(x, τ)`O†(0, 0)`|vac〉ρ

should have a spectral decomposition on Lρ, where we define the matrix elements of left-

action operators in Liouville space as mixed-state form factors

fρ;O
(ν1,ε1)···(νN ,εN )(θ1, . . . , θN ) := ρ〈vac|O(0, 0)`|θ1, . . . , θN 〉ρ(ν1,ε1)···(νN ,εN ) . (4.104)
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With the definition (4.104) and anti-commutation relations (4.101), the mixed-state form

factors satisfy the relations

fρ;O
(ν1,ε1)···(νj ,εj)(νj+1,εj+1)···(νN ,εN )(θ1, . . . , θj , θj+1, . . . , θN )

= −fρ;O
(ν1,ε1)···(νj+1,εj+1)(νj ,εj)···(νN ,εN )(θ1, . . . , θj+1, θj , . . . , θN ) . (4.105)

The cyclicity of traces leads to the relation

ρ
(ν1,ε1)···(νN ,εN ) 〈θ1, . . . , θN |O`|vac〉ρ = fρ;O

(νN ,−εN )···(ν1,−ε1)(θN , . . . , θ1). (4.106)

The mixed-state form factors are essentially traces with insertion of operators Dε
ν(θ), up

to an overall factor Qρ(ν1,ε1)···(νN ,εN )(θ1, . . . , θN ) and up to the subtraction of contact terms

at colliding rapidities:

fρ;O
(ν1,ε1)···(νN ,εN )(θ1, . . . , θN )

=
[
Qρ(ν1,ε1)···(νN ,εN )(θ1, . . . , θN )〈ODε1

ν1
(θ1) · · ·DεN

νN
(θN )〉ρ

]
connected

. (4.107)

For example, two-particle mixed-state form factors can be written as

fρ;O
(ν1,ε1)(ν2,ε2)(θ1, θ2) = Qρ(ν1,ε1)(ν2,ε2)(θ1, θ2)〈ODε1

ν1
(θ1)Dε2

ν2
(θ2)〉ρ − ρ

(ν2,−ε2) 〈θ2|θ1〉ρ(ν1,ε1) 〈O〉ρ .
(4.108)

Again, using cyclicity of the trace, we have

ρ
ν2,ε2〈θ2|O`|θ1〉ρν1,ε1 = fρ;O

(ν1,ε1)(ν2,−ε2)(θ1, θ2) + 〈O〉ρ ρ
ν2,ε2〈θ2|θ1〉ρν1,ε1 , (4.109)

ρ
(ν2,ε2)(ν1,ε1)〈θ2, θ1|O`|vac〉ρ = fρ;O

(ν1,−ε1)(ν2,−ε2)(θ1, θ2) + 〈O〉ρ ρ
ν2,ε2〈θ2|θ1〉ρν1,−ε1 .(4.110)

More general matrix elements for many particles can be expressed in the same fashion.



Chapter 5

Form factors of twist fields at

finite temperature

The Liouville-space method was first employed in [21, 23] for evaluating correlation func-

tions at finite temperature in the Ising model. This can be seen as the starting point of the

application of the Liouville-space method to integrable models of QFT. Although the main

object of this thesis is to obtain correlation functions in general diagonal mixed-states, it is

intuitive to start with a review of previous works on the subject of correlation functions at

finite temperature in order to show the original motivation to develop the Liouville-space

method.

At finite temperature, a correlation function is not simply the vacuum expectation value

as at zero temperature but the Gibbs ensemble expectation value which is a statistical

average of quantum averages:

〈O(x, t) · · ·〉ρβ =
Tr(e−βHO(x, t) · · · )

Tr(e−βH)
(5.1)

where β is the inverse temperature and H is the Hamiltonian. In the Matsubara imaginary-

time formalism [6], the definition (5.1) leads to the Kubo-Martin-Schwinger (KMS) identity

[137, 138]

〈O(x, τ) · · ·〉ρβ = (−1)f 〈O(x, τ + β) · · ·〉ρβ (5.2)

where the value of f is determined by the statistics of operator O (f = 1 for fermionic

operators and f = 0 for bosonic operators), τ is real time τ = it and the dots (· · · )
represents local fields at time τ and different positions. In light of the KMS identity,

finite-temperature correlation functions can be interpreted as correlation functions of a

Hilbert space on an infinite cylinder with the spatial coordinate −τ running on a circle of

68
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radius r = β and Euclidean time x going along the cylinder. In this picture, we have

〈O(x, τ) · · ·〉ρβ = eiπs/2β〈vac|Oβ(−τ, x) · · · |vac〉β (5.3)

where s is the spin of operator O, |vac〉β is the vacuum state in the Hilbert space on

the circle and Oβ(−τ, x) is the corresponding operator acting on the new Hilbert space.

The phase factor arising on the righ-hand side of (5.3) stems from the requirement that

the corresponding operator Oβ is Hermitian in the Hilbert space on the circle, provided

that the operator O is Hermitian in the Hilbert space on the line. In the quantization

scheme on the circle, there are usually two type of sectors: one is called Neveu-Schwartz

(NS) sector where the fundamental fields (bosonic or fermionic) are anti-periodic on the

circle, and another is called Ramond (R) sector where the fundamental fields are periodic

on the circle. In general, sectors in this quantization scheme are associated with the

quasi-periodicity condition:

〈Of (x, τ) · · ·〉ρβ = (−1)fe2πiα〈Of (x, τ + β) · · ·〉ρβ (5.4)

where O is a fundamental field and α ∈ [0, 1]. In this thesis, we consider only fermionic

models with fundamental fermion fields. For such models, the trace (5.1), operators which

are local with respect to the fermion fields naturally correspond the NS sector due to the

KMS identity (with f = 1).

Using the resolution of the identity on the Hilbert space Hβ on the circle, the vacuum

expectation value on the right-hand side of (5.3) can be written as

β〈vac|Oβ(x, τ)Oβ(0, 0)|vac〉β

=

∞∑
k=0

∑
n1,...,nk

e
∑k
j=1 nj

2πix
β
−En1···nkτ

k!

×β〈vac|Oβ(0, 0)|n1, . . . , nk〉β β〈n1, . . . , nk|Oβ(0, 0)|vac〉β (5.5)

where eigenvalues of the momentum are parameterized by discrete variables nj , and en-

ergies En1···nk depends on nj as well as additional discrete parameters including quantum

numbers, particle types. The values of these discrete variables nj are in accordance with

the KMS identity or the quasi-periodicity condition.

The formula (5.5) is only valid for those fields which are local with respect to the funda-

mental fields. If any field which is non-local with respect to the fundamental fields, for

instance, a twist field, is present inside the trace defining a finite-temperature correlation

function, the formula (5.5) is no longer correct. This is because a twist field will affect

the vacuum sector in the quantization on the circle. This can be interpreted by looking
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at quasi-periodicity conditions involving twist fields. We assume Ψ to the fundamental

fermionic field and T to be the twist field with the twist property

Ψ(x)T+(x′) = (−1)fΨfT+e−2πiαΘ(x−x′)T+(x′)Ψ(x) , x 6= x′ (5.6)

and

Ψ(x)T−(x′) = (−1)fΨfT−e2πiαΘ(x′−x)T−(x′)Ψ(x) , x 6= x′. (5.7)

Using (5.6), (5.7) and the cyclic property of the trace, we have

〈Ψ(x, τ)T+(x′, τ) · · ·〉β =

{
−e−2πiα〈Ψ(x, τ + β)T+(x′, τ) · · ·〉β (x > 0)

−〈Ψ(x, τ + β)T+(x′, τ) · · ·〉β (x < 0)

(5.8)

and

〈Ψ(x, τ)T−(x′, τ) · · ·〉β =

{
−〈Ψ(x, τ + β)T−(x′, τ) · · ·〉β (x > 0)

−e2πiα〈Ψ(x, τ + β)T−(x′, τ) · · ·〉β (x < 0)
(5.9)

where the dots (· · · ) represent fields which are local with respect to the fermion field Ψ, at

time τ but different position from x. According to these quasi-periodicity conditions, one

of the vacuum, corresponding to quantization on the circle, should be in a different sector.

Denoting by |vacα〉β the vacuum on the circle, which is associated to the quasi-periodicity

condition (5.4), we have

〈T+(x, τ) · · ·〉β = (eiπs/2 · · · ) β〈vac 1
2

+α|T
+
β (−τ, x) · · · |vac 1

2
〉β (5.10)

and

〈T−(x, τ) · · ·〉β = (eiπs/2 · · · ) β〈vac 1
2
|T−β (−τ, x) · · · |vac 1

2
−α〉β (5.11)

where |vac 1
2
〉β is the NS vacuum. The energy of the vacuum varies among different sectors.

For instance, in the Ising model, the vacuum energies for the NS sector and the R sector

are given by [23]

E 1
2

= ε−
∫ ∞
−∞

dθ

2π
cosh θ log

(
1 + e−mβ cosh θ

)
(5.12)

E0 = ε−
∫ ∞
−∞

dθ

2π
cosh θ log

(
1− e−mβ cosh θ

)
(5.13)

where we denote by Eα the energy of the vacuum in the quantization on the circle and where

ε is a common term to both vacuum energies. In this spirit, the insertion of a twist field

inside the finite-temperature correlation function will produce a real exponential factor

coming from the energy difference between the vacua. In another word, the one-point
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thermal function of the twist field is not translation invariant:

〈T η(x, τ)〉β = e
η

(
E 1

2 +ηα
−E 1

2

)
x
〈T η(0, τ)〉β (5.14)

Therefore, in the presence of twist fields, the vacuum expectation value (5.5) should be

rewritten as

β〈vacα1 |Oβ(x, τ)Oβ(0, 0)|vacα2〉β

=

∞∑
k=0

∑
n1,...,nk

e
∑k
j=1 nj

2πix
β

+(∆E−En1···nkτ)

k!

×β〈vacα1 |Oβ(0, 0)|n1, . . . , nk〉β β〈n1, . . . , nk|Oβ(0, 0)|vacα2〉β (5.15)

where ∆E is the energy difference between the vacuum |vacα1〉 and the vacuum above

which the states |n1, . . . , nk〉β are constructed.

Using the relation with correlation functions on the circle and applying the form factor

expansion technique is one of the ways to evaluate finite-temperature correlation functions

in integrable QFT. The formula (5.15) works for any integrable QFT and can be generalized

to multi-point correlation functions. However, this method does not seem quite practical,

since the Hilbert space under this quantization scheme has a very complicated structure.

The matrix elements β〈vac|Oβ(0, 0)|n1, . . . , nk〉β, namely form factors on the circle, and

the energy En1···nk are not accessible in general. An exception is in the Ising with mass m

and the exact forms of the energy levels are known:

En1···nk =

k∑
j=1

√
m2 +

(
2πnj
β

)2

(5.16)

where nj ∈ Z + 1
2 for the NS sector and nj ∈ Z for the R sector. Also, matrix elements of

the primary order and disorder fields in the lattice Ising model were deduced in [139–141],

and in [20] using the free-fermion equations of motions and “double trick”. One can then

obtain, via the form factor expansion on the circle, exponentially decaying behaviour of

static correlation functions in the quantum Ising chain.

Another way of obtain finite-temperature correlation functions, proposed by Leclair, Lesage,

Sachdev and Saleur in [19], is to perform direct calculation of the trace in representation

(5.1) by using general properties of matrix elements of local fields. For instance, the
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two-point function at finite temperature was determined as

〈O1(x, τ)O†2(0, 0)〉ρβ

=
∞∑
k=0

∑
ε1,...,εk=±

∫
dθ1 · · · dθk e

∑k
j=1 εj(imx sinh θj−mτ cosh θj)

k!
∏k
j=1(1 + e−εjmL cosh θj )

×FO1
ε1,...,εk

(θ1, . . . , θk)
(
FO2
ε1,...,εk

(θ1, . . . , θk)
)

(5.17)

where FO1
ε1,...,εk

(θ1, . . . , θk) = 〈vac|O|θ1 − ε̃1iπ, . . . , θk − ε̃kiπ〉 with ε̃ = (ε− 1)/2 are matrix

elements of local field O in the Hilbert space on the line. Compared to the result (5.5)

following from the form factor expansion on the circle, this representation is better for

studying dynamical correlation function in imaginary-time formalism. Leclair and Mus-

sardo conjectured in [9] that this method can be easily generalized to interacting models.

However, Saleur argued in [10] that this generalization might not be correct, and Castro-

Alvaredo and Fring [13] verified this incorrectness by performing the numerical calculation

in the scaling Lee-Yang model. Leclair and Mussardo also deduced in [9], following the

same method, a formula for one-point functions of local fields in interacting models. Even

though the results of [9] hold in various limits for some fields in the Dirac fermion model

and in the Federbush model in [13], most of them are in fact incorrect due to the neglect

of some singularities in the derivation of (5.17).

Different from the two methods mentioned above, our Liouville space approach applies

the ideas of integrable Quantum field theory to thermo-field dynamics. This is a new way

to obtain correlation functions in mixed states and the evaluation of finite-temperature

correlation functions in the free Majorana theory, performed by Doyon in [21, 23], is the

first step in this direction. Correlation functions at finite temperature can be expressed as

vacuum expectation values on the Liouville space Lρ with ρ = exp[−βH] and it is natural

to evaluate these vacuum expectation values by performing form factor expansions with

respect to Lρ. Hence, the main work is to determine the finite-temperature form factors

defined within this Liouville space. As explained in 2.3, zero-temperature form factors of

a local field can be obtained as the solutions to a set of consistency equations, namely a

Riemann-Hilbert problem, which they have to satisfy. In the Liouville space for thermal

Gibbs states, one can expect a similar Riemann-Hilbert problem for finite-temperature

form factors. Thermal form factors of non-interacting fields (fields that are local with

respect to the fundamental fermion or boson field) can be trivially computed by deriving

and solving a simple Riemann-Hilbert problem. But, concerning twist fields which are

interacting fields, the associated Riemann-Hilbert problems are more involved and the

determination of their thermal form factors requires more considerations. In the first
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section of the present chapter, we will give the review of a Riemann-Hilbert problem derived

in [21] for determining finite-temperature form factors of twist fields in Ising model. The

second section is devoted to the generalization of this technique to the Dirac free fermion.

We will show how to obtain the exact finite-temperature form factors of U(1) twist fields

by deriving and solving a similar Riemann-Hilbert problem [142].

5.1 Ising model

5.1.1 Riemann-Hilbert problem

Let us commence with finite-temperature one-particle form factors of the disorder fields

µη in the Ising model [21]. In the Ising Gibbs thermal state with the untwisted density

matrix ρβ = e−βH , we consider a two-point function in the imaginary-time formalism

g(x, τ) = ρβ〈vac|µη(0)`ψ(x, τ)`|vac〉ρβ . (5.18)

Using free Majorana fermions’ mode expansions (2.83), the two-point function g(x, τ)

admits the form

g(x, τ) =
1

2

√
m

π

∫
dθ eθ/2

(
f
ρβ ;µη

+ (θ)

1 + e−βEθ
e−ipθx+Eθτ +

f
ρβ ;µη

− (θ)

1 + eβEθ
eipθx−Eθτ

)
(5.19)

which should be convergent in the region −β < τ < 0. The function g(x, τ) can also be

written as

g(x, τ) =
Tr
(
e−βHµη(0)ψ(x, τ)

)
Tr(e−βH)

From this representation, using the cyclicity of the trace and translation invariance

eβHψ(x, τ)e−βH = ψ(x, τ + β),

we have

g(x, τ) =
Tr
(
µη(0)ψ(x, τ)e−βH

)
Tr(e−βH)

=
Tr
(
µη(0)e−βHψ(x, τ + β)

)
Tr(e−βH)

=
Tr
(
e−βHψ(x, τ + β)µη(0)

)
Tr(e−βH)

.
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For x > 0, the fermion field ψ(x, τ + β) commutes with the twist field µ+(0) but anti-

commutes with the twist field µ−(0). So we have

g(x, τ) = − (δη− − δη+)
Tr
(
e−βHµη(0)ψ(x, τ + β)

)
Tr(e−βH)

= − (δη− − δη+) g(x, τ + β)

For x < 0, the fermion field ψ(x, τ + β) anti-commutes with the twist field µ+(0) but

commutes with the twist field µ−(0). So we have

g(x, τ) = − (δη+ − δη−)
Tr
(
e−βHµη(0)ψ(x, τ + β)

)
Tr(e−βH)

= − (δη+ − δη−) g(x, τ + β)

Thus, we obtain the quasi-periodicity equation, namely the KMS relation, for the function

g(x, τ):

g(x, τ + β) = − (δη− − δη+) g(x, τ) (x > 0) (5.20)

g(x, τ + β) = − (δη+ − δη−) g(x, τ) (x < 0). (5.21)

Taking into account this KMS relation and deforming the contours of the integrals in (5.19),

we find that one-particle form factors f
ρβ ;µη

ε (θ) should satisfy the following requirements:

1. Analytic structure: f
ρβ ;µη

ε (θ) are analytic as functions of θ on the complex plane

except at some simple poles. Analytic structure is specialized in the region Im(θ) ∈
[−iπ, iπ]:

(a) Thermal poles and zeros:

f
ρβ ;µη

ε (θ) has poles at

θ = λn − ηε
πi

2
, n ∈ Z

and zeroes at

θ = λn − ηε
πi

2
, n ∈ Z +

1

2
.

(b) f
ρβ ;µη

+ (θ) and f
ρβ ;µη

− (θ) are related by relations:

f
ρβ ;µη

+ (θ + iπ/2) = if
ρβ ;µη

− (θ − iπ/2) for all real θ except θ = λn, n ∈ Z + 1
2

(5.22)
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and

f
ρβ ;µη

+ (θ − iπ/2) = −ifρβ ;µη

− (θ + iπ/2) for all θ except θ = λn, n ∈ Z (5.23)

2. Crossing symmetry:

f
ρβ ;µη

+ (θ ± iπ) = ±ifρβ ;µη

− (θ) . (5.24)

This property can be used for obtaining one-particle form factors with different

charges. The term “crossing symmetry” comes from the zero temperature case and

this can be seen more clearly by rewriting (5.24) as

ρβ〈vac|µη(0)`|θ ± iπ〉ρβ+ = ±i ρβ〈θ|µη(0)`|vac〉ρβ

where we used the relation (4.89).

3. Quasi-periodicity:

f
ρβ ;µη

ε (θ ± 2iπ) = −fρβ ;µη

ε (θ) . (5.25)

5.1.2 Solutions

The solutions to this Rimann-Hilbert problem can be completely fixed, up to a

normalization, by the asymptotic behavior f
ρβ ;µη

ε (θ) ∼ O(1) at |θ| → ∞, since the

disorder field µ is a primary field of spin 0. The one-particle mixed-state form factors

admit the representation [21, 23]:

f
ρβ ;µη

ε (θ) = eε
iπ
4

1√
2π

exp

[
εη

∫ ∞−εηi0+

−∞−εηi0+

dθ′

2πi

1

sinh(θ − θ′)
log

(
tanh

βEθ
2

)]
〈ση〉ρβ .

(5.26)

It is a simple matter to check that the functions f
ρβ ;µη

ε (θ) have poles and zeros at

the positions stated in the Riemann-Hilbert problem. By performing analytic con-

tinuation in θ, we can see f
ρβ ;µη

ε (θ) satisfy crossing symmetry and quasi-periodicity.

The normalization 〈ση〉ρβ has the same vale for both order fields with branch cut on

the left and on the right, and it was computed in [143] as

m
1
8 2

1
12 e−

1
8A

3
2 ×

exp

[
(mβ)2

2

∫ ∫ ∞
−∞

dθ1dθ2

(2π)2

sinh θ1 sinh θ2

sinh(mβ cosh θ1) sinh(mβ cosh θ2)
ln

∣∣∣∣∣
(

coth
θ1 − θ2

2

) ∣∣∣∣∣
]
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where A is Glaisher’s constant. Since 〈ση〉ρβ is real, it is obvious that relations

Re
(
e±iπ/4f

ρβ ;µ+

± (θ ± iπ/2)
)

= 0 for all real θ except at θ = λn, n ∈ Z + 1
2

and

Re
(
e∓iπ/4f

ρβ ;µ+

± (θ ∓ iπ/2)
)

= 0 for all real θ except at θ = λn, n ∈ Z

are satisfied. In fact, we can see from (5.26) that the finite-temperature one-particle

form factor of the disorder field is constructed by adjoining a θ-dependent function,

which can be called as the “leg factor”, with the zero-temperature normalized one-

particle form factor, up to the normalization 〈ση〉ρβ :

f
ρβ ;µη

ε (θ) = f (0)η
ε (θ)hηε (θ)〈ση〉ρβ (5.27)

where we define zero-temperature normalized one-particle form factors

f (0)η
ε (θ) := lim

W→∞
〈ση〉−1

ρ fρ;µη

ε (θ) (5.28)

and where the leg factor hηε (θ) is of the form

hηε (θ) = exp

[
εη

∫ ∞−εηi0+

−∞−εηi0+

dθ′

2πi

1

sinh(θ − θ′)
log

(
tanh

βEθ
2

)]
. (5.29)

It is the analytic properties of the leg factor that make one-particle form factors

f
ρβ ;µη

ε (θ) satisfy all conditions mentioned in the Riemann-Hilbert problem. In the

same spirit, finite-temperature two-particle form factors of the order field is obtained

as

f
ρβ ;ση

ε1,ε2
(θ1, θ2) = f (0)η

ε1,ε2(θ1, θ2)hηε1(θ1)hηε2(θ2)〈ση〉ρβ (5.30)

where we define zero-temperature normalized two-particle form factors:

f (0)η
ε1,ε2(θ1, θ2) := lim

W→∞
〈σ〉−1

ρ fρ;ση

ε1,ε2(θ1, θ2) (5.31)

and they are given by

f (0)η
ε1,ε2(θ1, θ2) =

i

2π
eε1

iπ
4 eε2

iπ
4 tanh

(
θ2 − θ1 + ηi(ε2 − ε1)

2

)ε1ε2
. (5.32)
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5.1.3 Derivation of the Riemann-Hilbert problem associated to the twist

field µ+

Now we present the derivation of the Riemann-Hilbert problem associated to the twist

field µ+, which is originally from [21]. The Riemann-Hilbert problem associated to the

twist field µ− can be derived following similar arguments.

Analytic structure

We consider the function

g(x, τ) =
1

2

√
m

π

∫
dθ eθ/2

(
f
ρβ ;µ+

+ (θ)

1 + e−βEθ
e−ipθx+Eθτ +

f
ρβ ;µ+

− (θ)

1 + eβEθ
eipθx−Eθτ

)
(5.33)

with conditions

g(x, τ + β) = −g(x, τ) (x < 0) (5.34)

g(x, τ + β) = g(x, τ) (x > 0) (5.35)

For x < 0, we shift the θ-contour in the term containing e−ipθ as θ → θ + iπ/2 and

in the term containing eipθ as θ → θ − iπ/2 so that the form factor expansion of

g(x, τ) is still convergent. When shifting the contours, we take residues of poles. By

defining

g+(θ) =
f
ρβ ;µ+

+ (θ)

1 + e−βEθ
, g−(θ) =

f
ρβ ;µ+

− (θ)

1 + eβEθ
, (5.36)

we have

g(x, τ) =
1

2

√
m

π

∫
dθ eθ/2

(
eiπ/4g+(θ + iπ/2) + e−iπ/4g−(θ − iπ/2)

)
eEθx+ipθτ

+
∑
n

iπRes (g+(θ), λn + iπ/2) eλn/2+iπ/4eEλnx+ipλnτ

−
∑
n

iπRes (g−(θ), λn − iπ/2) eλn/2−iπ/4eEλnx+ipλnτ .

To meet the anti-periodic condition (5.34), we must have

1

2

√
m

π

∫
dθ eθ/2

(
eiπ/4g+(θ + iπ/2) + e−iπ/4g−(θ − iπ/2)

)
eEθx+ipθτ

= −1

2

√
m

π

∫
dθ eθ/2

(
eiπ/4g+(θ + iπ/2) + e−iπ/4g−(θ − iπ/2)

)
eEθx+ipθ(τ+β)
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and

∑
n

iπRes (g+(θ), λn + iπ/2) eλn/2+iπ/4eEλnx+ipλnτ

−
∑
n

iπRes (g−(θ), λn − iπ/2) eλn/2−iπ/4eEλnx+ipλnτ

= −
∑
n

iπRes (g+(θ), λn + iπ/2) eλn/2+iπ/4eEλnx+ipλn (τ+β)

+
∑
n

iπRes (g−(θ), λn − iπ/2) eλn/2−iπ/4eEλnx+ipλn (τ+β),

which lead to the following requirements for g±(θ):

• eiπ/4g+(θ+iπ/2)+e−iπ/4g−(θ−iπ/2) = 0 for all real θ except θ = λn, n ∈ Z+ 1
2 ;

• g+(θ) has poles at θ = λn + iπ/2 and g−(θ) has poles at θ = λn − iπ/2, where

sinhλn = 2πn
mβ with n ∈ Z + 1/2.

By recalling definition (5.36), using the f
ρβ ;µ+

± (θ) =
(
f
ρβ ;µ+

∓ (θ)
)∗

, considering the

poles of functions 1
1+e±βEθ

, and assuming that functions f
ρβ ;µ+

± (θ) have only simple

poles, the requirements above can be written in the language of one-particle form

factors f
ρβ ;µ+

± (θ) as

• Re
(
eiπ/4f

ρβ ;µ+

+ (θ + iπ/2)
)

= 0 and Re
(
e−iπ/4f

ρβ ;µ+

− (θ − iπ/2)
)

= 0 for all

real θ except θ = λn, n ∈ Z + 1
2 ;

• fρβ ;µ+

+ (θ) does not have poles at θ = λn + iπ/2 and f
ρβ ;µ+

− (θ) does not have

poles at θ = λn − iπ/2.

For x > 0, we shift the θ-contour in the term containing e−ipθ as θ → θ − iπ/2 and

in the term containing eipθ as θ → θ+ iπ/2. Again, we take the poles at appropriate

values and we get:

g(x, τ) =
1

2

√
m

π

∫
dθ eθ/2

(
e−iπ/4g+(θ − iπ/2) + eiπ/4g−(θ + iπ/2)

)
e−Eθx−ipθτ

−
∑
n

iπRes (g+(θ), λn − iπ/2) eλn/2−iπ/4e−Eλnx−ipλnτ

+
∑
n

iπRes (g−(θ), λn + iπ/2) eλn/2+iπ/4e−Eλnx−ipλnτ .

To meet the periodic condition (5.35), the following requirements must be satisfied:

• e−iπ/4g+(θ − iπ/2) + eiπ/4g−(θ + iπ/2) = 0 for all real θ except θ = λn, n ∈ Z;

• g+(θ) has poles at θ = λn − iπ/2 and g−(θ) has poles at θ = λn + iπ/2, where

sinhλn = 2πn
mβ with n ∈ Z.
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We then translate these requirements in terms of one-particle form factors f
ρβ ;µ+

± (θ):

• Re
(
e−iπ/4f

ρβ ;µ+

+ (θ − iπ/2)
)

= 0 and Re
(
eiπ/4f

ρβ ;µ+

− (θ + iπ/2)
)

= 0 for all

real θ except θ = λn, n ∈ Z;

• fρβ ;µ+

± (θ) have poles at θ = λn ∓ iπ/2, n ∈ Z and have zeroes at θ = λn ∓
iπ/2, n ∈ Z + 1/2.

Crossing symmetry (5.24) and quasi-periodicity (5.25)

For x < 0, we shift the θ-contour in the term containing e−ipθ as θ → θ + iπ and in

the term containing eipθ as θ → θ− iπ. By taking the poles at the lines of imaginary

±π/2, we have

g(x, τ) =
1

2

√
m

π

∫
dθ eθ/2

(
ig+(θ + iπ)eipθx−Eθτ − ig−(θ − iπ)e−ipθx+Eθτ

)
+

∑
n∈Z+1/2

2iπRes (g+(θ), λn + iπ/2) eλn/2+iπ/4eEλnx+ipλnτ

−
∑

n∈Z+1/2

2iπRes (g−(θ), λn − iπ/2) eλn/2−iπ/4eEλnx+ipλnτ .

By recognizing the sum of last two terms as 2g(x, τ), we obtain again a representation

of the two-point function g(x, τ):

g(x, τ) = −1

2

√
m

π

∫
dθ eθ/2

(
if
ρβ ;µ+

+ (θ + iπ)

1 + eβEθ
eipθx−Eθτ −

if
ρβ ;µ+

− (θ − iπ)

1 + e−βEθ
e−ipθx+Eθτ

)
(5.37)

which is of the same form as (5.33) and is still valid in the region−β < τ < 0, x < 0.

Since a presentation of this form should be unique, comparing (5.33) and (5.37) gives

f
ρβ ;µ+

+ (θ + iπ) = if
ρβ ;µ+

− (θ).

For x > 0, we shift the θ-contour in the term containing e−ipθ as θ → θ − iπ and in

the term containing eipθ as θ → θ+ iπ. By taking the poles at the lines of imaginary

∓π/2, we have

g(x, τ) =
1

2

√
m

π

∫
dθ eθ/2

(
−ig+(θ − iπ)eipθx−Eθτ + ig−(θ + iπ)e−ipθx+Eθτ

)
+
∑
n∈Z

2iπRes (g+(θ), λn − iπ/2) eλn/2−iπ/4e−Eλnx−ipλnτ

−
∑
n∈Z

2iπRes (g−(θ), λn + iπ/2) eλn/2+iπ/4e−Eλnx−ipλnτ .



80

By recognizing the sum of last two terms as 2g(x, τ), we obtain again a representation

of the two-point function g(x, τ):

g(x, τ) =
1

2

√
m

π

∫
dθ eθ/2

(
if
ρβ ;µ+

+ (θ − iπ)

1 + eβEθ
eipθx−Eθτ −

if
ρβ ;µ+

− (θ + iπ)

1 + e−βEθ
e−ipθx+Eθτ

)
(5.38)

which is valid in the region−β < τ < 0, x > 0. Comparing (5.33) and (5.38) gives

the other crossing relation

f
ρβ ;µ+

+ (θ − iπ) = −ifρβ ;µ+

− (θ) .

Quasi-periodicity can be obtained by performing crossing symmetry for two times.

5.2 Dirac model

The original results presented in this section are collected from the work [142]. Before

we start, let us introduce some useful notations. We define the normalized mixed-state

one-particle form factors of the U(1) fermionic twist fields

fην,ε(θ) := 〈σηα〉−1
ρ fρ;µη

ν,ε (θ) (5.39)

where fρ;µη
ν,ε (θ) := 〈σηα〉−1

ρ

[
δν,−εf

ρ;σηα−1,α
ν,ε (θ) + δν,εf

ρ;σηα+1,α
ν,ε (θ)

]
and 〈σηα〉ρ is the normaliza-

tion, and the normalized mixed-state two-particle form factors of the U(1) bosonic twist

fields

fη(ν1,ε1)(ν2,ε2)(θ1, θ2) := 〈σηα〉−1
ρ fρ;σηα

(ν1,ε1)(ν2,ε2)(θ1, θ2). (5.40)

Their pure-state limits are denoted by

f (0)η
ν,ε (θ) := lim

W±→∞
fην,ε(θ) , (5.41)

f
(0)η
(ν1,ε1)(ν2,ε2)(θ1, θ2) := lim

W±→∞
fη(ν1,ε1)(ν2,ε2)(θ1, θ2) . (5.42)

Using the relation (4.56) and the vacuum matrix elments of U(1) twist fields in Hilbert

space, we have

f (0)+
ν,ε (θ) = (−iεδν,− + δν,+)

e−iπνα/2

Γ(1 + νεα)
mνεα+1/2e(νεα+1/2)θ ,

f (0)−
ν,ε (θ) = f (0)+

ν,ε (θ)e2πiναδε,+ (5.43)
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and

f
(0)η
(ν1,ε1)(ν2,ε2)(θ1, θ2) = δε1,ε2δν1,−ν2 ν1ε1

sin(πα)

2πi

eν1ε1α(θ1−θ2)

cosh( θ1−θ22 )
+

δε1,−ε2δν1,ν2 iν1
sin(πα)

2πi

eν1ε1α(θ1−θ2)e−iπην1α

sinh
(
θ1−θ2+ηi(ε1−ε2)0+

2

) . (5.44)

5.2.1 Riemann-Hilbert problem

We start again with finite-temperature one-particle form factors of the U(1) fermionic twist

fields in the Dirac theory. In the Dirac thermal Gibbs state with untwisted density matrix,

where Wν(θ) = βEθ, we consider a two-point function in imaginary-time formalism

g(x, τ) = ρ〈vac|σηα−ν(−1),α (0)` Ψ−νR (x, τ)`|vac〉ρ (5.45)

where we denote by Ψ∓ the fermion operator Ψ and its Hermitian Conjugation Ψ† respec-

tively. Using Dirac fermions’ mode expansions (2.92), (2.93), and Liouville left-action, the

two-point function g(x, τ) can be written as a finite-temperature form factor expansion:

g(x, τ) =
√
m

∫
dθeθ/2

[
i
fρ;µη

ν+ (θ)

1 + e−LEθ
eτEθ−ixPθ +

fρ;µη

−ν,−(θ)

1 + eLEθ
e−τEθ+ixPθ

]
(5.46)

which should be convergent in the region −β < τ < 0. Following the same recipe for

obtaining (5.20) and (5.21), we can derive the KMS relation for g(x, τ) (5.45):

g(x, τ) = −
(
δη+ e

−ην2πiα + δη−
)
g(x, τ + β) (x > 0) (5.47)

g(x, τ) = −
(
δη− e

−ην2πiα + δη+

)
g(x, τ + β) (x < 0) . (5.48)

To make sense of KMS relations (5.47) and (5.48), one-particle form factor fρ;µη

ν+ (θ) and

fρ;µη

−ν,−(θ) should meet the following requirements:

1. Analytic structure: fρ;µη

ν+ (θ) and fρ;µη

−ν,−(θ) are analytic as functions of θ on the com-

plex plane except at some simple poles. Analytic structure is specialized in the region

Im(θ) ∈ [−iπ, iπ]:

(a) Thermal poles and zeroes:

fρ;µη

ν+ (θ) has poles at

θ = γνn − η
πi

2
, n ∈ Z +

1

2
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and zeroes at

θ = λn − η
πi

2
, n ∈ Z +

1

2
;

fρ;µη

−ν,−(θ) has poles at

θ = γνn + η
πi

2
, n ∈ Z +

1

2

and zeroes at

θ = λn + η
πi

2
, n ∈ Z +

1

2

where

sinh γνn =
2π(n+ να)

mβ
, sinhλn =

2πn

mβ
,

(b) fρ;µη

ν+ (θ) and fρ;µη

−ν,−(θ) are related by relations

fρ;µη

ν+ (θ ± iπ/2) = ±fρ;µη

−ν,−(θ ∓ iπ/2) (5.49)

for all θ except θ = γνn, n ∈ Z + 1
2 .

2. Crossing symmetry:

fρ;µη

ν+ (θ ± iπ) = ±fρ;µη

−ν,−(θ) . (5.50)

3. Quasi-periodicity:

fρ;µη

εν,ε (θ ± 2iπ) = −fρ;µη

εν,ε (θ) . (5.51)

Taking into account the above Riemann-Hilbert problem as well as the fact that mixed-

state form factors reproduce the ordinary form factors in Hilbert space under the limit

W±(θ) → ∞, and by analogy with thermal form factors of twist fields in Ising model

(5.27), we conjecture that finite-temperature one-particle form factors of the fermionic

twist fields are expressed again as a product of the leg factor and the vacuum one-particle

form factor, up to the overall normalization 〈σηα〉ρ :

fρ;µη

νε (θ) = fηνε(θ)〈σηα〉ρ = f (0)η
νε (θ)hηνε(θ)〈σηα〉ρ (5.52)

with hηνε(θ) the leg-factor:

hηνε(θ) = exp

[∫
dθ′

2πi

Aηνε(θθ′)

cosh( θ−θ
′

2 )
log

(
1 + e−LEθ′

1 + e2πiηναe−LEθ′

)

+

∫ ∞−ηεi0+

−∞−ηεi0+

dθ′

2πi

Bη
νε(θθ′)

sinh( θ−θ
′

2 )
log

(
1 + e−LEθ′

1 + e−2πiηναe−LEθ′

)]
. (5.53)
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Factors Aηνε(θθ′) and Bη
νε(θθ′), due to (5.69), (5.50) and (5.51), must satisfy a set of

relations

1.

Aηνε(θ ± πi/2, θ ± πi/2) = Bη
νε(θ ± πi/2, θ ± πi/2) = −ηε/2

Aηνε(θ ± πi/2, θ′) = ±iBη
−ν,−ε(θ ∓ πi/2, θ′)

Bη
νε(θ ± πi/2, θ′) = ±iAη−ν,−ε(θ ∓ πi/2, θ′) . (5.54)

2.

Aηνε(θ ± πi, θ) = ±ηεi/2

Bη
νε(θ ± πi, θ ± πi) = −ηε/2

Aηνε(θ ± πi, θ′) = ±iBη
−ν,−ε(θ, θ

′)

Bη
νε(θ ± πi, θ′) = ±iAη−ν,−ε(θ, θ′) . (5.55)

3.

Aηνε(θ ± 2πi, θ ± πi) = ±ηεi/2

Bη
νε(θ ± 2πi, θ) = ηε/2 . (5.56)

To fully determine factors Aηνε(θθ′) and Bη
νε(θθ′), it is intuitive to exploit low-temperature

expansions of finite-temperature form factors. From the trace definition of mixed-state

form factors and factorisation of higher-particle twist field form factors, we can deduce

low-temperature expansions of one- and two-particle normalized form factors for U(1)

twist fields:

fην,ε(θ) = f (0)η
ν,ε (θ) +

∑
ν′

∫
dθ′e−βEθ′

[
f

(0)η
(ν,ε)(ν′,+)(θ, θ

′)f
(0)η
ν′,−(θ′)

−f (0)η
(ν,ε)(ν′,−)(θ, θ

′)f
(0)η
ν′,+(θ′)

]
+O(e−2mβ) (5.57)

fη(ν1,ε1)(ν2,ε2)(θ1, θ2) = f
(0)η
(ν1,ε1)(ν2,ε2)(θ1, θ2)

+
∑
ν

∫
dθe−βEθ

[
f

(0)η
(ν1,ε1)(ν,−)(θ1, θ)f

(0)η
(ν2,ε2)(ν,+)(θ2, θ)

−f (0)η
(ν1,ε1)(ν,+)(θ1, β)f

(0)η
(ν2,ε2)(ν,−)(θ2, β)

]
+O(e−2mβ)

. (5.58)
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Then, we turn our attention to the expression of fηνε(θ) in our conjecture (5.52). We taylor

expand in hηνε(θ) two logarithmic terms as functions of e−βE
′
θ at the point e−βE

′
θ = 0 in

low-temperature limit,

fηνε(θ) = f (0)η
ν,ε (θ) + f (0)η

ν,ε (θ)

[∫
dθ′

2πi

Aην,ε(θ, θ′)

cosh( θ−θ
′

2 )
(1− e2πiηνα)e−βEθ′

+

∫
dθ′

2πi

Bη
ν,ε(θ, θ′)

sinh( θ−θ
′

2 )
(1− e−2πiηνα)e−βEθ′

]
+O(e−2mβ) (5.59)

By comparing (5.57) and (5.59), we arrive at

Aην,ε(θ, θ
′) = Bη

ν,ε(θ, θ
′) = −ηε 1

2
e

(θ′,−θ)
2 . (5.60)

which are in agreement with relations (5.54), (5.55) and (5.56). Thus, finite-temperature

one-particle form factors of the fermionic U(1) twist fields are fully obtained :

fρ;µη

ν,ε (θ) = f (0)η
ν,ε (θ)hην,ε(θ)〈σηα〉ρ (5.61)

with

hην,ε(θ) = exp

[
− ηε

∫
dθ′

2πi

1
2e

(θ′−θ)
2

cosh( θ−θ
′

2 )
log

(
1 + e−βEθ′

1 + e2πiηναe−βEθ′

)

−ηε
∫ ∞−ηεi0+

−∞−ηεi0+

dθ′

2πi

1
2e

(θ′−θ)
2

sinh( θ−θ
′

2 )
log

(
1 + e−βEθ′

1 + e−2πiηναe−βEθ′

)]
. (5.62)

Again, this solution is unique due to the asymptotic behavior fρ;µη
ν,ε (θ) ∼ O(1) at |θ| →

∞. Similarly, we postulate that finite-temperature two-particle form factors of the U(1)

bosonic twist fields admit the representation of the form:

fρ;σηα
(ν1,ε1)(ν2,ε2)(θ1, θ2) = f

(0)η
(ν1,ε1)(ν2,ε2)(θ1, θ2)hην1,ε1(θ1)hην2,ε2(θ2)〈σηα〉ρ (5.63)

which indeed reproduces the correct ordinary two-particle form factors in low-temperature

limit.

5.2.2 Derivation of the Riemann-Hilbert problem associated to the fermionic

U(1) twist fields with η = +

Analytic structure
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We consider the function

g(x, τ) =
√
m

∫
dθeθ/2

[
i
fρ;µ+

ν+ (θ)

1 + e−LEθ
eτEθ−ixPθ +

fρ;µ+

−ν,−(θ)

1 + eLEθ
e−τEθ+ixPθ

]
. (5.64)

with conditions

g(x, τ) = −e−ν2πiαg(x, τ + β) (x > 0) (5.65)

g(x, τ) = −g(x, τ + β) (x < 0) . (5.66)

For x < 0, we shift the θ-contour in the term containing e−ipθ as θ → θ + iπ/2 and

in the term containing eipθ as θ → θ − iπ/2 so that the form factor expansion of

g(x, τ) is still convergent. When shifting the contours, we take residues of poles. By

defining

gν,+(θ) =
f
ρβ ;µ+

ν,+ (θ)

1 + e−βEθ
, g−ν,−(θ) =

f
ρβ ;µ+

−ν,− (θ)

1 + eβEθ
, (5.67)

we have

g(x, τ) =
√
m

∫
dθ eθ/2

(
ieiπ/4gν,+(θ + iπ/2) + e−iπ/4g−ν,−(θ − iπ/2)

)
eEθx+ipθτ

+
∑
n

iπRes (gν,+(θ), λn + iπ/2) ieλn/2+iπ/4eEλnx+ipλnτ

−
∑
n

iπRes (g−ν,−(θ), λn − iπ/2) eλn/2−iπ/4eEλnx+ipλnτ .

To meet the anti-periodic condition (5.66), the following requirements must be sat-

isfied:

• ieiπ/4gν,+(θ+ iπ/2)+e−iπ/4g−ν,−(θ− iπ/2) = 0 for all real θ except θ = λn, n ∈
Z + 1

2 ;

• gν,+(θ) has poles at θ = λn + iπ/2 and g−ν,−(θ) has poles at θ = λn − iπ/2,

where sinhλn = 2πn
mβ with n ∈ Z + 1/2.

By recalling definition (5.67), considering the poles of functions 1
1+e±βEθ

, and assum-

ing that functions f
ρβ ;µ+

±ν,± (θ) have only simple poles, the requirements above can be

written in the language of one-particle form factors f
ρβ ;µ+

±ν,± (θ) as

• fρ;µ+

ν+ (θ) and fρ;µ+

−ν,−(θ) are related by relations

fρ;µ+

ν+ (θ + iπ/2) = fρ;µ+

−ν,−(θ − iπ/2) (5.68)

for all real θ except θ = λn, n ∈ Z + 1
2 ;
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• fρβ ;µ+

ν,+ (θ) does not have poles at θ = λn + iπ/2 and f
ρβ ;µ+

−ν,− (θ) does not have

poles at θ = λn − iπ/2, for n ∈ Z + 1
2 .

For x > 0, we shift the θ-contour in the term containing e−ipθ as θ → θ − iπ/2 and

in the term containing eipθ as θ → θ+ iπ/2. Again, we take the poles at appropriate

values and we get:

g(x, τ) =
√
m

∫
dθ eθ/2

(
ie−iπ/4gν,+(θ − iπ/2) + eiπ/4g−ν,−(θ + iπ/2)

)
e−Eθx−ipθτ

−
∑
n

iπRes (gν,+(θ), γνn − iπ/2) ieγ
ν
n/2−iπ/4e−xm cosh γνn−iτm sinh γνn

+
∑
n

iπRes (g−ν,−(θ), γνn + iπ/2) eγ
ν
n/2+iπ/4e−xm cosh γνn−iτm sinh γνn .

To meet the periodic condition (5.65), the following requirements must be satisfied:

• ie−iπ/4gν,+(θ− iπ/2)+eiπ/4g−ν,−(θ+ iπ/2) = 0 for all real θ except θ = γνn, n ∈
Z + 1

2 ;

• gν,+(θ) has poles at θ = γνn − iπ/2 and g−ν,−(θ) has poles at θ = γνn + iπ/2,

where sinh γνn = 2π(n+να)
mβ with n ∈ Z + 1/2.

We then translate these requirements in terms of one-particle form factors f
ρβ ;µ+

±ν,± (θ):

• fρ;µ+

ν+ (θ) and fρ;µ+

−ν,−(θ) are related by relations

fρ;µ+

ν+ (θ − iπ/2) = fρ;µ+

−ν,−(θ + iπ/2) (5.69)

for all real θ except θ = γνn, n ∈ Z + 1
2 ;

• fρβ ;µ+

±ν,± (θ) have poles at θ = γνn∓iπ/2 and f
ρβ ;µ+

−ν,− (θ) have zeros at θ = λn∓iπ/2,

for n ∈ Z + 1
2 .

Crossing symmetry (5.50) and quasi-periodicity (5.51)

For x < 0, we shift the θ-contour in the term containing e−ipθ as θ → θ + iπ and in

the term containing eipθ as θ → θ− iπ. By taking the poles at the lines of imaginary

±π/2, we have

g(x, τ) =
√
m

∫
dθ eθ/2

(
−gν,+(θ + iπ)eipθx−Eθτ − ig−ν,−(θ − iπ)e−ipθx+Eθτ

)
+
∑
n

2iπRes (gν,+(θ), λn + iπ/2) eλn/2+iπ/4eEλnx+ipλnτ

−
∑
n

2iπRes (g−ν,−(θ), λn − iπ/2) eλn/2−iπ/4eEλnx+ipλnτ .
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By recognizing the sum of last two terms as 2g(x, τ), we obtain again a representation

of the two-point function g(x, τ):

g(x, τ) =
√
m

∫
dθ eθ/2

fρβ ;µ+

ν,+ (θ + iπ)

1 + eβEθ
eipθx−Eθτ +

if
ρβ ;µ+

−ν,− (θ − iπ)

1 + e−βEθ
e−ipθx+Eθτ


(5.70)

which is of the same form as (5.64) and is still valid in the region−β < τ < 0, x < 0.

Since a presentation of this form should be unique, comparing (5.64) and (5.70) gives

f
ρβ ;µ+

ν,+ (θ + iπ) = f
ρβ ;µ+

−ν,− (θ).

For x > 0, we shift the θ-contour in the term containing e−ipθ as θ → θ − iπ and in

the term containing eipθ as θ → θ+ iπ. By taking the poles at the lines of imaginary

∓π/2, we have

g(x, τ) =
√
m

∫
dθ eθ/2

(
gν,+(θ − iπ)eipθx−Eθτ + ig−ν,−(θ + iπ)e−ipθx+Eθτ

)
−

∑
n∈Z+1/2

iπRes (gν,+(θ), γνn − iπ/2) ieγ
ν
n/2−iπ/4e−xm cosh γνn−iτm sinh γνn

+
∑

n∈Z+1/2

iπRes (g−ν,−(θ), γνn + iπ/2) eγ
ν
n/2+iπ/4e−xm cosh γνn−iτm sinh γνn .

By recognizing the sum of last two terms as 2g(x, τ), we obtain again a representation

of the two-point function g(x, τ):

g(x, τ) = −
√
m

∫
dθ eθ/2

fρβ ;µ+

ν,+ (θ − iπ)

1 + eβEθ
eipθx−Eθτ +

if
ρβ ;µ+

−ν,− (θ + iπ)

1 + e−βEθ
e−ipθx+Eθτ


(5.71)

which is valid in the region−β < τ < 0, x > 0. Comparing (5.64) and (5.71) gives

the other crossing relation

f
ρβ ;µ+

ν,+ (θ − iπ) = −fρβ ;µ+

−ν,− (θ).

Again, quasi-periodicity can be obtained by performing crossing symmetry for two

times.

Derivation of the Riemann-Hilbert problem associated to the fermionic U(1) twist fields

with η = − follows the same procedure.
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5.2.3 Low temperature expansion

Let us start with one-particle form factors

fην,ε(θ) = Qρν,ε(θ)
Tr (ρµηαDε

ν(θ))

Tr (ρ σηα)
. (5.72)

We have

Tr (ρµηαD
ε
ν(θ))

= 〈vac|ρµηαDε
ν(θ)|vac〉+

∑
ν′

∫
dθ′e−βEθ′ ν′〈θ′|µηαDε

ν(θ)|θ′〉ν′ +O(e−2mβ)

= f (0)η
ν,ε (θ) +

∑
ν′

∫
dθ′e−βEθ′f

(0)η
(ν,ε)(ν′,+)(ν′,−)(θ, θ

′, θ′) +O(e−2mβ) (5.73)

and

Tr (ρσηα) = 〈vac|σηα|vac〉+
∑
ν′

∫
dθ′e−βEθ′ ν′〈θ′|σηα|θ′〉ν′ + +O(e−2mβ)

= 〈σα〉+
∑
ν′

∫
dθ′e−βEθ′f

(0)η
(ν′,+)(ν′,−)(θ

′, θ′) +O(e−2mβ) . (5.74)

In the low-temperature limit, 1/Tr (ρσα) in (5.72) can be expanded as

1

Tr (ρσα)
=

1

〈σα〉
− 1

〈σα〉2
∑
ν′

∫
dθ′e−βEθ′f

(0)η
(ν′,+)(ν′,−)(θ

′, θ′) +O(e−2mβ) . (5.75)

Substituting (5.73) and (5.75) into (5.72), and factorizing form factors f
(0)η
(ν,ε)(ν′,+)(ν′,−)(θ, θ

′, θ′)

through Wick’s theorem:

f
(0)η
(ν,ε)(ν′,+)(ν′,−)(θ, θ

′, θ′)

= f (0)η
ν,ε (θ)f

(0)η
(ν′,+)(ν′,−)(θ

′, θ′) + f
(0)η
(ν,ε)(ν′,+)(θ, θ

′)f
(0)η
ν′,−(θ′)− f (0)η

(ν,ε)(ν′,−)(θ, θ
′)f

(0)η
ν′,+(θ′) ,

yield the low-temperature expansion of normalized mixed-state one-particle form factors

(5.57). Then, we consider two-particle form factors

fη(ν1,ε2)(ν2,ε2)(θ1, θ2) = Qρ(ν1,ε2)(ν2,ε2)(θ1, θ2)
Tr
(
ρ σηαDε1

ν1
(θ1)Dε2

ν2
(θ2)

)
Tr (ρ σηα)

. (5.76)
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Likewise, we have

Tr
(
ρ σηαD

ε1
ν1

(θ1)Dε2
ν2

(θ2)
)

= 〈vac|ρ σηαDε1
ν1

(θ1)Dε2
ν2

(θ2)|vac〉+
∑
ν

∫
dθe−βEθν〈θ|σηαDε1

ν1
(θ1)Dε2

ν2
(θ2)|θ〉ν +O(e−2mβ)

= f
(0)η
(ν1,ε2)(ν2,ε2)(θ1, θ2) +

∑
ν

∫
dθe−βEθf

(0)η
(ν1,ε2)(ν2,ε2)(ν,+)(ν,−)(θ1, θ2, θ, θ) +O(e−2mβ)

(5.77)

Using (5.77), (5.75), and the factorisation

f
(0)η
(ν1,ε2)(ν2,ε2)(ν,+)(ν,−)(θ1, θ2, θ, θ)

= f
(0)η
(ν1,ε2)(ν2,ε2)(θ1, θ2)f

(0)η
(ν,+)(ν,−)(θ, θ)− f

(0)η
(ν1,ε1)(ν,+)(θ1, θ)f

(0)η
(ν2,ε2)(ν,−)(θ2, θ)

+f
(0)η
(ν1,ε1)(ν,−)(θ1, θ)f

(0)η
(ν2,ε2)(ν,+)(θ2, θ),

we obtain the low-temperature expansion of normalized mixed-state two-particle form

factors (5.58).



Chapter 6

Form factors of twist fields in

mixed states

In this chapter, we present the exact result for mixed-state form factors of twist fields in

the Ising model and in the Dirac theory. It has been shown in section 4.1.3 that the map

U in principle allows us to calculate mixed-state form factors in the Liouville space Lρ
from the known matrix elements on the associated Hilbert H. However, this technique

seems to break down for evaluating mixed-state form factors of the twist fields. This is

because the evaluation involves an infinite re-summation: twist fields are infinite linear

combinations of normal-ordered products (since they have nonzero matrix elements for

arbitrary large number of particles), hence there are infinitely many internal contractions.

This re-summation in principle gives rise to two effects: first, the overall normalization

of mixed-state form factors, encoded into the mixed-state expectation value (mixed-state

one-point function), is modified from its vacuum value; second, the dependence on the

rapidities θj of the form factors is affected (Here we will only consider the dependence

on the rapidities). On the other hand, we demonstrated in chapter 5 that in the case of

thermal Gibbs state, we can formulate a set of equations and analytic conditions by setting

up a Riemann-Hilbert problem derived from the finite-temperature KMS relation. The

minimal solutions are finite-temperature one-particle form factors. But, when it comes to

the case of general diagonal mixed-states, such techniques can not be employed, due to

the fact that the analytic structure of the eigenvalue of the density matrix is in general

not accessible.

In this chapter, we exploit a novel approach based on deriving and solving a system of non-

linear functional differential equations. The derivation of this system of equations follows

from the definition of mixed-state form factors and Wick’s theorem. Using such technique

90
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of functional differential equations, we perform “automatically” the infinite resummation

of contractions in order to obtain the exact rapidity dependence of twist-field form factors.

As usual, this method will be applied both on the twist fields in the Ising model and in

the Dirac theory. In the end of this chapter, we also present the general solution of this

system of equations as the integral-operator kernel, which can be seen as an alternative

representation of mixed-state form factors of twist fields. The results presented in this

chapter can be found in [55, 142].

6.1 Exact form factors of twist fields in mixed states

As we discussed, for general diagonal mixed states, form factors of twist fields can not be

obtained from either the Riemann-Hilbert problem technique or the the map U technique.

However, from the results (5.27), (5.30), (5.61) and (5.63) derived in chapter 5, we see

that these finite-temperature form factors depend on the eigenvalue of the density matrix

in a very trivial way. Then it is not unreasonable for us to conjecture that mixed-state

form factors of twist fields admit a similar representation in terms of the leg factor. In

this section, we will show the exact mixed-state form factors of twist fields in the Ising

model [55] and in the Dirac theory [142]. We will also discuss the analytic properties of

these form factors.

6.1.1 Ising model

In analogy with (5.27) and (5.30), it was conjectured in [55] that: the one- and two-particle

mixed-state form factors of disorder and order fields are given, respectively, by

fρ;µη

ε (θ) = f (0)η
ε (θ)hηε (θ) 〈ση〉ρ (6.1)

fρ;ση

ε1,ε2(θ1, θ2) = f (0)η
ε1,ε2(θ1, θ2)hηε1(θ1)hηε2(θ2)〈ση〉ρ (6.2)

where

hηε (θ) = exp

[
εη

∫ ∞−εηi0+

−∞−εηi0+

dθ′

2πi

1

sinh(θ − θ′)
log

(
tanh

W (θ′)

2

)]
(6.3)

f (0)η
ε (θ) = ηeε

iπ
4

1√
2π

(6.4)

f (0)η
ε1,ε2(θ1θ2) =

i

2π
eε1

iπ
4 eε2

iπ
4 tanh

(
θ2 − θ1 + ηi(ε2 − ε1)

2

)ε1ε2
. (6.5)
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The above mixed-state form factors are defined for real rapidities, in general, as distri-

butions obtained from boundary values of analytic functions. In light of the exponential

form of twist fields (3.25), form factors with higher numbers of particles can be obtained

by using Wick’s theorem on the particles. The factorization of multi-particle form factors

follows the rules: the overall normalization is 〈ση〉ρ, the contraction of two particles (θ1, ε1)

and (θ2, ε2) is given by the normalized two-particle form factor fρ;ση
ε1,ε2(θ1, θ2)/〈ση〉ρ, and the

remaining single particle (θ, ε), if any, contributes a factor fρ;µη
ε (θ)/〈ση〉ρ; further, a minus

sign should be introduced for every crossing of contractions.

Leg factors hηε (θ) are analytic functions of θ in the strip

Iηε :=

{
θ ∈ C :

Im(θ) ∈ (0, π) (εη = +)

Im(θ) ∈ (−π, 0) (εη = −)

}
, (6.6)

and for θ ∈ R they are ordinary integrable functions obtained by continuous continuation

from these analyticity regions. Hence, form factors of ση and µη are also analytic func-

tions in the strip (6.6), except for possible “kinematic poles” coming from form factors

f
(0)η
εi,εj (θi, θj) of two particles with equal rapidities (θi = θj) but opposite charges (εi = −εj).

It can be checked that the above form factors in terms of leg factors of the form (6.3) are in

agreement with (4.50), using the relation ρ
ε1,...,εN 〈θ1, . . . , θN |O|vac〉ρ =

(
fρ;O†
ε1,...,εN (θ1, . . . , θN )

)∗
,

(hηε (θ))
∗

= hη−ε(θ), and (3.24). Further, the function hηε (θ) may be analytically continued

from the strip (6.6) where it is analytic, to an extended region by extending on both sides

of the strip. The extended region depends on the analytic properties of W (θ) around the

real line. Let us assume that W (θ) is analytic on a neighborhood of some parts of the

real line. If θ lies in this region, and either θ or θ + ηεiπ lies in Iηε , then the analytic

continuation is obtained from

hηε (θ)h
η
ε (θ + ηεiπ) = coth

W (θ)

2
. (6.7)

Also, leg-factors with different values of ε are related to each other:

hη+(θ)hη−(θ) = η coth
W (θ)

2
, (6.8)

this being valid for all θ ∈ R in addition to all values of θ in the analyticity region of W (θ).

This along with (6.7) implies that

hη−(θ) = ηhη+(θ + ηiπ) (6.9)
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whenever the arguments lie in the analytic region of the leg factors. In turn, this leads to

the crossing symmetry of mixed-state form factors

fρ;ωη

ε1,ε2,...,εN
(θ1 + ηε1iπ, θ2, . . . , θN ) = ηε1i f

ρ;ωη

−ε1,ε2,...,εN (θ1, θ2, . . . , θN ). (6.10)

which in the case of W (θ) = βEθ reproduces (5.24). Finally, we see that the form factors

given above indeed reproduce reproduce the correct vacuum form factors at e−W (θ) = 0.

6.1.2 Dirac theory

In the same spirit, we can generalized the results (5.61) and (5.63) obtained in the Dirac

theory in the case of thermal Gibbs state to general diagonal mixed-states. This has been

done in the original work [142].

Since the spectrum of the Dirac theory consists of two particle types, the terms βEθ in

the leg factor should be replaced by W+(θ) and W−(θ), respectively. We conjecture that

the diagonal mixed-state one- and two-particle form factors of U(1) twist fields are given

by

fρ;µη

ν,ε (θ) = f (0)η
ν,ε (θ)hην,ε(θ)〈σηα〉ρ (6.11)

fρ;σηα
(ν1,ε1)(ν2,ε2)(θ1, θ2) = f

(0)η
(ν1,ε1)(ν2,ε2)(θ1, θ2)hην1,ε1(θ1)hην2,ε2(θ2)〈σηα〉ρ (6.12)

where

hην,ε(θ) = exp

[
− ηε

∫
dθ′

2πi

1
2e

(θ′−θ)
2

cosh( θ−θ
′

2 )
log

(
1 + e−W−ν(θ′)

1 + e2πiηναe−W−ν(θ′)

)

−ηε
∫ ∞−ηεi0+

−∞−ηεi0+

dθ′

2πi

1
2e

(θ′−θ)
2

sinh( θ−θ
′

2 )
log

(
1 + e−Wν(θ′)

1 + e−2πiηναe−Wν(θ′)

)]
(6.13)

and

f (0)+
ν,ε (θ) = (−iεδν,− + δν,+)

e−iπνα/2

Γ(1 + νεα)
mνεα+1/2e(νεα+1/2)θ ,

f (0)−
ν,ε (θ) = f (0)+

ν,ε (θ)e2πiναδε,+ , (6.14)
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f
(0)η
(ν1,ε1)(ν2,ε2)(θ1, θ2) = δε1,ε2δν1,−ν2 ν1ε1

sin(πα)

2πi

eν1ε1α(θ1−θ2)

cosh( θ1−θ22 )
+

δε1,−ε2δν1,ν2 iν1
sin(πα)

2πi

eν1ε1α(θ1−θ2)e−iπην1α

sinh
(
θ1−θ2+ηi(ε1−ε2)0+

2

) . (6.15)

Higher-particle form factors can be evaluated by using Wick’s theorem on the parti-

cles. The overall normalization is 〈σηα〉ρ, the contraction of two particles (θ1, ν1, ε1) and

(θ2, ν2, ε2) is given by the normalized two-particle form factor fη(ν1ε1)(ν2ε2)(θ1θ2), and the

remaining single particle (θ, ν, ε), if any, gives a factor fηνε(θ); further, there is a minus sign

for every crossing of contractions.

The analyticity regions of the leg factor hηνε(θ) are still the strip Iηε (6.6). Form factors

of U(1) twist fields are also analytic functions in this strip, except for possible kinematic

poles coming from two-particle form factors f
(0)η
(ν1ε1)(ν2ε2)(θ1θ2) with (ε1 = −ε2, ν1 = ν2)

at colliding rapidities. Leg-factors hηνε(θ), as functions of θ ∈ R, are ordinary integrable

functions obtained by continuous continuation from these analyticity regions, and they

satisfy

hηνε(θ)h
η
ν,−ε(θ) =

1 + e−Wν(θ)

1 + e−2πiηναe−Wν(θ)
. (6.16)

It is a simple matter to check that mixed-state form factors above do agree with (4.105)

considering (6.14),(6.15), and with (4.106) using (3.27), (3.37), and complex conjugation.

Concerning the normalization 〈σηα〉ρ, it has not been exactly calculated so far. However,

in analogy to the computation of cα in [49], we can obtain a recursion relation for the

normalization [142]
〈σηα+1〉ρ
〈σηα〉ρ

=
Γ(−α)

Γ(1 + α)
m2α+1, (6.17)

by considering mixed-state one-particle form factors of the fermionic primary twist fields.

The derivation is as follow. By similar arguments to those leading to mixed-state form

factors of twist fields σηα±1,α, we can also deduce mixed-state form factors of σηα,α±1. For

instance, we have

ρ〈vac|σηα−1,α(0)|θ〉ρ+,+ = i
e−iπα/2

Γ(1− α)
e2πiαδη,−m−α+1/2e(α−1/2)θ hη+,+(θ)〈σηα〉ρ . (6.18)

After a shift α 7→ α+ 1, we arrive at

ρ〈vac|σηα,α+1(0)|θ〉ρ+,+ = −e
−iπα/2

Γ(−α)
e2πiαδη,−m−α−1/2e(α+1/2)θ hη+,+(θ)〈σηα+1〉ρ . (6.19)
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Notice that the leg factor hη+,+(θ) is invariant under the shift α 7→ α+1. Then, comparison

with the mixed-state one-particle form factor of σηα,α+1 given by (6.11)

ρ〈vac|σηα,α+1(0)|θ〉ρ+,+ = − e−iπα/2

Γ(1 + α)
e2πiαδη,−mα+1/2e(α+1/2)θ hη+,+(θ)〈σηα〉ρ

leads to the recursion relation (6.17) which, in the pure-state limit, is in agreement with

the result of [49] obtaind in the U(1) Dirac model at zero temperature

〈σα+1〉
〈σα〉

=
Γ(−α)

Γ(1 + α)
m2α+1 .

To fully determine the normalization 〈σηα〉ρ, one needs to find the initial condition of (6.17),

which involves the Wν(θ) function indicating the mixed states. Once the normalization

for α ∈ [0, 1/2] is known, it is known for α ∈ [−1/2, 1/2] by conjugation, and then known

for all α thanks to this recursion relation.

6.2 Non-linear functional differential system of equations

This section is devoted to the proof of the mixed-state form factors of twist fields (6.1)

(6.2) in the Ising model and (6.11) (6.12) in the Dirac theory. The verification is based

on a system of non-linear functional differential equations involving one- and two-particle

mixed-state form factors of twist fields. We provide the derivation of these equations and

discuss the uniqueness of their solutions. Finally, we verify our form factors by substituting

them into these equations. Note that this novel methods provide an alternative proof of

the known expression for finite-temperature form factors of twist fields, which, contrary to

analytic-property methods, does not require “minimality” assumptions. The main results

presented in this section are collected from the works [55] and [142].

6.2.1 Ising model

We recall that the twist fields σ and µ can be expresses as normal-ordered exponentials of

bilinear expressions in the creation / annihilation operators. For instance the order field

σ+ admit a representation of the form

ση = 〈σ〉 : exp

[∑
ε1,ε2

∫
dθ1dθ2 F

η
ε1,ε2(θ1, θ2)aε1(θ1)aε2(θ2)

]
: (6.20)
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where following the notation (4.57), F ηε1,ε2(θ1, θ2) can be rewritten as

F ηε1,ε2(θ1, θ2) = − 1

2〈σ〉
fσ

η

−ε1,−ε2(θ1, θ2) (6.21)

As a consequence, Wick’s theorem can be applied to factorize higher-number mixed-state

form factors of these fields into products of one-and two-particle mixed-state form factors.

Based on Wick’s theorem and the trace definition (4.90), we will establish a system of

functional differential equations for the one- and two-particle form factors of the field µη

and ση [55]. These equations are nonlinear first-order differential equations and can be

seen as functionals of the function W : θ 7→W (θ) which characterizes the density matrix.

With the initial condition at W (θ) =∞, given by the matrix elements of the twist fields on

the Hilbert space, the solution is unique. Indeed, these matrix elements fully characterize

the kernel F ηε1,ε2(θ1, θ2) in the bilinear expression (6.20).

Derivation [55]

We start with defining notations

f̃ηε (θ) := Qρε (θ)
Tr (ρµη aε(θ))

Tr (ρ ση)
, f̃ε1,ε2(θ1, θ2) := Qρε1,ε2(θ1, θ2)

Tr (ρ ση aε1(θ1)aε2(θ2))

Tr (ρ ση)
.

(6.22)

Notations for insertions of higher numbers of creation and annihilation operators are de-

fined in a similar way. Using δρ/δW (β) = −a†(β)a(β) ρ, we find

δ

δW (β)

Tr (ρµη aε(θ))

Tr (ρ ση)
= −

Tr
(
ρµη aε(θ)a†(β)a(β)

)
Tr (ρ ση)

+
Tr (ρµη aε(θ))

Tr (ρ ση)

Tr
(
ρ ση a†(β)a(β)

)
Tr (ρ ση)

.

The right-hand side can be simplified via Wick’s theorem,

f̃ηε (θ)f̃η+,−(β, β)− f̃ηε,+,−(θ, β, β) = f̃η+(β)f̃ηε,−(θ, β)− f̃η−(β)f̃ηε,+(θ, β),

this implies, from the definition (4.78),

(
δ

δW (β)
+

εδ(β − θ)
1 + eεW (β)

)
f̃ηε (θ) =

f̃η+(β)f̃ηε,−(θ, β)− f̃η−(β)f̃ηε,+(θ, β)

4 cosh2 W (β)
2

. (6.23)
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In the same recipe, differentiating Tr (ρ ση aε1(θ1)aε2(θ2)) /Tr (ρ ση) gives(
δ

δW (β)
+
ε1δ(β − θ1)

1 + eε1W (β)
+
ε2δ(β − θ2)

1 + eε2W (β)

)
f̃ηε1,ε2(θ1, θ2)

=
f̃ηε1,+(θ1, β)f̃ηε2,−(θ2, β)− f̃ηε1,−(θ1, β)f̃ηε2,+(θ2, β)

4 cosh2 W (β)
2

. (6.24)

Introducing the notations

fηε (θ) := 〈σ〉−1
ρ fρ;µη

ε (θ), fηε1,ε2(θ1, θ2) := 〈σ〉−1
ρ fρ;ση

ε1,ε2(θ1, θ2), (6.25)

and recalling (4.90), we then have

f̃ηε (θ) = fηε (θ), f̃ηε1,ε2(θ1, θ2) = fηε1,ε2(θ1, θ2) +
(

1 + e−ε1W (θ1)
)
δε1+ε2,0 δ(θ1 − θ2). (6.26)

Thus, the system of differential equations can be translated into a system for the mixed-

state form factors themselves using (6.26),

δfηε (θ)

δW (β)
=

fη+(β)fηε,−(θ, β)− fη−(β)fηε,+(θ, β)

4 cosh2 W (β)
2

(6.27)

δfηε1,ε2(θ1, θ2)

δW (β)
=

fηε1,+(θ1, β)fηε2,−(θ2, β)− fηε1,−(θ1, β)fηε2,+(θ2, β)

4 cosh2 W (β)
2

. (6.28)

where the delta-function terms are vanishing.

As we see, equation (6.28) serves as a continuous family of non-linear first-order func-

tional differential equations for the W -functionals fη+,+(θ1, θ2), fη+,−(θ1, θ2), f−,+(θ1, θ2)

and fη−,−(θ1, θ2) (θ1, θ2 ∈ R). Once this system of equations is solved, the solution can be

fed into (6.27) to provide a continuous family of linear first-order differential equations for

the W -functionals fη+(θ) and fη−(θ) for all θ ∈ R.

Uniqueness

According to (4.74), for the disorder field µη, we have

fρ;µη

ε (θ) = ρ〈vac|(µη)`|θ〉ρε = ρ〈vac| ◦◦(µη)` ◦
◦U
†|θ〉ρε

= ρ〈vac| ◦◦(µη)` ◦
◦ |θ〉ρε +

∫
dβ

1

1 + eW (β)
ρ〈vac| ◦◦(µη)` ◦

◦a
†
−(β)a†+(β)|θ〉ρε + . . .

= fµ
η

ε (θ) +

∫
dβ

1

1 + eW (β)

[
fσ

η

ε,+(θ, β)fµ
η

− (β)− fσηε,−(θ, β)fµ
η

+ (β)
]

+ . . .
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where

fµ
η

ε (θ) = lim
W→∞

fρ;µη

ε (θ), fσ
η

ε1,ε2(θ1, θ2) = lim
W→∞

fρ;ση

ε1,ε2(θ1, θ2).

Then

fηε (θ) = fρ;µη

ε (θ)/〈σ〉ρ

=
1

〈σ〉ρ

[
fµ

η

ε (θ) +

∫
dβ

1

1 + eW (β)

[
fσ

η

ε,+(θ, β)fµ
η

− (β)− fσηε,−(θ, β)fµ
η

+ (β)
]

+ . . .

]
.

(6.29)

Following the same recipe, we can obtain

fηε1,ε2(θ1, θ2) =
1

〈σ〉ρ

[
fσ

η

ε1,ε2(θ1, θ2)

+

∫
dθ

1

1 + eW (θ)

[
fσ

η

ε1,−(θ1, θ)f
ση

ε2,+(θ2, θ)− fσ
η

ε1,+(θ1, θ)f
ση

ε2,−(θ2, θ)
]

+ . . .

]
.

(6.30)

From (6.29) and (6.30), we see that fηε (θ) and fηε1,ε2(θ1, θ2) can be expressed in terms

of ordinary form factors which have been fixed. Hence, the solutions to the system of

functional differential equations are unique. Since mixed-state form factors (6.1) and (6.2)

reproduce the vacuum form factors at W (θ) = ∞, then we only have to verify that they

satisfy the system of equations (6.27), (6.28) in order to prove that they are correct.

Solution

Considering the system of equations (6.27), (6.28) is analytic, it is sufficient for us to focus

on the analyticity region of the corresponding mixed-state form factors, in order to verify

the validity of (6.1) and (6.2). For convenience, we give a list of basic terms involved in

(6.27) and (6.28).

fηε (θ) = η
e
εiπ
4

√
2π
hηε (θ)

fηε1,ε2(θ1, θ2) = hηε1(θ1)hηε2(θ2)
i

2π
eε1

iπ
4 eε2

iπ
4

(
tanh

θ2 − θ1

2

)ε1ε2
δ

δW (β)
hηε (θ) =

ηε

2πi

1

sinhW (β)

1

sinh(θ − β)
hηε (θ). (6.31)

Let us start with considering (6.27). The left-hand side is

ε

2πi

1

sinhW (β)

1

sinh(θ − β)

e
εiπ
4

√
2π
hηε (θ)
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and the right-hand side, in virtue of (6.8), can be shown to be

− 1

4πi

1

sinhW (β)

((
tanh

β − θ
2

)−ε
−
(

tanh
β − θ

2

)ε) e
εiπ
4

√
2π
hηε (θ).

These are equal thanks to the relation

1

sinhx
=

1

2

(
coth

x

2
− tanh

x

2

)
.

We then consider (6.28). On the left-hand side, we find

1

4π2

1

sinhW (β)

(
ηε1

sinh(θ1 − β)
+

ηε2
sinh(θ2 − β)

)(
tanh

θ2 − θ1

2

)ε1ε2
×e

ε1iπ
4 e

ε2iπ
4 hηε1(θ1)hηε2(θ2)

whereas on the right-hand side, again using (6.8),

− 1

8π2

η

sinhW (β)
×

×

((
tanh

β − θ1

2

)ε1 (
tanh

β − θ2

2

)−ε2
−
(

tanh
β − θ1

2

)−ε1 (
tanh

β − θ2

2

)ε2)
×

× e
ε1iπ

4 e
ε2iπ

4 hηε1(θ1)hηε2(θ2).

Again, these are equal thanks to the relations(
1

sinh(θ1 − β)
+

1

sinh(θ2 − β)

)
tanh

θ2 − θ1

2

=
1

2

(
tanh

β − θ2

2
coth

β − θ1

2
− tanh

β − θ1

2
coth

β − θ2

2

)
(

1

sinh(θ1 − β)
− 1

sinh(θ2 − β)

)
coth

θ2 − θ1

2

=
1

2

(
coth

β − θ2

2
coth

β − θ1

2
− tanh

β − θ1

2
tanh

β − θ2

2

)
These two relations can be verified by analyzing pole structures of both sides as analytic

functions of β. In the first relation, both sides have poles at β = θ1 and β = θ2 with

residues tanh θ1−θ2
2 , and in the second the residues are ± coth θ1−θ2

2 respectively. In each

relation, both sides change sign under β 7→ β+iπ and no other poles than those mentioned

are found in any strip of width iπ.
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6.2.2 Dirac theory

As we recall, U(1) twist fields are also in the form of normal-ordered exponential of bilinear

combinations. For instance, the twist field σηα is given by

σηα = 〈σα〉

: exp

 ∑
(ν1,ε1)(ν2,ε2)

∫
dθ1dθ2F

η
(ν1,ε1)(ν2,ε2)(θ1, θ2)Dε1

ν1
(θ1)Dε2

ν2
(θ2)

 :

 (6.32)

with F η(ν1,ε1)(ν2,ε2)(θ1, θ2) = −1
2f

(0)η
(ν1,−ε1)(ν2,−ε2)(θ1, θ2). Thus, mimicking arguments in the

previous subsection, we deduce, from the trace definition and Wick’s theorem, a system of

non-linear functional differential equations for U(1) twist fields mixed-state form factors

as functions of Wν(θ). This work is collected from the original paper [142].

Derivation

We denote

f̃ην,ε(θ) := Qρν,ε(θ)
Tr (ρµαD

ε
ν(θ))

Tr (ρσα)
(6.33)

f̃η(ν1,ε1)(ν2,ε2)(θ1, θ2) := Qρ(ν1,ε1)(ν2,ε2)(θ1, θ2)
Tr
(
ρσαD

ε1
ν1

(θ1)Dε2
ν2

(θ2)
)

Tr (ρσα)
(6.34)

and the notations are similar for higher numbers of insertions of creation and annihilation

operators. Using
∂ρ

∂Wν(θ)
= −ρD+

ν (θ)Dν(θ) , (6.35)

we have

∂

∂Wν′(β)

Tr (ρµαD
ε
ν(θ))

Tr (ρσα)

= −
Tr
(
ρµαD

ε
ν(θ)D+

ν′(β)Dν′(β)
)

Tr (ρσα)
+

Tr (ρµαD
ε
ν(θ))

Tr (ρσα)

Tr
(
ρσαD

+
ν′(β)Dν′(β)

)
Tr (ρσα)

=
f̃ην,ε(θ)f̃

η
(ν′,+)(ν′,−)(β, β)− f̃η(ν,ε)(ν′,+)(ν′,−)(θ, β, β)

Qρ(ν,ε)(ν′,+)(ν′,−)(θ, β, β)

=
f̃ην′,+(β)f̃η(ν,ε)(ν′,−)(θ, β)− f̃ην′,−(β)f̃η(ν,ε)(ν′,+)(θ, β)

Qρ(ν,ε)(ν′,+)(ν′,−)(θ, β, β)
(6.36)
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where we use Wick’s theorem in the last step. By recalling the definition (4.107), we find(
∂

∂Wν′(β)
+
εδν,ν′δ(θ − β)

Qρν,−ε(θ)

)
f̃ην,ε(θ) =

f̃ην′,+(β)f̃η(ν,ε)(ν′,−)(θ, β)− f̃ην′,−(β)f̃η(ν,ε)(ν′,+)(θ, β)

4 cosh2
(
Wν′ (β)

2

) .

(6.37)

We then differentiate
Tr
(
ρσαD

ε1
ν1

(θ1)Dε2
ν2

(θ2)
)

Tr (ρσα)

with respect to Wν′(β), and we find, following the same lines,(
∂

∂Wν(β)
+
ε1δν,ν1δ(β − θ1)

1 + eε1Wν1 (θ1)
+
ε2δν,ν2δ(β − θ2)

1 + eε2Wν2 (θ2)

)
f̃η(ν1,ε1)(ν2,ε2)(θ1, θ2)

=
f̃η(ν1,ε1)(ν,+)(θ1, β)f̃η(ν2,ε2)(ν,−)(θ2, β)− f̃η(ν1,ε1)(ν,−)(θ1, β)f̃η(ν2,ε2)(ν,+)(θ2, β)

4 cosh2
(
Wν′ (β)

2

) .(6.38)

Finally, we obtain a system of functional differential equations for the mixed-state form

factors of U(1) twist fields:

∂fην,ε(θ)

∂Wν′(β)
=

fην′,+(β)fη(ν,ε)(ν′,−)(θ, β)− fην′,−(β)fη(ν,ε)(ν′,+)(θ, β)

4 cosh2
(
Wν′ (β)

2

) (6.39)

∂fη(ν1,ε1)(ν2,ε2)(θ1, θ2)

∂Wν(β)
=

fη(ν1,ε1)(ν,+)(θ1, β)fη(ν2,ε2)(ν,−)(θ2, β)− fη(ν1,ε1)(ν,−)(θ1, β)fη(ν2,ε2)(ν,+)(θ2, β)

4 cosh2
(
Wν(β)

2

) .

(6.40)

This system of functional differential equations enjoys the virtue that it does not require

the analytic structure of Wν(θ) and it works for general Wν(θ).

Uniqueness

Again, from (4.74), we can deduce:

fην,ε(θ) =
1

〈σ〉ρ

[
fµ

η

ν,ε (θ) +
∑
ν′

∫
dβ

1

1 + eWν′ (β)

[
fσ

η

(ν,ε)(ν′,+)(θ, β)fµ
η

ν′,−(β)

−fση(ν,ε)(ν′,−)(θ, β)fµ
η

ν′,+(β)
]

+ . . .

]
(6.41)
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and

fη(ν1,ε1)(ν2,ε2)(θ1, θ2) =
1

〈σα〉ρ

[
fσ

η

(ν1,ε1)(ν2,ε2)(θ1, θ2)

+
∑
ν

∫
dθ

1

1 + eWν(θ)

[
fσ

η

(ν1,ε1)(ν,−)(θ1, θ)f
ση

(ν2,ε2)(ν,+)(θ2, θ)

−fση(ν1,ε1)(ν,+)(θ1, θ)f
ση

(ν2,ε2)(ν,−)(θ2, θ)
]

+ . . .

]
, (6.42)

leading to the uniqueness of the solutions to functional differential equations (6.39) and

(6.40). It is trivial to see that mixed-state form factors (6.11) and (6.12) in the large-Wν(θ)

limit do reproduce the correct vacuum form factors. So it is sufficient to prove if they are

the solution of functional differential equations (6.39) and (6.40).

Solution

Consider (6.39) first. On the left-hand side, we find

ηεf+
ν,ε(θ)

4πi

1− e−2πiην′α

1 + e−2πiην′αe−Wν′ (β)

e
β−θ

2

1 + eWν′ (β)

(
δ−ν,ν′

cosh( θ−β2 )
+

δν,ν′

sinh( θ−β2 )

)

and on the right-hand side, using

f
(0)η
−ν,−ε(β) = εie(νεα+1/2)(β−θ)eiπηναf (0)

ν,ε (β) ,

hην′,+(β)hην′,−(β) =
1 + e−Wν′ (β)

1 + e−2πiην′αe−Wν′ (β)
,

we find

ηεfων,ε(θ)

2π

sin(ην ′α)e−iπην
′α

1 + e−2πiην′αe−Wν′ (β)

e
β−θ

2

1 + eWν′ (β)

(
δ−ν,ν′

cosh( θ−β2 )
+

δν,ν′

sinh( θ−β2 )

)
.

These are equal thanks to the relation

sinx =
eix − e−ix

2i
. (6.43)

Then, we consider (6.40). On the left-hand side, we find

ην1
sin(πα)

8π2 κ(1− e−2πiηνα)

[
δε1,ε2δν1,−ν2

(
δν1,ν

sinh
(
θ1−β

2

)
cosh

(
θ2−β

2

) +
δ−ν1,ν

cosh
(
θ1−β

2

)
sinh

(
θ2−β

2

)
)

−iε1e−iπην1αδε1,−ε2δν1,ν2

(
δν1,ν

sinh
(
θ1−β

2

)
sinh

(
θ2−β

2

) +
δ−ν1,ν

cosh
(
θ1−β

2

)
cosh

(
θ2−β

2

)
)]
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where

κ :=
eε1ν1(θ1−θ2)α

(1 + e−2πiηναe−Wν(β))(1 + eWν(β))

and on the right-hand side, we find

sin2(πα)
−4π2 κ

[
ie−iπηναδε1,ε2δν1,−ν2

(
δν1,ν

sinh
(
θ1−β

2

)
cosh

(
θ2−β

2

) − δ−ν1,ν

cosh
(
θ1−β

2

)
sinh

(
θ2−β

2

)
)

−ε1δε1,−ε2δν1,ν2

(
δν1,νe

−2πiην1α

sinh
(
θ1−β

2

)
sinh

(
θ2−β

2

) − δ−ν1,ν

cosh
(
θ1−β

2

)
cosh

(
θ2−β

2

)
)]

.

These are equal thanks to the relation (6.43). It is worth notion that this system of

non-linear functional differential equations provides an alternative check of our proposed

finite-temperature form factors of U(1) twist fields (5.61) and (5.63).

6.3 General solution as integral-operator kernel

In previous sections, we provided the exact results for form factors of twist fields and

showed they are correct by deriving and solving a system of non-linear functional differ-

ential equations. It is worth stressing that these differential equations hold for any local

field that can be expressed as normal-ordered exponential of bilinear forms in fermion

operators. The results we presented are just the solution when form factors involved in

the differential equations are specialized as those of twist fields. It is not known that a

general solution will also possess the leg-factor structure found.

Nevertheless, we can obtain a general solution which is expressed in terms of integral-

operator kernels. As we illustrated before, the map U does not provide a very efficient

way to calculate mixed-state form factors of twist fields due to the complicated expression

of twist fields. However, the operator U , describing this map, can be used to deduce

the general solution to those differential equations, which can be seen as an alternative

representation for mixed-state form factors of twist fields. We present in this section the

derivation of this general solution in the Ising model [55] and in the Dirac theory [142],

respectively.

6.3.1 Ising model

Let us start in the Ising model. We consider, without loss of generality, the normalized

two-particle mixed-state form factors of the order field ση with the two-particle state on
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the left. By introducing the short hand notation

Sη =
∑
ε1,ε2

∫
dθ1dθ2 F

η
ε1,ε2(θ1, θ2)aε1(θ1)aε2(θ2), (6.44)

the normalized two-particle form factors are written as

ρ
ε1,ε2〈θ1, θ2|(: eS

η
:)`|vac〉ρ. (6.45)

To simplify the action on the vacuum, we employ the relation (4.64). Recalling the defi-

nition of aε(θ)` (4.81) and the Liouville-space normal ordering, we then have

ρ
ε1,ε2〈θ1, θ2|(: eS

η
:)`|vac〉ρ = ρ

ε1,ε2〈θ1, θ2|U
(

◦
◦e
Sη ◦

◦

)` |vac〉ρ

= ρ
ε1,ε2〈θ1, θ2|UeS̃

η |vac〉ρ (6.46)

where we denote

S̃η =
∑
ε1,ε2

∫
dθ1dθ2

Qρ−ε1(θ1)Qρ−ε2(θ2)
F ηε1,ε2(θ1, θ2) Z†ε1(θ1)Z†ε2(θ2). (6.47)

Further, noting that U|vac〉ρ = 0, we rewrite (6.46) as

ρ
ε1,ε2〈θ1, θ2|(: eS

η
:)`|vac〉ρ = ρ

ε1,ε2〈θ1, θ2|eUS̃
ηU−1 |vac〉ρ.

Finally, using the relation (4.68) for fa = 1, we arrive at

ρ
ε1,ε2〈θ1, θ2|(: eS

η
:)`|vac〉ρ = ρ

ε1,ε2〈θ1, θ2|eD
η |vac〉ρ (6.48)

where

Dη =
∑
ε1,ε2

∫
dθ1dθ2 F

η
ε1,ε2(θ1, θ2)

(
Z†ε1(θ1)

Qρ−ε1(θ1)
+
ε1 Z−ε1(θ1)

Qρ+(θ1)

)(
Z†ε2(θ2)

Qρ−ε2(θ2)
+
ε2 Z−ε2(θ2)

Qρ+(θ2)

)
.

(6.49)

From (6.48), the problem of evaluating the normalized two-particle mixed-state form factor

(6.45) has been reduced to the computation of the matrix element of a pure exponential.

Hence, we may use standard Bogoliubov-transformation techniques.

One way to implement such techniques is as follows. We construct basis bj , b
†
j with discrete

indices j = 1, 2, . . . , n, which satisfies canonical anti-commutation relations

{bj , b†k} = δjk, {bj , bk} = {b†j , b
†
k} = 0 (6.50)
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We define the vacuum as |0〉 and the column vector V as

V =
(
b1, . . . , bn; b†1, . . . , b

†
n

)T
, V † =

(
b†1, . . . , b

†
n; b1, . . . , bn

)
.

Taking into account the form of the matrix element on the right-hand side of (6.48), we

write

〈0|V V †eV †JV |0〉 = lim
β→0

Tr(e−βNV V †eV
†JV ) , N =

1

2
V †σzV (6.51)

where σz is the pauli matrix (recall (2.52)) and J is a general 2-block by 2-block matrix.

When evaluating the trace in (6.51), we can move V along one cycle by using cyclic

property of the trace and commutation relations

[N,V ] = −σzV, [V †JV, V ] = MV, M = σxJ
Tσx − J, {V, V †} = I (6.52)

where σx is the pauli matrix and I represents the identity matrix. Then we get the relation(
1 + eβσzeM

)
Tr
(
e−βNV V †eV

†JV
)

= eβσzeMTr
(
e−βNeV

†JV
)
. (6.53)

Take the limit β →∞ and consider only the divergent terms proportional to eβ. We have(
(eM )11 (eM )12

0 0

)
〈0|

(
(V V †)11 (V V †)12

(V V †)21 (V V †)22

)
eV
†JV |0〉

=

(
(eM )11 (eM )12

0 0

)
〈0|eV †JV |0〉 .

Using rules of matrix product and 〈0|(V V †)22e
V †JV |0〉 = 0, we find the matrix equation

〈0|(V V †)12e
V †JV |0〉

〈0|eV †JV |0〉
=
(
(eM )11

)−1
(eM )12 (6.54)

where the matrix elements on the left-hand side can be considered as normalized two-

particle form factors of the field eV
†JV .

Now, we can apply these techniques to our two-particle form factor problem. Since these

techniques are only valid for Fock space based on canonical anti-commutation algebra, we

have to define new Liouville mode operators

b†ε(θ) =

√
Qρ+(θ)

Qρ−ε(θ)
Z†ε(θ), bε(θ) =

1√
Qρ+(θ)

Zε(θ).
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We then see that

Dη =
∑
ε1,ε2

∫
dθ1dθ2√

C+(θ1)C+(θ2)
F ηε1,ε2(θ1, θ2)

(
b†ε1(θ1) + ε1 b−ε1(θ1)

)(
b†ε2(θ2) + ε2 b−ε2(θ2)

)
.

(6.55)

The matrix of integral operators J can be obtained by identifying Dη = V ∗JV , and

consequently we can write down the matrix M in the 4 by 4 form taking into account the

blocks discussed above as well as the internal particle-type ε block structure

M =


x −y −y −x
z xt xt −z
−z −xt −xt z

x −y −y −x

 (6.56)

where the integral operators x, y, z have kernels

x(θ1, θ2) =
F η+−(θ1, θ2)− F η−+(θ2, θ1)√

Qρ+(θ1)Qρ+(θ2)

y(θ1, θ2) =
F η++(θ1, θ2)√
Qρ+(θ1)Qρ+(θ2)

z(θ1, θ2) =
F η−−(θ1, θ2)√
Qρ+(θ1)Qρ+(θ2)

and t represent matrix transpose. Thanks to the notion that M is nilpotent, namely

M2 = 0, we can express its exponential simply as

eM = 1 +M .

Direct calculations show that

R := W12 =

(
−(1 + q)−1 y (1 + xt)−1 −q (1 + q)−1

−qt (1 + qt)−1 (1 + qt)−1 z (1 + x)−1

)
, q = x+y (1+xt)−1 z.

We are thus led to conclude that the normalized two-particle form factor can be given via

the kernel of the integral-operator R,

ρ
ε1,ε2〈θ1, θ2|(: eS

η
:)`|vac〉ρ =

√
Qρ+(θ1)Qρ+(θ2)Rε1,ε2(θ1, θ2)

where ε1,2 = + is on the first row / column and ε1,2 = − is on the second.
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6.3.2 Dirac theory

In the same spirit, we present an integral-operator expression for mixed-state form factors

of U(1) twist fields. Again, we consider the twist field σηα (6.32). For convenience, we

define

Sη :=
∑

(ν1,ε1)(ν2,ε2)

∫
dθ1dθ2F

η
(ν1,ε1)(ν2,ε2)(θ1, θ2)Dε1

ν1
(θ1)Dε2

ν2
(θ2) (6.57)

and it follows that

σηα = 〈σα〉
(
: eS

η
:
)
. (6.58)

Now, we focus on normalized mixed-state two-particle form factors

ρ
(ν1,ε1)(ν2,ε2) 〈θ1, θ2|

(
: eS

η
:
)` |vac〉ρ .

Using (4.64), the definition (4.99), the property of Liouville normal-ordering and the fact

that U|vac〉ρ = |vac〉ρ, we have

ρ
(ν1,ε1)(ν2,ε2) 〈θ1, θ2|

(
: eS

η
:
)` |vac〉ρ = ρ

(ν1,ε1)(ν2,ε2) 〈θ1, θ2|U
(

◦
◦e
Sη ◦

◦

)` |vac〉ρ

ρ
(ν1,ε1)(ν2,ε2) 〈θ1, θ2|UeS̃

η |vac〉ρ

ρ
(ν1,ε1)(ν2,ε2) 〈θ1, θ2|eUS̃

ηU−1 |vac〉ρ

where

S̃η =
∑

(ν1,ε1)(ν2,ε2)

∫
dθ1dθ2

F η(ν1,ε1)(ν2,ε2)(θ1, θ2)

Qρν1,−ε1(θ2)Qρν2,−ε2(θ2)
Z†ν1,ε1(θ1)Z†ν2,ε2(θ2) . (6.59)

Thanks to (4.68), we then have

ρ
(ν1,ε1)(ν2,ε2) 〈θ1θ2|

(
: eS

η
:
)` |vac〉ρ = ρ

(ν1,ε1)(ν2,ε2) 〈θ1θ2|eG
η |vac〉ρ (6.60)

where

Gη =
∑

(ν1,ε1)(ν2,ε2)

∫
dθ1dθ2 F

η
(ν1,ε1)(ν2,ε2)(θ1, θ2)

×

(
Z†ν1,ε1(θ1)

Qρν1,−ε1(θ1)
+
ε1Zν1,−ε1(θ1)

Qρν1,+(θ1)

)(
Z†ν2,ε2(θ2)

Qρν2,−ε2(θ2)
+
ε2Zν2,−ε2(θ2)

Qρν2,+(θ2)

)
. (6.61)

Again, the matrix element of a pure exponential on the right-hand side of (6.60) suggests

employing standard Bogoliubov-transformation techniques as we used in the previous sub-

section.
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Considering the spectrum of the Dirac theory involves two particle types, we construct ba-

sis bj , b
†
j , cj , c

†
j with discrete indices j = 1, 2, . . . , n, which satisfies canonical anti-commutation

relations

{bj , b†k} = {cj , c†k} = δjk (6.62)

with other anti-commutators being zero. We define the vacuum as |0〉 and the column

vector V as

V =
(
b1, . . . , bn, c1, . . . , cn; b†1, . . . , b

†
n, c
†
1, . . . , c

†
n

)T
,

V † =
(
b†1, . . . , b

†
n, c
†
1, . . . , c

†
n; b1, . . . , bn, c1, . . . , cn

)
. (6.63)

Following the same procedure, we have

〈0|(V V †)12e
V †JV |0〉

〈0|eV †JV |0〉
=
(
(eM )11

)−1
(eM )12 (6.64)

where J is a general 2-block by 2-block matrix and M = σxJ
Tσx − J .

By defining new Liouville mode operators

b†ν,ε(θ) =

√
Qρν,+(θ)

Qρν,−ε(θ)
Z†νε(θ) , bν,ε(θ) =

1√
Qρν,+(θ)

Zν,ε(θ) (6.65)

which satisfy the canonical anti-commutation relation

{bν,ε(θ),b†ν′,ε′(θ
′)} = δν,ν′δε,ε′δ(θ − θ′) ,

{bν,ε(θ),bν′,ε′(θ′)} = {b†ν,ε(θ),b
†
ν′,ε′(θ

′)} = 0 .

we find

Gη =
∑

(ν1,ε1)(ν2,ε2)

∫
dθ1dθ2√

Qρν1,+(θ1)Qρν2,+(θ2)
F η(ν1,ε1)(ν2,ε2)(θ1, θ2)

×
(
b†ν1,ε1(θ1) + ε1bν1,−ε1(θ1)

)(
b†ν2,ε2(θ2) + ε2bν2,−ε2(θ2)

)
. (6.66)
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Identifying Gη = V †JV , considering the index (ν, ε), we write down the matrix M in the

8 by 8 form

M =



x+ 0 0 −y 0 −x+ −y 0

0 xt+ h 0 xt+ 0 0 −h

0 yt x− 0 yt 0 0 −xb

−ht 0 0 xt− 0 ht xt− 0

0 −xt+ −h 0 −xt+ 0 0 h

x+ 0 0 −y 0 −x+ y 0

ht 0 0 −xt− 0 −ht −xt− 0

0 yt x− 0 yt 0 0 −x−



(6.67)

where the integral operators x+, x−, y and z have kernels

x+(θ1, θ2) =
2F η(+,+)(+,−)(θ1, θ2)√
Qρ+,+(θ1)Qρ+,+(θ2)

x−(θ1, θ2) =
2F η(−,+)(−,−)(θ1, θ2)√
Qρ−,+(θ1)Qρ−,+(θ2)

y(θ1, θ2) =
2F η(+,+)(−,+)(θ1, θ2)√
Qρ+,+(θ1)Qρ−,+(θ2)

h(θ1, θ2) =
2F η(+,−)(−,−)(θ1, θ2)√
Qρ+,+(θ1)Qρ−,+(θ2)

.

It can be checked that M is again nilpotent, namely M2 = 0. Hence, the exponential of

it reads

eM = 1 +M .

Direct calculations show that

R :=
(
(eM )11

)−1
(eM )12 =


0 g k 0

−gt 0 0 l

−kt 0 0 m

0 −lt −mt 0

 (6.68)
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where

g =
[
x+ + I − y

(
xt− + I

)−1
ht
]−1
− I , k =

[
ht −

(
xt− + I

)
y−1(x+ + I)

]−1

m =
[
x− + I − yt

(
xt+ + I

)−1
h
]−1
− I , l =

[
yt − (x− + I)h−1(xt+ + I)

]−1
.

Finally, the normalized two-particle mixed-state form factor is

ρ
(ν1,ε1)(ν2,ε2)〈θ1, θ2|

(
: eS

η
:
)` |vac〉ρ =

√
Qν1+(θ1)Qν2+(θ2)R(ν1,ε1)(ν2,ε2)(θ1, θ2) (6.69)

where (++), (+−) are on the first two rows/columns and (−+), (−−) are on the second.



Chapter 7

Applications

In the previous chapter, we obtained the exact mixed-state form factors of twist fields

by deriving and solving a system of non-linear functional differential equations, in the

Ising model and in the Dirac theory. With these results, we will in this chapter enter the

analysis of mixed-state correlation functions of twist fields. In the first section, we will

present representations of correlation functions for twist fields in general diagonal mixed

states, in the Ising model [55] and in the Dirac theory [142], respectively. Following these

general results, we will turn to correlation functions of twist fields in three particular

mixed states including the thermal Gibbs state [21, 23], non-equilibrium stead state [55],

and generalized Gibbs ensemble [55]. Finally, we will end up with the deduction of the

Rényi entropy for integer n as an application of the results for mixed-state correlation

functions of U(1) twist fields [142].

7.1 Mixed-state two-point correlation functions of twist fields

Using the resolution of the identity (4.13) on the Liouville space, we can obtain a series

expression for two-point functions in terms of form factors (4.48), leading to an expansion

similar to (2.50). Taking into account the state normalization (4.17), the resolution of the

identity gives

〈O1(x, t)O2(0, 0)〉ρ

=

∞∑
N=0

∑
a1,...,aN

∑
ε1,...,εN

∫
dθ1 · · · dθN

N !

 e
∑N
j=1(iεjmaj sinh θjx−iεjmaj cosh θjt)∏N

j=1 ε
1−faj
j

(
1− (−1)faj e−εjWaj (θj)

)
fρ;O1

(a1,ε1)···(aN ,εN )(θ1, . . . , θN )fρ;O2

(aN ,−εN )···(a1,−ε1)(θN , . . . , θ1)
]
. (7.1)
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This expression is expected to hold for any non-interacting field O whose form factors are

zero for large enough numbers of particles so that the above series truncates. Local fermion

multilinears, for instance the fermion fields ψ and ψ̄ or the field ε, are such examples of

O.

The integrals in (7.1), however, require some analysis. We consider for now free-fermion

models. From the arguments in section 4.1.3, form factors of fermion multilinears are

entire functions of the rapidities. If the value of Waj (θj) increases as |θj | → ∞, then

the integral over θj is convergent for εj = −. However, the integral over θj is in general

not convergent for εj = +. In analogy with the standard i0+ prescription for correlation

functions in the context of QFT, assuming Waj (θj) grows like, or faster than eα cosh θj for

some α > 0 as |θj | → ∞, we can make both cases εj = ± convergent by replacing t with

t− i0+. With this prescription, the correlation function is seen as the boundary value, at

t ∈ R, of a function of t analytic on some neighborhood of R in the region Im(t) < 0.

In fact, we can make this boundary value finite at space-like distances (x2 > t2) for any

Waj (θj) as long as Waj (θj) is analytic on neighborhoods of (K,∞) and (−∞,−K), for

K > 0 large enough. To see this, assuming without loss of generality that x > 0, we shift

the contours as θj 7→ θj + εji0
+ in the region |Re(θj)| > K, so that θj remains in the

analyticity region of Wa(θj). It turns out that this boundary value with integrals on the

shifted contours is indeed finite at space-like distances (x2 > t2).

For twist fields, the form factor expansion is infinite, as these fields have non-zero form

factors for arbitrary large numbers of particles. However, the resulting infinite series (7.1)

is not the correct representation of the two-point function. The form factor expansion

is modified in various ways, because of the branch cuts emanating from twist fields as

expressed in the twist condition. In this section, we will provide intuitive arguments for

the modifications required [55, 142] and present a conjecture for the exact series expansion.

Throughout we take again without loss of generality x > 0, and we concentrate solely on

the space-like region x2 > t2
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7.1.1 Ising model

Specializing the mixed-state two-point correlation function (7.1) to the case of the Ising

model, we have

〈O1(x, t)O2(0, 0)〉ρ

=

∞∑
N=0

∑
ε1,...,εN

∫
dθ1 · · · dθN

N !

[
e
∑N
j=1(iεjm sinh θjx−iεjm cosh θjt)∏N

j=1

(
1 + e−εjW (θj)

)
fρ;O1
ε1,...,εN

(θ1, . . . , θN )fρ;O2
−εN ,...,−ε1(θN , . . . , θ1)

]
.

If O1 and O2 are both order or disorder fields, three modifications are required.

Three modifications

First, if the general expansion
∑

s
ρ〈vac|O1(x, t)`|s〉ρ ρ〈s|O2(0, 0)`|vac〉ρ is a large distance

expansion, then |s〉ρ ρ〈s| should be interpreted as intermediate states over the region be-

tween the fields O1(x, t)` and O2(0, 0)`, and the vacuum states ρ〈vac| and |vac〉ρ should

represent what is happening on the far right and left respectively. It has been argued in

[21, 23], via the comparison between finite-temperature form factors and form factors on

the circle, that the intermediate states must lie in a region which is not affected by the

branch cuts of twist fields. Although this argument is based on the thermal Gibbs state,

it is expected to be valid for general mixed states. Indeed, the function ρ〈vac|O1(x, t)`|s〉ρ

has no “knowledge” of the operator O2(0, 0)`, so it should not be affected by the cut from

O2(0, 0)`. This means that we have to obtain form factor expansions where no cut is

present in the region between 0 and x, for instance,

〈σ+(x, t)σ−(0, 0)〉ρ, 〈µ+(x, t)µ−(0, 0)〉ρ. (7.2)

On the other hand, as we recall, the free Majorana field theory is the scaling limit

of the Ising lattice model. According to (2.70), mixed-state correlation functions of

spin operators, under the scaling limit, give rise to mixed-state correlation functions

〈σ+(x, t)σ+(0, 0)〉ρ in the ordered regime or 〈µ+(x, t)µ+(0, 0)〉ρ in the disordered regime.

Here the choice of a direction for the branch cut must be kept the same for each twist

fields inside the correlation function, due to the Jordan-Wigner transformation, which the

Pauli spin matrices are written as infinite products of fermion operators starting at the

matrix’s site and going in a fixed direction. As a consequence, a cut can be found between

0 and x, and our form factors, according to our arguments above, cannot directly be used.
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Fortunately, the unitary operator Z can help us obtain correlation function of the type

(7.2) in which the branch cut is absent in the region between 0 and x:

〈σ+(x, t)σ−(0, 0)〉ρ] , 〈µ+(x, t)µ−(0, 0)〉ρ] (7.3)

where we recall ρ] = z−1ρ with W ](θ) = W (θ) + πi.

Second, as we illustrated in the beginning of chapter 5, the insertion of a twist field inside

finite-temperature correlation functions or traces will affect one of the vacuum sectors in

the correspondence to vacuum expectation values in the quantization on the circle and

hence gives rise to the free energy difference between the sector where a cut lies and the

sector where no cut lies. This statement is assumed to hold for general mixed states anad

can be expressed via

ρ〈vac|ωη(x, t)|θ1, . . . , θN 〉ρε1,...,εN = eηxEe
∑N
j=1

(
iεjpθjx−iεjEθj t

)
fρ;ωη

ε1,...,εN
(θ1, . . . , θN ) (7.4)

for both order and disorder twist fields ω = σ and ω = µ, with E the free energy deficit

E =

∫ ∞
−∞

dθ

2π
m cosh θ log

(
coth

W (θ)

2

)
(7.5)

which is generalized from (5.12) and (5.13). Denoting E] the free energy deficit associated

to W ], we have

E] = −E . (7.6)

Finally, mixed-state form factors of twist fields are not entire functions of the rapidities but

distributions defined as boundary values of analytic functions with no colliding rapidities.

So we have to shift the contour towards the analytic region for the purpose of obtaining

a well-defined form factor expansion. Hence, we need to further require that W (θ) be

analytic on a neighborhood of R.

Mixed-state form factor expansion
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Putting these subtleties together, we obtain the mixed-state correlation functions for both

order and disorder fields in the Ising model:

〈ω+(x, t)ω+(0, 0)〉ρ (7.7)

= e−xE
∞∑
N=0

∑
ε1,...,εN

∫
dθ1 · · · dθN

N !

e
∑N
j=1

(
iεjpθjx−iεjEθj t

)
∏N
j=1

(
1− e−εjW (θj)

)
×fρ];ω+

ε1,...,εN
(θ1, . . . , θN )fρ

];ω−

−εN ,...,−ε1(θN , . . . , θ1)

where ω = σ or ω = µ, and where W (θ) is assumed to be analytic on a neighborhood of

θ ∈ R. As we see from (7.7), it is possible for the factor 1

1−e−εjW (θj) to have a pole at some

value of θj where W (θj) = 0. This is the reason why we have to impose the positivity

condition (4.76) for the twisted case.

As in the case of fermion multilinears, in order to obtain a large-distance expansion from

the conditionally convergent integrals, we shift the θj contour in (7.7) by εij0
+ for η > 0

so that θj remains in the analyticity region of W (θj) and . Note that these shifts keep the

rapidities in the the form factors involved.

If we shift the contours further, we may come across singularities of the function (1 −
e±W (θ))−1. It is these singularities that determine the large-distance asymptotic behavior

of the two-point function. Among these singularities, we denote by θ? the one which makes

|Im(sinh θ)| minimum. We then have

〈σ+(x, t)σ+(0, 0)〉ρ = 〈σ+〉ρ〈σ−〉ρe−xE
(

1 +O
(
e−2mx|Im(sinh θ?)|

))
(7.8)

〈µ+(x, t)µ+(0, 0)〉ρ = O
(
e−mx(E+|Im(sinh θ?)|)

)
(7.9)

Here, the exponential decay includes possible algebraic or other non-exponential factors

in mx, which depend on the type of singularities. We will provide examples of this in our

investigation of two specific mixed states: the generalized Gibbs ensemble in section 7.4,

and the non-equilibrium steady state in subsection 7.3.3.
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7.1.2 Dirac theory

From (7.1), mixed-state two-point correlation functions are given by

〈O1(x, t)O2(0, 0)〉ρ

=

∞∑
N=0

∑
ν1,...,νN

∑
ε1,...,εN

∫
dθ1 · · · dθN

N !

 e
∑N
j=1

(
iεjpθjx−iεjEθj t

)
∏N
j=1

(
1 + e−εjWνj (θj)

)
fρ;O1

(ν1,ε1)···(νN ,εN )(θ1, . . . , θN )fρ;O2

(νN ,−εN )···(ν1,−ε1)(θN , . . . , θ1)
]
.

Again, for U(1) twist fields, this representation needs to be modified from three aspects.

Three modifications

First, in order to obtain form factor expansions where no cut is present in the region

between 0 and x, we can use the relation σ+
α′ = σ−α′Z

−1 and we then have

〈σ+
α (x, t)σ+

α′(0, 0)〉ρ = 〈σ+
α (x, t)σ−α′(0, 0)〉ρ]

〈σ+
α±1,α(x, t)σ+

α′∓1,α′(0, 0)〉ρ = 〈σ+
α±1,α(x, t)σ−α′∓1,α′(0, 0)〉ρ] (7.10)

where ρ] := z−1ρ is the twisted density matrix with W ]
±(θ) = W±(θ) ± 2πiα′. Note that

two-point functions

〈σ+
α±1,α(x, t)σ+

α′±1,α′(0, 0)〉ρ

are not considered, as they are all zero, due to the fact that twist fields σηα+1,α has non-zero

one-particle form factors f
ρ;σηα+1,α
νε (θ) only for ν = ε while twist fields σηα−1,α has non-zero

one-particle form factors f
ρ;σηα−1,α
νε (θ) only for ν = −ε.

Second, the branch cut of a twist field inside the mixed-state correlation function changes

one of the vacuum sectors and affect the translation property of the x-dependent matrix

element via

ρ〈vac|ωη(x, t)|θ1, . . . , θN 〉ρ(ν1,ε1)···(νN ,εN ) = eηxEe
∑N
j=1

(
iεjpθjx−iεjEθj t

)
fρ;ωη

(ν1,ε1)···(νN ,εN )(θ1, . . . , θN )

(7.11)

for both twist fields ω = σα and ω = σα±1,α, with E the free energy deficit:

E =
∑
ν=±

∫
dθ

2π
m cosh θ log

(
1 + e−Wν(θ)

1 + e−2πiναe−Wν(θ)

)
(7.12)
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which is generalized from (7.5). We denote by E] the free energy deficit associated to W ]

and we have

E] = −E . (7.13)

Finally, assuming Wν(θ) to be analytic around the real line, we shift the contour towards

the analyticity region of mixed-state form factors of twist fields for the purpose of obtain-

ing a well-defined form factor expansion.

Mixed-state form factor expansion

According to the modifications stipulated above, we propose the followings:

Proposition 7.1.1. With Wν(θ) analytic on a neighborhood of θ ∈ R, we have

〈σ+
α (x, t)σ+

α′(0, 0)〉ρ (7.14)

= e−xE
∞∑
N=0

∑
ν1,...,νN

∑
ε1,...,εN

∫
dθ1 · · · dθN

N !

 e
∑N
j=1

(
iεjpθjx−iεjEθj t

)
∏N
j=1

(
1 + e−εjνj2πiαe−εjWνj (θj)

)
fρ

];σ+
α

(ν1,ε1)···(νN ,εN )(θ1, . . . , θN )f
ρ];σ−

α′
(νN ,−εN )···(ν1,−ε1)(θN , . . . , θ1)

]
and

〈σ+
α±1,α(x, t)σ+

α′∓1,α′(0, 0)〉ρ (7.15)

= e−xE
∞∑
N=0

∑
ν1,...,νN

∑
ε1,...,εN

∫
dθ1 · · · dθN

N !

 e
∑N
j=1

(
iεjpθjx−iεjEθj t

)
∏N
j=1

(
1 + e−εjνj2πiαe−εjWνj (θj)

)
f
ρ];σ+

α±1,α

(ν1,ε1)···(νN ,εN )(θ1, . . . , θN )f
ρ];σ−

α′∓1,α′

(νN ,−εN )···(ν1,−ε1)(θN , . . . , θ1)

]
.

Form factor expansions (7.14) and (7.15) are infinite since twist fields have non-zero mixed-

state form factors for arbitrarily large number of particles. In order to have convergent

integrals in our expansions, we shift the θj contours in (7.14) and (7.15) by iεjζ for ζ > 0

small enough in such a way that θj remains in the analyticity region of Wν(θj) and of the

form factors involved. It is worth attention that a positivity condition like (4.76) is not

necessary in the twisted case, since e−εν2πα is generally not equal to −1 for generic α.

The large distance leading behaviour of the two-point functions (7.14) and (7.15) are deter-

mined by singularities of the function
(
1 + e−εν2πiαe−εWν(θ)

)−1
. Among these singularities,
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we denote by θ? the one making |Im(sinh θ)| minimum. we have

〈σ+
α (x, t)σ+

α′(0, 0)〉ρ = 〈σ+
α 〉ρ] 〈σ−α′〉ρ] e

−xE
(

1 +O
(
e−mx|Im(sinh θ?1)|−mx|Im(sinh θ?2)|

))
〈σ+
α±1,α(x, t)σ+

α′∓1,α′(0, 0)〉ρ = O
(
e−xE−mx|Im(sinh θ?)|

)
(7.16)

where exponential decays include possible algebraic or other non-exponential factors in

mx determined by the type of singularities.

7.2 Thermal Gibbs state

The first application of the general results presented in the previous section can be made to

the finite-temperature correlation functions. As was mentioned before, finite-temperature

correlation functions are related to vacuum correlation functions on the circle. In this

section, we will restrict ourselves to the Ising model and show the finite-temperature

correlation function obtained from (7.7) indeed reproduce a form factor expansion of the

vacuum expectation values on the circle, which can be seen as a verification of our Liouville-

space method.

In case of the thermal Gibbs state, we rewrite (7.7) in the imaginary-time formalism by

replacing t with −iτ and specialize in (7.7) W (θ) = βEθ:

〈ω+(x, τ)ω+(0, 0)〉ρβ = e−xEβ
∞∑
N=0

∑
ε1,...,εN

∫
dθ1 · · · dθN

N !

e
∑N
j=1

(
iεjpθjx−εjEθj τ

)
∏N
j=1

(
1− e−εjβEθj

)
×f

ρ]β ;ω+

ε1,...,εN (θ1, . . . , θN )f
ρ]β ;ω−

−εN ,...,−ε1(θN , . . . , θ1) (7.17)

where the thermal “free energy deficit” Eβ is given by

Eβ =

∫ ∞
−∞

dθ

2π
m cosh θ log

(
coth

βEθ
2

)
. (7.18)
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By re-arranging the rapidities and exchanging particles, we can rewrite the expansion

(7.17) in the form

〈ω+(x, τ)ω+(0, 0)〉ρβ

= e−xEβ
∞∑
N=0

N∑
K=0

∫
dθ1 · · · dθN
K!(N −K)!

× e
∑K
j=1

(
ipθjx−Eθj τ

)
−
∑N
K+1

(
ipθjx−Eθj τ

)
∏K
j=1

(
1− e−βEθj

)∏N
j=K+1

(
1− eβEθj

)
×f

ρ]β ;ω+

+,...,+,−,...,−(θ1, . . . , θK , θK+1, . . . , θN )

×f
ρ]β ;ω−

+,...,+,−,...,−(θN , . . . , θK+1, θK , . . . , θ1) (7.19)

where K represents the number of rapidities with positive charges. In order to obtain a

convergent large-distance expansion, we can shift in (7.19) every θj-contour associated to

the rapidity with εj = +, towards the positive imaginary direction by iπ, and we will not

shift all the θk-contours associated to the rapidities with εk = −. Using crossing symmetry,

the integrand on the shifted contours in (7.19) becomes

(−1)K
e
∑N
j=1

(
−ipθjx+Eθj τ

)
∏N
j=1

(
1− eβEθj

) fρ]β ;ω+

−,...,−(θ1 · · · θN )f
ρ]β ;ω−

+,...,+(θN · · · θ1)

where (−1)K comes from shifting K rapidity variables by iπ. In addition, when shifting

the contours, we have to take into account residue contributions from the poles of the

factors
(

1− e−βEθj
)−1

. Hence, we may replace every θj-integral by

∫
dθj 7→


∫
dθj (εj = −)

−
∫
dθj + residues (εj = +).

Consider the terms which involve contributions from taking residues for P particles, from

integrals with shifted contours for K − P particles, and from integrals with non-shifted

contours for N −K, with fixed N . By re-labeling rapidities and exchanging particles, the
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sum of these terms over K are given by

N∑
K=P

1

K!(N −K)!

K!

(K − P )!P !

∑
n1,...,np∈Z

(2π)N
p∏
j=1

(
e−mx coshλnj−imτ sinhλnj

mβ coshλnj

)

×(−1)K−P
∫
dθP+1 · · · dθN

e−
∑N
j=P+1(imx sinh θj−mτ cosh θj)∏N
j=P+1

(
1 + e

βEθj
)

×f
ρ]β ;ω+

+,...,+,−,...,−(λn1 + iπ/2, . . . , λnP + iπ/2, θP+1, . . . , θN )

×f
ρ]β ;ω−

+,...,+,−,...,−(θN , . . . , θP+1, λnP + iπ/2, . . . , λn1 + iπ/2)

where

λn = arcsinh

(
2πn

βm

)
, (7.20)

where we evaluate the residues of poles at position θj = λnj for all nj ∈ Z, j = 1, . . . , P ,

where the factor (−1)K−P comes from shifting K − P rapidities and using the crossing

relation, where on the third line, there are P positive charges and N −P negative charges,

and where on the fourth line, there are N − P positive charges and P negative charges.

It turns out that the sum over K vanishes whenever P 6= N , namely only the residues

contributions are left. Thus, we obtain the large-distance expansion

〈ω+(x, τ)ω+(0, 0)〉ρβ

= e−xEβ
∞∑
N

1

N !

∑
n1,...,np ∈Z

e
∑N
j=1

(
−mx coshλnj−nj

2πiτ
β

) N∏
j=1

(
2π

mβ coshλnj

)

×f
ρ]β ;ω+

+,...,+(λn1 + iπ/2, . . . , λnN + iπ/2)f
ρ]β ;ω−

−,...,−(λnN + iπ/2, . . . , λn1 + iπ/2)

(7.21)

for ω = σ or ω = µ. As we see, this large-distance expansion is in the same form with

that of the correlation function on the circle (5.15). In light of the relations between

finite-temperature form factors and form factors on the circle [23],

β〈vac 1
2
|ω+
β (0)|n1, . . . , nN 〉β = e

iπs
2

N∏
j=1

√
2π

mβ coshλnj
f
ρ]β ;ω+

+,...,+(λn1 + iπ/2, . . . , λnN + iπ/2)

(7.22)

and

β〈n1, . . . , nN |ω−β (0)|vac 1
2
〉β = e

iπs
2

N∏
j=1

√
2π

mβ coshλnj
f
ρ]β ;ω−

−,...,−(λn1 + iπ/2, . . . , λnN + iπ/2)

(7.23)

where |vac 1
2
〉β represents the vacuum in the NS sector and the states |n1, . . . , nN 〉β are in
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the R sector, and where sinhλnj =
2πnj
mβ for nj ∈ Z, we can explicitly show that (7.21)

indeed reproduce the uncontroversial large-distance correlation function on the circle:

〈ω+(x, τ)ω+(0, 0)〉ρβ

= eiπse−xEβ
∞∑
N

1

N !

∑
n1,...,np ∈Z

e
∑N
j=1

(
−mx coshλnj−nj

2πiτ
β

) N∏
j=1

(
2π

mβ coshλnj

)
×β〈vac 1

2
|ω+
β (0)|n1, . . . , nN 〉ββ〈n1, . . . , nN |ω−β (0)|vac 1

2
〉β. (7.24)

From this, we see that the finite-temperature correlation function 〈ω+(x, τ)ω+(0, 0)〉ρβ
can be interpreted as corresponding to the correlation function in the quantization on

the circle, where the natural sector is not the NS sector as usual but the R sector, and

where the insertion of two twist fields with cuts in opposite directions change the sectors

of both vacua to the NS sector without affecting the excited states. In this sense, the Z

operator can be seen as playing the role in not only changing the twist field ω+ to ω− but

also changing the natural sector given by the trace from the NS sector to the R sector.

Finally, it is worth mentioning that the result (7.24) serves as a strong verification of our

Liouville-space method.

7.3 Non-equilibrium steady state

A non-equilibrium steady state (NESS) can be seen as a state in which the dynamics

of the model are time-independent but characterized by the presence of flows of energy,

particles, charge, etc with constant rate. Non-equilibrium steady states can be obtained

by a long-time unitary evolution of two semi-infinite halves of a system initially separately

thermalized at different temperatures β−1
l and β−1

r . The investigation of this state has

been carried out in critical systems [37, 38] using conformal field theory, systems near to

criticality [39] using general massive quantum field theory, and in [69] using integrability,

and in the XY quantum chain (Ising model) in [36], [40]. The density matrix describing

the non-equilibrium steady state in the Ising model admits a factorized form. In terms of

the notations in this thesis, this result can be presented by specializing the function W (θ)

as

Wness(θ) := βlEθΘ(θ) + βrEθΘ(−θ) (7.25)

where Θ(x) is the Heavyside step function (we denote by ρness the associated density

matrix). Associating an inverse temperature βl to right-moving particles, and an inverse

temperature βr to left-moving ones, the result (7.25) can be justified by the physical

situation that right-moving particles, which was thermalized at temperature β−1
l , come

from the far left, and vice versa.
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7.3.1 Analytic properties of non-equilibrium form factors

In chapter 5, we deduced a set of analytic properties of the finite-temperature form factors

of twist fields by using the KMS relations. In the case of non-equilibrium steady state, we

can expect a Riemann-Hilbert problem for non-equilibrium form factors of twist fields in

the same spirit as the one for the finite-temperature form factors of twist fields.

We focus for now the Ising model. We derive first the KMS relations for our non-

equilibrium steady state. Consider the two-point function in imaginary-time formalism

in the Ising model

gness(x, τ) = ρness〈vac|µ+(0, 0)`ψ(x, τ)`|vac〉ρness = Tr
(
ρness µ

+(0, 0)ψ(x, τ)
)
.

where we concentrate, without loss of generality, on the twist fields with branch cuts on

the right. By defining non-local fermion operators

ψl,r(x, τ) =
1

2

√
m

π

∫
θ≷0

dθ eθ/2
(
a(θ) eipθx−Eθτ + a†(θ) e−ipθx+Eθτ

)
ψ̄l,r(x, τ) = − i

2

√
m

π

∫
θ≷0

dθ e−θ/2
(
a(θ) eipθx−Eθτ − a†(θ) e−ipθx+Eθτ

)
, (7.26)

we have

ρnessψ(x, τ)ρ−1
ness = ψl(x, τ − βl) + ψr(x, τ − βr) . (7.27)

Using the exchange relations (3.21) with disorder field µ+, (7.27), and the cyclic property

of the trace, we obtain the “non-equilibrium KMS relation” or the “generalized KMS

relation”

gness(x, τ) = −
(
glness(x, τ − βl) + grness(x, τ − βr)

)
(x < 0) (7.28)

gness(x, τ) =
(
glness(x, τ − βl) + grness(x, τ − βr)

)
(x > 0) (7.29)

where we denote gl,rness(x, τ) = ρness〈vac|µ+(0, 0)`ψl,r(x, τ)`|vac〉ρness . Although (7.28) and

(7.29) are a non-local relations, they can still be used to establish analytic properties of

form factors. To see this, we expand the fermion fields in gness(x, τ) by recalling the mode

expansion (2.83),

gness(x, τ) =
1

2

√
m

π

[∫ 0

−∞
dθ e

θ
2
fρness;µ+

+ (θ)

1 + e−βrEθ
e−ipθx+Eθτ +

∫ ∞
0

dθ e
θ
2
fρness;µ+

+ (θ)

1 + e−βlEθ
e−ipθx+Eθτ

+

∫ 0

−∞
dθ e

θ
2
fρness;µ+

− (θ)

1 + eβrEθ
eipθx−Eθτ +

∫ ∞
0

dθ e
θ
2
fρness;µ+

− (θ)

1 + eβlEθ
eipθx−Eθτ

]
, (7.30)
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and then the non-local fermion fields in glness(x, τ − βl) + grness(x, τ − βr) by the definition

(7.26),

glness(x, τ − βl) + grness(x, τ − βr)

=
1

2

√
m

π

[∫ 0

−∞
dθ e

θ
2
fρness;µ+

+ (θ)

1 + e−βrEθ
e−ipθx+Eθ(τ−βr) +

∫ ∞
0

dθ e
θ
2
fρness;µ+

+ (θ)

1 + e−βlEθ
e−ipθx+Eθ(τ−βl)

+

∫ 0

−∞
dθ e

θ
2
fρness;µ+

− (θ)

1 + eβrEθ
eipθx−Eθ(τ−βr) +

∫ ∞
0

dθ e
θ
2
fρness;µ+

− (θ)

1 + eβlEθ
eipθx−Eθ(τ−βl)

]
. (7.31)

Let us define

grε (θ) =
fρness;µ+

ε (θ)

1 + e−εβrEθ
for θ < 0, glε(θ) =

fρness;µ+

ε (θ)

1 + e−εβlEθ
for θ > 0. (7.32)

Then (7.30) and (7.31) become

gness(x, τ) =
1

2

√
m

π

[∫ 0

−∞
dθ e

θ
2 gr+(θ)e−ipθx+Eθτ +

∫ ∞
0

dθ e
θ
2 gl+(θ)e−ipθx+Eθτ

+

∫ 0

−∞
dθ e

θ
2 gr−(θ)eipθx−Eθτ +

∫ ∞
0

dθ e
θ
2 gl−(θ)eipθx−Eθτ

]
(7.33)

and

glness(x, τ − βl) + grness(x, τ − βr)

=
1

2

√
m

π

[∫ 0

−∞
dθ e

θ
2 gr+(θ)e−ipθx+Eθ(τ−βr) +

∫ ∞
0

dθ e
θ
2 gl+(θ)e−ipθx+Eθ(τ−βl)

+

∫ 0

−∞
dθ e

θ
2 gr−(θ)eipθx−Eθ(τ−βr) +

∫ ∞
0

dθ e
θ
2 gl−(θ)eipθx−Eθ(τ−βl)

]
, (7.34)

respectively. For x < 0, we shift, in (7.33) and (7.34), the θ-contours in the terms contain-

ing e−ipθ as θ → θ + iπ/2 and in the terms containing eipθ as θ → θ − iπ/2. By assuming

functions grε (θ) have poles at θ = λnr + εiπ/2 and glε(θ) have poles at θ = λnl + εiπ/2 and
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taking care of the contours surrounding the segment from 0 to ±iπ/2, we have

gness(x, τ) =
1

2

√
m

π

∑
ε

[∫ 0

−∞
dθ eθ/2+εiπ/4grε (θ + εiπ/2)eEθx+ipθτ

+

∫ ∞
0

dθ eθ/2+εiπ/4glε(θ + εiπ/2)eEθx+ipθτ

+

∫ 0

εiπ/2
dθ eθ/2

[
grε (θ − 0+)− glε(θ + 0+)

]
e−εipθx+εEθτ

+ε
∑
n

iπRes (grε (θ), λ
r
n + εiπ/2) eλ

r
n/2+εiπ/4em coshλnlx+i sinhλnlτ

+ε
∑
n

iπRes
(
glε(θ), λ

l
n + εiπ/2

)
eλ

l
n/2+εiπ/4em coshλnlx+i sinhλnlτ

]

and

glness(x, τ − βl) + grness(x, τ − βr)

=
1

2

√
m

π

∑
ε

[∫ 0

−∞
dθ eθ/2+εiπ/4grε (θ + εiπ/2)eEθx+ipθ(τ−βr)

+

∫ ∞
0

dθ eθ/2+εiπ/4glε(θ + εiπ/2)eEθx+ipθ(τ−βl)

+

∫ 0

εiπ/2
dθ eθ/2

[
grε (θ − 0+)e−εEθβr − glε(θ + 0+)e−εEθβl

]
e−εipθx+εEθτ

+ε
∑
n

iπRes (grε (θ), λ
r
n + εiπ/2) eλ

r
n/2+εiπ/4em coshλnrx+i sinhλnr (τ−βr)

+ε
∑
n

iπRes
(
glε(θ), λ

l
n + εiπ/2

)
eλ

l
n/2+εiπ/4em coshλnlx+i sinhλnl (τ−βl)

]
.

The equality in the non-equilibrium KMS relation (7.28) requires that functions grε (θ) have

poles at θ = λnr + εiπ/2 for nr ∈ Z + 1/2, nr < 0 and glε(θ) have poles at θ = λnl + εiπ/2

for nl ∈ Z + 1/2, nl > 0, where

sinhλnr =
2πnr
mβr

, sinhλnl =
2πnl
mβl

. (7.35)

Further, the equality in (7.28) requires the shifted contours to cancel each other:

∑
ε

[∫ 0

−∞
dθ eθ/2+εiπ/4grε (θ + εiπ/2)eEθx+ipθτ

]
= −

∑
ε

[∫ 0

−∞
dθ eθ/2+εiπ/4grε (θ + εiπ/2)eEθx+ipθ(τ−βr)

]
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and

∑
ε

[∫ ∞
0

dθ eθ/2+εiπ/4glε(θ + εiπ/2)eEθx+ipθτ

]
= −

∑
ε

[∫ ∞
0

dθ eθ/2+εiπ/4glε(θ + εiπ/2)eEθx+ipθ(τ−βl)
]
.

This leads to the condition

eiπ/4gr,l+

(
θ +

iπ

2

)
+ e−iπ/4gr,l−

(
θ − iπ

2

)
= 0 (7.36)

except for the poles at θ = λnr,l . Finally, the equality requires the contours surrounding

the segment from εiπ/2 to 0 to cancel each other∫ 0

εiπ/2
dθ eθ/2

[
grε (θ − 0+)− glε(θ + 0+)

]
e−εipθx+εEθτ

= −
∫ 0

εiπ/2
dθ eθ/2

[
grε (θ − 0+)e−εEθβr − glε(θ + 0+)e−εEθβl

]
e−εipθx+εEθτ .

This gives

grε (θ − 0+)− glε(θ + 0+) = −grε (θ − 0+)e−εEθβr + glε(θ + 0+)e−εEθβl

which implies
grε (θ − 0+)

glε(θ + 0+)
=

1 + e−εEθβl

1 + e−εEθβr
. (7.37)

with θ ∈ [0, εiπ/2]. For x > 0, we shift, in (7.33) and (7.34), the θ-contours in the terms

containing e−ipθ as θ → θ − iπ/2 and in the terms containing eipθ as θ → θ + iπ/2. By

taking residues of poles and taking care of the contours surrounding the segment from 0

to ±iπ/2, we have

gness(x, τ) =
1

2

√
m

π

∑
ε

[∫ 0

−∞
dθ eθ/2+εiπ/4gr−ε(θ + εiπ/2)e−Eθx−ipθτ

+

∫ ∞
0

dθ eθ/2+εiπ/4gl−ε(θ + εiπ/2)e−Eθx−ipθτ

+

∫ 0

εiπ/2
dθ eθ/2

[
gr−ε(θ − 0+)− gl−ε(θ + 0+)

]
eεipθx−εEθτ

+ε
∑
n

iπRes
(
gr−ε(θ), λ

r
n + εiπ/2

)
eλ

r
n/2+εiπ/4e−m coshλnlx−im sinhλnlτ

+ε
∑
n

iπRes
(
gl−ε(θ), λ

l
n + εiπ/2

)
eλ

l
n/2+εiπ/4e−m coshλnlx−im sinhλnlτ

]
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and

glness(x, τ − βl) + grness(x, τ − βr)

=
1

2

√
m

π

∑
ε

[∫ 0

−∞
dθ eθ/2+εiπ/4grε (θ + εiπ/2)eEθx+ipθ(τ−βr)

+

∫ ∞
0

dθ eθ/2+εiπ/4glε(θ + εiπ/2)eEθx+ipθ(τ−βl)

+

∫ 0

εiπ/2
dθ eθ/2

[
gr−ε(θ − 0+)eεEθβr − gl−ε(θ + 0+)eεEθβl

]
eεipθx−εEθτ

+ε
∑
n

iπRes
(
gr−ε(θ), λnr + εiπ/2

)
eλ

r
n/2+εiπ/4e−m coshλnrx−im sinhλnr (τ−βr)

+ε
∑
n

iπRes
(
gl−ε(θ), λnl + εiπ/2

)
eλnl/2+εiπ/4e−m coshλnlx−im sinhλnl (τ−βl)

]
.

Likewise, the equality in the non-equilibrium KMS relation (7.29) requires that functions

grε (θ) have poles at θ = λnr − εiπ/2 for nr ∈ Z, nr < 0 and glε(θ) have poles at θ =

λnl − εiπ/2 for nl ∈ Z, nl > 0. Further, the equality in (7.29) requires the shifted contours

to cancel each other:

∑
ε

[∫ 0

−∞
dθ eθ/2+εiπ/4gr−ε(θ + εiπ/2)e−Eθx−ipθτ

]
=

∑
ε

[∫ 0

−∞
dθ eθ/2+εiπ/4gr−ε(θ + εiπ/2)e−Eθx−ipθ(τ−βr)

]

and

∑
ε

[∫ ∞
0

dθ eθ/2+εiπ/4gl−ε(θ + εiπ/2)e−Eθx−ipθτ
]

=
∑
ε

[∫ ∞
0

dθ eθ/2+εiπ/4gl−ε(θ + εiπ/2)e−Eθx−ipθ(τ−βl)
]
.

This leads to the condition

e−iπ/4gr,l+

(
θ − iπ

2

)
+ eiπ/4gr,l−

(
θ +

iπ

2

)
= 0 (7.38)

except for the poles at θ = λnr,l . Finally, the equality requires the contours surrounding

the segment from εiπ/2 to 0 to cancel each other∫ 0

εiπ/2
dθ eθ/2

[
gr−ε(θ − 0+)− gl−ε(θ + 0+)

]
eεipθx−εEθτ

=

∫ 0

εiπ/2
dθ eθ/2

[
gr−ε(θ − 0+)eεEθβr − gl−ε(θ + 0+)eεEθβl

]
eεipθx−εEθτ .
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This gives

grε (θ − 0+)− glε(θ + 0+) = grε (θ − 0+)e−εEθβr − glε(θ + 0+)e−εEθβl

which implies
grε (θ − 0+)

glε(θ + 0+)
=

1− e−εEθβl
1− e−εEθβr

. (7.39)

with θ ∈ [0,−εiπ/2].

By recalling the definition (7.32), we obtain a set of analytic conditions for the non-

equilibrium one-particle form factors of the disorder field µ+:

• In the region Im ∈ [0, εiπ], fρness;µ+

ε (θ) has no poles; in the region Im ∈ [0,−εiπ],

fρness;µ+

ε (θ) has poles at θ = λnr − εiπ/2 for nr ∈ Z, nr < 0 and at θ = λnl − εiπ/2
for nl ∈ Z, nl > 0, and has zeros at θ = λnr − εiπ/2 for nr ∈ Z + 1/2, nr < 0 and at

θ = λnl − εiπ/2 for nl ∈ Z + 1/2, nl > 0, where sinhλnr = 2πnr
mβr

and sinhλnl = 2πnl
mβl

.

• fρness;µ+

ε (θ−0+)

fρness;µ+
ε (θ+0+)

= 1 for θ ∈ [0, εiπ/2], which imply that fρness;µ+

ε (θ) are contin-

uous through the segment [0, εiπ/2]; fρness;µ+

ε (θ−0+)

fρness;µ+
ε (θ+0+)

=
(

1+e−βrEθ
1−e−βrEθ

)(
1−e−βlEθ
1+e−βlEθ

)
for

θ ∈ [0,−εiπ/2], which imply that fρness;µ+

ε (θ) are discontinuous through the segment

[0,−εiπ/2] and they have branch cuts running from 0 to −εiπ/2.

• Re
(
eiπ/4fρness;µ+

ε (θ + iπ/2)
)

= 0 except at θ = λnr , λnl for nr, nl ∈ Z + 1/2, nr <

0, nl > 0 and Re
(
e−iπ/4fρness;µ+

ε (θ − iπ/2)
)

= 0 except at θ = λnr , λnl for nr, nl ∈
Z, nr < 0, nl > 0.

7.3.2 Large-distance expansion of two-point correlation functions

In case of non-equilibrium steady state, we specialize in (7.7) W (θ) = Wness(θ):

〈ω+(x, t)ω+(0, 0)〉ρness = e−xEness

∞∑
N=0

∑
ε1,...,εN

∫
dθ1 · · · dθN

N !

× e
∑N
j=1

(
iεjpθjx−εjEθj τ

)
∏N
j=1

(
1− e−εjWness(θj)

)
×fρ

]
ness;ω

+

ε1,...,εN
(θ1, . . . , θN )fρ

]
ness;ω

−

−εN ,...,−ε1(θN , . . . , θ1) (7.40)
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where the non-equilibrium “free energy deficit” Eness can be written as the average of the

free energy deficits Eβr,l associated to equilibrium thermal density matrices ρβr,l ,

Eness =
1

2
(Eβl + Eβr) , Eβr,l :=

∫ ∞
−∞

dθ

2π
m cosh θ log

(
coth

mβr,l cosh(θ)

2

)
. (7.41)

By re-arranging the rapidities and exchanging particles, we can bring the expansion (7.40)

in the form

〈ω+(x, t)ω+(0, 0)〉ρness

= e−xEness

∞∑
N=0

N∑
K=0

∫
dθ1 · · · dθN
K!(N −K)!

× e
∑K
j=1

(
ipθjx−Eθj τ

)
−
∑N
K+1

(
ipθjx−Eθj τ

)
∏K
j=1

(
1− e−Wness(θj)

)∏N
j=K+1

(
1− eWness(θj)

)
×fρ

]
ness;ω

+

+,...,+,−,...,−(θ1, . . . , θK , θK+1, . . . , θN )

×fρ
]
ness;ω

−

+,...,+,−,...,−(θN , . . . , θK+1, θK , . . . , θ1) (7.42)

where K represents the number of rapidities with positive charges. In order to obtain a

convergent large-distance expansion, we can shift in (7.42) every θj-contour associated to

the rapidity with εj = +, towards the positive imaginary direction by iπ, and we will not

shift all the θk-contours associated to the rapidities with εk = −. Using crossing symmetry,

the integrand on the shifted contours in (7.42) becomes

(−1)K
e
∑N
j=1

(
ipθjx−Eθj τ

)
∏N
j=1

(
1− e−Wness(θj)

)fρ]ness;ω
+

−,...,− (θ1 · · · θN )fρ
]
ness;ω

−

+,...,+ (θN · · · θ1)

where (−1)K comes from shifting K rapidity variables by iπ. Further, when shifting the

contours, we have to take into account not only residue contributions from the poles of

the factors
(
1− e−Wness(θj)

)−1
, but also the integrals running on both sides of the segment

θ ∈ [0, iπ] due to discontinuity of Wness(θj) at the point θj = 0. Hence, we may replace

every θj-integral by

∫
dθj 7→


∫
dθj (εj = −)

−
∫
dθj + residues + imaginary segment (εj = +).

Consider the terms which involve contributions from taking residues for P particles, from

integrating on imaginary segments for M particles, from integrals with shifted contours

for K − P −M particles, and from integrals with non-shifted contours for N −K, with
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fixed N . By re-labeling rapidities and exchanging particles, the sum of these terms over

K are given by

N∑
K=P+M

1

K!(N −K)!

K!

(K − P )!P !

(K − P )!

M !(K − P −M)!

×
∑

n1,...,np∈Z/{0}

(2π)N
p∏
j=1

(
e−mx coshλnj−imτ sinhλnj

mβ(nj) coshλnj

)

×
∫ iπ

0
dθP+1 · · · dθP+M

P+M∏
j=P+1

(
eimx sinh θj−mτ cosh θj

)
×
(

1

1− e−mβl cosh(θ+0+)
− 1

1− e−mβr cosh(θ−0+)

)
×(−1)K−P−M

∫
dθP+M+1 · · · dθN

e−
∑N
j=P+M+1(imx sinh θj−mτ cosh θj)∏N
j=P+M+1

(
1 + eWness(θj)

)
×fρ

]
ness;ω

+

+,...,+,−,...,−(λn1 + iπ/2, . . . , λnP + iπ/2, θP+1, . . . , θP+M , θP+M+1, . . . , θN )

×fρ
]
ness;ω

−

+,...,+,−,...,−(θN , . . . , θP+M+1, θP+M , . . . , θP+1, λnP + iπ/2, . . . , λn1 + iπ/2)

where

λn = arcsinh

(
2πn

β(n)m

)
, β(n) =

{
βl (n > 0)

βr (n < 0)
, (7.43)

where we evaluate the residues of poles at position θj = λnj for all nj ∈ Z/0, j = 1, . . . , P ,

where the factor (−1)K−P−M comes from shifting K − P −M rapidities and using the

crossing relation, where on the sixth line, there are P +M positive charges and N−P −M
negative charges, and where on the seventh line, there are N−P −M positive charges and

P +M negative charges. It turns out that the sum over K vanishes whenever P +M 6= N ,

namely only the residues and imaginary segments contributions are left. After changing

the imaginary segments contributions to integrations over real invariables, we exchange

particles, putting the extra combinatorial factor N !/(P !M !), and sum these terms over N ,
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M , {n1, . . . , nP }. This gives the large-distance expansion

〈ω+(x, t)ω+(0, 0)〉ρness

= e−xEness

∞∑
P,M=0

1

P !M !

∑
n1,...,np∈Z/{0}

(2π)N
p∏
j=1

(
e−mx coshλnj−imτ sinhλnj

mβ(nj) coshλnj

)

×iM
∫ π

0
dθ1 · · · dθM

M∏
j=1

(
eimx sinh θj−mτ cosh θj

)
×
(

1

1− e−mβl cosh(θj+0+)
− 1

1− e−mβr cosh(θj−0+)

)
×fρ

]
ness;ω

+

+,...,+ (λn1 + iπ/2, . . . , λnP + iπ/2, iθ1, . . . , iθM )

×fρ
]
ness;ω

−

−,...,− (iθM , . . . , iθ1, λnP + iπ/2, . . . , λn1 + iπ/2) (7.44)

for ω = σ or ω = µ.

It can be seen that in NESS correlation functions (7.44) there also exist the standard

Matsubara frequencies which have been shown in previous section to appear in finite-

temperature correlation functions (7.21). But here there are two frequencies which are

associated to two temperatures and depend on the sign of nj . As we said, the Matsubara

frequencies admit an interpretation as coming from the quantization of the momentum in

a quantum system on the circle, since finite-temperature correlation functions correspond

to vacuum expectation values on the circle by a (quasi-)periodicity condition in imaginary

time. We see that this formalism partly survives in our non-equilibrium steady state: there

are two different circumferences, for right- and left-moving particles, respectively. Separate

(quasi-)periodicity conditions in imaginary time for right- and left-movers, for instance,

(7.28) and (7.29) do not make full sense in the massive theory, as right- and left-movers

do not separate (local fields do not factorize). This is the reason for the presence of extra

integrals on finite intervals and we can interpret these integrals as providing the bridge

for right- and left-moving modes to jump from the circle of circumference βl to that of

circumference βr and vice versa.

It is worth mentioning that the result of [43] obtained in the (anisotropic) XY model out of

equilibrium, under the scaling limit, will reproduce the leading exponential decay e−xEness

in (7.44).

7.3.3 Leading large-distance behavior of two-point correlation functions

Concerning the large-distance behavior of two-point function (7.44), it is a non-trivial

task to determine the form of the leading or subleading terms multiplying this exponential
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decay. The main difficulty we have to deal with is to analyze the relative strength of the

terms with different particle numbers. This difficulty is in the root of the non-analyticity

of W (θ) at θ = 0. Conjecturing that the one- and two-particle contributions give the

correct form, perhaps up to normalizations, we will carry out the following analysis.

The terms for N 6= 0 involve exponential decaying factors e−mx cosh(λnj ) and hence are

subleading compared to the terms for N = 0 with no such exponentials. Due to this

notion, we neglect all exponentially decaying terms coming from higher values of N . To

evaluate the leading large-mx behavior (setting t = 0 for simplicity) for the disorder two-

point function, we consider N = 0 and M = 1, and only the part of the integral near 0

and π is sufficient. Hence we consider

〈σ〉ρness

2
e−xEness

∫ π

0
dθ e−mx sin θ

sinh
(
βl−βr

2 cos θ
)

sinh
(
βl
2 cos θ

)
sinh

(
βr
2 cos θ

)h]++(iθ)h]
−
−(iθ). (7.45)

The leading large-mx behavior is evaluated by expanding for θ near to 0 and π. In fact,

one can evaluate the leading small-θ behavior of leg factors by extracting the pole 1/(θ−θ′)
from the factor 1/ sinh(θ − θ′) in (6.3), thus obtaining

hηε (θ) ∝

{
θ−ηiεγ (for Wness)

θηiεγ (for W ]
ness)

, γ :=
1

2π
log

(
coth

mβr
2

tanh
mβl

2

)
. (7.46)

Using (7.46) and (6.9), we find h]
+
+(iθ)h]

−
−(iθ) ∝ (iθ)2iγ near to θ = 0, and similarly

∝ (iπ − iθ)−2iγ near to θ = π. Omitting the overall finite, real (temperature-dependent)

factor, we then obtain, asymptotically,

eiB
∫ ∞

0
dθ e−mxθθ2iγ + c.c. ∝ A

mx
cos(2γ log(mx) +B)

for some phase eiB. A more careful calculation gives (7.48) with

A = 2
sinh (βl−βr)m

2

sinh βlm
2 sinh βrm

2

|Γ(1 + 2iγ)| (7.47)

B = arg
(
Γ(1 + 2iγ)

)
+

+
1

2π

∫
|θ|>1

dθ
1

sinh θ
log coth

Wness(θ)

2
+

1

2π

∫
|θ|<1

dθ

(
1

sinh θ
− 1

θ

)
log coth

Wness(θ)

2
.

Thus, we have

〈µ+(x, 0)µ+(0, 0)〉ρness ∝ e−xEness〈σ+〉ρness〈σ−〉ρness

(
A

mx
cos(2γ log(mx) +B) + . . .

)
.

(7.48)
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The omitted part in (7.48) comes from higher values of N and M , and contain terms which

admit the exactly same form as the first subleading term in (7.48), but with different

constants A and B, with A possibly logarithmically divergent. Indeed, for terms with

M > 1 and N = 0, we expect integrals of the type∫ π

0
dθ1dθ2

(
tan

θ1 − θ2

2

)2

e−mx(sin θ1+sin θ2) × leg factors.

For θ1 ∼ 0 and θ2 ∼ π, and vice versa, the integrand has a second-order pole, leading to

logarithmic divergences. We do not have a clear interpretation of the potential logarithmic

divergence of the constant A, but it is likely to have connection with the large-time limit

taken to generate the steady state. Nevertheless, the oscillating form obtained from the

M = 1 analysis should be correct, and the possible divergences may be expected to be

re-absorbed into the normalization of the field. These subleading terms with M > 1 are in

the form with higher oscillating frequency in log(mx) and with higher power of 1/(mx).

A similar analysis can be applied to the two-point function of the order field. Obvi-

ously, the leading term of the large-distance behavior is e−xEness〈σ+〉ρness〈σ−〉ρness . From

the arguments leading to the conclusion that the next subleading term in the disorder-

field case are of the same form as the first subleading term, the subleading term of the

large-distance behavior, in the case of the order field, is e−xEness〈σ+〉ρness〈σ−〉ρnessO(1).

This implies that the vacuum expectation value 〈σ±〉ρness may not not reproduce the

correct normalization for the leading exponential decay of the two-point function, since

〈σ+(x, 0)σ+(0, 0)〉ρness ∼ C e−xEness with in general C 6= 〈σ+〉ρness〈σ−〉ρness . In this case, the

full physical meaning, beyond its involvement in the form factor expansion (7.44), of the

“expectation value” 〈σ±〉ρness would not be fully understood, considering such expectation

values are usually obtained through the large-distance asymptotic under the condition of

conformal normalization at small distances.

In spite of these problems, we still have our important finding: the large-distance behavior

of two-point correlation function, both for the order and disordered regimes, contains

oscillatory terms in log(mx) with frequencies that are multiple of 2γ.

7.4 Quantum quenches

Consider a quantum system initially prepared in the ground state |Ψ0〉 of a given Hamil-

tonian H(g0), where g0 is the coupling constant. At time t = 0, the coupling constant is

suddenly changed from g0 to a different value g. This process is called a quantum quench.
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The sudden change of the Hamiltonian drives the system out of equilibrium and the sys-

tem will evolve unitarily by means of the new Hamiltonian H(g). The main problem that

has been widely investigated is whether the system relaxes to a stationary state after a

large evolution time, and if it does, what is the characteristics of this stationary state.

Some experimental progress following this direction has been made by a groundbreaking

“quantum Newton’s cradle” experiment [144], which focuses on the relaxation towards a

stationary state in systems of ultra-cold atoms Kinoshita. This experiment demonstrates

the crucial role played by dimensionality and conservation laws in many-body quantum

dynamics out of equilibrium. It has been shown in this experiment that three dimensional

condensates reach quickly a stationary state characterized by an effective temperature,

which is a process of “thermalization”, whereas quasi one-dimensional systems exhibit a

slow relaxation towards unusual non-thermal distribution. This difference arises from the

existence of additional local conservation laws in quasi one-dimensional systems, which

in turn poses the question whether quantum integrability has a influence on stationary

behaviour of non-equilibrium evolution after a quantum quench. A tremendous amount

of works have been sparked to address this issue and it is a common observation that

thermalization indeed occurs in generic non-integrable systems but it is not obtained for

integrable systems due to the restriction of the infinite number of conserved quantities.

In integrable systems, the final stationary state is rather described in terms of a so-called

generalized Gibbs ensemble (GGE) [31, 32]. The density matrix describing a GGE is

expected to be given by

ρGGE = e−
∑∞
n=1 βnHn (7.49)

where Hn are the local conserved quantities, and βn are the associated generalized inverse

temperatures which are determined by the requirement that the averages of the conserved

densities in the GGE be equal to those in the initial state |Ψ0〉:

Tr(ρGGEHn)

TrρGGE
= 〈Ψ0|Hn|Ψ0〉. (7.50)

In GGEs, only conserved quantities that are bounded from below are admitted to appear

in (7.50) and the series in the exponential in (7.50) is assumed to be convergent. Moreover,

the state described by a GGE does not allow for flow of energy, particles, etc, and hence it is

in a natural “generalized” equilibrium due to the absence of entropy production, although

it is not strictly at equilibrium which is characterized by a standard Gibbs’ ensemble.

In the Ising model, a series of studies [34, 35] have confirmed the occurrence of the GGE.

Our results can be applied directly to GGEs in the Ising model thanks to the trivial ob-

servation that in the Ising model, conserved quantities are linear combinations (integrals)

of a†(θ)a(θ) (a similar statement holds for general integrable QFT, using appropriate
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asymptotic-state creation and annihilation operators). One may construct generalized

hamiltonians Hn = (Qn +Q−n)/2 using charges Qn defined as

Qn =

∫
dθ enθ a†(θ)a(θ) (7.51)

(and in particular H1 is the usual hamiltonian), and one has, according to (4.75),

W (θ) =
∞∑
n=1

βn cosh(nθ). (7.52)

But more general functions W (θ) are allowed by our formalism. Hence our results (7.1)

when specialized in the Ising model (for fermion fields and all their descendants) and

(7.7) (for order and disorder fields) give, in principle, the full large-distance expansion of

correlation functions in the Ising model in any GGE.

Refs [34, 35, 41] considered a particular quench corresponding to an instantaneous change

of the transverse field in (2.57) at time t = 0 from h0 to h. In these works, analytic

results have been obtained, by employing methods based on the form factor approach

and the determinant representation of correlation functions for free fermion theories, for

the full asymptotic time and distance dependence of one- and two-point order parameter

correlation functions in the thermodynamic limit after this quench within the ordered

and disordered phase. In the scaling limit, the quench mentioned above corresponds to a

quench in the fermion mass of the related free Majorana field theory at time t = 0 from m0

to m. In [145], the long time behaviour of the order parameter (one-point function) after a

quench of the mass within the ordered phase was studied using form factors, reproducing

the scaling limit of the corresponding results in [34]. Here we consider instead the two-

point function, directly in the steady state described by a GGE. The result of the works

[34, 35, 41] can be expressed, in the scaling limit, by the following choice of W (θ):

tanh
W (θ)

2
=

sinh2 θ + κm0/m

cosh θ
√

sinh2 θ +m2
0/m

2
(7.53)

where κ = + corresponds to a quench from ferromagnetic to ferromagnetic or from anti-

ferromagnetic to anti-ferromagnetic regimes, and κ = − corresponds to the other cases.

We see that for κ = − this is out of the context that we considered, since W (θ) ≤ 0

for small enough values of θ. However for κ = + this can be treated with the present

formalism. In particular, we find that

1

1− e−W
=

1

2
(1 + U),

1

1− eW
=

1

2
(1− U) (7.54)
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where

U(θ) :=
cosh θ

√
sinh2 θ +m2

0/m
2

sinh2 θ +m0/m
(7.55)

The function U(θ) has poles at

sinh θ = ±i
√
m0/m

and branch points at

sinh θ = ±im0/m.

This implies that the expansion (7.7) provides a full large-distance expansion for correlation

functions of ordered and disordered fields in the universal stationary regime occurring after

such magnetic-field quenches, and in particular that the large-distance behavior is of the

form (7.8) with exponential decay controlled by

|Im(sinh θ?)| =
√
m0/m or m0/m.

Let us first consider the leading large-distance behavior in the disordered (anti-ferromagnetic)

regime. The spin-spin correlation function for the disorder fields has an exponentially de-

caying factor e−xE controlled by E (7.5), with a possible algebraic factor. In order to

compute the possible algebraic factor, we look at the one-particle contribution

∑
ε

1

2

∫
dθ eiεpθx(1 + εU(θ))fρ

];µ+

ε (θ)fρ
];µ−

−ε (θ)

where U is given by (7.55). If m0 > m, then
√
m0/m < m0/m, hence the poles determine

the least-decaying behavior. In this case, we deform the θ contours away from the real

line, in the direction sign(Im(θ)) = ε in which the form factors are analytic, all the way to

Im(θ) = εiπ/2. There, poles and branch points are found respectively at

θp = εiπ/2± αp (7.56)

where

coshαp =
√
m0/m, αp > 0, (7.57)

and at

θb = εiπ/2± αb (7.58)

where

coshαb = m0/m, αb > 0, (7.59)
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with αp < αb. In light of crossing symmetry (6.10), we have

f
ρ];µ+
+ (α+ iπ/2)f

ρ];µ−
− (α+ iπ/2) = −fρ

];µ+
− (α− iπ/2)f

ρ];µ−
+ (α− iπ/2), (7.60)

and direct calculation shows that

U(α+ iπ/2) = −U(α− iπ/2) (7.61)

for α between −αb and αb (that is, away from the branch cut). Using (7.60) and (7.61),

we find

(1 + U(α+ iπ/2))f
ρ];µ+
+ (α+ iπ/2)f

ρ];µ−
− (α+ iπ/2)

= −(1− U(α− iπ/2))f
ρ];µ+
− (α− iπ/2)f

ρ];µ−
+ (α− iπ/2) (7.62)

and this allows us to cancel out the integrals with ε = ± on α ∈ [−αb, αb]. Thus, there

only remain residue contributions at the poles α = ±αp, and integrals along branch cuts

[αb,∞) and [−αb,−∞). Since αp < αb, exponential decaying factors e−mx coshα involved

in the integrand in the latter integrals are subleading compared to the exponential factors

e−mx coshαp coming from the residues taken at the poles. The leading behavior is then

determined by these residues,

I± = πie−
√
mm0xf

ρ];µ+
+ (πi/2 + θp)f

ρ];µ−
− (πi/2 + θp)Res (U(z)) |z=πi/2±α? +

πie−
√
mm0xfρ

];µ+

− (−πi/2 + θp)f
ρ];µ−

+ (−πi/2 + θp)Res (U(z)) |z=−πi/2±α?

Using crossing symmetry again, we get:

I± = e−
√
mm0x4π

√
m0/m− 1fρ

];µ+

+ (πi/2 + θp)f
ρ];µ−

− (πi/2± α?)

Therefore, the leading behaviour is

O
(
e−(E+

√
mm0)x

)
(m0 > m). (7.63)

On the other hand, if m0 < m, then
√
m0/m > m0/m, hence the branch points determine

the least-decaying behavior. In this case, both poles and branch points which are closest

to the real line are found on the imaginary axis below the Im(θ) = π/2 line and above the

Im(θ) = −π/2 line. The branch points are at θb = ±iκb with

sinκb = m0/m (7.64)
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and the poles at ±iκp with

sinκp =
√
m0/m > sinκb. (7.65)

We choose the branch cuts as the horizontal lines emanating from θ = ±iκb to θ =

±iκb +∞. In this case, we shift the contours in the direction sign(Im(θ)) = ε up to the

position of the poles at Im(θ) = εiκp (or a little bit before it), going around the branch cut

[εiκb, εiκb +∞]. We first consider the one-particle contribution from the integrals along

the branch cuts. With the change of variable θ = iεκb + β, β ∈ R, we have

∑
ε

1

2

∫ ∞
0

dβ
(
e−m0x coshβ+iε

√
m2−m2

0x sinhβ
) (
−U(iεκb + i0+ + β) + U(iεκb − i0+ + β)

)
×fρ];µ+

ε (iεκb + β)fρ
];µ−

−ε (iεκb + β) (7.66)

where we used (7.64). Taking the principal square root form of the U functions leads to

−
∑
ε

∫ ∞
0

dβ
(
e−m0x coshβ+iε

√
m2−m2

0x sinhβ
)√

sinhβ Tε(β)fρ
];µ+

ε (iεκb + β)fρ
];µ−

−ε (iεκb + β)

where

Tε(β) =

√
1−m2

0/m
2 coshβ + iεm0/m sinhβ

(1− 2m2
0/m

2) sinh2 β + iε2m0/m
√

1−m2
0/m

2 sinhβ coshβ −m2
0/m

2 cosh2 β +m0/m

×
√

(1− 2m2
0/m

2) sinhβ + iε2m0/m
√

1−m2
0/m

2 coshβ −m2
0/m

2 sinhβ.

By Taylor expanding sinhβ and coshβ , changing the variable β to β/(mx), we obtain

the leading term of (7.67) in the large-x limit:

−e−m0x(mx)−3/2

[
T+(0)fρ

];µ+

+ (iκb)f
ρ];µ−

− (iκb)

∫ ∞
0

dβeiβ
√

1−m2
0/m

2

+T−(0)fρ
];µ+

− (−iκb)fρ
];µ−

+ (−iκb)
∫ ∞

0
dβe−iβ

√
1−m2

0/m
2

]
. (7.67)

Following similar lines, we find that the one-particle contribution coming from the integrals

on the lines θ = εiκp + β is of order e−m0x(mx)−1, which is subleading compared to the

one-particle contribution coming from the integrals along the branch cuts. Thus, in this

case, the leading large-distance behavior is

O
(
x−3/2e−(E+m0)x

)
(m0 < m). (7.68)

In the ordered regime the leading behavior is simply determined by e−εx coming from

the zero-particle contribution. The first subleading asymptotic terms are obtained by
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considering the two-particle form factor contributions,

∑
ε1ε2

ε1ε2
4

∫
dθ1dθ2

2!
e
∑2
j=1 iεjpθjxU(θ1)U(θ2)fρ

];σ+

ε1ε2 (θ1, θ2)fρ
];σ−

−ε2−ε1(θ2, θ1).

Consider first m0 > m. Again, we deform the θ1 and θ2 contours following the same way

as we did before. We first deform the θ1 contour up to Im(θ1) = ε1iπ/2. Using the crossing

symmetry relation (6.10), the integrals for ε1 = + and ε1 = − cancel out (for any ε2 and

θ2), except for the residues of the poles at ε1iπ/2 ± αp (7.57) and for the branch cuts

further away from the imaginary axis, on |Re(θ)| > αb. The residues contribute the part

of the leading contribution, O
(
e−
√
mm0x

)
. We then deform the θ2 contour. The remaining

integrals, after taking the θ1 residues at ε1iπ/2 + sαp (for s = ±), are proportional to

∑
ε2

ε2

∫
dθ2 e

iε2pθ2xU(θ2)h]+ε2 (θ2)h]−−ε2(θ2) tanh

(
θ2 − (iπ/2 + sαp) + i(ε2 − 1)0

2

)2ε2

.

The integrals for ε2 = + and ε2 = − can be cancelled out by shifting to Im(θ2) = ε2iπ/2

, except for the poles at θ2 = ε2iπ/2 ± αp and the branch cuts further away from the

imaginary axis. For ε2 = +, the pole of U(θ2) at θ2 = iπ/2 + sαp is cancelled by the zero

in the tanh factor (similarly for the mirror pole with ε2 = −). As a result, only the pole at

θ2 = iπ/2− sαp contributes. This means that, overall, the leading large-distance behavior

of the two-particle form factor contribution is given by the product of the residues taken

at θ1 = ε1iπ/2 + sαp and θ2 = ε2iπ/2 − sαp, with s = + and s = −. It turns out that

the product of residues is independent of s due to invariance under the exchange θ1 ↔ θ2.

This then provides an overall decay O
(
e−2
√
mm0s

)
. Thus the leading behaviour is

e−Ex
(

1 +O
(
e−2
√
mm0x

))
(m0 > m).

Following the same recipe, in the case m0 > m, we find that the branch cuts determine

the leading exponential decaying. Hence, the leading behavior of the correlation function

is

e−Ex
(
1 +O

(
x−3e−2m0x

))
(m0 < m).

7.5 Rényi entropy

The Rényi entropy can be used to evaluate the bipartite entanglement entropy which is a

measure of quantum entanglement [146]. For the definition of the entanglement entropy,

consider a composite quantum system with Hilbert space H = HA⊗HB in a ground state

|gs〉. The entanglement entropy SA is the von Neumann entropy associated to the reduced
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density matrix ρA of the subsystem A:

SA = −TrHA (ρA log(ρA)) , ρA = TrHB (|gs〉〈gs|) . (7.69)

Using the “replica trick” [45, 147], the bipartite entanglement entropy can be obtained as

the limit n→ 1 of the Rényi entropy for positive real n:

SA = lim
n→1

S
(n)
A , S

(n)
A =

1

1− n
log TrHAρ

n
A . (7.70)

It has been demonstrated in [147] that the Rényi entropy for integer n is related to the

partition function on a multi-sheeted Riemann surface with branch points. The authors

in [46, 127] introduced the so-called branch-point twist fields which correspond to branch

points so that their correlation functions are the partition functions on multi-sheeted Rie-

mann surfaces. Therefore, the problem of calculating the biparticle entanglement entropy

is reduced to the evaluation of the two-point correlation function of the branch-point twist

fields. In [46], the two-point correlation function of the branch-point twist fields were

computed by exploiting the factorized scattering method for integrable models of QFT.

In this section, we consider the composite system mentioned above in mixed states in the

Ising model. In this case, the Rényi entropy for integer n is related with the mixed-state

two-point correlation function of the branch-point twist fields in the n-copy Ising model.

Thanks to the relation (3.54), our result (7.14) can be applied directly to the evaluation

of the mixed-state two-point function of the branch-point twist fields in the n-copy Ising

model. Taking analytic continuation in n of the Rényi entropy and computing the result

at n = 1 could in principle give the mixed-state bipartite entanglement entropy. However,

this is beyond the scope of this thesis.

Mixed-state correlation function and Rényi entropy for integer n

According to the arguments in [46], the Rényi entropy for integer n in the Ising model can

be written in terms of the mixed-state two-point correlation function of the branch-point

twist fields ( without loss of generality we consider only the branch-point twist fields with

cuts going towards the right):

S
(n)
A =

1

1− n
log
[
ε2dnZn

〈
T (x, 0)T̃ (0, 0)

〉
ρ

(n)
I

]
(7.71)

where Zn is an n-independent non-universal normalisation constant with Z1 = 1, ε is a

short-distance cutoff which is chosen in such a way that dZn/dn = 1, dn is the scaling

dimension (3.49), and ρ
(n)
I represents the density matrix of the n-copy Ising model. Now
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we evaluate the two-point function
〈
T (x, 0)T̃ (0, 0)

〉
ρ

(n)
I

. We first define the density matrix

ρ
(n)
D for the n-copy Dirac theory:

ρ
(n)
D = ρ1

D ⊗ · · · ⊗ ρnD (7.72)

where ρiD is the density matrix in the ith-copy of the model. Then, in light of (3.54), the

two-point correlation function of branch-point twist fields TDirac(x, 0) and T̃Dirac(0, 0) in

the n-copy Dirac theory in mixed states can be written as

〈
T +

Dirac(x, 0)T̃ +
Dirac(0, 0)

〉
ρ

(n)
D

=
TrH(n)

D

(
ρ

(n)
D

∏n
m=1 σ

+
(m,αm)(x, 0)

∏n
p=1 σ

+
(p,−αp)(0, 0)

)
TrH(n)

D

(
ρ

(n)
D

)
=

TrH1
D

(
ρ1

D σ
+
(1,α1)(x, 0)σ+

(1,−α1)(0, 0)
)

TrH1
D

(
ρ1

D

) · · ·
TrHn

(
ρnD σ

+
(n,αn)(x, 0)σ+

(n,−αn)(0, 0)
)

TrHnD
(
ρnD
)

=
〈
σ+

(1,α1)(x, 0)σ+
(1,−α1)(0, 0)〉ρ1

D
· · · 〈σ+

(n,αn)(x, 0)σ+
(n,−αn)(0, 0)

〉
ρnD

(7.73)

where H(n)
D is the Hilbert space of the n-copy Dirac theory and HiD is the Hilbert space of

the ith-copy of it, and where in the first step we used relations (3.48) and (3.27). On the

other hand, we can define the density matrix ρ
(n)
D in another way:

ρ
(n)
D = ρ

(n)
Ia
⊗ ρ(n)

Ib
(7.74)

where ρ
(n)
Ia

and ρ
(n)
Ib

are the density matrices in the copies a and b of the n-copy Ising

model, respectively. Using the relation (3.55), we have

〈
T +

Dirac(x, 0)T̃ +
Dirac(0, 0)

〉
ρ

(n)
D

=
TrH(n)

D

(
ρ

(n)
D T +

a (x, 0)T +
b (x, 0)T̃a(0, 0)T̃b(0, 0)

)
TrH(n)

D

(
ρ

(n)
D

)
=

TrH(n)
Ia

(
ρ

(n)
Ia
T +
a (x, 0)T̃a(0, 0)

)
TrH(n)

Ia

(
ρ

(n)
Ia

) TrH(n)
Ib

(
ρ

(n)
Ib
T +
b (x, 0)T̃b(0, 0)

)
TrH(n)

Ib

(
ρ

(n)
Ib

)
=

(〈
T (x, 0)T̃ (0, 0)

〉
ρ

(n)
I

)2
(7.75)

where H(n)
Ia

and H(n)
Ib

are the Hilbert spaces of the copies a and b of the n-copy Ising

model, respectively. By comparing (7.73) and (7.75), we see that the mixed-state two-

point correlation function of the branch-point twist fields in the n-copy Ising model admits
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the representation of the form

〈
T (x, 0)T̃ (0, 0)

〉
ρ

(n)
D

=
(〈
σ+

(1,α1)(x, 0)σ+
(1,−α1)(0, 0)〉ρ1

D
· · ·
〈
σ+

(n,αn)(x, 0)σ+
(n,−αn)(0, 0)

〉
ρnD

)1/2
(7.76)

where the mixed-state two-point functions of U(1) twist fields are known from (7.14).

Finally, we obtain the Rényi entropy for integer n:

Sn =
1

1− n
×

log

[
ε

1
6

(n− 1
n

)Zn

(〈
σ+

(1,α1)(x, 0)σ+
(1,−α1)(0, 0)〉ρ1

D
· · ·
〈
σ+

(n,αn)(x, 0)σ+
(n,−αn)(0, 0)

〉
ρnD

) 1
2

]
.

(7.77)



Chapter 8

Conclusion

8.1 Work done

This thesis has contributed to the investigation of correlation functions in general mixed

states with diagonal density matrices in the context of integrable models of quantum

field theory, using the Liouville-space method [21, 23, 55]. Generalizing works in [21, 23,

55], we have constructed the Liouville space for general integrable models of quantum

field theory, including interacting models, and we have defined the associated mixed-

state form factors. Our method is based on the GNS construction of C∗-algebras and

is a departure from other methods which has been widely applied on massive integrable

models of QFT. We do not directly calculate the trace, defining the two-point mixed-

state correlation function, through the knowledge of vacuum form factors and matrix

elements in the Hilbert space. Instead, we identify the mixed-state two-point function as

the vacuum expectation values with respect to the Liouville space. Hence, the two-point

function can be obtained from form factor expansions with respect to the Liouville space,

in parallel with zero-temperature form factor expansion technique. Our Liouville-space

method avoids resummations of partition-divergencies, which are required in the explicit

calculation of the traces defining mixed-state two-point functions. These resummations

have been automatically performed in our defined mixed-state form factors and resulting

form factor expansions

Following arguments in [21, 23], we have derived a Riemann-Hilbert problem for finite-

temperature one-particle form factors of U(1) twist fields in the free Dirac fermion theory

and solved it by additionally making use of low temperature expansions [142]. We found

that these finite-temperature form factors have the same structure as those obtained in

the Ising model [21, 23].

142
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Thanks to the observation that finite-temperature form factors of twist fields, in both Ising

model and Dirac model, depend on the eigenvalues of the density matrices, in trivial ways,

we conjectured the same form for form factors of twist fields in general mixed states with

only the replacement of βEθ by W (θ) for the Ising model and by Wa(θ) for the Dirac model.

We have deduced for these mixed-state form factors a system of non-linear functional

differential equations [55, 142]. Once vacuum form factors are known, mixed-state form

factors can be uniquely determined by these equations. We demonstrated that our exact

mixed-state form factors obey this system of equations, hence confirming their validity.

Deriving and solving these equations is a novel approach to evaluate mixed-state form

factors, which is different from the standard methods based on solving a Riemann-Hilbert

problem for zero-temperature or finite-temperature form factors . It is more powerful

as it does not rely on any strong analytic property for the eigenvalues of the density

matrix. This approach looks similar to techniques used in classical integrable models in

order to obtain bilinear differential equations for tau-functions, which are however usually

associated to correlation functions instead of form factors [55] (see for instance [52]). But

we do not know yet if there is a full technical equivalence.

With the exact mixed-state form factors at hand, we have presented the general results

for mixed-state two-point correlation functions of twist fields, in terms of form factors

expansions [55, 142]. We have given detailed explanations of three subtleties involved

in these representations, which arise from the presence of the cuts emanating from twist

fields and the fact that form factors of twist fields are not entire functions of rapidities. We

have demonstrated the application of our form factor expansions to some specific mixed

states: thermal-flow non-equilibrium steady states [55] and generalized Gibbs ensembles

after quantum quenches [55], both in the Ising model. In particular, we have discovered

oscillating terms log(mx) appearing in the leading large-distance behavior of order and

disorder non-equilibrium correlation functions [55]. In addition, using the relation (3.54)

between the branch-point twist fields in the n-copy Ising model and the U(1) twist fields

in the n-copy Dirac theory , and the result (7.14), we have derived the Rényi entropy for

integer n, which can be used for the evaluation of the bipartite entanglement entropy.

8.2 Future developments

In spite of the series of results we have achieved in this thesis, there are still several open

problems remain on the technical level and left for further investigation.

First, both application to quantum quenches and to the non-equilibrium energy-flow steady

state need to be further developed. In order to achieve this, we have to extend our
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formalism to more general functions W (θ), including with discontinuities and with regions

of negativity. Indeed, for instance, the validity of our form factor expansion (7.7) is based

on the assumption that W (θ) is analytic on a neighborhood of θ ∈ R. However, the

function Wness(θ) associated to non-equilibrium states is not analytic at θ = 0 and does

not satisfy this assumption. Moreover, we recall that, in the Ising model, for the twisted

construction, the positivity condition (4.76) is required in order to avoid the possibility

that the factor 1
1−e−εW (θ) in (7.7) has some pole on the real line. Due to this, in the

application to quantum quenches in the Ising model, our formalism is not adapted to the

case of W (θ) in (7.53) with κ = −. Nevertheless, thanks to the notion that the positivity

condition for Wν(θ) with generic α is not necessary in the Dirac theory, we expect this

problem could be solved by calculating the associated quantum quench in the Dirac theory

with α 6= 1/2 and then take the limit α = 1/2 after the calculation.

Second, it would be very interesting to explore what generalizes the “quantization on

the circle” correspondence of finite-temperature correlation functions, and the Matsubara

frequencies, in general integrable models of QFT. As was argued in [21, 23], thermal

correlation functions are related to vacuum expectation values in the quantization scheme

on the circle. We expect that there exists also an alternative quantization where vacuum

expectation values reproduce mixed-state correlation functions. From our investigation

of the non-equilibrium steady state and quantum quench applications, a study of the

singularity structure of the filling factors (for boson or fermion models)

1

ε
1−faj
j

(
1− (−1)faj e−εjWaj (θj)

)
would shed light on the determination of the generalized quantization scheme we are

seeking for.

Third, the normalization of the mixed-state form factors of twist fields, both in the Ising

model and the Dirac theory, needs to be evaluated exactly, although we have obtained a

recursion relation (6.17) in the Dirac theory.

Fourth, it would be interesting to further develop the Liouville space. For instance, at

zero temperature, as was stated in section 2.3, in integrable QFT, there exists a set of

consistency equations constraining the vacuum form factors in the Hilbert space. These

equations have their origin on very general principles of QFT. At finite temperature, as we

showed in chapter 5, these exists also a Riemann-Hilbert problem, from which we obtained

the exact thermal form factors. However, this set of constraints is directly derived from

the KMS relation. It is expected that a deeper understanding of the Liouville space would
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lead us to a set of more “natural” properties for thermal or non-equilibrium form factors,

which are based on general principles of QFT and thermofield dynamics theory.

Finally, with the success made both in the Ising model and Dirac model, our Liouville-

space method definitely deserves further investigation on mixed-state correlation functions

in more integrable models, particularly in interacting models with non-trivial scattering

matrix. Although using Wick’s theorem is not quite efficient in integrable models, we can

still expect a system of nonlinear functional differential equations which are not closed

equations but an infinite set of equations relating form factors with more and more parti-

cles. In analogy with the form factor equations for vacuum form factors, these equations

may lead to solutions or efficient expansions like low-temperature expansions.



Appendix A

Extra work: high- and

low-temperature limit of the exact

current in non-equilibrium steady

states in integrable QFT

A.1 Introduction

In recent years, the thermodynamics of quantum systems out of equilibrium has been

a subject of intense investigation. On the one hand, this is stimulated by the recent

experimental progress, opening the possibility to drive quantum systems away from equi-

librium in a controlled way and to study their non-equilibrium properties (see for instance

[148–153]). On the other hand, this is also due to the theoretical progress with the discov-

ery of several classes of fluctuation theorems (also known as fluctuation relations), which

generalize the fluctuation-dissipation theorem [154] to systems far from equilibrium (see

[155, 156]) and describe some universal properties of non-equilibrium fluctuations.

Situations of particular interest are those where steady currents of local quantities exist:

steady flows of energy, charge, particles, etc. In these situations, although external forces,

if any, are time-independent, the system is not at equilibrium due to a permanent cre-

ation of entropy. Two ingredients at the heart of this situation are fluctuations of the

currents, and their scaled cumulant generating function (SCGF ) which are related to

the large-deviation functions by a Legendre transform. Fluctuations are one of the most

fundamental concepts arising in statistical physics. The SCGF fully characterises the fluc-

tuations of these constant flows at large times and encodes for many properties of their

146
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non-equilibrium statistics. Symmetry properties of the SCGF are described by fluctuation

theorems. (Exact evaluation of the SCGFs and their associated fluctuation theorems play

a essential role in developing the general theory of non-equilibrium steady states.)

In integrable quantum systems, many quantities, such as all energy eigenstates and eigen-

values, and correlation functions of local operators, can in principle be obtained non-

perturbatively, thanks to integrability. The study of the equilibrium thermodynamic

properties of integrable models has been carried out by a very successful method which

mixes factorized scattering theory and Bethe ansatz ideas. This method is the well-known

thermodynamic Bethe ansatz (TBA) and was initially proposed by Al.B. Zamolodchikov

[157]. Other exact methods includes those based on free-fermion techniques (Clifford alge-

bras). For the universal regime of exactly gapless quantum models, which is described by

conformal field theory (CFT), there also exist a series of powerful approaches [158, 159].

In light of these methods, many exact results have been obtained for SCGF with respect to

charge flows in non-equilibrium integrable quantum systems. In the case of charge flows,

the SCGF is referred to as the “full-counting statistics” (FCS). Proposals [160, 161] by

Lesovik and Levitov constitute the first presentation of the exact result for the FCS in

free fermion models and triggered a series of further investigations [162–165]. Other exact

results were obtained in Luttinger liquids (critical free boson systems) in [166] with the help

of non-equilibrium bosonization technique ,and in the low-temperature universal regime

of quantum critical models in [38] using general CFT. In certain integrable interacting

impurity models, the SCGF was obtained in [167, 168], using TBA-like methods. Exact

charge current and shot noise (zero-temperature second cumulant) have also been analyzed

in a diversity of integrable models, see for instance [169–181].

However, concerning energy flows, exact results for currents in interacting models and for

SCGF in general are not reported until recently. The first exact result for the SCGF was

obtained, to our knowledge, in the case of a quantum chain of harmonic oscillators in [182].

Exact results for the energy current and SCGF in the universal non-equilibrium regime

at low temperatures were derived in general quantum critical models in [37, 38] by using

CFT techniques, for the quantum Ising chain in a magnetic field in [40] by employing

free fermion techniques and for any integrable model of relativistic quantum field theory

with diagonal scattering in [69] by generalizing TBA to non-equilibrium steady states.

(star configuration) It is worth mentioning that it has been demonstrated in [183] that a

condition of pure transmission leads to the “extended” fluctuation relations, which allow

one to exactly evaluate the SCGF from the current alone.

In this appendix, we present the high- and low- temperature limit of the exact energy

current obtained in [69]. Our setup consists in preparing two hamiltonian reservoirs at
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different temperatures and connecting them at a contact point. After the contact is es-

tablished, energy or charge will transfers from one reservoir to another. At large time,

the flow between these two reservoirs becomes constant in time and the system reaches a

non-equilibrium steady state. We then consider the scaling limit: the quantum system is

assumed to be in the universal regime near a quantum critical point (with unit dynamical

exponent), with a mass gap and the driving temperatures assumed to be much smaller

than any microscopic energy scale. This regime is described by massive quantum field

theory.

A.2 Physical situation

A.2.1 Physical description

Consider a homogeneous open quantum chain of length L with local interactions. We

assume it to be initially cut into two identical parts , each of which is of length L/2.

These two halves do not interact with each other and we denote by H l and Hr (left and

right) the Hamiltonian of them, respectively. We prepare these two halves at temperature

Tl = β−1
l and Tr = β−1

r respectively. Hence, the initial density matrix describing the

system is ρ0 = e−βlH
L
l −βrH

L
r . Then, we unitarily evolve this density matrix with the full

Hamiltonian HL = HL
l +HL

r + δH:

ρ(t) = e−iHtρ0e
iHt, (A.1)

by connecting these two halves at a contact point. The term δH arises from the connection

energy of the few links connecting both halves and it is assumed to be independent of the

system size L.

Averages of observables at time t are given by

〈O〉(L; t) =
Tr (ρ(t)O)

Tr (ρ0)
. (A.2)

The so-called steady state limit is defined by the limits L → ∞ and then t → ∞ in that

order. If the expectation value (A.2) under the steady state limit exist, the system is said

to reach a steady state with respect to the observable O:

〈O〉stat := lim
t→∞

lim
L→∞

〈O〉(L; t). (A.3)

Taking into account the locality of the Hamiltonians, we expect the existence of the steady

state limit of any local observable. This admits a physical interpretation: in the infinite
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size limit, halves of the system serves as effective thermal reservoirs, each at its own

temperature Tl,r, and they can absorb and emit independent thermalized excitations un-

boundedly for all times t � L/v where v is a propagation velocity; indeed within such

times excitations do not have time to bounce off the extreme left and right parts in order to

create non-thermal correlations or re-emit absorbed excitations. In particular, the energy

current observable

J :=
i

2
[HL, HL

r −HL
l ] =

i

2
[δH,HL

r −HL
l ], (A.4)

which is independent of L, is local, due to the locality of δH. Hence, the system is expected

to reach a steady state with respect to the energy current.

A.2.2 Steady state in massive QFT

We assume the quantum chain mentioned in the previous section to have a parameter h

(for instance, an external magnetic field) so that the system has a quantum critical point at

h = hc with unite dynamical exponent. As was stated in section 2.4, at h = hc, the energy

gap ∆ vanishes. The system, at h = hc and in the low-temperature regime, is described

by CFT. The low-temperature, low-gap region near the quantum criticality is obtained by

taking the scaling limit h → hc and Tl,r ∝ ∆and the system under this limit is described

by massive QFT. Employing general QFT arguments, the literatures [37, 39] proposed an

exact representation of the non-equilibrium density matrix ρstat which describes the the

steady state limit of the previous section in the scaling limit

〈O〉stat =
Tr (ρstatO)

Tr (ρstat)
, (A.5)

Consider a model of relativistic QFT with a spectrum of ` particle types, with masses

m1, . . . ,m`. The vacuum is defined as |vac〉 and multi-particle asymptotic states are given

by

|θ1, . . . , θn〉i1,...,in : θ1 > . . . > θn, i1, . . . , in ∈ {1, 2, . . . , `}. (A.6)

The density matrix ρstat, describing the energy-flow non-equilibrium steady state, is diag-

onalised on the basis of asymptotic states:

ρstat|θ1, . . . , θn〉i1,...,in = e−
∑
kWik

(θk)|θ1, . . . , θn〉i1,...,in (A.7)

where

Wi(θ) := (βlΘ(θ) + βrΘ(−θ))mi cosh θ (A.8)

with Θ(θ) Heavyside’s step function.
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The density matrix (A.7) holds for the mathematical description of the energy-flow steady

state in the XY model in [36] and is in agreement with the one obtained in the Ising model

in [40].

A.3 The non-equilibrium steady state TBA equations

In this section, we will present the exact energy current obtained in [69]. We consider a

general integrable model of relativistic QFT with diagonal scattering matrices.

In QFT, the energy current operator J is the momentum density p(x). Using (A.5), we

can express the average energy current J as

J =
Tr (ρstat p(0))

Tr (ρstat)
. (A.9)

where we consider p(x) at an arbitrary point, say x = 0. The evaluation of this trace re-

quires two ingredients. One is the matrix elements of p(0). The other one is the knowledge

of how to perform the trace. This is due to the fact that in states with nonzero densities

of particles (i.e. infinitely many particles), the interaction between particles becomes im-

portant and this affects the way the trace is defined. In this sense, the information of the

“local structure” (the full scattering and the set of local observables) is encoded not only

into the matrix elements of p(0) but also into the way the trace is performed.

In order to implement these two elements of information, the authors in [69] employ Al. B.

Zamolodchikov’s TBA arguments [157] which are based on the factorized scattering theory

and the Bethe ansatz method. We consider the model defined on a finite, periodic space

of circumference L. Integrable models of QFT on the finite space, as stated in [157], have

similar description with that of Bethe ansatz integrable systems. Each state is described

by a wavefunction which obeys the well-known Bethe ansatz equation. The quasi-particles

in these states possess momenta pk and energies ek whose sums give the total momentum

and energy of the states, with relativistic dispersion relation. Then, there is a natural

finite-length extrapolation ρLstat of ρstat, defined by its action on each state |v〉:

ρLstat|v〉 = e−
∑
kWk |v〉, Wk = (βlΘ(pk) + βrΘ(−pk)) ek. (A.10)

The finite-L extrapolation of the average current is the average of p(0) with respect to

ρLstat:

JL =
TrL

[
ρLstatp(0)

]
TrL[ρLstat]

(A.11)
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with the relation J = limL→∞ JL. Using translation invariance, we then have

JL = L−1 TrL
[
ρLstatPL

]
TrL[ρLstat]

(A.12)

where P =
∫ L/2
−L/2 dx p(x) is the total momentum. Introducing a generating parameter a

associated to the momentum, we rewrite the current as

J = − lim
L→∞

d

da
log TrL

(
ρLstat e

−aPL
)∣∣∣∣
a=0

(A.13)

We may also define the “free energy” fa and evaluate the current from it:

fa := − lim
L→∞

L−1 log TrL
(
ρLstat e

−aPL
)
, J =

d

da
fa
∣∣∣∣
a=0

. (A.14)

It has been demonstrated in [69] that the free energy fa can be evaluated by generalizing

Al. B. Zamolodchikov’s TBA arguments [157] to the non-equilibrium steady state (an

extension of TBA arguments beyond Gibb’s equilibrium was first carried out, to our best

knowledge, for quantum quenches in the Lieb-Liniger model [184]), and the result leads to

the exact non-equilibrium steady state TBA (NESSTBA) equation for the energy current

in general integrable relativistic QFT with diagonal scatterings [69] :

J =
∑̀
i=1

∫ ∞
−∞

dθ

2π

mi cosh θ xi(θ)

1 + eεi(θ)

xi(θ) = mi sinh θ +
∑̀
j=1

∫ ∞
−∞

dγ

2π

ϕij(θ − γ)xj(γ)

1 + eεj(γ)

εi(θ) = Wi(θ)−
∑̀
j=1

∫ ∞
−∞

dγ

2π
ϕij(θ − γ) log(1 + e−εj(γ)) (A.15)

where ϕij(θ) = −i∂θ logSij(θ) and Sij(θ) is the two-particle scattering matrix, and where

Wi(θ) is defined in (A.8). It is conventional to define the L-functions

Li(θ) = log(1 + e−εi(θ)), (A.16)

as these functions possess interesting and perhaps clearer features than the pseudo-energies

εi(θ). Note that the psedo-energies, consequently the L-function, are not continuous at

θ = 0

εi(+0)− εi(−0) = m(βl − βr), (A.17)

which is contrary to the equilibrium case.
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A.4 High-temperature limit of the current

In this appendix we will consider the expression for the current presented in (A.15) in

terms of thermodynamic quantities and carry out its high temperature limit. The concrete

analysis we present in this chapter collects the results reported in [69]. Our computation

is based on arguments in [157] where a similar work was carried out for determining the

effective central charge ceff(r).

In an `-particle system, the free energy in (A.14) is given by

fa = −
∑̀
i=1

∫
dθ

2π
mi cosh θ log(1 + e−εi(θ)). (A.18)

Here, the pseudo-energies εi(θ) satisfy thermodynamic bethe ansatz (TBA) equations:

−Wi(θ)− ami sinh θ + εi(θ) +
∑̀
j=1

∫
dθ′

2π
ϕij(θ − θ′) log(1 + e−εj(θ

′)) = 0 (A.19)

where

Wi(θ) = βLmi cosh θΘ(θ) + βRmi cosh θΘ(−θ). (A.20)

We can rewrite (A.18) as a sum of two integrals:

fa = −
∑̀
i=1

∫ 0

−∞

dθ

2π

rir
βr

cosh θLi(θ)−
∑̀
i=1

∫ ∞
0

dθ

2π

ril
βl

cosh θLi(θ) := far + fal (A.21)

where rir = miβr and ril = miβl. We can obtain the steady-state current in CFT by taking

the limits rir → 0 and ril → 0. In this high temperature limit, εi(θ) and consequently

Li(θ) are constants with limiting values εi(0), Li(0) in the central region − log(2/rir) �
θ � log(2/ril) and it goes to infinity at the two edges. Therefore, Li(θ) exhibits a typical

plateau behaviour in the central region and has a double exponential falloff outside this

region (we have seen many graphical examples of this in previous sections). As ril and

rir go to zero, the plateaux become wider and the form of their two edges tends to some

universal pattern. The limiting form of the left edge is determined by the “kink” solution

Lik−(θ) which satisfies the equation

−
(

1− a

βr

)
e−θ + εik−(θ) +

n∑
j=1

∫
dθ′

2π
ϕij(θ − θ′)Ljk−(θ′) = 0 (A.22)
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where εik−(θ) ≡ εi[θ − log(2/rir)] and Lik−(θ) ≡ Li[θ − log(2/rir)]. Likewise, the limiting

form of the right edge is determined by the function Lak+(θ) which satisfies the equation

−
(

1 +
a

βl

)
eθ + εik+(θ) +

n∑
j=1

∫
dθ′

2π
ϕij(θ − θ′)Ljk+(θ′) = 0 (A.23)

where εik+(θ) ≡ εi[θ+ log(2/ril)] and Lik+(θ) ≡ Li[θ+ log(2/ril)]. These equations follow

from (A.19) by performing the indicated rapidity shifts. Thus, the high temperature limit

of the free energies far,l can be written in terms of these kink solutions:

far = − 1

βr

∑̀
i=1

∫
dθ

2π
e−θLik−(θ), fal = − 1

βl

∑̀
i=1

∫
dθ

2π
eθLik+(θ) (A.24)

Differentiating (A.22) and (A.23) with respect to θ we have

(
1− a

βr

)
e−θ +

∂εik−(θ)

∂θ
+
∑̀
j=1

∫
dLjk−(θ′)

2π
ϕij(θ − θ′) = 0 (A.25)

and

−
(

1 +
a

βl

)
eθ +

∂εik+(θ)

∂θ
+
∑̀
j=1

∫
dLjk+(θ′)

2π
ϕij(θ − θ′) = 0 (A.26)

Solving these equations for e±θ and substituting e−θ in far and eθ in fal we obtain

far =
1

βr − a
∑̀
i=1

∫
dθ

2π

∂εik−(θ)

∂θ
+
∑̀
j=1

∫
dLjk−(θ′)

2π
ϕij(θ − θ′)

Lik−(θ) (A.27)

and

fal = − 1

βl + a

∑̀
i=1

∫
dθ

2π

∂εik+(θ)

∂θ
+
∑̀
j=1

∫
dLjk+(θ′)

2π
ϕij(θ − θ′)

Lik+(θ) (A.28)

Let us consider far in more detail. When rir, ril → 0 we can rewrite it as

far =
1

βr − a
1

2π

∑̀
i=1

∫ ∞
εi(0)

dε log(1 + e−ε)−
∑̀
i,j=1

∫ ∞
εi(0)

dεik−
1 + eεik−

ϕij ∗ Ljk−(θ)

 (A.29)

where we assumed there is parity invariance ϕij(θ) = ϕji(θ) and we used dL = −dε/(1+eε).

By substituting the convolution ϕij ∗ Ljk−(θ) by its expression from equation (A.22), we
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have∫ ∞
εi(0)

dεik−
1 + e−εik−

ϕij ∗ Ljk−(θ) = −
∫ ∞
εi(0)

εik−dεik−
1 + eεik−

+
βr − a
βr

∫ ∞
Li(0)

e−θdLik−

= −
∫ ∞
εi(0)

εik−dεik−
1 + eεik−

+
βr − a
βr

∫ ∞
− log( rir2 )

e−θLik−dθ

(A.30)

where in the last line we used integration by parts. Thanks to the observation that the

last term is (up to constants and summing up in i) nothing but the original function far ,

substituting (A.30) into (A.29) leads to

far =
1

4π

(
1

βr − a

)∑̀
i=1

∫ ∞
εi(0)

dε

(
log(1 + e−ε) +

ε

1 + eε

)
. (A.31)

Following the same recipe, we can deduce fal as

fal = − 1

4π

(
1

βl + a

)∑̀
i=1

∫ ∞
εi(0)

dε

(
log(1 + e−ε) +

ε

1 + eε

)
. (A.32)

Putting together (A.31) and (A.32), we have:

fa =
1

4π

(
1

βr − a
− 1

βl + a

)∑̀
i=1

∫ ∞
εi(0)

dε

(
log(1 + e−ε) +

ε

1 + eε

)
. (A.33)

Differentiating (A.33) with respect to a at a = 0, we finally obtain

J(βl, βr) =
1

4π

[
1

β2
l

− 1

β2
r

]∑̀
i

∫ ∞
εi(0)

dε

(
log(1 + e−ε) +

ε

1 + eε

)
(A.34)

which is a representation in terms of the Roger’s dilogarithm function. To determine the

values εi(0), we should make use of the property that the TBA kernel ψij(θ) is usually

picked about θ = 0, and the property that the function Lj(θ) in the limits rir → 0 and

ril → 0 is constant around θ = 0. This implies that the convolution ϕij ∗ Lj(θ) may be

approximated by

ϕij ∗ Lj(θ) ≈ Nij log(1 + e−εi), (A.35)

with Nij = − 1
2π

∫
ϕij(θ)dθ. The original (both at and out of equilibrium) TBA equations

then become the constant TBA equations:

εi(0) =

n∑
j=1

Nij log(1 + e−εj(0)) (A.36)
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which were introduced in [185]. As we can see, the result (A.34) exactly reproduces the

CFT prediction given in [37]

JCFT =
cπ

12
(T 2
l − T 2

r ) (A.37)

where c is the central charge, with the identification that

c =
3

π2

∑̀
i

∫ ∞
εi(0)

dε

(
log(1 + e−ε) +

ε

1 + eε

)
. (A.38)

The connection of the Roger’s dilogarithm function with the central charge has been

discussed in detail in the classic literature on the subject [157, 186].

We now consider another interesting physical situation in which one temperature is kept

constant and low while the other temperature becomes very large. Thus we have rir =

const. and ril → 0. In order to study the current in this case we start again with the

separation of the ground state energy into the two contributions (A.21). In this situation

the functions εi(θ) are not continuous any more at θ = 0 due to the presence of W (θ) in

the TBA equations and they have two different limiting values at θ = 0 with the relation:

εi−(0) = εi+(0) + rir, (A.39)

where we use the notation εi+(θ) and εi−(θ) to represent ε(θ) in the regions θ > 0 and

θ < 0, respectively. We also have to note that the left-right asymmetry of the L-function

has been broken. The right part of L-function remains the same: it has a plateau at

log(1 + e−εi+(0)) in the region 0 ≤ θ � log(2/ril). But the left part has only a quick

exponential falloff without exhibiting any plateau behaviour, since εi−(θ) ≈ rir cosh θ for

θ < 0 and rir ≥ 1. As a result, far is simply defined by the first term in (A.21) and can not

be further simplified, while fal can be computed, following same lines, as the second term

in (A.33). Finally, differentiating with respect to a and setting a = 0 yield the result:

J(βl, βr) =
n∑
i=1

[∫ 0

−∞

dθ

2π
mi cosh θ

xi−(θ)

1 + eεi−(θ)
+

1

4πβ2
l

∫ ∞
εi+(0)

dε

(
log(1 + e−ε) +

ε

1 + eε

)]

=
n∑
i=1

∫ 0

−∞

dθ

2π
mi cosh θ

xi−(θ)

1 + eεi−(θ)
+

πc

12β2
l

. (A.40)

where xi−(θ) can be obtained from (A.19) as xi−(θ) = dεi−(θ)
da

∣∣∣
a=0

and where in the last

line we used the relation (A.38).
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A.5 Low-temperature expansion of the current

Although the TBA equations generally need to be solved numerically, at low temperatures

a perturbative expansion may be used leading to analytic results. In particular, these

analytic results will contribute to the rigorous proof of the non-additivity of the current

as discussed in [69]. Following the finite-volume regularization methods of Pozsgay and

Takacs [16], we will deduce the low-temperature expansion of the energy current. This

deduction can be found in [69].

We again assume a single particle spectrum for simplicity. For convention, the finite-

volume multi-particle states can be denoted as

|θ1, ..., θn〉L

The corresponding energy levels are determined by the Bethe ansatz equations

Qk(θ1, ..., θn) = mL sinh θk +
∑
l 6=k

δ(θk − θl) = 2πIk , k = 1, ..., n (A.41)

where Ik are momentum quantum numbers and δ(θ) = −i logS(θ) is the two-particle

scattering phase-shift. The density of multi-particle states can be obtained by

ρ(θ1, ..., θn) = detJ (n) , J (n)
kl =

∂Qk(θ1, ..., θn)

∂θl
, k, l = 1, ..., n (A.42)

Let us expand the traces in (A.12):

TrL(ρLstatP ) =
∑
θ(1)

e−W (θ(1))m sinh θ(1) +
1

2

′∑
θ
(2)
1 θ

(2)
2

e−
∑2
i=1 W (θ

(2)
i )

2∑
i=1

m sinh θ
(2)
i

+
1

6

′∑
θ
(3)
1 θ

(3)
2 θ

(3)
3

e−
∑3
i=1W (θ

(3)
i )

3∑
i=1

m sinh θ
(3)
i +O(e−4W ) (A.43)

and

TrL(ρLstat) = 1 +
∑
θ(1)

e−W (θ(1)) +
1

2

′∑
θ
(2)
1 θ

(2)
2

e−
∑2
i=1W (θ

(2)
i )

+
1

6

′∑
θ
(3)
1 θ

(3)
2 θ

(3)
3

e−
∑3
i=1 W (θ

(3)
i ) +O(e−4W ) (A.44)
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At low temperature, we have the expansion

1

TrL(ρLstat)
= 1−

∑
θ(1)

e−W (θ(1)) +

∑
θ(1)

e−W (θ(1))

2

− 1

2

′∑
θ
(2)
1 θ

(2)
2

e−
∑2
i=1 W (θ

(2)
i )

−

∑
θ(1)

e−W (θ(1))

3

+

∑
θ(1)

e−W (θ(1))

 ′∑
θ
(2)
1 θ

(2)
2

e−
∑2
i=1 W (θ

(2)
i )

−1

6

′∑
θ
(3)
1 θ

(3)
2 θ

(3)
3

e−
∑3
i=1 W (θ

(3)
i ) +O(e−4W ). (A.45)

The prefactors 1/n! for every multi-particle sum account for overcounted states with dif-

ferent ordering of the same set of rapidities. The prime in the multi-particle sum indicates

all quantum numbers (rapidities) for the state are different. The upper indices of the

rapidities and W represent the number of particles in the state.

With (A.43) and (A.45), we can now obtain the current up to exponential corrections at

finite volume L. In the limit L→∞, the low temperature expansion of the current should

be recovered. Here, we present the calculation of the current up to the first three orders.

• First order

At finite volume L, we have the first-order contribution to the current:

JL1 =
1

L

∑
θ(1)

e−W (θ(1))m sinh θ(1). (A.46)

We then take the limit L → ∞ by replacing the sum over rapidities by an integral

over the states in the rapidity space, namely
∑

θ(1) →
∫
dθ
2πρ1(θ). The density of

one-particle states ρ1(θ) is obtained by

ρ1(θ) = L
d p(θ)

dθ
=
dm sinh θ

dθ
= mL cosh θ. (A.47)

Therefore, the first order term of the current is

J1 = lim
L→∞

JL1 = m2

∫
dθ

2π
e−W (θ) sinh θ cosh θ. (A.48)

• Second order
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A similar computation can be performed for second order terms. We find the second-

order term of the current at finite volume L:

JL2 =
1

L

−∑
θ(1)

e−W (θ(1))m sinh θ(1)
∑
θ(1)

e−W (θ(1))

+
1

2

′∑
θ
(2)
1 θ

(2)
2

e−
∑2
i=1W (θ

(2)
i )

2∑
i=1

m sinh θ
(2)
i


=

1

L

[
−
∑
θ(1)

e−W (θ(1))m sinh θ(1)
∑
θ(1)

e−W (θ(1))

+
1

2

∑
θ
(2)
1 θ

(2)
2

e−
∑2
i=1 W (θ

(2)
i )

2∑
i=1

m sinh θ
(2)
i

−1

2

∑
θ
(2)
1 =θ

(2)
2

e−2W (θ
(2)
1 )2m sinh θ

(2)
1

]

where the last term corresponds to a two-particle state with equal quantum numbers

(θ
(2)
1 = θ

(2)
2 ) of the two particles. In this case, the two-particle Bethe ansatz equations

degenerate to a one-particle equation, which means that density of this two-particle

state is again ρ1. In the large L limit, we may replace the sums with integrals as

∑
θ(1)

→
∫

dθ

2π
ρ1(θ),

∑
θ
(2)
1 =θ

(2)
2

→
∫

dθ

2π
ρ1(θ),

∑
θ
(2)
1 θ

(2)
2

→
∫
dθ1

2π

dθ2

2π
ρ2(θ1, θ2).

The Bethe ansatz equations for a two-particle state are

mL sinh θ1 + δ(θ1 − θ2) = Q1(θ1θ2)

mL sinh θ2 + δ(θ2 − θ1) = Q2(θ1θ2), (A.49)

and hence the relevant density of two-particle states is given by

ρ2(θ1, θ2) = det

(
mL cosh θ1 + ϕ(θ1 − θ2) −ϕ(θ1 − θ2)

−ϕ(θ1 − θ2) mL sinh θ2 + ϕ(θ1 − θ2)

)
.

Taking into account the fact that S(θ)S(−θ) = 1, we find that ϕ(θ) = ϕ(−θ).
Using this property, relabeling integration variables and exchanging the order of
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integration, we obtain

J2 = lim
L→∞

JL2

=
1

L

[
−
∫

(
1

2π
)2dθ1dθ2e

−W (θ1)−W (θ2)m sinh θ1(mL)2 cosh θ1 cosh θ2

+
1

2

∫
(

1

2π
)2dθ1dθ2e

−W (θ1)−W (θ2)

(
m sinh θ1 +m sinh θ2

)
×(

m2L2 cosh θ1 cosh θ2 +mL cosh θ1ϕ(θ1 − θ2) +mL cosh θ2ϕ(θ1 − θ2)

)
−
∫
dθe−2W (θ)m sinh θmL cosh θ

]

= m2

∫
dθ1dθ2

(2π)2
cosh θ1(sinh θ1 + sinh θ2)ϕ(θ1 − θ2)e−W (θ1)−W (θ2)

−m2

∫
dθ

2π
cosh θ sinh θe−2W (θ). (A.50)

• Third order

Finally, we look at third-order contributions

JL3 =
1

L

[∑
θ(1)

e−W (θ(1))m sinh θ(1)

(∑
θ(1)

e−W (θ(1))

)2

−1

2

∑
θ(1)

m sinh θ(1)

′∑
θ
(2)
1 θ

(2)
2

e−
∑2
i=1 W (θ

(2)
i )

−1

2

′∑
θ
(2)
1 θ

(2)
2

e−
∑2
i=1W (θ

(2)
i )

2∑
i=1

m sinh θ
(2)
i

∑
θ(1)

e−W (θ(1))

+
1

6

′∑
θ
(3)
1 θ

(3)
2 θ

(3)
3

e−
∑3
i=1W (θ

(3)
i )

3∑
i=1

m sinh θ
(3)
i

]
. (A.51)

By using the relations

′∑
θ
(2)
1 θ

(2)
2

=
∑

θ
(2)
1 θ

(2)
2

−
∑

θ
(2)
1 =θ

(2)
2

′∑
θ
(3)
1 θ

(3)
2 θ

(3)
3

=
∑

θ
(3)
1 θ

(3)
2 θ

(3)
3

−3
∑

θ
(3)
1 ,θ

(3)
2 =θ

(3)
3

+2
∑

θ
(3)
1 =θ

(3)
2 =θ

(3)
3
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we can rewrite

JL3 =
1

L

[∑
θ(1)

e−W (θ(1))m sinh θ(1)

(∑
θ(1)

e−W (θ(1))

)2

−1

2
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θ(1)

m sinh θ(1)
∑

θ
(2)
1 θ

(2)
2

e−
∑2
i=1 W (θ

(2)
i )

+
1

2

∑
θ(1)

m sinh θ(1)
∑

θ
(2)
1 =θ

(2)
2

e−2W (θ
(2)
1 )

−1

2

∑
θ
(2)
1 θ

(2)
2

e−
∑2
i=1 W (θ

(2)
i )

2∑
i=1

m sinh θ
(2)
i

∑
θ(1)

e−W (θ(1))

+
1

2

∑
θ
(2)
1 =θ

(2)
2

e−2W (θ
(2)
1 )2m sinh θ

(2)
1
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e−W (θ(1))

+
1

6
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(3)
1 θ

(3)
2 θ

(3)
3
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i=1 W (θ

(3)
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i

−1

2
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1 ,θ
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(3)
3

e−W (θ
(3)
1 )−2W (θ

(3)
2 )(m sinh θ

(3)
1 + 2m sinh θ

(3)
2 )
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3
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θ
(3)
1 =θ

(3)
2 =θ

(3)
3

e−3W (θ
(3)
1 )3m sinh θ

(3)
1

]
. (A.52)

In the large L limit, we replace the sums with integrals as in previous cases with the

addition of

∑
θ
(2)
1 θ

(2)
2 θ

(3)
1

→
∫
dθ1

2π

dθ2

2π

dθ3

2π
ρ3(θ1, θ2, θ3),

∑
θ
(2)
1 ,θ

(2)
2 =θ

(3)
1

→
∫
dθ1

2π

dθ2

2π
ρ3(θ1, θ2 = θ3),

∑
θ
(2)
1 =θ

(2)
2 =θ

(3)
1

→
∫

dθ

2π
ρ1(θ). (A.53)

The density ρ3(θ1, θ2 = θ3) can be obtained from the Bethe ansatz equations for a

three-particle state with two equal quantum numbers

mL sinh θ1 + 2δ(θ1 − θ2) = Q1(θ1, θ2)

mL sinh θ2 + δ(θ2 − θ1) = Q2(θ1, θ2). (A.54)
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The relevant density is given by

ρ3(θ1, θ2 = θ3) = det

(
mL cosh θ1 + 2ϕ(θ1 − θ2) −2ϕ(θ1 − θ2)

−ϕ(θ1 − θ2) mL sinh θ2 + ϕ(θ1 − θ2)

)

Similarly, we can obtain ρ3(θ1, θ2, θ3) from the Bethe ansatz equations for a three-

particle state with three distinct quantum numbers

mL sinh θ1 + δ(θ1 − θ2) + δ(θ1 − θ3) = Q1(θ1, θ2, θ3)

mL sinh θ2 + δ(θ2 − θ1) + δ(θ2 − θ3) = Q2(θ1, θ2, θ3)

mL sinh θ3 + δ(θ3 − θ1) + δ(θ3 − θ2) = Q3(θ1, θ2, θ3), (A.55)

as

det


E1L+ ϕ(θ12) + ϕ(θ13) −ϕ(θ12) −ϕ(θ13)

−ϕ(θ12) E2L+ ϕ(θ12) + ϕ(θ23) −ϕ(θ23)

−ϕ(θ13) −ϕ(θ23) E3L+ ϕ(θ13) + ϕ(θ23)

 ,

(A.56)

where for convenience we used the notation Ei ≡ m cosh θi and ϕ(θij) ≡ ϕ(θi − θj).
Therefore, by performing a similar but more tedious computation, we arrive at the

third order term of the current

J3 = −1

2
m2

∫
dθ1dθ2

(2π)2
cosh θ1(sinh θ1 + 2 sinh θ2)ϕ(θ1 − θ2)e−W (θ1)−2W (θ2)

+m2

∫
dθ1dθ2dθ3

(2π)3
cosh θ1

3∑
i=1

(sinh θi)ϕ(θ1 − θ2)ϕ(θ2 − θ3)e−
∑3
i=1W (θi)

+
1

2
m2

∫
dθ1dθ2dθ3

(2π)3
cosh θ1

3∑
i=1

(sinh θi)ϕ(θ1 − θ2)ϕ(θ1 − θ3)e−
∑3
i=1 W (θi)

−m2

∫
dθ1dθ2

(2π)2
cosh θ1(2 sinh θ1 + sinh θ2)ϕ(θ1 − θ2)e−2W (θ1)−W (θ2)

+m2

∫
dθ

2π
cosh θ sinh θe−3W (θ) (A.57)
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