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Polynomial Fuzzy-Model-Based Control Systems:
Stability Analysis via Approximated Membership

Functions Considering Sector Nonlinearity of
Control Input

H.K. Lam Senior Member, IEEE, Chuang Liu, Ligang Wu Senior Member, IEEE and Xudong Zhao
Member, IEEE

Abstract—This paper presents the stability analysis of polyno-
mial fuzzy-model-based (PFMB) control systems of which both
the polynomial fuzzy model and the polynomial fuzzy controller
are allowed to have their own set of premise membership
functions. In order to address the input nonlinearity, the control
signal is considered to be bounded by a sector with nonlinear
bounds. These nonlinear lower and upper bounds of the sector
are constructed by combining local bounds using fuzzy blending
such that local information of input nonlinearity can be taken
into account. With the consideration of imperfectly matched
membership functions and input nonlinearity, the applicability
of the PFMB control scheme can be further enhanced. To
facilitate the stability analysis, a general form of approximated
membership functions representing the original ones is intro-
duced. As a result, approximated membership functions can be
brought into the stability analysis leading to relaxed stability
conditions. Sum of squares (SOS) approach is employed to
obtain the stability conditions based on Lyapunov stability theory.
Simulation examples are presented to demonstrate the feasibility
of the proposed method.

Index Terms—Polynomial fuzzy-model-based (PFMB) control
systems, stability analysis, Taylor series membership functions
(TSMFs), sector nonlinearity of control input, sum of squares
(SOS).

I. INTRODUCTION

TAKAGI-Sugeno (T-S) fuzzy model [1], [2] provides
a mathematical way to accurately represent nonlinear

systems in a general form in favor of the stability analysis.
Based on the T-S fuzzy model, systematic stability analysis
was carried out via the Lyapunov stability theory [3], achieving
a set of stability conditions in terms of linear matrix inequal-
ities (LMIs) [4], [5] to guarantee the stability/stabilization of
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nonlinear systems. Since then, many methods of relaxing LMI-
based stability conditions have been proposed [6], [7] and
then generalized by Pólya’s theory [8], [9]. To further relax
stability conditions, two main areas were considered: one is to
adopt more complicated Lyapunov function candidates such as
piecewise linear Lyapunov function [10], [11], fuzzy Lyapunov
function [12]–[14], and switching Lyapunov function [15],
[16]; another one is exploiting the property of membership
functions, which includes the information of membership
functions to stability analysis [13], [17]–[28]. The relaxation
techniques contain the concept of parallel distributed compen-
sation (PDC) and slack matrices through S-procedure [29].
Despite of the research on stability analysis, the concept of
fuzzy control was extended to other control problems such as
output feedback control [30]–[32].

Recently, the T-S fuzzy-model-based (FMB) control was
generalized to the polynomial fuzzy-model-based (PFMB)
control [33], which allows polynomials to exist in the PFMB
control system. The sector nonlinearity technique for the
construction of T-S fuzzy model was also extended based on
Taylor series expansion [34]. The stability conditions are in
terms of sum of squares (SOS) [35] rather than LMI. In [36], it
has been demonstrated that the SOS design approach based on
PFMB control system is better than the LMI design approach
based on T-S FMB control system in the sense that the guaran-
teed cost in the SOS approach is lower than that in the LMI ap-
proach. The comparison was carried out on a micro helicopter
to make it follow a target trajectory. In the SOS approach,
the polynomial feedback gains are set to be a function of
system states, which cannot be implemented by LMI approach
and thus leads to the superiority of SOS approach. Although
PFMB control systems can potentially provide more relaxed
stability conditions than T-S FMB control systems [33], the
information of the shape of membership functions still need to
be considered to further relax the conservativeness of stability
conditions. Since polynomials can be handled in stability
conditions, they can be exploited to approximate membership
functions such that the information is brought into stability
conditions. In [21], polynomial membership functions were
proposed to approximate the original membership functions in
each operating subdomain. Whereas, there was no systematic
way to determine approximated membership functions. In
[24], a piecewise linear membership function (PLMF) was pro-
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posed to achieve the approximation of membership functions
in stability analysis. Nonetheless, the approximation errors
need to be improved due to the limited expression capability
of the linear functions. Consequently, a systematic method of
approximating membership functions is required for reducing
the conservativeness of stability conditions. In addition, the
switching polynomial Lyapunov function was employed to
replace the quadratic Lyapunov function in stability analysis
[27], which also offered more relaxed stability conditions.

In real control systems, actuators have nonlinearities caused
by physical constraints or technological factors [37]. Ignoring
these nonlinearities may lead to degradation, instability and
damage of systems. As a result, the input nonlinearities have
been widely investigated in the past decades. The sector non-
linearity of control input was proposed to formulate nonlinear
features of actuators [38]. However, the sector can only be con-
structed by two straight zeroaxial lines. As a result, some other
nonlinearities such as deadzone and saturation [39] cannot be
described by sector nonlinearity. Hence, a generalized sector
condition was presented to cover the characteristics of dead-
zone and saturation [37]. In [40]–[42], the input nonlinearity
containing sector nonlinearity and deadzone was investigated,
and so-called gain reduction tolerances can even be unknown
constants. Furthermore, the input nonlinearity model, which
comprises sector nonlinearity, deadzone, and saturation, was
presented in [43]. Additionally, other types of general sector
nonlinearity and decentralized sector nonlinearity were pro-
posed in [44], [45]. In [45], the lower and upper bounds of
the sector in the first quadrant are allowed to be different
from those in the third quadrants. A similar property to
sector nonlinearity called the loss of actuator effectiveness was
investigated [46], which is one type of actuator faults and is
also described by the known constant lower and upper bounds.
To the best of authors’ knowledge, the lower and upper bounds
of the sector are usually linear considered in the existing work.
Therefore, the constructed sector may poorly approximate
the actual input nonlinearity leading to conservative stability
conditions. More precise approximation of the sector can be
achieved by considering nonlinear bounds of sector, which can
describe the specific input nonlinearity better than using the
sector with only linear bounds. Furthermore, allowing bounds
of the sector to be varied with both system states and control
signals rather than constants helps to describe a wider range
of input nonlinearity.

With regard to the systems used for investigating input non-
linearity, linear systems were studied in [37]. Then a system
consisting of a linear system and a time-varying nonlinear
element in the feedback connection was investigated [44], [47].
More complex systems were considered including uncertain
time-delayed systems [40], [48], uncertain chaotic systems
[41], [42], [45], flexible air-breathing hypersonic vehicles [43]
and near-space vehicles [46]. In [43], [46], T-S fuzzy model
was employed to represent these known nonlinear systems.
Nonetheless, those systems are specific systems rather than
a general form, and the polynomial fuzzy model which is
the extension of T-S fuzzy model has not been considered.
It motivates the investigation on the PFMB control systems
with nonlinear sector of control input.

In this paper, we investigate the stability issues of PFMB
control systems, aiming to relax the stability conditions. To
achieve this goal, some information needs to be brought
from the membership functions into the stability analysis.
Since polynomials can be handled in SOS conditions, we
approximate the original membership functions by combining
local polynomials such that membership functions can be
taken into account in stability analysis with the consideration
of approximation error. Unlike the existing works stated above,
we aim to present a systematic representation approximating
the original membership functions and facilitating the stability
analysis. Taylor series expansion, but not limited to, naturally
becomes the expected method for the approximation. This
method not only yields polynomials for approximation, but
also offers the truncation order and expansion points to be
determined by users. By using Taylor series membership
functions (TSMFs), the conservativeness of stability conditions
can be progressively reduced with the order of Taylor series
and density of expansion points increasing. This way of
approximation is more general and organized than existing
work. Meanwhile, we aim to deal with the problem of sector
nonlinearity of control input. To draw a distinction from
previous work, we consider nonlinear system represented by a
polynomial fuzzy system with the sector of nonlinear bounds
characterized by both system states and control signals. As
the input nonlinearity complicates the system dynamics, it
makes the analysis a challenging task. In consideration of the
powerful ability of representing nonlinear systems, the fuzzy
modeling approach is employed to construct both the nonlinear
system and the nonlinear bounds of the sector. Following
the polynomial fuzzy model, SOS-based stability conditions
are obtained based on Lyapunov stability theory. The above
improvements on input nonlinearity enhance the applicability
of PFMB control scheme. Additionally, it is worth mentioning
that the imperfectly matched premise membership functions
are taken into account in this paper which means the number
of fuzzy rules as well as membership functions for the
polynomial fuzzy model and the polynomial fuzzy controller
can be different. It should be noted that TSMFs are for stability
analysis only and are not necessarily implemented on the
polynomial fuzzy controllers. Consequently, the structure of
designed polynomial fuzzy controllers will not be complicated.

II. PRELIMINARY

A. Notation

We use the following notations throughout this paper
[35]. A monomial x̂(t) = [x̂1(t), x̂2(t), . . . , x̂n(t)]T in
x(t) = [x1(t), x2(t), . . . , xn(t)]T is a function of the form
xρ11 (t)xρ22 (t) · · ·xρnn (t), where ρi ≥ 0, i = 1, 2, . . . , n, are
integers. The degree of a monomial is ρ =

∑n
i=1 ρi. A poly-

nomial p(x(t)) is a finite linear combination of monomials
with real coefficients. A polynomial p(x(t)) is an SOS if it
can be written as p(x(t)) =

∑m
j=1 qj(x(t))2, where qj(x(t))

is a polynomial and m is a non-zero positive integer. It can
be concluded that if p(x(t)) is an SOS, p(x(t)) ≥ 0. The
expressions of M > 0,M ≥ 0,M < 0 and M ≤ 0 denote
the positive, semi-positive, negative and semi-negative definite
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matrices M, respectively. The symbol “*” in a matrix repre-
sents the transposed element in the corresponding position and
diag{· · · } stands for a diagonal matrix.

B. Polynomial Fuzzy Model
The ith rule of the polynomial fuzzy model for the nonlinear

plant is given as follows [33]:

Rule i : IF f1(x(t)) is M i
1 AND · · ·AND fΨ(x(t)) is M i

Ψ

THEN ẋ(t) = Ai(x(t))x̂(x(t)) + Bi(x(t))u(t),
(1)

where x(t) ∈ <n is the state vector of the plant; fα(x(t))
is the premise variable corresponding to its fuzzy term M i

α

in rule i, α = 1, 2, . . . ,Ψ, and Ψ is a positive integer;
Ai(x(t)) ∈ <n×N and Bi(x(t)) ∈ <n×m are the known poly-
nomial system and input matrices, respectively; x̂(t) ∈ <N is
a vector of monomials in x(t), and it is assumed that x̂(t) = 0,
iff x(t) = 0; u(t) ∈ <m is the control input vector. Thus, the
dynamics of the system is given by

ẋ(t) =

p∑
i=1

wi(x(t))
(
Ai(x(t))x̂(x(t)) + Bi(x(t))u(t)

)
, (2)

where p is the number of rules in the polynomial fuzzy model;
wi(x(t)) is the normalized grade of membership, wi(x(t)) =∏Ψ

l=1 µMi
l
(fl(x(t)))∑p

k=1

∏Ψ
l=1 µMk

l
(fl(x(t)))

, wi(x(t)) ≥ 0, i = 1, 2, . . . , p,

and
∑p
i=1 wi(x(t)) = 1; µMi

α
(fα(x(t))), α = 1, 2, . . . ,Ψ,

are grades of membership corresponding to fuzzy term M i
α.

It is noted that the advantage of polynomial fuzzy models
is their capability of describing nonlinear systems by fuzzy
blending of polynomial subsystems. Polynomial subsystems
can be handled by SOS approach and corresponding MATLAB
toolbox. If the original nonlinear system is not in a polynomial
form, stability conditions cannot be formulated into SOS-based
conditions directly. In this case, by representing the original
nonlinear system with a polynomial fuzzy model, the SOS-
based stability analysis can be performed.

C. Sector Nonlinearity of control input
The input nonlinearity is given by

uj(t) = φj(x(t), ũ(t)), j = 1, 2, . . . ,m, (3)

where the control input vector is u(t) =
[u1(t), u2(t), . . . , um(t)]T ∈ <m, and the control signal
vector is ũ(t) = [ũ1(t), ũ2(t), . . . , ũm(t)]T ∈ <m;
the control input uj(t) is assumed to have the known
nonlinearity φj(·) as shown in Fig. 1, which can be
bounded by the sector [sj(x(t), ũ(t)), sj(x(t), ũ(t))],
where sj(x(t), ũ(t)) and sj(x(t), ũ(t)) are the lower
and upper bounds, respectively. In other words,(
φj(x(t), ũ(t)) − sj(x(t), ũ(t))ũj(t)

)(
φj(x(t), ũ(t)) −

sj(x(t), ũ(t))ũj(t)
)
≤ 0 for all j. For simplicity, we assume

that the input nonlinearity (3), and the lower and upper
bounds sj(x(t), ũ(t)) and sj(x(t), ũ(t)) all pass through the
origin of the plane and are all limited in the first and third
quadrants. In general, however, the input nonlinearity is not
necessarily bounded in the first and third quadrants.

ũj(t)

uj(t)

Fig. 1. Sector nonlinearity of control input. Solid line: input nonlinearity.
Dashed line: lower bound of the sector. Dotted line: upper bound of the sector.

D. Polynomial Fuzzy Controller

The jth rule of the polynomial fuzzy controller is given as:

Rule j : IF g1(x(t)) is N j
1 AND · · ·AND gΩ(x(t)) is N j

Ω

THEN ũ(t) = Gj(x(t))x̂(x(t)), (4)

where gβ(x(t)) is the premise variable corresponding to its
fuzzy term N j

β in rule j, β = 1, 2, . . . ,Ω, and Ω is a positive
integer; Gj(x(t)) ∈ <m×N is the polynomial feedback gain
in rule j. Thus, the following polynomial fuzzy controller is
applied to the polynomial fuzzy model (2):

ũ(t) =

c∑
j=1

mj(x(t))Gj(x(t))x̂(x(t)), (5)

where c is the number of rules in the polynomial fuzzy con-
troller; mj(x(t)) is the normalized grade of the membership,

mj(x(t)) =

∏Ω
l=1 µNjl

(gl(x(t)))∑c
k=1

∏Ω
l=1(µNkl (gl(x(t)))

, mj(x(t)) ≥ 0, j =

1, 2, . . . , c, and
∑c
j=1mj(x(t)) = 1; µNjβ (gβ(x(t))), β =

1, 2, . . . ,Ω, are grades of membership corresponding to the
fuzzy term N j

β .
The control objective is to stabilize the polynomial fuzzy

model (2) using the polynomial fuzzy controller (5). By
determining the polynomial feedback gains Gj(x(t)), we
achieve x(t)→ 0 as time t→∞.

III. STABILITY ANALYSIS

In this section, a general form for the approximation of
membership functions is introduced first. Then more specific
TSMFs are employed to implement the approximation in
stability analysis. To derive stability conditions step by step,
we begin by considering the PFMB control system without
sector nonlinearity of control input, and then deal with the
one with sector nonlinearity of control input.

A. Taylor Series Membership Function

To facilitate the stability analysis, we propose TSMFs to
approximate the original membership functions. In the fol-
lowing analysis, for brevity, x(t) and x̂(x(t)) are denoted
as x and x̂ respectively. Let us define system states x =
[x1, x2, . . . , xn]T ,x ∈ ψ, where ψ is a known bounded n
dimensional state space of interest. Considering a membership
function depending on xr, r = 1, 2, . . . , n, we divide xr
into dr connected substate spaces. The overall state space ψ
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is then divided into η connected substate spaces which are
denoted as ψl, l = 1, 2, . . . , η. Thus, we have the relation that
ψ =

⋃η
l=1 ψl and η =

∏n
r=1 dr. When xr falls into one of the

corresponding dr divided substate spaces, we define xr1 and
xr2 as the endpoints of such region. In each substate space
ψl, we have 2n endpoints. Totally, we have

∏n
r=1(dr + 1)

endpoints in overall state space ψ. In what follows, these
endpoints are exploited to become operating points for ap-
proximation and even expansion points for the Taylor series.
Note that the values of xr1 and xr2 are different from region to
region, and are predefined. Meanwhile, membership functions
are not necessarily a function of all system states.

Let us define hij(x) ≡ wi(x)mj(x), and denote the ap-
proximation of hij(x) as hij(x). Therefore, the approximated
membership function is defined as

hij(x) =

η∑
l=1

2∑
i1=1

2∑
i2=1

· · ·
2∑

in=1

n∏
r=1

vrirl(xr)δiji1i2···inl(x) ∀i, j,

(6)

where δiji1i2···inl(x) is a predefined function of x, demon-
strating a good local approximation for the original mem-
bership function hij(x) around an operating point xr =
xrir , r = 1, 2, . . . , n, ir = 1, 2, in a predefined substate
space x ∈ ψl, l = 1, 2, . . . , η; vrirl(xr) exhibits the fol-
lowing properties: 0 ≤ vrirl(xr) ≤ 1 and vr1l(xr) +
vr2l(xr) = 1 for r = 1, 2, . . . , n, ir = 1, 2,x ∈ ψl, l =
1, 2, . . . , η; otherwise, vrirl(xr) = 0, leading to the property
that

∑η
l=1

∑2
i1=1

∑2
i2=1 · · ·

∑2
in=1

∏n
r=1 vrirl(xr) = 1. The

function vrirl(xr) serves as an interpolation function com-
bining the local approximating function δiji1i2···inl(x) for the
approximation of the original membership function hij(x).
The approximated membership function (6) facilitates the
stability analysis by bringing the local information of the
original membership functions into the stability conditions.

Remark 1: δiji1i2···inl(x) in (6) is a general form, which
can be determined by different methods of approximation.
In this paper, we employ the Taylor series expansion to
approximate membership functions around the endpoints of
the divided substate spaces.

The general form of the multi-variable Taylor series expan-
sion [49] is given as follows:

f(x) =

∞∑
k=0

1

k!

( n∑
r=1

(xr − xr0)
∂

∂xr

)k
f(x)|x=x0 , (7)

where f(x) is an arbitrary function of x; xr0, r = 1, 2, . . . , n,
are the expansion points; x0 = [x10, x20, . . . , xn0]T ;
∂
∂xr

f(x)|x=x0
is a constant calculated by taking the partial

derivative of f(x) and then substituting x by x0. From the
Taylor series expansion (7), we substitute the expansion points
by the endpoints of substate spaces to obtain δiji1i2···inl(x) as:

δiji1i2···inl(x) =

λ−1∑
k=0

1

k!

( n∑
r=1

(xr − xrir )
∂

∂xr

)k
× hij(x)|(xr=xrir ,r=1,2,...,n) ∀i, j, i1, i2, . . . , in, l,x ∈ ψl,

(8)

where λ is the predefined truncation order, which means the
polynomial with the order of λ− 1 is applied for approxima-
tion. The TSMF is obtained by substituting (8) into (6).

B. Polynomial Fuzzy-Model-Based Control Systems

The stability of the PFMB control system without sector
nonlinear of control input is investigated in this section. The
input nonlinearity (3) becomes u(t) = ũ(t). For brevity, wi(x)
and mj(x) are denoted as wi and mj , respectively. Denoting
x̂ = [x̂1, x̂2, . . . , x̂N ]T , the PFMB control system formed by
the polynomial fuzzy model (2) and the polynomial fuzzy
controller (5) is

˙̂x =
∂x̂

∂x

dx

dt
= T(x)ẋ =

p∑
i=1

wi
(
Ãi(x)x̂ + B̃i(x)u(t)

)
(9)

=

p∑
i=1

c∑
j=1

wimj

(
Ãi(x) + B̃i(x)Gj(x)

)
x̂, (10)

where Ãi(x) = T(x)Ai(x), B̃i(x) = T(x)Bi(x), and
T(x) ∈ <N×n is a polynomial matrix with its (i, j)th

element defined as Tij(x) = ∂x̂i(x)/∂xj . As x̂ is a vector
of monomials in x (with degree of monomial greater than 0),
x̂ = 0 implies x = 0. Therefore, the system stability of (10)
implies that of (2).

The following polynomial Lyapunov function candidate is
employed to investigate the stability of (10):

V (x) = x̂TX(x̃)−1x̂, (11)

where 0 < X(x̃) = X(x̃)T ∈ <N×N ; x̃ is in Remark 2.
Remark 2: To facilitate the stability analysis, define K =
{ζ1, ζ2, . . . , ζs} as the set of row numbers whose entries
of the entire row of Bi(x) are all zeros [33], [35], and
x̃ = (xζ1 , xζ2 , . . . , xζs). Hence, we have dX(x̃)−1

dt =∑
ζ∈K

∂X(x̃)−1

∂xζ

∑p
i=1 wiA

ζ
i (x)x̂, where Aζ

i (x) ∈ <N is the
ζth row of Ai(x) [33].

Lemma 1: For any invertible polynomial matrix X(z)
where z = [z1, z2, . . . , zn]T , the following is true [33], [35].

∂X(z)−1

∂zj
= −X(z)−1 ∂X(z)

∂zj
X(z)−1 ∀j

From Remark 2 and Lemma 1, we have

dX(x̃)−1

dt
= −X(x̃)−1

( p∑
i=1

∑
ζ∈K

wi
∂X(x̃)

∂xζ
Aζ
i (x)x̂

)
X(x̃)−1.

(12)

Let us denote hij(x) and hij(x) as hij and hij , and
define z = X(x̃)−1x̂ and Gj(x) = Nj(x)X(x̃)−1, where
Nj(x) ∈ <m×N , j = 1, 2, . . . , c, are arbitrary polynomial
matrices. From (11), with (10) and (12), we have

V̇ (x) =

p∑
i=1

c∑
j=1

hijz
TQij(x)z, (13)

where Qij(x) = Ãi(x)X(x̃) + X(x̃)Ãi(x)T +

B̃i(x)Nj(x) + Nj(x)T B̃i(x)T −
∑
ζ∈K

∂X(x̃)
∂xζ

Aζ
i (x)x̂

for i = 1, 2, . . . , p, j = 1, 2, . . . , c.
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Remark 3: From the Lyapunov stability theory, the asymp-
totic stability of (10) is guaranteed by V (x) > 0 and V̇ (x) < 0
(excluding x = 0), which can be implied by Qij(x) < 0 for
all i, j. However, the information of wi and mj is not consid-
ered, which leads to very conservative stability conditions.

In order to relax the stability conditions, in the following,
some constraints of membership functions are considered
such that slack polynomial matrices can be introduced in the
stability analysis. Let us define the error of the approximation
of membership functions as ∆hij = hij − hij . Then the
lower and upper bounds of ∆hij are denoted as γ

ij
and γij ,

respectively. Thus, we have the property that γ
ij
≤ ∆hij ≤

γij , i = 1, 2, . . . , p, j = 1, 2, . . . , c. Based on these properties,
we introduce the slack polynomial matrices 0 < Yij(x) =
Yij(x)T ∈ <N×N which satisfy Yij(x) ≥ Qij(x) ∀i, j.

Applying the above properties and slack polynomial matri-
ces, (13) can be written as follows:

V̇ (x) = zT
p∑
i=1

c∑
j=1

(
hijQij(x) + (∆hij − γij + γ

ij
)Qij(x)

)
z

≤ zT
p∑
i=1

c∑
j=1

(
(hij + γ

ij
)Qij(x) + (γij − γij)Yij(x)

)
z.

(14)

Moreover, we employ the properties that hij ≥ β
ij

for all
i, j, where β

ij
is the lower bound of hij . Then we have (hij−

β
ij

)Wij(x) ≥ 0, where 0 < Wij(x) = Wij(x)T ∈ <N×N
for all i, j. Hence, (14) can be further relaxed as follows:

V̇ (x) ≤ zT
p∑
i=1

c∑
j=1

(
(hij + γ

ij
)Qij(x) + (γij − γij)Yij(x)

+ (hij − βij)Wij(x)
)
z. (15)

Employing TSMFs for approximating the membership func-
tions, the approximated membership function hij in (15) is
substituted by TSMFs (6) and (8). For the fact that∑η
l=1

∑2
i1=1

∑2
i2=1 · · ·

∑2
in=1

∏n
r=1 vrirl(xr) = 1 and

vrirl(xr) is independent of rule i, j, we have

V̇ (x) ≤ zT
η∑
l=1

2∑
i1=1

2∑
i2=1

· · ·
2∑

in=1

n∏
r=1

vrirl(xr)

p∑
i=1

c∑
j=1(

(δiji1i2···inl(x) + γ
ij

)Qij(x) + (γij − γij)Yij(x)

+ (δiji1i2···inl(x)− β
ij

)Wij(x)
)
z. (16)

The inequality V̇ (x) < 0 holds if∑p
i=1

∑c
j=1

(
(δiji1i2···inl(x) + γ

ij
)Qij(x) + (γij −

γ
ij

)Yij(x) + (δiji1i2···inl(x) − β
ij

)Wij(x)
)

< 0 for
all i1, i2, . . . , in, l,x ∈ ψl. The above stability analysis result
is summarized in the following theorem.

Theorem 1: The PFMB system (10), which is formed by
the polynomial fuzzy model (2) and the polynomial fuzzy
controller (5) connected in a closed loop without sector non-
linearity of control input, is guaranteed to be asymptotically
stable if there exist polynomial matrices Yij(x) = Yij(x)T ∈
<N×N , Wij(x) = Wij(x)T ∈ <N×N , Nj(x) ∈ <m×N ,

i = 1, 2, . . . , p, j = 1, 2, . . . , c, and X(x̃) = X(x̃)T ∈ <N×N
such that the following SOS-based conditions are satisfied:

νT (X(x̃)− ε1(x̃)I)ν is SOS;

νT (Yij(x)− ε2(x)I)ν is SOS ∀i, j;
νT (Yij(x)−Qij(x)− ε3(x)I)ν is SOS ∀i, j;
νT (Wij(x)− ε4(x)I)ν is SOS ∀i, j; (17)

− νT
( p∑
i=1

c∑
j=1

(
(δiji1i2···inl(x) + γ

ij
)Qij(x)

+ (γij − γij)Yij(x) + (δiji1i2···inl(x)− β
ij

)Wij(x)
)

+ ε5(x)I
)
ν is SOS ∀i1, i2, . . . , in, l,x ∈ ψl; (18)

where ν ∈ <N is an arbitrary vector independent of x;
δiji1i2···inl(x) is a predefined function of x in TSMFs (6)
and (8); γ

ij
, γij , βij , i = 1, 2, . . . , p, j = 1, 2, . . . , c, are

predefined constant scalars satisfying ∆hij = hij−hij , γij ≤
∆hij ≤ γij , and hij ≥ βij ; ε1(x̃) > 0, ε2(x) > 0, ε3(x) > 0,
ε4(x) > 0 and ε5(x) > 0 are predefined scalar polynomials;
Qij(x) is defined in (13); all unknown polynomial matrices
are calculated by SOSTOOLS; and the feedback gains are
defined as Gj(x) = Nj(x)X(x̃)−1, j = 1, 2, . . . , c.

Remark 4: Referring to Theorem 1, the number of decision
matrix variables is 1 + c + 2pc, and the number of SOS
conditions is

∏n
r=1(dr + 1) + 3pc + 1. In some cases, slack

matrices Wij(x) in SOS conditions (17) and (18) cannot
provide less conservative results. These SOS conditions are
simplified as follows: −νT

(∑p
i=1

∑c
j=1

(
(δiji1i2···inl(x) +

γ
ij

)Qij(x) + (γij − γ
ij

)Yij(x)
)

+ ε5(x)I
)
ν is SOS for

all i1, i2, . . . , in, l,x ∈ ψl. In this case, the number of
variables and SOS conditions are reduced to 1 + c + pc and∏n
r=1(dr + 1) + 2pc+ 1, respectively.

C. Polynomial Fuzzy-Model-Based Control Systems with Sec-
tor Nonlinearity of Control Input

The stability of the PFMB control system with sector
nonlinearity of control input is analyzed in this section. This
control system is formed by the polynomial fuzzy model (2),
the polynomial fuzzy controller (5), and the input nonlinearity
(3). u(t) and ũ(t) are denoted as u and ũ, respectively.

In this paper, we construct a sector with nonlinear lower
and upper bounds by combining local bounds using fuzzy
blending to describe the input nonlinearity (3). Recalling that
we aim to construct the global sector [sj(x, ũ), sj(x, ũ)], let
us define the local sector as [sjr(x), sjr(x)] corresponding
to control input uj in the local region ωr, r = 1, 2, . . . , q,
where ω =

⋃q
r=1 ωr, ω ⊂ <n+m are known bounded region

of interest partitioned into q local regions (the partition can
be achieved by the same method for ψ in Subsection III-A).
sjr(x) and sjr(x) are the lower and upper local bounds,
respectively, and they are predefined polynomials of x. Note
that the local bounds sjr(x) and sjr(x) do not depend on the
control signal ũ due to the complexity in analysis. The global
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sector [sj(x, ũ), sj(x, ũ)] is established by q fuzzy rules:

Rule r : IF d1(x, ũ) is Lr1 AND · · ·AND dσ(x, ũ) is Lrσ
THEN sj(x, ũ) = sjr(x), sj(x, ũ) = sjr(x),

where r is the rule number as well as the local region number;
dκ(x, ũ) is the premise variable corresponding to its fuzzy
term Lrκ in rule r, κ = 1, 2, . . . , σ, and σ is a positive integer.
Hence, the global sector [sj(x, ũ), sj(x, ũ)] is given by

sj(x, ũ) =

q∑
r=1

vr(x, ũ)sjr(x), sj(x, ũ) =

q∑
r=1

vr(x, ũ)sjr(x),

(19)

where q is predefined number of rules as well as the number of
local regions; vr(x, ũ) is a predefined membership function of
rule r, which exhibits the following properties: 0 ≤ vr(x, ũ) ≤
1, r = 1, 2, . . . , q, and

∑q
r=1 vr(x, ũ) = 1. For simplicity, we

use the same membership functions for all uj , which means
vr(x, ũ) is independent of j. Consequently, the global sector
for control input vector u is formulated by

S(x, ũ) =

q∑
r=1

vr(x, ũ)Sr(x), S(x, ũ) =

q∑
r=1

vr(x, ũ)Sr(x),

(20)

where S(x, ũ) = diag{s1(x, ũ), s2(x, ũ), · · · , sm(x, ũ)},
S(x, ũ) = diag{s1(x, ũ), s2(x, ũ), · · · , sm(x, ũ)},
Sr(x) = diag{s1r(x), s2r(x), · · · , smr(x)} and
Sr(x) = diag{s1r(x), s2r(x), · · · , smr(x)}.

Remark 5: The local regions ωr, the membership func-
tions vr(x, ũ), and the local bounds sjr(x) and sjr(x) are
predefined. An iterative approach is provided as follows to
numerically obtain the local bounds sjr(x) and sjr(x).

1) With predefined local regions ωr, r = 1, 2, . . . , q, we
compute the initial local bounds sjr(x) and sjr(x) in each ωr
based on the sector nonlinearity techniques [5], [34], [38].

2) With predefined membership functions such as Gaussian
membership functions and triangular membership functions,
we numerically check whether the global sector contains the
input nonlinearity, that is

(
φj(x, ũ)− sj(x, ũ)ũj

)(
φj(x, ũ)−

sj(x, ũ)ũj
)
≤ 0 for all j. The procedure terminates if these

inequalities hold, otherwise go to step 3).
3) Without losing generality, it is assumed that the points

along the input nonlinearity that do not satisfy the inequalities
are from the transition between two adjacent local regions ωr
and ωr+1. Since ωr and ωr+1 are adjacent, the transition is
only along one dimension z, z ∈ {x1, . . . , xn, u1, . . . , um}.
To ensure that the above inequalities hold, we use the safer
(but more conservative) local bounds as the common bounds
for both ωr and ωr+1. For instance, if sj,r(x) ≤ sj,r+1(x)
and sj,r(x) ≤ sj,r+1(x) can be achieved, for [xT ũT ]T ∈
ωr ∪ωr+1, then we use sj,r(x) and sj,r+1(x) as the common
bounds for both ωr and ωr+1. However, for lower bounds
as an example, if neither sj,r(x) ≤ sj,r+1(x) nor sj,r(x) ≥
sj,r+1(x) hold for [xT ũT ]T ∈ ωr ∪ ωr+1, go to step 4). The
similar procedure is applied for upper bounds.

4) Due to the transition along dimension z, we reduce the
degree of polynomials of z which exist in the local bounds

sj,r(x), sj,r+1(x), sj,r(x), and sj,r+1(x) by redesigning the
local bounds using the sector nonlinearity technique [34], and
then go back to step 2).

It can be found that when the degrees of polynomials of
all dimension z are reduced to 0 (which is already held for
dimensions z = {u1, . . . , um}) by continuously executing
step 4), local bounds sjr(x) and sjr(x) become constants,
namely, sjr and sjr. After that, when all local bounds
share the same bounds by continuously executing step 3),
we have sj1 = · · · = sjq and sj1 = · · · = sjq. As a
result, the global bounds (19) become constants, for example,
sj(x, ũ) =

∑q
r=1 vr(x, ũ)sjr(x) =

∑q
r=1 vr(x, ũ)sj1 = sj1.

This is just the sector with linear bounds, which indicates that
the proposed sector with nonlinear bounds varying with both
system states x and control signals ũ is more general and the
above procedure can be used to obtain the generalized sector.
An example of this procedure is presented in Section IV.

Since local information is brought to the construction of
global sector, the proposed sector with nonlinear bounds
describes the input nonlinearity more precisely. The sector
with linear bounds may poorly approximate the input nonlin-
earity resulting in conservative stability conditions. Using the
proposed nonlinear sector can achieve a better approximation
to alleviate the conservativeness in the stability analysis.

For brevity, vr(x, ũ) is denoted as vr. The property of sector
nonlinearity of control input is defined by(

u−
q∑
r=1

vrSr(x)ũ
)T

Λ−1
( q∑
r=1

vrSr(x)ũ− u
)
≥ 0, (21)

where Λ = diag{τ1, · · · , τm} ≥ 0 and hence Λ−1 ≥ 0 .
Then some arrangement of this inequality is done before ap-

plying it to stability analysis. Expanding (21) and substituting
the control signal (5), we get

q∑
r1=1

q∑
r2=1

c∑
j=1

c∑
k=1

vr1vr2mjmk

[
x̂(x(t))

u(t)

]T
[

Γ
(11)
jkr1r2

(x) ∗
Γ

(21)
jkr1r2

(x) −Λ−1

] [
x̂(x(t))

u(t)

]
≥ 0, (22)

where Γ
(11)
jkr1r2

(x) = −Gj(x)TSr1(x)TΛ−1Sr2(x)Gk(x)

and Γ
(21)
jkr1r2

(x) = Λ−1 Sr1
(x)+Sr2 (x)

2 Gk(x).
The polynomial Lyapunov function candidate (11) is ex-

ploited to analyze the stability of the PFMB control system
(9). Taking the derivative of (11), substituting (9) and (12) and
then adding (22), we have

V̇ (x) ≤
q∑

r1=1

q∑
r2=1

p∑
i=1

c∑
j=1

c∑
k=1

vr1vr2wimjmk

[
x̂
u

]T [
Ψ

(11)
i (x) + Γ

(11)
jkr1r2

∗
Ψ

(21)
i (x) + Γ

(21)
jkr1r2

−Λ−1

] [
x̂
u

]
, (23)

where Ψ
(11)
i (x) = Ãi(x)TX(x̃)−1 + X(x̃)−1Ãi(x) −

X(x̃)−1
(∑

ζ∈K
∂X(x̃)
∂xζ

Aζ
i (x)x̂

)
X(x̃)−1 and Ψ

(21)
i (x) =

B̃i(x)TX(x̃)−1.
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From the Lyapunov stability theory, the asymptotic stability
of (9) is guaranteed by V (x) > 0 and V̇ (x) < 0 (excluding
x = 0), which can be implied by the following condition
obtained by dropping [x̂T uT ]T and applying Schur com-
plement to (23):

q∑
r1=1

q∑
r2=1

q∑
r3=1

q∑
r4=1

p∑
i=1

p∑
l=1

c∑
j=1

c∑
k=1

vr1vr2vr3vr4wiwlmjmk(
Ãi(x)TX(x̃)−1 + X(x̃)−1Ãi(x)−Gj(x)TSr1(x)TΛ−1

× Sr2(x)Gk(x)−X(x̃)−1
(∑
ζ∈K

∂X(x̃)

∂xζ
Aζ
i (x)x̂

)
X(x̃)−1

+ X(x̃)−1B̃i(x)ΛB̃l(x)TX(x̃)−1

+ X(x̃)−1B̃i(x)
Sr1(x) + Sr2(x)

2
Gj(x)

+ Gj(x)T
Sr1(x) + Sr2(x)

2
B̃i(x)TX(x̃)−1 + Gj(x)T

×
Sr1(x) + Sr2(x)

2
Λ−1 Sr3(x) + Sr4(x)

2
Gk(x)

)
< 0.

(24)

Among (24), since Sr1(x)TΛ−1Sr2(x) =
Sr1

(x)TΛ−1Sr4 (x)

2 +
Sr2 (x)TΛ−1Sr3

(x)

2 , we combine the
following two terms:

−Gj(x)TSr1(x)TΛ−1Sr2(x)Gk(x)

+ Gj(x)T
Sr1(x) + Sr2(x)

2
Λ−1 Sr3(x) + Sr4(x)

2
Gk(x)

= Gj(x)T
Sr1(x)− Sr2(x)

2
Λ−1 Sr3(x)− Sr4(x)

2
Gk(x).

(25)

Applying (25) to (24), substituting Gj(x) = Nj(x)X(x̃)−1

and applying Schur complement, we get the following stability
condition implying that (24) holds :

q∑
r1=1

q∑
r2=1

p∑
i=1

c∑
j=1

vr1vr2wimjQijr1r2(x) < 0, (26)

where Qijr1r2(x) =

 Θijr1r2(x) ∗ ∗
ΛB̃i(x)T −Λ ∗

Sr1
(x)−Sr2 (x)

2 Nj(x) 0 −Λ


and Θijr1r2(x) = X(x̃)Ãi(x)T + Ãi(x)X(x̃) +

B̃i(x)
Sr1

(x)+Sr2 (x)

2 Nj(x) + Nj(x)T
Sr1

(x)+Sr2 (x)

2 B̃i(x)T −∑
ζ∈K

∂X(x̃)
∂xζ

Aζ
i (x)x̂.

Remark 6: The stability condition (26) can be guaranteed
by Qijr1r2(x) < 0 for all i, j, r1, r2. However, these SOS
conditions are conservative since the information of member-
ship functions is not included. In order to relax these SOS
conditions and reduce the number of conditions, TSMFs are
employed and some of these conditions are grouped together.

Recalling the derivation for Theorem 1, let us define
0 < Yijr1r2(x) = Yijr1r2(x)T ∈ <(N+2m)×(N+2m), 0 <
Wijr1r2(x) = Wijr1r2(x)T ∈ <(N+2m)×(N+2m), which
satisfy Yijr1r2(x) = Yijr2r1(x) ≥ Qijr1r2(x) + Qijr2r1(x)

and Wijr1r2(x) = Wijr2r1(x) for all i, j, r1 ≤ r2. The
similar derivation can be obtained for (26):

q∑
r1=1

q∑
r2=1

p∑
i=1

c∑
j=1

vr1vr2wimjQijr1r2(x)

≤ 1

2

q∑
r1=1

q∑
r2=1

vr1vr2

p∑
i=1

c∑
j=1

(
(hij + γ

ij
)(Qijr1r2(x)+

Qijr2r1(x)) + (γij − γij)Yijr1r2(x) + (hij − βij)Wijr1r2(x)
)
.

Due to Yijr1r2(x) = Yijr2r1(x) and Wijr1r2(x) =
Wijr2r1(x), the inequality (26) holds if

∑p
i=1

∑c
j=1

(
(hij +

γ
ij

)(Qijr1r2(x)+Qijr2r1(x))+(γij−γij)Yijr1r2(x)+(hij−
β
ij

)Wijr1r2(x)
)
< 0 ∀r1 ≤ r2. The above stability analysis

result is summarized in the following theorem.
Theorem 2: The PFMB system formed by the polyno-

mial fuzzy model (2) and the polynomial fuzzy con-
troller (5) connected in a closed loop considering the
sector nonlinearity of control input (3), is guaranteed to
be asymptotically stable if there exist polynomial ma-
trices Yijr1r2(x) = Yijr1r2(x)T ∈ <(N+2m)×(N+2m),
Wijr1r2(x) = Wijr1r2(x)T ∈ <(N+2m)×(N+2m), Nj(x) ∈
<m×N , i = 1, 2, . . . , p, j = 1, 2, . . . , c, r1, r2 =
1, 2, . . . , q, r1 ≤ r2, diagonal matrix Λ ∈ <m×m, and
X(x̃) = X(x̃)T ∈ <N×N such that the following SOS-based
conditions are satisfied:

νT (X(x̃)− ε1(x̃)I)ν is SOS;

νT (Λ− ε2(x̃)I)ν is SOS;

νT (Yijr1r2(x)− ε3(x)I)ν is SOS ∀i, j, r1 ≤ r2;

νT (Yijr1r2(x)− (Qijr1r2(x) + Qijr2r1(x))− ε4(x)I)ν

is SOS ∀i, j, r1 ≤ r2;

νT (Wijr1r2(x)− ε5(x)I)ν is SOS ∀i, j, r1 ≤ r2;

− νT
( p∑
i=1

c∑
j=1

(
(hij + γ

ij
)(Qijr1r2(x) + Qijr2r1(x))

+ (γij − γij)Yijr1r2(x) + (hij − βij)Wijr1r2(x)
)

− ε6(x)I
)
ν is SOS ∀r1 ≤ r2, i1, i2, . . . , in, l,x ∈ ψl;

where ν ∈ <N is an arbitrary vector independent of x;
δiji1i2···inl(x) is a predefined function of x in TSMFs (6)
and (8); γ

ij
, γij , βij , i = 1, 2, . . . , p, j = 1, 2, . . . , c, are

predefined constant scalars satisfying ∆hij = hij−hij , γij ≤
∆hij ≤ γij , and hij ≥ β

ij
; ε1(x̃), ε2(x), . . . , ε6(x)

are predefined positive polynomials; Qijr1r2(x) is defined
in (26); all unknown polynomial matrices are calculated by
SOSTOOLS; and the feedback gains are defined as Gj(x) =
Nj(x)X(x̃)−1, j = 1, 2, . . . , c. The number of decision matrix
variables is 2 + c + pc(q2 + q), and the number of SOS
conditions is ((q2 + q)

∏n
r=1(dr + 1))/2 + 3pc(q2 + q)/2 + 2.

IV. SIMULATION EXAMPLES

In this section, two simulation examples are given to demon-
strate the validity of the designed polynomial fuzzy controllers.
In Example 1, we discuss the effect of TSMFs using a PFMB
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control system without input nonlinearity. In Example 2, we
achieve the stabilization of the inverted pendulum subject to
sector nonlinearity of control input.

Example 1: (PFMB Control System) Let us consider a 3-
rule polynomial fuzzy model in the form of (2) with x̂ = x =
[x1 x2]T . The system matrices and input matrices are:

A1(x1) =

[
1.59 + 2.45x1 −7.29− 0.89x1

0.01 −0.1− 0.27x2
1

]
,

A2(x1) =

[
0.02− 7.26x1 − 0.05x2

1 −4.64x1

0.35− 0.28x1 −0.21− 1.65x2
1

]
,

A3(x1) =

[
−a+ 0.37x1 − 2.7x2

1 −4.33− 2.73x2
1

1.77x1 0.05− x2
1

]
,

B1(x1) =

[
1 + 0.37x1 + 1.28x2

1

0

]
,B2(x1) =

[
8 + 0.23x2

1

0

]
,

B3(x1) =

[
−b+ 6 + 0.72x1 + 1.55x2

1

−1

]
,

where a and b are constant parameters to be determined. We
consider x1 ∈ [−10 10], and the membership functions for
the polynomial fuzzy model are chosen as w1(x1) = 1−1/(1+
e−(x1+4)), w2(x1) = 1 − w1(x1) − w3(x1), and w3(x1) =
1/(1 + e−(x1−4)). A polynomial fuzzy controller in the form
of (5) with two rules is employed. The membership functions
are chosen as m1(x1) = e−x

2
1/12 and m2(x1) = 1−m1(x1).

In this example, we consider the PFMB control system
without sector nonlinearity of control input. Theorem 1 is
employed to design the polynomial fuzzy controller. Moreover,
Theorem 1 is tested with different orders of TSMFs and
densities of expansion points such that the influence to the
region of stabilization can be revealed with the constant
parameters a and b being chosen in the range of 0 ≤ a ≤ 10
and 0 ≤ b ≤ 11 at the interval of both 1.

According to the TSMFs (6) and (8), we choose
the order λ = 1, and the expansion points x1 =
{−10,−9.5, . . . , 9.5, 10}. The functions v11l(x1) and v12l(x1)
in (6) are chosen as triangular membership functions:
v11l(x1) = (x12−x1)/(x12−x11), v12l(x1) = 1−v11l(x1), ∀ l
(endpoints x11 and x12 are varied with substate space l). Based
on both the original and approximated membership functions,
and setting x1 to a series of dense points, we can numerically
obtain the lower and upper bounds of the error of approx-
imation: γ

11
= −6.9691 × 10−4, γ

12
= −3.9308 × 10−3,

γ
21

= −3.8691 × 10−3, γ
22

= −4.8911 × 10−3, γ
31

=

−6.9691×10−4, γ
32

= −3.9308×10−3, γ11 = 1.7192×10−3,
γ12 = 3.3760 × 10−3, γ21 = 5.9859 × 10−3, γ22 =
5.5667×10−3, γ31 = 1.7192×10−3 and γ32 = 3.3760×10−3,
which satisfy γ

ij
≤ ∆hij ≤ γij . In this case, the simplified

SOS conditions in Remark 4 are employed to replace (17) and
(18) since δiji1i2···inl(x) in (8) is constant and thus the slack
matrices Wij(x) cannot provide less conservative results. We
choose ε1 = · · · = ε5 = 1×10−3, X(x1) of degree 0, Yij(x1)
of degree 0, 2 and 4, and Nj(x1) of degree 0 and 2. The SOS
stability conditions are solved numerically by the third-party
MATLAB toolbox SOSTOOLS [50]. Since higher order of
Taylor series expansion may result in more terms in TSMFs,
we remove the terms with the magnitude of coefficients less
than 1×10−6. Consequently, it could improve the efficiency of

(a) Stabilization regions. (b) Stabilization regions in new scale
for comparison.

Fig. 2. Stabilization regions obtained from Theorem 1 where “�” is
for λ = 1 and x1 = {−10,−9.5, . . . , 9.5, 10}, “×” is for λ = 3
and x1 = {−10,−9, . . . , 9, 10}, and “©” is for λ = 3 and x1 =
{−10,−9.5, . . . , 9.5, 10}.

the SOSTOOLS searching for a feasible solution. It should be
noted that the lower and upper bounds of the approximation
errors have taken into account the polynomial terms with
magnitude of coefficients less than 1 × 10−6 removed from
the TSMFs. As shown in Fig. 2(a), the stabilization region is
indicated by “�” (Case 1).

To investigate the influence of the order of TSMFs, we
increase the order to λ = 3 and choose the expansion
points x1 = {−10,−9, . . . , 9, 10}. With functions v11l(x1)
and v12l(x1) in the same form as Case 1, the lower and
upper bounds of approximation error are found numerically
that γ

11
= −8.5507 × 10−4, γ

12
= −2.5989 × 10−3,

γ
21

= −1.9905 × 10−3, γ
22

= −2.6499 × 10−3, γ
31

=

−8.5507×10−4, γ
32

= −2.5989×10−3, γ11 = 7.3180×10−4,
γ12 = 2.2798 × 10−3, γ21 = 2.0871 × 10−3, γ22 =
2.6081 × 10−3, γ31 = 7.3180 × 10−4 and γ32 = 2.2798 ×
10−3. In this case, the lower bound of hij is obtained that
β

11
= −3.0938 × 10−5, β

12
= −4.0676 × 10−5, β

21
=

5.9414×10−7, β
22

= −4.0687×10−4, β
31

= −3.0938×10−5

and β
32

= −4.0676 × 10−5. In this case, SOS conditions in
Theorem 1 are employed. We choose Wij(x1) of degree 4
and keep other parameters and settings the same as in Case
1. The stabilization region is indicated by “×” (Case 2) in
Fig. 2(a), which shows that the higher the order is, the larger
the stabilization region can be achieved. It should be noted
that although lower density of expansion points is employed
compared with Case 1, the higher order of polynomials for
the approximation of membership functions generally achieves
smaller approximation error, playing a role for achieving a
larger size of stabilization region.

To show the effect of denser expansion points to the
stabilization region, we choose a set of more intensive points
x1 = {−10,−9.5, . . . , 9.5, 10}. With the same order λ = 3
and functions v11l(x1) and v12l(x1), the lower and upper
bounds of approximation error can be obtained numerically
that γ

11
= −1.0235 × 10−4, γ

12
= −3.1486 × 10−4,

γ
21

= −2.5744 × 10−4, γ
22

= −3.2767 × 10−4, γ
31

=

−1.0235×10−4, γ
32

= −3.1486×10−4, γ11 = 1.0770×10−4,
γ12 = 3.0990× 10−4, γ21 = 2.5673× 10−4, γ22 = 3.2669×
10−4, γ31 = 1.0770 × 10−4 and γ32 = 3.0990 × 10−4. The
lower bound of hij is acquired that β

11
= −3.0938 × 10−5,

β
12

= −6.0276 × 10−5, β
21

= 5.9414 × 10−7, β
22

=

−8.7253×10−6, β
31

= −3.0938×10−5 and β
32

= −6.0276×
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(a) Case 2 in Example 1 with a = 8
and b = 9.

(b) Case 3 in Example 1 with a = 8
and b = 10.

Fig. 3. Behavior in x1 − x2 plane.

10−5. Keeping other settings the same as in Case 2, we obtain
the stabilization region indicated by “©” (Case 3) in Fig. 2(a).
It demonstrates that denser expansion points lead to a larger
stabilization region since the approximation error is reduced.

In this example, it can be concluded that more intensive
expansion points and higher order of TSMFs result in a
larger stabilization region. The reason is that more information
of membership functions is included in stability conditions.
However, the computational demand increases meanwhile.

For verification, we show the phase plots of system states
corresponding to Cases 2 and 3 with initial conditions indi-
cated by “◦” as shown in Fig. 3. With a = 8 and b = 9
in Case 2, the polynomial feedback gains are obtained that
G1(x1) = [−7.8891 × 10−1x2

1 − 1.2665 − 3.8923 ×
10−1x2

1+1.8943×10−1] and G2(x1) = [−4.9509×10−1x2
1−

2.0497 −2.3899×10−1x2
1+6.6710×10−1]. With a = 8 and

b = 10 in Case 3, the polynomial feedback gains are obtained
that G1(x1) = [−6.3270 × 10−1x2

1 − 1.1512 − 3.4070 ×
10−1x2

1+2.1688×10−1] and G2(x1) = [−3.1869×10−1x2
1−

1.7261 1.6124× 10−1x2
1 + 7.1676× 10−1].

To show the merits of the proposed imperfectly matched
premises approach in this paper, we compare the stabilization
regions in Fig. 2(a) with the three results obtained by the
stability conditions in Remark 3, Remark 4 and [24]. For
making a fair comparison, we set the same parameters as
those in Example 1 when possible. For the SOS-based stability
conditions in Remark 3 which do not consider any information
of membership functions, there is no stabilization region found
within the range of 0 ≤ a ≤ 10 and 0 ≤ b ≤ 11. With respect
to Remark 4, the slack matrices Wij(x) are not employed in
the stability conditions. Comparing Fig. 4(a) with Fig. 2(a),
although the introduction of Wij(x) does not improve the
results for Case 1, it has great improvement on Cases 2 and 3.
The reason is that Case 1 only involves constant δiji1i2···inl(x)
in (18) which is invariant with system states. When the order
of TSMF becomes larger, δiji1i2···inl(x) becomes variant with
system states, and Positivstellensatz multipliers are needed to
bring local information to reduce the conservativeness [34].
With Positivstellensatz multipliers Wij(x), the advantages
of higher-order TSMFs resulting in smaller approximation
error (Cases 2 and 3 in Fig. 2(a)) can be demonstrated. It
is worthy to mention that even though slack matrices Wij(x)
are not applied, results of Case 1 where TSMFs are employed
still outperforms the results from Remark 3 without TSMFs,
which proves that TSMFs bringing information of membership
functions into stability conditions lead to relaxed stability

(a) Stabilization regions
obtained from Remark 4
where “�” is for λ = 1 and
x1 = {−10,−9.5, . . . , 9.5, 10}.

(b) Stabilization regions obtained
from [24] where “©” is for x1 =
{−10,−9.5, . . . , 9.5, 10}.

Fig. 4. Stabilization regions for comparison.

conditions. Note that slack matrices Yij(x) are used to cast
off the error term ∆hij and thus cannot be removed like
Wij(x). Results given by the SOS-based stability conditions
in [24] are shown in Fig. 4(b). It can be concluded that
the stabilization region obtained by the method in this paper
is larger suggesting that the proposed SOS-based stability
conditions are more relaxed. Hence, the conservativeness of
proposed stability conditions is less than previous ones.

In the following, we compare the existing PDC techniques
with proposed imperfectly matched premises approach. It
should be noted that the PFMB control system considered in
this example are with different sets of membership functions
for polynomial fuzzy model and polynomial fuzzy controller.
The existing PDC SOS-based stability conditions [6]–[8], [33]
in general cannot be applied. To achieve the comparison,
we have to consider a special case where the membership
functions and the number of rules of the fuzzy controller are
the same as those of the fuzzy model such that the existing
PDC results can be applied.

We consider the nonlinear model in Example 1 for compar-
isons. The only difference is that the membership functions of
the fuzzy controller become m1(x1) = 1− 1/(1 + e−(x1+4)),
m2(x1) = 1 − m1(x1) − m3(x1), and m3(x1) = 1/(1 +
e−(x1−4)) (these are the membership functions of the fuzzy
model as well) such that mi(x1) = wi(x1) and c = p.

We then rearrange Fig. 2(a) into a new scale (for x and
y axes) for easy comparison as shown in Fig. 2(b) such that
all figures shown below will have the same scales. Fig. 2(b)
shows the stabilization region with the membership functions
of the fuzzy controller as m1(x1) = e−x

2
1/12 and m2(x1) =

1 − m1(x1). Then under the PDC design, the stabilization
regions obtained from Theorem 1 are shown in Fig. 5(a).
Results from existing papers for PDC design are shown in Fig.
5(b). To achieve a fair comparison, when generating Fig. 5(b),
we consider the same settings as in Example 1 by choosing
polynomial feedback gains of degree 0 and 2 in x1, and slack
matrices of degree 0, 2 and 4 in x1. It should be noted that
the analysis results from the existing papers are LMI-based.
We have extended their analysis results to SOS-based.

Comparing with Fig. 5(a) and Fig. 5(b), the proposed imper-
fectly matched premises approach provides less conservative
results than existing PDC design approaches in terms of the
size of stabilization regions. This is due to the contribution
of the approximated membership functions which make the
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(a) Stabilization regions under
PDC design (mi(x) = wi(x) and
c = p) obtained from Theorem
1 where “�” is for λ = 1 and
x1 = {−10,−9.5, . . . , 9.5, 10},
“×” is for λ = 3 and
x1 = {−10,−9, . . . , 9, 10},
and “©” is for λ = 3 and
x1 = {−10,−9.5, . . . , 9.5, 10}.

(b) Stabilization regions under PDC
design (mi(x) = wi(x) and c = p)
obtained from existing papers where
“�” is for Theorem 2 in [33]; “×”
is for Theorem 1 in [6]; “©” is for
Theorem 5 in [7]; and “+” is for
Theorem 5 (n = 4 is the order of
fuzzy summations) in [8].

Fig. 5. Stabilization regions for comparison.

stability conditions membership-function-dependent.
It should be noted that the existing the PDC design

approaches cannot be applied to the imperfectly matched
premises case. However, our proposed approach provides a
more effective treatment to imperfectly matched premises
case where the stabilization regions are shown in Fig. 2(b).
Comparing with Fig. 2(b) and Fig. 5(b), it can be seen that
our stabilization regions obtained from imperfectly matched
premises case are comparable to PDC case.

Example 2: (PFMB Control System with Sector Nonlinear-
ity of Control Input) In this example, an inverted pendulum
on a cart [3] is modeled by the PFMB control system, and the
sector nonlinearity of control input is imposed on the system.
The state space equation of the inverted pendulum is given by

ẋ1 = x2

ẋ2 =
g sin(x1)− ampLx

2
2 sin(x1) cos(x1)− a cos(x1)u

4L/3− ampL cos2(x1)
(27)

where x = [x1 x2]T is the state vector; g = 9.8m/s2 is the
acceleration of gravity; mp = 2kg and Mc = 8kg are the mass
of the pendulum and the cart, respectively; a = 1/(mp+Mc);
2L = 1m is the length of the pendulum; and u is the control
input force imposed on the cart.

According to the state space form, we construct the poly-
nomial fuzzy model for the inverted pendulum. Let us define
the region of interest as x1 ∈

[
− 75π

180 ,
75π
180

]
. Within

the bounded region of interest, we represent the nonlin-
ear term f1(x1) = cos(x1)

4L/3−ampL cos2(x1) by sector nonlinear-
ity technique [34] as follows: f1(x1) = µM1

1
(x1)f1min +

µM2
1
(x1)f1max , where µM1

1
(x1) =

f1(x1)−f1max
f1min−f1max

, µM2
1
(x1) =

1 − µM1
1
(x1), f1min = 0.3922, f1max = 1.7647. In order

to reduce the number of rules and computational burden,
other nonlinear terms sin(x1) and tan(x1) are approximated
by polynomials: sin(x1) ≈ s1x1 and tan(x1) ≈ t1x1,
where s1 = 0.8386 and t1 = 1.7336. Consequently, the
inverted pendulum is formulated by a 2-rule polynomial
fuzzy model with the following system and input matri-

ces, x̂(x) = x = [x1 x2]T , A1(x2) =

[
0 1

a1(x2) 0

]
,

A2(x2) =

[
0 1

a2(x2) 0

]
, B1 =

[
0

−f1mina

]
, and B2 =[

0
−f1maxa

]
, where a1(x2) = f1min

(
gt1 − ampLx

2
2s1

)
,

a2(x2) = f1max

(
gt1−ampLx

2
2s1

)
. The membership functions

are w1(x1) = µM1
1
(x1) and w2(x1) = µM2

1
(x1). Without

losing generality, we use the same membership functions for
fuzzy controllers (m1(x1) = w1(x1) and m2(x1) = w2(x1)).

Based on the polynomial fuzzy model of inverted pendulum,
we consider the sector nonlinearity of control input (3). Let us
define the input nonlinearity as u = ũ(1 − 0.15sin(0.001ũ))
[40], where ũ is the control signal. With bounded region
of interest ũ ∈ [−4000, 4000], we construct the nonlinear
lower and upper bounds of the sector by combining bounds
of three local regions [−4000, −1333], [−1333, 1333], and
[1333, 4000]. The membership functions for the above regions
are v1(ũ) = 1− 1/(1 + e−(ũ+2000)/200), v2(ũ) = 1− v1(ũ)−
v3(ũ), and v3(ũ) = 1/(1 + e−(ũ−2000)/200), respectively.

Remark 5 is employed to find lower and upper bounds for
these three local regions. Step 1), based on sector nonlinearity
technique [34], initial local bounds are obtained as S1 =
8.8648 × 10−1, S2 = 8.5423 × 10−1, S3 = 8.5000 × 10−1,
S1 = 1.1500, S2 = 1.1458, and S3 = 1.1135. Step 2),
with predefined membership functions, the established sector
does not contain the input nonlinearity, and thus go to Step
3). Step 3), for lower bounds, those points of input nonlin-
earity outside the established sector are from the transition
between local regions [−1333, 1333] and [1333, 4000]. Due
to S3 < S2, we take S3 as the common lower bound for
both regions [−1333, 1333] and [1333, 4000] which means
S2 = S3 = 8.5000 × 10−1. For upper bounds, those points
along input nonlinearity which are not within the sector
come from the transition between regions [−4000, −1333]
and [−1333, 1333]. Due to S1 > S2, we take S1 as the
common upper bound for both regions [−4000, −1333] and
[−1333, 1333] meaning S1 = S2 = 1.1500. Back to Step
2), the adjusted sector contains the input nonlinearity, and the
procedure terminates with S1 = 8.8648 × 10−1, S2 = S3 =
8.5000× 10−1, S1 = S2 = 1.1500, and S3 = 1.1135.

Therefore, the nonlinear lower and upper bounds of the
sector are defined as in (20). For comparison purposes, con-
ventional linear bounds of the sector are obtained by the sector
nonlinearity technique to describe the input nonlinearity and
facilitate the stability analysis. Compared with the sector with
linear bounds [0.85, 1.15], the proposed sector with nonlinear
bounds has smaller area which is included by the sector with
linear bounds. As a result, the proposed sector describes the
input nonlinearity more accurately and less conservatively.

Theorem 2 is employed to achieve the stabilization of
the inverted pendulum. We choose the order λ = 1, the
expansion points x1 = {− 75π

180 ,−
60π
180 , . . . ,

60π
180 ,

75π
180 }, and

v11l(x1) = (x12 − x1)/(x12 − x11), v12l(x1) = 1− v11l(x1),
∀ l. Thus, the lower and upper bounds of the approxi-
mation error and the lower bound of hij are obtained as
follows: γ

11
= −2.1410 × 10−2, γ

12
= −1.2875 × 10−2,

γ
21

= −1.2875 × 10−2, γ
22

= −1.9630 × 10−2, γ11 =

7.6578× 10−13, γ12 = 2.0519× 10−2, γ21 = 2.0519× 10−2,
γ22 = 2.7206× 10−2, β

11
= · · · = β

22
= 0.
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(a) Time response of system state x1. (b) Time response of system state x2.

Fig. 6. Time response of system state x1 and x2 of the inverted pendulum
with 4 different initial conditions.

Fig. 7. Time response of control input u and control signal ũ under the
initiation condition x(0) = [ 75π

180
0]T .

In order to reduce the computational demand, slack matri-
ces Yijr1r2(x) and Wijr1r2(x) are assumed to be identical
for all r1, r2, that is, Yijr1r2(x) = Yij(x),Wijr1r2(x) =
Wij(x) ∀r1, r2. We choose ε1 = ε2 = ε3 = ε5 = 1 ×
10−7, ε4 = ε6 = 1× 10−8, X of degree 0, Yij(x2),Wij(x),
and Λ(x2) of degree 2, and Nj(x2) of degree 1 (Wij(x)
has monomials concerning both x1 and x2) . Then we can
obtain the feedback gains G1 = [2.0234×103 2.9367×103]
and G2 = [1.5256× 103 2.9148× 103]. Note that since we
remove the terms with the magnitude of coefficients less than
1×10−6, the polynomial feedback gains G1(x2) and G2(x2)
are reduced to constant feedback gains G1 and G2.

As can be seen from Fig. 6 and 7, the inverted pendulum
is asymptotically stable, and the control input varies with the
original control signal.

V. CONCLUSION

The stability of PFMB control system has been investigated
using SOS approach. To relax the stability conditions, TSMFs
have been proposed to approximate the original membership
functions. The SOS stability conditions are progressively less
conservative by increasing the order of TSMFs and density
of expansion points. Additionally, the sector nonlinearity of
control input has been considered in the stability analysis.
The bounds of the sector depending on both system states
and control signal are allowed to be nonlinear. Simulation
examples have been given to prove the effectiveness of the
proposed method.
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