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Brief Report: Isogenic Induced Pluripotent Stem
Cell Lines From an Adult With Mosaic Down
Syndrome Model Accelerated Neuronal Ageing
and Neurodegeneration
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ABSTRACT

Trisomy 21 (T21), Down Syndrome (DS) is the most common genetic cause of dementia and
intellectual disability. Modeling DS is beginning to yield pharmaceutical therapeutic interven-
tions for amelioration of intellectual disability, which are currently being tested in clinical trials.
DS is also a unique genetic system for investigation of pathological and protective mechanisms
for accelerated ageing, neurodegeneration, dementia, cancer, and other important common dis-
eases. New drugs could be identified and disease mechanisms better understood by establish-
ment of well-controlled cell model systems. We have developed a first nonintegration-
reprogrammed isogenic human induced pluripotent stem cell (iPSC) model of DS by reprogram-
ming the skin fibroblasts from an adult individual with constitutional mosaicism for DS and sep-
arately cloning multiple isogenic T21 and euploid (D21) iPSC lines. Our model shows a very low
number of reprogramming rearrangements as assessed by a high-resolution whole genome
CGH-array hybridization, and it reproduces several cellular pathologies seen in primary human
DS cells, as assessed by automated high-content microscopic analysis. Early differentiation
shows an imbalance of the lineage-specific stem/progenitor cell compartments: T21 causes
slower proliferation of neural and faster expansion of hematopoietic lineage. T21 iPSC-derived
neurons show increased production of amyloid peptide-containing material, a decrease in mito-
chondrial membrane potential, and an increased number and abnormal appearance of mito-
chondria. Finally, T21-derived neurons show significantly higher number of DNA double-strand
breaks than isogenic D21 controls. Our fully isogenic system therefore opens possibilities for
modeling mechanisms of developmental, accelerated ageing, and neurodegenerative pathologies
caused by T21. STEM CELLS 2015;33:2077–2084

INTRODUCTION

Trisomy 21 (T21), Down Syndrome (DS) is the
most common genetic cause of intellectual dis-
ability and dementia with rising global preva-
lence [1]. Several phenotypes have been
observed at molecular and cellular levels that
reproduce in primary tissues from human indi-
viduals with T21. Some of these cellular phe-
notypes directly map onto clinical components
of DS; these include intellectual disability,
defects in cognitive development and age-
related cognitive decline, Alzheimer’s disease-
like dementia, epilepsy, congenital heart
defect, childhood leukemia, and others [2–12].
Modeling DS is beginning to yield pharmaceu-

tical therapeutic interventions for amelioration
of intellectual disability which are currently
being tested in clinical trials. New drugs could
be identified by high throughput screening of
chemical libraries using cellular assays, and
therefore well-controlled cellular model sys-
tems are required. In order to eliminate
effects of wide phenotypic differences among
individuals with DS, the requirement for many
experimental purposes has become the use of
an isogenic induced pluripotent stem cell
(iPSC) model for DS, where the sole difference
between iPSC lines is the presence of the third
chromosome 21.

Several recent iPSC models of DS have
been developed. All of these (with one
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exception) used integrational reprogramming. All of these
reprogrammed cells were derived from fetal, neonatal, or 1
year old infant DS; actually, three studies [13–15] used the
same iPSC lines as a starting point [16]. Some of these studies
report defects in neural progenitor cell (NPC) proliferation
[17], neurogenesis [13], gliogenesis, and neurite outgrowth
[18], others defects in synaptic morphology and function,
mitochondrial dysfunction [19], and increased amyloid deposi-
tion [15]. Other models show increased propensity to gener-
ate hematopoietic precursors and increased multilineage
myeloid hematopoiesis potential [14, 20]. Most of these
results have been generated on nonisogenic comparisons,
with isogenic lines either serendipitously generated in cell cul-
ture [14, 19] or using an ingenious but with complex and
laborious approach to silence the third chromosome 21 [13,
21]. In some cases, nonisogenic lines were pooled with one
isogenic line [14, 19]. In one study, a unique case of hetero-
karyotypic twin fetal cells was exploited [17]. None of these
papers reported a genome-wide high-resolution array-
comparative genomic hybridization (aCGH) analysis of the
resulting iPSCs for the rigorous measurement of the artificial
copy-number rearrangements known to frequently occur dur-
ing the reprogramming process.

Here we present the first iPSC DS model which is both
nonintegrationally reprogrammed and fully isogenic and the
first derived from an adult individual with DS which is a con-
stitutional mosaic. Furthermore, we verify the high level of
genome integrity of the resulting iPSCs by showing a very low
number of reprogramming rearrangements as assessed by a
high-resolution whole genome aCGH, and we make entirely
isogenic comparisons of three trisomic and three disomic iPSC
lines derived from this model. This approach minimizes the
influence of any copy number fluctuations additional to T21
and eliminates genotypic difference noise, allowing the
“clean” detection of T21-causing effects. Our model reprodu-
ces several T21 cellular pathologies seen in primary human
DS cells but hitherto not reported in iPSC models, such as
abnormalities in mitochondrial number and size and an
increase in DNA double-strand breaks in neurons.

MATERIALS AND METHODS

Detailed methods are shown in Supporting Information
online.

RESULTS

We generated the iPSCs by nonintegration reprogramming
using temperature-sensitive Sendai virus [22] from primary
skin fibroblasts from a young adult diagnosed with constitu-
tional mosaicism for DS (strategy illustrated in Supporting
Information Fig. S1). We isolated individual clones (labeled as
C[number]), expanded them, and confirmed that they tested
positive for alkaline-phosphatase expression, and the presence
of markers of pluripotency (Fig. 1A). The Sendai virus was effi-
ciently removed after 7–10 passages (Fig. 1B). Demethylation
of the endogenous NANOG promoter in the iPSCs, compared
to the parental skin fibroblasts, was established via bisulfite
sequencing (Fig. 1C). Individual clones were analyzed by rigor-
ous whole-genome microsatellite DNA fingerprinting, which

established the presence of clones with T21, and euploid
genome (D21), which are otherwise isogenic (Fig. 1D). In a
preliminary RNA-seq experiment, the isogenic iPSCs show an
expected increase in transcript levels for the majority of
HSA21 genes (not shown). The genome integrity of the result-
ing iPSCs is of a high level, as was assessed by high-
resolution, whole genome aCGH (Supporting Information Fig.
S2). The supernumerary HSA21 is intact and complete in both
analyzed trisomic lines (T21C5 and T21C6), and T21 is stable
for at least 17–19 passages, which is as far as we tested for
the presence of T21 (Supporting Information Fig. S2A). After
filtering out the copy number variations (CNVs) that occur
commonly in healthy individuals (using comparison to the
Database of Genomic Variation) we made an in silico compari-
son with the published survey of genome-rearrangement arte-
facts in iPSC generated by conventional integration-
reprogramming [23]. Selecting only events at the same aCGH
resolution and the same passage number as in our study, we
detected a significantly lower number of uncommon CNVs,
affecting a significantly lower number of genes in our lines,
relative to those generated by classic integrational reprogram-
ming methods (Supporting Information Fig. S2B, S2C). In com-
pliance with international guidelines for iPSC nomenclature
[24] we name these iPSCs: NIZEDSM1iD21-C3, -C7, and -C9
for the disomic lines, respectively, and NIZEDSM1iT21-C5, -C6,
-C13 for the trisomic lines, respectively (henceforward abbre-
viated to D21C3, D21C7, D21C9, T21C5, T21C6, and T21C13).
Microsatellite DNA fingerprinting was repeated at later pas-
sages and confirmed that trisomy 21 is retained through rou-
tine passaging (Supporting Information Fig. S2D). The isogenic
DS iPSC clones can differentiate into cell lineages of all three
embryonic layers both in vitro and in vivo (Supporting Infor-
mation Fig. S3).

After 45 days in culture, using neuronal differentiation via
neuro embryoid body (NEB) protocol (Supporting Information
Methods), both disomic and trisomic neuronal differentiation
cultures were able to produce mature looking neurons
expressing bIII-tubulin, the inhibitory neurotransmitter GABA,
as well as presynaptic and postsynaptic markers of excitatory
synapses, PSD95 and VGlut (Supporting Information Fig. S4A,
S4B, respectively). In order to accelerate neuronal differentia-
tion and improve yields, we applied a directed neuronal dif-
ferentiation protocol using dual SMAD inhibition (Noggin and
SB431542), combined with stimulation of retinoid signaling
and the addition of the Sonic Hedgehog agonist purmorph-
amine [25]. Both trisomic and disomic lines were able to pro-
duce electrophysiologically active neurons (Supporting
Information Fig. S4C) that supported spontaneous action
potential firing and functional whole-cell current responses to
saturating concentrations of externally applied GABA and gly-
cine, observed in neurons from both D21C3 (at 28 days) and
T21C5 lines (at 40 days). In order to gain an approximate esti-
mate of the proportion of neurons likely to fire spontaneous
action potentials, we used Ca21 imaging and observed multi-
ple Ca21 transients, which would be indicative of regenerative
spontaneous activity in accord with the firing of spontaneous
action potentials (Supporting Information Fig. S5A, S5B).
Quantification of the numbers of neurons exhibiting calcium
transients over the 1 minute time course showed no signifi-
cant difference between D21 and T21 neurons (Supporting
Information Fig. S5B). In addition, under voltage-clamp
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Figure 1. Isogenic iPSC model of Down Syndrome generated by reprogramming primary human skin fibroblasts from an adult individ-
ual with mosaic Down Syndrome, using a temperature-sensitive Sendai virus. (A): Images of undifferentiated iPSC colonies from two
clones (D21C3, T21C5) after three passages; bright-field microphotographs and alkaline phosphatase expression. Further images after
immunohistochemistry for pluripotency markers (SSEA4, TRA 1–60, and TRA 1–81). (B): Spontaneous elimination of the temperature sen-
sitive, nonintegrating Sendai virus (Ts-SeV) from iPSC cells through routine passaging. Primary human skin fibroblasts were infected with
the Ts-SeV for positive control and were stained with an antibody against the SeV protein HN-IL4.1 alongside the iPSC colonies at the
indicated passage numbers (P[n]). The agarose gel shows amplification products after reverse transcriptase polymerase chain reaction
(PCR), using SeV (and GAPDH) specific primers (1) D21C3 P5, (2) T21C5 P7, (3) T21C5 P10, (4) D21C3 P10, (5) untransfected fibroblasts,
(6) SeV infected fibroblasts P0, (7) SeV infected fibroblasts P0—reverse transcriptase, (8) H2O C: Demethylation of endogenous NANOG

promoter following reprogramming: bisulfite sequencing analysis of eight CpG dinucleotides in the promoter region of NANOG using
genomic DNA isolated from iPSC D21C3 and T21C5, compared to genomic DNA isolated from the primary mosaic DS skin fibroblasts
that were used for reprogramming. (D): (Left hand panels): Graphs showing semiquantitative microsatellite PCR analysis for two chromo-
some 21 (HSA21) markers and for markers from two euploid chromosomes (HSA5, 18) using genomic DNA isolated from iPSC clones.
Clones T21C5 and T21C6 are trisomic and Clone D21C3 disomic for HSA21. (Right hand panels): Whole genome microsatellite fingerprint
of genomic DNA isolated from iPSC clones, demonstrating that they are isogenic. Abbreviations: Alk Phos, alkaline phosphatase; hiPS
clone, human induced pluripotent stem clone; SeV, Sendai Virus.

Murray, Letourneau, Canzonetta et al. 2079

www.StemCells.com VC AlphaMed Press 2015



conditions, we identified neuronal sensitivities to GABA and
glycine which indicates the cell surface expression of func-
tional GABAA and glycine receptors. This was apparent in
most cells tested, with no difference noted between T21 and
D21 cells (not shown).

To examine early stages of iPSC differentiation an EB pro-
tocol was adopted for both hematopoietic and neuronal dif-
ferentiation, modifying the published method [26]. For

hematopoietic EBs (HEBs) 3,000 live cells in single cell suspen-
sion were allowed to aggregate in a 96-well. Imaging and
analysis of HEBs after 5 days showed that T21 HEBs were sig-
nificantly larger than the euploid controls (Supporting Infor-
mation Fig. S6A). This increase in HEB size was caused by an
increase in the cell numbers (Supporting Information Fig.
S6B), which at this stage is predicted to be early hematopoi-
etic mesoderm precursors. A similar result was obtained with

Figure 2. Trisomy 21 causes an increase in b-amyloid containing material in and around neurons generated from iPSCs. (A): Neurons
were generated from iPSCs over a 60-day differentiation protocol. Cells were then fixed and stained with an anti-amyloid peptide anti-
body (6E10), which is reactive to amino acids 1–16 in b-amyloid but detects all APP polypeptide forms that contain the epitope. Nuclei
were labeled with Hoechst. Scale bar5 100 lm. (B): Quantification of the integrated intensity for the 6E10 stain shows an increase of
APP expression in T21 neurons compared to the isogenic D21 neurons. Image capture and quantification were performed using auto-
mated multiparametric analysis on the ImageXpress Micro XL (Molecular Devices) wide-field high content imaging system, and data
were analyzed using MetaMorph software. Three wells per cell line and a minimum of 6,000 cells per well were analyzed. Student’s t

test, error bars SEM. Visually, T21 neurons appear to also show more 6E10-reactive aggregates (not quantitated). Zoomed-in images for
T21C6 and D21C7 are shown at the same size and magnification.
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early T21 mesodermal colonies derived from transchromoso-
mic mouse embryonic stem cells [7]. Although the T21 HEBs
gave a higher proportion of CD341 cells (hematopoietic
stem/progenitor lineages) on both days 12 and 18 of further
differentiation (not shown), there was no statistically signifi-
cant difference. By contrast, NPCs derived from NEBs showed
a reduction in proliferation rate. The cumulative population
doublings of trisomic cells was significantly reduced during

the expansion of NPCs (Supporting Information Fig. S6C).
Increased cell death is unlikely to be the cause of the
observed decrease population cell doubling, because the pro-
portion of nonviable cells in the same counts shows no
increase in T21 NPCs (Supporting Information Fig. S6D).

iPSC-derived neurons were analyzed after 60 days of dif-
ferentiation following the dual SMAD inhibition protocol
(mentioned previously, but here minus purmorphamine) that

Figure 3. Trisomy 21 results in an increase in size and number of mitochondria in neurons generated from induced pluripotent stem
cells (iPSCs). (A): Neurons were generated from iPSCs over a 60-day differentiation protocol. Live cells were then loaded with JC-10 to
assess mitochondrial membrane potential. Healthy mitochondria are labeled in red, while green cytoplasmic staining indicates that JC-10
is diffusing out of the mitochondria due to decreased mitochondrial membrane potential. Representative images for each cell line are
shown. Image capture and quantification were performed using automated multiparametric analysis on the ImageXpress Micro XL
(Molecular Devices) wide-field high content imaging system, and data were analyzed using MetaMorph software. A total of four wells
and a minimum of 1,500 cells per cell line were imaged and analyzed. Scale bar5 100 lm (identical scale for all images). (B): Quantifi-
cation of the number of mitochondria per cell, and (C) the mean mitochondrial area show that both are increased in T21 neurons com-
pared to the isogenic D21 neurons. (D): Quantification of the integrated intensity for the green signal generated by JC-10 shows
decreased mitochondrial membrane potential in T21 neurons compared to the isogenic D21 neurons. Student’s t test, error bars SEM.
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generates multiple classes of projection neurons from differ-
ent cortical layers [25]. We observed the typical morphology
of neurogenic cortical rosettes as published [27] and con-
firmed that after 60 days neuronal differentiation, >95% of
cells were Tuj11 (not shown). As this protocol generated
100% excitatory glutamatergic neurons [25, 27], and as no dif-
ferences in the composition of cortical layer subpopulations
were observed between DS and normal human iPSCs [15], we
think it is unlikely that difference in cell type profiles would
be responsible for the differences between T21 and D21

observed in our results, although we cannot fully rule out this
possibility. Immunostaining of fixed neurons with an antibody
(6E10) raised against the epitopes in the Ab-peptide, but reac-
tive to all proteolytic fragments of the amyloid precursor pro-
tein that contain this epitope, revealed an increase in total
amyloid staining in trisomic neurons compared to isogenic
euploid controls (Fig. 2A, 2B). This demonstrates that
increased amyloid production can be successfully modeled in
these cells. Trisomic neurons also appear to show an increase
in size and number of 6E10-reactive discreet punctiform

Figure 4. Trisomy 21 causes an increase in DNA damage in neurons generated from induced pluripotent stem cells (iPSCs). (A): Neu-
rons were generated from iPSCs over a 60-day differentiation protocol. Cells were then fixed and stained with a cH2AX antibody to
detect DNA double-strand breaks. Nuclei were labeled with Hoechst. Scale bar5 100 lm. Enlarged insets for D21C3 and T21C5 double
stained with Hoechst and cH2AX antibody are shown as examples below main images. (B): The number of cH2AX puncta per cell is sig-
nificantly increased in T21 neurons compared to the isogenic D21 neurons. Image capture and quantification were performed using
automated multiparametric analysis on the ImageXpress Micro XL (Molecular Devices) wide-field high content imaging system, and data
were analyzed using MetaMorph software. Three wells per cell line and a minimum of 6,000 cells per well were analyzed. Student’s t

test, error bars SEM.
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aggregates (not quantified, Fig. 2B zoom). Our staining does
not permit us to conclude if these aggregates are intracellular
or extracellular.

To assess mitochondrial membrane potential in neurons,
live cells were labeled with JC-10 (Fig. 3A). In healthy cells JC-
10 selectively accumulates in the mitochondria and forms
aggregates with a characteristic fluorescent emission at
590 nm (orange/red). If mitochondrial membrane potential is
decreased (due to damaged/unhealthy cells) JC-10 monomers
are formed, which are released into the cytoplasm, resulting
in a shift to green emission at 525 nm. An increase in both
the size and number of mitochondria were observed in the
trisomic neurons (Fig. 3B, 3C), consistent with a previous
study in primary T21 neurons which showed “generalized
perturbations” in T21 mitochondrial structure and function,
including a more fragmented mitochondrial network [9]. Triso-
mic neurons also showed a decreased mitochondrial mem-
brane potential, as evidenced by the increase in green
cytoplasmic staining with JC-10 (Fig. 3D).

Having shown that T21 neurons have a deficit in mito-
chondrial function similar to primary human T21 neurons in
vitro, we anticipate that reactive oxygen species (ROS) pro-
duction is increased in T21 neurons. Increased ROS leads to
increased DNA damage, as measured by the proportion of
cH2AX foci, an in vitro marker of ageing, shown increased in
primary fibroblasts from old, compared to young humans
[28], and in primary neurons from old, compared to young
mice [29]. We assessed the number of cH2AX foci (Fig. 4A).
Fully automated quantification of approximately 18,000 cells
per cell line showed a significantly increased number of
cH2AX puncta per cell in T21 neurons (Fig. 4B).

DISCUSSION

In conclusion, we report a first nonintegration-reprogrammed
isogenic and high genomic fidelity iPSC model from an adult
with mosaic DS. The model reproduces several differentiation,
ageing, and neurodegeneration-related cellular phenotypes
associated with DS pathology and attributable solely to T21 as
a cause.

Particularly intriguing are two observations (Figs. 3, 4)
that open a whole set of new interesting mechanistic ques-
tions. Increased number of mitochondria in neurons could be
related to increased mitochondrial fragmentation observed in
primary DS cortical neurons in culture [9]. On the other hand,
it is possible that T21 mitochondria in DS neurons, which are
high consumers of energy exclusively derived from oxidative
metabolism, are hypofunctional (as has been observed in pri-
mary DS cortical neurons in culture [9]), and the demand for
more energy increases mitochondrial biogenesis. These
hypotheses remain to be tested. Increased number of DNA
double-strand breaks in T21 neurons (Fig. 4) could be further
exploited as a cellular marker of accelerated ageing observed
in DS [10, 30]. Alternatively, more genomic instability in the
nuclei of postmitotic T21 neurons (such as transposition
events) [31] could also explain this observation.

Currently, several interdisciplinary consortia have been
organized to study DS genetics and cellular models integrated
with the assessment of the adult population with DS for neu-
rocognitive function, age-related decline, presence or absence

of dementia and other comorbidities (e.g., see http://www.
ucl.ac.uk/london-down-syndrome-consortium, http://www.psy-
chiatry.cam.ac.uk/ciddrg/research/dementia-in-downs-syn-
drome-dids/). It is therefore important to verify that cellular
phenotypes under-pinning DS pathology can also be repro-
duced in iPSCs derived from an adult individual with DS, as
this had not been reported so far.

Up to 75% of constitutionally T21 concepti spontaneously
die in utero [10, 32] suggesting that in random allelic variation,
the presence of a third copy of HSA21 has a 75% probability to
cause severe phenotypes that are normally missed. In constitu-
tional mosaicism, T21 with an otherwise deleterious genotype
could be rescued by a significant (>50%) presence of normal
(D21) cells, which results in varying intensity of clinical DS
defects, often not correlating with the percentage of trisomic
cells in tissues. This presents with a theoretical (but so far never
explored) rationale for T21/D21 cells derived from a constitu-
tionally mosaic DS individual to show more contrasting differen-
ces in cellular phenotypes, than comparisons between cells of
liveborn 100% trisomic individuals. Such phenotypes are more
likely to be robust, reproducible, and therefore more amenable
to developing into high throughput screening assays.
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