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Abstract  

Purpose: To evaluate the potential value of combining multiple constraints for highly accelerated 

cardiac cine MRI.  

Methods: A locally low rank (LLR) constraint and a temporal finite difference (FD) constraint 

were combined to reconstruct cardiac cine data from highly undersampled measurements. 

Retrospectively undersampled 2D Cartesian reconstructions were quantitatively evaluated against 

fully-sampled data using normalized root mean square error, structural similarity index (SSIM) 

and high frequency error norm (HFEN). This method was also applied to 2D golden-angle radial 

real-time imaging to facilitate single breath-hold whole-heart cine (12 short-axis slices, 9-13 sec 

single breath hold). Reconstruction was compared against state-of-the-art constrained 

reconstruction methods: LLR, FD, k-t SLR.  

Results: At 10 to 60 spokes/frame, LLR+FD better preserved fine structures and depicted 

myocardial motion with reduced spatio-temporal blurring in comparison to existing methods. LLR 

yielded higher SSIM ranking than FD; FD had higher HFEN ranking than LLR. LLR+FD 

combined the complimentary advantages of the two, and ranked the highest in all metrics for all 

retrospective undersampled cases. Single breath-hold multi-slice cardiac cine with prospective 

undersampling was enabled with in-plane spatio-temporal resolutions of 2×2 mm
2
 and 40 ms. 

Conclusion: Highly accelerated cardiac cine is enabled by the combination of 2D undersampling 

and the synergistic use of LLR and FD constraints.  

 

Key words —Cardiac cine MRI, sparse sampling, constrained reconstruction, locally low 

rank, compressed sensing, parallel imaging. 
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1. Introduction 

Cardiac cine MRI is the non-invasive gold standard technique for evaluating cardiac 

function and wall motion in humans [1,2]. A typical exam covers the heart using multiple 2D 

slices, roughly ten to twelve short-axis slices and three to six long-axis slices [1]. Scan protocols 

utilize electrocardiogram or plethysmograph gating to synchronize MRI acquisitions with the 

cardiac cycle, and 10-15 second breath holds to avoid artifacts from respiratory motion (one breath 

hold per slice). There is significant opportunity for improvement through the use of acceleration. 

Roughly 10% of cardiac patients have arrhythmias or are otherwise unable to hold their breath, and 

benefit from real-time methods that do not require cardiac synchronization or breath holding. 

Among appropriate patients, inconsistencies between breath holds leads to slices being acquired in 

different respiratory states, which requires a complex registration step prior to quantitative 

functional analysis.  Finally, current methods are geared towards assessment of the left ventricle, 

whereas assessment of the left atrium, valves, and right heart chambers requires higher and 

potentially isotropic spatial resolution via 3D imaging.  

Several methods have been proposed to accelerate cine imaging. Parallel imaging methods 

shorten the scan time by exploiting the sensitivities of multiple coils [3,4]. However, high 

acceleration with acceleration factor above 4 is rarely used in practice because it is limited by the 

coil geometry and its associated g-factor SNR losses [4]. Compressed sensing (CS) has shown 

promise to accelerate dynamic imaging even further [5–10]. CS encourages sparse representations 

of the dynamic images in a known transform domain, and utilizes a non-linear recovery algorithm 

to reconstruct the images from undersampled k-space data. Transforms such as spatial wavelet 

[5,7,8], temporal frequency [7-9], and spatio-temporal finite difference [10] have been previously 

explored. A challenge associated with using a single sparsity constraint is the potential misfit 

between the model representation and the dynamic data; many transform coefficients are often 

required to accurately represent the signal at hand. This limits the maximum achievable 

acceleration rate. Adaptive methods that rely on transforms derived from the data itself have 

recently been proposed. Methods based on partially separable function model (PSF) [11] that 

exploit similarities amongst pixel-time profiles include k-t PCA [12], incremented rank power 

factorization (IRPF) [13,14], sparsity and low rank regularization (k-t SLR) [15-17], and blind 

compressed sensing [18]. They all enforce a global model on every time profile being expressed as 

a combination of few temporal basis functions. These basis functions can be orthogonal (e.g. 
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estimated using singular value decomposition [15-17]), or non-orthogonal (e.g. estimated via 

dictionary learning [18]).     

Methods based on regional similarities have also been proposed. A locally low rank (LLR) 

scheme was proposed in [19], where low rank structure was promoted on overlapping small 

patches extracted from the global image matrix. k-t PCA was adapted to promote similarities on 

anatomically segmented compartments [20]. Motivated by the success of improving global low 

rank constraint via combining it with sparsity constraints [15-17,21,22], we propose to exploit 

additional sparsity constraints in the LLR framework. In this paper, we improve the LLR method 

by combining it with temporal finite difference constraint and parallel imaging, and investigate its 

utility for highly accelerated cardiac cine imaging.  

 

2. Theory 

2.1 Global and Local Low Rank Models 

Cine images represent a time series in a complete cardiac cycle. The images can be 

represented as a Casorati matrix (ΓMxN) by stacking the pixels from every time frame column wise, 

where M and N respectively represent the number of pixels per time frame, and the total number of 

time frames [11]. Global low rank methods (e.g. [14,15]) recover Γ from undersampled k-space 

data by constraining the rank of Γ as: 

                                      
G* = argmin

G

F ×S ×G - m
2

2
+ l  rank(G) 	

                                          
(1)

 

where 𝒎 is the multi-coil k-space measurement, 𝐹 is the Fourier undersampling operator, and 𝑆 

are the coil sensitivity maps.  

In contrast to global low rank (GLR) methods, locally low rank (LLR) methods [19] divide 

the global images into patches, and enforce the low-rank constraint on the matrix of each patch: 

                                
G* = argmin

G

F ×S ×G -m
2

2
+ l  rank  (CbG)

bÎW

å
                                    

(2) 

where 𝐶𝑏  is the operator to extract the 𝑏th 
patch from Γ and reform it into a Casorati matrix, and Ω 

is the total number of patch matrices extracted from Γ.  

 Compared with GLR, LLR is a more appropriate model for cardiac cine images 

demonstrated by Fig. 1. Fig. 1 analyzes the rank property of patch matrices extracted from a cine 

dataset. It can be seen from Fig. 1b that the patch matrix from the chest wall has lower effective 
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rank than a patch extracted from the heart. Even within the heart region, the low-rank property 

could vary (Fig. 1c). Patch matrices from regions with more dynamics have higher effective rank.  

In the previous LLR framework [19], the nuclear norm was used to relax the rank penalty, 

which is the closest convex approximation. Recent work has shown that using non-convex 

semi-norm improves the reconstruction from fewer measurements compared to the nuclear norm 

[15, 23, 24]. Here, the non-convex Schatten p-norm is used as a surrogate for the rank penalty. For 

a M × N matrix 𝑋, the Schatten p-norm is defined as: 

                                
X

p
= s i

p

i=0

min(M , N )

å
æ

èç
ö

ø÷

1/p

,  p <1                                             (3) 

where σi is the 𝑖th singular value of matrix 𝑋. 

2.2 Combination of LLR and temporal FD 

The combination of GLR with sparsity constraints has been shown in various forms to 

improve image recovery rate and reconstruction performance [15-17,21,22]. In this study, the LLR 

and temporal finite difference (FD) constraints are jointly exploited. The optimization is 

formulated as: 

                                      
G* = argmin

G

F ×S ×G -m
2

2
+ lLLR F(G)

p
+ lFD Ñt (G)

1
                             

(4)      

where ∇t  is the finite difference operator along time, and | Φ Γ  |𝑝  is the Schatten p-norm defined 

on patches as:  

                                                               

F(G)
p

= CbG p
bÎW

å ,  p <1                                                            (5)                                                                                           

 

3. Methods 

Experiments were performed on both retrospectively undersampled 2D Cartesian cine data 

and prospectively undersampled 2D golden-angle radial data. For comparison, reconstruction on 

the same dataset was also performed using state-of-the-art constrained reconstruction methods. In 

following text, LLR, FD and LLR+FD would respectively refer to the reconstruction methods 

using the LLR constraint alone, temporal finite difference constraint alone, and the combination of 

both constraints. 
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3.1 Retrospective Study 

Six fully sampled cardiac cine datasets were distributed as part of the 2014 ISMRM 

Reconstruction Challenge [39]. The data were collected using 2D cine breath-held balanced steady 

state free precession (bSSFP) sequences and 32-channel cardiac receiver coils. Three of the 

datasets were acquired in a mid ventricular short-axis, and three at vertical long-axis. Datasets 

have matrix size in the range of 210×330 to 210×426, spatial resolution 1 mm
2
, 30 time frames per 

cardiac cycle. The fully sampled datasets were retrospectively undersampled in two dimensions 

using variable density random [6] and Cartesian golden-angle radial sampling patterns [25-27]. 

Acceleration factor ranging from 5 to 30 for 2D random sampling and 10 spokes to 60 spokes per 

time frame for Cartesian radial sampling were chosen to evaluate the reconstruction performance 

of the proposed method.  

The proposed method was compared against three methods, which uses the temporal FD 

constraint alone (λLLR = 0 in Eq. (4)), LLR constraint alone ( λFD = 0 in Eq. (4)) and k-t SLR 

method [15]. k-t SLR was implemented by replacing the LLR constraint in Eq. (4) with global low 

rank constraint using Schatten p-norm [15]. For LLR constraint, overlapping square patches were 

extracted from the global image. Patch size was 5×5× 𝑁𝑡 , which resulted in smallest normalized 

root mean square error (NRMSE) in the heart region. Patches were overlapped with a striding 

length of 2. Coil sensitivity maps were computed by averaging data from all time frames and using 

ESPIRIT [28]. The p-value in the Schatten p-norm computation was set as 0.5. The regularization 

parameters were optimized for each reconstruction method at each undersampling level by 

referring to normalized root mean square error (NRMSE) in the heart region. This optimization 

was performed for one dataset and then applied to all other datasets. In the algorithms of LLR+FD 

and k-t SLR, which have two regularization terms, parameters were optimized in a two 

dimensional version. The optimization problem in Eq. (4) was solved using an Alternating 

Direction Method of Multipliers (ADMM) [29]. A twice-variable-splitting technique was used to 

decouple the problem in Eq. (4) to simpler sub-problems that have analytical solutions [29]. The 

steps of the algorithm are detailed in the Appendix. All reconstruction methods were implemented 

in MATLAB and executed on a 12-core Xeon workstation with 48 Gb of memory.  Parallel 

computing was used in LLR and LLR+FD reconstructions in the step of singular value 

thresholding on multiple patch matrices. 
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 For retrospective study, reconstruction results were evaluated based on both visual 

inspection and quantitative metrics: normalized root mean square error (NRMSE), structural 

similarity index (SSIM) [30] and high frequency error norm (HFEN) [31]. The choice of the three 

metrics was made to evaluate the reconstruction results with complimentary emphasis. NRMSE 

was chosen to evaluate the overall accuracy in reconstructing the spatio-temporal dynamics in the 

region of interest (ROI). SSIM put emphasis on image quality perception. HFEN was chosen to 

evaluate the fine features, edges, and spatial blurring in reconstruction. All metrics were computed 

within a manually segmented ROI that contained the heart. At each undersampling level, the four 

methods were ranked from best to worst using the quantitative metrics. Considering the variability 

in metric values across datasets, the ordinal ranking was averaged across all the six datasets.  

 NRMSE =  
||Γ∗−Γ0||𝐹

2

||Γ0||𝐹
2 , where Γ∗ is the reconstructed image, and Γ0 is the true image.  

 SSIM was computed as described in [30].  Note that 1-SSIM is presented, so that ―lower is 

better‖ for all three metrics.  

 HFEN =  
||LoG (Γ∗)−LoG (Γ0)||𝐹

2

||LoG (Γ0)||𝐹
2 , where LoG is a Laplacian of Gaussian filter that captures 

the edges. The same filter specifications as in [31] are used: kernel size of 15×15 pixels; 

standard deviation of 1.5 pixels.  

3.2 Prospective study 

A multi-slice golden-angle radial acquisition in a single breath-hold was performed on 

Philips 1.5T scanner using a 32 channel cardiac coil in two healthy volunteers. Data corresponding 

to each slice were acquired during a single cardiac cycle with ECG triggering. Written informed 

consent was obtained from both subjects prior to imaging, and the protocol was approved by our 

Institutional Review Board. Scan parameters were as follows: bSSFP, TR = 2.90 ms, TE = 1.45 

ms, FOV: 320×320 mm
2
, in-plane resolution: 2×2 mm

2
, slice thickness: 8 mm, 12 slices, no 

inter-slice gap, number of frequency encoding points: 160, 216-272 golden angle radial profiles, 

acquisition time 9-13 secs. The radial profiles were retrospectively grouped into 19-20 time frames 

resulting in 11-13 full profiles per time frame, with a time resolution in the range of 30-40 ms. As 

a reference, fully-sampled cine data were acquired with Cartesian trajectory in all subjects in 

multiple breath holds. The reference scan used the same imaging parameters and slice geometry as 

the radial acquisition. 
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 For image reconstruction, Eq. (4) was modified to include NUFFT [32] operator in place 

of the F operator. Coil sensitivity maps S were estimated from data using all acquired golden angle 

radial profiles. λLLR  and λFD  were empirically chosen, and were found to be different from the 

retrospective experiments. The optimization problem was solved using one-variable-splitting 

ADMM, where the step of updating the images no longer involved an analytical update, and was 

solved using a conjugate gradient algorithm.  The rest of the implementation was the same as in the 

retrospective study.
 

 

4. Results 

4.1 Retrospective Study 

The four methods (LLR+FD, LLR, FD and k-t SLR) were quantitatively compared.  

LLR+FD reconstruction had consistently superior NRMSE, SSIM and HFEN scores compared to 

the other three methods. The metric advantage of LLR+FD was more significant in cases with 

higher level of undersampling (Fig. 2a). The score difference for individual time frame was 

consistent with the average of the entire time series (Fig. 2b).  

Visual observations correlated well with the quantitative evaluation. At 15 to 60 spokes per 

time frame, LLR+FD reconstruction better preserved fine structure such as the tricuspid valve in 

the long-axis case, and papillary muscles in the short-axis case (arrowheads in the x-t plots in Fig. 

3). LLR showed considerable edge blurring. FD produced stair-case artifacts. k-t SLR produced 

less FD-related artifacts but more edge blurring than LLR+FD. At 10 spokes per time frame, the 

characteristic artifacts of each method described above were more pronounced. LLR+FD 

reconstruction more reliably preserved the motion of myocardium than FD reconstruction and 

provided sharper myocardial border than LLR and k-t SLR.  

For all six datasets, smaller regularization weights were observed in the proposed LLR+FD 

scheme in comparison to using LLR or FD constraint individually. For example, with one dataset 

(undersampled with the Cartesian golden-angle radial sampling, 10 spokes per time frame), the 

NRMSE optimal λ𝐹𝐷  was 0.01 (NRMSE=0.109),  λ𝐿𝐿𝑅  was 0.3 (NRMSE=0.103). For LLR+FD, 

λ𝐹𝐷  and λ𝐿𝐿𝑅were 0.006 and 0.06 respectively, and resulted in a higher fidelity reconstruction 

(NRMSE=0.0902). This indicates that the FD and LLR constraints are complementary to one 

another.  
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Computational burden was significantly reduced by utilizing the twice-variable-splitting 

ADMM algorithm, which decouples the problem into single-step updates. For all 2D cardiac cine 

datasets, a six to seven fold reduction in reconstruction time was observed with the ADMM 

algorithm compared to the penalty-based approach used in previous k-t SLR studies [15, 22]. Total 

reconstruction time using the ADMM approach was 7.8±0.6 minutes for LLR+FD (parallel 

computing applied), and 5.1±0.5 minutes for k-t SLR. In contrast, 50 minutes were required with 

the penalty algorithm for k-t SLR and LLR+FD reconstructions. 

4.2 Prospective study 

Fig. 4 compares the reconstructions for two prospectively undersampled golden-angle 

radial datasets. Representative frames from end-systole (ES), end-diastole (ED), and pixel-time 

profiles are shown. Reference data, obtained using breath-held fully-sampled Cartesian 

acquisition, provided excellent SNR and contrast.  The radial datasets were undersampled with 

11-13 full spokes per time frame.  Compared with the reference scan, LLR+FD most reliably 

depicted the motion of myocardium. Compared to FD, LLR+FD suppressed temporal stair-case 

artifact. Compared to LLR, LLR+FD provided sharper edges and less temporal fluctuation due to 

aliasing. 

 

5. Discussion and Conclusions 

In this study, LLR+FD was compared against the use of either the temporal FD or the LLR 

constraint alone. It was found that LLR+FD provided more natural depiction of myocardial motion 

compared to FD and improved the depiction of fine structures compared to LLR. Table. 1 showed 

the complimentary strengths of the sparsity and locally low rank constraints.  FD was superior in 

reconstructing edges, as indicated by its high HFEN-ranking, but produced stair-case artifacts at 

high undersampling levels due to over-regularization. LLR faithfully reconstructed the motion of 

the myocardium, but produced excessive edge blurring, corresponding to a high SSIM-ranking but 

low HFEN-ranking. LLR+FD combined the two constraints to produce fewer model-related 

artifacts with lower regularization weights for each constraint. Our work share similarities with a 

recent work in [33], where the sparsity constraint has been explored in a ―local‖ PSF framework, in 

which the PSF model order was varied for cardiac and non-cardiac regions. The PSF-based 

method requires training data and specific sampling scheme for the purpose of computing the 
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temporal basis functions. In comparison, the proposed method does not require the training step 

but has increased computational complexity.  

In the retrospective study, it was observed that LLR+FD more faithfully reconstructed the 

dynamics of fine structures (e.g. the tricuspid valve in the long-axis view dataset, arrowheads in 

Fig. 3a) than k-t SLR. This suggests that LLR could be a more appropriate model for cardiac cine 

images than global low rank. LLR+FD has greater computational complexity because it forces low 

rank constraints on multiple patch matrices instead of one global matrix. However, in this work, 

we have observed that the use of parallel computing provides similar computational times with 

LLR+FD and k-t SLR. It should also be noted that the implementation of k-t SLR in this work 

exploited the computational benefits due to the splitting of coil sensitivity encoding from the 

Fourier-undersampling operation in the data consistency term (Appendix, Eqn. (A.1)). This 

splitting was not considered in the earlier implementation of k-t SLR [15, 22], which involved 

solving an iterative conjugate gradient algorithm to update the reconstruction, and therefore was 

substantially slower than the splitting strategy considered in this work. 

Cartesian golden-angle radial and 2D variable-density random sampling patterns were 

used in the retrospective study. These two sampling patterns produce incoherent aliasing in the two 

phase-encoding directions, which was successfully resolved by LLR-based reconstruction 

methods. We have also evaluated LLR-constrained reconstruction with 1D undersampling cases 

(not shown), where the variable-density random sampling pattern was applied along a single 

phase-encoding direction. In these cases, LLR-based methods failed to eliminate residual aliasing. 

One possible reason is that the Schatten p-norm or nuclear norm minimization, which is often used 

to force the LLR constraint, requires more sampling incoherence than the 1D sampling scheme can 

provide. 

Based on results in the retrospective study, a golden angle radial sampling was used in a 

prospective experiment to enable acquisition of multiple 2D slices in a single breath hold. The 

results may also translate to improving 3D Cartesian acquisition using variable density type 

sampling patterns in the ky-kz plane [34]. In the prospective study, LLR+FD reconstructions with 

2D radial sampling patterns demonstrated improved image quality over either FD or LLR. The FD 

images appear to provide sharper edges than the LLR+FD reconstructions. However, the FD 

pixel-time profiles contain significant temporal stair-case artifacts, which include discontinuities 

that are not physically realistic. It should be noted that LLR+FD reconstructions still contained 
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spatio-temporal blurring, when compared with the Cartesian reference images. Possible reasons 

could be that a) the large golden-angle increment in combination with bSSFP may lead to eddy 

current induced image artifacts from rapidly changing gradients [35] and b) radial acquisition is 

more vulnerable to blurring caused by off-resonance and eddy-current effects compared to 

Cartesian acquisition. Image quality may be further improved by considering a) small 

golden-angle radial sampling to reduce eddy-current induced artifacts [36] b) estimating motion 

models within the LLR+FD reconstruction to further improve spatio-temporal fidelity [37, 38].  

Clinical assessment of the artifacts and image quality provided by different reconstruction 

methods, and their impact on cardiac functional parameters were not performed in this work. Such 

a study would require a cohort of large number of patient datasets and careful supervision of 

cardiologists, and is a scope of our future work. 
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Appendix 

An ADMM approach [29] was implemented to solve the optimization problem in Eq. (4). 

Variable-splitting was performed twice. First, Z = Γ, 𝑉1 = Φ Z  and 𝑉2 = ∇t(Z)  are set to split the 

patch-based operation Φ ∙  and the finite difference operation ∇t(∙) from the respective norms. Then 

U = S ∙ Γ is set to separate the sensitivity map term from the Fourier sampling term. This splitting avoids 

the need for an iterative conjugate gradient solver inside each iteration. Eq. (4) was reformulated as:  

      

G* = argmin
G

F ×U -m
2

2
+ lLLR V1 p

+ lFD V2 1
,   

subject to U = S ×G,   Z=G,  V1 = F(Z),   V2 = Ñt (Z)                                                                                

(A.1) 

To solve Eq. (A.1), a Lagrangian functional was formed as: 

       

Ár1 ,r2 ,r3
(G,U,Z,V1,V1,e11,e12 ,e2 ,e3) =

F ×U -m
2

2
+ lLLR V1 p

+ lFD V2 1
+ ...

+r1 F(Z ) -V1 - e11 2

2
+ r1 Ñt (Z)-V2 - e12 2

2
+ ...

+r2 S ×G -U - e2 2

2
+ r3 G - Z - e3 2

2

                                                                                    

(A.2) 

𝑒11, 𝑒12, 𝑒2 and 𝑒3 are residual variables that would be updated in each iteration. From our experience, ρ1, 

ρ2 and ρ3 influence the speed of convergence, but have minimal impact on the final reconstruction result.  

In this work, ρ1, ρ2 and ρ3were empirically set to 0.05 for all datasets. Eq. (A.2) is solved by alternatively 

updating each variable, while keeping the other variables fixed resulting in the pseudocode:  

 𝑚𝑎𝑥𝐼𝑡𝑟 – Stopping criteria by number of iterations (default=100); 

 𝜌1 ,𝜌2 ,𝜌3 – Default=0.05; 

While ( 𝑛 < 𝑚𝑎𝑥𝐼𝑡𝑟) { 

1) Γ –subproblem is solved analytically.  

G(n+1) = argmin
G

r2 S ×G -U (n) - e2

(n)

2

2

+ r3 G - Z (n) - e3

(n)

2

2

         = r2S
HS + r3I( )

-1

r2S
H U (n) + e2

(n)( ) + r3 Z
(n) + e3

(n)( )é
ë

ù
û

 

2) U –subproblem is solved analytically.  

 
U (n+1) = argmin

U

F ×U -m
2

2
+ r2 S ×G

(n+1) -U - e2

(n)

2

2

         = FHF + r2I( )
-1

FHm + r2 S ×G
(n+1) - e2

(n)( )é
ë

ù
û

 

3) Z-subproblem is solved analytically. 

Z (n+1) = argmin
Z

r1 Cb (Z)-V1

(n) - e11

(n)

2

2

+ r1 Ñt (Z)-V2

(n) - e12

(n)

2

2

+ r3 G(n+1) - Z - e3

(n)

2

2

         = r1I + r1Ñt

HÑt + r3I( )
-1

r1 V1

(n) + e11

(n)( ) + r1Ñt

H V2

(n) + e12

(n)( ) + r3 G(n+1) - e3

(n)( )é
ë

ù
û

 

4) 𝑉1-subproblem enforces the LLR constraint. Singular value thresholding is performed on each patch 

matrix. Patches are recombined after thresholding. 
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V1

(n+1) = argmin
V1

lLLR V1 p
+ r1 Cb(Z

(n+1) ) -V1 - e11

(n)

2

2

         = Singular Value thresholding
bÎW

 Cb(Z
(n+1) ) - e11

(n)( )
 

5) 𝑉2-subproblem enforces the temporal FD constraint. 

V2

(n+1) = argmin
V1

lFD V2 1
+ r1 Ñt (Z

(n+1)) -V2 - e
12

(n)

2

2

         =shrink  Ñt Z
(n+1)( ) - e

12

(n);lFD / r1{ }
 

Shrinkage is computed as:  

 shrink x,l( ) = sign(x)max x - l,0( )  

6) Update residual variables 

   

e11

(n+1) = e11

(n) - CbZ
(n+1)

bÎW

å -V1

(n+1)æ

èç
ö

ø÷

e12

(n+1) = e12

(n) - Ñt Z
(n+1)( ) -V2

(n+1)é
ë

ù
û

e2

(n+1) = e2

(n) - S ×G(n+1) -U (n+1)( )
e3

(n+1) = e3

(n) - G (n+1) - Z (n+1)( )

 

} 

The implementation of the proposed algorithm using MATLAB can be found 

at http://mrel.usc.edu/sharing/LLR_TV_ADMM_codes.zip. 
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Fig. 1. Appropriateness of a locally low rank (LLR) model for cardiac cine images.  (a) Reference image. 

Red and green boxes indicate patch matrices (size: 5 × 5 × 𝑁𝑡) extracted from the heart region and the 

chest wall respectively. (b) Normalized singular values of the two matrices. It can be seen from (b) that the 

two matrices have significantly different levels of rank-deficiency. (c) Rank map: color indicates the rank 

of each patch matrix. The rank was computed as the number of singular values above 0.5% of the maximum 

singular value. Patches covering or partially covering the heart region of interest (ROI) have considerably 

higher rank than patches from the chest wall and other background tissue. Rank-deficiency also varies 

within the heart ROI. 

 

Fig. 2.  Quantitative evaluation of one representative dataset undersampled with the Cartesian golden-angle 

radial sampling pattern. (a) NRMSE, 1-SSIM and HFEN as a function of undersampling level shows 

consistently superior performance of LLR+FD.  (b) Metric versus frame number. The dataset was 

undersampled with 10 spokes per time frame. The score difference for individual time frames was 

consistent with the average of the entire time series.  The gray area indicates end of systole. Note that 

1-SSIM is displayed, so that ―lower is better‖ for all three metrics. 

 

Fig. 3. Qualitative comparison is shown for the four reconstruction methods - LLR, FD, LLR+FD and k-t 

SLR. Representative long-axis (a and b) and short-axis (c and d) datasets were retrospectively 

undersampled with Cartesian golden-angle radial pattern at 15 spokes/frame (a and c) and 10 spokes/frame 

(b and d). x-t plots show the temporal profile of pixels along the red lines in the reference images. Images in 

end-systole (ES) phase are chosen to show the difference between reconstructed and truth images. 

Difference images are amplified 6 times for better visualization. In all x-t plots, LLR shows considerable 

edge blurring. Temporal FD produces stair-case artifact. K-t SLR produces more edge blurring than 

LLR+FD. Compared to the three other methods, LLR+FD better reconstructed the motion of fine structure 

such as the tricuspid valve and papillary muscles (arrowheads in x-t plots).  In the difference images, LLR 

and k-t SLR has higher structured error in the ventricle wall indicating more edge blurring than LLR+FD. 

Temporal FD has less structured error but has more distributed noise in the blood pool. 

 

Fig. 4.  Results for two prospectively undersampled golden-angle radial datasets. Slices from apex to base 

in systole (a and d) and diastole (b and e) are shown for three reconstruction methods: LLR, FD, and 

LLR+FD. Fully-sampled breath-held Cartesian images acquired from the same subject are shown as 

reference. Pixel-time profiles (c and f) are repeated twice in temporal dimension for illustration, and they 

show the temporal variation of pixels along the dotted line in slice #6. In both datasets, LLR+FD produced 
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fewer temporal fluctuations and sharper tissue boundary depiction than LLR, and LLR+FD produced fewer 

stair-case artifacts and less noise than FD (see arrows). 

 

Table. 1. Metric values and ordinal ranking averaged across six datasets are shown for the four 

reconstruction methods: FD, LLR, k-t SLR, and LLR+FD. The datasets were retrospectively undersampled 

with Cartesian golden-angle radial sampling at 15 spokes per time frame. Ordinal ranking was based on 

1=best, 4=worst. FD has lower HFEN indicating its superior performance in reconstructing edges, while 

LLR faithfully reconstructed the motion of the myocardium, but produced excessive edge blurring, 

corresponding to a high SSIM but a low HFEN ranking. LLR+FD combining the advantages of LLR and 

FD achieved the best ranking in all three metrics. 

 

Metrics FD LLR k-t SLR LLR+FD 

NRMSE 
Value (%) 8.3 7.4 7.3 6.7 

Ordinal Ranking 4.0 2.7 2.2 1.0 

1-SSIM 
Value (%) 8.2 6.0 6.2 5.5 

Ordinal Ranking 4.0 2.5 2.5 1.0 

HFEN 
Value (%) 9.4 10.6 9.0 9.0 

Ordinal Ranking 2.7 4.0 1.7 1.5 
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Figure 4 




