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Abstract We seek an aetiopathogenic model for the spectrum
of Parkinson’s disease (PD), functional bowel disease, depres-
sion and cognitive impairment. The adopted concept is that
systemic immuno-inflammatory processes mediate neuro-in-
flammation. The model would be based on phenotype,
exposome (including gastrointestinal microbiome), milieu
(immuno-inflammatory and metabolome), human genetics
and their interactions. It would enable a patient’s position, to
be understood in terms of drivers, perpetuators and mediators,
and a future position, with and without intervention, predicted.
Even the cardinal facets of PD may have different drivers:
halting one may allow escape down subordinate pathways.
Peptic ulceration is prodromal to PD. In our randomised
placebo-controlled trial, hypokinesia improved over the year
following biopsy-proven Helicobacter pylori eradication and
rigidity worsened. This was independent of any (stable, long
t½) antiparkinsonian medication. There are pointers to an au-
toimmune process: for example, surveillance-confirmed
hypokinesia effect was indication specific. During surveil-
lance, successive antimicrobial courses, other than for
Helicobacter, were associated with cumulative increase in

rigidity. Exhibiting laxatives appeared to stem the overall tem-
poral increase, despite antiparkinsonian medication, in rigidi-
ty. Thus, intestinal dysbiosis may be a major source of by-
stander neuronal damage. There are biological gradients of
objective measures of PD facets on circulating inflammatory
markers and leucocyte subset counts. Moreover, lactulose hy-
drogen breath test positivity for small-intestinal bacterial over-
growth (present in two thirds of PD patients) is associatedwith
the same subsets: higher natural killer and total CD4+ counts
and lower neutrophils. With greater aetiopathogenic under-
standing, relatively low cost and on-the-shelf medication
could have a major impact. A new generation of animal
models, based on the gut microbiome, is envisaged.

Keywords Aetiology . Pathogenesis . Parkinson’s and
overlap diseases .Helicobacter . Intestinal dysbiosis .

Autoimmunity . Bystander damage

Introduction

Since the shaking palsy, a rigid brady/hypokinetic syn-
drome with a characteristic tremor and stooped posture
was described (Parkinson 1817); there have been few ther-
apeutic milestones. Indeed, the only major advance, dopa-
mine substitution therapy, dates back to description of do-
pamine deficiency in the basal ganglia (Ehringer and
Hornykiewicz 1960).

Simultaneous co-morbidities, of which James Parkinson
noted constipation, may have mediators, drivers and perpetu-
ators in common. These include depression and mild cogni-
tive impairment, with or without progression to dementia, as
well as functional bowel disease. Unravelling the
aetiopathogenesis, in a common disease with a long
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prodrome, will be jeopardised by not taking into account that
individuals can be quantifiably down-the-pathway (Kirollos
et al. 1993). A co-morbidity where the core condition is not
overt may define an extreme of the spectrum and explain
containment. Targeting aetiopathogenesis, rather than just
phenotypic descriptors of disease, has the potential to open
doors on cost-effective screening, prophylaxis, amelioration
of the underlying processes and cure.

An aetiopathogenic model for this disease spectrum and
its evolution with time and intervention is, thus, needed.
Evolution refers both to change in individual facets of phe-
notype and shift within the spectrum. The model would
enable a patient’s position in the spectrum to be understood
in terms of drivers, perpetuators and mediators, and a future
position, with and without intervention, predicted.
Exposome, milieu (immuno-inflammatory and metabo-
lome), human genetics and their interactions need to be
considered as building blocks. Only ‘biomarkers’ which
reflect driving or perpetuating forces can be useful in the
modelling. Understanding the development of disease-
specific pathophysiology requires longitudinal observa-
tional study to unmask associations, interventions to home
in on cause/effect relationships and a new generation of
animal models. A quantifiable aetiopathogenic model can
be cross-referenced against quality of life and health eco-
nomic outcomes.

The challenge requires (i) considering the whole disease
spectrum; (ii) including pre-presentation states and attenu-
ated or partial manifestations, not just ‘the tip of the ice-
berg’; (iii) assembling raw clinical clues without selectiv-
ity; (iv) using valid, sensitive, specific and reliable mea-
sures (objective where possible) of disease facets, which
can track evolution; (v) stratifying paths of evolution into
those intrinsic to initiation and the subsidiary; and (vi)
animal models of the aetiopathogenesis that is not relying
on surgical, chemical or genetic lesioning and so being
downstream of, or out-with, environmental driving
processes.

Underpinning concepts and main ideas

Like other chronic diseases, Parkinson’s disease (PD) is
multi-step and multi-factorial. Even more steps and factors,
and biological gradients will be needed to explain co-
morbidities and the spectrum of disease. Even the cardinal
facets of PD may have different, not necessarily coincident,
drivers: halting one may allow escape down subordinate
pathways. However, all this does not preclude a systematic
explanation.

The core concept is that neuro-inflammation in PD and
overlap diseases is mediated by systemic immuno-
inflammatory processes (Dobbs et al. 2008, 2012). It is not

jus t reac t ion to aber rant pro te in depos i t ion or
degenerating neurons. There is indicative evidence that
dysbiosis in the alimentary tract is the major driver of
these processes (Augustin et al. 2014; Dobbs et al.
2008, 2010, 2012, 2013). Position of a patient within
the disease spectrum is further determined by interaction
with host genetics (risk and inflammatory), inflammatory
and metabolic milieu and the exposome (including envi-
ronmental factors, such as tobacco smoking). Intervention
against drivers, perpetuators or mediators would allow
disease modification.

Some indicative models

Influence of microbiome

Germ-free mice move more and take more risks: they have
increased striatal synaptogenesis and dopamine/serotonin
turnover (Bercik et al. 2011). In specific pathogen-free mice,
non-absorbable antimicrobials increase exploratory behaviour
and hippocampal brain-derived neurotrophic factor (BDNF).
Gavage of caecal contents from a more outgoing mouse strain
into a more timid increases both exploratory behaviour and
BDNF, and vice versa. Specific probiotics cause behavioural
change.

Important associations between stool bacteria microbi-
ota and human health have been identified (Arumugam
et al. 2011; Blottiere et al. 2013; Collins et al. 2012;
Cotillard et al. 2013; Doré et al. 2013; Le Chatelier
et al. 2013; Manichanh et al. 2006; Qin et al. 2014).
There is evidence that stool microbial metagenomics can
discriminate better for chronic disease than human geno-
mics (Qin et al. 2014; Speliotes et al. 2010): interventions
here should clarify cause/effect relationships. Psychiatric
illness in irritable bowel syndrome (and inflammatory
bowel disease) and autism spectrum disorder have been
ascribed to dysbiosis (Doré et al. 2013). Autism recalls
the restricted behaviour of PD. An inflammation-
associated form of depression is described (Doré et al.
2013). Exhibition of the non-absorbable broad-spectrum
antimicrobial rifaximin was accompanied by amelioration
of parkinsonism associated with hepatic encephalopathy
in three patients with cirrhosis and portosystemic
shunting, in whom blood ammonia and electroencephalo-
gram were unchanged (Kok et al. 2013). Imaging features
in the globus pallidus, classical of parkinsonism in cirrho-
sis, were reduced. The only study of microbiota in PD is a
cross-sectional comparison of 72 probands (almost all on
antiparkinsonian medication) with 72 controls (with mark-
edly increased frequency of cerebro- and cardio-vascular
co-morbidities), without reference to dietary differences
(Scheperjans et al. 2014).
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Influences on phenotype

Constipation and small-intestinal bacterial overgrowth

In PD, the frequency of defaecation diverges from that of
controls three decades before the median age of neurological
diagnosis (Charlett et al. 1997). Moreover, infrequent bowel
movements are associated with a subsequent diagnosis
(Abbott et al. 2001). Morphological and neurochemical
changes of PD are found throughout the enteric nervous sys-
tem and in dorsal vagal nuclei which serve the gastrointestinal
tract (for review, see Dobbs et al. 2008).

Sixty-seven per cent of PD probands are lactulose hydro-
gen breath test (LHBT) positive for small-intestinal bacterial
overgrowth (SIBO) on presentation (Dobbs et al. 2012). A
likely cause is caeco-ileal bacterial reflux from an overloaded
right colon. SIBO influences the immuno-inflammatory mi-
lieu, and biological gradients connect milieu to phenotype.
Accompanying dysbiosis in the fermentation ‘bioreactor’ of
the right colon may reduce production of anti-inflammatory
substances such as short-chain fatty acids (Neish 2009).

Clues regarding rigidity

Surveillance of arm rigidity showed a significant temporal
increase (7 % per year) in flexor rigidity, with consequent
increase in the ratio, flexor to extensor rigidity, denoting sim-
ian posture (Augustin et al. 2014). Exhibiting laxatives, in
general, was associated with stemming the increase, after ad-
justment for the various classes of long t½ antiparkinsonian
medication (dopaminergic agonists, MAO-B inhibitors,
amantadine, anticholinergics) and the limited use of levodopa
in low dosage. Exhibiting the guanylate cyclase-C receptor
agonist (linaclotide) was associated with reversing the tempo-
ral trend.

Successive courses of antimicrobials in PD are associated
with cumulative increase in flexor rigidity (Fig. 1), over and

above the effect of time and irrespective of indication (Dobbs
et al. 2013).

Clues regarding brady/hypokinesia

That peptic ulceration is prodromal (Strang 1965) paved the
way to exploring Helicobacter pylori in PD. In a randomised
controlled trial (RCT), biopsy-proven H. pylori eradication
reduced hypokinesia of gait in PD (Dobbs et al. 2010).
Longitudinal observation showed indication specificity, in
that antimicrobials for other indications did not improve
hypokinesia (Dobbs et al. 2013). In the trial, whilst
hypokinesia improved, rigidity worsened over the year post-
eradication, both plateauing over the next (Fig. 2). There was
overall clinical benefit. Improved hypokinesia was indepen-
dent of any (stable, long t½) antiparkinsonian medication.
(Receipt of levodopa was an exclusion.) Increased rigidity
may flag acquisition of SIBO, since H. pylori and LHBT
positivity are inversely related in PD (Dobbs et al. 2012). At
present, the level of evidence is 1b since this is an individual
RCT (OCEBM 2011).

In no disease, where H. pylori is causal, is it present in all
cases. However, current or pastHelicobacter infection may be
a necessary though not sufficient player in developing the full
syndrome. There is a lack of birth cohort effect forH. pylori in
PD, as in gastric cancer and peptic ulcer where causal links
with H. pylori are generally accepted (Dobbs et al. 2000).
Danish population registers show increased prescription of
anti-Helicobacter drugs in the 5 years prior to diagnosis
(Nielsen et al. 2012). Dopaminergic agonists can prevent du-
odenal ulcer relapse in man (Sikiric et al. 1991), but whether
by suppressing H. pylori is unknown.

Fig. 1 Cumulative worsening of objectively measured rigidity with
successive antimicrobial interventions in PD
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Fig. 2 Schematic representation of the effect of H. pylori eradication on
stride length and flexor rigidity in PD. Estimated mean time trends
following successful blinded-active (black), open-active (grey) and
placebo (dashed). Rejection of null hypothesis was based on double-
blind protocol analysis of time trends in the primary outcome, stride
length, reinforced by intention-to-treat analysis on its final measurement
in blinded phase (p=0.005), despite inclusion of the two proven
eradication failures following blinded-active
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Classical spousal approach to environmental causality

Spouses of PD probands are a short but highly significant
‘distance-down-the-pathway’ with respect to objective mea-
sures of PD facets (Kirollos et al. 1993, 1996; O’Neill et al.
1994; Weller et al. 1992). Probands and spouses have relative
lymphopenia (with particular effect on B cells) (Charlett et al.
2009). There is a proportional increase in natural killer cell
(NK) count in probands, in CD4+ in spouses. Half of the
probands and a third of spouses have chronic functional bowel
abnormality (Ellis et al. 2007). Like probands, two thirds of
spouses are LHBT positive (Dobbs et al. 2012). The whole is
difficult to attribute to selective mating or to learned or reac-
tive behaviour. Neither is it explained by H. pylori: spouses
had a lower frequency of Helicobacter anti-urease IgG
enzyme-linked immunosorbent assay (ELISA) seropositivity
than either probands or controls (Charlett et al. 2009), as
though an acquired dysbiosis had suppressed it.

Influence of immuno-inflammatory milieu

Biological gradients on circulating leukocyte subtypes

There are gradients of objective measures of facets of PD on
blood leucocyte subtype counts (Dobbs et al. 2012). Brady/
hypokinesia and flexor rigidity are worse the higher the NK
count. Increased brady/hypokinesia was noted with
Helicobacter positivity, over and above that explained by
NK count and of a magnitude equivalent to that of a levodopa
challenge. Association of rigidity with a higher NK count is
modulated by the total CD4+ count. The CD4+ subset in-
cludes regulatory T cells (T-reg) which inhibit NK effector
mechanisms. Tremor is worse with lower neutrophils: this
may reflect neutrophil sequestration in the gut.

LHBT positivity is associated with the same blood leuco-
cyte subtypes: (higher) NK and CD4+ counts and (lower)
neutrophils. Moreover, clouds of lysosomes seen in duodenal
enterocytes in relation to luminal bacteria underline that SIBO
is not an innocent bystander in PD (Fig. 3a) (Dobbs et al.
2012). The simplest biologically plausible explanation is that
circulating leucocytes represent mediators of neuronal dam-
age, and dysbiosis, flagged here by SIBO, represents a driver.

Biological gradients on circulating immune-inflammatory
markers

There are gradients of objective measures of PD facets on
serum cortisol and tumour necrosis factor alpha (TNF-α),
and of global motor scores on peripheral blood mononuclear
cell production of cytokines and nuclear factor-kappa B
(NFκB) expression (Charlett et al. 1998; Dobbs et al. 1999;
Reale et al. 2009). Cortisol is elevated by, on average, 17 % in
PD. Serum interleukin-6 (IL-6) increases with age: it is

elevated in PD by an amount equivalent to 10 years of ageing.
Moreover, a higher concentration of IL-6, in blood collected
4 years previously, is predictive of incident PD (Chen et al.
2008).

Immuno-inflammatory activation can increase homocyste-
ine production (Lazzerini et al. 2007). Hyperhomocysteinemia
in PD (43 %) is explained, in small part, by the serum concen-
tration of vitamin B12 (cobalamin), with no complementary
effect of folate (Charlett et al. 2009). (Methyltetrahydrofolate
acts as a methyl donor, and cobalamin is a co-factor, in
remethylation of homocysteine to methionine by methionine
synthetase.) Hyperhomocysteinemia is not explained by
Helicobacter status or gastric atrophy. Impaired terminal ileal
B12 absorption, associated with dysbiosis, might contribute.
Although there was no evidence of frank B12 deficiency in
PD, 16% of probands had concentrations within the ‘equivocal
range’ (Charlett et al. 2009). (Serum folate distribution was
platykurtic.) Immuno-inflammatory activationmay increase de-
mand for B12 to such an extent that a concentration in the
‘equivocal’ range is pathological. Since SIBO both provokes
an inflammatory response and increases bacterial utilisation of
B12, it is likely to contribute to hyperhomocysteinemia in PD.

Hyperhomocysteinemia is associated with an increased
risk of development of dementia and Alzheimer’s disease
(AD) (Seshadri et al. 2002). Low and equivocal serum B12

concentrations, and the metabolically active fraction of serum
cobalamin, have been implicated (Clarke et al. 1998; Refsum
and Smith 2003; Seshadri et al. 2002), but the contribution of
gastric atrophy and impaired ileal absorption is unknown. The
low serum folate of AD (Clarke et al. 1998) appears to be an
argument against SIBO (associated with increased synthesis
of folate) being the main player, but demand for folate to
detoxify homocysteine may be increased.

Using the western blot profile of IgG antibodies against
electrophoretically separated H. pylori antigens, the predicted
probability of being labelled as having PD was greatest with
cytotoxin-associated gene product (CagA) positivity and
vacuolating toxin negativity, and urease B negativity (Weller
et al. 2005). With this pattern, the odds for having PD were
increased fivefold at age 80 years. The predictive ability was
not confined to those with current infection.

Metabolome

From an aetiopathogenic standpoint, a key question, then, is
whether the metabolome regulates systemic inflammation. In
mice, short-chain fatty acids (SCFA), such as butyrate, pro-
duced by colonic bacterial fermentation, promote colonic T-
reg cells and thereby suppress pro-inflammatory T cells
(Smith et al. 2013). This suggests a mechanism for CD4+
modulation (T-reg component) of rigidity and fits with PD
probands’ spouses having a proportional (protective) increase
in total CD4+ count. However, whilst oral administration of
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SCFA to germ-free mice to address their deficit increased
colonic T-regs, it had no effect on mesenteric lymph node,
splenic or thymic T-regs. Human studies have linked fermen-
tation products to behaviour (Collins et al. 2012). For exam-
ple, high faecal propionic acid concentrations correlate with
anxiety in irritable bowel syndrome.

Metabolomic interest in PD and AD has concentrated on
markers of damage (e.g. hypoxia, oxidative stress and mem-
brane lipid remodelling) in blood (Bogdanov et al. 2008;
Orešič et al. 2011) and breath (Nakhleh et al. 2015).

Bystander damage and cross-reactivity

The biological gradients described suggest bystander damage
to the central nervous system in PD, driven by dysbiosis.
Dysbiosis could account for the continuing substantia nigra
microglial activation of PD (Pfeiffer 2009). This does not
exclude added insults by intercurrent infection/its treatment.

In PD, nigral microglia express major histocompatibility
antigens, including HLA-DR (McGeer et al. 1998). They se-
crete TNF-α, whilst dopaminergic neurons express its recep-
tors and upregulate NFκB (Boka et al. 1994; Hunot et al.
1997). Nigral and cerebrospinal fluid (CSF) concentrations
of other cytokines associated with innate immune response,
IL-1β and IL-6, are elevated (Mogi et al. 1994, 1996).
Although pro-inflammatory polymorphisms have not been
identified as risks for PD in genome-wide studies, they might
act as a conditional dependency of an effect modifier.

Adaptive immunity and autoimmunity may also have a
role, separated in time from bystander damage or concurrent
(Dobbs et al. 2008). Nigral dopaminergic neurons bind IgG,
adjacent microglia express HLA-DR and high-affinity Fcγ
antibody receptors, whilst peripheral lymphocytes are seen
in relation to degenerating neurons (Orr et al. 2005). Serum,
CSF and purified IgG from PD probands selectively inhibit
dopamine uptake of rodent nigral dopaminergic neurons and

Fig. 3 a Electron micrographs illustrating a cloud of irregular lysosomes
in a duodenal enterocyte in a PD patient with SIBO, at low magnification
(right) and higher (left). b Electron micrographs illustrating protein arrays

encapsulated in a double membrane, at low magnification (left: multiple
bodies) and higher (right: body amongst (normal) mitochondria), where
arrays are seen longitudinally and in transverse section
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selectively destroy neurons in vivo and in vitro (Chen et al. 1998;
Dahlström et al. 1990; Defazio et al. 1994; McRae et al. 1986).
Toxicity is dependent on complement and microglial Fcγ recep-
tors (Defazio et al. 1994; He et al. 2002). Associations of PDwith
HLA-DR loci suggest classical autoimmunity (Ahmed et al.
2012; Hamza et al. 2010; International Parkinson Disease
Genetics Consortium et al. 2011). Indeed, antinuclear antibody
seropositivity flags poor response of hypokinesia to H. pylori
eradication therapy (Dobbs et al. 2010). That H. pylori has been
associated with hypokinesia when the infection load is low (de-
tected by PCRonly, not culture) is compatiblewith autoimmunity
(Dobbs et al. 2008, 2010). There could also be cross-reactivity
through innate pattern recognition ofHelicobacter at the genus
level (Dobbs et al. 2005) or of a broader microbial community.

The adaptive immune response in the substantia nigra in PD
(Orr et al. 2005) and the presence of peripheral immune cells (as
well as Lewy bodies) in therapeutically useful dopamine cell
brain implants (Kordower et al. 2008) fit with a peripheral im-
mune process driving neuronal damage (Lewy bodies are
intracytoplasmic neuronal inclusions of misfolded α-synuclein,
considered the gold standard for designation of PD). Indeed, in
more advanced PD, the proportion of IgG-labelled nigral neu-
rons decreases, but the activated microglia persist (Orr et al.
2005), suggesting that the immune-inflammatory process is
driving neuronal damage, not vice versa. Elevated cortisol and
cytokines in PD (Charlett et al. 1998; Dobbs et al. 1999) would
increase permeability of the blood–brain barrier to peripheral
immune cells, antigen, antibodies or products. There might also
be vagal afferent signalling to microglia (Watkins 1995).

Outside the context of inflammation, effects of some pro-
biotic bacteria on behaviour of experimental animals appear
vagal dependent (Collins et al. 2012). Other workers (Bercik
et al. 2011) have produced behavioural and neurochemical
changes, apparently independent of the autonomic system
and circulating cytokines, by manipulating the microbiota.
They propose the pathway may involve neurally active sub-
stances (e.g. an antidepressant effect of butyrate).

Abnormal mitochondria

Nigral and platelet mitochondrial dysfunction is described in
PD (Dobbs et al. 2008). There is dysmorphology in duodenal
enterocytes. Long, thin mitochondria, associated with the
rough endoplasmic reticulum, are commonly seen, in the pres-
ence of SIBO but absence of recent H. pylori infection
(Charlett et al. 2009). The complex branching also seen may
result from failure to divide (Dobbs et al. 2008).

With current or recent H. pylori infection, arrays encapsu-
lated in a double membrane are found in half of cases
(Fig. 3b), lying among normal mitochondria (Dobbs et al.
2008; Ellis et al. 2007). There is a report of similar mitochon-
drial inclusions in cerebral neurons in Creutzfeldt–Jakob-like
disease (Lewin and Edwards 1991). Alternatively, these

bodies might be viroplasm, not mitochondria. Our electron
microscopists (personal communication: Ellis D and Curry
A) had not previously observed similar bodies but subsequently
found examples in archived duodenal biopsies from two patients
with human immunodeficiency virus (HIV) infection.

If these findings are replicated in enteric neurons and/or
myocytes and are associatedwithmitochondrial dysfunction, they
may provide a mechanism behind slow gastrointestinal transit.
Indeed, cardiac and skeletal muscle mitochondrial hypofunction
may contribute to hypotension and brady/hypokinesia.

A viral primer as a supplementary explanation?

Faecal overload and SIBO are predisposed to by the slow GI
transit of PD and may have detrimental feedback on it, but
what initiates that slow transit? Could there be a viral primer?
Enteroviruses infect via the gastrointestinal tract and are asso-
ciated with neurological syndromes. Indeed, there is recent
evidence of an enterovirus as a cause of encephalitis lethargica
and post-encephalitic parkinsonism (Dourmashkin et al.
2012), and in our pilot study, using faecal samples taken at
the start of a diarrhoeal episode, the frequency of enterovirus
genogroup B RNA appeared high in PD patients and their
spouses (personal communication: Appleton H).

A viral primer could also be involved in the relative lym-
phopenia seen in both PD patients and their spouses, com-
pared with controls. This robust finding was not explained
by antiparkinsonian medication, Helicobacter status or breath
hydrogen. A relatively benign retrovirus might explain this
and the slow transit. The comparatively high frequency of
Dientamoeba fragilis (18 % of PD probands and their spouses
cf. 2.6 % of routine parasitology requests) (Ellis et al. 2007)
could flag mild acquired immunodeficiency. The epidemiolo-
gy of IP and HIV is distinct, but parkinsonism is seen in
uncomplicated HIV infection (as well as with opportunistic
infections in acquired immunodeficiency syndrome)
(Koutsilieri et al. 2002; Karlsen et al. 1992; Berger and
Arendt 2000). Moreover, jejunal autonomic denervation is
described with HIV infection (Dourmashkin et al. 2012).
Although Lewy bodies are not reported in HIV (Koutsilieri
et al. 2002), motor dysfunction compatible with basal ganglia
damage is found in early and basal ganglia dopaminergic cell
loss is seen without clinical parkinsonism. In simian immuno-
deficiency virus-infected monkeys, nigrostriatal dopamine is
halved within 2 months (Koutsilieri et al. 2002).

Time sequence: a process initiated by, driven from,
the gastrointestinal tract?

The time sequence of constipation and peptic ulceration fits
with the misfolded protein theory of PD pathogenesis.
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Aggregates of misfolded α-synuclein are found throughout
the enteric nervous system and in dorsal vagal nuclei (Braak
et al. 2006). A subpopulation of α-synuclein-expressing
myenteric neurons, synaptically connected to vagal efferents,
has been described in rodents (Phillips et al. 2008). As PD
evolves, aggregation spreads from the brainstem to the
substantia nigra, areas of the midbrain and basal forebrain,
eventually reaching the neocortex (Braak et al. 2003).

Althoughmisfolded proteins can aggregate by template rep-
lication in a prion-likemanner (Luk et al. 2009), it is not known
what initiates or ‘seeds’ misfolding, converts containment to
progression or drives progression. Enteric α-synuclein aggre-
gates are described with local inflammation in the gut, both
clinical and experimental colitis (Grathwohl et al. 2013). In
early PD, inflammation, measured by imaging microglial acti-
vation, in the affected nigrostriatal pathway accompanies loss
of presynaptic dopamine transporter (Ouchi et al. 2005) and
becomes more widespread on follow-up (Ouchi et al. 2009).
Central neuro-inflammation may have peripheral mediators
(see ‘Influence of immuno-inflammatory milieu’).

Effective therapeutic strategies to prevent, contain and
clear α-synuclein deposition may be jeopardised by a persis-
tent driver presented by gut microbiota or by its immuno-
inflammatory or metabolomic mediator(s).

Effecting a paradigm shift

‘The best science often emerges from situations where results
carefully obtained do not fit within accepted paradigms’
(Prusiner 1982). Whereas an array of stances is legitimate in
the humanities, in science, a paradigm shift (Kuhn 1970) is all-
or-nothing. It may rest on a single discovery, or, as here, unify
a network of novel findings. Practicality can be as important
as explanation in effecting a shift. The hypothesis that
H. pylori is the usual cause of peptic ulcer (Marshall and
Warren 1984) was dismissed until it became evident that elim-
inating Helicobacter effected cure. Until then, the success of
H2 receptor antagonists in healing an ulcer had made the new
paradigm unnecessary. Although requiring no change in dis-
ciplinary ownership, just in focus, from modifying gastric
physiology to antimicrobial therapy, shifting that paradigm
took more than a decade. In our current example, there is a
need for new disciplinary interfaces in order to yield disease-
modifying therapies. Considering PD only in terms of pro-
gressive, self-perpetuating, degeneration relegates any envi-
ronmental influence to being, at best, remote hit-and-run.
Nosological classification as ‘non-communicable’ (WHO) rein-
forces this. Regarding any systemic illness in PD as an ‘intercur-
rent event’, as opposed to co-morbidity, compounds the problem.

What is sure, in a disease peculiar to man, is that re-
evaluating the patient is a good starting point. Detective work
is needed, where subtle clues are uncovered and statistical

analysis builds on meticulous clinical observation. In such
exploratory studies, it is necessary to understand what is mea-
sured and what influences it, explore effect modification, ex-
amine biological plausibility and seek corroborative evidence.
Not until a large number of clues have been assimilated will their
position within a causal scheme become more certain. Pragmatic
studies can then be conducted for the testable cause/effect hypoth-
eses generated. This is the antithesis of one-step pragmatism. A
scientifically challenging causal pathway does not preclude a
clinical solution sufficiently simple to be assimilated into practice.

Opposition in principle is the great delayer. ‘Student’ of the
t test wrote of RA Fisher’s concise statistical/mathematical
text ‘When I came to Bevidently^ I know that it means two
hours hard work at least before I can see why’ (Bodmer 2003).
Getting over ‘why not’ in the face of inertia of consensus
opinion is far more time consuming. ‘Consensus is always
conditioned by the antecedent knowledge and its interpreta-
tion, and hence is time dependent….it should be associated
with permanent criticism, which hopefully will induce correc-
tive changes’ (Vonka 2000). Grassroot opinion, from people
with the chronic disease who want a cure, is important in
influencing professional consensus.

Conclusion

Biological plausibility of the underpinning concept and main
ideas lies in the fit of a constellation of observational and
intervention studies. In particular, biological gradients (Hill
1965) of repeated (antimicrobial) interventions and circulating
inflammatory markers on measures of facets of PD add to the
RCT evidence for the gastrointestinal microbiome being in-
volved in its causality. Metagenomics can be used to address
the Bradford Hill predicament of although ‘The clear dose–
response curve admits of a simple explanation’ (causality),
‘Often the difficulty is to secure some satisfactory quantitative
measure of the environment which will permit us explore this
dose–response.’

It is envisaged that PD will be reclassified as a systemic
condition in response to immuno-inflammatory activation, in-
fluenced bymicrobiota, tempered by human genetics, within a
spectrum of neuropsychiatric and gastroenterological condi-
tions. Dichotomous classification of PD is misconceived.
Since facets may have different, non-coincident, driving
forces, defining phenotype by their objective quantification
is a sine qua non for progress. Lumping facets together (global
clinical scores) presumes they progress in parallel within-sub-
ject, in set proportion between, and share driving forces.

A ‘depth-in-breadth’ approach maximises the potential of
yielding new targets, such as optimising microbiota, eradicat-
ing pathogens, immune modulation (including cross-talk at
the mucosal level and signalling to/activity of local, systemic
and brain immune system) and optimising the metabolome.
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Relevant animal models, driven by gastrointestinal
microbiome and autoimmunity, would consolidate this ap-
proach. Elucidating the cause of slow transit and relative lym-
phopenia may reveal a trigger event. The potential is as a
catalyst for change in approach to chronic disease in general,
with major social, health and financial implications.

Where drivers, perpetuators and mediators remain active,
attempts at neuronal replacement, repair and regeneration and
symptomatic treatment may underperform. A complex causal
pathway does not preclude interim clinical solutions.
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