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IL-25/IL-33–responsive TH2 cells characterize nasal polyps
with a default TH17 signature in nasal mucosa

Emily P. S. Lam, PhD,a,h Harsha H. Kariyawasam, FRCP, PhD,b,h* Batika M. J. Rana, PhD,c,h*

Stephen R. Durham, MD, FRCP,d,h Andrew N. J. McKenzie, PhD,c Nicholas Powell, MRCP, PhD,e

Nara Orban, MD,d Melissa Lennartz-Walker, MSc,a,h Claire Hopkins, FRCS (ORL-HNS),g Sun Ying, MD, PhD,a

Joanne Rimmer, FRCS (ORL-HNS),b Valerie J. Lund, MD, FRCS,b David J. Cousins, PhD,f,h� and

Stephen J. Till, FRCP, PhDa,h� London, Cambridge, and Leicester, United Kingdom
Background: Chronic rhinosinusitis with nasal polyposis
(CRSwNP) in Western countries is characterized by
eosinophilia, IgE production, and TH2 cytokine expression.
Type 2 innate lymphoid cells from polyps produce IL-5 and
IL-13 in response to IL-25 and IL-33, although the relevance of
this axis to local mucosal T-cell responses is unknown.
Objective: We sought to investigate the role of the IL-25/IL-33
axis in local mucosal T-cell responses in patients with CRSwNP.
Methods: Polyp tissue and blood were obtained from patients
undergoing nasal polypectomy. Control nasal biopsy specimens
and blood were obtained from healthy volunteers. Tissue was
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cultured in a short-term explant model. T-cell surface
phenotype/intracellular cytokines were assessed by means of
flow cytometry. T-cell receptor variable b-chain analysis was
performed with the immunoSEQ assay. Microarrays were
performed for gene expression analysis.
Results: IL-25 receptor (IL-17RB)–expressing TH2 effector cells
were identified in nasal polyp tissue but not the healthy nasal
mucosa or periphery. IL-17RB1CD41 polyp–derived TH2 cells
coexpressed ST2 (IL-33 receptor) and responded to IL-25 and
IL-33 with enhanced IL-5 and IL-13 production. Within
IL-17RB1CD41 T cells, several identical T-cell receptor
variable b-chain complementarity-determining region 3
sequences were identified in different subjects, suggesting clonal
expansion driven by a common antigen. Abundant
IL-17–producing T cells were observed in both healthy nasal
mucosal and polyp populations, with TH17-related genes the
most overexpressed compared with peripheral blood T cells.
Conclusion: IL-25 and IL-33 can interact locally with
IL-17RB1ST21 polyp T cells to augment TH2 responses in
patients with CRSwNP. A local TH17 response might
be important in healthy nasal mucosal immune homeostasis. (J
Allergy Clin Immunol 2015;nnn:nnn-nnn.)

Key words: Chronic rhinosinusitis with nasal polyps, nasal mucosa,
IL-25, IL-33, IL-17RB, ST2, T-cell phenotype, TH2 cells, TH17 cells,
T-cell receptor Vb repertoire, microarray

Chronic rhinosinusitis with nasal polyposis (CRSwNP) is an
umbrella term for a heterogeneous group of inflammatory
disorders characterized by persistent polypoid inflammation of
the sinonasal mucosa (>_12 weeks) and nasal obstruction.1

Symptoms are often severe and only partially responsive to
treatment, and disease is commonly associated with difficult-to-
treat asthma.1,2 There is an urgent unmet clinical need to
understand the immunopathology of CRSwNP. Several studies
have indicated regional variation in CRSwNP endotypes.Western
countries show a predominance of eosinophilic TH2-associated
polyps, and Staphylococcus aureus superantigens have been
implicated in driving the TH2 response.3-5 Conversely, CRSwNP
in patients from southern Asia is associated with neutrophilic
infiltration and a local TH1/TH17 signature.3,4,6 Although
potential sources of proeosinophilic cytokines in patients with
CRSwNP include T cells, type 2 innate lymphoid cells (ILC2s),
mast cells, and eosinophils, the local immune mechanisms
regulating cytokine production remain poorly understood.
Relatively little is also known of T-cell responses in the healthy
nasal mucosa, although the local microenvironment appears to
suppress TH2 responses.7
1
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Abbreviations used
AIM2: A
bsent in melanoma 2
CDR3: C
omplementarity-determining region 3
CRSwNP: C
hronic rhinosinusitis with nasal polyposis
CRTH2: C
hemoattractant receptor-homologous molecule

expressed on TH2 cells
ILC2: T
ype 2 innate lymphoid cell
TCR Vb: T
-cell receptor variable b-chain
Recently, the epithelial cell–derived cytokines IL-25 and
IL-33, acting through their respective receptors IL-17RB and
ST2, have been implicated in promoting TH2 responses in animal
models of allergic inflammation.8-10 Expression of IL-17RB has
been demonstrated on human peripheral blood TH2 cells
differentiated in vitro by thymic stromal lymphopoietin–treated
dendritic cells and on freshly isolated CD41 T cells from patients
with Churg-Strauss syndrome.11,12 IL-25 is also expressed within
the bronchial mucosa of asthmatic patients and in the skin during
allergen-induced late responses.11,13 Furthermore, ILC2s
coexpress IL-17RB and ST2 and produce IL-5 and IL-13 in
response to IL-25 and IL-33.14,15 ST2 is associated with TH2
immune responses in mice,16,17 and expression is increased in
ILC2s and eosinophils from patients with CRSwNP.18-20 In
human subjects baseline levels of IL-33 mRNA in epithelial cells
derived from treatment-recalcitrant nasal polyps are increased
compared with levels in cells derived from treatment-responsive
nasal polyps.21 However, the local mucosal T-cell response in
patients with CRSwNP and the potential interaction of T cells
in the nasal mucosa with IL-25 or IL-33 have not been explored.

Therefore we hypothesized that the IL-25/IL-33 axis is
involved in directing local mucosal TH2 responses in patients
with eosinophilic CRSwNP. To test this hypothesis, we
extensively phenotyped nasal T-cell responses from tissue
explants of patients with CRSwNP and healthy control subjects.
METHODS
Detailed methods used in this study and reagent sources can be found in the

Methods section in this article’s Online Repository at www.jacionline.org.

Clinical and demographic data for patients with CRSwNP and healthy

volunteers are shown in Table E1 in this article’s Online Repository at

www.jacionline.org.
RESULTS

Nasal polyp explant T cells are of an effector

memory phenotype
The majority of donor-matched polyp- and peripheral

blood–derived CD41 and CD81 T cells were determined to be
ab T cells. gd T cells formed a minimal proportion of the
T-cell population (see Fig E1 and Table E2 in this article’s Online
Repository at www.jacionline.org). After short-term culture, both
polyp and blood populations expressed high levels of CD45RO,
which is consistent with a memory phenotype after restimulation.
The majority of T cells in polyp cultures expressed significantly
less CD62 ligand and CCR7 compared with blood T cells and
displayed higher expression of CD49a, an integrin expressed
by tissue-resident memory cells,22,23 suggesting that nasal
polyp–derived T cells were predominately of an effector memory
phenotype.24
TH17 and TH2 cytokine profiles are detected in nasal

polyps
Intracellular cytokine staining was performed on CD41 T cells

expanded from polyp explants and peripheral blood in parallel to
establish the TH cell cytokine profile. CD41 T cells derived from
polyps expressed significantly higher percentages of IL-171

and IL-221 cells together with TH2 cytokine (IL-5, IL-9, and
IL-13)–producing cells (Fig 1, A and B), all of which showed
negligible expression in expanded peripheral blood CD41

T cells from the same donors. In addition, coexpression of
IL-17 with IL-22 and IFN-g was detected (see Fig E2 in this arti-
cle’s Online Repository at www.jacionline.org). A significantly
higher percentage of polyp T cells produced the proinflammatory
cytokine TNF-a, although IFN-g expression was equivalent in
CD41 T cells from both sources.
TH2 cytokine production is specific to CRSwNP, but

TH17 cytokines are produced by nasal T cells from

normal and inflamed tissue
We next examined whether this cytokine expression profile in

polyp explants was disease or tissue specific. Therefore T-cell
phenotypes were compared with those from nasal mucosal biopsy
specimens from healthy volunteers. IL-17 was produced by a
comparable percentage of T cells derived from healthy nasal and
nasal polyp explants (Fig 1, C) and confirmed at the protein level
in cell-culture supernatants. Minimal IL-131 cells were observed
in the healthy nasal mucosa (Fig 1, C). Although IL-4 expression
was not examined by using flow cytometry, significantly
increased IL-4 levels, in addition to IL-5 and IL-13 levels, were
detected in the supernatants of polyp explant cultures compared
with those seen in healthy nasal mucosa explants (see Fig E3 in
this article’s Online Repository at www.jacionline.org).
IL-17RB is expressed by in vitro TH2-polarized but

not TH1-polarized cells
The IL-25 receptor IL-17RB is associated with TH2 cells and

the promotion of TH2 responses.9,11 We sought to examine
IL-17RB expression in homogenous human TH1/TH2 CD41

populations differentiated from naive peripheral blood T cells,
as previously described.25 Differentiated cells were highly
polarized toward a TH1 (IFN-g1, T-box transcription factor
[T-bet]1, and IL-12 receptor b2 [IL-12Rb2]1) or TH2 (IL-41,
IL-51, GATA-31, and chemoattractant receptor-homologous
molecule expressed on TH2 cells [CRTH2]1) phenotype, and a
significant increase in IL17RB gene expression was observed in
TH2 versus TH1 cell lines (Fig 2, A). IL-17RB expression
increased with time in in vitro TH2-polarized T-cell cultures
only (Fig 2, B and C), which followed similar kinetics to type 2
cytokine production (data not shown). Furthermore, IL-17RB
expression was correlated with IL-13 expression in TH2 cell
cultures (Fig 2, D). Together, these data suggest IL-17RB to be
a robust marker of human TH2 cells.
IL-17RB1 cells are a distinct TH2 cell population

present in nasal polyps
We next examined whether T-cell expression of IL-17RB is

also a feature of target organ tissue CD41 cells in eosinophilic
polyps. A substantial proportion of polyp CD41 T cells expressed

http://www.jacionline.org
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FIG 1. Differential expression of TH2/TH17 cytokines by polyp- and normal nasal mucosa–derived CD41

cells. A, Representative staining on paired CD41 blood and polyp cells. B, Percentages of polyp versus

blood CD41 cells producing cytokines (Wilcoxon matched-pairs signed-rank test, n 5 6-18). C, IL-17

and IL-13 histograms for CD41 biopsy and polyp cells (n 5 3). Each row indicates an individual subject.

Gray, Resting; red, activated. NM bx, Healthy nasal mucosa biopsy specimen. *P < .05, **P < .01, and

***P < .001.
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IL-17RB, whereas negligible IL-17RB expression was observed
in matched peripheral blood or healthy nasal mucosal specimens
(Fig 3). Coexpression of IL-17RB with the TH2-associated
prostaglandin D2 receptor CRTH2 (Fig 3, B) was also detected,
but IL-17RB expression was negligible on TH17-associated
CCR61 or TH1-associated CXCR31 cells. Consistent with the
high frequency of IL-171 cells, an abundance of CCR6-
expressing cells was also found in both healthy nasal mucosa
and polyp explants (Fig 3, A and C). CD81 cells showed similar
surface molecule expression patterns to CD41 cells, although
lower percentages of cells positive for the surface molecules
examined were generally observed (see Fig E4 in this article’s
Online Repository at www.jacionline.org).

Although short-term cultures were used to generate sufficient
cell numbers for experimentation, flow cytometric analysis of
polyp tissue T cells immediately after collagenase digestion
confirmed IL-17RB expression was not a culture artifact (see Fig
E5 in this article’s Online Repository at www.jacionline.org).
Furthermore, percentages of TH2 and IL-17–producing cells
were increased in digested polyp- versus blood-derived cells,
which is consistent with findings from explant cultures.
IL-17RB1CD41 cells derived from nasal polyp

explants represent in vivo differentiated memory

TH2 cells
To further address the phenotype of IL-17RB1CD41 cells

from nasal polyp explants, explant-derived cells were sorted by
means of fluorescence-activated cell sorting for IL-17RB1CD41

expression after short-term expansion. IL-17RB2CD41 cells
were also sorted for comparison. TH2-associated genes, including
IL4, IL5, IL9, IL13, and GATA3, showed considerable
upregulation in activated IL-17RB1CD41 versus activated
IL-17RB2CD41 cells (Fig 4, A), with differential expression
for a majority of these genes reaching statistical significance
(see Table E3 in this article’s Online Repository at www.
jacionline.org). Furthermore, correspondingly lower expression
of TH1-associated genes, including IFNG, LTA, and CCL3, was

http://www.jacionline.org
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FIG 2. IL-17RB is a marker of TH2 cells. A, Comparison of activated TH1 versus TH2 samples identified 292

differentially expressed genes. The heat map shows selected TH1/TH2-associated genes. B, Representative

data for IL-17RB expression by CD41 cells cultured with IL-2/TH1/TH2 differentiation conditions. C, Mean

frequency of IL-17RB1 cells in culture over time (TH1/TH2, n5 7-11; rIL-2 alone, n5 3-6). D, Linear regression

analysis of IL-17RB/IL-13 expression in TH2 conditions (n 5 4). *P < .05 and ***P < .001.
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identified. Moreover, the genes for promelanin-concentrating
hormone and prostaglandin-endoperoxide synthase 2 were
preferentially expressed in IL-17RB1 cells in line with data
from in vitro polarized TH2 cultures (Fig 2, A) and previously
published findings.26,27 Microarray-based gene expression results
were confirmed by using quantitative RT-PCR analysis (see
Fig E6 in this article’s Online Repository at www.jacionline.org).

IL-17RB1 cells predominantly and selectively

produce TH2 cytokines
We next examined whether IL-17RB expression colocalized

with TH2 cytokines in nasal polyp explant T-cell cultures. Fig 4,
B, shows the percentage of cells expressing IL-17RB when segre-
gated by cytokine production. IL-5-producing, IL-13-producing,
and IL-5/IL-13–coproducing cells were approximately 5 times
more likely to coexpress IL-17RB compared with TH1/TH17
cytokine–producing cells (ie, 52% of IL-5–producing cells were
IL-17RB1, whereas 8% of IFN-g–producing cells were
IL-17RB1). In addition, IL-17RB1 cells were accountable for
the majority of IL-5/IL-13–coproducing T cells (59%; Fig 4,
B). Notably, percentages of IFN-g–and IL-17–producing cells
were significantly lower in the IL-17RB1 population compared
with those in the IL-17RB2 population. A similar trend was
observed for TNF-a and IL-22.

http://www.jacionline.org


FIG 3. IL-17RB is expressed exclusively by polyp CD41 T cells. A and B, Representative staining for T-cell

phenotypic markers by polyp, healthy nasal biopsy, and paired peripheral blood cells. C, Expression of

phenotypic markers by CD41 T cells derived from blood and nasal tissue of healthy volunteers (n 5 7) or

patients with CRSwNP (n 5 11; Kruskal-Wallis test with Dunn multiple comparison test). *P < .05,

**P < .01, and ***P < .001.
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The IL-33 receptor ST2 is also expressed by

IL-17RB1 cells
T cells from nasal polyp explants were next examined for

mRNA expression of the IL-33 receptor ST2. Expression of
transmembrane and soluble isoforms (sST2) of ST2, as
measured by using quantitative RT-PCR, were increased in
activated IL-17RB1 cells compared with IL-17RB2 cells (Fig
4, C), suggesting that IL-17RB1 T cells might also be IL-33
responsive.
IL-17RB and ST2 are functional and potentiate TH2

cytokine production by nasal polyp T cells
TH2 cytokine expression was determined by means of flow

cytometry in polyp explants cultured in the presence of
recombinant human IL-25 or IL-33 to evaluate whether
IL-17RB and ST2 expressed on polyp T cells were functional
(Fig 4, D). Recombinant cytokines were added either on the
day of explantation or day 7 after stimulation. Analysis was
performed 7 days later. Addition of IL-25 induced a mean



FIG 4. Polyp-derived CD41IL-17RB1 cells have a TH2 profile and respond to IL-25 and IL-33. A, Heat map of

42 differentially expressed genes in polyp IL-17RB1 versus IL-17RB2 cells (n 5 3). B, Cytokine-producing

cells coexpressing IL-17RB (n 5 5-13). C, Transmembrane and soluble ST2 mRNA expression (n 5 4;

Mann-Whitney test). D, Representative staining for polyp CD41 cells with or without IL-25/IL-33. E, IL-51/

IL-131 cells coexpressing IL-17RB with or without IL-25/IL-33. Open symbols, Day 0 addition (n 5 5); solid
symbols, day 7 addition (n 5 8). The Wilcoxon test was used. *P < .05, **P < .01, and ***P < .001.
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FIG 5. A TH17 signature characterizes CD41 T cells of the healthy nasal mucosa. A, Representative IL-13/IL-

17 staining in polyp and healthy nasal mucosa biopsy specimen (NM bx) CD41 cells (n 5 3). B, IL-17

expression in explant culture supernatants (n 5 7, mean 1 SEM; Mann-Whitney test. C, Heat map of

TH17 genes in NM bx versus blood CD41 cells (n5 3). D, IL-17 coexpression with IFN-g/IL-22 in blood versus

polyp CD41 cells (n 5 6; Wilcoxon matched-pairs signed-rank test). *P < .05.
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1.5-fold increase in the percentage of IL-17RB1IL-51CD41

T cells and a 1.4-fold increase in the percentage of
IL-17RB1IL-131CD41 T cells in explant cultures (Fig 4, E).
Addition of IL-33 had a comparable effect to IL-25, with a
mean 1.4-fold increase in the percentage of IL-17RB1IL-
51CD41 T cells and a 1.2-fold increase in the percentage of
IL-17RB1IL-131CD41 T cells. Time of recombinant cytokine
addition had no effect on the response of IL-17RB1ST21

cells. Addition of IL-25 to polyp-derived T cells at day 7 after
stimulation was still associated with a significant increase in
IL-17RB1IL-51 and IL-17RB1IL-131 CD41 T-cell counts
(data not shown).
Nasal polyp epithelium and eosinophils express

IL-25
Cellular sources of IL-25 within nasal polyp tissue were

investigated by using immunohistochemistry. Immunostaining



TABLE I. TCR Vb repertoire analysis of IL-17RB1/2 cells

Patient ID HKP020 HKP023 HKP026 HKP036

Cell population IL-17RB1 IL-17RB2 IL-17RB1 IL-17RB2 IL-17RB1 IL-17RB2 IL-17RB1 IL-17RB2

Total clones (productive) 4,871 1,146 969 3,801 1,896 443,183 2,435 47,486

Unique clones (no.) 33 91 28 97 55 6,475 113 1,759

Shared clones 0 1 25 11

Common clones

CASSLNTGYEQYF 1 2 1 1 1 2 2 2
CASSYPGEAFF 1 2 1 2 2 2 1 2

Numbers of unique TCR clones present in sorted polyp-derived CD41IL-17RB1 and CD41IL-17RB2 populations analyzed by using the immunoSEQ assay are shown (n 5 4

separate donors). Amino acid sequences represent CDR3 regions of 2 common clones identified within the IL-17RB1 population of at least 3 of the 4 donors.
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was observed in the epithelium of nasal polyps but not in healthy
control biopsy tissue (see Fig E7, A, in this article’s Online
Repository at www.jacionline.org). Furthermore, a significantly
higher number of IL-251 cells were present in the polyp
submucosa (see Fig E7, B). These cells were identified to be
eosinophils based on cell morphology (see Fig E7,C). In contrast,
immunoreactive IL-33 was detected in both nasal polyp and
healthy biopsy tissue, with immunostaining indicating a
predominantly epithelial and endothelial pattern of expression
(see Fig E8 in this article’s Online Repository at www.
jacionline.org).
IL-17RB1 and IL-17RB2 cells have distinct T-cell

receptor specificities with common T-cell receptor

clones exhibited by IL-17RB1 cells
We next examined whether nasal IL-17RB1CD41 TH2 cells in

patients with CRSwNP represent oligoclonal populations driven
by in vivo antigen or superantigen expansion. Clonality was
examined by T-cell receptor variable b-chain (TCRVb) analysis
with the immunoSEQ assay and compared in IL-17RB1CD41

and IL-17RB2CD41 cells sorted from nasal polyp explant
cultures of 4 patients with CRSwNP. No skewing of TCR Vb
family use was observed (data not shown), but sequencing of
complementarity-determining region 3 (CDR3) regions revealed
that polyp IL-17RB1CD41 cells contained a smaller number of
unique clones compared with IL-17RB2CD41 cells in all 4 cases
analyzed (Table I). Additionally, less than 1% of sequenced
clones were present within both IL-17RB1CD41 and
IL-17RB2CD41 populations. Remarkably, 2 distinct common
clones in IL-17RB1CD41 T cells, identified to belong to the
Vb5.2 and Vb6 families by using immunoSEQ analysis, were
present in 3 of 4 patients with CRSwNP studied. Overall, these
results suggest that polyp IL-17RB1CD41 T cells have
undergone clonal expansion and that common epitopes might
drive this process, even in different patients.
TH17 cells are the default TH cell phenotype in

normal nasal mucosal immunity
Given the abundant expression of IL-17 by CD41 T cells

derived from the healthy nasal mucosa in addition to nasal
polyps, these cells were characterized further. In agreement
with CCR6 and IL-17RB expression data (Fig 3), no coexpression
of IL-17 and IL-13 was detected (Fig 5, A). In supernatants of
CD3/CD28-stimulated T cells, IL-17 was produced by T cells
derived from both healthy nasal mucosa and polyp tissue but
not peripheral blood–derived T cells from the same patients
(Fig 5, B).
CD41 T-cell populations were also sorted from paired nasal
explant and peripheral blood cultures for transcriptome profiling
(see Fig E9 in this article’s Online Repository at www.jacionline.
org). Preferential expression of TH17-associated genes was
observed in activated nasal CD41 cells. Of note, the 5 genes
that were most highly overexpressed in nasal versus peripheral
blood CD41 T cells were all TH17 associated: IL17F,
IL22, CCL20, KLRB1 (CD161), and IL1R1 (see Table E4 in this
article’s Online Repository at www.jacionline.org). Significant
overexpression of the gene for the DNA-sensing inflammasome
component absent in melanoma 2 (AIM2) was also observed in
nasal mucosal T cells. Analysis of additional selected
TH17-associated genes further revealed preferential expression
of IL17A, IL21, IL23, IL23R, aryl hydrocarbon receptor (AHR),
and RORC (Fig 5, C) by activated nasal CD41 cells. These data
suggest that the healthy, homeostatic T-cell response in the nasal
mucosa is associated with a strong TH17 signature compared with
the periphery.
TH17 cells in nasal polyps have a potentially

protective immune homeostatic role associated

with reduced IFN-g coexpression
TH17 cells can coproduce IFN-g and IL-22. IL-17/IFN-g

double-positive cells have been associated with a pathogenic
proinflammatory phenotype, whereas IL-17/IL-22 double-
positive cells have been reported to have protective properties
by inducing expression of antimicrobial peptides.28-30 Lower
coexpression of IFN-g by IL-171 T cells from polyp explants
was found compared with that seen in blood-derived cells
(Fig 5, D). No difference was observed in the percentages of
IL-171 cells coexpressing IL-22.
DISCUSSION
Recently, ILC2s have been identified in nasal polyps,18,19,31

and the presence of TH2 cells in white patients with CRSwNP
has been demonstrated.32 However, the local T-cell response itself
remains relatively uncharacterized. Here, using a short-term
explant model to expand and study T cells from surgical speci-
mens, we report a significant population of IL-17RB–expressing
TH2 cells in nasal polyps with a gene expression profile akin to
that of highly polarized TH2 cells.25,26 Approximately 50% of
IL-51IL-131 polyp-derived CD41 T cells expressed IL-17RB,
suggesting IL-17RB1 cells represent a subset of TH2 cells.

We demonstrate that IL-17RB1CD41 cells from polyps
express mRNA for both transmembrane and soluble isoforms of
ST2 on activation and respond to both IL-25 and IL-33 with
augmented IL-5 and IL-13 production. ST2 expression by
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in vitro differentiated human peripheral blood TH2 cells has been
described,33 and both IL-25 and IL-33 receptors are expressed and
functional on human and murine ILC2s.14,18,19,34 However, the
role of these pathways in human mucosal T-cell responses has
not been examined. These data now establish a direct link of
IL-25, IL-33, and TH2 cells in human disease and suggest that
IL-17RB1ST21 TH2 cells likely contribute to CRSwNP
pathogenesis through the IL-25/IL-33 axis. We found increased
IL-25 immunostaining in polyps, localizing to eosinophils
and epithelial cells, which is consistent with previously
published reports11-13 and in agreement with the increased
IL-25 mRNA expression seen in patients with eosinophilic
CRSwNP reported by Iinuma et al.35 In addition, constitutive
expression of IL-33 was detected in epithelium and endothelium
of both healthy and polyp nasal tissue, which is in line with
mRNA expression studies.31,36,37 These findings suggest that
these cells might be endogenous sources of IL-25 and IL-33 in
nasal polyps. However, the mechanism of IL-33 release is yet to
be elucidated.

Colonization with S aureus in nasal polyposis is associated
with high levels of IgE,38 and S aureus superantigens, such as
staphylococcal enterotoxin B, can drive the TH2-type response
in eosinophilic polyps.5,39 Here we demonstrate that nonrandom
segregation of unique CDR3 clones occurs with 2 CDR3 clones
present in the IL-17RB1 population in 3 of 4 samples analyzed.
Although these results require confirmation in a larger study,
they are suggestive of oligoclonality in the TCR Vb repertoire
within the IL-17RB1 polyp T-cell population and indicate
possible expansion by common antigens in different patients.
Routine skin prick testing in these patients with CRSwNP did
not identify coincidental sensitization to a common aeroallergen
(data not shown). Furthermore, the Vb5.2 and Vb6 families
are reported to be preferentially expressed by cutaneous
lymphocyte–associated antigen–positive cells responding to the
superantigen staphylococcal enterotoxin A in patients with
atopic dermatitis and induced by the toxic shock syndrome
toxin 1 superantigen, respectively.40,41 Although speculative,
this raises the possibility that local IL-17RB1 TH2 cells in
patients with CRSwNP undergo antigen-specific expansion in
response to common but as yet undefined epitopes with
an additional non–antigen-specific component mediated by
superantigens.

We demonstrate that the TH response in the healthy nasal mu-
cosa is heavily biased toward TH17 responses compared with the
periphery. Although we did not examine the relative dominance
of the TH17 phenotype compared with other TH cell phenotypes,
we observed that the 5 most overexpressed genes in normal nasal
mucosal T cells compared with peripheral blood T cells were all
strongly TH17 associated. We propose that a significant
population of nasal T cells differentiate into TH17 cells in vivo,
with the propensity to produce IL-17 and related cytokines should
they become activated in vivo.42 We hypothesize that this TH17
phenotype represents a key part of the nasal mucosal host
defense response. Priming of autologous monocytes with
pathogens, such as S aureus and Candida albicans, induces
TH17 responses in naive human T cells,43 suggesting that
chronic exposure of the nasal mucosa to nonpathogenic and
pathogenic microorganisms, such as Staphylococcus epidermidis,
S aureus, and corynebacteria, could be the mechanism behind this
response.
Within the T cells derived from healthy nasal tissue, we
found that transcripts encoding IL-17F and IL-22 were the
most highly upregulated. IL-17A and IL-17F are homologous
molecules sharing 55% amino acid identity.44 Both induce
expression of numerous chemokines, cytokines, and adhesion
molecules, although IL-17A is more effective at inducing
inflammatory gene expression.28,45-47 IL-17F is expressed
by a wide variety of tissue, including in the lung,47,48 and
can also potentiate IL-22–induced expression of antimicrobial
peptides.28 Thus the presence of T cells able to produce
IL-17F and IL-22 is suggestive of a function for these cells
in nasal mucosal immune homeostasis. Microarray analysis
also identified overexpression of AIM2 mRNA in nasal
explant CD41 T cells. The AIM2 inflammasome is activated
by intracellular pathogens, leading to caspase-1–dependent
IL-1b secretion.49,50 Further studies will be needed to
examine whether this innate pathway is functional in nasal
TH17 cells.

Our study has some limitations. For example, memory
T cells were phenotyped after short-term expansion. Therefore
it is possible that a proportion of CD45RA1 peripheral blood
T cells acquired CD45RO expression during culture and
might have retained some of their baseline CD62 ligand
and CCR7 expression characteristics. In addition, IL-17RB–
expressing T cells were mainly characterized after in vitro
expansion. Analysis of freshly isolated IL-17RB1 T cells
from digested polyps was hampered by low cell numbers
and lower IL-17RB expression, possibly reflecting the
effects of enzymatic digestion, and therefore data were
obtained from fewer cases. The IL-17RB mAb used in these
studies did not prove suitable for immunohistochemical
analysis, and further studies will be needed for in vivo
expression analysis of IL-17RB. Finally, the effect of IL-25
and IL-33 stimulation on TH2 responses in vitro was modest,
although the concentrations of recombinant IL-25 and IL-33
used in this study were similar to previously published
reports.12,35

Nonetheless, our data establish a biological link between
IL-17RB expression and responsiveness to IL-25 in TH2 cells
derived from polyps. Further optimized culture studies will be
needed to characterize this response fully. Although 2 recent
studies have reported the existence of IL-17RB1 cells in patients
with CRSwNP,35,51 our findings represent the first direct
colocalization of IL-17RB with TH2 cells.35

In conclusion, we identify functional IL-17RB as a
marker of local TH2 cells present in chronically inflamed
nasal polyp tissue from patients with CRSwNP.
Coexpression of ST2 by these cells, in addition to ILC2s,
indicates that the IL-25/IL-17RB and IL-33/ST2 pathways
could be attractive therapeutic targets. In addition, these
data also provide novel insights into mechanisms of nasal
immune homeostasis and suggest a role for TH17 cells in
this process.
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Key messages

d For the first time, we show that local IL-17RB1 TH2 cells
in nasal polyps coexpress ST2 and that both receptors
function, in response to their respective ligands IL-25
and IL-33, to potentiate TH2 cytokine production.

d IL-17RB1 TH2 cells express common TCR clones, which
is suggestive of recognition, clonal expansion, or both of
T cells driven by a common antigen or antigens in pa-
tients with CRSwNP.

d TH17 cells are present in the nasal mucosa as part of the
normal homeostatic immune response.
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