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Design of Polynomial Fuzzy Observer-Controller
with Sampled-Output Measurements for Nonlinear

Systems Considering Unmeasurable Premise
Variables

Chuang Liu, and H.K. Lam, Senior Member, IEEE

Abstract—In this paper, we propose a polynomial fuzzy
observer-controller for nonlinear systems where the design is
achieved through the stability analysis of polynomial-fuzzy-
model-based (PFMB) observer-control system. The polynomial
fuzzy observer estimates the system states using estimated
premise variables. The estimated states are then employed by
the polynomial fuzzy controller for the feedback control of
nonlinear systems represented by the polynomial fuzzy model.
The system stability of the PFMB observer-control system is
analyzed based on the Lyapunov stability theory. Although
using estimated premise variables in polynomial fuzzy observer
can handle a wider class of nonlinear systems, it leads to a
significant drawback that the stability conditions obtained are
non-convex. Matrix decoupling technique is employed to achieve
convex stability conditions in the form of sum of squares (SOS).
We further extend the design and analysis to polynomial fuzzy
observer-controller using sampled-data technique for nonlinear
systems where only sampled-output measurements are available.
Simulation examples are presented to demonstrate the feasibility
and validity of the design and analysis results.

Index Terms—Polynomial fuzzy controller, polynomial fuzzy
observer, sampled-output measurements, unmeasurable premise
variables, sum of square (SOS).

I. INTRODUCTION

TAKAGI-SUGENO (T-S) fuzzy model [1], [2] has been
widely used as a modeling tool for nonlinear systems. It

represents nonlinear systems as a combination of local linear
subsystems weighted by membership functions. This particular
modeling structure allows analysis techniques and control
methods used for linear systems to be applied. Recently,
polynomial fuzzy model [3], [4] was proposed to generalize
the T-S fuzzy model. The modeling process is achieved by
sector nonlinearity technique [5] which was extended using
Taylor series expansion [6] to establish progressively precise
polynomial fuzzy models. Based on the T-S or polynomial
fuzzy model, Lyapunov stability theory [7] was employed as
a mathematical tool to analyze the system stability. Stability
conditions in terms of linear matrix inequalities (LMIs) [5],
[8] and sum of squares (SOS) approach [9] are employed for
T-S and polynomial fuzzy models, respectively, which can
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be numerically solved by convex programming techniques.
Together with stability analysis, control synthesis can be
achieved by the concept of parallel distributed compensation
(PDC) [3], [7] and solving LMIs or SOS conditions rather
than by predefining the feedback gains using trial-and-error or
other design techniques (for example, pole placement).

Following the basic framework of fuzzy-model-based
(FMB) stability analysis, three major research directions have
been extensively investigated [10], [11]. The first direction
is reducing the conservativeness of stability conditions by
investigating the fuzzy summations. Due to the abandon of
membership functions during the analysis, stability conditions
are only sufficient but not necessary. To relax the stability
conditions, the fuzzy summation was investigated in [12], [13]
and further generalized by Pólya’s theory in [14], [15]. The
second direction is the variation of Lyapunov function candi-
dates, for instance, quadratic Lyapunov function [7], switching
Lyapunov function [16]–[18], fuzzy Lyapunov function [19]–
[21], piecewise linear Lyapunov function [22], [23] and poly-
nomial Lyapunov function [18], [20], [24]. The third direction
is the membership-function-dependent analysis which brings
the information of membership functions into stability analysis
such as using symbolic variables [6], [25], [26], polynomial
constraints [27], approximated membership functions [28],
[29], and other techniques [21], [30]–[32]. Slack matrices are
employed to carry the information of membership functions to
stability conditions through S-procedure [33] at the expense of
computational demand.

Based on the development of relaxed stability conditions,
FMB control strategy is extended to control problems such as
uncertainty [34], sampled-data system [35], [36] and output
feedback [37]. Observer, being used in one of the output
feedback control schemes, is exploited to estimate the states
of systems when the output is only available for measuring.
Fuzzy observer was proposed in [8] for the nonlinear system
represented by the T-S fuzzy model. Under the restriction
that the fuzzy model and fuzzy observer share the same set
of premise membership functions depending on measurable
premise system states, separation principle [38] can be applied
to design the fuzzy controller and fuzzy observer indepen-
dently. To widen the applicability of the fuzzy observer, the
case that fuzzy observer with premise membership functions
depending on estimated premise system states was considered
in [39]. However, a two-step procedure was needed to solve the
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non-convex stability conditions [39]. Various techniques such
as matrix decoupling [40], completing squares [41], Finsler’s
lemma [42] and descriptor [43], were proposed to approxi-
mate the non-convex stability conditions by convex stability
conditions such that convex programming techniques can be
applied to numerically obtain feasible solutions. More recently,
the fuzzy observer has been generalized to polynomial fuzzy
observer [44]. However, only measurable premise variable
was considered in the premise membership functions of both
polynomial fuzzy model and polynomial fuzzy observer, and
two steps were required to design the polynomial controller
and observer gains. To the best of our knowledge, polynomial
fuzzy observer with premise membership functions depending
on unmeasurable premise variable has not been addressed.

Sampled-data control system is a control system whose
states are measured only at the sampling instants. The zero-
order-hold unit keeps the control signal constant between
sampling instants, which complicates the system dynamics
and makes the stability analysis much more difficult. Various
methods were proposed to investigate the stability of sampled-
data control system such as lifting technique [45], hybrid
discrete/continuous approach [46], input-delay approach [47]
and exact discrete-time design approach [48]. Among these
approaches, input-delay approach represents the discrete-time
input measurements into time-delayed input measurements,
and makes continuous-time stability analysis applicable to
sampled-data control systems. Combined with FMB control,
fruitful results were obtained [49]–[53] for full-state feedback
case. Sampled-data fuzzy observer-controller receives much
less attention because of its complexities on stability analysis.
Fuzzy observer [54]–[56] or dynamic output feedback [57],
[58] using sampled-output measurements can be found in
the literature for nonlinear systems represented by T-S fuzzy
models. To the best of our knowledge, polynomial fuzzy
observer has not been applied to systems with sampled-output
measurements.

Although polynomial fuzzy observer-controller and
sampled-data polynomial fuzzy observer-controller are
relatively less investigated, they are vital to the nonlinear
control systems when full states are not available for
performing feedback control. It motivates us to investigate the
system stability of polynomial-fuzzy-model-based (PFMB)
observer-control systems. We consider the polynomial
fuzzy controller and polynomial fuzzy observer whose
premise membership functions depend on estimated premise
variables. Matrix decoupling technique [40] is employed to
achieve convex SOS-based stability conditions. Moreover, we
consider the polynomial fuzzy observer using sampled-output
measurements for state estimation. Input-delay approach [47]
is employed to investigate the system stability.

This paper is organized as follows. In Section II, nota-
tions and the formulation of polynomial fuzzy model, poly-
nomial fuzzy observer and polynomial fuzzy controller are
described. In Section III, stability analysis is conducted for
PFMB observer-control system and further for systems under
sampled-output measurements. In Section IV, simulation ex-
amples are provided to demonstrate the feasibility and validity
of stability conditions. In Section V, a conclusion is drawn.

II. PRELIMINARY

A. Notation
The following notation is employed throughout this paper

[9]. A monomial in x(t) = [x1(t), x2(t), . . . , xn(t)]T is a
function of the form xd11 (t)xd22 (t) · · ·xdnn (t), where di ≥
0, i = 1, 2, . . . , n, are integers. The degree of a monomial
is d =

∑n
i=1 di. A polynomial p(x(t)) is a finite linear

combination of monomials with real coefficients. A polyno-
mial p(x(t)) is an SOS if it can be written as p(x(t)) =∑m
j=1 qj(x(t))2, where qj(x(t)) is a polynomial and m is a

nonnegative integer. It can be concluded that if p(x(t)) is an
SOS, then p(x(t)) ≥ 0. The expressions of M > 0,M ≥
0,M < 0, and M ≤ 0 denote the positive, semi-positive,
negative, and semi-negative definite matrices M, respectively.
The symbol “*” in a matrix represents the transposed element
in the corresponding position.

B. Polynomial Fuzzy Model
The ith rule of the polynomial fuzzy model for the nonlinear

system is presented as follows [3]:

Rule i : IF f1(x(t)) is M i
1 AND · · ·AND fΨ(x(t)) is M i

Ψ,

THEN ẋ(t) = Ai(x(t))x(t) + Bi(x(t))u(t),

y(t) = Ci(x(t))x(t),

where x(t) = [x1(t), x2(t), . . . , xn(t)]T is the state vector,
and n is the dimension of the nonlinear system; fη(x(t))
is the premise variable corresponding to its fuzzy term M i

η

in rule i, η = 1, 2, . . . ,Ψ, and Ψ is a positive integer;
Ai(x(t)) ∈ <n×N and Bi(x(t)) ∈ <n×m are the known
polynomial system and input matrices, respectively; u(t) ∈
<m is the control input vector; y(t) ∈ <l is the output
vector; Ci(x(t)) ∈ <l×N is the polynomial output matrix.
The dynamics of the nonlinear system is given by

ẋ(t) =

p∑
i=1

wi(x(t))
(
Ai(x(t))x(t) + Bi(x(t))u(t)

)
,

y(t) =

p∑
i=1

wi(x(t))Ci(x(t))x(t), (1)

where p is the number of rules in the polynomial fuzzy model;
wi(x(t)) is the normalized grade of membership, wi(x(t)) =∏Ψ

η=1 µMi
η
(fη(x(t)))∑p

k=1

∏Ψ
η=1 µMk

η
(fη(x(t)))

, wi(x(t)) ≥ 0, i = 1, 2, . . . , p,

and
∑p
i=1 wi(x(t)) = 1; µMi

η
(fη(x(t))), η = 1, 2, . . . ,Ψ, are

grades of membership corresponding to the fuzzy term M i
η .

C. Polynomial Fuzzy Observer
For brevity, time t is dropped from now. Considering

premise variable fη(x) depending on unmeasurable states x,
we apply the following polynomial fuzzy observer to estimate
the states in (1). The ith rule of the polynomial fuzzy observer
is described as follows:

Rule i : IF f1(x̆) is M i
1 AND · · ·AND fΨ(x̆) is M i

Ψ,

THEN ˙̆x = Ai(x̆)x̆ + Bi(x̆)u + Li(x̆)(y − y̆),

y̆ = Ci(x̆)x̆,
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where x̆ ∈ <n is the estimated state x; y̆ ∈ <l is the estimated
output y; Li(x̆) ∈ <N×l is the polynomial observer gain. The
polynomial fuzzy observer is given by

˙̆x =

p∑
i=1

wi(x̆)
(
Ai(x̆)x̆ + Bi(x̆)u + Li(x̆)(y − y̆)

)
,

y̆ =

p∑
i=1

wi(x̆)Ci(x̆)x̆. (2)

It can be seen from (2) that the membership functions of
polynomial fuzzy observer depend on estimated system states
x̆ rather than original system states x.

D. Polynomial Fuzzy Controller

With PDC design approach [3], [7], the ith rule of the
polynomial fuzzy controller is described as follows:

Rule i : IF f1(x̆) is M i
1 AND · · ·AND fΨ(x̆) is M i

Ψ,

THEN u = Gi(x̆)x̆,

where Gi(x̆) ∈ <m×N is the polynomial controller gain. The
polynomial fuzzy controller is given by

u =

p∑
i=1

wi(x̆)Gi(x̆)x̆. (3)

Note that in (3) both the premise variable and the controller
gain depend on estimated states x̆.

E. Useful Lemmas

The following lemmas are employed in this paper.
Lemma 1: With X,Y of appropriate dimension and β > 0,

the following inequality holds [59]:

XTY + YTX ≤ βXTX +
1

β
YTY.

Lemma 2: With P,Q of appropriate dimension, Q > 0 and
a scalar γ, the following inequality holds [59]:

−PQ−1P ≤ γ2Q− 2γ(PT + P).

Lemma 3 (Jensen’s inequality): With x(t),Q of appropriate
dimension, Q > 0 and h > 0, the following inequality holds
[60]:

− h
∫ t

t−h
ẋ(ϕ)TQẋ(ϕ)dϕ

≤− (x(t)− x(t− h))TQ(x(t)− x(t− h)).

III. STABILITY ANALYSIS

In this section, the stability analysis is carried out for
PFMB observer-control systems. The formulation of closed-
loop PFMB observer-control systems are provided first. Then
based on Lyapunov stability theory, stability conditions are
obtained in terms of SOS. Matrix decoupling technique is
employed to obtain convex SOS-based stability conditions.
Finally, using similar techniques, we extend the stability
analysis to systems with sampled-output measurement.

Controller Model

Observer

u
y

− y̆

x̆

Fig. 1. A block diagram of PFMB observer-control systems.

A. Polynomial Fuzzy Controller and Observer

The estimation error is defined as e = x− x̆, and then we
have the closed-loop system (shown in Fig. 1) consisting of the
polynomial fuzzy model (1), the polynomial fuzzy controller
(3) and the polynomial fuzzy observer (2) as follows:

ẋ =

p∑
i=1

p∑
j=1

wi(x)wj(x̆)
(

(Ai(x) + Bi(x)Gj(x̆))x̆

+ Ai(x)e
)
, (4)

˙̆x =

p∑
i=1

p∑
j=1

p∑
k=1

wi(x)wj(x̆)wk(x̆)
(

(Aj(x̆) + Bj(x̆)Gk(x̆)

+ Lj(x̆)(Ci(x)−Ck(x̆)))x̆ + Lj(x̆)Ci(x)e
)
, (5)

ė =

p∑
i=1

p∑
j=1

p∑
k=1

wi(x)wj(x̆)wk(x̆)
(

(Ai(x)−Aj(x̆)

+ (Bi(x)−Bj(x̆))Gk(x̆)− Lj(x̆)(Ci(x)−Ck(x̆)))x̆

+ (Ai(x)− Lj(x̆)Ci(x))e
)
. (6)

The control objective is to make the augmented observer-
control system ((5) and (6)) asymptotically stable, i.e., x̆→ 0
and e → 0 as time t → ∞, by determining the polynomial
controller gain Gk(x̆) and polynomial observer gain Lj(x̆).

Theorem 1: The augmented PFMB observer-control system
(formed by (5) and (6)) is guaranteed to be asymptotically sta-
ble if there exist matrices X ∈ <N×N ,Y ∈ <N×N ,Nk(x̆) ∈
<m×N ,Mj(x̆) ∈ <N×l, k = 1, 2, . . . , p, j = 1, 2, . . . , p, and
predefined scalers α1 > 0, α2 > 0, β > 0 such that the
following SOS-based conditions are satisfied:

νT (X− ε1I)ν is SOS; (7)

νT (Y − ε2I)ν is SOS; (8)

− νT (Φijk(x, x̆) + Φikj(x, x̆) + ε3(x, x̆)I)ν is SOS
∀i, j ≤ k; (9)

− νT (Θijk(x, x̆) + Θikj(x, x̆) + ε4(x, x̆)I)ν is SOS
∀i, j ≤ k; (10)

where

Φijk(x, x̆) =

 Γ̃ijk(x, x̆) Φ(12) Φ(13)

∗ − 1
α1

Y 0

∗ ∗ − 1
β I

 , (11)

Θijk(x, x̆) =

 Λ̃ij(x, x̆) Θ(12) Θ̃
(13)
ijk (x, x̆)

∗ − 1
α2

I 0

∗ ∗ −βI

 , (12)
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Γ̃ijk(x, x̆) =

[
Ξ̂

(11)
jk (x̆) + Ξ̂

(11)
jk (x̆)T Ξ̂

(21)
ijk (x, x̆)T

∗ −α2I

]
,

(13)

Λ̃ij(x, x̆) =

[
−α1Y Ξ̃

(12)
ij (x, x̆)

∗ Ξ̃
(22)
ij (x, x̆) + Ξ̃

(22)
ij (x, x̆)T

]
,

(14)

Φ(12) = [I 0]T , (15)

Φ(13) = [X 0]T , (16)

Θ(12) = [0 Y]T , (17)

Θ̃
(13)
ijk (x, x̆) = [H̃ijk(x, x̆)T − H̃ijk(x, x̆)T ]T , (18)

Ξ̂
(11)
jk (x̆) = Aj(x̆)X + Bj(x̆)Nk(x̆), (19)

Ξ̂
(21)
ijk (x, x̆) = (Ai(x)−Aj(x̆))X

+ (Bi(x)−Bj(x̆))Nk(x̆), (20)

Ξ̃
(12)
ij (x, x̆) = Mj(x̆)Ci(x), (21)

Ξ̃
(22)
ij (x, x̆) = YAi(x)−Mj(x̆)Ci(x), (22)

H̃ijk(x, x̆) = Mj(x̆)(Ci(x)−Ck(x̆)); (23)

ν is an arbitrary vector independent of x with appropriate
dimensions; ε1 > 0, ε2 > 0, ε3(x, x̆) > 0 and ε4(x, x̆) > 0 are
predefined scalar polynomials; and the polynomial controller
and observer gains are given by Gk(x̆) = Nk(x̆)X−1 and
Lj(x̆) = Y−1Mj(x̆), respectively.

Proof: Defining the augmented vector z =
[x̆T eT ]T and the summation term

∑p
i,j,k=1 w̃ijk =∑p

i=1

∑p
j=1

∑p
k=1 wi(x)wj(x̆)wk(x̆), the augmented PFMB

observer-control system is written as

ż =

p∑
i,j,k=1

w̃ijkΞijk(x, x̆)z, (24)

where

Ξijk(x, x̆) =

[
Ξ

(11)
jk (x̆) + Hijk(x, x̆) Ξ

(12)
ij (x, x̆)

Ξ
(21)
ijk (x, x̆)−Hijk(x, x̆) Ξ

(22)
ij (x, x̆)

]
,

(25)

Ξ
(11)
jk (x̆) = Aj(x̆) + Bj(x̆)Gk(x̆), (26)

Ξ
(21)
ijk (x, x̆) = Ai(x)−Aj(x̆) + (Bi(x)−Bj(x̆))Gk(x̆),

(27)

Ξ
(12)
ij (x, x̆) = Lj(x̆)Ci(x), (28)

Ξ
(22)
ij (x, x̆) = Ai(x)− Lj(x̆)Ci(x), (29)

Hijk(x, x̆) = Lj(x̆)(Ci(x)−Ck(x̆)). (30)

The following Lyapunov function candidate is employed
to investigate the stability of the augmented PFMB observer-
control system (24):

V (z) = zTPz, (31)

where P =

[
X−1 0

0 Y

]
,X > 0,Y > 0, and thus P > 0.

The time derivative of Lyapunov function is

V̇ (z) =

p∑
i,j,k=1

w̃ijkz
T (PΞijk(x, x̆) + Ξijk(x, x̆)TP)z.

(32)

Therefore, V̇ (z) < 0 holds if

p∑
i,j,k=1

w̃ijk(PΞijk(x, x̆) + Ξijk(x, x̆)TP) < 0. (33)

Remark 1: The augmented PFMB observer-control system
(24) is guaranteed to be asymptotically stable if V (z) > 0 by
satisfying P > 0 and V̇ (z) < 0 by satisfying (33) excluding
x = 0. It should be noted that the condition (33) is not convex.
If the condition (33) is applied, the polynomial fuzzy controller
gain Gk(x̆) and polynomial fuzzy observer gain Lj(x̆) are
needed to be pre-determined.

In the following, we apply congruence transformation and
matrix decoupling technique to obtain convex SOS stability
conditions such that the polynomial fuzzy controller gain
Gk(x̆) and polynomial fuzzy observer gain Lj(x̆) can be
obtained using convex programming techniques.

Performing congruence transformation to (33) by pre-

multiplying and post-multiplying P−1 =

[
X 0
0 Y−1

]
to

both sides and denoting Nk(x̆) = Gk(x̆)X, we have

p∑
i,j,k=1

w̃ijk(Ξ̂ijk(x, x̆) + Ξ̂ijk(x, x̆)T ) < 0, (34)

where

Ξ̂ijk(x, x̆) =

[
Ξ̂

(11)
jk (x̆) + Hijk(x, x̆)X Ξ̂

(12)
ij (x, x̆)

Ξ̂
(21)
ijk (x, x̆)−Hijk(x, x̆)X Ξ̂

(22)
ij (x, x̆)

]
,

(35)

Ξ̂
(12)
ij (x, x̆) = Lj(x̆)Ci(x)Y−1, (36)

Ξ̂
(22)
ij (x, x̆) = Ai(x)Y−1 − Lj(x̆)Ci(x)Y−1, (37)

Ξ̂
(11)
jk (x̆) and Ξ̂

(21)
ijk (x, x̆) are defined in (19) and (20), respec-

tively.
Applying Lemma 1, we have

p∑
i,j,k=1

w̃ijk(Ξ̂ijk(x, x̆) + Ξ̂ijk(x, x̆)T )

≤
p∑

i,j,k=1

w̃ijk

(
Υijk(x, x̆) + βΦ(13)(Φ(13))T

)
+

1

β

( p∑
i,j,k=1

w̃ijkΘ
(13)
ijk (x, x̆)

)( p∑
i,j,k=1

w̃ijkΘ
(13)
ijk (x, x̆)

)T
,

(38)
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where

Υijk(x, x̆) =[
Ξ̂

(11)
jk (x̆) + Ξ̂

(11)
jk (x̆)T Ξ̂

(12)
ij (x, x̆) + Ξ̂

(21)
ijk (x, x̆)T

∗ Ξ̂
(22)
ij (x, x̆) + Ξ̂

(22)
ij (x, x̆)T

]
,

(39)

Θ
(13)
ijk (x, x̆) = [Hijk(x, x̆)T −Hijk(x, x̆)T ]T , (40)

Φ(13) is defined in (16).
Using matrix decoupling technique [40] to further separate

decision variables in order to obtain convex SOS stability
conditions, we rewrite Υijk(x, x̆) as follows:

Υijk(x, x̆) = Γijk(x, x̆) + Λij(x, x̆), (41)

where

Γijk(x, x̆) =[
Ξ̂

(11)
jk (x̆) + Ξ̂

(11)
jk (x̆)T + α1Y

−1 Ξ̂
(21)
ijk (x, x̆)T

∗ −α2I

]
, (42)

Λij(x, x̆) =

[
−α1Y

−1 Ξ̂
(12)
ij (x, x̆)

∗ Ξ̂
(22)
ij (x, x̆) + α2I

]
. (43)

Remark 2: The decoupled matrix in (42) is related to the
polynomial fuzzy controller gain Gk(x̆) while the one in
(43) is related to the polynomial fuzzy observer gain Lj(x̆).
In this case, more arrangement can be imposed on (43)
without affecting (42) which is already a convex problem.
Other techniques such as completing squares (Lemma 1 and
Lemma 2) [41] and Finsler’s lemma [42] can also be used
to further separate decision variables instead of matrix decou-
pling technique [40]. However, they increase the dimension of
matrices or increase the number of decision variables resulting
in higher computational demand. In contrast, using matrix
decoupling technique leads to smaller dimension of matrices
or less number of decision variables at the expense of larger
number of stability conditions.

Hence, V̇ (z) < 0 holds if
p∑

i,j,k=1

w̃ijk

(
Γijk(x, x̆) + βΦ(13)(Φ(13))T

)
< 0, (44)

p∑
i,j,k=1

w̃ijkΛij(x, x̆) +
1

β

( p∑
i,j,k=1

w̃ijkΘ
(13)
ijk (x, x̆)

)
×
( p∑
i,j,k=1

w̃ijkΘ
(13)
ijk (x, x̆)

)T
< 0. (45)

Performing congruence transformation to (45) by pre-
multiplying and post-multiplying diag{Y,Y} to both sides,
denoting Mj(x̆) = YLj(x̆), and then applying Schur Com-
plement to both (44) and (45), we obtain

p∑
i,j,k=1

w̃ijkΦijk(x, x̆) < 0, (46)

p∑
i,j,k=1

w̃ijkΘijk(x, x̆) < 0, (47)

where Φijk(x, x̆) and Θijk(x, x̆) are defined in (11) and
(12), respectively. By grouping terms with same membership
functions, V̇ (z) < 0 can be achieved by satisfying conditions
(9) and (10). The proof is completed.

B. Polynomial Fuzzy Controller and Observer with Sampled-
Output Measurement

Considering premise variable fη(x) depending on unmea-
surable system states x and output matrix Ci not depending
on system states x, we denote sampled output y as ys, where
ys = y(ts̃), ts̃, s̃ = 1, 2, . . . ,∞, is the sampling time and
ts̃+1 − ts̃ ≤ h. The input-delay approach [47] is employed to
represent the sampling behavior. Denoting τ(t) = t− ts̃ < h
for ts̃ ≤ t < ts̃+1, the sampled output vector can be written as
ys = y(t − τ(t)). Similarly, the sampled system state vector
can be written as xs = x(t− τ(t)).

Remark 3: In case using sampled-output measurements, the
output matrix Ci does not depend on system states x. If
Ci(x) is considered to be a polynomial matrix of x, Ci(xs)
and Ci(x̆s) will exist in the stability analysis which is more
difficult to be handled. Therefore, constant output matrix Ci

is considered in this paper to ease the design and analysis.
We apply the following polynomial fuzzy observer to esti-

mate the system states in (1):

˙̆x =

p∑
j=1

wj(x̆)
(
Aj(x̆)x̆ + Bj(x̆)u + Lj(x̆)(ys − y̆s)

)
,

ys =

p∑
i=1

wi(xs)Cixs,

y̆s =

p∑
l=1

wl(x̆s)Clx̆s, (48)

where x̆s ∈ <n and y̆s ∈ <l are the estimated sampled system
states and output, respectively.

With the PDC design approach [3], [7], the polynomial
fuzzy controller is given in (3). Recalling that the estimation
error is defined as e = x−x̆, we define the sampled estimation
error as es = xs−x̆s, and then we have the closed-loop system
(shown in Fig. 2) consisting of the polynomial fuzzy model
(1), the polynomial fuzzy controller (3) and the polynomial
fuzzy observer (48) as follows:

ẋ =

p∑
i=1

p∑
j=1

wi(x)wj(x̆)
(

(Ai(x) + Bi(x)Gj(x̆))x̆

+ Ai(x)e
)
, (49)

˙̆x =

p∑
i=1

p∑
j=1

p∑
k=1

p∑
l=1

wi(xs)wj(x̆)wk(x̆)wl(x̆s)
(

(Aj(x̆)

+ Bj(x̆)Gk(x̆))x̆ + Lj(x̆)(Ci −Cl)x̆s

+ Lj(x̆)Cies

)
, (50)

ė =

p∑
i=1

p∑
j=1

p∑
k=1

p∑
l=1

p∑
m=1

wi(xs)wj(x̆)wk(x̆)wl(x̆s)wm(x)(
(Am(x)−Aj(x̆) + (Bm(x)−Bj(x̆))Gk(x̆))x̆
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Controller Model

Sampled
Measurement

Observer

u

y
ys

−
y̆s y̆

x̆

Fig. 2. A block diagram of PFMB observer-control systems with sampled-
output measurement.

+ Am(x)e− Lj(x̆)(Ci −Cl)x̆s − Lj(x̆)Cies

)
. (51)

The control objective is to make the augmented observer-
control system ((50) and (51)) asymptotically stable, i.e., x̆→
0 and e→ 0 as time t→∞, by determining the polynomial
controller gain Gk(x̆) and polynomial observer gain Lj(x̆).

Theorem 2: The augmented PFMB observer-control sys-
tem (formed by (50) and (51)) is guaranteed to be asymp-
totically stable if there exist matrices X ∈ <N×N ,Y ∈
<N×N , Q̃ ∈ <2N×2N ,Nk(x̆) ∈ <m×N ,Mj(x̆) ∈ <N×l, k =
1, 2, . . . , p, j = 1, 2, . . . , p, and predefined scalers α1 >
0, α2 > 0, α3 > 0, α4 > 0, β > 0 and γ such that the
following SOS-based conditions are satisfied:

νT (X− ε1I)ν is SOS; (52)

νT (Y − ε2I)ν is SOS; (53)

νT (Q̃− ε3I)ν is SOS; (54)

− νT (Φjkm(x, x̆) + Φkjm(x, x̆) + ε4(x, x̆)I)ν is SOS
∀m, j ≤ k; (55)

− νT (Θijlm(x, x̆) + ε5(x, x̆)I)ν is SOS ∀i, j, l,m; (56)

where

Φjkm(x, x̆) =

 Γ̃jkm(x, x̆) Φ̃(12) Φ(13)

∗ − 1
β I 0

∗ ∗ − 1
α2

Y

 , (57)

Θijlm(x, x̆) =
Λ̃ijm(x, x̆) Θ(12) Θ(13) Θ(14) Θ̃

(15)
ijl (x̆)

∗ − 1
α1

I 0 0 0

∗ ∗ − 1
α4

I 0 0

∗ ∗ ∗ − 1
α3

I 0

∗ ∗ ∗ ∗ −βI

 , (58)

Γ̃jkm(x, x̆) =

 Γ
(11)
jkm(x, x̆) 0 Γ

(14)
jkm(x, x̆)

∗ −α4I 0

∗ ∗ Γ̃(44)

 , (59)

Φ̃(12) = [0N×2N X 0N×2N ]T , (60)

Φ(13) = [0N×3N I 0N×N ]T , (61)

Λ̃ijm(x, x̆) =
Λ̃

(11)
m (x)− Q̃ Λ̃

(12)
ij (x̆) + Q̃ 0 Λ̃

(14)
m (x)

∗ −2Q̃ Q̃ Λ̃
(24)
ij (x̆)

∗ ∗ −Q̃ 0

∗ ∗ ∗ γ2Q̃ + Λ̃(44)

 ,
(62)

Θ(12) = [0N×N Y 0N×6N ]T , (63)

Θ(13) = [0N×2N Y 0N×5N ]T , (64)

Θ(14) = [0N×7N Y]T , (65)

Θ̃
(15)
ijl (x̆) = [H̃ijl(x̆)T − H̃ijl(x̆)T 0N×4N

hH̃ijl(x̆)T − hH̃ijl(x̆)T ]T , (66)

Γ
(11)
jkm(x, x̆) =

[
Ξ̂

(11)
jk (x̆) + Ξ̂

(11)
jk (x̆)T Ξ̂

(21)
jkm(x, x̆)T

∗ −α1I

]
,

(67)

Γ
(14)
jkm(x, x̆) =

[
hΞ̂

(11)
jk (x̆)T hΞ̂

(21)
jkm(x, x̆)T

0 0

]
, (68)

Γ̃(44) =

[
−2γX 0

0 −α3I

]
, (69)

Λ̃(11)
m (x) =

[
0 0

0 Ξ̃
(22)
m (x) + Ξ̃

(22)
m (x)T

]
, (70)

Λ̃
(12)
ij (x̆) =

[
0 K̃ij(x̆)

0 −K̃ij(x̆)

]
, (71)

Λ̃(14)
m (x) =

[
0 0

0 hΞ̃
(22)
m (x)T

]
, (72)

Λ̃
(24)
ij (x̆) =

[
0 0

hK̃ij(x̆)T −hK̃ij(x̆)T

]
, (73)

Λ̃(44) =

[
−α2Y 0

0 −2γY

]
, (74)

Ξ̂
(11)
jk (x̆) = Aj(x̆)X + Bj(x̆)Nk(x̆), (75)

Ξ̂
(21)
jkm(x, x̆) = (Am(x)−Aj(x̆))X

+ (Bm(x)−Bj(x̆))Nk(x̆), (76)

Ξ̃(22)
m (x) = YAm(x), (77)

K̃ij(x̆) = Mj(x̆)Ci, (78)

H̃ijl(x̆) = Mj(x̆)(Ci −Cl); (79)

ν is an arbitrary vector independent of x with appropriate
dimensions; ε1 > 0, ε2 > 0, ε3 > 0, ε4(x, x̆) > 0 and
ε5(x, x̆) > 0 are predefined scalar polynomials; and the poly-
nomial controller and polynomial observer gains are given by
Gk(x̆) = Nk(x̆)X−1 and Lj(x̆) = Y−1Mj(x̆), respectively.

Proof: Defining the augmented vectors
z = [x̆T eT ]T , zs = [x̆Ts eTs ]T , and the summation
term

∑p
i,j,k,l,m=1 w̃ijklm =

∑p
i=1

∑p
j=1

∑p
k=1

∑p
l=1

∑p
m=1

wi(xs)wj(x̆)wk(x̆)wl(x̆s)wm(x), the augmented system
becomes

ż =

p∑
i,j,k,l,m=1

w̃ijklm
(
Âjkm(x, x̆)z + B̂ijl(x̆)zs

)
, (80)

where

Âjkm(x, x̆) =

[
Ξ

(11)
jk (x̆) 0

Ξ
(21)
jkm(x, x̆) Ξ

(22)
m (x)

]
, (81)

B̂ijl(x̆) =

[
Hijl(x̆) Kij(x̆)
−Hijl(x̆) −Kij(x̆)

]
, (82)

Ξ
(11)
jk (x̆) = Aj(x̆) + Bj(x̆)Gk(x̆), (83)
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Ξ
(21)
jkm(x, x̆) = Am(x)−Aj(x̆) + (Bm(x)−Bj(x̆))Gk(x̆),

(84)

Ξ(22)
m (x) = Am(x), (85)

Kij(x̆) = Lj(x̆)Ci, (86)
Hijl(x̆) = Lj(x̆)(Ci −Cl). (87)

The following Lyapunov function candidate is employed
to investigate the stability of the augmented PFMB observer-
control system with sampled-output measurements (80):

V (z) = zTPz + h

∫ 0

−h

∫ t

t+σ

ż(ϕ)TQż(ϕ)dϕdσ, (88)

where Q > 0,P =

[
X−1 0

0 Y

]
,X > 0,Y > 0, and thus

P > 0. The time derivative of V (z) is obtained as follows:

V̇ (z) = żTPz + zTPż + h2żTQż− h
∫ t

t−h
ż(ϕ)TQz(ϕ)dϕ.

(89)

Denoting augmented vectors zh = [x̆(t − h)T e(t −
h)T ]T ,Z = [zT zTs zTh ]T , and using Lemma 3, we obtain

− h
∫ t

t−h
ż(ϕ)TQż(ϕ)dϕ

≤− (z− zs)
TQ(z− zs)− (zs − zh)TQ(zs − zh). (90)

Then V̇ (z) becomes

V̇ (z) ≤ ZT
( p∑
i,j,k,l,m=1

w̃ijklmΥ
(11)
ijklm(x, x̆)

+
( p∑
i,j,k,l,m=1

w̃ijklmΥ
(12)
ijklm(x, x̆)

)
P−1QP−1

×
( p∑
i,j,k,l,m=1

w̃ijklmΥ
(12)
ijklm(x, x̆)

)T)
Z, (91)

where

Υ
(11)
ijklm(x, x̆) =

 Ω(x, x̆) PB̂ijl(x, x̆) + Q 0
∗ −2Q Q
∗ ∗ −Q

 ,
(92)

Ω(x, x̆) = PÂjkm(x, x̆) + Âjkm(x, x̆)TP−Q, (93)

Υ
(12)
ijklm(x, x̆) = [hPÂjkm(x, x̆) hPB̂ijl(x, x̆) 0]T .

(94)

Using Schur Complement, V̇ (z) < 0 holds if

p∑
i,j,k,l,m=1

w̃ijklmΥijklm(x, x̆) < 0, (95)

where

Υijklm(x, x̆) =

[
Υ

(11)
ijklm(x, x̆) Υ

(12)
ijklm(x, x̆)

∗ −PQ−1P

]
. (96)

Applying Lemma 2 to the term −PQ−1P and then per-
forming congruence transformation to (95) by pre-multiplying
and post-multiplying diag{P−1,P−1,P−1,P−1}, we have

p∑
i,j,k,l,m=1

w̃ijklmΥ̂ijklm(x, x̆) < 0, (97)

where

Υ̂ijklm(x, x̆) =
Υ̂

(11)
jkm(x, x̆)− Q̂ Υ̂

(12)
ijl (x̆) + Q̂ 0 Υ̂

(14)
jkm(x, x̆)

∗ −2Q̂ Q̂ Υ̂
(24)
ijl (x̆)

∗ ∗ −Q̃ 0

∗ ∗ ∗ γ2Q̂ + Υ̂(44)

 ,
(98)

Υ̂
(11)
jkm(x, x̆) =[
Ξ̂

(11)
jk (x̆) + Ξ̂

(11)
jk (x̆)T Ξ̂

(21)
jkm(x, x̆)T

∗ Ξ̂
(22)
m (x) + Ξ̂

(22)
m (x)T

]
, (99)

Υ̂
(12)
ijl (x̆) =

[
Hijl(x̆)X K̂ij(x̆)

−Hijl(x̆)X −K̂ij(x̆)

]
, (100)

Υ̂
(14)
jkm(x, x̆) =

[
hΞ̂

(11)
jk (x̆)T hΞ̂

(21)
jkm(x, x̆)T

0 hΞ̂
(22)
m (x)T

]
, (101)

Υ̂
(24)
ijl (x̆) =

[
hXHijl(x̆)T −hXHijl(x̆)T

hK̂ij(x̆)T −hK̂ij(x̆)T

]
, (102)

Υ̂(44) =

[
−2γX 0

0 −2γY−1

]
, (103)

Ξ̂(22)
m (x) = Am(x)Y−1, (104)

K̂ij(x̆) = Lj(x̆)CiY
−1, (105)

Q̂ = P−1QP−1, (106)

Ξ̂
(11)
jk (x̆) and Ξ̂

(21)
jkm(x, x̆) are defined in (75) and (76), respec-

tively.
Similar to the development in Subsection III-A, applying

Lemma 1 and matrix decoupling technique [40] to further
separate decision variables, we get

p∑
i,j,k,l,m=1

w̃ijklmΥ̂ijklm(x, x̆)

≤
p∑

i,j,k,l,m=1

w̃ijklm

(
Γjkm(x, x̆) + Λijm(x, x̆)

+ βΦ(12)(Φ(12))T
)

+
1

β

( p∑
i,j,k,l,m=1

w̃ijklmΘ
(15)
ijl (x̆)

)
×
( p∑
i,j,k,l,m=1

w̃ijklmΘ
(15)
ijl (x̆)

)T
, (107)

where

Φ(12) = [0N×2N X 0N×5N ]T , (108)

Θ
(15)
ijl (x̆) = [Hijl(x̆)T −Hijl(x̆)T 0N×4N

hHijl(x̆)T − hHijl(x̆)T ]T , (109)
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Γjkm(x, x̆) =


Γ

(11)
jkm(x, x̆) 0 0 Γ

(14)
jkm(x, x̆)

∗ Γ(22) 0 0
∗ ∗ 0 0
∗ ∗ ∗ Γ(44)

 ,
(110)

Γ(22) =

[
−α4I 0

0 0

]
, (111)

Γ(44) =

[
−2γX + α2Y

−1 0
0 −α3I

]
, (112)

Λijm(x, x̆) =
Λ

(11)
m (x)− Q̂ Λ

(12)
ij (x̆) + Q̂ 0 Λ

(14)
m (x)

∗ Λ(22) − 2Q̂ Q̂ Λ
(24)
ij (x̆)

∗ ∗ −Q̂ 0

∗ ∗ ∗ γ2Q̂ + Λ(44)

 ,
(113)

Λ(11)
m (x) =

[
0 0

0 Ξ̂
(22)
m (x) + Ξ̂

(22)
m (x)T + α1I

]
, (114)

Λ
(12)
ij (x̆) =

[
0 K̂ij(x̆)

0 −K̂ij(x̆)

]
, (115)

Λ(14)
m (x) =

[
0 0

0 hΞ̂
(22)
m (x)T

]
, (116)

Λ(22) =

[
α4I 0
0 0

]
, (117)

Λ
(24)
ij (x̆) =

[
0 0

hK̂ij(x̆)T −hK̂ij(x̆)T

]
, (118)

Λ(44) =

[
−α2Y

−1 0
0 −2γY−1 + α3I

]
, (119)

Γ
(11)
jkm(x, x̆),Γ

(14)
jkm(x, x̆) are defined in (67) and (68), respec-

tively.
Denoting the summation terms

∑p
j,k,m=1 w̃jkm =∑p

j=1

∑p
k=1

∑p
m=1 wj(x̆)wk(x̆)wm(x) and∑p

i,j,l,m=1 w̃ijlm =
∑p
i=1

∑p
j=1

∑p
l=1

∑p
m=1

wi(xs)wj(x̆)wl(x̆s)wm(x), then V̇ (z) < 0 holds if

p∑
j,k,m=1

w̃jkm

(
Γjkm(x, x̆) + βΦ(12)(Φ(12))T

)
< 0, (120)

p∑
i,j,l,m=1

w̃ijlmΛijm(x, x̆) +
1

β

( p∑
i,j,l,m=1

w̃ijlmΘ
(15)
ijl (x̆)

)
×
( p∑
i,j,l,m=1

w̃ijlmΘ
(15)
ijl (x̆)

)T
< 0. (121)

Performing congruence transformation to
(121) by pre-multiplying and post-multiplying
diag{Y,Y,Y,Y,Y,Y,Y,Y} to both sides and applying
Schur Complement to both (120) and (121), we obtain

p∑
j,k,m=1

w̃jkmΦjkm(x, x̆) < 0, (122)

p∑
i,j,l,m=1

w̃ijlmΘijlm(x, x̆) < 0, (123)

where Q̃ =

[
Y 0
0 Y

]
Q̂

[
Y 0
0 Y

]
,Φjkm(x, x̆) and

Θijlm(x, x̆) are defined in (57) and (58), respectively. By
grouping terms with same membership functions, V̇ (z) < 0
if conditions (55) and (56) hold. The proof is completed.

IV. SIMULATION EXAMPLES

In this section, three simulation examples are provided to
validate the proposed stability conditions. In the first example,
we consider the stabilization control problem for an inverted
pendulum using the proposed PFMB observer-controller. In
the second example, sampled-output measurements are con-
sidered for the same control problem. In the third example, a
nonlinear mass-spring-damper system is also stabilized by the
designed PFMB observer-controller.

A. Inverted Pendulum

In this example, we consider an inverted pendulum on a cart
[7] in the following state space form:

ẋ1 = x2,

ẋ2 =
g sin(x1)− ampLx

2
2 sin(x1) cos(x1)

4L/3− ampL cos2(x1)

− a cos(x1)u

4L/3− ampL cos2(x1)
, (124)

where x = [x1 x2]T is the state vector; g = 9.8m/s2 is the
acceleration of gravity; mp = 2kg and Mc = 8kg are the mass
of the pendulum and the cart, respectively; a = 1/(mp+Mc);
2L = 1m is the length of the pendulum; and u(t) is the control
input force imposed on the cart.

Defining the region of interest as x1 ∈ [− 70π
180 ,

70π
180 ],

the nonlinear term f1(x1) = cos(x1)
4L/3−ampL cos2(x1) is rep-

resented by sector nonlinearity technique [6] as fol-
lows: f1(x1) = µM1

1
(x1)f1min + µM2

1
(x1)f1max , where

µM1
1
(x1) =

f1(x1)−f1max
f1min−f1max

, µM2
1
(x1) = 1 − µM1

1
(x1), f1min =

0.5222, f1max = 1.7647. To reduce computational burden,
other nonlinear terms sin(x1) and tan(x1) are approximated
by polynomials: sin(x1) ≈ s1x1 and tan(x1) ≈ t1x1,
where s1 = 0.8578 and t1 = 1.5534. As a result, the
inverted pendulum is described by a 2-rule polynomial fuzzy
model. The system and input matrices in each rule are given

by A1(x2) =

[
0 1

a1(x2) 0

]
, A2(x2) =

[
0 1

a2(x2) 0

]
,

B1 = [0 − f1mina]T , and B2 = [0 − f1maxa]T , where
a1(x2) = f1min

(
gt1 − ampLx

2
2s1

)
, a2(x2) = f1max

(
gt1 −

ampLx
2
2s1

)
. The measurement of output provided by sensors

may be affected by some physical influence such as the angular
velocity of the inverted pendulum. Therefore, similar to the
example in [40], we suppose the output is a function of
system states: y = x1 + 0.01x1x2. Then the output matrices
are C1(x2) = C2(x2) = [1 + 0.01x2 0]. The membership
functions are w1(x1) = µM1

1
(x1) and w2(x1) = µM2

1
(x1). It

is assumed that both system states x1 and x2 are unmeasurable.
It can be seen that the premise variable f1(x1) and the

output matrix Ci(x2) all depend on unmeasurable system
states x1 or x2, and thus Theorem 1 is employed to obtain a
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(a) Time response of x1(t). (b) Time response of x2(t).

Fig. 3. Time response of system states of the inverted pendulum with 4
different initial conditions.

(a) Time response of x1(t) and
x̆1(t).

(b) Time response of x2(t) and
x̆2(t).

Fig. 4. Time response of system states and estimated states for x(0) =
[ 70π
180

0]T .

PFMB observer-controller to stabilize the inverted pendulum.
We choose α1 = 1 × 103, α2 = 1 × 106, β = 1 × 10−2,
Nk(x̆2) of degree 0 and 2, Mj(x̆2) of degree 0 and 1,
ε1 = ε2 = 1×10−3, and ε3 = ε4 = 1×10−7. The polynomial
controller gains are obtained as G1(x̆2) = [−1.1623 ×
10−2x̆2

2 + 1.5144 × 103 2.5661 × 10−2x̆2
2 + 1.6857 × 102]

and G2(x̆2) = [−1.2124×10−1x̆2
2 +7.7898×102 2.7568×

10−2x̆2
2+1.0284×102], and the polynomial observer gains are

obtained as L1(x̆2) = [−6.0760×10−2x̆2 +1.1223×102 −
3.5682×10−2x̆2 +1.2580×102]T and L2(x̆2) = [−6.0760×
10−2x̆2 +1.1223×102 −3.5682×10−2x̆2 +1.2580×102]T .

We apply the above polynomial controller gains and poly-
nomial observer gains to the original dynamic system of
the inverted pendulum (124). Considering 4 different initial
conditions, the inverted pendulum is successfully stabilized
where the time response of system states are shown in Fig.
3. To demonstrate the estimated system states offered by
the polynomial fuzzy observer, we choose one of the above
initiation conditions x(0) = [ 70π

180 0]T and x̆(0) = [35π
180 0]T

for demonstration purposes and the estimated system states are
shown in Fig. 4. The corresponding control input is shown in
Fig. 5. It can be seen that the proposed polynomial fuzzy
observer is an effective tool for nonlinear systems to observe
unmeasurable states.

B. Inverted Pendulum with Sampled-Output Measurements

In this example, we consider the same inverted pendulum
in (124). In addition, sampled-output measurements are em-
ployed for the design of PFMB observer-controller where the
sampling interval is chosen to be h = 0.05 seconds. The
output is assumed to be a function of system states: y =
−0.161f1(x1)+1.1841. Consequently, the output matrices are

Fig. 5. Time response of control input u(t) for x(0) = [ 70π
180

0]T .

(a) Time response of x1(t). (b) Time response of x2(t).

Fig. 6. Time response of system states of the inverted pendulum with 4
different initial conditions.

C1 = [1.1 0] and C2 = [0.9 0]. The membership functions
are the same as the first example.

Theorem 2 is employed for the design of PFMB observer-
controller. We choose α1 = 1 × 106, α2 = 1 × 105, α3 =
1 × 103, α4 = 1 × 103, β = 1 × 10−2, γ = 1 × 10−1,
Nk(x̆2) of degree 0 and 2, Mj(x̆2) of degree 0 and 2,
ε1 = ε2 = ε3 = 1 × 10−3, and ε4 = ε5 = 1 × 10−7.
The polynomial controller gains are obtained as G1(x̆2) =
[−2.1745 × 10−1x̆2

2 + 1.1463 × 103 3.8649 × 10−2x̆2
2 +

4.6925× 102] and G2(x̆2) = [−2.6277× 10−1x̆2
2 + 5.6804×

102 7.7914 × 10−2x̆2
2 + 1.9794 × 102], and the polynomial

observer gains are obtained as L1(x̆2) = [8.3334×10−13x̆2
2 +

1.5901×10 1.8529×10−11x̆2
2+2.3319×10]T and L2(x̆2) =

[6.6685×10−12x̆2
2+1.5901×10 3.0865×10−11x̆2

2+2.3319×
10]T .

The above polynomial controller gains and polynomial
observer gains are applied to the original dynamic system of
the inverted pendulum (124). Considering 4 different initial
conditions, the time response of system states are shown
in Fig. 6 which shows that the inverted pendulum can be
successfully stabilized. Choosing initiation conditions x(0) =
[ 70π
180 0]T and x̆(0) = [ 35π

180 0]T for demonstration, the
estimated system states are shown in Fig. 7. The corresponding
sampled output and control input are shown in Fig. 8. As
is exhibited in Fig. 8(a), the measured output is kept to be
constant during the sampling interval. Although the sampling
activity increases the difficulty of controlling the inverted
pendulum, the proposed polynomial fuzzy observer-controller
can successfully stabilize the inverted pendulum using the
sampled-output measurements.

To compare the proposed control strategy with some rel-
evant published papers, the polynomial fuzzy model used
to represent the inverted pendulum is more general than T-
S fuzzy model considered in [40]-[43], [50], [54]-[58]. The
unmeasurable premise variables appeared in these examples
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(a) Time response of x1(t) and
x̆1(t).

(b) Time response of x2(t) and
x̆2(t).

Fig. 7. Time response of system states and estimated states for x(0) =
[ 70π
180

0]T .

(a) Time response of ys(t) and y̆s(t). (b) Time response of u(t).

Fig. 8. Time response of sampled output, estimated sampled output and
control input for x(0) = [ 70π

180
0]T .

provide more freedom for designing polynomial fuzzy model
than measurable premise variables in [44]. Furthermore, one
step design of the observer-controller is achieved instead of
two steps [44] or iterative procedure [50]. The controller is
allowed to be polynomial and the output matrix C is allowed to
be different in each fuzzy rule, both of which are more general
than [53]. Additionally, the maximum sampling interval 0.018
seconds achieved in [50] for the inverted pendulum is exceeded
in this paper benefited from the continuous-time polynomial
fuzzy observer.

The computational time for checking the SOS conditions
of Theorems 1 and 2 for the inverted pendulum are 57.236
seconds and 1994.563 seconds, receptively. The computational
time for higher dimensional system may be more than the
above values.

C. Nonlinear Mass-Spring-Damper System

We follow the same control strategy in previous examples
to stabilize a nonlinear mass-spring-damper system whose
dynamics is given by [61] and stated as follows:

Mẍ(t) + g(x(t), ẋ(t)) + f(x(t)) = φ(ẋ(t))u(t), (125)

where M is the mass; g(x(t), ẋ(t)) = D(c1x(t) + c2ẋ(t)3 +
c3(t)ẋ(t)), f(x(t)) = K(c4x(t) + c5x(t)3 + c6x(t)) and
φ(ẋ(t)) = 1.4387 + c7ẋ(t)2 + c8 cos (5ẋ(t)) are the damper
nonlinearity, the spring nonlinearity and the input nonlinearity,
respectively; M = D = K = 1, c1 = 0, c2 = 1, c3 =
−0.3, c4 = 0.01, c5 = 0.1, c6 = 0.3, c7 = −0.03, c8 = 0.2;
and u(t) is the force.

(a) Time response of x1(t). (b) Time response of x2(t).

Fig. 9. Time response of system states of the mass-spring-damper system
with 4 different initial conditions.

Time t is dropped from now for simplicity. Denoting x1 and
x2 as x and ẋ, respectively, and x = [x1 x2]T , we obtain
the following state space form:

ẋ1 = x2,

ẋ2 =
1

M
(−g(x1, x2)− f(x1) + φ(x2)u). (126)

The nonlinear term f1(x2) = cos (5x2) is repre-
sented by sector nonlinearity technique [6] as follows:
f1(x2) = µM1

1
(x2)f1min +µM2

1
(x2)f1max , where µM1

1
(x2) =

f1(x2)−f1max
f1min−f1max

, µM2
1
(x2) = 1−µM1

1
(x2), f1min = −1, f1max =

1. As a result, the nonlinear mass-spring-damper system is
described by a 2-rule polynomial fuzzy model. The system
and input matrices in each rule are given by A1(x) =

A2(x) =

[
0 1

a1(x1) a2(x2)

]
, B1(x2) = [0 b1(x2)]T , and

B2(x2) = [0 b2(x2)]T , where a1(x1) = − 1
M (Dc1 +K(c4 +

c6) + Kc5x
2
1), a2(x2) = − 1

M (Dc3 + Dc2x
2
2), b1(x2) =

1
M (1.4387 + c7x

2
2 + c8f1min), b2(x2) = 1

M (1.4387 + c7x
2
2 +

c8f1max). In addition, the output matrices are C1 = C2 =
[1 0]. The membership functions are w1(x2) = µM1

1
(x2)

and w2(x2) = µM2
1
(x2).

It can be seen that the premise variable f1(x2) depends
on unmeasurable system state x2, and thus Theorem 1 is
employed to design a PFMB observer-controller to stabilize
the nonlinear mass-spring-damper system. We choose Nk(x̆1)
of degree 0 and 2, Mj(x̆1) of degree 0 and 2, and keep other
settings the same as Section IV-A. The polynomial controller
gains are obtained as G1(x̆1) = [−1.4754×10−1x̆2

1−1.0447×
10 − 4.8074 × 10−2x̆2

1 − 3.3439 × 10] and G2(x̆1) =
[−6.4731 × 10−2x̆2

1 − 9.8315 × 10 − 3.9791 × 10−2x̆2
1 −

3.3442× 10], and the polynomial observer gains are obtained
as L1(x̆2) = [4.1689 × 10−3x̆2

1 + 9.2052 × 102 4.1692 ×
10−3x̆2

1 + 1.0648× 103]T and L2(x̆2) = [4.1689× 10−3x̆2
1 +

9.2052× 102 4.1692× 10−3x̆2
1 + 1.0648× 103]T .

Considering 4 different initial conditions, the time response
of system states are shown in Fig. 9 which shows that the
nonlinear mass-spring-damper system can be stabilized by
the designed polynomial fuzzy observer-controller. Choosing
initiation conditions x(0) = [1 0]T and x̆(0) = [0 0]T as
an example, the estimated system states are shown in Fig.
10. Consequently, it is feasible to apply the proposed PFMB
observer-control strategy for stabilization of nonlinear systems.

The MATLAB codes for these simulation examples can be
downloaded by the following link: http://www.inf.kcl.ac.uk/
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(a) Time response of x1(t) and x̆1(t). (b) Time response of x2(t) and
x̆2(t).

Fig. 10. Time response of system states and estimated states for x(0) =
[1 0]T .

staff/hklam/docs/MatlabCodes(paper105).zip. Readers may
use the codes to easily implement the proposed polynomial
fuzzy observer-controllers.

V. CONCLUSION

In this paper, the stability of PFMB observer-control sys-
tem has been investigated. Two classes of PFMB observer-
controllers have been considered. The first class considers
continuous system output in the design while the second class
considers the sampled-output measurements. In both classes,
the polynomial controller gains and polynomial observer gains
are allowed to be a function of estimated states. Moreover, the
premise variables are allowed to be unmeasurable which com-
plicates the stability analysis but enhances the applicability of
the proposed PFMB observer-control scheme. Matrix decou-
pling technique has been employed in the stability analysis to
obtain convex SOS stability conditions. Simulation examples
have been presented to verify the stability analysis results and
demonstrate the effectiveness of the proposed PFMB observer-
control scheme.

REFERENCES

[1] T. Takagi and M. Sugeno, “Fuzzy identification of systems and its
applications to modelling and control,” IEEE Trans. Syst., Man, Cybern.,
vol. SMC-15, no. 1, pp. 116–132, Jan. 1985.

[2] M. Sugeno and G. T. Kang, “Structure identification of fuzzy model,”
Fuzzy Sets Syst., vol. 28, no. 1, pp. 15–33, Oct. 1988.

[3] K. Tanaka, H. Yoshida, H. Ohtake, and H. O. Wang, “A sum of squares
approach to modeling and control of nonlinear dynamical systems with
polynomial fuzzy systems,” IEEE Trans. Fuzzy Syst., vol. 17, no. 4, pp.
911–922, Aug. 2009.

[4] K. Tanaka, H. Ohtake, and H. O. Wang, “Guaranteed cost control of
polynomial fuzzy systems via a sum of squares approach,” IEEE Trans.
Syst., Man, Cybern. B, Cybern., vol. 39, no. 2, pp. 561–567, Apr. 2009.

[5] K. Tanaka and H. O. Wang, Fuzzy Control Systems Design and Analysis:
a Linear Matrix Inequality Approach. New York: Wiley-Interscience,
2001.

[6] A. Sala and C. Ariño, “Polynomial fuzzy models for nonlinear control:
a Taylor-series approach,” IEEE Trans. Fuzzy Syst., vol. 17, no. 6, pp.
284–295, Dec. 2009.

[7] H. O. Wang, K. Tanaka, and M. F. Griffin, “An approach to fuzzy control
of nonlinear systems: stability and design issues,” IEEE Trans. Fuzzy
Syst., vol. 4, no. 1, pp. 14–23, Feb. 1996.

[8] K. Tanaka, T. Ikeda, and H. O. Wang, “Fuzzy regulators and fuzzy
observers: relaxed stability conditions and LMI-based designs,” IEEE
Trans. Fuzzy Syst., vol. 6, no. 2, pp. 250–265, May 1998.

[9] S. Prajna, A. Papachristodoulou, and P. A. Parrilo, “Nonlinear control
synthesis by sum-of-squares optimization: a Lyapunov-based approach,”
in Proc. Asian Control Conf. (ASCC), vol. 1, Melbourne, Australia, Feb.
2004, pp. 157–165.

[10] G. Feng, “A survey on analysis and design of model-based fuzzy control
systems,” IEEE Trans. Fuzzy Syst., vol. 14, no. 5, pp. 676–697, Oct.
2006.

[11] A. Sala, “On the conservativeness of fuzzy and fuzzy-polynomial control
of nonlinear systems,” Annu. Rev. Control, vol. 33, no. 1, pp. 48–58,
2009.

[12] X. Liu and Q. Zhang, “Approaches to quadratic stability conditions and
H∞ control designs for Takagi-Sugeno fuzzy systems,” IEEE Trans.
Fuzzy Syst., vol. 11, no. 6, pp. 830–839, Dec. 2003.

[13] C. H. Fang, Y. S. Liu, S. W. Kau, L. Hong, and C. H. Lee, “A new
LMI-based approach to relaxed quadratic stabilization of Takagi-Sugeno
fuzzy control systems,” IEEE Trans. Fuzzy Syst., vol. 14, no. 3, pp. 386–
397, Jun. 2006.

[14] A. Sala and C. Ariño, “Asymptotically necessary and sufficient con-
ditions for stability and performance in fuzzy control: applications of
Polya’s theorem,” Fuzzy Sets Syst., vol. 158, no. 24, pp. 2671–2686, Jul.
2007.

[15] J. C. Lo and J. R. Wan, “Studies on linear matrix inequality relaxations
for fuzzy control systems via homogeneous polynomials,” IET Control
Theory Applicat., vol. 4, no. 11, pp. 2293–2302, Nov. 2010.

[16] H. Ohtake, K. Tanaka, and H. O. Wang, “Switching fuzzy controller
design based on switching Lyapunov function for a class of nonlinear
systems,” IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 36, no. 1,
pp. 13–23, Feb. 2006.

[17] Y. J. Chen, H. Ohtake, K. Tanaka, W. J. Wang, and H. O. Wang, “Relaxed
stabilization criterion for T-S fuzzy systems by minimum-type piecewise
Lyapunov function based switching fuzzy controller,” IEEE Trans. Fuzzy
Syst., vol. 120, no. 6, pp. 1166–1173, Dec. 2012.

[18] H. K. Lam, M. Narimani, H. Li, and H. Liu, “Stability analysis of
polynomial-fuzzy-model-based control systems using switching polyno-
mial Lyapunov function,” IEEE Trans. Fuzzy Syst., vol. 21, no. 5, pp.
800–813, Oct. 2013.

[19] M. Bernal and T. Guerra, “Generalized nonquadratic stability of
continuous-time Takagi-Sugeno models,” IEEE Trans. Fuzzy Syst.,
vol. 18, no. 4, pp. 815–822, Aug. 2010.

[20] M. Bernal, A. Sala, A. Jaadari, and T.-M. Guerra, “Stability analysis
of polynomial fuzzy models via polynomial fuzzy Lyapunov functions,”
Fuzzy Sets Syst., vol. 185, no. 1, pp. 5–14, Dec. 2011.

[21] H. K. Lam and J. Lauber, “Membership-function-dependent stability
analysis of fuzzy-model-based control systems using fuzzy Lyapunov
functions,” Inform. Sci., vol. 232, pp. 253–266, May 2013.

[22] G. Feng, “H∞ controller design of fuzzy dynamic systems based on
piecewise Lyapunov functions,” IEEE Trans. Syst., Man, Cybern. B,
Cybern., vol. 34, no. 1, pp. 283–292, Feb. 2004.

[23] G. Feng, C. L. Chen, D. Sun, and Y. Zhu, “H∞ controller synthesis
of fuzzy dynamic systems based on piecewise Lyapunov functions and
bilinear matrix inequalities,” IEEE Trans. Fuzzy Syst., vol. 13, no. 1, pp.
94–103, Feb. 2005.

[24] K. Guelton, N. Manamanni, C. C. Duong, and D. L. Koumba Emianiwe,
“Sum-of-squares stability analysis of Takagi-Sugeno systems based on
multiple polynomial Lyapunov functions,” Int. J. Fuzzy Syst., vol. 15,
no. 1, pp. 34–41, Mar. 2013.

[25] H. K. Lam and L. D. Seneviratne, “Stability analysis of polynomial
fuzzy-model-based control systems under perfect/imperfect premise
matching,” IET Control Theory Applicat., vol. 5, no. 15, pp. 1689–1697,
Oct. 2011.

[26] H. K. Lam and S.-H. Tsai, “Stability analysis of polynomial-fuzzy-
model-based control systems with mismatched premise membership
functions,” IEEE Trans. Fuzzy Syst., vol. 22, no. 1, pp. 223–229, Feb.
2014.

[27] A. Sala and C. Ariño, “Relaxed stability and performance LMI condi-
tions for Takagi-Sugeno fuzzy systems with polynomial constraints on
membership function shapes,” IEEE Trans. Fuzzy Syst., vol. 16, no. 5,
pp. 1328–1336, Oct. 2008.

[28] M. Narimani and H. K. Lam, “SOS-based stability analysis of poly-
nomial fuzzy-model-based control systems via polynomial membership
functions,” IEEE Trans. Fuzzy Syst., vol. 18, no. 5, pp. 862–871, Oct.
2010.

[29] H. K. Lam, “Polynomial fuzzy-model-based control systems: stability
analysis via piecewise-linear membership functions,” IEEE Trans. Fuzzy
Syst., vol. 19, no. 3, pp. 588–593, Jun. 2011.

[30] M. Bernal, T. M. Guerra, and A. Kruszewski, “A membership-function-
dependent approach for stability analysis and controller synthesis of
Takagi-Sugeno models,” Fuzzy Sets Syst., vol. 160, no. 19, pp. 2776–
2795, 2009.



12

[31] H. K. Lam and M. Narimani, “Quadratic stability analysis of fuzzy-
model-based control systems using staircase membership functions,”
IEEE Trans. Fuzzy Syst., vol. 18, no. 1, pp. 125–137, Feb. 2010.

[32] H. K. Lam, “LMI-based stability analysis for fuzzy-model-based control
systems using artificial T-S fuzzy model,” IEEE Trans. Fuzzy Syst.,
vol. 19, no. 3, pp. 505–513, Jun. 2011.

[33] S. Boyd, L. E. Ghaoui, E. Feron, and V. Balakrishnan, Linear Matrix
Inequalities in System and Control Theory. Society for Industrial and
Applied Mathematics (SIAM), 1994.

[34] H. K. Lam, F. H. F. Leung, and P. K. S. Tam, “Fuzzy control of a class
of multivariable nonlinear systems subject to parameter uncertainties:
model reference approach,” Int. J. Approximate Reasoning, vol. 26, no. 2,
pp. 129–144, 2001.

[35] H. K. Lam and W. K. Ling, “Sampled-data fuzzy controller for contin-
uous nonlinear systems,” IET Control Theory Applicat., vol. 2, no. 1,
pp. 32–39, Jan. 2008.

[36] H. K. Lam and L. D. Seneviratne, “Tracking control of sampled-
data fuzzy-model-based control systems,” IET Control Theory Applicat.,
vol. 3, no. 1, pp. 56–67, Jan. 2009.

[37] H. K. Lam and J. C. Lo, “Output regulation of polynomial-fuzzy-model-
based control systems,” IEEE Trans. Fuzzy Syst., vol. 2, no. 21, pp.
262–274, Apr. 2013.

[38] J. Yoneyama, M. Nishikawa, H. Katayama, and A. Ichikawa, “Design
of output feedback controllers for Takagi-Sugeno fuzzy systems,” Fuzzy
Sets Syst., vol. 121, no. 1, pp. 127–148, 2001.

[39] S. K. Nguang and P. Shi, “H∞ fuzzy output feedback control design for
nonlinear systems: an LMI approach,” IEEE Trans. Fuzzy Syst., vol. 11,
no. 3, pp. 331–340, Jun. 2003.

[40] C. S. Tseng and B. S. Chen, “Robust fuzzy observer-based fuzzy control
design for nonlinear discrete-time systems with persistent bounded
disturbances,” IEEE Trans. Fuzzy Syst., vol. 17, no. 3, pp. 711–723,
Jun. 2009.

[41] T. M. Guerra, A. Kruszewski, L. Vermeiren, and H. Tirmant, “Conditions
of output stabilization for nonlinear models in the Takagi-Sugeno’s
form,” Fuzzy Sets Syst., vol. 157, no. 9, pp. 1248–1259, 2006.

[42] M. H. Asemani and V. J. Majd, “A robust observer-based controller
design for uncertain T-S fuzzy systems with unknown premise variables
via LMI,” Fuzzy Sets Syst., vol. 212, no. 0, pp. 21–40, 2013.

[43] X. H. Chang and G. H. Yang, “A descriptor representation approach to
observer-based control synthesis for discrete-time fuzzy systems,” Fuzzy
Sets Syst., vol. 185, no. 1, pp. 38–51, 2011.

[44] K. Tanaka, H. Ohtake, T. Seo, M. Tanaka, and H. O. Wang, “Polynomial
fuzzy observer designs: a sum-of-squares approach,” IEEE Trans. Syst.,
Man, Cybern. B, Cybern., vol. 42, no. 5, pp. 1330–1342, Oct. 2012.

[45] S. Lall and G. Dullerud, “An LMI solution to the robust synthesis
problem for multi-rate sampled-data systems,” Automatica, vol. 37,
no. 12, pp. 1909–1922, 2001.

[46] L. S. Hu, J. Lam, Y. Y. Cao, and H. H. Shao, “A linear matrix inequality
(LMI) approach to robust H2 sampled-data control for linear uncertain
systems,” IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 33, no. 1,
pp. 149–155, Feb. 2003.

[47] E. Fridman, A. Seuret, and J. P. Richard, “Robust sampled-data stabi-
lization of linear systems: an input delay approach,” Automatica, vol. 40,
no. 8, pp. 1441–1446, 2004.

[48] D. W. Kim and H. J. Lee, “Sampled-data observer-based output-feedback
fuzzy stabilization of nonlinear systems: exact discrete-time design
approach,” Fuzzy Sets Syst., vol. 201, no. 0, pp. 20–39, 2012.

[49] H. K. Lam and F. H. F. Leung, “Sampled-data fuzzy controller for time-
delay nonlinear system: LMI-based and fuzzy-model-based approaches,”
IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 37, no. 3, pp. 617–629,
Jun. 2007.

[50] H. Gao and T. Chen, “Stabilization of nonlinear systems under variable
sampling: a fuzzy control approach,” IEEE Trans. Fuzzy Syst., vol. 15,
no. 5, pp. 972–983, Oct. 2007.

[51] H. K. Lam, “Sampled-data fuzzy-model-based control systems: stability
analysis with consideration of analogue-to-digital converter and digital-
to-analogue converter,” IET Control Theory Applicat., vol. 4, no. 7, pp.
1131–1144, Jul. 2010.

[52] X. L. Zhu, B. Chen, D. Yue, and Y. Wang, “An improved input delay
approach to stabilization of fuzzy systems under variable sampling,”
IEEE Trans. Fuzzy Syst., vol. 20, no. 2, pp. 330–341, Apr. 2012.

[53] H. K. Lam, “Stabilization of nonlinear systems using sampled-data
output-feedback fuzzy controller based on polynomial-fuzzy-model-
based control approach,” IEEE Trans. Syst., Man, Cybern. B, Cybern.,
vol. 42, no. 1, pp. 258–267, Feb. 2012.

[54] S. K. Nguang and P. Shi, “Fuzzy H∞ output feedback control of
nonlinear systems under sampled measurements,” Automatica, vol. 39,
no. 12, pp. 2169–2174, 2003.

[55] H. Zhang, H. Yan, Q. Chen, and T. Liu, “Quantised H∞ control for
sampled fuzzy systems,” IET Control Theory Applicat., vol. 6, no. 17,
pp. 2686–2695, Nov. 2012.

[56] C. P. G. Flores, B. C. Toledo, J. P. G. Sandoval, S. D. Gennaro, and
V. G. lvarez, “A reset observer with discrete/continuous measurements
for a class of fuzzy nonlinear systems,” J. Franklin Inst., vol. 350, no. 8,
pp. 1974–1991, 2013.

[57] H. Li, X. Sun, H. R. Karimi, and B. Niu, “Dynamic output-feedback
passivity control for fuzzy systems under variable sampling,” Math.
Problems Eng., vol. 2013, 2013.

[58] H. Li, X. Jing, H. K. Lam, and P. Shi, “Fuzzy sampled-data control for
uncertain vehicle suspension systems,” IEEE Trans. Cybern., vol. PP,
no. 99, pp. 1–1, Sept. 2013.

[59] L. Xie and C. E. De Souza, “Robust H∞ control for linear systems with
norm-bounded time-varying uncertainty,” IEEE Trans. Autom. Control,
vol. 37, no. 8, pp. 1188–1191, Aug. 1992.

[60] K. Gu, “An integral inequality in the stability problem of time-delay
systems,” in 2000 Proc. 39th IEEE Conf. Decision and Control, vol. 3,
2000, pp. 2805–2810.

[61] H. K. Lam, F. H. F. Leung, and P. K. S. Tam, “Stable and robust
fuzzy control for uncertain nonlinear systems,” IEEE Trans. Syst., Man,
Cybern. A, Syst., Humans, vol. 30, no. 6, pp. 825–840, Nov. 2000.

Chuang Liu received the BEng degree in Mechan-
ical Engineering from Tsinghua University, Beijing,
China, in 2011, and the MSc degree in Robotics
from King’s College London, London, U.K., in
2013.

He is currently a PhD student at King’s College
London. His research interests include fuzzy-model-
based control and its applications.

H.K. Lam (M’98-SM’10) received the B.Eng.
(Hons.) and Ph.D. degrees from the Department of
Electronic and Information Engineering, The Hong
Kong Polytechnic University, Hong Kong, in 1995
and 2000, respectively.

From 2000 to 2005, he was a Postdoctoral Fellow
and a Research Fellow with the Department of
Electronic and Information Engineering, The Hong
Kong Polytechnic University, respectively. In 2005,
he joined Kings College London, London, U.K., as
a Lecturer and currently is Reader.

His current research interests include intelligent control systems and com-
putational intelligence. He has served as a program committee member and
international advisory board member for various international conferences
and a reviewer for various books, international journals and international
conferences. He is an associate editor for IEEE Transactions on Fuzzy
Systems, IET Control Theory & Applications, International Journal of Fuzzy
Systems and Neurocomputing; and a guest editor for a number of international
journals. He is in the editorial boards of a number of international journals.

He is the coeditor for two edited volumes: Control of Chaotic Nonlinear
Circuits (World Scientific, 2009) and Computational Intelligence and Its
Applications (World Scientific, 2012), and the coauthor of the book Stability
Analysis of Fuzzy-Model-Based Control Systems (Springer, 2011).


