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Abstract  

Background: Measures of neocortical amyloid burden (NAB) identify individuals who are at 

substantially greater risk for developing Alzheimer’s disease (AD). Blood-based biomarkers 

predicting NAB would have great utility for enrichment of AD clinical trials, including large-

scale prevention trials.  

Methods: Non-targeted proteomic discovery was applied to 78 subjects from Australian 

Imaging, Biomarkers and Lifestyle Flagship Study of Ageing (AIBL) with a range of NAB 

values.  Technical and independent replications were performed by immunoassay. 

Results: Seventeen discovery candidates were selected for technical replication.  Alpha-2-

macroglobulin (α-2m), fibrinogen gamma chain (FGG) and complement factor H-related protein 

1 (FHR-1) were confirmed to be associated with NAB. In an independent cohort FGG plasma 

levels combined with age predicted NAB with a sensitivity of 59% and specificity of 78%.  

Conclusions: A single blood protein – FGG – combined with age was shown to relate to NAB 

and therefore could have  potential  for enrichment of clinical trials populations. 

Keywords: Plasma, β amyloid, proteomics, Alzheimer’s disease, biomarker, fibrinogen gamma 

chain and clinical trials.  

 



Background 

The diagnosis of AD can only be confirmed, with certainty, by histological examination of brain 

tissue at autopsy. This inspection should demonstrate considerable evidence of the classical 

pathological hallmarks of AD; extracellular amyloid beta (Aβ) plaques and intracellular 

neurofibrillary tangles predominantly comprised of hyperphosphorylated Tau [1]. Although an 

age-related disease usually affecting people over the age of 65 it is believed the accumulation of 

Aβ plaques begins 15-20 years prior to clinical presentation [2] and reaches a plateau when 

cognitive, functional and behavioral decline occurs [3]. Existing treatments for AD are only 

capable of temporary symptomatic relief in a subset of patients [4]. As elevated brain Aβ is an 

important risk factor for eventual AD, it has become critical to identify individuals at the early 

stages of Aβ deposition to recruit into clinical trials of potentially disease-modifying 

therapeutics. Indeed, three prevention trials in asymptomatic individuals at the early stages of Aβ 

deposition have commenced recently [5]. 

At present neuroimaging and cerebrospinal fluid (CSF) biomarkers are the accepted standards 

used to provide evidence of on-going AD pathophysiology related to Aβ plaques. [11]C-

Pittsburgh Compound B (PiB) coupled with Positron Emission Tomography (PET) is widely 

used in research in measuring in vivo Aβ deposition as its uptake in AD correlates with  Aβ 

plaques measured neuropathologically in the same brains [6]. The availability of longer lived 

[18]F- labeled  Aβ PET tracers, such as flutemetamol [7] and florbetapir [8] could foster wider 

utilization in clinical use [9]. Early “proof of concept” PiB-PET studies demonstrated an increase 

of Aβ deposition in a majority of individuals clinically diagnosed with AD as judged by visual 

assessment [10] or quantification of tracer uptake [11,12].  Two large studies, from Victoria 



(Australia) and the University of California San Francisco Memory and Aging Center (UCSF, 

USA) have shown that PiB PET could discriminate between AD and non-Aβ dementias [11,13]. 

Some, but not all [14,15], studies also show that amyloid deposition as measured using PiB-PET 

either predicts decline in cognitive measures or tracks with such [2,16].  

Many disease modifying therapeutics being developed target amyloid generation, deposition or 

clearance [17].  Recent phase III trials targeting amyloid reported that  approximately 20% of 

trial participants actually had little or no Aβ when studied later using such PET imaging 

(Suspected Non Amyloid Pathology; SNAP) [18]. This is a very serious problem for such trials – 

success is hard to find in the field of neurodegeneration but likely to be significantly harder when 

a large minority of trial subjects fail to have the primary target pathology.  

A solution is to use amyloid-PET scans (~$3,000 per scan) to ensure primary target pathology. 

The first study to use this will be the Anti Amyloid in Asymptomatic AD (A4; n=1,000) 

prevention trial.  In A4 the screen failure rate is anticipated to be even higher (~66%) due to the 

use of asymptomatic subjects. The great expense of the anticipated ~20% and ~66% amyloid-

PET screen failure rates for clinical and prevention anti-amyloid trials, means that a blood test 

with even relatively low predictive accuracy for NAB has the potential to greatly reduce costs. 

This would work by applying the blood tests to large numbers of potentially eligible subjects, 

and only performing PET scans on those whose blood tests are positive. This would reduce the 

screen failure rates, and save money if the blood test was inexpensive comparatively. Therefore, 

a blood-based measure that correlates with neocortical amyloid burden (NAB) would be of 

considerable value as an enrichment filter for clinical trials.  



The obvious blood candidate biomarker of brain Aβ pathology would be Aβ itself. A systematic 

literature review and meta-analysis by Koyama et al [19], on 10,303 subjects, found that lower 

plasma Aβ42:Aβ40 ratios were significantly associated with development of AD. However, the 

estimates had wide confidence intervals, due to high inter-study differences. As such plasma 

Aβ42:Aβ40 ratios are unlikely to be useful by itself for the prediction of NAB. The same study 

found that individual Aβ42 and Aβ40 levels in blood were not significantly associated with AD. 

Clearly novel biomarkers are needed that reflect brain amyloid pathology in blood.  

There has been considerable effort in the search for AD blood-based biomarkers. Most studies 

use a case-control design, based on a clinical diagnosis of AD as determined by medical history, 

cognitive assessments and clinical examination. This classical, case versus age-matched controls 

approach, has identified a large number of putative plasma biomarkers (reviewed in [20,21,22]). 

However, such approaches are intrinsically flawed in the context of AD where a considerable 

proportion of cognitively unimpaired controls will be in the prodromal phase of AD, e.g. 

asymptomatic but with elevated NAB. 

An approach to overcome this is to use a non-apparent measure of disease activity 

(endophenotype paradigm). The endophenotype approach is increasingly being adopted, for 

example to study blood-based biomarkers of cognitive decline [23,24], APOE4 risk [25], brain 

atrophy [26,27] and hippocampal metabolism [28]. More recently, blood-based biomarkers of 

NAB, as measured by PiB PET, have been reported [29,30,31]. Both Kiddle et al and Burnham 

et al utilized the Rules Based Medicine panel of 190 analytes to discover plasma proteins that 

related to NAB, and proposed a thirteen and five analyte model respectively. These models both 

contained the protein pancreatic polypeptide.   



 

In a different approach Thambisetty et al used two dimensional gel electrophoresis (2D-GE) 

coupled with mass spectrometry (MS) to identify protein spots associating with NAB in an 

unbiased fashion. This study identified 6 proteins for spots associated with NAB, including 

APOE and Complement C3 which were independently replicated in the Kiddle et al study. 2D-

GE is a well established technique for blood biomarker research and offers many advantages. 

However, it is restricted by a lengthy procedure with poor reproducibility that can only indentify 

a small number of “candidate spots” in limited sample sets.    

 

In this study we employ a methodology that combines the unbiased approach of gel-based 

proteomics with high-throughput multiplex technology and the latest in MS instrumentation. 

This has enabled the identification and quantification of several hundred proteins, comparable to 

some panel based arrays, without losing the key advantages of unbiased gel-based discovery. 

This is the first application of this approach to identify blood-based biomarkers of NAB, and was 

applied to a subset of patients from the AIBL cohort with either high or low NAB. Promising 

markers were then replicated using immunoassays, first in the same cohort and then in an 

independent cohort [13]. 

Material and Methods 

The Australian Imaging, Biomarkers and Lifestyle Flagship Study of Ageing (AIBL) 

The AIBL study is a longitudinal study of ageing, neuroimaging, biomarkers, lifestyle, clinical 

and neuropsychological analysis with a focus on early detection and lifestyle intervention 



(http://www.aibl.csiro.au/). Additional specifics regarding subject recruitment, diagnosis and 

study design have been described previously [32].  

Discovery cohort; assessments, blood collection and processing 

In total we examined plasma samples from a subset of 78 subjects from the AIBL study, who had 

undergone PiB-PET scans. A standardized uptake value ratio (SUVR) cutoff of 1.3 was used to 

classify subjects as belonging to PiB+ and PiB- groups. To increase statistical power the subjects 

were selected to be enriched for clear cases of PiB negativity and positivity.    Standardised 

clinical assessments included Mini-Mental State Examination (MMSE), and Apoliopoprotein E 

(APOE) genotypes were available.  

The details of blood collection and sample processing have been previously discussed [31]. 

Plasma proteomic analysis and immunoassay measures were undertaken at King’s College 

London (KCL).  

AIBL PiB-PET  

The PiB imaging methodology of the AIBL study is detailed elsewhere [33]. SUVR were 

generated using the cerebellar grey matter as the reference region as described in Burnham et al 

[31]. NAB was expressed as the average SUVR of the mean of frontal, superior parietal, lateral 

temporal, lateral occipital, and anterior and posterior cingulate regions.	
   

Tandem Mass Tag (TMT) protein labeling, enzymatic digestion and peptide extraction  

Each sample was randomly assigned and labeled with an Amine-Reactive TMT Reagent 

(TMT127-TMT131; Thermo Scientific #90064) with TMT126 being used to label the study 



reference, an equal pool of the plasma obtained from all 78 subjects. A complete TMT6Plex 

combined five labeled plasma samples with a labeled study reference. In general, sample 

preparation and TMT labeling was performed as previously described [23,34] with some minor 

modifications (Supplementary Methods 1). Each TMT6Plex underwent 1D gel electrophoresis 

and excised into 10 fractions (Supplementary Methods 2). Gel pieces were then de-stained, 

digested, peptides extracted and lyophilised to completion prior to MS analysis (Supplementary 

Methods 3). LC-MS/MS data separated with 1D-GE can show a single protein in multiple 

fractions. Therefore, identical protein identifications observed in different fractions were 

considered as separate entities defined as protein molecular weight (MW) isoforms 

(Supplementary Methods 5b).  

Liquid chromatography – tandem mass spectrometry (LC-MS/MS)     

Samples were analysed using an LTQ Orbitrap Velos instrument (Thermo Scientific) coupled to 

a Proxeon EASY-nLC II system (Thermo Scientific). Further details on chromatographic 

separation and MS data acquisition are outlined in Supplementary Methods 4. 

Pre-processing of LC-MS/MS data 

Raw data files produced in Excalibur software (Thermo Scientific) were processed using 

Proteome Discoverer (PD) V1.3 (Thermo Scientific) to determine peptide identification; the 

subsequent Mascot (v2.3; http://www.matrixscience.com) output file was used for further pre-

processing and analysis (supplementary methods 5a). A script was written in R to complete the 

pre-processing taking into account the experimental setup described above 

(http://core.brc.iop.kcl.ac.uk/software/). We named the script Pre-processing for Relative 



Quantification of LC-MS/MS data (PRQ; Supplementary Methods - PRQ). PRQ performs (1) 

median ratio normalisation [35], (2) calculates ratios for each peptide, (3) derives protein level 

data from peptide scores, (4) collects protein scores across all TMT6plex’s.  

The University of California San Francisco (UCSF) Memory and Aging Center cohort 

Replication cohort; assessments, blood collection and processing 

The replication cohort consisted of samples from 79 participants enrolled in the UCSF 

Alzheimer’s Disease Research Center (Table 1). All subjects underwent APOE genotyping, 

neurological and cognitive assessments [13], as well as plasma collection and storage [36] and as 

previously described. Clinical diagnoses of AD, FTD and MCI were made by consensus 

applying standard research criteria [37,38,39]. All subjects underwent PiB-PET at Lawrence 

Berkeley National Laboratory on a Siemens ECAT EXACT HR PET (n=69) or Biograph 

Truepoint 6 PET/CT (n=10) [13]. Scans were visually rated as PiB+ or PiB- by an experienced 

single rater blinded to clinical and plasma data [13]. Mean 50-70 min SUVR values were 

extracted from frontal, parietal, cingulate and lateral temporal cortex, using mean activity in the 

cerebellar gray matter as the reference tissue (for details of image processing see [40]). 

Immunoassay – enzyme-linked immunosorbent assay (ELISA) 

Single analyte sandwich ELISA was used to quantify candidate proteins and were performed as 

per manufacturer’s instructions (Supplementary Methods 6).  



Statistical analysis 

All statistical analyses were performed in R (Supplementary Methods 7). For logistic and linear 

regression, age, gender and presence of APOE4 allele were used as covariates. For the ELISA 

analysis, data outliers were excluded (±3 standard deviations) and a fourth covariate, batch, was 

added. PET scanner type was added as a covariate for the UCSF data. Benjamini-Hochberg Q-

values were calculated as a multiple testing correction. Details of pathway, regression and 

classification  analyses are given in Supplementary Methods 7. 

Results 

LC-MS/MS performed on AIBL subjects 

LC-MS/MS was performed on plasma samples from 78 AIBL subjects, whose demographics are 

shown in Table 1. Combining data from all MS/MS runs, we identified 4,518 unique peptides 

sequences that corresponded to 789 unique protein groups. PRQ was able to extract 2,319 unique 

TMT peptides, 1,139 MW isoforms and 379 unique protein groups (Supplementary Results 1a), 

which was reduced to 116 confidently annotated unique protein groups after post-PRQ data clean 

up; this consisted of 381 protein MW isoforms (Supplementary Results 1b).   

Plasma protein markers of global PiB PET 

Each protein MW isoform underwent Mann-Whitney U test and logistic regression to compare 

PiB+ and PiB- groups as well as Spearman Rank Correlation (SRC) and linear regression to 

associate protein MW isoform levels against PiB retention as a continuous measure. This was 

completed for both the mean and median protein roll-up methods separately, giving a total of 



eight statistical tests per protein. One protein MW isoform, Complement C4a, passed all eight 

statistical tests. A total of 69 protein MW isoforms passed at least one statistical test (uncorrected 

P < 0.05) shown in Supplementary Results 1c. Pathway analysis (Supplementary Results 2) 

revealed that these protein groups were over-represented for involvement in complement and 

coagulation cascades (p = 3.7 x10-22, q = 3.3 x 10-21), systemic lupus erythematosus (p = 2.65 x 

10-4, q = 0.15) and prion diseases (p = 5.9 x 10-3, q = 0.051). Three albumin and 15 

immunoglobulin MW isoforms were removed to leave 51 protein MW isoforms associated with 

PiB-PET retention (Table 2).  

Subsequently, 17 proteins were selected for technical replication (Figure 1). In addition to 

statistical evidence we also considered the candidate’s relationship with amyloid and/or AD 

Genome-Wide Association Studies results (Supplementary Results 3). We also chose to replicate 

Histidine-Rich Glycoprotein, the protein most associated with NAB, but had no prior evidence 

for a relationship with Aβ.  

Technical Replication  

We sought to translate our discovery findings to a simple-to-use commercially available ELISA 

format. The 17 proteins candidates from MS were measured in plasma samples from the 78 

AIBL subjects in the discovery cohort. Using linear regression models (including 

age/gender/APOE/ELISA plate as covariates) we found that two proteins - α-2m (q = 0.076) and 

FGG (q = 0.076), replicated our findings from the LC-MS/MS discovery study (Table 3). In the 

discovery study, FHR-1 was increased in the PiB+ group. Although FHR-1 (q = 0.076) was 

associated with NAB at 0.1 q-value in the ELISA technical replication, an opposite trend was 



observed. Apolipoprotein A-IV, Gelsolin, Histidine-Rich Glycoprotein, Haptoglobin and 

Apolipoprotein(a) all showed the same directional change as in the LC-MS/MS discovery. 

Independent Replication  

To verify the results from the AIBL samples, we measured the levels of the three proteins 

significantly associated with NAB (α-2m, FHR-1 and FGG) using samples from an independent 

cohort. These proteins were measured by ELISA in 79 samples from the UCSF cohort (Table 1). 

Table 4 shows that FGG was found to be significantly associated with PiB positivity, as 

determined both by visual examination of PiB-PET scans (q = 5.9 x10-3) and by applying a 

threshold of 1.3 to SUVRs (q = 0.051). Despite not being significantly associated with NAB, α-

2m correlated with SUVR positivity in the same direction as in the discovery study. 

Multivariate analysis 

Subjects with any missing covariates or protein measurements were excluded from the 

multivariate analysis, leaving 58 subjects from AIBL (28 PiB-, 30 PiB+ based on SUVR > 1.3) 

and 78 subjects from UCSF (46 PiB-, 32 PiB+ based on visual inspection). Classification models 

were trained in the AIBL ELISA data to predict SUVR positivity (> 1.3), and tested in the UCSF 

ELISA data to predict PiB positivity determined by visual inspection (more robust across 

multiple scanners). A ‘basic’ model (age/gender/APOE4) was compared to a ‘basic + proteins’ 

model which also used the plasma concentration of FGG, α-2m and FHR-1. Figure 2a and 2b 

shows a Receiver Operator Characteristic (ROC) analysis, where Area Under the Curve (AUC) 

was shown to be higher for the ‘basic + protein’ model than for the ‘basic’ model in the test 

datasets. The highest test AUC was found using the Random Forest approach, where the ‘basic + 



protein’ model (AUC = 0.70) outperformed the ‘basic’ model (AUC = 0.46) in the test dataset. 

The Random Forest ‘basic + proteins’ model gave a test set sensitivity of 50% and specificity of 

85%. Additionally, a classification tree was fitted to the ‘basic + proteins’ model, to provide a 

simpler alternative with clear thresholds. The resulting classification tree used just two variables 

(age/plasma FGG level; Figure 2c) and achieved a comparable AUC to the Random Forest 

model (AUC 0.69, sensitivity 59%, specificity 78%). In the UCSF cohort, 23 out of 25 AD 

subjects are PiB+, it is noteworthy that the two PiB- subjects had plasma FGG levels above the 

threshold (Supplementary Results 4). 

 Discussion 

With the failure of serial amyloid based therapeutics in clinical trials compromised by inclusion 

of substantial numbers of participants without the target pathology [18], and with the prospect of 

very large trials in pre-symptomatic AD such as the A4 trial and others [5], the need for blood-

based markers of NAB has never been greater. Blood-based biomarkers could be used to screen 

large numbers of potential participants, and only those predicted to have abnormally high NAB 

would be retested using CSF assays or PET scans, reducing screen failure rates. This could 

reduce recruitment time and costs, as well as allowing eligible subjects to be identified more 

readily, for example from biobanks with permission for re-contact.  

This study has demonstrated that a simple blood test consisting of FGG plasma levels along with 

age could have some potential for predicting NAB, achieving a test set sensitivity, specificity and 

AUC of 59%, 78% and 69% respectively, highlighting its potential use in stratifying patients for 

anti-amyloid trials. This independent replication was performed in a mixed dementia cohort 

(UCSF), suggesting that FGG and age may also have utility for distinguishing between amyloid 



and non-amyloid dementias. Additionally, because the classification model was trained in a 

subset of the AIBL cohort containing very few AD subjects, it is more likely that FGG will be 

able to predict PiB positivity in non-AD subjects. However, as the UCSF cohort contained only 

two cognitively normal individuals, further work will be needed to determine sensitivity and 

specificity in people who are cognitively normal. These measures will determine the cost saving 

potential of this blood test for prevention trials. Preliminary data generated from a cognitively 

normal cohort in our laboratory supports this (Westwood et al., data not shown). Previously, 

Burnham et al [31] reported a blood test that achieved 79% sensitivity and 76% specificity in an 

independent test set. While our sensitivity is slightly lower, this is achieved by measuring a 

single plasma protein compared to 6 plasma proteins in the Burnham model.  

While the sensitivity and specificity of these markers for predicting NAB are not high enough to 

use clinically, they would be useful for enrichment of clinical trials if they performed at this level 

in relevant populations. The strongest case can be made for prevention trials in asymptomatic 

subjects because of the large expected screen failure rate (~66% or higher) when looking for 

individuals with elevated NAB. Due to the relatively high cost of amyloid-PET scans (~$3,000) 

versus blood protein ELISAs, even a blood test without clinical utility could theoretically save 

millions of dollars from studies of the size of A4 (n=1,000). 

APOE status is a substantial risk factor for AD [41] and amyloid [30,42]. While we took APOE4 

into account during our analyses we were not surprised to find that APOE genotype markers did 

not improve our classification model as the study was designed to be independent of this effect. 

However, in a general population sample APOE genotype is likely to contribute to the prediction 

of NAB.  



It is interesting that FGG, and to a lesser extent Complement C3 and Fibrinogen α chain, were 

associated with NAB in this study, as this has been previously found [29,30]. However in the 

study by Burnham et al [31] total fibrinogen was not found to associate with NAB, whereas 

Kiddle et al [30] showed it was  negatively associated with NAB. Further to this, decreased 

levels of plasma FGG have been shown to be associated with a smaller whole brain volume in 

AD subjects [29] whereas measures of whole fibrinogen in plasma have shown an increase 

[43,44]. Discrepancies of these findings may be due to the platform used to measure total 

fibrinogen or highlight the importance of looking at specific fibrinogen chains.  

FGG is normally rejected from the brain by the blood brain barrier (BBB), yet has still been 

detected in mice and human brain tissue [45,46]. This could be due to the reported dysfunction of 

the BBB in mice [47] and humans in AD [48]. However, the movement of fibrinogen across a 

defected BBB seems to be molecule-specific, as smaller molecules are not BBB-permeable in 

AD [49]. Fibrinogen has been shown to accumulate over time as AD pathology progresses [46] 

and co-deposits with Aβ in brain tissue [50]. Ahn and colleagues [51] demonstrated that 

fibrinogen binds to Aβ, which enhances aggregation and increases Aβ fibrillisation.  It is 

possible that decreased FGG levels associated with high NAB in our study is due to movement 

of fibrinogen across a compromised BBB in subjects with AD pathology. 

After FGG, α-2m was the second most promising candidate, shown for the first time to associate 

with NAB. This is noteworthy because,  α-2m  has been found to be one of the most replicable 

markers of other AD-related phenotypes including diagnosis, hippocampal metabolism and 

response to treatment with divalproex sodium [20]. Future studies should aim to replicate all 



previously discovered markers of NAB and investigate which combination of analytes would 

achieve higher sensitivity and specificity.  

To our knowledge, this is the first study to apply an unbiased and non-targeted quantitative LC-

MS/MS discovery approach, combining LC-MS/MS with TMT-labelling, for the investigation of 

plasma proteins related to NAB. Furthermore, this method will allow the unprecedented 

exploration of plasma peptide and modified proteins as markers of NAB. We also describe a 

novel and automated bioinformatic pipeline - PRQ - to accurately pre-process TMT-MS data. 

PRQ not only conducts rigorous normalisation of MS data [35] but also automates the 

calculation of peptide/protein ratios against the study reference.  

Subsequently, technical replication was performed to reduce the number of false positives and to 

ensure translation of LC/MS-MS findings using a platform more applicable to clinical setting. 

Using commercially available immunoassays, we confirmed that α-2m, FGG and FHR-1 

significantly predicted NAB with a 0.1 Q-value significance level. All except FHR-1 displayed a 

similar direction of association between discovery and replication. Immunoassays cannot always 

distinguish between sequence variants, proteins modified with different PTM, or different 

truncated forms of a same protein seen by LC/MS-MS. This could also explain the differences 

seen in association trend between discovery and replication in some cases, e.g. FHR-1; therefore 

these candidates should not necessarily be discounted. The discrepancies observed between the 

two platforms point to the need of investigating protein modifications as potential biomarkers in 

future studies.  

The discrepancies between findings in AIBL and UCSF could be due to low statistical power, 

differences in disease stage or pre-analytical factors. The major difference in pre-analytical 



factors is the centrifugation step of plasma collection: AIBL has a two-step centrifugation (200 x 

g, remove supernatant, then 800 x g), whereas UCSF has a single centrifugation step (1300 – 

1800 x g). This highlights the importance of standardization of blood collection and preparation 

for biomarker studies. 

While many agree that Aβ deposition is the earliest event in AD pathogenesis, one group has 

shown changes in episodic memory preceding changes in Aβ levels [52]. If confirmed in other 

cohorts it would be interesting to compare the ability of episodic memory and our blood test to 

predict NAB in asymptomatic individuals. 

In summary, the current study presents a potential blood test, consisting of measuring FGG, 

which along with age has some ability to predict NAB in an independent sample. To ensure 

robustness and relevance of these findings, this test will need to be replicated in larger cohorts 

that are more representative of relevant clinical trial populations. This study adds further 

evidence that differences in the plasma proteome in relation to AD and its pathology do exist, 

and therefore such changes could be used to stratify patients for anti-amyloid treatment trials. 

This could lower barriers to the development of an effective treatment to combat the increasing 

concern of dementia. 
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Table 1 – Demographics of selected subjects from the AIBL and UCSF cohorts. 

  AIBL Discovery Cohort   UCSF Replication Cohort 

 
Low Neocortical 
SUVR (PiB-) 

High Neocortical 
SUVR (PiB+) P-value 

Low Neocortical 
Visual PiB read 
(PiB -) 

High Neocortical 
Visual PiB read 
(PiB +) 

P-value 

Number of subjects (n) 38 40  47 32  
SUVR (mean (s.d.) 
{missing}) 1.11 (0.06) 2.34 (0.33) 2.4 x10-25 1.2 (0.12) {1} 2.2 (0.35) {2} 4.2 x10-16 

Gender; females (n (%)) 18 (47%) 20 (50%) 0.83 18 (38%) 14 (44%) 0.65 

Age in years (mean (s.d.)) 75.8 (6.53) 80.9 (8.22) 0.0035 65 (8.8) 64 (8.4) 0.61 

Clinical diagnosis (n (%)) 

HC: 13 (34%) HC: 6 (15%) 0.0037 HC: 2 (4.3%) HC: 1 (3.1%) 1.9 x10-10 

SMC: 18 (47%) SMC: 13 (40%)  MCI: 1 (2.1%) MCI: 1 (3.1%)  

MCI: 7 (19%) MCI: 16 (30%)  AD: 2 (4.3%) AD: 23 (72%)  

AD: 0 (0%) AD: 6 (15%)  FTD: 42 (89.3%) FTD: 7 (21.8%)  
      APOE ε4 carrier (n (%)) 14 (37) 25 (63) 0.36 8 (17%) 13 (41%) 0.036 

MMSE (mean (s.d.)) 28.3 (1.8) 26.8 (4.1) 0.038 26 (4.3) 21 (6.9) 0.0011 

Table 2 – LC-MS/MS data; Protein MW isoforms significantly associated with NAB. (All 

multiple testing corrected Q-values were > 0.75). For regressions age, gender and presence of 

APOE4 was used as covariates. 



Figure 1 – Flow diagram to select LC-MS/MS plasma NAB candidate markers for technical 

replication. * Two protein MW isoforms associated with NAB; ** Three protein MW isoforms 

associated with NAB; *** Four protein MW isoforms. 

Table 3 – Technical replication of plasma protein candidates discovered by LC-MS/MS. 

   Logistic regression with 
SUVR > 1.3 

Linear regression with 
SUVR 

UniProt 
ID Protein Name 

Number 
of outliers 
excluded 

Beta P-value Q-value Beta P-value Q-value 

P01023 α-2-macroglobulin (α-2m) 10 1 8.9x10-3 0.076 0.2 7.9x10-3 0.068 

Q03591 FHR-1 11 -1 4.6x10-3 0.076 -0.22 5.5x10-3 0.068 

P02679 Fibrinogen γ chain (FGG) 0 -0.7 0.041 0.23 -0.2 0.014 0.081 

P08519 Apolipoprotein(a) 21 0.48 0.13 0.34 0.18 0.042 0.18 

P06396 Gelsolin 2 -0.48 0.11 0.34 -0.14 0.068 0.19 

P00738 Haptoglobin 2 -0.38 0.18 0.39 -0.13 0.089 0.19 



P04196 Histidine Rich Glycoprotein 2 0.48 0.14 0.34 0.14 0.081 0.19 

P06727 Apolipoprotein A-IV 2 -0.63 0.083 0.34 -0.17 0.067 0.19 

P01024 Complement C3 0 -0.61 0.25 0.47 -0.21 0.13 0.25 

P0C0L4 Complement C4a 0 -0.55 0.51 0.66 -0.27 0.22 0.38 

P10909 Clusterin 0 -0.27 0.36 0.51 -0.091 0.27 0.41 

P02647 Apolipoprotein A-I 0 0.34 0.29 0.47 0.088 0.32 0.46 

P02671 Fibrinogen α chain 6 -0.28 0.3 0.47 -0.064 0.39 0.52 

P02787 Serotransferrin 1 -0.013 0.96 0.96 -0.041 0.6 0.73 

O14791 Apolipoprotein L-1 0 -0.09 0.74 0.89 -0.026 0.73 0.77 

P08603 Complement factor H 3 0.066 0.8 0.89 0.027 0.7 0.77 

P00751 Complement factor B 2 0.053 0.84 0.89 0.018 0.81 0.81 

 

Table 4 – Independent replication of plasma protein candidates discovered by LC-MS/MS and 

technically replicated. Only one outlier (> 3 standard deviations from mean) was excluded, 

which was detected for FGG.  For regressions age, gender, presence of APOE4, ELISA plate and 

scanner type were used as covariates. 

  Logistic regression to visual read Logistic regression to SUVR 
> 1.3 Linear regression to SUVR 

UniProt 
ID 

Protein 
Name Beta P-value Q-value Beta P-value Q-

value Beta P-value Q-value 

P01023 α-2m -0.013 0.96 0.96 0.27 0.29 0.44 0.075 0.22 0.33 
P02679 FGG -1.0 2.0x10-3 5.9x10-3 -0.74 0.017 0.051 -0.21 4.1x10-4 1.2x10-3 
Q03591 FHR-1 -0.066 0.79 0.96 0.011 0.97 0.97 1.5x10-3 0.98 0.98 

 

 



Figure 2 – Receiver Operator Characteristic (ROC) curves for the prediction of PiB positivity. A 

‘basic’ model (age/gender/APOE4 presence) is compared to a ‘basic + proteins’ model also 

including the plasma levels of FGG, α-2M and FHR-1. Random Forest (RF) and Classification 

and Regression Trees (CART) were used to fit models in CARET using default parameters. Area 

Under the Curve (AUC) is given for each model. ROC curves are shown comparing predictive 

accuracy of models in (a) the training dataset (AIBL), and (b) the test dataset (UCSF). 

Classification tree trained on AIBL ELISA data to predict NAB positivity and estimated cut-off 

(c). 

 


