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With heart and cardiovascular diseases continually challenging healthcare

systems worldwide, translating basic research on cardiac (patho)physiology

into clinical care is essential. Exacerbating this already extensive challenge

is the complexity of the heart, relying on its hierarchical structure and func-

tion to maintain cardiovascular flow. Computational modelling has been

proposed and actively pursued as a tool for accelerating research and trans-

lation. Allowing exploration of the relationships between physics, multiscale

mechanisms and function, computational modelling provides a platform for

improving our understanding of the heart. Further integration of experimen-

tal and clinical data through data assimilation and parameter estimation

techniques is bringing computational models closer to use in routine clinical

practice. This article reviews developments in computational cardiac model-

ling and how their integration with medical imaging data is providing new

pathways for translational cardiac modelling.
1. Introduction
Heart function is the orchestration of multiple physical processes occurring across

spatial scales that must act in concert to carry out its principal role: the transport of

blood through the cardiovascular system. Interest in cardiac physiology stretches

beyond scientific curiosity to genuine need, with diseases of the heart posing sig-

nificant challenges to the vitality of societies, healthcare systems and economies

worldwide. Discord in cardiac function leading to pathology can occur at every

spatial scale (figure 1). Changes in protein isoforms in the contractile unit of the

heart (sarcomere), in gene expression and organization of proteins, in the consti-

tution of the extracellular tissue scaffold, in the flow of blood through the muscle,

in the excitation of the muscle or in the anatomy of the organ highlight a few of

many examples. The cumulative effect of pathology in heart disease—often

an ensemble of multiple modifications—ultimately re-tunes cardiac function,

leading to a progressive deterioration in performance as the heart struggles to

maintain output. Cardiology has advanced significantly, improving care and
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Figure 1. Illustrative representation of multiscale cardiac anatomy. (a) Geometric representation of the biventricular anatomy of the heart with streamlines illus-
trating its fibre architecture, (b) tissue block illustrating the laminar structure of the heart comprising fibre bundles arranged into sheets separated by cleavage
planes, (c) local structural arrangement of myocytes and coronary capillaries, (d ) 3D view of the cardiomyocyte cut to view internal structures (data courtesy of Dr
Rajagopal and Dr Soeller [1,2]), (e) anatomy of the cell illustrating nucleus, myofibres (comprising crossbridges) and mitochondria. RV, right ventricle; LV, left
ventricle; PV, pulmonary valve; AV, aortic valve; MV, mitral valve; ECM, extracellular matrix; Mito., mitochondria.
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outcomes in patients. However, our ability to diagnose specific

mechanisms, plan or adapt therapy, and/or predict treatment

outcomes in patients continues to present challenges, reflecting

a need to improve how we use knowledge of cardiology to

analyse—or model—the heart.

The use of modelling for understanding cardiac physiology

and mechanics has a long history, with work stretching back to

Woods [3], who estimated the stress in the heart wall by approxi-

mating the ventricle as a thin-walled spherical shell (known as

the Law of Laplace). Modelling has since progressed to better

approximate the underlying anatomical and physiological com-

plexities. Geometric models of the heart evolved from thin-

walled spheres to ellipsoids [4], axisymmetric idealized ventri-

cles [5] and eventually to three-dimensional (3D) anatomically

accurate geometries [6,7]. Studies illustrated the importance of

accounting for nonlinearity in tissue mechanical properties [8–

10] and structure [10,11] to understand the motion and load

response of the heart. With experimental data on myocardial

load response [12,13] and structure [14], more detailed struc-

ture-based models were introduced [15–17]. Experimental
studies illustrating length [18], velocity [19] and frequency-

dependent [20] modulation of muscle force were also integrated

into models [21], broadening the scope of these models to

simulate the mechanical function of the heart.

The biomechanical aspects of cardiac function cannot be

fully isolated, instead they are interlinked with numerous phys-

iological processes. At its core, the heart is a multiphysics organ

[22] with electrical activation stimulating muscle contraction

[23,24], muscle contraction interacting with intraventricular

blood to promote outflow [25,26] and coronary perfusion [27],

transporting metabolites and clearing waste products. These

physical phenomena—involving reaction–diffusion, nonlinear

mechanics, hemodynamics and biotransport—are tightly inte-

grated, influencing the mechanical action of the heart. Heart

function is dynamically regulated and modulated through inter-

actions with the circulatory system, nervous system and

endocrine system to change cardiac output [28–30]. Like other

muscles, the heart’s functional capacity and structure is also

dynamic, responding to chronic changes in loading conditions

and metabolic demand by altering cell structures, structural

http://rsfs.royalsocietypublishing.org/
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content, size, shape and vascular transport, among others. These

physical and regulatory processes (which have been modelled to

varying degrees) operate collectively to effectively deliver blood

over decades and under extreme changes in functional demand.

Understanding the influence of these factors on the biomecha-

nics of the heart is important for deciphering the

heterogeneous pathologies of the heart.

As the computational modelling community has explored

various aspects of cardiac function at a fundamental level, par-

allel advancements in medical imaging and other diagnostic

tools have enabled acquisition of an impressive range of data-

sets. Modern imaging is capable of recording the anatomy

and motion of the heart, its tissue architecture, blood flow and

perfusion, metabolism as well as numerous other pictures

potentially useful in characterizing the state of a patient’s

heart [31]. With such a wealth of data, however, the challenge

becomes integration and contextualization. Addressing this

challenge is the primary aim of data assimilation, fusing cardiac

models with these disparate data sources. While the complexity

of a model is, in many ways, no simpler than the data it is

founded upon, the advantage is its ability to link observed be-

haviour to the underlying physiology, providing potential

mechanistic explanations of patient pathology. After the chal-

lenges of data–model fusion are met and model analysis

provides novel insight, the difficulty then turns to translating

these findings into clinically useable decision-making tools

that can be robustly tested through clinical trials, proving their

efficacy and superiority compared to existing techniques. This

effort is the principle aim of translational cardiac modelling
(TCM), bringing cardiac modelling and model-based outcomes

into the clinical routine. TCM, however, remains in its infancy,

grappling with the challenges of using real data and striking

the balance between necessary and known complexity to deli-

ver tools that address clinical needs. While the road to

translation is challenging, the potential for significant impact

has fuelled scientific progress forward towards this aim.

In this review, we consider the recent advances in ventricu-

lar cardiac mechanics modelling and translation to clinical

applications. Section 2 provides an overview of the current

state-of-the-art in biomechanical heart modelling, addressing

the various aspects of multiphysics physiology explored in

the literature. Emerging work in the areas of multiscale model-

ling as well as growth and remodelling applied to cardiac

mechanics are also reviewed. Section 3 continues by reviewing

available clinical data, the challenges in model parametrization

as well as data–model fusion techniques commonly used in

TCM. Finally, current translational efforts appearing in the lit-

erature are reviewed (§4) and future directions for TCM are

discussed (§5). Exhaustive, in-depth review of each of these

subjects could be an article in and of itself. Instead, this article

gives an overview of the road to translation in cardiac mechanics,

touching on the important aspects which span research disci-

plines and examining those future directions required to

realize the potential impact of modelling. While this article

focuses on translation of ventricular mechanics models in the

heart, this discussion reviews tools and advancements that

may facilitate other translational modelling efforts.
2. Modelling paradigms in the heart
The multiscale anatomy and physiology of the heart play an

integral role to cardiac function [28] (figure 1). The cardiac
muscle (or myocardium) is a highly structured collection

of cells known as cardiomyocytes. Within these cells, the

fundamental contractile unit is the sarcomere, consisting of

inter-digitating lattices of thick and thin filaments. The cyclic

interaction between the thick and thin filaments, triggered

and regulated by intracellular calcium, determines the

amount of force generated during active muscle contraction.

Electrical excitation of the myocytes cyclically modulates intra-

cellular calcium concentration, releasing calcium from internal

stores that are subsequently replenished.

Myocytes are arranged axially through the extracellular

matrix, providing the heart’s necessary elastic structure.

These fibres run in parallel and are separated by cleavage

planes [14,32], interconnecting to form a 3D network allowing

the heart to undergo complex motions during each cardiac

cycle. The tissue organization enables fast propagation of elec-

trical waves in the direction of fibres through gap junctions that

interlink cells. The integrated electromechanical action of the

heart is essential for the efficient transfer of blood through

the cardiac chambers, coronary arteries and the entire circula-

tory system. The introduction of disease can occur through a

variety of mechanisms, often leading to remodelling of the

shape, structure and function of the heart as it aims to preserve

output. However, long-term remodelling is often debilitative,

leading to the progressive deterioration of cardiac performance

and the development of heart disease. In this section, we

review modelling efforts presented in the literature aimed at

addressing the varying physiological aspects of the heart.
2.1. Modelling cardiac anatomy and structure
Personalized ventricular mechanics analyses rely on anatomi-

cally realistic geometric models. Since the early 1970s,

sophisticated imaging techniques, such as cine-angiography

and echocardiography (ECHO), have been used to provide

detailed descriptions of the ventricular anatomy. Con-

currently, experimental methods were designed that were

capable of obtaining detailed 3D measurements of ex vivo
cardiac geometry as well as myocardial microstructural infor-

mation. This approach enabled the creation of high fidelity

3D anatomical models of dog [14,15], pig [33] and rabbit

[34] hearts with embedded descriptions of the myocardial

tissue architecture.

With the development of non-invasive 3D cardiac imaging

techniques, the construction of subject-specific 3D anatomical

models of the heart is now widespread. The availability of in
vivo imaging has not only ensured that computational

models can accurately represent the shape of intact hearts,

but has also enabled in vivo mechanics analyses to be per-

formed on a wide range of species (e.g. dog [35], sheep [36]

and human [37–40]). Methods for constructing 3D anatomical

models can be broadly categorized into three main approaches:

(1) iterative nonlinear least-squares fitting [15,33,40–42], com-

bining medical image registration with free-form deformation

techniques to customize a generic mesh [43]; (2) volume

mesh generation from binary masks or surface meshes of

the myocardium performed by software packages such as

Tarantula (http://www.meshing.at/), GHS3D (http://www-

rocq.inria.fr/gamma/ghs3d/ghs.html), CGAL (http://www.

cgal.org/) and Simpleware (http://www.simpleware.com/);

and (3) cardiac atlases used for the construction of 3D

models of the heart from non-invasive medical images

[44,45]. While each approach has proved effective, limitations

http://www.meshing.at/
http://www.meshing.at/
http://www-rocq.inria.fr/gamma/ghs3d/ghs.html
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Table 1. Table of sample of cardiac constitutive equations published and used in the literature. HE, hyperelastic; VE, viscoelastic; 1D, one-dimensional; ISO,
isotropic; TISO, transversely isotropic; ORTH, orthotropic; UA, uni-axial; BA, bi-axial; MA, multi-axial; SH, shear; PV, pressure – volume; ES, epicardial strains;
LitVals, various literature values.

model type structure par no. data references year

Humphrey & Yin HE TISO 4 BA [13] [55] 1987

Horowitz HE TISO 8 BA [13] [56] 1988

Humphrey HE TISO 5 BA [57] [58] 1990

Guccione HE TISO 5 ES [59] [60] 1991

Lin & Yin HE TISO 4 MA [61] 1998

Criscione HE TISO — — [62] 2001

Costa HE ORTH 7 — [49] 2001

Pole-zero HE ORTH 18 LitVals, BA [63] [17] 2001

Kerckhoffsa HE TISO 4 BA [57], PV [64] [65] 2003

Holzapfel & Ogden HE ORTH 8 SH [66], BA [13] [67] 2009

Loeffler VE 1D 5 UA [68] 1975

Yang VE ISO 5 UA [69] 1991

Huyghe VE TISO 11 UA [70], BA [12] [71] 1991

Holzapfel VE ORTH 4 LitVals [72] 1991

Cansiz VE ORTH 17 SH [66] [73] 2015
aLaw also contains additional parameters for modelling tissue compressibility not included in the table.
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remain. Fitting techniques working from template meshes can

struggle to preserve mesh quality and perform poorly when

dissimilarity between the template and target geometry

exists. In contrast, volume mesh generation from masks or

surface segmentations usually have good mesh quality but

are more sensitive to potential segmentation errors.

In addition to constructing anatomy, models must also

incorporate myocardial tissue structure. Our basic under-

standing of 3D myocardial architecture has been built up

from detailed histological studies [14,15,46]. These data are

still widely used as the basis for rule-based algorithms to rep-

resent myocardial fibre orientation [47,48]. High spatial

resolution data have been made available by scanning elec-

tron microscopy and confocal microscopy [14,32,41,42], and

this has enabled quantitative characterization of myocardial

laminae, which have been shown to play a significant role in

cardiac mechanics [49,50]. Diffusion tensor imaging techniques

have been developed to estimate myocyte orientations [51].

Recently, high spatial resolution images of ex vivo hearts have

provided another means to study myofibre structure [52]

and to examine the organization of laminae throughout

the whole heart volume [53]. While progress towards more

comprehensive methods for characterizing cardiac micro-

structure (particularly in vivo) are in development, lack of

tissue structure information remains an important gap in com-

putational models and a likely confounding factor influencing

model results.
2.2. Passive myocardial constitutive equations
It is generally accepted that the mechanical response of ven-

tricular myocardium can be described by anisotropic,

hyperelastic (or viscoelastic) constitutive equations [12,54]

(table 1). Transversely isotropic constitutive equations have

been proposed by Humphrey & Yin [54] and Guccione

et al. [60]—which has become one of the most cited and
used cardiac constitutive models. The existence of myocardial

sheetlets motivated the development of an orthotropic Fung-

type exponential strain energy density function [74]. The

model aimed to account for the relative shear (sliding)

between adjacent sheetlets that have been shown to contrib-

ute to the total LV wall thickening during systole. Dokos

et al. [66] confirmed that myocardium exhibits orthotropic

mechanical response using carefully designed shear exper-

iments on myocardial tissue blocks excised from the

mid-ventricular wall. Similar material response was observed

in shear testing experiment of human myocardium [75,76].

However, the level of statistical significance suggesting an

orthotropic response was not as strong as that reported by

Dokos et al. [66], with the mechanical response appearing

transversely isotropic under large strain loads. Extending

the approach pioneered for characterization of arteries

[77,78], Holzapfel & Ogden [67] proposed a constitutive mod-

elling framework, based on the underlying morphology of

the heart tissue, to model the orthotropic passive mechanical

response. Many constitutive equations in table 1 employ

exponential forms, which generally suffer from a strong cor-

relation between constitutive parameters. Criscione et al. [62]

addressed these issues, in part, by using mutually indepen-

dent strain invariants to define a transversely isotropic

constitutive equation, minimizing the covariance between

each of the response terms. However, this technique is yet

to be used by the cardiac mechanics research community

for predictive mechanics simulations.

Cardiac tissue comprises cells (principally myocytes and

fibroblasts) surrounded by extracellular fluid and held together

structurally through extracellular matrix proteins [79]. The

tissue–fluid interaction gives rise to viscous effects, which

have been experimentally demonstrated by the appearance of

hysteresis in stress–strain [12] and force–displacement [66]

curves during cyclic loading. Modelling the complex viscous

effect poses challenges since the mechanical behaviour is

http://rsfs.royalsocietypublishing.org/


rsfs.royalsocietypublishing.org
Interface

F

5

 on March 3, 2016http://rsfs.royalsocietypublishing.org/Downloaded from 
time-dependent and the constituents of the computational

models need to take into account a mixture of solids and

fluids. Several methods have been proposed to represent visco-

elastic function in passive constitutive models (table 1) ranging

from relatively simple arrangements using Maxwell’s constitu-

tive equation [68] to more complex variants incorporating

known orthotropic hyperelastic models [73]. Current viscoelas-

tic models tend to provide capacity to appropriately model

cyclic loading conditions. However, validation of these types

of models demands further experiments specifically targeted

for hysteresis and creep phenomena. These experiments can

be challenging, particularly ex vivo where tissue viability and

changes to the extracellular fluid environment can confound

the recordings.
ocus
6:20150083
2.3. Active contraction constitutive equations
Sliding filament theory by Huxley [80] has formed the foun-

dation of many modern myocyte contraction models. Some of

the first models that used this theory were proposed by Wong

[81]. Subsequent models have concentrated on relating the

active fibre tension to muscle length, time following stimulus,

the interaction between Ca2þ and troponin C [82], and the

effects of sarcomere length on Ca2þ binding and tension

[83]. Guccione & McCulloch [84] estimated the active fibre

stress using a deactivation contraction model, which placed

specific emphasis on the deactivating effect of shortening

velocity, as well as the dependence on shortening history.

This model formed the basis of a time-varying elastance

model [16] that was dependent on sarcomere length and

length-dependent calcium concentration.

Hunter et al. [21] proposed an empirical cellular mechanics

model (the HMT model), which considered the passive mech-

anical properties of the tissue, the rapid binding of Ca2þ to

troponin C and its tension-dependent release (which occur at

a slower rate), the length-dependent tropomyosin movement,

the availability of Ca2þ binding sites and the crossbridge ten-

sion development. This model was shown to reproduce the

response to isotonic loading and dynamic sinusoidal loading

experiments. Based on the HMT model, Niederer et al. [85]

proposed a more detailed time-dependent model with descrip-

tions of contractile stress by taking the dynamics of calcium

binding into account. Both models used a fading memory

model to compute the active tension resulting from crossbridge

kinetics. The Rice contraction model [86] instead used

phenomenological representations to approximate the spatial

arrangement of crossbridges, creating a compact ordinary differ-

ential equation model capable of replicating a wide range of

experiments. The Bestel–Clement–Sorine (BCS) contraction

model (proposed in [87] and further developed in [88]) con-

sidered myosin molecular motors, was chemically controlled

and consistent with the sliding filament theory. The passive com-

ponent was designed to be transversely isotropic by combining

an elastic model of the Z-discs with a viscohyperelastic com-

ponent model representing the extracellular matrix. The active

contractile component was also coupled with a viscous element.

Transverse active stresses (orthogonal to the myocyte axis) have

also been predicted by the arrangement of the myosin cross-

bridge [89] and applied in contraction models to achieve better

matching of measured systolic strains [90].

In comparison to the active stress framework whereby

passive and contractile stresses are summed, an active strain fra-

mework has also been proposed. Using concepts from the
growth and remodelling literature, this approach defines the

deformation gradient tensor as the product of a passive elastic

component and an active component [91]. This approach aims

to preserve convexity in the material strain energy by avoiding

the stress superposition found in more traditional active con-

traction mechanics models. However, these theoretical results

rely on the complete decoupling between active components

and length-/velocity-dependent mechanisms, which may pre-

sent challenges for the model’s consistency when comparing to

physiological experiments.

2.4. Incompressible versus nearly incompressible
formulations

Myocardial models introduced in the literature vary in

their treatment of myocardial mass and its conservation.

Physiologically, this debate stems from the fact that experimen-

tal studies have shown intravascular blood flow may account

for changes of 5–10% in ventricular wall volume during each

cycle [92]. A common approach used in a number of models

[17,49,93] is to approximate the tissue as incompressible

using the so-called mixed u–p formulation [94], which neglects

these minor variations in mass content. An equally common

alternative considers the myocardium as compressible (or

nearly incompressible), whereby myocardial volume is lost

or gained as a function of the effective hydrostatic pressure

based on a pressure–volume constitutive equation. This

approach is commonly applied using a displacement only for-

mulation with additional parameter(s) (i.e. bulk modulus and,

potentially, others) which scale terms that penalize changes in

volume [65,90,95]. An alternative employed in some cardiac

mechanics studies is the perturbed Lagrangian approach,

whereby pressure and displacement are solved with the

pressure–volume constitutive relation given as the required

constraint [73,96,97]. Numerical considerations for these

models, in the context of cardiac mechanics, were discussed

in [98]. Use of different models seems often motivated by

numerical considerations, leaving an open question of which

strategy is most applicable when modelling cardiac tissue.
2.5. Electromechanics
Contraction of the heart is induced by electrical activation initi-

ating in the sinoatrial node and propagated through the

myocardium by an electrophysiological depolarization wave.

Coupling electrophysiology and mechanics allows models to

account for known length-dependent alterations in wave

propagation and resultant contraction. Electromechanical

models (figure 2a) enable investigations of the role of abnormal

electrical activity on mechanical performance of the heart as

well as mechanical factors that contribute to arrhythmogenesis

[24]. There are a wide variety of mathematical models of

cardiac cell electrophysiology ranging from: low-order phe-

nomenological models such as the FitzHugh–Nagumo

(FHN) type models [103,104]; multivariate representations

such as the Beeler–Reuter model [105] and biophysical ionic

current models governed by ordinary differential equations

[106], such as Hodgkin–Huxley type models [107] and

human ventricular cell models [108]. The modified FHN

model proposed in [104] has been widely adopted in electro-

mechanics modelling studies [109–113], and species-specific

models have been applied to study electromechanics during

myocardial infarction [114] and dyssynchronous heart failure

http://rsfs.royalsocietypublishing.org/


(a) (b) (c)

Figure 2. Samples of multiphysics modelling in the heart. (a) Biventricular electromechanical model of the heart illustrating the propagation of electrical potential
over the heart [99]. (b) Fluid – solid mechanical model of the assisted LV. Fluid flow streamlines (coloured blue-red indicating increasing velocity magnitude) and
myocardial displacements (yellow-red with equally spaced bands illustrating displacement magnitude) are illustrated [100,101]. (c) Coupled 1D flow-poroelastic
perfusion model shown at early systole. Flow velocities are shown in the vessel segment. The pore pressure in the myocardium shows increased systolic compressive
forces preferentially towards the subendocardium [102].
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[115]. Mechano-electrical feedback plays an important role in

the heart [116]. In particular, the state of deformation of the

heart muscle is known to modulate the electrical properties

of myocytes via the stretch-activated channels [113,117] and

has the potential to modulate arrhythmogenesis. Although

the electrical and mechanical function of the heart operate at

significantly different timescales, coupled electromechanical

simulations have been made possible via two numerical strat-

egies. A common approach considers numerical partitioning of

the electromechanical system, decoupling the electrical and

mechanical problems using implicit–explicit methods [109,

111,113,115,118,119]. Alternatively, a monolithic approach

based on finite-element methods (FEMs) has been proposed

[112], enabling stable integration of length-dependent effects

of motion on electrical wave propagation. While quantitative

comparisons between partitioned and monolithic approaches

suggest the two forms tend to yield compatible results, these

comparisons are likely to depend strongly on the selected

model problem, with some responding more strongly to

electromechanical coupling effects.
2.6. Fluid – structure interaction in the ventricles
Intraventricular blood flow and its influence on heart function

has been the focus of numerous studies in the literature (see

reviews by Khalafvand et al. [120] and Chan et al. [121]). Geor-

giadis et al. [122] did some of the first flow-specific work,

considering the left ventricle as an axisymmetric ellipsoid.

Similar models were later presented by Baccani et al. [123],

Domenichini et al. [124] and Pedrizzetti & Domenichini [125],

who suggested a possible link between ventricular vortical

dynamics and disease. Saber et al. [126] and Merrifield et al.
[127] presented some of the first patient-specific flow models

of the LV using arbitrary Lagrangian–Eulerian (ALE) finite

volume methods that integrated motion derived from

images. Doenst et al. [128] and Oertel & Krittian [129] presented

patient-specific flow models, incorporating left ventricle and

atria, along with aortic structures for simulating left ventricular

flow dynamics. Blood flow simulations have also been used to

study diseases, such as myocardial infarction [130], congenital

heart disease [131] and hypertrophic cardiomyopathy [132].

Some of the first models considering flow and tissue

motion in the heart were done by Peskin [133], who focused
on the interaction of flow with valves. This initial work

spawned numerous subsequent studies examining the mech-

anical heart valves [134,135], mitral valves [136], both mitral

and aortic valves [137] as well as recent work studying trileaflet

biomechanical tissue valves [138,139]. Extension of fluid–

structure interaction (FSI) techniques to study the interaction

between blood flow and the ventricles was achieved by

McQueen & Peskin [140,141], which was subsequently used

for later studies of the heart [142–144]. These models, repre-

senting the myocardium as a collection of 1D fibres, were

used to study coupling between flow and tissue along with

the interaction between chambers of the heart [25,145–147].

One of the first attempts at modelling ventricular fluid–solid

coupling using the FEM was presented by Chahboune &

Crolet [148], where a two-dimensional (2D) model incorporat-

ing an anatomically based cross—section of the heart was used

to analyse the effects of coupled flow and hemodynamics.

Other 2D axisymmetric models were later used to study FSI

effects under assist device support [149], in patients with

DCM [150] and to examine the sensitivity of myocardial

stiffness on clinical parameters [151].

Watanabe et al. [152,153] presented a 3D FEM model of an

idealized left ventricle, incorporating myocardial biomecha-

nics based on the work of Lin & Yin [61], representing the

first work to incorporate state-of-the-art biomechanical

models. This work used conforming low-order finite-elements

to approximate the FSI problem, simplifying the intraventricu-

lar flow dynamics compared to comparable hemodynamics

models. Cheng et al. [154] presented a partitioned passive

filling model which coupled refined finite volume blood

flow with a thin-walled isotropic hyperelastic wall model.

Biventricular models were later developed which treated the

heart as a passive Mooney–Rivlin material with an isotropic

exponential term [155,156], driving systole and diastole

through inflow/outflow boundary conditions. This model

was later extended to incorporate an anisotropic term and

emulate contraction by scaling passive material stiffness par-

ameters with time [157]. A non-conforming monolithic FSI

method and model [26,158] were used to simulate passive/

active cardiac mechanics on patient-specific geometries using

the Costa constitutive equation [49]. This model was later

applied to study congenital heart diseases [159,160] and

assisted left ventricles [100,101,161] (figure 2b). Krittian et al.
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[162] presented some of the first validation work, developing

an experimental heart setup and modelled using both

FSI and boundary-driven flow modelling, illustrating good

qualitative agreement between data and model particularly

for the boundary-driven flow model. Gao et al. [163] recently

merged FEM models of the ventricle with the immersed

boundary techniques of Peskin to enable use of current

constitutive models within this framework.

While FSI models enable simulation of a multiphysics

phenomenon at the core of cardiac function, such simulations

often require substantial computational resources. Moreover,

due to the low viscosity of blood and dominance of pressure,

approximations of ventricular mechanics that ignore

hemodynamics (considering the ventricle as a pressure-

filled chamber) have proved effective in many modelling

scenarios. While it is established that intraventricular

pressure gradients are present in the ventricle, the spatial

variation in pressure is often small relative to the absolute

pressure scale. On the other hand, FSI models become

increasingly important when studying specific pathologies,

such as valve stenosis or hypoplastic left heart syndrome

where significant increases in shear stress or decreases in

ventricular filling pressures are observed, respectively.
2.7. Poromechanical modelling
The coupling of myocardial deformation and coronary blood

flow (perfusion) has long been an area of interest motivated,

in large part, by the significant influence of the crosstalk

on their respective function (for review, see [164]). Coronary

perfusion, essential for delivering metabolites to the myocar-

dium, is functionally altered by muscle contraction with

changes in muscle stiffness and deformation influencing the

vascular resistance and compliance. From a mechanical mod-

elling standpoint, one may conceptualize this multiphysics

coupling within a classical FSI framework, explicitly resolving

each vessel in the tissue [165]. However, this approach presents

challenges given the anatomical complexity of the coronary

vasculature [102] and significant variation in scale—from epi-

cardial arteries (on the scale of millimetre) to coronary

capillaries (on the scale of micrometre). An alternative is to con-

sider flow below some spatial scale as a continuum, no longer

resolved on the basis of individual vessels but as a continuous

phenomenon present over the myocardial volume [166,167].

Two main families of this multiscale approach are classically

used: homogenization and mixture theory.

Homogenization refers to a family of mathematical methods

in which the contribution of smaller scale flows is simplified by

seeking an asymptotic limit for the problem solution assuming

a scale separation between microscopic and macroscopic

domains. A typical underlying assumption is the presence of

periodicity in the geometry and material properties of the

microstructure, which can be described by the spatial rep-

etition of a basic unit cell (often referred to as a representative
volume element in mechanical literature). Various asymptotic

methods can then be used to mathematically characterize

the limit solution. The limit formulation generally takes

the form of a coupled problem between variables at both

macroscopic and microscopic scales. In certain restrictive

situations, i.e. cases involving linear microscale problems

with constant coefficients, the microscopic problem can be

solved independently of the macroscopic one. More generally,

the formulation requires an iterative solution process, whereby
variables in the unit cell are calculated assuming a given

macroscopic solution and resultant quantities are passed to

the macroscopic problem. This increases the computational

demand for practical problems significantly; however, this

approach has been successfully explored for perfusion

modelling [168,169].

In contrast, mixture theory is directly formulated at the

macroscopic level assuming that a given number of distinct

solid and fluid phases coexist and interact at each point in the

continuum. This approach differs from the previous approach

by directly embedding the functional effect of the unit cell

into the governing poromechanical system through the use

of constitutive equations governing the kinematic–kinetic

interaction within (and between) phases. This approach origi-

nated in the pioneering work of Biot [170] and has been

further enhanced and refined over the decades, using general

descriptions of continuum mechanics to express the funda-

mental principles of conservation laws and thermodynamics

[171–173]. More recently, the particular challenges present in

the heart (e.g. large strains and rapid fluid flows) have been

specifically addressed [174]. This leads to a coupled formulation

that resembles ALE FSI [175], except that here the fluid and

solid domains are the same and a volume-distributed coupling

term is present [176].

When considering the application of these poromechanical

approaches to the heart, experimental observations reveal a

number of important additional features. Regarding the pas-

sive behaviour, cardiac tissue displays strongly anisotropic

swelling and stiffening effects under perfusion pressure [177],

similar to that of skeletal muscle [178]. The active behaviour

of the heart is also seen to exhibit notable coupling effects—

such as the well-known flow impediment phenomenon

occurring during cardiac systole [179]—that modelling must

incorporate. Perfusion is also highly compartmentalized,

with flow in a region of tissue fed by a specific set of larger

arteries [180]. To address this, the explicit solution of the flow

in larger arteries has been coupled to a distal poromechanical

tissue model yielding a multiscale representation that accounts

for the distribution of inflow sites [102] (figure 2c). Addition-

ally, different scales of the vasculature—exhibiting largely

different flow characteristics—often inhabit the same volume,

pointing to the need for so-called multi-compartment formu-

lations [169,181] that allow for generations of vessels to be

treated independently. The relationship between the explicit

vascular structure and permeability and porosity must also

be either quantified from high-resolution microvascular

imaging [182,183] or from perfusion imaging [184].
2.8. Multiscale modelling strategies for contraction
The ejection of blood occurring with each beat of the heart

depends on a cascade of functions spanning multiple scales.

The power stroke of each myosin head (motion on the nano-

metre scale) aggregates through the hierarchical structure of

the organ to produce each heart beat (motion at the centimetre

scale). As a result, understanding the biochemistry of the heart

and its influence on mechanical function requires use of multi-

scale, or micro-macro, approaches. Many multiscale modelling

approaches, particularly in electrophysiology [185–187], have

been introduced to enable the integration of biophysical

models through the hierarchy illustrated in figure 1. Here, we

focus our discussion particularly on multiscale modelling

for contraction.

http://rsfs.royalsocietypublishing.org/


rsfs.royalsocietypublishing.org
Interface

Focus
6:20150083

8

 on March 3, 2016http://rsfs.royalsocietypublishing.org/Downloaded from 
2.8.1. Subcellular contraction modelling
A crossbridge in itself can be seen as a special chemical entity

having internal mechanical variables (or degrees of freedom)

pertaining to the actual geometric configuration. In this con-

text, whether a crossbridge is in an attached or detached state

implies a conformational change of these internal variables

and a change in the inherent free energy [188], providing a

thermodynamically consistent basis for modelling the com-

plex interplay of chemical and mechanical phenomena at

the sarcomere level. This framework is appropriate for ana-

lysing the Huxley models of muscle contraction, based on

the so-called sliding filament theory. In [80], the crossbridge

is seen as a system with one mechanical degree of freedom associ-

ated with a linear spring that is under tension as soon as the

myosin head attaches to the actin filament, which collectively

induces muscle contraction. This model was later refined in

[189], including additional chemical states in the attached

configuration that accounted for the so-called power-stroke

phenomenon, a key concept in the attachment–detachment

cycle described in [190] (see also [191]). An alternative approach

was recently proposed in [192], where a purely mechanical

model was substituted for the chemical states of the attached

crossbridge, with 2 degrees of freedom corresponding to one

bi-stable element in series with a linear spring.
2.8.2. Multiscale/micro-macro approaches for contraction
Once the crossbridge behaviour has been modelled, the major

challenge is to aggregate the behaviour of a single crossbridge

over myofibrils, myocytes, myofibres to motion at the tissue

and whole-organ scales (figure 1). Given the large number of

crossbridges at the sarcomere level and above, it is quite natural

to adopt a statistical description, as proposed in [80], by which

the total active force/stress is given by the mean of the individ-

ual crossbridge forces with an appropriate scaling factor. This

approach naturally leads to considering dynamical equations

representing the evolution of the underlying probability

density functions (PDFs). In order to mitigate the resulting

computational costs in the simulation process, some approxi-

mations can be made by representing the PDF by a limited

number of so-called moments [193]. In fact, under certain mod-

elling assumptions, the moments equations are exact, and

directly provide the active stresses themselves as solutions of

a dynamical equation [88,194]. In any case, active stresses

need to be eventually considered in conjunction with passive

behaviour ingredients, resulting from various constituents

other than sarcomeres at the cell level and outside of cells.

Use of homogenization could be envisioned for this purpose,

albeit it is more standard in mechanics to resort to rheological

modelling, by which various components can be combined

in an energy-consistent formalism, e.g. in the three-element

muscle model proposed by Hill [195] and used in [88] to

formulate a complete macroscopic cardiac tissue model.

An important consideration is the adequacy of such multi-

scale modelling approaches and whether they appropriately

link cardiac function across scales. It has been demonstrated in

[80] that a 1 degree of freedom muscle contraction model is ade-

quate for representing important features of muscle physiology,

such as the Hill force–velocity dependence. Furthermore, the

extension of this model proposed in [88] was shown to correctly

reproduce length-dependence effects namely, the so-called

Frank–Starling mechanism and the scaled elastance properties

evidenced by Suga et al. [196] and observed in experimental
measurements [197]. Nevertheless, an important motivation

for a more refined microscopic model resides in the shorter

time scale effects observed in fast transients, such as under

force or length clamp [189,198]. In addition, transient deactiva-

tion may be a critical determinant of mechanical heterogeneity

in asynchronous activation [199].
2.9. Growth and remodelling
The form and function of the heart changes continuously–

during development and aging or in response to training,

disease and clinical intervention [200]. These phenomena are

collectively referred to as growth and remodelling [201].

Specifically, the notion of growth is commonly related to

changes in cardiac dimensions, whereas the notion of remodel-

ling refers to changes in cardiac structure, composition or

muscle fibre orientation [202]. Modelling the long-term,

chronic response of the heart through growth and remodelling

is challenging, and far from being completely understood.

Proposed more than two decades ago [203], the first math-

ematical model for growth within the framework of nonlinear

continuum mechanics is now well established and widely used

for various biological structures [204]. These models are based

on the conceptual idea to decompose the deformation gradient

into a reversible elastic and an irreversible growth part. Only

the elastic part (a product of the deformation gradient and

the inverse growth tensor) is used in the constitutive equations,

which then enters the equilibrium formulation in the standard

way [201]. The growth part, a second-order tensor, can be

prescribed using constitutive equations relating the growth

kinematics and growth kinetics, two equations that character-

ize how and why the system grows [205]. As an alternative

to model growth at the continuum level, is the constrained mix-

ture approach [206], based on the original mixture theory of

Truesdell & Noll [207], where each of the continuum’s constitu-

ents possesses its own reference configuration, physical

properties and rate of turnover, but deforms as a whole with

the continuum.

Cardiac growth is associated with a wide variety of

pathologies, which can conceptually be classified into two

categories [208]: concentric and eccentric hypertrophy. Con-

centric hypertrophy is associated with thickening of the

ventricular walls, impaired filling and diastolic heart failure.

Eccentric hypertrophy is associated with a dilation of the ven-

tricles, reduced pump function and systolic heart failure

[209]. While the causes for cardiac growth are generally mul-

tifactorial, concentric hypertrophy is commonly believed to

be a consequence of pressure overload, while eccentric hyper-

trophy is thought to be related to volume overload [210]. Both

conditions can affect the left and/or right side of the heart

[211]. Left-sided overload triggers growth and remodelling

of the left ventricle and may cause the symptoms of left

heart failure (pulmonary oedema, reduced ejection fraction

or cardiogenic shock). Right-sided overload triggers right

ventricular growth and remodelling and may cause symp-

toms of right heart failure (compromised pulmonary flow,

stagnation venous blood flow and poor LV preload). These

different manifestations of cardiac growth and remodel-

ling are chronic and can progressively worsen over time,

ultimately proving fatal.

A variety of different models for cardiac growth have been

proposed throughout the past decade [212]. Some simply pre-

scribe a growth constitutive equation and study its impact on
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Figure 3. Example of typical medical images of short-axis and long-axis views of the heart. (a) ECHO images at two points in the cardiac cycle. (b) CT images at end
diastole (single time point usually acquired due to radiation dose) with contrast bolus illuminating the LV blood pool. (c) CINE MRI at two points in the cardiac cycle.
SA, short-axis; LA, long axis; ED, end diastole; ES, end systole.
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cardiac function [213] without feedback mechanisms based on

the physiological status of the heart. Others allow growth to

evolve naturally in response to pressure overload or volume

overload [210]. While initial conceptual models used idealized

ellipsoidal single ventricles [213] or bi-ventricular geometries

[205], more recent approaches use personalized human heart

geometries with all four chambers [209]. Using whole heart

models allows us to explore clinically relevant secondary

effects of growth and remodelling including papillary muscle

dislocation, dilation of valve annuli with subsequent regurgi-

tant flow and outflow obstruction [209]. Growth models may

also explain residual stress which is known to be present in

the myocardium [214,215].

Multiscale modelling holds the potential to link the clinical

manifestation of cardiac growth to molecular and cellular level

events and integrate data from different sources and scales.

Studies of explanted failing human hearts revealed that the

type of cardiac growth is directly linked to changes in cellular

ultrastructure [216]: in concentric hypertrophy, individual

cardiomyocytes thicken through the parallel addition of

myofibrils; in eccentric hypertrophy, cardiomyocytes lengthen

through the serial addition of sarcomeres [217]. Eventually,

integrating these chronic alterations of cardiomyocyte struc-

ture and morphology into multiscale models of cardiac

growth could help elucidate how heart failure progresses

across the scales. It would also allow us to fuse data from

various sources—clinical, histological, biochemical and

genetic—to gain a comprehensive, holistic understanding of

the mechanisms that drive disease progression.
3. Towards translation: data – model fusion
Models adapted to a patient’s cardiac anatomy and function are

being proposed for use in diagnostic medicine—providing new

or improved biomarkers for indicating or stratifying disease—

as well as predictive medicine—allowing for virtual testing of

treatment both acutely and longitudinally. Underpinning this

translational approach are the significant advancements made

in medical imaging which are now capable of providing a

wealth of information about the anatomy, structure and
kinematics of the heart. While the concept of leveraging this

information to define patient-specific models is straightfor-

ward, the execution of fusing images and models remains a

key challenge in many TCM projects. This process depends cri-

tically on the type of data used, image processing of data into

quantifiable terms and assimilation of this data within a model.

3.1. Clinical data and acquisition
Since the first X-ray image acquired in 1895, medical imaging

data have grown to play a key role in patient diagnosis, treat-

ment planning and follow-up in the clinic. This is thanks, in

large part, to the advent of new modalities, reduced cost of

imaging, prevalence of systems in clinics worldwide and sub-

stantial body of evidence from clinical trials highlighting the

improvement in patient outcomes for specific treatments

using image-derived quantities. The main non-invasive ima-

ging techniques used in cardiology and applied in cardiac

modelling are ECHO, computed tomography (CT) and

magnetic resonance imaging (MRI) [31].

Out of these three modalities, ECHO is by far the most acces-

sible in clinics. It combines safety, low price and versatility for a

wide range of cardiovascular disorders (assessment of anatomy

and function of heart and valves, anatomy of large vessels,

measurement of flow using Doppler effect and others). The

excellent temporal resolution is compromised by a lower

signal-to-noise ratio and contrast-to-noise ratio (figure 3a) and

limitations in the reproducibility of exams, which are often

operator-dependent. Although there are no real contraindica-

tions for the ECHO exam, the hearts of larger patients can be

difficult to image. Regardless, the prevalence of ECHO in clinics

worldwide and current use in assessment of heart conditions

suggests that models capable of successfully exploiting this

data source have a large potential for translational impact.

Current cardiac CT imaging (multi-slice and multi-source

systems) has the advantage of fast acquisition, excellent

spatial resolution and reproducibility (figure 3b). These fac-

tors enable morphological and functional assessment of the

heart (including valves) even for larger patients. The superior

spatial resolution of CT and fast acquisition times make it the

modality of choice for the non-invasive assessment of
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Table 2. Sources of image data used in TCM. Resp.comp., respiratory compensation; RT, real time; PI(n), parallel imaging (acceleration factor); BH, breath-hold;
FB, free breathing; NAV, breathing navigator; excl.NAVeff., excluding navigator efficiency (total scanning time needs to be multiplied 2 – 3�), kt, kt-blast/
kt-sense/kt-PCA; NSA, number of signal averages; HB, heartbeat; PC MRI, phase contrast MRI. Note that the X-ray dose of non-dynamic CT is approximately
10-folds lower than in dynamic CT.

modality (MRI sequence) acceleration (MRI) resp. comp. duration resolution (mm) 3 (ms)

BH Cine MRI (bSSFP) PI(2) BH 5 – 8 s/slice (2 � 2 � 8) � (20)

FB Cine MRI PI(2) FB(NSA) 60 s/slice (2 � 2 � 8) � (20)

RT Cine MRI PI(3 – 4) FB RT (3.5 � 3.5 � 10) � (70)

3D morphology (bSSFP) [228,229] PI(3) FB, NAV 4 min excl.NAVeff 1.5 � 1.5 � 1.5

2D tagged [230] PI(2) BH 15 s/slice (2 � 2 � 8) � (30)

3D tagged [225] PI(2) BH 15 s/volume � 3 (3 � 3 � 7) � (20)

T1-mapping (MOLLI) — BH 20 s/slice 2 � 2 � 8

MR perfusion (2D) [231] kt(5) BH/FB 3 slices/HB (2.5 � 2.5 � 10) � (1000)

MR Perfusion (3D) [232] kt(7) BH/FB volume/HB (2.5 � 2.5 � 5) � (1000)

2D echo (RT) — FB RT (below 0.5 mm) � (20)

3D echo — BH 10 s (below 1 mm) � (60)

CT (single time image) — BH 15 s below 1 mm

CT (dynamic) — BH 15 s (below 1 mm) � (70)

2D MRI flow PI(2) BH/FB(NSA) 15 s (in BH) (2 � 2 � 8) � (20)

4D MRI flow [233] kt(8) FB 7 min excl.NAVeff (2.3 � 2.3 � 2.3) � (30)

echo Doppler — FB RT (10 � 10 � 10)

in vivo DTI [234] — BH/FB 60 min/5 slices (2.7 � 2.7 � 6)
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detailed anatomy, such as stenosis in arteries or valves. CT

can also provide dynamic information throughout the cardiac

cycle, though this is usually avoided in patients due to the

significant radiation dose. Indeed, the main drawbacks of

CT are the patient exposure to ionizing radiation and appli-

cation of iodine contrast agents. These drawbacks are, in

particular cases, outweighed by the potential benefit of CT;

for example, coronary angiography and other vascular

stenoses as well as valve disorders.

MRI provides similar functional and morphological infor-

mation as CT without the use of ionizing radiation (figure 3c).

A higher temporal resolution (in comparison to CT) contributes

to accurate functional imaging of heart [218,219]. In addition,

MRI is capable of imaging tissue characteristics such as

presence of infarction scar [220], fat infiltration or inflammation

[221], fibrosis [222,223], iron-loading [224], 3D myocardial

strains [225,226] and potentially vascular tree structure [227].

MRI is limited in the speed of acquisition, relying on cardiac

gating, respiratory navigation or breath-holds to acquire

images of the heart. As a result, typical MRI images are averages

over multiple heartbeats. Speed of acquisition and signal-

to-noise remain key factors that limit the spatio-temporal

resolution of MRI. Advances in MRI acceleration techniques

and improved motion correction, however, have led to sub-

stantial progress in imaging of fine anatomical structures

(e.g. coronaries [228]). The main drawbacks of MRI are in

contraindication for some patients (e.g. MRI incompatible

pacemakers), longer acquisition times and the cost of exams.

While the spatio-temporal resolution of these modalities is

often adapted for a given patient (e.g. breath-hold duration in

MRI or X-ray dose in CT), table 2 provides some typical values.

The details of image acquisition often play a significant role in

later processing and present practical considerations important
for translation. The lack of reproducibility in repetitive breath

holding in MRI as well as differences in breath-hold and

free breathing scans often lead to images that are not easily

co-registered into the same orientation and space. Even in

common short-axis cine MRI stacks, differences in a patient’s

breath-hold position can yield significant misalignment

between 2D slices, an issue that is not problematic for clinical

processing, but challenging for TCM. As a result, it is important

to carefully adapt imaging protocols to optimize them when

used in modelling.

Other advanced imaging methods in development could

further enhance the data available for modelling. Dual

positron emission tomography (PET) MRI or PET-CT are

enabling the imaging of functions (such as metabolism and

perfusion) in the heart along with co-registration to anatomical

information. Elastography techniques using ECHO or MRI

[235–237] introduce the potential of directly measuring appar-

ent tissue stiffness at multiple points in the cardiac cycle [235].

Advancement of diffusion tensor imaging into the heart in vivo
[234,238] provides the possibility to measure specific structural

characteristics of the heart. While not yet used in the clinic,

these modalities may play a role in future model-based

parameter estimation.

Beyond imaging, a range of alternative data sources have

proved useful in TCM. Pressure in the heart cavities (important

for instance to obtain quantitative values of tissue stresses) can

be measured by invasive catheterization. The non-invasive

blood pressure measurement in periphery by using a transfer

function [239] can provide the proximal aortic pressure over

the cardiac cycle. Electrophysiology models can be constrained

by invasively measured intracavity extracellular potentials,

non-invasive body surface mapping procedures, as well as

electrocardiogram recordings. The former was applied in
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Table 3. Examples of works presented in the literature targeted at TCM and data – model fusion. CE, constitutive equation; est. meth., estimation methods; SA,
sensitivity analysis; NH, neo-Hookean; GL, Guccione constitutive equation (law); NF, neo-Fibre; HO, Holzapfel – Ogden; V, variational; PS, parameter sweep;
RO-UKF, reduced-order unscented Kalman filter; ML, manifold learning; DFO, derivative-free optimization; P, passive; A, active; BCS, Bestel – Clement – Sorine.

data subject CE est. meth. phase SA references

2D tagged phantom NH V P — [245]

2D tagged phantom GL V P — [245]

2D tagged human GL V P — [246]

3D tagged and cine MRI human GL RO-UKF P — [247]

cine MRI and pressure human A — [248]

2D tagged in silico — [241]

cine MRI pig BCS RO-UKF P, A X [249]

cine MRI human BCS UKF P, A X [250]

cine MRI human BCS ML P, A — [251]

3D tagged and cine MRI in silico and human NH, NF, GL, HO PS P X [244,252]

cine MRI human BCS DFO A X [253]

cine MRI (low res.) human BCS RO-UKF A — [254]
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CRT modelling [39,99] and the latter is a current challenge for a

number of research groups.
3.2. Image processing
The use of acquired image data in developing patient-specific

cardiac models is preceded by image processing. Often image

processing is necessary for the personalization of model anat-

omy and the extraction of information from the data (e.g.

motion pattern) that can be used in the personalization of

the model (e.g. data assimilation).

As the information used in modelling is often combined

using several types of data, spatial and temporal registration

of the acquired images is necessary. Given the fast dynamics

of a heart beat and the relatively small displacements involved,

achieving a robust and accurate multi-modal registration of all

the available data is core to the accuracy and robustness of

model outputs. While within a single modality, the techniques

of spatial registration are quite robust [240], the registration in

between modalities often requires manual input/corrections.

An important step of image processing is image segmenta-

tion used to extract relevant anatomical details and extracting

motion information, for instance displacement of points (out of

3D tagged MRI), motion of endo- and epicardial surfaces (cine

MRI, 3D ECHO) or tag-plane motion (2D tagged MRI [241]).

There are a number of existing segmentation and motion-

tracking methods relying on manual, semi-automated or fully

automated procedures. A move towards full automation is essen-

tial for wider use of personalized modelling techniques [242,243].

The uncertainty of image processing impacts the accuracy of the

personalized model. Recent projects combining synthetic images

and biophysical models proposed a way to estimate the accuracy

of motion tracking in medical images [244].

Table 3 summarizes selected studies in which modelling

was successfully combined with real or synthetic datasets.

Typical image data modalities applied in these studies were

cine or tagged MRI and myocardial passive and active pro-

perties were estimated. In some of the studies, parameters

of an electrophysiological model (typically regional tissue
conductivities) were estimated. Both ex vivo [255,256] and in
vivo diffusion tensor imaging [238,257] data have been pro-

cessed to estimate myocardial fibre orientations and used for

simulations. Certain difficulties of using ex vivo images (includ-

ing inter-subject registration, and the differences in tissue

properties between excised and living organs) may be circum-

vented in vivo with the development of imaging [258] and

reconstruction [48,238] techniques.
3.3. Model parametrization
Model parametrization is typically achieved by optimization,

attempting to match some target data with model result(s)

using the goodness of fit gauged by an objective function. What

is deemed a successful parametrization depends on the pur-

pose. For some applications, the goal is simply to find a set of

parameters that yield an acceptably low objective function, pro-

viding a model which appropriately matches data. However,

when the parameters themselves are the target of an analysis,

then the process of model parametrization should also consider

the uniqueness and identifiability of parameters.

Model parameter uniqueness and identifiability depend on

the model, the data and the objective function [244]. Important

for parameter uniqueness is that a model be structurally and

practically identifiable. Structural identifiability ensures that

given endless, error-free data, one could determine model par-

ameters uniquely. In contrast, practical identifiability ensures

that parameters can be determined uniquely based on the

type of data available in experiments. Demonstrating practical

identifiability is often straightforward for simple models, but

becomes increasingly challenging as models become more

complex. Even if a model demonstrates practical identifiability,

experimental or clinical data can introduce problems. Noise

and bias artefacts in data can reduce parameter identifiability

and make model predictions unreliable. Adding to the chal-

lenge is model fidelity, or whether the model is sufficiently

rich to represent that data. Model simplicity can lead to a

poor match between the simulation and data and potential

non-uniqueness in parameters. In contrast, complex models

http://rsfs.royalsocietypublishing.org/
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may rectify issues with model fidelity but at the expense of par-

ameter identifiability. The objective function also plays an

important role, acting as the yardstick indicating whether

model and data agree. If this objective is too relaxed, it may

be possible for multiple parameter sets to be valid minima

despite parameters being, theoretically, uniquely identifiable.

Considering these factors is critical for studies wishing to use

model parameters themselves.

Parameter identification using in vivo imaging data of the

beating heart has challenged many researchers, especially

when using the exponential-type strain energy density functions

to model the passive mechanical behaviour of myocardium.

The lack of 3D kinematic measurements, or of certain modes

of deformation during normal in vivo motion, may result in

poor practical identifiability. For example, during diastolic fill-

ing, the motion information captured during in vivo imaging

may not adequately span into the nonlinear range of the

stress–strain (or pressure–volume) curve to enable the under-

lying material parameters to be fully characterized [245].

Schmid et al. [259] conducted simulation studies to examine

the suitability of five strain-based constitutive models and

determined the orthotropic exponential constitutive model

developed by Costa et al. [49] to best represent different shear

deformations [260]. However, several studies have reported

strong correlations between the material constants [244,246,247].
3.4. Data assimilation
The previous sections illustrated the wealth of models and

data available for simulating the heart. These models can be

calibrated (parametrized) based on patient data to produce

patient-specific simulations. In mathematical terms, the pro-

cess becomes an inverse problem, whereby data that is

generally a potential output of the model system is used to

help retrieve specific model inputs (e.g. unknown initial con-

ditions, physical parameters, etc). Cardiac models, by their

nature, are dynamical systems of partial differential equations

(PDEs) and their integration with data to solve inverse pro-

blems falls into the general class of methods referred to as

data assimilation techniques. Historically, data assimilation

arose in geophysics in the 1970s [261], but nowadays has

reached new fields of science [262]. From its inception, data

assimilation relates to numerous theoretical fields: statistical

estimation, optimization, control and observation theory, mod-

elling and numerical analysis, as well as data processing. In

cases where the complete solution, for example the entire

motion of the heart, is known, some have suggested direct

use of the data to determine unknown parameters by the

direct use of these quantities within the governing PDE [263].

More often, however, data assimilation aims to reconstruct

the trajectory of an observed PDE system from a time sequence

of heterogeneous measurements. In data assimilation, there are

two classes of methods: variational and sequential [262].

Variational methods seek to minimize a least-squares cri-

terion combining a comparison term between the actual data

and the simulation, with additional regularization terms

accounting for the confidence in the model. The comparison-

term or data-fitting-term is usually called similarity/discre-

pancy measure, whereas the model confidence terms are

called a priori. This is known as the variational approach as

reflected in the popular 4D-Var method [264]. The most effec-

tive minimization strategies compute the criterion gradient

through an adjoint model integration corresponding to the
dynamical model constraint under which the criterion is mini-

mized. Then, the minimization problem is classically solved

by a gradient descent algorithm, involving numerous itera-

tions of the combination of the model and adjoint dynamics.

Gradient-free approaches can also be used, simplifying the

use of variational methods in complex codes, but involving

still more evaluations of the functional [253,265].

Sequential methods can be inspired from the point of view

of feedback control theory. The key concept is to define an

observer (also referred to as estimator in the stochastic context)

that uses the data as a control to track the actual trajectory, and

concurrently retrieve the unknown parameters. This so-called

sequential approach gives a coupled model–data system

solved similarly to a usual PDE-based model, with a compar-

able computational cost. Indeed, this approach can provide

significantly improved efficiency assuming the feedback is

designed specifically for the system at hand. Two main classes

of feedback have been developed: (1) reduced-order Kalman-

based feedbacks (or filters) which cumulate the advantage

of their genericity with a reduced computation cost for PDE-

based models [266,267]; (2) Luenberger feedbacks where the

filter is specifically tuned by analysing the dissipative proper-

ties of the physical system described by the models [268,269].

Note that these two classes can be used concurrently to

define, for instance, joint state and parameters estimators [266]

where the Luenberger filter is devoted to the stabilization of

the state errors (initial conditions, modelling errors) and the

reduced-order Kalman-like feedback handles the parameter

identification. We can also combine these two feedbacks

forcoupled physical systems, for instance in cardiac electromecha-

nics where a Luenberger feedback is used in the mechanics and a

reduced-order feedback is employed on the electrophysiology

[270]. Use of established data assimilation techniques for cardiac

mechanics requires some special considerations. The most funda-

mental one is to establish the observability of the system, namely

the amount of information that can be retrieved from the data

at hand. This question is vast and must be addressed using

sensitivity analysis and uncertainty quantification.
3.4.1. Methodological issues in cardiac data assimilation
Use of established data assimilation techniques for cardiac

mechanics requires some special considerations. Heart

models present a major difficulty in that they are strongly

nonlinear, with phase changes throughout the cardiac cycle.

These changes in the physical nature of the heart can intro-

duce challenges in the use and convergence of data

assimilation methods [250]. In this respect, the (sequential)

methods that rely on particles for the model sensitivity com-

putations have proved to improve robustness [247,249,250].

Other constraints on the system (e.g. tissue incompressibility

discussed in §2.4) or the parameters that often lack direct

observations must also be handled appropriately. Moreover,

it is often beneficial to add physical constraints (such as posi-

tivity for material stiffness constants) by adjusting the

physical system or through a change of variables [249,250].

Another difficulty arises due to the data at hand. In cardiac

mechanics, the first source of data is image sequences pro-

viding motion through the cardiac cycle. The information

contained in images is very different from the classical model

outputs, which makes the definition of similarity measures

challenging. In essence, the model computes displacements

with respect to a reference configuration. In contrast, the

http://rsfs.royalsocietypublishing.org/


Figure 4. TCM pathway, illustrating the formative steps of model-based analysis. The driver for TCM efforts starts with the clinical question, informing the selection
of an application-specific model that brings together the appropriate data and model components. Data – model fusion is then required, personalizing the model
with sufficient data (either patient-specific or population average data) to address the clinical need. Once formulated, modelling can be executed and used to
generate specific clinically relevant outcomes, informing diagnosis, treatment optimization or treatment planning.
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images show the deformed domain over time. With some ima-

ging modalities, such as tagged MRI or 3D ECHO, image

processing techniques allow one to reconstruct a measured

3D displacement sequence more directly comparable to the

model displacements [244,246]. However, for standard MRI

or CT sequences, we must define a discrepancy measure

between the deformed model domain and the observed

shape. In this respect, the data assimilation community may

benefit from the data fitting definitions already well developed

in the image processing and registration community [271].
4. Bringing translational cardiac modelling to
the clinic

The advancements made in modelling, imaging, image pro-

cessing and data assimilation provide an impressively diverse

range of tools and data. Extending these developments beyond

academic and research realms and into the hospital requires

careful consideration of specific clinical questions and the

requirements of the end-user. The specific clinical application

and desired outcome, in turn, guide the selection of required

models and data, influencing the necessary processing and

assimilation tools, theoretical considerations, etc. (figure 4). The

pathways for TCM to make an impact clinically are numerous.

In this section, we highlight some of these active TCM efforts.
4.1. Device assessment
Device-based treatment and therapy are playing an increas-

ingly important role in the clinic [272]. Considering the

significant time and investment required to bring medical

devices to market, thorough vetting of a device’s design is

critical before it enters into clinical trial. Modelling, with

encouragement from regulatory agencies [273], has played a

significant role in device evaluation, particularly in the testing

of mechanical- and tissue-based heart valves [134] which were

simulated in idealized geometries to examine performance,

damage and fatigue.

Increasingly, modelling is being used to consider how a

device interacts with the mechanics of the heart itself. Figure 5a
illustrates the use of an electromechanical model used to access

the efficacy of a mitral valve annuloplasty device that aims to

reduce mitral regurgitation. FSI models have been applied to

assess left ventricular assist devices [100,101,161], examining

how alterations in device settings influence myocardial unload-

ing as well as the potential for LV thrombus formation.

Electromechanical modelling has been used to assess the Adju-

Cor (http://www.adjucor.com/home.html) extravascular

ventricular assist device, whereby pneumatic cushions are used

to improve ventricular stroke volume while unloading the

heart [275]. Biomechanical modelling has also been used for

trans-catheter aortic valve replacement, using an anatomically

accurate aortic model to simulate valve deployment [276].

http://www.adjucor.com/home.html
http://www.adjucor.com/home.html
http://rsfs.royalsocietypublishing.org/
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Figure 5. Example applications bringing TCM to the clinic. (a) Evaluation of mitral annuloplasty device using a four chamber electromechanical heart model,
assessing the degree to which the device improves mitral valve regurgitation [274]. (b) Examination of biventricular CRT, using an electromechanical model
tuned to baseline data to predict therapy response of left ventricular dp/dt [99]. (c) Left ventricular mechanics model parametrization using CINE, 3D tagged
and 4D PC MRI providing estimates of tissue properties through the cardiac cycle [244,252].
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These examples illustrate the potential of TCM to provide a

platform for the rapid evaluation of medical devices. Further

advancement of computational techniques [277–279] enhances

the ability of models to resolve fine details influential in the

operation of devices. In this context, models rely on anatomi-

cally accurate (as opposed to patient-specific) geometries and

literature-based values to effectively represent the heart. Here,

the purpose is a model with representative patient physiology,

providing a means for evaluating efficacy and suggesting

design modifications. This shift in focus dramatically simpli-

fies data–model fusion and provides a more straightforward

platform for exploiting complex cardiac models.

4.2. Therapy planning
Another avenue for TCM is through therapy planning, where

models are used to predict the outcomes of different therapies.

A prime example is Cardiac Resynchronization Therapy (CRT),

where the placement of leads to excite the heart are currently

evaluated during device implantation to maximize the rate of

left ventricular pressure at early systole [280]. The peak left ven-

tricle pressure time derivative (max LV dp/dt) is a standard

clinical measure of a short-term effect of CRT. Electromechani-

cal models tuned to pre-therapy imaging data were shown

to accurately predict the effect of biventricular pacing

(figure 5b) [99]. Modelling results also provided insight into

therapy, suggesting that length-dependence (Frank–Starling

mechanism) might be a key factor in treatment efficacy [39].

Both the studies used non-invasive MRI data as well as inva-

sive electrophysiological data. Use of these tools to optimize

treatment prior to surgery requires reducing the dependence

on invasive data, a direction currently being explored.

Modelling is also being pursued as a way to evaluate

pharmacological interventions, particularly when multiple

drugs may be combined to deliver an optimal therapy. The syn-

drome of heart failure would once more be a typical example

[281]. Significant efforts are also spent on electrophysiological

side, searching for potential cellular proteins that could be tar-

geted for drug development [282–284]. Inherently, this effort

requires multiscale models to effectively examine the cascade

of a drug operating on a subcellular target to a functional at

the organ level. Extending these models beyond the develop-

ment stage towards patient-specific planning introduces
challenges and will likely require significant investment into

the identification of key alterations required for personalization.

While many therapy models focus on the acute response,

consideration of growth and remodelling effects is extremely

attractive in predicting the long-term viability of therapy.

These models are increasingly important as many therapies,

such as CRT, are known to result in reverse remodelling and

thus fundamentally change the responsiveness of the heart to

treatment over time. Growth and remodelling could also play

a role in therapy planning, where often the decision of whether

or not to treat a patient is made based on the likely deterio-

ration in a patient’s condition [285]. Using these modelling

approaches could provide much more reliable predictors of

disease progression, enabling appropriate staging of therapy.

Key to this development is the appropriate identification

of remodelling mechanisms through either animal experi-

ments or clinical studies where invasive tissue samples can

be collected.

4.3. Biomarkers and diagnosis
Beyond addressing specific therapies, TCM has been proposed

as a novel path for patient assessment and potential diagnosis

through the use of model-based biomarkers. Advances in car-

diac imaging and catheterization techniques have resulted in a

wealth of clinical data contributing to the design of numerous

biomarkers for cardiac dysfunction. Leveraging these data

using patient-specific cardiac models provides a useful tool

to better understand cardiac dysfunction on an individualized

basis [99,244,246]. While estimation of quantities, such as stress

and work, from direct measurements is not currently feasible,

these quantities can be directly estimated using personalized

models, providing a wealth of information that could be

exploited to stratify patients.

Further, the data assimilation and model personaliza-

tion processes require the tuning of model parameters. Often

these parameters are quantities of interest, such as myocardial

tissue stiffness or contractility [249,252,254] (figure 5c). Unlike

other clinical indices that only reflect global chamber perform-

ance, myocardial mechanical properties provide tissue-specific

biomarkers elucidating potential muscle tissue fibrosis, scar,

reduced contractility and/or delayed relaxation. In vivo
measurement of tissue mechanical properties is not readily
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available; therefore, estimates derived from model-based

analysis integrating available personalized clinical data can

offer more insight into the mechanisms and potential stage of

disease. Recently, quantifying myocardial tissue properties

has become the focus of much research to better understand

the causes of ventricular dysfunction in several cardiac diseases

such as myocardial infarction, heart failure [255], heart failure

with preserved/reduced ejection fraction and hypertensive

heart disease. In vivo estimates of tissue mechanical properties

combined with other subject-specific measurements of cardiac

function may assist with more effective stratification of differ-

ent types of heart failure. Moreover, use of model-based

biomarkers that can be rigorously tested against current clinical

standards [286] would enable the design of mechanism-

specific treatment strategies.
s
6:20150083
5. Realizing translational potential
5.1. The clinical question and data/model selection
With the wealth of available models and data, it becomes ever-

more critical that TCM is guided by the requisite outcome

required to address a clinical question (figure 4). Identification

of the problem and the intended outcome enables the appropri-

ate identification of a model and set of data that ensures

accuracy and robustness. This interplay introduces a delicate

balance between the clinical question, available data, model

fidelity and the final outcome desired from the model.

A model must be rich enough in function to address the

question of interest. It may be richer than necessary so long

as the additional complexity does not yield uncertainty (or

non-uniqueness) in the outcome. In contrast, simplicity often

yields robustness but this can come at the expense of accuracy.

As a consequence, realizing the potential of TCM requires care-

ful consideration of the key factors important for addressing

the clinical question at hand.

The examples of models applied into clinical problems from

§4 fall into two general groups: direct translation to clinics and

an indirect TCM employing the models in the development of

new techniques (e.g. devices or drugs). Both application types

require a very tight collaboration between the modelling team

and end-customer, whether it be clinicians or commercial part-

ners. Building bridges between these historically disjunct

cultures is beginning at centres around the globe, as clinicians,

industrial partners and modellers work more closely together

to address relevant problems. Such a tight collaboration

is necessary to ensure TCM addresses core needs and end-

customers know what can be reliably derived from

model-based outcomes. A successful example of translational

modelling is HeartFlow (https://www.heartflow.com), illus-

trates the need for inter-disciplinary teamwork well, being

co-founded by both a cardiovascular surgeon and engineer.

Clinical data, in particular medical image-based data,

remain a necessary component to the progression of TCM.

Improving imaging and image processing techniques will

have a significant influence on the accuracy and robustness of

model-based outcomes. This integration must begin at a

much more fundamental level, making image acquisition

and processing account for modelling needs and adapting

models to robustly use these outputs. Imaging modalities

(such as elastography [235–237] and in vivo diffusion tensor

imaging [234,238]) present new opportunities to further

engage modelling and imaging towards clinical outcomes,
providing more direct measures of tissue properties and struc-

ture. However, the combination of imaging and modelling

must also remain cognizant of clinical constraints, balancing

outcomes with the complexity of patient assessment, cost and

timescales. Nowadays, TCM often relies on the most advanced

data available, which are often far from those acquired through

standard care. In a research context, efforts to exploit the wealth

of available data are essential to explore the potential for TCM

outcomes. However, for clinical practice to shift towards such

complex exams, the value of a model must be demonstrably

better than the current standard of care. Using routine clinical

data may limit the information for TCM, but would signifi-

cantly improve uptake by facilitating the organization of

multi-centre clinical studies. In this context, information-rich

databases of standard data (e.g. UK Biobank; http://www.

ukbiobank.ac.uk) will likely prove invaluable for guiding

TCM efforts.

The selection of a cardiac model needs to balance the clini-

cal question and available data. Importantly, the model-based

outcome must address the question, capitalize on the available

data, be robust and minimize uncertainties. Even the most effi-

cient data assimilation methods become significantly more

challenging and computationally intensive as the number of

personalized parameters grows or the computational problem

itself increases in demand. As a consequence, simplified

models are often being used to parametrize components of

more complex models; as was the case in [100] where a solid

mechanics–Windkessel model was used to tune model par-

ameters prior to simulating the full FSI-Windkessel model.

Moreover, very complex models encompassing the widest

range of physiological knowledge through integration many

smaller models are not necessarily more predictive or reliable.

The trade-off between model fidelity and simplicity remains

application-specific. A simplistic (or complex) model may pro-

vide valuable outcomes in one application but be completely

flawed in another.

While multiphysics models are necessary for addressing

some phenomena in the heart, such integrated models often

come with a greater demand for personalization and increased

computational complexity. Examining the added value of such

a model becomes increasingly important in TCM, where clinical

timescales are short and computational resources in the majority

of clinical centres are limited. While computational techniques

and hardware continue to improve at rapid pace, it is likely

that the most significant impact for multiphysics models will

occur in the assessment of devices. By using population average

models, the need for personalization would be eliminated,

while still providing a valuable in silico environment for testing.

Despite broad support for multiscale modelling and simu-

lations of cardiac growth and remodelling, the difficulty of

model validation, mainly caused by the lack of appropriate

experimental and clinical data, remains a point of concern

[287]. Determining the genesis of physiological changes due

to drug-based interventions and validating currently proposed

hypotheses on governing principles is critical to the long-term

use of modelling for guiding therapy. One important step is to

extract the important cardiac modifications due to remodelling

in order to guide modelling. Recent developments in statistical

shape models for longitudinal analysis can help extracting this

information [285,288]. However, exploiting the full potential of

these techniques will require longitudinal animal experiments,

collecting imaging and biopsy data to quantify alterations

across scales.

https://www.heartflow.com
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5.2. Application-specific models and data – model
fusion

Once an application-specific model and suitable type of data

are selected, data collection and data–model fusion present a

number of practical challenges that must be addressed to

maximize translational potential. Imaging protocols, though

typically standardized, are often adjusted to the patient’s

status and may be negatively influenced by the compliance

of the patient or skill of the operator. These factors can signifi-

cantly degrade image quality or precision, reducing the

efficacy of TCM. Mitigating these factors through more

straightforward imaging protocols, better identification of

image quality measures, or using data redundancy to identify

the confidence in image-derived quantities would greatly

improve reliability of imaging data. Another core challenge

is the streamlining and automation of image processing and

data assimilation pipelines. While many tools exist in the

research environment, few can be robustly applied by clini-

cians across many datasets. Moreover, manual intervention

is often necessary, introducing uncertainty which must be

quantified to practically ensure the quality of results.

As model-based tools continue to advance, efforts have

been initiated to cross validate and benchmark methods. In

the domain of image processing, algorithms to track motion

from tagged MRI were systematically evaluated and compared

with manually segmented results [289], showing comparable

accuracy among the methods tested. Comparison of different

cardiac mechanical models was recently conducted on the

same extensive pre-clinical dataset (STACOM 2014 challenge;

http://stacom.cardiacatlas.org) to evaluate predictive capacity

and compare model produced outcomes [290]. While quan-

tities such as displacements were well-predicted, strong

variations were observed in myocardial stress predictions

across models. Recent work in FSI benchmarking has also

been organized, using 3D printing and measured materials to

test the predictive accuracy of these methods (http://cheart.

co.uk/other-projects/fsi-benchmark/). Benchmarking and

validation will be increasingly necessary for TCM to convince

the clinical community and the regulatory agencies of the

validity and robustness of application-specific models.
5.3. Model analysis and outcomes
For TCM to realize its potential, it is crucial that simulation

results are mapped into appropriate quantities that can guide

clinical decision-making. Many of the modelling results

target standard clinical metrics (e.g. FFR, max dp/dt), enabling

a more straightforward pathway for TCM to make a clinical

impact. Novel biomarkers will likely arise from TCM (e.g. myo-

cardial stiffness or contractility); however, beyond being robust

and reliable, these quantities must be demonstrated to provide

diagnostic or prognostic value beyond the current clinical

norm. Identification of these potential targets requires strong

collaboration between clinicians and modellers, mixing practi-

cal hypotheses with deliverable model metrics to assess a

patient’s state or therapy plan.

While uptake of TCM into clinical care would take signifi-

cant time and resource, the advent of large databases storing

longitudinal data on patient treatment and outcomes pro-

vides a pathway to significantly accelerate translation of

model-based outcomes. An alternative pathway for identify-

ing TCM targets is through large-scale statistical methods. In
this context, model-based outcomes could be used along with

other measures typically embedded in Big Data approaches,

examining potential correlations between derived model-

based outcomes and specific clinical conditions or responses

to therapy. As model-based outcomes integrate data and

physical principles, these could provide essential metrics

that are non-trivially related to typical clinical measures.

Replicating these measures using statistical methods alone

would likely require significantly larger amounts of data

and increasingly complex, nonlinear regression techniques.

5.4. Uncertainty quantification
Model-based approaches need to provide a measure of

confidence in their predictions. As measurement on living

tissue is, by nature, sparse and noisy, there is a strong need

to integrate all the sources of error in the process and quantify

their impact on model outcomes. This requires an impor-

tant shift from the current deterministic approaches to more

probabilistic strategies, where uncertainties in input data

are modelled to understand their impact on outcomes. The

challenge of determining the impact of uncertainty permeates

through the entire translational modelling pathway (figure 4).

Uncertainty in model boundary conditions and anato-

mical construction stemming from data requires careful

consideration of likely errors inherent in the data and proces-

sing pipeline. Similarly, examination of data assimilation

techniques and the variation of model parameters

to uncertainty in data must also be considered. This can

create challenges both methodologically, as deriving sto-

chastic models of such complex phenomena is non-trivial,

and computationally, as such approaches are much more

demanding. While comprehensive assessment of all uncer-

tainties presents significant challenges, better clarification of

model outcomes is mandatory to hone the focus of these

efforts. Verification that all model parameters and quantities

maintain a certain accuracy is an ideal, but far away goal.

However, more immediate confidence may be obtained

through demonstration that targeted outcomes are robust

and reliable. Uncertainty quantification methods have started

to be applied in the cardiac community [187,249,291–293]

and these techniques will play an increasingly important

role in TCM.
6. Conclusion
Addressing current clinical limitations in diagnosis, prognosis,

treatment and therapy planning in heart and cardiovascular

disease remains a significant translational goal driving cardiac

research. In this paper, we reviewed modelling efforts aimed at

addressing various physiological mechanisms influential for

cardiac mechanics—spanning spatial scales and physical prin-

ciples. The substantial growth in medical imaging and the

techniques for leveraging this data for modelling were also

reviewed. These parallel developments have opened a broad

range of possibilities for bringing TCM into the clinic.
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82. Tözeren A. 1985 Continuum rheology of muscle
contraction and its application to cardiac
contractility. Biophys. J. 47, 303 – 309. (doi:10.1016/
S0006-3495(85)83920-5)

83. Ter Keurs HE, Rijnsburger WH, Van Heuningen R,
Nagelsmit MJ. 1980 Tension development and
sarcomere length in rat cardiac trabeculae: evidence
of length-dependent activation. In Cardiac dynamics
(eds J Baan, AC Arntzenius), pp. 25 – 36. The Hague,
The Netherlands: Martinus Nijhoff Publishers.

84. Guccione J, McCulloch A. 1993 Mechanics of active
contraction in cardiac muscle: part I—constitutive
relations for fiber stress that describe deactivation.
J. Biomech. Eng. 115, 72– 81. (doi:10.1115/1.2895474)

85. Niederer S, Hunter P, Smith N. 2006 A quantitative
analysis of cardiac myocyte relaxation: a simulation
study. Biophys. J. 90, 1697 – 1722. (doi:10.1529/
biophysj.105.069534)

86. Rice JJ, Wang F, Bers DM, De Tombe PP. 2008
Approximate model of cooperative activation and
crossbridge cycling in cardiac muscle using ordinary
differential equations. Biophys. J. 95, 2368 – 2390.
(doi:10.1529/biophysj.107.119487)

87. Bestel J, Clément F, Sorine M. 2001 A biomechanical
model of muscle contraction. In Medical image
computing and computer-assisted intervention –
MICCAI 2001 (eds WJ Niessen, MA Viergever),
pp. 1159 – 1161. Berlin, Germany: Springer.

88. Chapelle D, Le Tallec P, Moireau P, Sorine M. 2012
Energy-preserving muscle tissue model: formulation
and compatible discretizations. Int. J. Multiscale
Comput. Eng. 10, 189 – 211. (doi:10.1615/
IntJMultCompEng.2011002360)

89. Tangney JR et al. 2013 Novel role for vinculin in
ventricular myocyte mechanics and dysfunction.
Biophys. J. 104, 1623 – 1633. (doi:10.1016/j.bpj.
2013.02.021)

90. Usyk T, Mazhari R, McCulloch A. 2000 Effect of
laminar orthotropic myofiber architecture on
regional stress and strain in the canine left ventricle.
J. Elast. Phys. Sci. Solids 61, 143 – 164. (doi:10.
1023/A:1010883920374)

91. Rossi S, Ruiz-Baier R, Pavarino LF, Quarteroni A.
2012 Orthotropic active strain models for the
numerical simulation of cardiac biomechanics.
Int. J. Numer. Methods Biomed. Eng. 28, 761 – 788.
(doi:10.1002/cnm.2473)

92. Yin F, Chan C, Judd RM. 1996 Compressibility of
perfused passive myocardium. Am. J. Physiol. Heart.
Circ. Physiol. 271, H1864 – H1870.

93. Omens JH, MacKenna DA, McCulloch AD. 1993
Measurement of strain and analysis of stress
in resting rat left ventricular myocardium.
J. Biomech. 26, 665 – 676. (doi:10.1016/0021-
9290(93)90030-I)

94. Bathe K-J. 2006 Finite element procedures.
Englewood Cliffs, NJ: Klaus-Jurgen Bathe.

95. Vetter FJ, McCulloch AD. 2000 Three-dimensional
stress and strain in passive rabbit left ventricle: a
model study. Ann. Thor. Surg. Biomed. Eng. 28,
781 – 792. (doi:10.1114/1.1289469)

96. Thorvaldsen T, Osnes H, Sundnes J. 2005 A mixed
finite element formulation for a non-linear,
transversely isotropic material model for the cardiac
tissue. Comput. Methods Biomech. Biomed. Eng. 8,
369 – 379. (doi:10.1080/10255840500448097)

97. Asner L, Hadjicharalambous M, Lee J, Nordsletten D.
2015 Stacom challenge: simulating left ventricular
mechanics in the canine heart. In Statistical atlases
and computational models of the heart-imaging and
modelling challenges (eds O Camara, T Mansi, M
Pop, K Rhode, M Sermesant, A Young), pp. 123 –
134. Basel, Switzerland: Springer.

98. Hadjicharalambous M, Lee J, Smith NP, Nordsletten
DA. 2014 A displacement-based finite element
formulation for incompressible and nearly-
incompressible cardiac mechanics. Comput. Methods
Appl. Mech. Eng. 274, 213 – 236. (doi:10.1016/j.
cma.2014.02.009)

99. Sermesant M et al. 2012 Patient-specific
electromechanical models of the heart for the
prediction of pacing acute effects in CRT: a
preliminary clinical validation. Med. Image Anal. 16,
201 – 215. (doi:10.1016/j.media.2011.07.003)

100. McCormick M, Nordsletten D, Kay D, Smith N. 2013
Simulating left ventricular fluid – solid mechanics
through the cardiac cycle under LVAD support.
J. Comput. Phys. 244, 80 – 96. (doi:10.1016/j.jcp.
2012.08.008)

101. McCormick M, Nordsletten D, Lamata P, Smith NP.
2014 Computational analysis of the importance of
flow synchrony for cardiac ventricular assist devices.
Comput. Biol. Med. 49, 83 – 94. (doi:10.1016/j.
compbiomed.2014.03.013)

102. Lee J, Cookson A, Chabiniok R, Rivolo S, Hyde E,
Sinclair M, Michler C, Sochi T, Smith N. 2015
Multiscale modelling of cardiac perfusion. In
Modeling the heart and the circulatory system
(ed. A Quarteroni), pp. 51 – 96. Basel, Switzerland:
Springer.

103. FitzHugh R. 1961 Impulses and physiological states
in theoretical models of nerve membrane. Biophys.
J. 1, 445. (doi:10.1016/S0006-3495(61)86902-6)
104. Aliev RR, Panfilov AV. 1996 A simple two-variable
model of cardiac excitation. Chaos Solitons Fractals
7, 293 – 301. (doi:10.1016/0960-0779(95)00089-5)

105. Beeler GW, Reuter H. 1977 Reconstruction of the
action potential of ventricular myocardial fibres.
J. Physiol. 268, 177 – 210. (doi:10.1113/jphysiol.
1977.sp011853)

106. Winslow RL, Rice J, Jafri S, Marban E, O’Rourke B.
1999 Mechanisms of altered excitation-contraction
coupling in canine tachycardia-induced heart failure,
II model studies. Circul. Res. 84, 571 – 586. (doi:10.
1161/01.RES.84.5.571)

107. Hodgkin AL, Huxley AF. 1952 A quantitative
description of membrane current and its application
to conduction and excitation in nerve. J. Physiol.
117, 500 – 544. (doi:10.1113/jphysiol.1952.
sp004764)

108. Ten Tusscher K, Noble D, Noble P, Panfilov A.
2004 A model for human ventricular tissue.
Am. J. Physiol. Heart. Circ. Physiol. 286,
H1573 – H1589. (doi:10.1152/ajpheart.00794.2003)

109. Sermesant M, Delingette H, Ayache N. 2006 An
electromechanical model of the heart for image
analysis and simulation. IEEE Trans. Med. Imag. 25,
612 – 625. (doi:10.1109/TMI.2006.872746)

110. Rogers JM, McCulloch AD. 1994 Nonuniform muscle
fiber orientation causes spiral wave drift in a finite
element model of cardiac action potential
propagation. J. Cardiovasc. Electrophysiol. 5,
496 – 509. (doi:10.1111/j.1540-8167.1994.tb01290.x)

111. Nash MP, Panfilov AV. 2004 Electromechanical
model of excitable tissue to study reentrant cardiac
arrhythmias. Prog. Biophys. Mol. Biol. 85, 501 – 522.
(doi:10.1016/j.pbiomolbio.2004.01.016)

112. Göktepe S, Kuhl E. 2010 Electromechanics of the
heart: a unified approach to the strongly coupled
excitation – contraction problem. Comput. Mech. 45,
227 – 243. (doi:10.1007/s00466-009-0434-z)

113. Keldermann RH, Nash MP, Gelderblom H, Wang VY,
Panfilov AV. 2010 Electromechanical wavebreak in a
model of the human left ventricle. Am. J. Physiol.
Heart. Circ. Physiol. 299, H134 – H143. (doi:10.1152/
ajpheart.00862.2009)

114. Wall ST, Guccione JM, Ratcliffe MB, Sundnes JS.
2012 Electromechanical feedback with reduced
cellular connectivity alters electrical activity in an
infarct injured left ventricle: a finite element model
study. Am. J. Physiol. Heart. Circ. Physiol. 302,
H206 – H214. (doi:10.1152/ajpheart.00272.2011)

115. Aguado-Sierra J. 2011 Patient-specific modeling of
dyssynchronous heart failure: a case study. Prog.
Biophys. Mol. Biol. 107, 147 – 155. (doi:10.1016/j.
pbiomolbio.2011.06.014)

116. Kohl P, Sachs F. 2001 Mechanoelectric feedback in
cardiac cells. Phil. Trans. R. Soc. A 359, 1173 – 1185.
(doi:10.1098/rsta.2001.0824)

117. Kuijpers NH, ten Eikelder HM, Bovendeerd PH,
Verheule S, Arts T, Hilbers PA. 2007 Mechanoelectric
feedback leads to conduction slowing and block in
acutely dilated atria: a modeling study of cardiac
electromechanics. Am. J. Physiol. Heart. Circ. Physiol.
292, H2832 – H2853. (doi:10.1152/ajpheart.
00923.2006)

http://dx.doi.org/10.1016/j.actbio.2015.06.031
http://dx.doi.org/10.1023/A:1010835316564
http://dx.doi.org/10.1023/A:1010835316564
http://dx.doi.org/10.1098/rsif.2005.0073
http://dx.doi.org/10.1016/0021-9290(71)90042-X
http://dx.doi.org/10.1016/S0006-3495(85)83920-5
http://dx.doi.org/10.1016/S0006-3495(85)83920-5
http://dx.doi.org/10.1115/1.2895474
http://dx.doi.org/10.1529/biophysj.105.069534
http://dx.doi.org/10.1529/biophysj.105.069534
http://dx.doi.org/10.1529/biophysj.107.119487
http://dx.doi.org/10.1615/IntJMultCompEng.2011002360
http://dx.doi.org/10.1615/IntJMultCompEng.2011002360
http://dx.doi.org/10.1016/j.bpj.2013.02.021
http://dx.doi.org/10.1016/j.bpj.2013.02.021
http://dx.doi.org/10.1023/A:1010883920374
http://dx.doi.org/10.1023/A:1010883920374
http://dx.doi.org/10.1002/cnm.2473
http://dx.doi.org/10.1016/0021-9290(93)90030-I
http://dx.doi.org/10.1016/0021-9290(93)90030-I
http://dx.doi.org/10.1114/1.1289469
http://dx.doi.org/10.1080/10255840500448097
http://dx.doi.org/10.1016/j.cma.2014.02.009
http://dx.doi.org/10.1016/j.cma.2014.02.009
http://dx.doi.org/10.1016/j.media.2011.07.003
http://dx.doi.org/10.1016/j.jcp.2012.08.008
http://dx.doi.org/10.1016/j.jcp.2012.08.008
http://dx.doi.org/10.1016/j.compbiomed.2014.03.013
http://dx.doi.org/10.1016/j.compbiomed.2014.03.013
http://dx.doi.org/10.1016/S0006-3495(61)86902-6
http://dx.doi.org/10.1016/0960-0779(95)00089-5
http://dx.doi.org/10.1113/jphysiol.1977.sp011853
http://dx.doi.org/10.1113/jphysiol.1977.sp011853
http://dx.doi.org/10.1161/01.RES.84.5.571
http://dx.doi.org/10.1161/01.RES.84.5.571
http://dx.doi.org/10.1113/jphysiol.1952.sp004764
http://dx.doi.org/10.1113/jphysiol.1952.sp004764
http://dx.doi.org/10.1152/ajpheart.00794.2003
http://dx.doi.org/10.1109/TMI.2006.872746
http://dx.doi.org/10.1111/j.1540-8167.1994.tb01290.x
http://dx.doi.org/10.1016/j.pbiomolbio.2004.01.016
http://dx.doi.org/10.1007/s00466-009-0434-z
http://dx.doi.org/10.1152/ajpheart.00862.2009
http://dx.doi.org/10.1152/ajpheart.00862.2009
http://dx.doi.org/10.1152/ajpheart.00272.2011
http://dx.doi.org/10.1016/j.pbiomolbio.2011.06.014
http://dx.doi.org/10.1016/j.pbiomolbio.2011.06.014
http://dx.doi.org/10.1098/rsta.2001.0824
http://dx.doi.org/10.1152/ajpheart.00923.2006
http://dx.doi.org/10.1152/ajpheart.00923.2006
http://rsfs.royalsocietypublishing.org/


rsfs.royalsocietypublishing.org
Interface

Focus
6:20150083

20

 on March 3, 2016http://rsfs.royalsocietypublishing.org/Downloaded from 
118. Xia H, Wong K, Zhao X. 2012 A fully coupled model
for electromechanics of the heart. Comput. Math.
Methods Med. 2012, 927279 – 1172. (doi:10.1155/
2012/927279)

119. Vigueras G, Roy I, Cookson A, Lee J, Smith N,
Nordsletten D. 2014 Toward GPGPU accelerated
human electromechanical cardiac simulations.
Int. J. Numer. Methods Biomed. Eng. 30, 117 – 134.
(doi:10.1002/cnm.2593)

120. Khalafvand S, Ng E, Zhong L. 2011 CFD simulation
of flow through heart: a perspective review.
Comput. Methods Biomech. Biomed. Eng. 14,
113 – 132. (doi:10.1080/10255842.2010.493515)

121. Chan BT, Lim E, Chee KH, Osman NAA. 2013 Review
on CFD simulation in heart with dilated
cardiomyopathy and myocardial infarction. Comput.
Biol. Med. 43, 377 – 385. (doi:10.1016/j.
compbiomed.2013.01.013)

122. Georgiadis J, Wang G, Pasipoularides A. 1992
Computational fluid dynamics of left ventricular
ejection. Ann. Biomed. Eng. 20, 81 – 97. (doi:10.
1007/BF02368507)

123. Baccani B, Domenichini F, Pedrizzetti G, Tonti G.
2002 Fluid dynamics of the left ventricular filling in
dilated cardiomyopathy. J. Biomech. 35, 665 – 671.
(doi:10.1016/S0021-9290(02)00005-2)

124. Domenichini F, Pedrizzetti G, Baccani B. 2005 Three-
dimensional filling flow into a model left ventricle.
J. Fluid Mech. 539, 179 – 198. (doi:10.1017/
S0022112005005550)

125. Pedrizzetti G, Domenichini F. 2005 Nature optimizes
the swirling flow in the human left ventricle. Phys.
Rev. 95, 1 – 4. (doi:10.1103/physrevlett.95.108101)

126. Saber NR, Wood NB, Gosman A, Merrifield RD, Yang
G-Z, Charrier CL, Gatehouse PD, Firmin DN. 2003
Progress towards patient-specific computational
flow modeling of the left heart via combination of
magnetic resonance imaging with computational
fluid dynamics. Ann. Biomed. Eng. 31, 42 – 52.
(doi:10.1114/1.1533073)

127. Merrifield R, Long Q, Xu X, Kilner PJ, Firmin DN,
Yang G-Z. 2004 Combined CFD/MRI analysis of left
ventricular flow. In Medical imaging and augmented
reality (eds G-Z Yang, T Jiang), pp. 229 – 236.
Berlin, Germany: Springer.

128. Doenst T, Spiegel K, Reik M, Markl M, Hennig J,
Nitzsche S, Beyersdorf F, Oertel H. 2009 Fluid-
dynamic modelling of the human left ventricle:
methodology and application to surgical ventricular
reconstruction. Ann. Thorac. Surg. 87, 1187 – 1197.
(doi:10.1016/j.athoracsur.2009.01.036)

129. Oertel H, Krittian S. 2011 Modelling the human
cardiac fluid mechanics. Karlsruhe, Germany: KIT
Scientific Publishing.

130. Khalafvand SS, Ng EY-K, Zhong L, Hung T. 2012
Fluid-dynamics modelling of the human left
ventricle with dynamic mesh for normal and
myocardial infarction: preliminary study. Comput.
Biol. Med. 42, 863 – 870. (doi:10.1016/j.
compbiomed.2012.06.010)

131. de Vecchi A, Gomez A, Pushparajah K, Schaeffter T,
Nordsletten D, Simpson J, Penney G, Smith N. 2014
Towards a fast and efficient approach for modelling
the patient-specific ventricular haemodynamics.
Prog. Biophys. Mol. Biol. 116, 3 – 10. (doi:10.1016/j.
pbiomolbio.2014.08.010)

132. Su B, Zhang J-M, Tang HC, Wan M, Lim CCW, Su Y,
Zhao X, San Tan R, Zhong L. 2014 Patient-specific
blood flows and vortex formations in patients with
hypertrophic cardiomyopathy using computational
fluid dynamics. In Biomedical Engineering and
Sciences (IECBES), 2014 IEEE Conf., Kuala Lumpur,
Malaysia, 8 – 10 December, pp. 276 – 280.
New York, NY: IEEE.

133. Peskin C. 1972 Flow patterns around heart valves: a
numerical method. J. Comput. Phys. 10, 252 – 271.
(doi:10.1016/0021-9991(72)90065-4)

134. Yoganathan A, He Z, Jones S. 2004 Fluid mechanics
of heart valves. Annu. Rev. Biomed. Eng. 6, 331 –
362. (doi:10.1146/annurev.bioeng.6.040803.140111)

135. Le TB, Sotiropoulos F. 2013 Fluid – structure
interaction of an aortic heart valve prosthesis
driven by an animated anatomic left ventricle.
J. Comput. Phys. 244, 41 – 62. (doi:10.1016/j.jcp.
2012.08.036)

136. Cheng Y, Zhang H. 2010 Immersed boundary
method and lattice Boltzmann method coupled FSI
simulation of mitral leaflet flow. Comput. Fluids 39,
871 – 881. (doi:10.1016/j.compfluid.2010.01.003)

137. Su B, Zhong L, Wang X-K, Zhang J-M, San Tan R,
Allen JC, Tan SK, Kim S, Leo HL. 2014 Numerical
simulation of patient-specific left ventricular model
with both mitral and aortic valves by FSI approach.
Comput. Methods Prog. Biomed. 113, 474 – 482.
(doi:10.1016/j.cmpb.2013.11.009)

138. Hsu M-C, Kamensky D, Bazilevs Y, Sacks MS, Hughes
TJ. 2014 Fluid – structure interaction analysis of
bioprosthetic heart valves: significance of arterial
wall deformation. Comput. Mech. 54, 1055 – 1071.
(doi:10.1007/s00466-014-1059-4)

139. Kamensky D, Hsu M-C, Schillinger D, Evans JA,
Aggarwal A, Bazilevs Y, Sacks MS, Hughes TJ. 2015
An immersogeometric variational framework for
fluid – structure interaction: application to
bioprosthetic heart valves. Comput. Methods Appl.
Mech. Eng. 284, 1005 – 1053. (doi:10.1016/j.cma.
2014.10.040)

140. McQueen D, Peskin C. 1989 A 3D computational
method for blood flow in the heart. I. Immersed
elastic fibers in a viscous incompressible fluid.
J. Comput. Phys. 81, 372 – 405. (doi:10.1016/0021-
9991(89)90213-1)

141. McQueen D, Peskin C. 1989 A 3D computational
method for blood flow in the heart. II. Contractile
fibers. J. Comput. Phys. 82, 289 – 297. (doi:10.1016/
0021-9991(89)90050-8)

142. Yoganathan A, Lemmon J, Kim Y, Walker P, Levine
R, Vesier C. 1994 A computational study of a thin-
walled three-dimensional left ventricle during early
systole. J. Biomech. Eng. 116, 307 – 314. (doi:10.
1115/1.2895735)

143. Taylor T, Suga H, Goto Y, Okino H, Yamaguchi T.
1996 The effects of cardiac infarction on realistic
three-dimensional left ventricular blood ejection.
J. Biomech. Eng. 118, 106 – 110. (doi:10.1115/1.
2795934)
144. Jones T, Metaxas D. 1998 Patient-specific analysis of
left ventricular blood flow. Lect. Notes Comput. Sci.
1496, 156 – 166. (doi:10.1007/BFb0056198)

145. Lemmon J, Yoganathan A. 2000 Computational
modeling of left heart diastolic function:
examination of ventricular dysfunction. J. Elast. 122,
297 – 303. (doi:10.1115/1.1286559)

146. Kovacs SJ, McQueen DM, Peskin CS. 2001 Modelling
cardiac fluid dynamics and diastolic function. Phil.
Trans. R. Soc. Lond. A 359, 1299 – 1314. (doi:10.
1098/rsta.2001.0832)

147. Vigmod E, Clements C, McQueen D, Peskin C. 2008
Effect of bundle branch block on cardiac output: a whole
heart simulation study. Prog. Biophys. Mol. Biol. 97,
520 – 542. (doi:10.1016/j.pbiomolbio.2008.02.022)

148. Chahboune B, Crolet J. 1998 Numerical simulation
of the blood-wall interaction in the human left
ventricle. Eur. Phys. J. Appl. Phys. 2, 291 – 297.
(doi:10.1051/epjap:1998195)

149. Ong C, Chan B, Lim E-G, Abu Osman N, Abed A,
Dokos S, Lovell NH. 2012 Fluid structure
interaction simulation of left ventricular flow
dynamics under left ventricular assist device
support. In Engineering in Medicine and Biology
Society (EMBC), 2012 Annual Int. Conf. of the IEEE,
San Diego, CA, 28 August – 1 September, pp. 6293 –
6296. New York, NY: IEEE.

150. Chan B, Ong C, Lim E-G, Abu Osman N, Al Abed A,
Lovell NH, Dokos S. 2012 Simulation of left ventricle
flow dynamics with dilated cardiomyopathy during
the filling phase. In Engineering in Medicine and
Biology Society (EMBC), 2012 Annual Int. Conf. of
the IEEE, San Diego, CA, 28 August – 1 September,
pp. 6289 – 6292. New York, NY: IEEE.

151. Chan BT, Abu NA, Lim E, Chee KH, Abdul YF, Abed
AA, Lovell NH, Dokos S. 2013 Sensitivity analysis of
left ventricle with dilated cardiomyopathy in fluid
structure simulation. PLoS ONE 8, e67097. (doi:10.
1371/journal.pone.0067097)

152. Watanabe H, Sugiura S, Kafuku H, Hisada T. 2004
Multiphysics simulation of left ventricular filling
dynamics using fluid – structure interaction finite
element method. Biophys. J. 87, 2074 – 2085.
(doi:10.1529/biophysj.103.035840)

153. Watanabe H, Sugiura S, Hisada T. 2008 The looped
heart does not save energy by maintaining the
momentum of blood flowing in the ventricle.
Am. J. Physiol. 294, 2191 – 2196. (doi:10.1152/
ajpheart.00041.2008)

154. Cheng Y, Oertel H, Schenkel T. 2005 Fluid-structure
coupled CFD simulation of the left ventricular
flow during filling phase. Ann. Biomed. Eng. 8,
567 – 576. (doi:10.1007/s10439-005-4388-9)

155. Yang C, Tang D, Haber I, Geva T, Pedro J. 2007 In
vivo MRI-based 3D FSI RV/LV models for human
right ventricle and patch design for potential
computer-aided surgery optimization. Comput.
Struct. 85, 988 – 997. (doi:10.1016/j.compstruc.
2006.11.008)

156. Tang D, Yang C, Geva T, Pedro J. 2010 Image-based
patient-specific ventricle models with fluid –
structure interaction for cardiac function assessment
and surgical design optimization. Prog. Pediatr.

http://dx.doi.org/10.1155/2012/927279
http://dx.doi.org/10.1155/2012/927279
http://dx.doi.org/10.1002/cnm.2593
http://dx.doi.org/10.1080/10255842.2010.493515
http://dx.doi.org/10.1016/j.compbiomed.2013.01.013
http://dx.doi.org/10.1016/j.compbiomed.2013.01.013
http://dx.doi.org/10.1007/BF02368507
http://dx.doi.org/10.1007/BF02368507
http://dx.doi.org/10.1016/S0021-9290(02)00005-2
http://dx.doi.org/10.1017/S0022112005005550
http://dx.doi.org/10.1017/S0022112005005550
http://dx.doi.org/10.1103/physrevlett.95.108101
http://dx.doi.org/10.1114/1.1533073
http://dx.doi.org/10.1016/j.athoracsur.2009.01.036
http://dx.doi.org/10.1016/j.compbiomed.2012.06.010
http://dx.doi.org/10.1016/j.compbiomed.2012.06.010
http://dx.doi.org/10.1016/j.pbiomolbio.2014.08.010
http://dx.doi.org/10.1016/j.pbiomolbio.2014.08.010
http://dx.doi.org/10.1016/0021-9991(72)90065-4
http://dx.doi.org/10.1146/annurev.bioeng.6.040803.140111
http://dx.doi.org/10.1016/j.jcp.2012.08.036
http://dx.doi.org/10.1016/j.jcp.2012.08.036
http://dx.doi.org/10.1016/j.compfluid.2010.01.003
http://dx.doi.org/10.1016/j.cmpb.2013.11.009
http://dx.doi.org/10.1007/s00466-014-1059-4
http://dx.doi.org/10.1016/j.cma.2014.10.040
http://dx.doi.org/10.1016/j.cma.2014.10.040
http://dx.doi.org/10.1016/0021-9991(89)90213-1
http://dx.doi.org/10.1016/0021-9991(89)90213-1
http://dx.doi.org/10.1016/0021-9991(89)90050-8
http://dx.doi.org/10.1016/0021-9991(89)90050-8
http://dx.doi.org/10.1115/1.2895735
http://dx.doi.org/10.1115/1.2895735
http://dx.doi.org/10.1115/1.2795934
http://dx.doi.org/10.1115/1.2795934
http://dx.doi.org/10.1007/BFb0056198
http://dx.doi.org/10.1115/1.1286559
http://dx.doi.org/10.1098/rsta.2001.0832
http://dx.doi.org/10.1098/rsta.2001.0832
http://dx.doi.org/10.1016/j.pbiomolbio.2008.02.022
http://dx.doi.org/10.1051/epjap:1998195
http://dx.doi.org/10.1371/journal.pone.0067097
http://dx.doi.org/10.1371/journal.pone.0067097
http://dx.doi.org/10.1529/biophysj.103.035840
http://dx.doi.org/10.1152/ajpheart.00041.2008
http://dx.doi.org/10.1152/ajpheart.00041.2008
http://dx.doi.org/10.1007/s10439-005-4388-9
http://dx.doi.org/10.1016/j.compstruc.2006.11.008
http://dx.doi.org/10.1016/j.compstruc.2006.11.008
http://rsfs.royalsocietypublishing.org/


rsfs.royalsocietypublishing.org
Interface

Focus
6:20150083

21

 on March 3, 2016http://rsfs.royalsocietypublishing.org/Downloaded from 
Cardiol. 30, 51 – 62. (doi:10.1016/j.ppedcard.2010.
09.007)

157. Tang D, Yang C, Geva T, Gaudette G, Pedro J. 2011
Multi-physics MRI-based two-layer fluid – structure
interaction anisotropic models of human right and
left ventricles with different patch materials: cardiac
function assessment and mechanical stress analysis.
Comput. Struct. 89, 1059 – 1068. (doi:10.1016/j.
compstruc.2010.12.012)

158. Nordsletten D, Kay D, Smith N. 2010 A non-
conforming monolithic finite element method for
problems of coupled mechanics. J. Comput. Phys.
229, 7571 – 7593. (doi:10.1016/j.jcp.2010.05.043)

159. De Vecchi A, Nordsletten D, Razavi R, Greil G, Smith
N. 2013 Patient specific fluid – structure ventricular
modelling for integrated cardiac care. Med. Biol.
Eng. Comput. 51, 1261 – 1270. (doi:10.1007/s11517-
012-1030-5)

160. de Vecchi A, Nordsletten DA, Remme EW, Bellsham-
Revell H, Greil G, Simpson JM, Razavi R, Smith NP.
2012 Inflow typology and ventricular geometry
determine efficiency of filling in the hypoplastic left
heart. Ann. Thorac. Surg. 94, 1562 – 1569. (doi:10.
1016/j.athoracsur.2012.05.122)

161. McCormick M, Nordsletten D, Kay D, Smith N. 2011
Modelling left ventricular function under assist
device support. Int. J. Numer. Methods Biomed. Eng.
27, 1073 – 1095. (doi:10.1002/cnm.1428)

162. Krittian S, Schenkel T, Janoske U, Oertel H. 2010
Partitioned fluid – solid coupling for cardiovascular
blood flow: validation study of pressure-driven
fluid-domain deformation. Ann. Thor. Surg. Biomed.
Eng. 38, 2676 – 2689. (doi:10.1007/s10439-010-
0024-4)

163. Gao H, Carrick D, Berry C, Griffith BE, Luo X. 2014
Dynamic finite-strain modelling of the human left
ventricle in health and disease using an immersed
boundary-finite element method. IMA J. Appl.
Math. 79, 978 – 1010. (doi:10.1093/imamat/
hxu029)

164. Westerhof N, Boer C, Lamberts RR, Sipkema P. 2006
Cross-talk between cardiac muscle and coronary
vasculature. Physiol. Rev. 86, 1263 – 1308. (doi:10.
1152/physrev.00029.2005)

165. Quarteroni A, Formaggia L. 2004 Mathematical
modelling and numerical simulation of the
cardiovascular system. In Computational models for
the human body, volume 12 of handbook of
numerical analysis (eds PG Ciarlet, N Ayache),
pp. 3 – 127. Amsterdam, The Netherlands: Elsevier.

166. Huyghe JM, van Campen DH, Arts T, Heethaar RM.
1991 A two-phase finite element model of the
diastolic left ventricle. J. Biomech. 24, 527 – 538.
(doi:10.1016/0021-9290(91)90286-V)

167. Vankan W, Huyghe J, Janssen J, Huson A. 1996
Poroelasticity of saturated solids with an application
to blood perfusion. Int. J. Eng. Sci. 34, 1019 – 1031.
(doi:10.1016/0020-7225(96)00009-2)

168. Hornung U. 2012 Homogenization and porous
media, vol. 6. Munich, Germany: Springer Science &
Business Media.

169. Rohan E, Cimrman R. 2010 Two-scale modeling
of tissue perfusion problem using homogenization of
dual porous media. Int. J. Multiscale Comput. Eng. 8,
81 – 102. (doi:10.1615/IntJMultCompEng.v8.i1.70)

170. Biot MA. 1941 General theory of three-dimensional
consolidation. J. Appl. Phys. 12, 155 – 164. (doi:10.
1063/1.1712886)

171. Bowen RM. 1980 Incompressible porous media
models by use of the theory of mixtures. Int. J. Eng.
Sci. 18, 1129 – 1148. (doi:10.1016/0020-7225(80)
90114-7)

172. Coussy O. 2004 Poromechanics. Chichester, UK: John
Wiley and Sons.

173. Loret B, Simões FM. 2005 A framework for
deformation, generalized diffusion, mass transfer
and growth in multi-species multi-phase biological
tissues. Eur. J. Mech. A Solids 24, 757 – 781. (doi:10.
1016/j.euromechsol.2005.05.005)

174. Chapelle D, Moireau P. 2014 General coupling of
porous flows and hyperelastic formulations:
From thermodynamics principles to energy
balance and compatible time schemes. Eur. J. Mech.
B Fluids 46, 82 – 96. (doi:10.1016/j.euromechflu.
2014.02.009)

175. Hughes T, Liu W, Zimmermann T. 1981
Lagrangian – Eulerian finite element formulation for
incompressible viscous flows. Comput. Methods
Appl. Mech. Eng. 29, 329 – 349. (doi:10.1016/0045-
7825(81)90049-9)

176. Vuong A-T, Yoshihara L, Wall W. 2015 A general
approach for modeling interacting flow through
porous media under finite deformations. Comput.
Methods Appl. Mech. Eng. 283, 1240 – 1259.
(doi:10.1016/j.cma.2014.08.018)

177. May-Newman K, Omens JH, Pavelec RS, McCulloch
AD. 1994 Three-dimensional transmural mechanical
interaction between the coronary vasculature and
passive myocardium in the dog. Circul. Res. 74,
1166 – 1178. (doi:10.1161/01.RES.74.6.1166)

178. Reeve AM, Nash MP, Taberner AJ, Nielsen PM. 2014
Constitutive relations for pressure-driven stiffening
in poroelastic tissues. J. Biomech. Eng. 136, 081011.
(doi:10.1115/1.4027666)

179. Chapelle D, Gerbeau J-F, Sainte-Marie J, Vignon-
Clementel I. 2010 A poroelastic model valid in large
strains with applications to perfusion in cardiac
modeling. Comput. Mech. 46, 91 – 101. (doi:10.
1007/s00466-009-0452-x)

180. Spaan JA et al. 2005 Visualisation of intramural
coronary vasculature by an imaging cryomicrotome
suggests compartmentalisation of myocardial
perfusion areas. Med. Biol. Eng. Comput. 43,
431 – 435. (doi:10.1007/BF02344722)

181. Michler C et al. 2013 A computationally efficient
framework for the simulation of cardiac perfusion
using a multi-compartment Darcy porous-media
flow model. Int. J. Numer. Methods Biomed. Eng.
29, 217 – 232. (doi:10.1002/cnm.2520)

182. Smith AF, Shipley RJ, Lee J, Sands GB, LeGrice IJ,
Smith NP. 2014 Transmural variation and anisotropy
of microvascular flow conductivity in the rat
myocardium. Ann. Biomed. Eng. 42, 1966 – 1977.
(doi:10.1007/s10439-014-1028-2)

183. Hyde ER et al. 2014 Multi-scale parameterisation of
a myocardial perfusion model using whole-organ
arterial networks. Ann. Biomed. Eng. 42, 797 – 811.
(doi:10.1007/s10439-013-0951-y)

184. Cookson A, Lee J, Michler C, Chabiniok R, Hyde E,
Nordsletten D, Smith N. 2014 A spatially-distributed
computational model to quantify behaviour of
contrast agents in MR perfusion imaging. Med.
Image Anal. 18, 1200 – 1216. (doi:10.1016/j.media.
2014.07.002)

185. Carusi A, Burrage K, Rodriguez B. 2012 Bridging
experiments, models and simulations: an integrative
approach to validation in computational cardiac
electrophysiology. Am. J. Physiol. Heart. Circ.
Physiol. 303, H144 – H155. (doi:10.1152/ajpheart.
01151.2011)

186. Sadrieh A et al. 2014 Multiscale cardiac modelling
reveals the origins of notched T waves in long QT
syndrome type 2. Nat. Commun. 5, 5069. (doi:10.
1038/ncomms6069)

187. Pathmanathan P, Shotwell MS, Gavaghan DJ,
Cordeiro JM, Gray RA. 2015 Uncertainty
quantification of fast sodium current steady-state
inactivation for multi-scale models of cardiac
electrophysiology. Prog. Biophys. Mol. Biol. 117,
4 – 18. (doi:10.1016/j.pbiomolbio.2015.01.008)

188. Hill TL. 2012 Free energy transduction and
biochemical cycle kinetics. New York, NY: Springer
Science and Business Media.

189. Huxley AF, Simmons RM. 1971 Proposed
mechanism of force generation in striated
muscle. Nature 233, 533 – 538. (doi:10.1038/
233533a0)

190. Lymn R, Taylor EW. 1971 Mechanism of adenosine
triphosphate hydrolysis by actomyosin. Biochemistry
10, 4617 – 4624. (doi:10.1021/bi00801a004)

191. Eisenberg E, Hill TL. 1979 A cross-bridge model of
muscle contraction. Prog. Biophys. Mol. Biol. 33,
55 – 82. (doi:10.1016/0079-6107(79)90025-7)

192. Marcucci L, Truskinovsky L. 2010 Mechanics of the
power stroke in myosin II. Phys. Rev. E 81, 051915.
(doi:10.1103/PhysRevE.81.051915)

193. Zahalak GI. 1981 A distribution-moment
approximation for kinetic theories of muscular
contraction. Math. Biosci. 55, 89 – 114. (doi:10.
1016/0025-5564(81)90014-6)

194. Guerin T, Prost J, Joanny J-F. 2011 Dynamical
behavior of molecular motor assemblies in the rigid
and crossbridge models. Eur. Phys. J. E 34, 1 – 21.
(doi:10.1140/epje/i2011-11060-5)

195. Hill A. 1938 The heat of shortening and the
dynamic constants of muscle. Proc. R. Soc. Lond. B
126, 136 – 195. (doi:10.1098/rspb.1938.0050)

196. Suga H, Sagawa K, Shoukas AA. 1973 Load
independence of the instantaneous pressure-volume
ratio of the canine left ventricle and effects of
epinephrine and heart rate on the ratio. Circul. Res.
32, 314 – 322. (doi:10.1161/01.RES.32.3.314)

197. Caruel M, Chabiniok R, Moireau P, Lecarpentier Y,
Chapelle D. 2014 Dimensional reductions of a
cardiac model for effective validation and
calibration. Biomech. Model. Mechanobiol. 13,
897 – 914. (doi:10.1007/s10237-013-0544-6)

198. Piazzesi G, Lombardi V. 1995 A cross-bridge model
that is able to explain mechanical and energetic

http://dx.doi.org/10.1016/j.ppedcard.2010.09.007
http://dx.doi.org/10.1016/j.ppedcard.2010.09.007
http://dx.doi.org/10.1016/j.compstruc.2010.12.012
http://dx.doi.org/10.1016/j.compstruc.2010.12.012
http://dx.doi.org/10.1016/j.jcp.2010.05.043
http://dx.doi.org/10.1007/s11517-012-1030-5
http://dx.doi.org/10.1007/s11517-012-1030-5
http://dx.doi.org/10.1016/j.athoracsur.2012.05.122
http://dx.doi.org/10.1016/j.athoracsur.2012.05.122
http://dx.doi.org/10.1002/cnm.1428
http://dx.doi.org/10.1007/s10439-010-0024-4
http://dx.doi.org/10.1007/s10439-010-0024-4
http://dx.doi.org/10.1093/imamat/hxu029
http://dx.doi.org/10.1093/imamat/hxu029
http://dx.doi.org/10.1152/physrev.00029.2005
http://dx.doi.org/10.1152/physrev.00029.2005
http://dx.doi.org/10.1016/0021-9290(91)90286-V
http://dx.doi.org/10.1016/0020-7225(96)00009-2
http://dx.doi.org/10.1615/IntJMultCompEng.v8.i1.70
http://dx.doi.org/10.1063/1.1712886
http://dx.doi.org/10.1063/1.1712886
http://dx.doi.org/10.1016/0020-7225(80)90114-7
http://dx.doi.org/10.1016/0020-7225(80)90114-7
http://dx.doi.org/10.1016/j.euromechsol.2005.05.005
http://dx.doi.org/10.1016/j.euromechsol.2005.05.005
http://dx.doi.org/10.1016/j.euromechflu.2014.02.009
http://dx.doi.org/10.1016/j.euromechflu.2014.02.009
http://dx.doi.org/10.1016/0045-7825(81)90049-9
http://dx.doi.org/10.1016/0045-7825(81)90049-9
http://dx.doi.org/10.1016/j.cma.2014.08.018
http://dx.doi.org/10.1161/01.RES.74.6.1166
http://dx.doi.org/10.1115/1.4027666
http://dx.doi.org/10.1007/s00466-009-0452-x
http://dx.doi.org/10.1007/s00466-009-0452-x
http://dx.doi.org/10.1007/BF02344722
http://dx.doi.org/10.1002/cnm.2520
http://dx.doi.org/10.1007/s10439-014-1028-2
http://dx.doi.org/10.1007/s10439-013-0951-y
http://dx.doi.org/10.1016/j.media.2014.07.002
http://dx.doi.org/10.1016/j.media.2014.07.002
http://dx.doi.org/10.1152/ajpheart.01151.2011
http://dx.doi.org/10.1152/ajpheart.01151.2011
http://dx.doi.org/10.1038/ncomms6069
http://dx.doi.org/10.1038/ncomms6069
http://dx.doi.org/10.1016/j.pbiomolbio.2015.01.008
http://dx.doi.org/10.1038/233533a0
http://dx.doi.org/10.1038/233533a0
http://dx.doi.org/10.1021/bi00801a004
http://dx.doi.org/10.1016/0079-6107(79)90025-7
http://dx.doi.org/10.1103/PhysRevE.81.051915
http://dx.doi.org/10.1016/0025-5564(81)90014-6
http://dx.doi.org/10.1016/0025-5564(81)90014-6
http://dx.doi.org/10.1140/epje/i2011-11060-5
http://dx.doi.org/10.1098/rspb.1938.0050
http://dx.doi.org/10.1161/01.RES.32.3.314
http://dx.doi.org/10.1007/s10237-013-0544-6
http://rsfs.royalsocietypublishing.org/


rsfs.royalsocietypublishing.org
Interface

Focus
6:20150083

22

 on March 3, 2016http://rsfs.royalsocietypublishing.org/Downloaded from 
properties of shortening muscle. Biophys. J. 68,
1966. (doi:10.1016/S0006-3495(95)80374-7)

199. Tangney JR, Campbell SG, McCulloch AD, Omens JH.
2014 Timing and magnitude of systolic stretch affect
myofilament activation and mechanical work.
Am. J. Physiol. Heart. Circ. Physiol. 307,
H353 – H360. (doi:10.1152/ajpheart.00233.2014)

200. Mann DL, Zipes DP, Libby P, Bonow RO, Braunwald
E. 2015 Braunwald’s heart disease. Philadelphia, PA:
Sauders, Elsevier.

201. Ambrosi D et al. 2011 Perspectives on biological
growth and remodeling. J. Mech. Phys. Solids 59,
863 – 883. (doi:10.1016/j.jmps.2010.12.011)

202. Taber LA. 1995 Biomechanics of growth,
remodeling, and morphogenesis. Appl. Mech. Rev.
48, 487 – 545. (doi:10.1115/1.3005109)

203. Rodriguez EK, Hoger A, McCulloch AD. 1994 Stress –
dependent finite growth in soft elastic tissues.
J. Biomech. 27, 455 – 467. (doi:10.1016/0021-
9290(94)90021-3)

204. Menzel A, Kuhl E. 2012 Frontiers in growth and
remodeling. Mech. Res. Commun. 42, 1 – 14.
(doi:10.1016/j.mechrescom.2012.02.007)

205. Göktepe S, Abilez OJ, Kuhl E. 2010 A generic
approach towards finite growth with examples of
athlete’s heart, cardiac dilation, and cardiac wall
thickening. J. Mech. Phys. Solids 58, 1661 – 1680.
(doi:10.1016/j.jmps.2010.07.003)

206. Humphrey JD, Rajagopal KR. 2002 A constrained
mixture model for growth and remodeling of
soft tissues. Math. Models Methods Appl. Sci. 12,
407 – 430. (doi:10.1142/S0218202502001714)

207. Truesdell C, Noll W. 2004 The non-linear field
theories of mechanics. Berlin, Germany: Springer.

208. Göktepe S, Abilez OJ, Parker KK, Kuhl E. 2012
A multiscale model for eccentric and concentric cardiac
growth through sarcomerogenesis. J. Theor. Biol. 265,
433 – 442. (doi:10.1016/j.jtbi.2010.04.023)

209. Genet M, Lee LC, Baillargeon B, Guccione JM, Kuhl
E. 2015 Modeling pathologies of systolic and
diastolic heart failure. Ann. Biomed. Eng. 44,
112 – 127. (doi:10.1007/s10439-015-1351-2)

210. Kerckhoffs RCP, Omens JH, McCulloch AD. 2012 A
single strain-based growth law predicts concentric
and eccentric cardiac growth during pressure and
volume overload. Mech. Res. Commun. 42, 40 – 50.
(doi:10.1016/j.mechrescom.2011.11.004)

211. Rausch MK, Dam A, Göktepe S, Abilez OJ, Kuhl E.
2011 Computational modeling of growth: systemic
and pulmonary hypertension in the heart. Biomech.
Model. Mechanobiol. 10, 799 – 811. (doi:10.1007/
s10237-010-0275-x)

212. Boovendeerd PHM. 2012 Modeling of cardiac
growth and remodeling of myofiber orientation.
J. Biomech. 45, 872 – 882. (doi:10.1016/j.jbiomech.
2011.11.029)

213. Kroon W, Delhaas T, Arts T, Bovendeerd PHM. 2009
Computational modeling of volumetric soft tissue
growth: application to the cardiac left ventricle.
Biomech. Model. Mechanobiol. 8, 301 – 309. (doi:10.
1007/s10237-008-0136-z)

214. Omens JH, McCulloch AD, Criscione JC. 2003
Complex distributions of residual stress and strain in
the mouse left ventricle: experimental and
theoretical models. Biomech. Model. Mechanobiol. 1,
267 – 277. (doi:10.1007/s10237-002-0021-0)

215. Genet M, Rausch M, Lee L, Choy S, Zhao X, Kassab
G, Kozerke S, Guccione J, Kuhl E. 2015
Heterogeneous growth-induced prestrain in the
heart. J. Biomech. 48, 2080 – 2089. (doi:10.1016/j.
jbiomech.2015.03.012)

216. Gerdes AM, Kellerman SE, Moore JA, Muffly KE,
Clark LC, Reaves PY, Malec K, McKeown PP,
Schocken DD. 1992 Structural remodeling of
cardiac myocytes in patients with ischemic
cardiomyopathy. Circulation 86, 426 – 430. (doi:10.
1161/01.CIR.86.2.426)

217. Savinova OV, Gerdes AM. 2012 Myocyte changes in
heart failure. Heart Fail. Clin. 8, 1 – 6. (doi:10.1016/
j.hfc.2011.08.004)

218. Atkinson DJ, Edelman R. 1991 Cineangiography of
the heart in a single breath hold with a segmented
turboflash sequence. Radiology 178, 357 – 360.
(doi:10.1148/radiology.178.2.1987592)

219. Usman M, Atkinson D, Heathfield E, Greil G,
Schaeffter T, Prieto C. 2015 Whole left ventricular
functional assessment from two minutes free
breathing multi-slice cine acquisition. Phys. Med.
Biol. 60, N93. (doi:10.1088/0031-9155/60/7/N93)

220. Wesbey G, Higgins C, McNamara M, Engelstad B,
Lipton M, Sievers R, Ehman R, Lovin J, Brasch R.
1984 Effect of gadolinium-DTPA on the magnetic
relaxation times of normal and infarcted
myocardium. Radiology 153, 165 – 169. (doi:10.
1148/radiology.153.1.6473778)

221. Delfaut EM, Beltran J, Johnson G, Rousseau J,
Marchandise X, Cotten A. 1999 Fat suppression in
MR imaging: techniques and pitfalls. Radiographics
19, 373 – 382. (doi:10.1148/radiographics.19.2.
g99mr03373)

222. Mewton N, Liu CY, Croisille P, Bluemke D, Lima JA.
2011 Assessment of myocardial fibrosis with
cardiovascular magnetic resonance. J. Am. Coll. Cardiol.
57, 891 – 903. (doi:10.1016/j.jacc.2010.11.013)

223. Ugander M et al.2012 Extracellular volume imaging by
magnetic resonance imaging provides insights into
overt and sub-clinical myocardial pathology. Eur. Heart
J. 33, 1268– 1278. (doi:10.1093/eurheartj/ehr481)

224. Carpenter J-P et al. 2014 On T2* magnetic
resonance and cardiac iron. Circulation 123, 1519 –
1528. (doi:10.1161/CIRCULATIONAHA.110.007641)

225. Rutz AK, Ryf S, Plein S, Boesiger P, Kozerke S. 2008
Accelerated whole-heart 3D CSPAMM for myocardial
motion quantification. Magn. Reson. Med. 59,
755 – 763. (doi:10.1002/mrm.21363)

226. Young AA. 1999 Model tags: direct three-dimensional
tracking of heart wall motion from tagged magnetic
resonance images. Med. Image Anal. 3, 361 – 372.
(doi:10.1016/S1361-8415(99) 80029-2)

227. Lambert SA et al. 2015 Bridging three orders of
magnitude: multiple scattered waves sense fractal
microscopic structures via dispersion. Phys. Rev. Lett.
115, 094301. (doi:10.1103/PhysRevLett.115.094301)

228. Henningsson M, Koken P, Stehning C, Razavi R,
Prieto C, Botnar RM. 2012 Whole-heart coronary MR
angiography with 2D self-navigated image
reconstruction. Magn. Reson. Med. 67, 437 – 445.
(doi:10.1002/mrm.23027)

229. Giorgi B, Dymarkowski S, Maes F, Kouwenhoven M.
2002 Improved visualization of coronary arteries
using a new three-dimensional submillimeter MR
coronary angiography sequence with balanced
gradients. Am. J. Roentgenol. 179, 901 – 910.
(doi:10.2214/ajr.179.4.1790901)

230. Axel L, Dougherty L. 1989 Improved method of
spatial modulation of magnetization (SPAMM)
for MRI of heart wall motion. Radiology 172,
349 – 350. (doi:10.1148/radiology.172.2.2748813)

231. Plein S, Ryf S, Schwitter J, Radjenovic A, Boesiger P,
Kozerke S. 2007 Dynamic contrast-enhanced
myocardial perfusion MRI accelerated with k-t
SENSE. Magn. Reson. Med. 58, 777 – 785. (doi:10.
1002/mrm.21381)

232. Jogiya R, Kozerke S, Morton G, De Silva K, Redwood S,
Perera D, Nagel E, Plein S. 2012 Validation of dynamic
3-Dimensional whole heart magnetic resonance
myocardial perfusion imaging against fractional flow
reserve for the detection of significant coronary artery
disease. J. Am. Coll. Cardiol. 60, 756 – 765. (doi:10.
1016/j.jacc.2012.02.075)

233. Pedersen H, Kozerke S, Ringgaard S, Nehrke K, Kim
W. 2009 k-t PCA: Temporally constrained k-t BLAST
reconstruction using principal component analysis.
Magn. Reson. Med. 62, 706 – 716. (doi:10.1002/
mrm.22052)

234. Stoeck CT, von Deuster C, Genet M, Atkinson D,
Kozerke S. 2015 Second-order motion-compensated
spin echo diffusion tensor imaging of the human
heart. Magn. Reson. Med. 17(Suppl. 1), P81.
(doi:10.1186/1532-429X-17-S1-P81)

235. Robert B, Sinkus R, Gennisson J-L, Fink M. 2009
Application of DENSE-MR-elastography to the
human heart. Magn. Reson. Med. 62, 1155 – 1163.
(doi:10.1002/mrm.22124)

236. Mariappan YK, Glaser KJ, Ehman RL. 2010 Magnetic
resonance elastography: a review. Clin. Anat. 23,
497 – 511. (doi:10.1002/ca.21006)

237. Pernot M, Couade M, Mateo P, Crozatier B,
Fischmeister R, Tanter M. 2011 Real-time
assessment of myocardial contractility using shear
wave imaging. J. Am. Coll. Cardiol. 58, 65 – 72.
(doi:10.1016/j.jacc.2011.02.042)

238. Toussaint N, Stoeck CT, Schaeffter T, Kozerke S,
Sermesant M, Batchelor PG. 2013 In vivo human
cardiac fibre architecture estimation using shape-
based diffusion tensor processing. Med. Image Anal.
17, 1243 – 1255. (doi:10.1016/j.media.2013.02.008)

239. Brett SE, Guilcher A, Clapp B, Chowienczyk P. 2012
Estimating central systolic blood pressure during
oscillometric determination of blood pressure: proof
of concept and validation by comparison with intra-
aortic pressure recording and arterial tonometry.
Blood Press. Monit. 17, 132 – 136. (doi:10.1097/
MBP.0b013e328352ae5b)

240. Shi W et al. 2012 A comprehensive cardiac motion
estimation framework using both untagged and 3D
tagged MR images based on non-rigid registration.
IEEE Trans. Med. Imag. 31, 1263 – 1275. (doi:10.
1109/TMI.2012.2188104)

http://dx.doi.org/10.1016/S0006-3495(95)80374-7
http://dx.doi.org/10.1152/ajpheart.00233.2014
http://dx.doi.org/10.1016/j.jmps.2010.12.011
http://dx.doi.org/10.1115/1.3005109
http://dx.doi.org/10.1016/0021-9290(94)90021-3
http://dx.doi.org/10.1016/0021-9290(94)90021-3
http://dx.doi.org/10.1016/j.mechrescom.2012.02.007
http://dx.doi.org/10.1016/j.jmps.2010.07.003
http://dx.doi.org/10.1142/S0218202502001714
http://dx.doi.org/10.1016/j.jtbi.2010.04.023
http://dx.doi.org/10.1007/s10439-015-1351-2
http://dx.doi.org/10.1016/j.mechrescom.2011.11.004
http://dx.doi.org/10.1007/s10237-010-0275-x
http://dx.doi.org/10.1007/s10237-010-0275-x
http://dx.doi.org/10.1016/j.jbiomech.2011.11.029
http://dx.doi.org/10.1016/j.jbiomech.2011.11.029
http://dx.doi.org/10.1007/s10237-008-0136-z
http://dx.doi.org/10.1007/s10237-008-0136-z
http://dx.doi.org/10.1007/s10237-002-0021-0
http://dx.doi.org/10.1016/j.jbiomech.2015.03.012
http://dx.doi.org/10.1016/j.jbiomech.2015.03.012
http://dx.doi.org/10.1161/01.CIR.86.2.426
http://dx.doi.org/10.1161/01.CIR.86.2.426
http://dx.doi.org/10.1016/j.hfc.2011.08.004
http://dx.doi.org/10.1016/j.hfc.2011.08.004
http://dx.doi.org/10.1148/radiology.178.2.1987592
http://dx.doi.org/10.1088/0031-9155/60/7/N93
http://dx.doi.org/10.1148/radiology.153.1.6473778
http://dx.doi.org/10.1148/radiology.153.1.6473778
http://dx.doi.org/10.1148/radiographics.19.2.g99mr03373
http://dx.doi.org/10.1148/radiographics.19.2.g99mr03373
http://dx.doi.org/10.1016/j.jacc.2010.11.013
http://dx.doi.org/10.1093/eurheartj/ehr481
http://dx.doi.org/10.1161/CIRCULATIONAHA.110.007641
http://dx.doi.org/10.1002/mrm.21363
http://dx.doi.org/10.1016/S1361-8415(99)80029-2
http://dx.doi.org/10.1103/PhysRevLett.115.094301
http://dx.doi.org/10.1002/mrm.23027
http://dx.doi.org/10.2214/ajr.179.4.1790901
http://dx.doi.org/10.1148/radiology.172.2.2748813
http://dx.doi.org/10.1002/mrm.21381
http://dx.doi.org/10.1002/mrm.21381
http://dx.doi.org/10.1016/j.jacc.2012.02.075
http://dx.doi.org/10.1016/j.jacc.2012.02.075
http://dx.doi.org/10.1002/mrm.22052
http://dx.doi.org/10.1002/mrm.22052
http://dx.doi.org/10.1186/1532-429X-17-S1-P81
http://dx.doi.org/10.1002/mrm.22124
http://dx.doi.org/10.1002/ca.21006
http://dx.doi.org/10.1016/j.jacc.2011.02.042
http://dx.doi.org/10.1016/j.media.2013.02.008
http://dx.doi.org/10.1097/MBP.0b013e328352ae5b
http://dx.doi.org/10.1097/MBP.0b013e328352ae5b
http://dx.doi.org/10.1109/TMI.2012.2188104
http://dx.doi.org/10.1109/TMI.2012.2188104
http://rsfs.royalsocietypublishing.org/


rsfs.royalsocietypublishing.org
Interface

Focus
6:20150083

23

 on March 3, 2016http://rsfs.royalsocietypublishing.org/Downloaded from 
241. Imperiale A, Chabiniok R, Moireau P, Chapelle D.
2011 Constitutive parameter estimation
methodology using tagged-MRI data. In Functional
imaging and modeling of the heart (eds D Metaxas,
L Axel), pp. 409 – 417. Berlin, Germany: Springer.

242. Ecabert O, Peters J, Walker M, Ivan T, Lorenz C, von
Berg J, Lessick J, Vembar M. 2011 Assessment of
myocardial fibrosis with cardiovascular magnetic
resonance. Med. Image Anal. 15, 863 – 876. (doi:10.
1016/j.media.2011.06.004)

243. Shi W, Jantsch M, Aljabar P, Pizarro L, Bai W,
Wang H, O’Regan D, Zhuang X, Rueckert D. 2013
Temporal sparse free-form deformations. Med.
Image Anal. 17, 779 – 789. (doi:10.1016/j.media.
2013.04.010)

244. Hadjicharalambous M et al. 2015 Analysis of passive
cardiac constitutive laws for parameter estimation
using 3D tagged MRI. Biomech. Model. Mechanobiol.
14, 807 – 828. (doi:10.1007/s10237-014-0638-9)

245. Augenstein KF, Cowan BR, LeGrice IJ, Nielsen PM,
Young AA. 2005 Method and apparatus for soft
tissue material parameter estimation using tissue
tagged magnetic resonance imaging. J. Biomech.
Eng. 127, 148 – 157. (doi:10.1115/1.1835360)

246. Wang VY, Lam H, Ennis DB, Cowan BR, Young AA,
Nash MP. 2009 Modelling passive diastolic
mechanics with quantitative MRI of cardiac
structure and function. Med. Image Anal. 13,
773 – 784. (doi:10.1016/j.media.2009.07.006)

247. Xi J, Lamata P, Lee J, Moireau P, Chapelle D, Smith
N. 2011 Myocardial transversely isotropic material
parameter estimation from in-silico measurements
based on a reduced-order unscented Kalman filter.
J. Mech. Behav. Biomed. Mater. 4, 1090 – 1102.
(doi:10.1016/j.jmbbm.2011.03.018)

248. Wang L, Dawoud F, Wong KC, Zhang H, Liu H, Lardo
AC, Shi P. 2011 Transmural electrophysiologic and
scar imaging on porcine heart with chronic
infarction. In STACOM (eds O Camara, E Konukoglu,
M Pop, K Rhode, M Sermesant, A Young), pp. 23 –
32. Berlin, Germany: Springer.

249. Chabiniok R, Moireau P, Lesault P-F, Rahmouni A,
Deux J-F, Chapelle D. 2012 Estimation of tissue
contractility from cardiac cine-MRI using a
biomechanical heart model. Biomech. Model.
Mechanobiol. 11, 609 – 630. (doi:10.1007/s10237-
011-0337-8)

250. Marchesseau S et al. 2013 Personalization of a
cardiac electromechanical model using reduced
order unscented Kalman filtering from regional
volumes. Med. Image Anal. 17, 816 – 829. (doi:10.
1016/j.media.2013.04.012)

251. Chabiniok R, Bhatia KK, King AP, Rueckert D, Smith
N. 2015 Manifold learning for cardiac modeling and
estimation framework. In statistical atlases and
computational models of the heart-imaging and
modelling challenges (eds O Camara, T Mansi, M
Pop, K Rhode, M Sermesant, A Young), pp. 284 –
294. Basel, Switzerland: Springer.

252. Asner L et al. In press. Estimation of passive and
active properties in the human heart using 3D
tagged MRI. Biomech. Model. Mechanobiol. (doi:10.
1007/s10237-015-0748-z)
253. Wong KC, Sermesant M, Rhode K, Ginks M, Rinaldi
CA, Razavi R, Delingette H, Ayache N. 2014 Velocity-
based cardiac contractility personalization from
images using derivative-free optimization. J. Mech.
Behav. Biomed. Mater. 43, 35 – 52. (doi:10.1016/j.
jmbbm.2014.12.002)

254. Chabiniok R, Sammut E, Hadjicharalambous M,
Asner L, Nordsletten D, Razavi R, Smith N. 2015
Steps towards quantification of the cardiological
stress exam. In Functional imaging and modeling of
the heart (eds H van Assen, P Bovendeerd, T
Delhaas), pp. 12 – 20. Basel, Switzerland: Springer.

255. Krishnamurthy A et al. 2013 Patient-specific models
of cardiac biomechanics. J. Comput. Phys. 244,
4 – 21. (doi:10.1016/j.jcp.2012.09.015)

256. Rohmer D, Sitek A, Gullberg GT. 2007
Reconstruction and visualization of fiber and
laminar structure in the normal human heart from
ex vivo. Invest. Radiol. 42, 777 – 789. (doi:10.1097/
RLI.0b013e3181238330)

257. Eggen MD, Swingen CM, Iaizzo PA. 2009 Analysis of
fiber orientation in normal and failing human
hearts using diffusion tensor MRI. In IEEE Int. Symp.
on Biomedical Imaging: From Nano to Macro,
Boston, MA, 28 June – 1 July, pp. 642 – 645.
New York, NY: IEEE.

258. Gamper U, Boesiger P, Kozerke S. 2007 Diffusion
imaging of the in vivo heart using spin echoes –
considerations on bulk motion sensitivity. Magn.
Reson. Med. 57, 331 – 337. (doi:10.1002/mrm.21127)

259. Schmid H, Nash M, Young A, Hunter P. 2006
Myocardial material parameter estimation—a
comparative study for simple shear. J. Biomech. Eng.
128, 742 – 750. (doi:10.1115/1.2244576)

260. Schmid H, O’Callaghan P, Nash M, Lin W, LeGrice I,
Smaill B, Young A, Hunter P. 2008 Myocardial
material parameter estimation. Biomech. Model.
Mechanobiol. 7, 161 – 173. (doi:10.1007/s10237-
007-0083-0)

261. Blum J, Le Dimet F-X, Navon IM. 2009 Data
assimilation for geophysical fluids. Handb. Numer.
Anal. 14, 385 – 441. (doi:10.1016/S1570-
8659(08)00209-3)

262. Chapelle D, Fragu M, Mallet V, Moireau P. 2013
Fundamental principles of data assimilation
underlying the Verdandi library: applications to
biophysical model personalization within euheart.
Med. Biol. Eng. Comput. 51, 1221 – 1233. (doi:10.
1007/s11517-012-0969-6)

263. Perotti LE, Ponnaluri AV, Krishnamoorthi S, Balzani
D, Klug WS, Ennis DB. 2015 Identification of unique
material properties for passive myocardium.
Auckland, New Zealand: Cardiac Physiome
Workshop.

264. Le Dimet F-X, Talagrand O. 1986 Variational
algorithms for analysis and assimilation of
meteorological observations: theoretical aspects.
Tellus A 38, 97 – 110. (doi:10.1111/j.1600-0870.
1986.tb00459.x)

265. Delingette H, Billet F, Wong KC, Sermesant M,
Rhode K, Ginks M, Rinaldi CA, Razavi R, Ayache N.
2012 Personalization of cardiac motion and
contractility from images using variational data
assimilation. IEEE Trans. Biomed. Eng. 59, 20 – 24.
(doi:10.1109/TBME.2011.2160347)

266. Moireau P, Chapelle D, Le Tallec P. 2008 Joint state
and parameter estimation for distributed
mechanical systems. Comput. Methods Appl.
Mech. Eng. 197, 659 – 677. (doi:10.1016/j.cma.
2007.08.021)

267. Moireau P, Chapelle D. 2011 Reduced-order
unscented Kalman filtering with application to
parameter identification in large-dimensional
systems. ESAIM Control Optimisation Calc. Var. 17,
380 – 405. (doi:10.1051/cocv/2010006)

268. Lakshmivarahan S, Lewis JM. 2013 Nudging
methods: a critical overview. In Data assimilation for
atmospheric, oceanic and hydrologic applications,
vol. II (eds S Ki Park, L Xu), pp. 27 – 57. Berlin,
Germany: Springer.

269. Moireau P, Chapelle D, Le Tallec P. 2009 Filtering for
distributed mechanical systems using position
measurements: perspectives in medical imaging.
Inverse Probl. 25, 035010. (doi:10.1088/0266-5611/
25/3/035010)

270. Corrado C, Gerbeau J-F, Moireau P. 2015
Identification of weakly coupled multiphysics
problems. Application to the inverse problem
of electrocardiography. J. Comput. Phys. 283,
271 – 298. (doi:10.1016/j.jcp.2014.11.041)

271. Imperiale A, Routier A, Durrleman S, Moireau P.
2013 Improving efficiency of data assimilation
procedure for a biomechanical heart model by
representing surfaces as currents. In Functional
imaging and modeling of the heart (eds S Ourselin,
D Rueckert, N Smith), pp. 342 – 351. Berlin,
Germany: Springer.

272. Mancini D, Burkhoff D. 2005 Mechanical device –
based methods of managing and treating heart
failure. Circulation 112, 438 – 448. (doi:10.1161/
CIRCULATIONAHA.104.481259)

273. Food and D. Administration. 2014 Reporting of
computational modeling studies in medical
device submissions. In Draft guidance for
industry and food and drug administration staff.
See http://www.fda.gov/MedicalDevices/
DeviceRegulationandGuidance/GuidanceDocuments/
ucm371016.htm.

274. Rausch M, Bothe W, Kvitting J-P, Swanson J, Miller
D, Kuhl E. 2012 Mitral valve annuloplasty. Ann.
Biomed. Eng. 40, 750 – 761. (doi:10.1007/s10439-
011-0442-y)

275. Gee MW, Hirschvogel M, Basilious M, Wildhirt S.
2015 A closed loop 0D-3D model of patient specific
cardiac mechanics for cardiac assist device
engineering. In 4th Int. Conf. on Computational and
Mathematical Biomedical Engineering, Paris, France,
9 June – 1 July. Swansea, UK: CMBE Zeta
Computational Resources Ltd.

276. Wang Q, Sirois E, Sun W. 2012 Patient-specific
modeling of biomechanical interaction in
transcatheter aortic valve deployment. J. Biomech.
45, 1965 – 1971. (doi:10.1016/j.jbiomech.2012.
05.008)

277. Lafortune P, Ars R, Vázquez M, Houzeaux G. 2012
Coupled electromechanical model of the heart:

http://dx.doi.org/10.1016/j.media.2011.06.004
http://dx.doi.org/10.1016/j.media.2011.06.004
http://dx.doi.org/10.1016/j.media.2013.04.010
http://dx.doi.org/10.1016/j.media.2013.04.010
http://dx.doi.org/10.1007/s10237-014-0638-9
http://dx.doi.org/10.1115/1.1835360
http://dx.doi.org/10.1016/j.media.2009.07.006
http://dx.doi.org/10.1016/j.jmbbm.2011.03.018
http://dx.doi.org/10.1007/s10237-011-0337-8
http://dx.doi.org/10.1007/s10237-011-0337-8
http://dx.doi.org/10.1016/j.media.2013.04.012
http://dx.doi.org/10.1016/j.media.2013.04.012
http://dx.doi.org/10.1007/s10237-015-0748-z
http://dx.doi.org/10.1007/s10237-015-0748-z
http://dx.doi.org/10.1016/j.jmbbm.2014.12.002
http://dx.doi.org/10.1016/j.jmbbm.2014.12.002
http://dx.doi.org/10.1016/j.jcp.2012.09.015
http://dx.doi.org/10.1097/RLI.0b013e3181238330
http://dx.doi.org/10.1097/RLI.0b013e3181238330
http://dx.doi.org/10.1002/mrm.21127
http://dx.doi.org/10.1115/1.2244576
http://dx.doi.org/10.1007/s10237-007-0083-0
http://dx.doi.org/10.1007/s10237-007-0083-0
http://dx.doi.org/10.1016/S1570-8659(08)00209-3
http://dx.doi.org/10.1016/S1570-8659(08)00209-3
http://dx.doi.org/10.1007/s11517-012-0969-6
http://dx.doi.org/10.1007/s11517-012-0969-6
http://dx.doi.org/10.1111/j.1600-0870.1986.tb00459.x
http://dx.doi.org/10.1111/j.1600-0870.1986.tb00459.x
http://dx.doi.org/10.1109/TBME.2011.2160347
http://dx.doi.org/10.1016/j.cma.2007.08.021
http://dx.doi.org/10.1016/j.cma.2007.08.021
http://dx.doi.org/10.1051/cocv/2010006
http://dx.doi.org/10.1088/0266-5611/25/3/035010
http://dx.doi.org/10.1088/0266-5611/25/3/035010
http://dx.doi.org/10.1016/j.jcp.2014.11.041
http://dx.doi.org/10.1161/CIRCULATIONAHA.104.481259
http://dx.doi.org/10.1161/CIRCULATIONAHA.104.481259
http://www.fda.gov/MedicalDevices/DeviceRegulationandGuidance/GuidanceDocuments/ucm371016.htm
http://www.fda.gov/MedicalDevices/DeviceRegulationandGuidance/GuidanceDocuments/ucm371016.htm
http://www.fda.gov/MedicalDevices/DeviceRegulationandGuidance/GuidanceDocuments/ucm371016.htm
http://dx.doi.org/10.1007/s10439-011-0442-y
http://dx.doi.org/10.1007/s10439-011-0442-y
http://dx.doi.org/10.1016/j.jbiomech.2012.05.008
http://dx.doi.org/10.1016/j.jbiomech.2012.05.008
http://rsfs.royalsocietypublishing.org/


rsfs.royalsocietypublishing.org
Interface

Focus
6:20150083

24

 on March 3, 2016http://rsfs.royalsocietypublishing.org/Downloaded from 
parallel finite element formulation. Int. J. Numer.
Methods Biomed. Eng. 28, 72 – 86. (doi:10.1002/
cnm.1494)

278. Gurev V, Pathmanathan P, Fattebert J-L, Wen H-F,
Magerlein J, Gray RA, Richards DF, Rice JJ. 2015 A
high-resolution computational model of the
deforming human heart. Biomech. Model.
Mechanobiol. 14, 829 – 849. (doi:10.1007/s10237-
014-0639-8)

279. Augustin CM, Neic A, Liebmann M, Prassl AJ,
Niederer SA, Haase G, Plank G. 2016 Anatomically
accurate high resolution modeling of human whole
heart electromechanics: a strongly scalable algebraic
multigrid solver method for nonlinear deformation.
J. Comput. Phys. 305, 622 – 646. (doi:10.1016/j.jcp.
2015.10.045)

280. Kayvanpour E et al. 2015 Towards personalized
cardiology: multi-scale modeling of the failing
heart. PLoS ONE 10, e0134869. (doi:10.1371/
journal.pone.0134869)

281. Chapelle D, Felder A, Chabiniok R, Guellich A, Deux
J-F, Damy T. 2015 Patient-specific biomechanical
modeling of cardiac amyloidosis – a case study.
In Functional imaging and modeling of the heart
(eds H van Assen, P Bovendeerd, T Delhaas),
pp. 295 – 303. Basel, Switzerland: Springer.

282. Qu Z, Garfinkel A, Chen P-S, Weiss JN. 2000
Mechanisms of discordant alternans and induction of
reentry in simulated cardiac tissue. Circulation 102,
1664 – 1670. (doi:10.1161/01.CIR.102.14.1664)

283. Sato D et al. 2009 Synchronization of chaotic early
afterdepolarizations in the genesis of cardiac
arrhythmias. Proc. Natl Acad. Sci. USA 106,
2983 – 2988. (doi:10.1073/pnas.0809148106)

284. Moreno JD et al. 2011 A computational model to
predict the effects of class I anti-arrhythmic drugs
on ventricular rhythms. Sci. Transl. Med. 3, 98ra83.
(doi:10.1126/scitranslmed.3002588)

285. Mansi T et al. 2011 A statistical model for quantification
and prediction of cardiac remodelling: application to
tetralogy of Fallot. IEEE Trans. Med. Imag. 30, 1605–
1616. (doi:10.1109/TMI.2011.2135375)

286. Hlatky MA et al. 2009 Criteria for evaluation of
novel markers of cardiovascular risk a scientific
statement from the American heart association.
Circulation 119, 2408 – 2416. (doi:10.1161/
CIRCULATIONAHA.109.192278)

287. Tsamis A, Cheng A, Nguyen TC, Langer F, Miller D,
Kuhl E. 2012 Kinematics of cardiac growth: In vivo
characterization of growth tensors and strains.
J. Mech. Behav. Biomed. Mater. 8, 165 – 177.
(doi:10.1016/j.jmbbm.2011.12.006)

288. Zhang X et al. 2014 Atlas-based quantification of
cardiac remodeling due to myocardial infarction.
PLoS ONE 9, e110243. (doi:10.1371/journal.pone.
0110243)
289. Tobon-Gomez C et al. 2013 Benchmarking
framework for myocardial tracking and deformation
algorithms: an open access database. Med. Image
Anal. 17, 632 – 648. (doi:10.1016/j.media.2013.
03.008)

290. Camara O, Mansi T, Pop M, Rhode K, Sermesant M,
Young A. 2015 Statistical atlases and computational
models of the heart-imaging and modelling
challenges: 5th International Workshop, STACOM 2014.
In Held in Conjunction with MICCAI 2014, Boston, MA,
USA, 18 September 2014, revised Selected Papers,
vol. 8896. Cham, Switzerland: Springer.

291. Konukoglu E et al. 2011 Efficient probabilistic model
personalization integrating uncertainty on data and
parameters: application to eikonal-diffusion models in
cardiac electrophysiology. Prog. Biophys. Mol. Biol. 107,
134 – 146. (doi:10.1016/j.pbiomolbio.2011.07.002)

292. Zettinig O et al. 2014 Data-driven estimation of
cardiac electrical diffusivity from 12-lead ECG
signals. Med. Image Anal. 18, 1361 – 1376. (doi:10.
1016/j.media.2014.04.011)

293. Neumann D et al. 2014 Robust image-based
estimation of cardiac tissue parameters and their
uncertainty from noisy data. In Medical image
computing and computer-assisted intervention –
MICCAI 2014 (eds P Golland, N Hata, C Barillot, J
Hornegger, R Howe), pp. 9 – 16. Basel, Switzerland:
Springer.

http://dx.doi.org/10.1002/cnm.1494
http://dx.doi.org/10.1002/cnm.1494
http://dx.doi.org/10.1007/s10237-014-0639-8
http://dx.doi.org/10.1007/s10237-014-0639-8
http://dx.doi.org/10.1016/j.jcp.2015.10.045
http://dx.doi.org/10.1016/j.jcp.2015.10.045
http://dx.doi.org/10.1371/journal.pone.0134869
http://dx.doi.org/10.1371/journal.pone.0134869
http://dx.doi.org/10.1161/01.CIR.102.14.1664
http://dx.doi.org/10.1073/pnas.0809148106
http://dx.doi.org/10.1126/scitranslmed.3002588
http://dx.doi.org/10.1109/TMI.2011.2135375
http://dx.doi.org/10.1161/CIRCULATIONAHA.109.192278
http://dx.doi.org/10.1161/CIRCULATIONAHA.109.192278
http://dx.doi.org/10.1016/j.jmbbm.2011.12.006
http://dx.doi.org/10.1371/journal.pone.0110243
http://dx.doi.org/10.1371/journal.pone.0110243
http://dx.doi.org/10.1016/j.media.2013.03.008
http://dx.doi.org/10.1016/j.media.2013.03.008
http://dx.doi.org/10.1016/j.pbiomolbio.2011.07.002
http://dx.doi.org/10.1016/j.media.2014.04.011
http://dx.doi.org/10.1016/j.media.2014.04.011
http://rsfs.royalsocietypublishing.org/

	Multiphysics and multiscale modelling, data-model fusion and integration of organ physiology in the clinic: ventricular cardiac mechanics
	Introduction
	Modelling paradigms in the heart
	Modelling cardiac anatomy and structure
	Passive myocardial constitutive equations
	Active contraction constitutive equations
	Incompressible versus nearly incompressible formulations
	Electromechanics
	Fluid-structure interaction in the ventricles
	Poromechanical modelling
	Multiscale modelling strategies for contraction
	Subcellular contraction modelling
	Multiscale/micro-macro approaches for contraction

	Growth and remodelling

	Towards translation: data-model fusion
	Clinical data and acquisition
	Image processing
	Model parametrization
	Data assimilation
	Methodological issues in cardiac data assimilation


	Bringing translational cardiac modelling to the clinic
	Device assessment
	Therapy planning
	Biomarkers and diagnosis

	Realizing translational potential
	The clinical question and data/model selection
	Application-specific models and data-model fusion
	Model analysis and outcomes
	Uncertainty quantification

	Conclusion
	Authors’ contributions
	Competing interests
	Funding
	Acknowledgements
	Disclaimer
	References


