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RESEARCH REPORT

Mushroom body defect is required in parallel to Netrin for midline
axon guidance in Drosophila
Marie-Sophie Cate1, Sangeetha Gajendra1, Samantha Alsbury1,*, Thomas Raabe2, Guy Tear1,‡,§ and
Kevin J. Mitchell3,4,‡

ABSTRACT
The outgrowth of many neurons within the central nervous system is
initially directed towards or away from the cells lying at the midline.
Recent genetic evidence suggests that a simple model of differential
sensitivity to the conserved Netrin attractants and Slit repellents is
insufficient to explain the guidance of all axons at the midline. In the
Drosophila embryonic ventral nerve cord, many axons still cross the
midline in the absence of the Netrin genes (NetA and NetB) or their
receptor frazzled. Here we show that mutation of mushroom body
defect (mud) dramatically enhances the phenotype of Netrin or
frazzled mutants, resulting in many more axons failing to cross the
midline, although mutations in mud alone have little effect. This
suggests that mud, which encodes a microtubule-binding coiled-coil
protein homologous to NuMA and LIN-5, is an essential component
of a Netrin-independent pathway that acts in parallel to promote
midline crossing. We demonstrate that this novel role of Mud in axon
guidance is independent of its previously described role in neural
precursor development. These studies identify a parallel pathway
controlling midline guidance in Drosophila and highlight a novel role
for Mud potentially acting downstream of Frizzled to aid axon
guidance.

KEY WORDS: Drosophila, Axon guidance, Midline, Mud, NuMA,
LIN-5, Netrin

INTRODUCTION
In the central nervous system (CNS) of vertebrates and invertebrates
most neurons extend across the midline to form commissures, while
the remainder extend on their own side (Tear, 1999; Kaprielian
et al., 2001; Garbe and Bashaw, 2004; Evans and Bashaw, 2010).
This decision depends in part on the responsiveness of the growth
cone to Netrin attractants and Slit repellents, both secreted from cells
at the midline, although additional mechanisms also exist to direct
axons across the midline (Andrews et al., 2008; Dickson and Zou,
2010; Evans and Bashaw, 2010; Spitzweck et al., 2010; Organisti
et al., 2015).

The Netrins act as chemoattractants to bring axons to the midline
in flies, worms and vertebrates. In all these organisms, Netrin loss-
of-function causes defects in the projection of axons towards the
midline (Hedgecock et al., 1990; Harris et al., 1996; Mitchell et al.,
1996; Serafini et al., 1996), and the same is true of mutations in the
Netrin receptors unc-40,DCC and frazzled (Hedgecock et al., 1990;
Kolodziej et al., 1996; Fazeli et al., 1997). However, their activity
does not fully account for the guidance of all commissural axons
across the midline, suggesting the existence of additional
mechanisms (Brankatschk and Dickson, 2006).

In Drosophila, a number of components of Netrin-independent
mechanisms that attract axons to the midline have been identified.
Removal of either Dscam, fmi (stan – FlyBase) or robo2
significantly enhances the failure of midline crossing caused by
the absence of frazzled alone (Andrews et al., 2008; Spitzweck et al.,
2010; Organisti et al., 2015). However, the loss of any of these
genes individually does not lead to a significant midline guidance
defect. Thus, the role of these additional pathways in directing
commissural axons across the midline is only revealed in the
absence of Netrin signalling.

Here we show that Mushroom body defect (Mud) also has a role
in a Netrin-independent signalling pathway directing commissural
axons to the midline in Drosophila. Mud has previously been
identified to function within neuroblasts and sensory organ
precursors to couple the orientation of the mitotic spindle to both
intrinsic and extrinsic cues (Bowman et al., 2006; Izumi et al., 2006;
Siller et al., 2006; Siller and Doe, 2009; Segalen et al., 2010). We
show that its role in axon outgrowth is independent of its activity
within neuroblasts. Mud is expressed within postmitotic neurons,
where it may act downstream of Frizzled to influence intrinsic
neuronal polarity necessary for axonal outgrowth.

RESULTS AND DISCUSSION
Netrin deficiencies reveal the presence of an additional
activity mediating axon guidance across the midline
Drosophila has two Netrin genes, NetA and NetB, which are
adjacent on the X chromosome (Fig. 1A). The original studies
investigating the role of the Drosophila Netrins reported a
difference in phenotype between a small deficiency Df(1)NP5
that removed both Netrin genes and a slightly larger deficiency,
Df(1)KA9, that extends further than NP5 (Fig. 1A) (Harris et al.,
1996; Mitchell et al., 1996). Embryos hemizygous for the smaller
deficiency Df(1)NP5 have thinner or occasionally absent axon
commissures in the ventral nerve cord, with the posterior
commissure being more strongly affected, and occasional breaks
in the longitudinal connectives (Fig. 1B, Table 1). This phenotype is
similar to that seen in embryos where onlyNetA andNetB have been
removed (Fig. 1B, Table 1) (Brankatschk and Dickson, 2006),
although Df(1)NP5 is slightly more severe (Andrews et al., 2008).
By contrast, embryos hemizygous for the slightly larger deficiencyReceived 16 August 2015; Accepted 29 January 2016
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Df(1)KA9 exhibit a more severe phenotype, with a near complete
loss of midline crossing in some commissures (Fig. 1B, Table 1).
The larger deficiency affects the guidance of anterior and posterior
commissural axons at the midline.
Restoration of either Netrin gene at the midline is sufficient

to completely rescue the Df(1)NP5 phenotype, while rescuing the
Df(1)KA9 to near wild type (Harris et al., 1996; Mitchell et al.,
1996). These findings indicate the existence of a gene activity, also
deleted in Df(1)KA9, that enhances midline crossing defects caused
by the absence of the Netrins, but which has a mild phenotype when
removed alone.
Markers for specific subsets of commissural neurons confirm

the increased severity of commissural defects in Df(1)KA9
compared with Df(1)NP5 embryos (Table 1, Fig. 2). The
Eg-GAL4 driver identifies the EG cluster of 10-12 cells that
extend axons in the anterior commissure and the EW cluster of
four cells that project in the posterior commissure (Higashijima
et al., 1996; Dittrich et al., 1997; Garbe and Bashaw, 2007).

Midline crossing by Eagle-positive EG and EW neurons is
significantly more disrupted in Df(1)KA9 than in Df(1)NP5, due
both to stalling of axons prior to midline crossing and to
misguidance, where axons extend across the midline along an
aberrant trajectory (Table 1, Fig. 2). In Df(1)NP5 embryos the EW
axons fail to cross the midline in 37% of segments, while 20% of
the EG axons do not cross. In Df(1)KA9 embryos the number of
segments where EW axons fail to cross the midline is increased to
78% (Fig. 2). The outgrowth of the SP1 neuron, one of the earliest
axons to cross the midline in the anterior commissure, was
examined using anti-Connectin (Meadows et al., 1994). Behaviour
of the SP1 neurons mirrors that of the EG axons, with significantly
more failing to cross the midline in Df(1)KA9 (57%) compared
with Df(1)NP5 (21%).

Mud is the enhancer of Netrins
We used overlapping synthetic deficiencies in the region
(Livingstone, 1985) to map the enhancer activity (Fig. 1A).

Fig. 1. Identification of Mud as an additional axon guidance factor required for commissure formation in the Drosophila CNS. (A) Regions of the X
chromosome deleted by the deficiencies Df(1)KA9 and Df(1)NP5 (boxes) used to remove the two Netrin genes NetA and NetB. Distal is to the left. Bracketed
lines beneath represent the extents of the synthetic deficiencies used in this study that identify the location of an additional activity required for midline crossing
distal to the Netrin genes. (B) Drosophila embryos immunostained with the CNS axon marker BP102. Anterior is up. In the wild-type embryo axon pathways
extend in an orthogonal pattern with longitudinal tracts positioned either side of the midline and a pair of commissural tracts that connect the two sides of the
nervous system within each segment. In embryos bearing double mutations for NetA and NetB commissure formation is disrupted, with fewer axons attracted
across themidline, with the posterior commissure affectedmore severely. Embryos homozygous for a chromosomal deficiency,Df(1)NP5, that removes theNetrin
genes have a phenotype similar to that of NetA,B animals, while the slightly larger deficiency Df(1)KA9 has a stronger BP102 phenotype with fewer axons
attracted to themidline, suggesting that an additional activity has been removed. The synthetic deficiencyDf(1)B24-B128 that is deficient for the Netrin genes and
a distal region displays the stronger phenotype. Embryos deficient for the distal region alone, Df(1)B24-B54, display very little disruption to the axon pathways.
Mutations that remove the attractive Netrin receptor frazzled (fra) have a similar phenotype to that of embryos lacking the Netrin genes. When loss of fra is
combined with removal of the distal material in Df(1)B24-54;fra, this causes the increased midline crossing failure phenotype. mud is a candidate gene for the
additional activity removed inDf(1)B24-54, andmud;fra double mutants display the same enhanced phenotype asDf(1)KA9 embryos. Reintroduction ofmud as a
transgene intoDf(1)KA9 embryos reverts themidline phenotype to that seen when the Netrin genes are removed alone and also rescues themild phenotype seen
in mud mutant animals, confirming that mud encodes the additional midline attractive activity.
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Df(1)B24-B128, which deletes both NetA and NetB plus distal
material, displays the stronger axon guidance phenotype suggesting
that the gene responsible lies distal to NetA. The synthetic
deficiency Df(1)B24-B54 selectively removes this distal genetic
material – which includes a candidate gene, mushroom body defect
(mud), and a small number of additional genes – while leaving the
Netrin genes intact. Embryos hemizygous for this deficiency
display a subtle CNS axon pathway phenotype. There is a general
but weak irregularity in the usually orthogonal organisation of axon
tracts as revealed by BP102 staining, with occasionally thinner
commissures and rare breaks in the longitudinals. This phenotype is
indistinguishable from that observed in embryos hemizygous for
any of several alleles of mud (Fig. 1B).
To test whether mud encodes the additional midline guidance

activity removed in Df(1)KA9 we examined embryos double mutant
for mud and frazzled (fra). fra embryos have a similar commissural
axon guidance phenotype to small Netrin deficiencies (Fig. 1B)
(Kolodziej et al., 1996).Whenmud alleles, or the small deficiencyDf
(1)B24-B54 that deletes themud region, are combinedwith fra alleles
the double-mutant embryos fail to form the majority of commissures
– a phenotype indistinguishable from that of Df(1)KA9.
Confirmation that mud is necessary for the formation of the

commissures that form in Df(1)NP5 embryos was demonstrated by
reintroducing mud as a transgene into Df(1)KA9 embryos, using a
BAC construct that contains the mud genomic region. This resulted
in a rescue of the BP102 phenotype in Df(1)KA9 embryos to one
resembling that of the smallerDf(1)NP5 deficiency (Fig. 1B). Thus,
mud encodes the enhancer activity that accounts for the more severe
phenotype observed in the larger Df(1)KA9 deficiency and is
necessary to enable axons to cross the midline in this background.
This places Mud as a component within an additional signalling
pathway that directs axons to the midline, the role of which becomes
apparent in the absence of Netrin signalling.

mud mutation has direct effects on axon extension and
guidance
Mud has previously been shown to be required during the
asymmetric division of embryonic neuroblasts, where it couples
mitotic spindle orientation to cortical polarity at metaphase
(Bowman et al., 2006; Izumi et al., 2006; Siller et al., 2006).
Initial defects in this process in mud mutants are largely
recovered by a realignment of the spindle during telophase,
and only minor consequences have been reported on subsequent
neuronal number and fate. The pattern of expression of Even-
skipped is largely unchanged in mud mutants, Df(1)KA9 or Df(1)
NP5 (Izumi et al., 2006) (data not shown). Similarly, the neurons
identified by anti-Futsch (22C10) and anti-Fasciclin 2 (1D4)
form as normal (data not shown), indicating little or no change in
cell fate. To test further whether the roles of Mud during
neuroblast division and axon outgrowth are separable, the ventral
nerve cord phenotypes of fra;pins double mutants were
examined. Pins functions with Mud in asymmetric neuroblast
division (Siller et al., 2006) and if loss of mud during neuroblast
division leads to defects in subsequent axon outgrowth, then a
pins mutant should have a similar effect on axon guidance and
would enhance fra phenotypes. However, the ventral nerve cord
phenotype of fra;pins double mutants is no more severe than that
of fra mutants alone (Fig. 3A). The effects on axon guidance due
to the absence of Mud are thus not attributable to a disruption of
cell fate.

We also examined the consequence of manipulating the levels of
Mud activity within neuroblasts and neurons using the UAS-GAL4
system (Brand and Perrimon, 1993). We made use of a P-element
insertion (EY20197) that inserts a UAS immediately upstream of
mud. IncreasingMud expression in neuroblasts using the Sca-GAL4
driver did not result in axon outgrowth defects (data not shown).
However, increasing Mud expression in Eagle-positive neurons

Table 1. Quantification of commissural phenotypes

Genotype

Anterior commissure Posterior commissure

n
Normal
(%)

Thin
(%)

Absent
(%)

Normal
(%)

Thin
(%)

Absent
(%)

BP102 axon staining
Df(1)NP5 42 55 3 9 57 34 101
Df(1)KA9 10 56 34 8 41 51 107
mud3 90 10 0 75 25 0 107
fra957 43 29 28 14 56 30 100
pinsP62 89 11 0 81 19 0 178
fra957;pinsP62 31 62 7 10 78 12 251
mud3;fra957 18 47 35 9 51 40 153
Df(1)KA9+mud rescue 44 55 1 29 65 6 102
mud3+mud rescue 100 0 0 100 0 0 137
Eagle-positive neurons
Df(1)NP5 17 63 20 20 43 37 90
Df(1)KA9 11 59 30 5 17 78 83
SP1 neurons

Normal crossing (%) Defective crossing (%)
Wild type 100 0 200
mud3 92 8 190
Df(1)NP5 79 21 200
Df(1)KA9 43 57 190

Embryos stained with BP102 were quantified by characterising the thickness of the anterior and posterior commissures within each segment as normal, thin or
absent. Thin commissures are those where the commissure is reduced in width to 70% or less of their normal size. Formation of the commissural pathways as
revealed by Eagle (Eg)-GAL4 driving expression of Venus-YFP was quantified by characterising the thickness of the anterior (EG) and posterior (EW)
commissures within each segment as normal, thin or absent. Thin commissures are thosewhere the commissure is reduced in width to 70%or less of normal size.
The posterior commissure phenotype of Df(1)KA9 is significantly different to that of Df(1)NP5 (chi-squared test, P<0.0001). Embryos stained with anti-Connectin
were quantified by counting the number of hemisegments where the identified SP1 neuron is able to extend across the midline. The SP1 neuron phenotypes are
significantly different (one-way ANOVA with Bonferroni correction, P<0.0001).
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caused a reduction in the number of axons extending across the
midline through the anterior commissure (Fig. 3B) suggesting that
Mud acts in a dose-dependent manner in axons. The decrease in
axon number is not due to a loss of the cells. This disruption is
consistent with a direct role of Mud in axonal projection or guidance
in postmitotic neurons.

Mud is expressed in postmitotic neurons
Mud contains multiple coiled-coil domains and a microtubule-
binding domain and shares similarity to the vertebrate protein
NuMA (Numa1) and LIN-5 of C. elegans (Guan et al., 2000;
Bowman et al., 2006; Izumi et al., 2006; Siller et al., 2006). The
Drosophila gene encodes seven isoforms, and a probe that detects
all isoforms shows that mud transcripts are expressed throughout
embryonic development. Zygotic expression is restricted to the
ventral nerve cord from stage 11 and mud remains expressed in the
ventral nerve cord until the end of embryogenesis.

Fig. 2. Loss ofmud enhances axon outgrowth defects at the CNSmidline
in Netrin-deficient embryos. (A) Eagle-positive axons extend in the anterior
(EG) and posterior (EW) commissures at the midline of the CNS. (B) Upon loss
of Netrin signalling [Df(1)NP5] there is a reduction in the ability of Eagle-
positive axons to cross the midline, leading to a thinning of commissures
(arrowhead) or complete loss of midline crossing (arrow). (C) Loss of both Mud
and Netrin activity [Df(1)KA9] results in a greater disruption of midline crossing,
with many axons failing to cross in both anterior and posterior commissures
(arrow) or taking aberrant trajectories (arrowhead). (D) Anti-Connectin reveals
SP1 axons that extend in the anterior commissure (open arrow) and additional
axons extending in the posterior commissure (arrowhead). (E) Loss of mud
alone leads to mild defects, with 7% of segments showing failure of SP1 axons
to cross. (F) Loss of Netrin signalling results in increased disruption, with axons
failing to cross in both anterior (open arrow) and posterior (arrowhead)
commissures. (G) Removal of both Mud and Netrin signalling leads to an
enhanced phenotype in which midline crossing in the posterior commissure is
severely affected and there is an increase in the failure of SP1 axons to cross
the midline.

Fig. 3. Mud acts in neurons and its role in axon guidance is independent
of Pins. (A) Mud has previously been identified to function in a Partner of
inscuteable (Pins)-dependent pathway within neuroblasts. In common with the
loss ofmud, absence of pins does not lead to significant axon guidance deficits
as revealed by the BP102 antibody. Embryos deficient for mud and pins also
show no outgrowth defects. Absence of pins does not enhance the axon
guidance defects associated with loss of fra, suggesting that Mud acts in a
Pins-independent pathway to enhance the axon guidance defects caused by a
loss of Netrin signalling. (B) Mud overexpression in Eagle-positive neurons
causes a reduction of midline crossing by the EG neurons (arrowheads), which
cross through the anterior commissure (AC), revealing that Mud can influence
the guidance of neurons. PC, posterior commissure. (C) Venus-YFP-tagged
Mud protein driven by themud promoter is expressed widely within the CNS at
stage 13 and becomes restricted to subsets of neurons and glia by stage 16.
(D) Mud has been found to act downstream from Frizzled (Fz). Loss of fz has
little impact on axon outgrowth at the midline as revealed by BP102, yet the
double mutant NetA,B;fz is as severe as Df(1)KA9 or mud;fra. This suggests
that Mud and Fz might act in the same pathway, which is supported by the
fact that a mud;fz mutant phenotype resembles that of mud or fz single
mutants.
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Mud protein expression has previously been described as
localised to both the apical cortex and the centrosome of
neuroblasts (Izumi et al., 2006). We find that Mud is also
expressed within neurons, where it is localised within a punctate
pattern within the soma. Mud is expressed in most, if not all,
neurons and is also present within midline cells and members of the
longitudinal glia (Fig. 3C). NuMA has similarly been reported to be
expressed in a particulate distribution within the somatodendritic
compartment of postmitotic sympathetic and hippocampal neurons,
a distribution that requires intact microtubules (Ferhat et al., 1998).
Mud, in common with its LIN-5 and NuMA homologues, is able to
bind microtubules, has a conserved role in regulating mitotic spindle
formation and is able to link intrinsic or extrinsic cues to orient
spindle formation (Du et al., 2001; Segalen et al., 2010). Mud also
has an ability to recruit dynein/dynactin (Siller and Doe, 2009) and
functions in the planar cell polarity pathway (Segalen et al., 2010;
Johnston et al., 2013), raising the possibility that Mud might
function in neurons to link polarity information with the dynein/
dynactin complex to orient microtubule structures within neurons to
encourage directed outgrowth.

Commissure formation utilises a variety of partially
redundant pathways
Multiple signalling pathways, in addition to Netrins, cooperate to
direct axon outgrowth towards and across the midline. Mutations in
the genes encoding the transmembrane proteins Dscam1, Robo2
and Fmi or the intracellular proteins Abl and Trio and nowMud can
all dramatically enhance the reduction of axonal midline crossing in
Netrin or framutants (Forsthoefel et al., 2005; Andrews et al., 2008;
Spitzweck et al., 2010; Evans et al., 2015; Organisti et al., 2015).
Because Mud has previously been implicated in a signalling

pathway downstream of Frizzled (Fz) in planar cell polarity
(Segalen et al., 2010), we tested for genetic interactions between
fz and Netrins and between fz and mud. We find, as recently
independently reported (Organisti et al., 2015), that NetA,B;fz
double mutants display a severe lack of commissures, similar to
mud;fra or Df(1)KA9 mutants, whereas mud;fz mutants are not
appreciably more severe than either mud or fz mutants alone
(Fig. 3D). These data are consistent with a model whereby Fz and
Mud both operate in a common, parallel pathway to the Netrins,
possibly in concert with Fmi (Organisti et al., 2015). Double
mutants of mud with Robo2 or with Dscam1 did not show a
significant increase in midline crossing defects (data not shown),
which formally suggests that Mud might also act in common
pathways with these proteins, but this straightforward interpretation
is complicated by the multiple functions demonstrated for Robo2
and Dscam1 in midline guidance (Andrews et al., 2008; Evans et al.,
2015).
Further investigations are necessary to gain a better

understanding of the mechanisms through which these multiple
pathways are integrated within growth cones to enable the precise
navigation of commissural axons at the midline.

MATERIALS AND METHODS
Genetics
The followingDrosophila stocks were used: (1)mud1/Fm7cβGal, (2)mud3/
Fm7cβGal, (3) fra957/CyWglacZ, (4) Df-NP5/Fm7cβGal, (5) Df-KA9/
Fm7cβGal, (6) NetA,B/Fm7βactin (courtesy of B. Dickson, IMP, Vienna),
(7) fz1/Tm6bAbdAlacZ, (8) mud3/Fm7c;fra957/CyOwgβGal, (9) PinsP62/
Tm6bAbdalacZ, (10) fra957/CyOwgβGal;PinsP62/Tm6bAbdalacZ, (11)
mud3/Fm7cβGal;PinsP62/Tm6bAbdalacZ, (12) P{EPgy2}EY20197, (13)
egGal4::UASCD8GFP, (14) elavGal4 on II, (15) egGal4, (16) Sca-

GAL4, (17) mud3/Fm7kr::GFP and (18) fra957/CyODfdEYFP. X;Y
translocation stocks with breakpoints in the 12E-13A region, originally
constructed by Stewart and Merriam (1973), were used to generate
deficiencies for defined regions of the X chromosome as described by
Ashburner (1989). Unless otherwise stated, stocks were obtained from the
Bloomington Stock Center.

Molecular biology
A genomic rescue construct formudwas created in P[acman] (Venken et al.,
2006). 17.5 kb was retrieved from BAC CH322-147E14 (BACPAC
Resources Center) (Venken et al., 2009) covering chromosome arm X
from 14138384 to 14157868. The rescue construct includes the promoter
region ofmud, located 147 bp downstreamof CG32599 to 1546 bp upstream
of mud, the mud gene and region downstream to 363 bp upstream of the
closest downstream gene, CG1461. 500 bp homology arms homologous to
the left and right ends of the transgene were subcloned into P[acman] to
create a targeting construct. MW005 cells [courtesy of Colin Dolphin,
King’s College, London; described in Westenberg et al. (2010)] were made
competent for recombineering by inducing the Red recombinase essentially
as described (Dolphin and Hope, 2006). After verification of the correct
integration of genomic DNA into P[acman] by sequencing, transgenic flies
containing this P[acman]-mud construct inserted into the VK6 attP site at
19E7 on the X chromosome were obtained by BestGene. AVenus-YFP tag
was inserted at the N-terminus of Mud using Gibson assembly and the
construct inserted at attP40 by BestGene.

Immunochemistry
Embryos were collected, fixed and stained as previously described by Patel
(1994). The following primary antibodies were used: monoclonal antibody
BP102 (Developmental Studies Hybridoma Bank; 1:20), mouse anti-β-Gal
(Promega, Z3781; 1:300), mouse anti-Connectin [courtesy of Robert White,
University of Cambridge, UK (Meadows et al., 1994); 1:20] and rabbit anti-
GFP (ThermoFisher Scientific, A6455; 1:300). Secondary antibodies were
purchased from Molecular Probes. Stacks of images were obtained using a
Zeiss LSM 510 confocal microscope and processed using Volocity 5.2
imaging software (Improvision).
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