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Abstract 

Endothelial damage and dysfunction are implicated in cardiovascular pathological 

changes and the development of vascular diseases. In view of the fact that the 

spontaneous endothelial cell (EC) regeneration is a slow and insufficient process, it 

would be of great significance to explore alternative cell sources capable of 

generating functional ECs to repair damaged endothelium. Indeed, recent 

achievements of cell reprogramming to convert somatic cells to other cell types 

provide new powerful approaches to study endothelial regeneration. Based on 

progress in the research field, the present review aims to explore the strategies and 

mechanisms of generating endothelial cells through reprogramming from somatic 

cells, and to examine what this means for the potential application of cell therapy in 

the clinic. 

Key Words: Stem cells, cell reprogramming, endothelial cells, iPS cells, endothelial 

regeneration, atherosclerosis 

 

Introduction 

Vascular endothelial cells (ECs) array the most inner layer of the entire circulatory 

system, from the largest arteries and veins to the smallest capillaries and serve as a 

semi-selective and non-adherent interface between blood and the underlying cells of 

the vessel wall such as smooth muscle cells (SMCs), pericytes and connective 

tissues. ECs play a key role in critical vascular functions, such as permeability, 

interaction with circulating platelets and leukocytes, regulation of vascular tone and 

growth. EC dysfunction or damage precede the development of many vascular 

pathological conditions such as peripheral vascular disease, hypertension and 

atherosclerosis.1 Chronic exposure to cardiovascular risk factors such as diabetes, 

hyperlipidaemia or smoking, compromises the integrity of the endothelium and 

atherosclerosis occurs in the vessel wall. When the disease progresses severely, a 

treatment with angioplasty is routinely used in clinic. However, there is a risk of 

thrombosis due to the loss of ECs. The regeneration of endothelium in this case is a 
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slow process and there is currently no effective drug or gene therapy to promote it. 

Recently, efforts to achieve endothelial repair have shifted to stem cell–based 

approaches. Endothelial progenitor cells (EPCs) and pluripotent embryonic stem cells 

(ESCs) can be isolated, easily expanded and then differentiated into EC to be used 

for stem cells-based cellular therapies. 2-8 

A third source of stem cell that has great potential for regenerative medicine is the 

induced pluripotent stem (iPS) cells. IPS cells are pluripotent cells engineered from 

terminally differentiated somatic cells through a process called reprogramming. IPS 

cells exhibit the cellular characteristics that are highly similar to ESCs. 9-11 However, 

iPS cells avoid the ethical and immunological issues associated with the application 

of ESCs. Moreover, iPS cells can be generated and individualised for patient-specific 

therapies, disease modelling and drug screening. IPS cells are capable of 

differentiating into all cardiovascular cells including ECs, vascular mural cells, SMCs, 

and cardiomyocytes and therefore have a great potential for vascular regeneration. 

Nevertheless, this strategy is time consuming and raises tumour-forming hazards. To 

avoid issues associated with iPS cells, researchers start to explore direct cell fate 

conversion between two differentiated cell types without passing through the 

pluripotent state. This strategy called direct reprogramming opens up an exciting new 

area of research for cell based therapy. 

In the present review, we aim to explore the recent progress in cell reprogramming 

technique for endothelial regeneration, to discuss the mechanisms involved, and to 

highlight the potential clinical application. 

 

Vascular Endothelial Cells and Endothelial Functions 

 

Blood vessels are composed of three layers: the innermost is the tunica intima, which 

is composed of a single continuous layer of endothelial cells and mediates the 

exchange of nutrients and cells with the circulation. Surrounding the intima is the thick 

layer of smooth muscle cells composing the tunica media, which is responsible for the 

maintenance of the vessel tone and elasticity. Finally, adventitia is the external layer 

mainly composed of fibroblasts and connective tissue and incorporating the vasa 
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vasorum, the small network of vessels that provides oxygen and nutrients to the cells 

in the vessel wall. Vessels within the microvascular system (i.e. capillaries and 

venules) are formed by contractile cells called pericytes that wrap around the EC 

layer. 12 ECs are key components for maintaining the function of the vessels. ECs are 

actively involved in regulating endothelium permeability, modulating vascular tone, 

regulating blood coagulation, and many other biological processes. 

The integrity of the endothelium is the foundation of vascular homeostasis.  The 

cell-cell junctional structures, which link EC with each other to form a continuous 

monolayer, profoundly contribute to the regulation of permeability and the 

maintenance of the endothelium integrity. Furthermore, EC junctions actively 

participate in transferring intercellular signals between adjacent cells. EC junctions 

are formed by transmembrane adhesive proteins linked to specific cytoplasmic and 

cytoskeletal molecules. 13  

Endothelium regulates vascular tone through secreting EC-derived vasodilators 

including NO, prostacyclin and other factors. These EC-derived factors mediate the 

relaxation of SMCs to achieve vasodilation. NO is recognised as the primary factor for 

vasodilation which is synthesised in ECs by eNOS and that is dependent on its 

cofactors including free calcium (Ca2+) and L-arginine. 14 In addition to the modulation 

of vascular tone, NO also has other vessel-protective roles including regulating the 

growth of local cells, inhibiting the aggregation and adhesion of inflammatory cells 

and platelets to endothelial surface. 15  

Healthy ECs possess anticoagulant and antithrombotic functions to keep the vascular 

patency. Blood coagulation is prevented by ECs through synthesising and displaying 

inhibitors for tissue factor pathway and thrombin. ECs also express molecules for 

protein C activation which can demolish certain clotting factors and inhibits 

coagulation. 16 ECs can physically separate the interaction of platelets with collagen 

which can activate platelets. ECs also secrete anti-platelet molecules like prostacyclin, 

NO and prostaglandin-E2 to inhibit the adhesion and activation of platelets on the 

endothelial surface. 17 Under physiological condition, endothelium prevents the 

inflammatory cells adhesion by failing to express adhesion molecules that mediate 

leukocytes attachment.   
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Endothelial Dysfunction in Vascular Diseases 

 

The dysfunction of the endothelial monolayer is the key initiation event of vascular 

diseases caused by a variety of stimuli including hypertension, diabetes, 

dyslipidaemia, oxidative stress and others. Endothelial dysfunction is characterised 

by leukocytes recruitment and platelet aggregation, increased permeability, thrombus 

formation, and impaired endothelium-mediated vasodilation. The expression of 

surface adhesion molecules are changed within the injured ECs which initiate the 

recruitment of blood leukocytes and platelets. In parallel, the endothelium 

permeability and the sub-endothelial extracellular matrix composition are altered to 

permit the penetration and accumulation of leukocytes and oxidised LDL particles. 18 

The NO synthesis capacity of ECs is also disturbed during atherosclerosis which 

impairs the endothelium-dependent vasodilation. Reduced NO synthesis occurs 

simultaneously with the increased generation of reactive oxygen species (ROS). 

Increased ROS bioavailability, together with the dysregulated oxidative stress, further 

damages the endothelial homeostasis. 19 To repair the injured endothelium and 

reconstruct normal endothelial physiological function is a major target for therapy 

against vascular disease.  

After endothelial dysfunction and denudation during vascular disease or treatment 

with angioplasty, endogenous resident ECs tend to proliferate and replace the injured 

endothelium. A number of studies from early years showed that local ECs participate 

in the repair of small areas of endothelial damage through migration and the repair of 

larger areas of damage through both proliferation and migration. 20  Recently, by 

transplanting wire-injured carotid artery segments from wild type mice into Tie2-GFP 

mice, Hagensen et al. demonstrated the resident ECs from the transplanted graft 

contribute to the re-endothelialisation of the lesion. 21  

Although the proliferation and migration of resident ECs represent a straightforward 

way for endothelial regeneration, it is a relatively slow and inefficient process. 22 In 

addition, with the effects of the cardiovascular risk factors, the adjacent ECs around 

injured endothelial area may also be in a dysfunctional state. The rejuvenation of ECs 

with normal function represents a significant target of vascular disease therapies. A 

number of different stem cell sources, that have been considered to contribute to EC 
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regeneration, potentially provide promising methods for regenerative medicine. In this 

review, we will focus on the generation of ECs through reprogramming technique. 

 

Induced Pluripotent Stem Cell and Endothelial Regeneration  

In 2006, Takahashi and Yamanaka first described the process of converting a lineage 

committed somatic cell back to the pluripotent state by simultaneously 

overexpressing four transcription factors Oct4, Sox2, Klf4 and c-Myc using viral 

vectors. 10 This Nobel Prize-winning hallmark study successfully reprogrammed 

mouse fibroblasts to a new type of pluripotent cell that highly resembled ESC in 

morphology, proliferation, gene expression and DNA methylation patterns. The newly 

generated cell population was termed “induced pluripotent stem cell” or iPS cell. 

Since then, iPS cells have been successfully generated from different somatic cell 

types with different combinations of reprogramming factors and various induction 

methods, which proved the universality of the concept of cell reprogramming. 23 

IPS cells have the potential to differentiate towards vascular cell lineages including 

ECs. ECs can be derived from iPS cells by using three approaches: embryoid body 

(EB) formation, coculture with feeder cells or defined chemical condition. In 2009, two 

groups first showed that ECs could be generated from human iPS cells. Choi et al. 

cocultured different human iPS cell lines with OP9 feeder cells for 8 days and then 

selected CD34- and PECAM-1- double positive cell population which could give rise 

to functional ECs after 7 days under endothelial-promoting culture conditions. 24 

Using a similar approach, Taura et al. cocultured human iPS cells with OP9 feeder 

cells for 10 days and observed the emergence of a VEGFR2-positive population with 

EC differentiation capacity. 25 Endothelial lineage-committed cells could also be 

derived from EB formed by iPS cells. 26 Most commonly, feeder-free culture systems 

with the combination of different culture substrates and chemical conditions have 

been successfully applied to induce ECs from iPS cells. 27  

IPS-ECs display similar features with mature ECs at the genetic and functional levels. 

A major advantage of using iPS cells as EC source is the abundant origins of iPS 

cells and the potential to generate patient individualised ECs that bypass the 

immunogenicity and ethical issues. IPS-ECs have been tested in peripheral vascular 
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disease mouse model to show their neoangiogenic capacity that led to the 

improvement of blood perfusion of ischaemic tissue. 26  

In spite of the fact that iPS cells start a new era of regeneration medicine, the 

tumourigenesis risk jeopardises their further clinical applications. The fact that many 

reprogramming factor cocktails contain oncogenes and many gene delivery methods 

use viral vectors raise the risk of tumour formation in vivo. 28 In addition, iPS cells 

exhibit more genetic and epigenetic instability compared to ESC due to the artificial 

reprogramming process. 29 Therefore, there is still a long way to go before the mature 

utilisation of iPS cells at the bedside. Cell direct reprogramming techniques to convert 

cell fate between two differentiated cell types without passing through the pluripotent 

state provide new possibilities for endothelial rejuvenation. 

 

Direct Cell Lineage Reprogramming and Endothelial Regeneration 

Presently, based on the use of transcription factors, there are two dominant 

reprogramming strategies to achieve direct cell-lineage conversion. One is through 

introducing various combinations of target cell type-specific transcription factors to 

directly drive cell lineage switch. In 2008, a case of in vivo study demonstrated the 

direct conversion of pancreatic exocrine cell to functional β-cell by injecting 

adenoviruses encoding three transcription factors Nng3, Pdx1, and Mafa into adult 

mice pancreas. 30 In 2010, via the overexpression of Gata4, Mef2c, and Tbx5, 

Srivastava’s group directly reprogrammed cardiac fibroblasts into functional 

cardiomyocytes in vitro. 31  The same group subsequently showed the in vivo 

reprogramming of murine cardiac fibroblasts into cardiomyocytes through 

intra-myocardial injection of the identical set of the three transcription factors. 32 In 

addition, a variety of reports provided evidence of directly reprogramming fibroblasts 

into other cell types including neurons, hepatocytes, etc. 33,34  

Another fast and efficient approach to modulate cell fate is based on the use of 

iPS-generating pluripotency factors such as Oct4, Sox2, Klf4, Nanog, etc to erase 

lineage particular signatures and reactivate repressed epigenetic network as a first 

step, but with shorter reprogramming time and different culture conditions to avoid the 

full induction of pluripotency. After this step, cells revert to an intermediate plastic 
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state which permits further manipulations towards the desired cell types. Short-term 

reactivation of reprogramming genes Oct4, Sox2, and Klf4 plus chemically defined 

media and cardio-inductive growth factor BMP4 converted embryonic and adult 

fibroblasts to functional cardiomyocytes. 35 During the conversion, the role of 

reprogramming factors is to erase the original cell identity via epigenetic mechanisms, 

instead of directly activate cardiomyocyte-specific genes.  

 

Direct Endothelial Reprogramming with EC-related Transcription Factors 

Ectopic overexpression of endothelial-related transcription factors has been applied 

to generate ECs from other somatic cell types. Ginsberg et al. first reported the direct 

reprogramming of human amniotic fluid-derived cells into ECs by ETS transcription 

factors ETV2, FLI1, and ERG1 together with TGF-β suppression. 36 ETS transcription 

factors are potent regulators for vascular development and angiogenesis and they 

regulate almost all typical endothelial markers. 37 EC-specific genes can be switched 

on within 4 days of ectopic expression of ETV2, FLI1, and ERG1 with TFG-β 

suppression. However, to establish stably proliferative EC population, a more precise 

temporal control on gene overexpression is needed. Recently, there were two 

important studies published, relative to the direct conversion of fibroblasts into ECs 

through the overexpression of selected endothelial related transcription factors. Han 

et al. converted mouse adult fibroblasts into ECs using a cocktail of five transcription 

factors: Foxo1, Etv2, Klf2, Tal1 and Lmo2. 38 All of these five factors play crucial roles 

in vascular development and endothelial maturation. Interestingly, authors from this 

study tried to use Etv2, Erg and Fli1 to reprogram mouse adult fibroblasts as shown in 

Ginsberg’s study. However, they did not observe any EC generation. On the contrary, 

including Erg or Fli1 into their reprogramming factor cocktail compromised EC 

reprogramming efficiency from fibroblasts. This finding indicates that for different cell 

types, specific optimisation of transcription factors combination and culture condition 

is required for successful endothelial reprogramming. Another study showed that 

solely overexpressing one ETS transcription factor ETV2 is sufficient to induce 

functional ECs from human adult fibroblasts. 39 The ETV2 expression level needs to 

be carefully controlled. Too low or too high ETV2 expressions both jeopardise the 

endothelial reprogramming efficiency from fibroblasts. In addition to ETV2 
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overexpression, the endogenous FOXC2 expression in the human adult fibroblasts is 

essential for ETV2 to induce EC reprogramming.  

 

Although using the target cell-specific transcription factors for direct cell lineage 

reprogramming represents a straightforward strategy, a major concern related to this 

method is that the original gene regulatory network of the starting cell type may be 

insufficiently inactivated.  Indeed, a recent study provided evidence to support this 

concern by comparing the gene expression patterns of various directly 

reprogrammed cell types with cells derived from pluripotent stem cells using a 

computational network biology platform named CellNet. Comprehensive analysis 

showed that directly reprogrammed cells tend to inadequately silence the expression 

programs of the starting cell population. 40
 This suggests that using target cell-specific 

transcriptions factors to conduct the direct cell lineage conversion may fail to fully 

erase the identity of the starting cell type and result in the incomplete establishment of 

the gene regulatory networks of the target cell type.  

 

Direct Endothelial Reprogramming using iPS-generating Factors 

Short term overexpression of iPS-generating pluripotency factors has been used to 

induce the plasticity of somatic cells which leads to further differentiation towards 

endothelial lineage. By overexpressing Oct4, Sox2, Klf4 and c-Myc for 8 days, 

fibroblasts were reverted to an intermediate CD34-positive mesodermal progenitor 

state which could be further differentiated towards endothelial or smooth muscle 

lineages under different stimulating conditions. 41 The authors discussed that all four 

factors are requisite for the generation of CD34-positive cells. To remove any single 

factor leads to the failure of the mesodermal progenitor state induction. Converted EC 

is a mixed population of different endothelial subtypes including arterial, venous and 

lymphatic ECs. Studies from our lab showed that reprogramming human fibroblasts 

with OCT4, SOX2, KLF4, and c-MYC for 4 days generated partial-iPS (PiPS) cells 

with an upregulation of VEGFR2. PiPS cells have the ability to differentiate into both 

endothelial- and smooth muscle-like cells. 42,43 Functional ECs could be derived from 

PiPS cells after 6 days of differentiation in endothelial-inductive condition. Another 
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study reduced the transcription factors to Oct4 and Klf4 to obtain functional 

endothelial cells transdifferentiated from human fibroblasts. 44  

To use reprogramming factors, especially the oncogene c-MYC, as part of the 

protocol still raises tumourigenesis concerns. Although teratoma formation has not 

been observed in the in vivo experiments of any studies, the long term effect of using 

reprogramming factors is difficult to predict. Two recent papers discussed the direct 

reprogramming strategy using pluripotent factors induced transient pluripotent state 

at certain stage of the protocol. 45,46 Further studies need to clarify the exact roles of 

pluripotent factors in direct reprogramming and the transitions of cell identity during 

the transdifferentiation.  

 

Direct Endothelial Reprogramming using Small Molecules 

Beyond the use of transcription factors, recent studies exploited novel approaches 

including microRNAs (miRNAs), epigenetic regulators, signal pathways modulators 

and other small molecules to drive cell lineage conversion. Conditionally adding these 

small molecules into the transcription factors cocktail can boost the efficiency of cell 

fate switching. Furthermore, some combinations of the small molecules alone could 

drive direct lineage conversion without the ectopic overexpression of transcription 

factors. 47 A recent study demonstrated the transdifferentiation of human fibroblasts 

to endothelial cells using small molecule activators of toll-like receptor 3 (TLR3) 

combined with endothelial growth factors. 48 TLR3 agonist Poly I:C activates innate 

immune signalling which leads to increased epigenetic plasticity for cell fate 

manipulation. Histone modifications at the promoter regions of PECAM-1 have been 

observed during the fibroblast to EC conversion.     

 

Comparison of Different Stem Cell-based Strategies for EC Generation  

 

In the above sessions, we have discussed EC generation based on different 

reprogramming techniques (Fig.1). Because of the critical role that ECs play in 

cardiovascular physiological and pathological conditions, it is of great importance to 
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investigate and compare different cells sources and strategies that can regenerate 

functional ECs and further obtain therapeutic value. For now, three major stem cell 

types are regarded to be promising therapeutic options for endothelial regeneration: 

EPC, ESC, and iPS cell. In addition, the emergence of direct cell reprogramming 

provides novel powerful cell sources. The advantages and deficiencies of these cell 

types and their clinical application value are briefly summarised as follow (Table 1). 

 

Mechanisms involved in endothelial reprogramming 

 

From the ectopic overexpression of different sets of transcription factors, to the 

following modulation of signalling pathways and endothelial-inductive conditions, 

mechanisms from many aspects have been implicated in the endothelial 

reprogramming process (Fig.2). Signalling pathways regulating endothelial 

differentiation have been extensively reviewed before. 27,49-51 In this review, we focus 

on the mechanisms that more related to the generation of ECs through 

reprogramming.   

 

Epigenetic Modulations during Endothelial Reprogramming 

 

The conversion of cell type requires the fundamental resetting of the epigenome. The 

epigenetic signature of the starting cell type needs to be erased and a new epigenetic 

signature of the converted cell type needs to be established. The epigenetic 

modulations include chromatin reorganisation, DNA methylation changes, 

post-translational histone modification, etc. Many studies have shown the epigenetic 

changes along endothelial reprogramming. Furthermore, EC reprogramming can be 

achieved by targeting the epigenetic level instead of the transcriptional level. Using a 

small molecule of TLR3 agonist to active innate immunity could increase epigenetic 

plasticity and lead to the direct reprogramming of fibroblasts to ECs. 48 However, the 

detailed mechanisms and regulatory factors involved in the process are not clear yet.  
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DNA methylation profile is an important epigenetic signature of a committed cell type. 

Switching from one cell type to another requires the universal DNA demethylation 

towards the establishment of a new cell identity. 52 ECs converted from fibroblasts 

through CD34-positive mesodermal progenitor state using OCT4, SOX2, KLF4, and 

c-MYC lost the DNA methylation profile of fibroblasts 33. The promoter regions of 

VE-Cadherin and Tie2 were demethylated in the induced ECs derived from 

fibroblasts by Foxo1, Etv2, Klf2, Tal1 and Lmo2. 38  

Histone modifications play fundamental roles in controlling the expression of the 

genes. Histone repressive marker H3K27me3 at PECAM-1 and VE-Cadherin 

promoter regions were significantly decreased during the conversion of fibroblasts 

towards ECs using Oct4 and Klf4. 44 The histone active marker H3K4me3 was 

increased in the promoter regions of PECAM-1 together with the decrease of the 

H3K27me3 mark at the same regions during the reprogramming of fibroblasts 

towards ECs with TLR3 agonist. 48  

 

Cell Plasticity induced by Pluripotency Reprogramming Factors 

 

Since the establishment of reprogramming technique to generate pluripotent iPS cells 

from lineage-committed somatic cells, researchers have endeavoured to exploit the 

underlying molecular mechanisms. In general, the complex transcriptional and 

epigenetic changes of the whole genome occur during the reprogramming to reverse 

the differentiated cells back to the pluripotent state. Genome-wide analyses of the cell 

populations at different time points during the reprogramming process revealed three 

phases for successful iPS cell generation: initiation, maturation, and stabilisation. 53  

Each phase is characterised by the expression of a distinct group of genes. The initial 

phase is marked by a mesenchymal-to-epithelial transition. Interestingly, the 

signature genes associated with the maturation and stabilisation phases are not 

pluripotency regulators, but rather the genes related to cell cycle, cytoskeletal 

dynamics and signalling pathways. 54 Another study also used genome-wide 

analyses to show that there were two major gene expression changing waves. One 

occurred between 0-3 days, and the second wave happened between day 9 till the 
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end. 55 Genes responsible for proliferation and metabolic changes were activated and 

the genes related to fibroblast identity were suppressed during the first wave. The 

second wave was characterised by the expression of genes related to stem cell 

identity establishment and epigenetic remodelling. These cell population-based 

studies suggested that reprogramming is a multi-step process with transcriptome 

resetting. The existence of multiple phases along iPS cell generation, especially 

erasing the cell identity as a first step, provides more possibilities to adjust the iPS 

reprogramming strategy to apply on direct reprogramming by using iPS-generating 

factors.  

 

In order to understand the molecular mechanisms regulating EC reprogramming from 

other cell types using iPS-generating factors, it is important to understand the roles of 

the key reprogramming factors Oct4, Sox2, Klf4, and c-Myc at early stage of iPS cell 

generation. The clear function of these four transcription factors during cell 

reprogramming has not been clarified. In general, these four factors act as pioneer 

factors for remodelling the epigenome. They open up chromatin regions and bind to 

the promoters of a wide range of genes to guide further epigenetic modification. 56 

Interestingly, in addition to the genes that they usually regulate in ESCs, they also 

bind to the genes that are not occupied by these factors in ESCs. 57 This promiscuous 

binding phenomenon indicated that the roles of the reprogramming factors may be 

cell type dependent. Oct4, Sox2, and Klf4 collectively form a transcriptional network 

that associates with repressing somatic gene expression and upregulating pluripotent 

genes during reprogramming. c-Myc mainly acts as an transcriptional amplifier at all 

active promoters to enhance the kinetics and efficiency of reprogramming. 58 The fact 

that Oct4, Sox2, Klf4, and c-Myc are able to open chromatin and induce cell plasticity 

early in reprogramming support the direct lineage conversion strategy of transiently 

expressing these four factors to dedifferentiate the somatic cell back to an 

intermediate state followed by further differentiating the cells towards another lineage.  

KLF4 is particularly interesting when specifically considering the reprogramming 

towards vascular cell lineage. KLF4 has been shown to play a crucial role in 

regulating vascular cell development and function in addition to its reprogramming 

role and has been identified as an important transcription factor for both SMC and EC. 

KLF4 has been shown to directly bind to the promoter of VE-Cadherin in mature ECs 
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to improve cell barrier function. 59 Another study indicated that KLF4 plays a 

protective role in regulating the response of EC to inflammatory stimuli. 

Overexpressing KLF4 in ECs increases the expression of anti-inflammatory and 

anti-thrombotic factors including eNOS and thrombomodulin. 60 In c-Kit-positive 

vascular progenitor population derived from ESCs, Klf4 was shown to positively 

regulate their differentiation towards ECs. Overexpression of Klf4 in this population 

led to further upregulation of EC markers and knockdown of Klf4 resulted in an 

increase of SMC markers. 61 The above studies suggest that KLF4 may play an 

additional favourable role in promoting reprogramming towards the endothelial 

lineage. 

 

 

Mesenchymal-to-Epithelial Transition and Cell Reprogramming 

 

Among the studies related to the different phase of cell reprogramming, a biological 

process named Mesenchymal-to-Epithelial Transition (MET) has emerged to be a key 

event for the initial stage of somatic cell reprogramming.  

Based on the temporal changes of global gene expression, an important study in 

2010 divided the reprogramming of mouse embryonic fibroblast (MEF) to iPS cell into 

three main phases: initiation, maturation and stabilisation. Among which, the initiation 

stage was characterised by the MET driven by bone morphogenetic proteins (BMPs) 

signalling. 53 At the same time, another group demonstrated the requisite role of MET 

at early stage for successful mouse iPS cells generation. MET was regulated by the 

interactions with reprogramming transcription factors and TGF-β signalling. 62  

During the generation of human iPS cells from fibroblasts, the participation of MET 

was confirmed by a study that suggested that the reprogramming promoting function 

of miRNA-302 and miRNA-372 was partly acting through MET. 63 Later on, a 

comprehensive proteomics analysis of the whole course of reprogramming confirmed 

the existence of MET during early phase at protein level. 64 Till now, many studies 

have proved the occurrence of MET at early stage for successful somatic 

reprogramming in different cell systems.  
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In addition, recent studies indicated the involvement of MET during the early stage of 

direct cell lineage conversions, which suggested a more universal role of MET 

process in modulating cell-identity plasticity. Ectopic introduction of transcription 

factors Nr5a1, Wt1 and Dmrt1 into fibroblasts could initiate MET as a first step and 

finally convert the cells towards embryonic sertoli-like cells. 65 Another recent report 

on direct reprogramming of fibroblasts into induced cardiomyocytes demonstrated the 

involvement of MET. 66 Promoting MET through the suppression of Snai1 by miR-133 

could profoundly enhance the protocol efficiency and cell quality of converted 

cardiomyocytes. 

 

Notch Signalling Mediating Endothelial Differentiation 

The Notch signalling pathway participates in the regulation of diverse vascular cell 

function during embryonic and postnatal development. 67 The Notch signals usually 

function to drive the differentiation of the precursors between two alternative fates. 68 

For example, Notch signals determine the arterial-venous fate of ECs and the tip or 

stalk cells selection of ECs during angiogenesis.  

JAG1 is a Serrate/Jagged family transmembrane ligand for the Notch pathway 

containing multiple epidermal growth factor-like repeats. 69 JAG1, as the upstream 

ligand of the transmembrane receptors in the Notch pathway, plays a complicated 

role in orchestrating cell fate. The homozygous mutation of the Jag1 gene in mice 

causes early embryonic lethality due to extensive embryonic and yolk sac vascular 

defects. 70 The mutation of the JAG1 gene in humans leads to Alagille syndrome 

characterised by abnormal development of multiple systems during childhood. 71,72 

Vascular anomalies including pulmonary artery abnormalities, intracranial 

haemorrhages and other events, frequently occur in Alagille syndrome patients and 

account for a large portion of mortality, which reflects the important role of JAG1 

during human vascular development. 73  

The pro-angiogenic role of Jag1 has been shown using EC-specific and inducible 

knockout or overexpression in mice. Jag1 loss-of-function mutants exhibited reduced 

sprouting angiogenesis while Jag1 overexpression promotes sprouting angiogenesis. 
74 Kwon et al. showed that Jag1-induced signals from the bone marrow 
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microenvironment are critical for the development of angiogenic ability of endothelial 

progenitor cells. 75 An interesting study recently demonstrated that JAG1 could 

subsequently activate KLF4 which induced the transdifferentiation of tumour cells into 

endothelial cells. 76 Nevertheless, there are reports of the opposite effect in other cell 

models. A recent study emphasised the role of JAG1 in promoting haematopoietic 

lineage over endothelial lineage specification during pluripotent stem cell 

differentiation. 77 It is conceivable that in different cell types and in response to 

different environmental cues, the JAG1 activated Notch pathway may delicately 

control a distinct regulation network which leads to altered consequences.  

HES5 is a common downstream target of the Notch pathway which belongs to the 

basic helix-loop-helix transcription factor family and is usually associated with neural 

cell differentiation. 78 One study suggested a role for HES5 in vascular development, 

as it might be a key positive mediator for the statin-induced differentiation of bone 

marrow stromal cells into ECs. 79 Another study has suggested that HES5 plays a 

part in promoting endothelial proliferation in response to endothelial injury during 

atherosclerosis. 80 This study also demonstrated that MicroRNA-126-5p promotes 

endothelial regeneration and limits atherosclerosis by suppressing the Notch inhibitor 

delta-like 1 homologue (Dlk1), which leads to the release of HES5 that was 

suppressed by Dlk1, allowing HES5 to play its role in endothelial repair.  

 

 

Potential Applications of EC Generated through Reprogramming 

 

One big advantage of using iPS cell or direct cell conversion technique to generate 

ECs is the use for patient-specific disease modelling and drug screening. Moreover, 

an exceptional advantage of direct lineage conversion over iPS cell is the potential 

application for direct in vivo lineage reprogramming for cell replacement therapy, 

which avoids the unstable long term of in vitro cell culture, tumour-forming risks and 

the technical obstacles for cell transplantation. For example, direct injection of 

transcription factors cocktail Gata4, Mef2c and Tbx5 into the infracted cardiac area 

could reprogram resident non-myocytes into cardiomyocyte-like cells with improved 

cardiac function. 32  The in vivo regeneration of functional insulin-producing 
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pancreatic β-cells from other types of pancreatic cells has been reported by several 

studies for their potential benefits for treating diabetes. 30,81,82 

Cell-based therapeutic angiogenesis is a recently arising approach to restore the 

blood perfusion in ischaemic tissue. Successful therapeutic angiogenesis depends on 

the transplanted cells to directly incorporate into the neovasculature as well as to 

secrete angiogenic growth factors. 83 This therapy is of special significance in treating 

peripheral artery disease (PAD) since current pharmacological and interventional 

revascularisation therapies are not beneficial enough. 84 However, researchers are 

still investigating the optimal starting cells to generate functional angiogenic cells. In 

the murine ischemia model of PAD, several studies demonstrated that direct 

reprogrammed ECs could efficiently engraft into local vasculogenesis of ischaemic 

tissue and profoundly improve the tissue perfusion. 38,39,42,44,48 Moreover, direct 

reprogramming without reversing to a pluripotent state prevents the risk of tumour 

formation.  

Reprogrammed ECs have the potential to become tissue specific ECs which provide 

interesting therapeutic value to target precise pathological conditions. This could be 

achieved through culturing the cells under in vitro or in vivo tissue specific 

microenvironment. In vitro co-differentiating ECs and neural cells from human iPS 

cells facilitates the reprogrammed ECs to acquire blood-brain barrier EC specification. 
85 Neural cells provide relevant cues including Wnt/β-catenin signalling to specify the 

ECs towards a blood-brain barrier phenotype. Ginsberg et al. demonstrated that 

amniotic cells-derived ECs can be specifically educated into sinusoidal ECs to 

participate liver vasculature regeneration by intrasplenic transplantation. 29 Recent 

studies further clarify the molecular signatures to define tissue-specific ECs, which 

provide us more information to achieve EC specification through introducing 

transcription factor that regulate tissue specific EC identity. 86 

Tissue engineered vascular graft represents another promising direction for vascular 

regenerative medicine. In addition to direct transplantation to replace injured vessels, 

tissue engineered graft can also serve as a useful ex vivo model to study the 

mechanisms related to vascular cell or ECM behaviours. Based on a previous 

established protocol from our laboratory, functional vascular-resembling conduits can 

be generated by seeding the decellularised mouse aorta with human origin cells 
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using an ex vivo bioreactor circulation system. 43,87 Human fibroblast-derived ECs 

exhibited good ability to reendothelialise the decellularised graft. 42 

The proliferation and accumulation of SMC and fibroblasts following endothelial 

denudation/dysfunction profoundly contributes to the development of atherosclerosis 

and restenosis. Protocols for the direct conversion of fibroblasts into functional ECs 

may provide promising tools for in situ endothelial regeneration. However, the main 

obstacle to this future application is the lack of proper gene delivery technique aiming 

at the specific type of cell for in vivo reprogramming. A recent study demonstrated an 

in situ virus delivery method to specifically target vascular SMCs without effecting 

ECs by constructing a designated gene with EC enriched microRNA target 

sequences within the same vector. 88 By employing a similar strategy, it is possible to 

develop a method to specifically switch local fibroblasts or SMCs into the endothelial 

lineage to achieve autologous endothelium repair. 

 

Summary and Perspective 

Generating functional ECs from other somatic cell types with or without passing 

through a pluripotent state provides intriguing prospects for therapeutic application of 

vascular regeneration, especially to generate patient individualised cells that bypass 

the immunogenicity and ethical issues. However, the existing reprogramming 

methods to produce ECs are of various efficiencies. Therefore, further optimisation 

and standardisation of the methods are required to be able to produce ECs at clinical 

grade and scale. In addition, the underlying mechanisms of endothelial 

reprogramming need to be elucidated to facilitate the optimisation of the technique.  

The fast development in the field of computational biology provides new tools to 

analyse transcription factor combinations for efficient direct reprogramming. 89-91 A 

recently developed computational platform, Mogrify, predicted the sets of 

reprogramming factors to successfully convert keratinocytes into microvascular ECs 

based on the combined calculation of gene expression data and regulatory network 

information. 90 Novel bioinformatics approaches largely facilitate the development of 

cell lineage conversion protocols.    
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In the future, an efficient workflow could be to firstly use computational platform to 

predict the possible reprogramming strategy. Then to validate and optimise the 

reprogramming protocol at the bench to efficiently generate well characterised 

endothelial population. Finally the individualised endothelial population could be 

applied in downstream applications including vascular regenerative therapies, 

vascular disease modelling and drug screening (Figure 3).  
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Figure Legends 

 

Fig.1 Reprogramming strategies for endothelial generation from other 

types of somatic cells. 

Somatic cells can be reprogrammed towards the endothelial lineage with or 

without passing through a pluripotent state. (A) Ectopic overexpression of 

endothelial-specific transcription factors with endothelial-inductive conditions 

can directly reprogram somatic cells into ECs. (B) Using iPS-generating 

pluripotency transcription factors for a short term can switch the differentiated 

somatic cells to a intermediate plastic state. Then the partially reprogrammed 

cells can be further differentiated towards ECs. (C) Somatic cells can also be 

fully reprogrammed into iPS cells and then be stimulated into the endothelial 

fate.  

  

Fig. 2 Mechanisms involved in endothelial reprogramming. 

Different signalling pathways together with epigenetic and transcriptional 

regulations comprehensively modulate the reprogramming towards the 

endothelial lineage. Relevant signalling pathways include VEGF, BMP, 

NOTCH, TGF-β, FGF signalling pathways. Epigenetic modulations include 
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chromatin reorganisation, DNA demethylation, and post-translational histone 

modification. Transcriptional level is the wide-scale gene expression 

regulations induced by ectopically overexpressed transcription factors.  

 

 

Figure 3. An efficient workflow for endothelial reprogramming and 

applications. 

Based on the fast development in the field of computational biology, an 

efficient workflow for endothelial reprogramming can start with using 

computational platform to calculate the possible sets of transcription factors to 

achieve efficient reprogramming. Then the protocol can be verified and 

optimised at the bench. Finally, ECs generated through reprogramming from 

patients can be used for individualised cell therapy and tissue engineering, 

disease modelling and drug screening.  
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Table 1  Comparison of different stem cell-based strategies for endothelial regeneration 

  Cell Source Adult Stem Cells ESCs iPS Cells 

 

Somatic cells 

 

Origin 

Circulation, bone 

marrow or resident 

tissue 

Blastocyst of embryo 

Generated by 

reprogramming of 

somatic cells, usually 

fibroblast 

Many types of 

somatic cells: 

fibroblast, amniotic 

cell, etc 

EC 

generation 

Give rise to EC in 

response to specific 

stimulations and 

endothelial-

promoting culture 

conditions 

EB formation and 

subpopulation 

selection; culture with 

feeder cells or specific 

substrate under 

chemical defined 

endothelial-promoting 

condition 

Culture under chemical 

defined endothelial-

promoting conditions; 

EB formation and 

subpopulation 

selection 

Reprogrammed by 

specific transcription 

factor with 

endothelial-

promoting culture 

conditions 

Main 

Strengths 

·Autologous 

·Specific 

endothelial lineage 

committed 

·Clinical safety 

·Self-renewal 

·High proliferative 

capacity 

·Autologous 

·Self-renewal 

·Large number of cell 

sources 

·Autologous 

·Large number of cell 

sources 

·Simplicity and less 

time consuming 

Main 

Weaknesses 

·Ambiguous 

definition and 

isolation methods 

·Limited number 

·Limited replicative 

capacity 

·Ethical debate 

·Tumourigenesis risk 

·Immunological 

barriers 

·Unstable cell identity 

·Tumourigenesis risk 

·Time consuming 

·Unstable cell identity 

·Low efficiency 

·Various initial cell 

types 

·Unstable cell identity 

·Potential  

tumourigenesis risk 

Clinical 

Application 

A number of clinical 

trials proved the 

therapeutic 

benefits for 

revascularisation 

and remodelling 

No clinical trial data.  No clinical trial data No clinical trial data 
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Figure 1 .                                                 Hong et al.  

Figure 1. Reprogramming strategies for endothelial generation from 
other types of somatic cells. 
Somatic cells can be reprogrammed towards the endothelial lineage with 
or without passing through a pluripotent state. (A) Ectopic overexpression 
of endothelial-specific transcription factors with endothelial-inductive 
conditions can directly reprogram somatic cells into ECs. (B) Using iPS-
generating pluripotency transcription factors for a short term can switch 
the differentiated somatic cells to a intermediate plastic state. Then the 
partially reprogrammed cells can be further differentiated towards ECs. (C) 
Somatic cells can also be fully reprogrammed into iPS cells and then be 
stimulated into the endothelial fate.  
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Figure 2 .                                                 Hong et al.  

Figure 2. Mechanisms involved in endothelial reprogramming. 
Different signalling pathways together with epigenetic and transcriptional 
regulations comprehensively modulate the reprogramming towards the 
endothelial lineage. Relevant signalling pathways include VEGF, BMP, 
NOTCH, TGF-β, FGF signalling pathways. Epigenetic modulations include 
chromatin reorganisation, DNA methylation changes, and post-
translational histone modification. Transcriptional level is the wide-scale 
gene expression regulations induced by ectopically overexpressed 
transcription factors.  
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Figure 3.                                                 Hong et al.  

Figure 3. An efficient workflow for endothelial reprogramming and 
applications. 
Based on the fast development in the field of computational biology, an 
efficient workflow for endothelial reprogramming can start with using 
computational platform to calculate the possible sets of transcription 
factors to achieve efficient reprogramming. Then the protocol can be 
verified and optimised at the bench. Finally, ECs generated through 
reprogramming from patients can be used for individualised cell therapy 
and tissue engineering, disease modelling and drug screening.   
  
 
 


