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Noise Reduction in Complex 
Biological Switches
Luca Cardelli1,2,*,, Attila Csikász-Nagy3,4,*, Neil Dalchau1,*, Mirco Tribastone5,* & 
Max Tschaikowski5,*

Cells operate in noisy molecular environments via complex regulatory networks. It is possible to 
understand how molecular counts are related to noise in specific networks, but it is not generally clear 
how noise relates to network complexity, because different levels of complexity also imply different 
overall number of molecules. For a fixed function, does increased network complexity reduce noise, 
beyond the mere increase of overall molecular counts? If so, complexity could provide an advantage 
counteracting the costs involved in maintaining larger networks. For that purpose, we investigate how 
noise affects multistable systems, where a small amount of noise could lead to very different outcomes; 
thus we turn to biochemical switches. Our method for comparing networks of different structure and 
complexity is to place them in conditions where they produce exactly the same deterministic function. 
We are then in a good position to compare their noise characteristics relatively to their identical 
deterministic traces. We show that more complex networks are better at coping with both intrinsic and 
extrinsic noise. Intrinsic noise tends to decrease with complexity, and extrinsic noise tends to have less 
impact. Our findings suggest a new role for increased complexity in biological networks, at parity of 
function.

Cells operate in noisy molecular environments via complex regulatory networks. It is possible to understand how 
molecular counts are related to noise in specific networks, but it is not generally clear how noise relates to network 
complexity, because different levels of complexity also imply different overall number of molecules. There is a 
large literature on how complexity and especially redundancy can increase the robustness of biological systems1–3, 
but it should be emphasized that complexity can also introduce fragility in highly non-linear systems, such as 
those found in biology4,5. Other theories claim that complexity beyond a limit can lead to information loss6, thus 
we need a systematic analysis to understand crucial open questions. For a fixed function, does increased network 
complexity reduce noise, beyond the mere increase of overall molecular counts? If so, complexity could provide 
an advantage counteracting the costs involved in maintaining larger networks.

For that purpose, we investigate how noise affects multistable systems, where a small amount of noise could 
lead to very different outcomes; thus we turn to biochemical switches. In a recent paper7 two of the authors 
describe how a classical cell-cycle switch network (CC)8 approximates the function of a simpler network inde-
pendently studied in distributed computing: the Approximate Majority algorithm (AM)9. The theoretical study of 
AM has previously shown that it has some special properties, including asymptotically optimal switching speed 
and high resistance to noise, which are necessary properties for a “good biological switch”. Although CC can 
approximate the performance of AM, there are some differences. We showed that by adding a feedback loop to 
CC that is known to exist in biological networks10, we could improve the correspondence between the biological 
network and AM, suggesting that the cell cycle switch can in fact achieve the theoretical AM-class performance. 
Moreover, recent experimental work11 has shown that the additional feedback loop (involving the Greatwall 
kinase) is necessary for the biological function of the cell cycle switch, reinforcing the relationship between bio-
logical and computational networks.

A further refinement of the cell cycle switch network has now been proposed12, resulting in a highly symmet-
rical network where all the species are intertwined to regulate each other. We show here that the proposed refine-
ments to the initial cell cycle network actually strengthen the computational connection to the AM algorithm: 
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a more complex network becomes more similar to a simple network. So similar, in fact, that the correspond-
ence becomes exact, and no longer an approximation. Along the way we show also exact correspondence with 
other networks that have more direct biological significance than AM, including various symmetry breaking 
networks13.

Results
We proceed by first establishing that, for corresponding initial conditions, certain networks of different complex-
ity have compatible function from a deterministic point of view (i.e., by their mass action ODEs, that capture the 
average behavior of cells). They all realize a fast and robust switching function, and it is possible to make their 
switching trajectories exactly overlap by a suitable choice of initial conditions and reaction rates. This coincidence 
of function is based on recent work by some of the authors14,15 that relates the function of networks of different 
size based only on structural relationships (that is, based only on reaction graph connectivity and reaction rates).

Since real biological networks have high complexity, but as we have seen, similar dynamical behavior, we may 
wonder why evolution has selected for such complex systems16. To address this question we investigate whether 
there are stochastic differences in the various networks, and in particular whether the more complex networks 
gain an advantage in intrinsic noise reduction17. We approach this problem by a number of complementary tech-
niques. We compare noise in the various networks by numerically solving the chemical master equation (CME): 
this gives accurate results for low molecule counts, but becomes quickly unfeasible because the solution depends 
combinatorially on the number of molecules in the system, and not just on the number of species. We also com-
pare noise in the networks by the central limit approximation (CLA), which becomes more accurate for increasing 
molecule counts. This technique has the advantage that it can be solved very quickly for large networks and for 
large initial conditions: the numerical solution is driven by an analytical expression of covariances that depends 
only on the number of reactions and species (not the number of molecules). The middle ground of intermediate 
molecule counts (which is of more direct biological relevance) is inaccessible in exact form by either analytical or 
numerical techniques, but is well bounded by the two above techniques, which give consistent results.

We observe that for equivalent function, more complex networks exhibit a reduction in intrinsic noise. This is 
not easily attributable simply to the increased total molecule counts18,19. First, although there are more total mol-
ecules in more the complex networks, each species is kept at comparable levels, and secondly, networks of equal 
total counts exhibit different noise reduction depending on their structure. Overall, the networks of biological 
origin exhibit better behavior than minimal networks of similar capability.

The manipulation of noise in biological networks is generally of significant interest; for example, it was shown 
that noise can be beneficial in biological signaling20–23: it can drive a sub-population to behave differently from the 
majority, so that the population as a whole can better adapt to environmental changes24,25. We show that intrinsic 
and extrinsic noise can be adjusted by an increase in network complexity.

Basic Bistable Networks. We begin by presenting some simple influence networks. These are networks of 
species that catalytically modify or restore other species; for example, a modification could represent an activation 
of a protein by phosphorylation and a restoration could represent a deactivation of the same protein by dephos-
phorylation26. A species in a modified state may have an activity (on other species) that is different from that of 
the corresponding restored state. It may be that only the restored or modified states are active in such a way, or 
that both of them are. An influence network does not describe the mechanistic details of the modification/resto-
ration mechanisms, which may vary even within the single biological network that is being modeled. Hiding the 
mechanisms makes it is easier to see the essential structure of the network27, and enables an abstract exploration 
of relationships between different networks. In order to study the kinetics of these networks, we fix a specific 
modification/restoration mechanism, so that detailed quantitative comparisons can be made between networks.

We present our influence networks graphically, but our graphical network notation is formal, meaning that 
each network is an unambiguous depiction of a specific set of chemical reactions. Hence, specific kinetics can be 
extracted systematically from each network (see S2 Appendix). Well-established approaches to modeling influ-
ence networks are similarly formal but are often based on more general classes of kinetic functions that do not 
directly yield sets of chemical reactions27.

More specifically (Fig. 1), each influence node in an influence network represents a species with (at least) 
two distinct molecular states: modified and restored, which are not themselves considered as separate species. 
Transitions between these states are interpreted as two-step-modifications; e.g., two sequential phosphorylations 
or dephosphorylations. Other interpretations are possible (e.g., n-step modification) and should not fundamen-
tally change the kinetics of the network as long as the transitions between the modified and restored molecular 
states are non-linear: that is, in case of n-step modifications, if n >  1. This specific interpretation of modification/
restoration as multi-step modification (which is in line with the cell-cycle model in Ref. 12), based on the concept 
of multisite phosphorylation28, is the basis of our kinetic and stochastic analysis.

Influence nodes are depicted as in Fig. 1A, where a species x can be modified by species connected to the ball 
terminal, and restored by species connected to the bar terminal. Modification means that the species x is changed 
from its restored to its modified molecular state, and conversely for restoration. In turn, x can influence other 
species, depending on its molecular state, through two kinds of outgoing edges that may connect to other bar or 
ball terminals. Figure 1B is a view of the same influence node where the molecular states (x0 for modified and x2 
for restored) are explicitly represented; in addition, since we deal with 2-step modification, there is an intermedi-
ate molecular state x1 that is not otherwise connected to the rest of the network. The hollow ball terminals here 
represent simple catalysis. By regulating the rates of flow through x1 within two orders of magnitude we can 
obtain a variety of linear, hyperbolic, and sigmoid responses to a linear modification stimulus, such that the 
response range is equal to the stimulus range (see S1 Appendix).
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Figure 1. Influence network notation . (A) An isolated influence node that would be connected to similar 
nodes in an influence network. Two of the potential connections represent inputs: modification (ball terminal) 
and restoration (bar terminal). The other two potential connections represent outputs: activity of the modified 
state (straight line) and of the restored state (dashed line) on other nodes in the network. (B) A specific 
interpretation of the influence node x on the left. The node is expanded into a pattern of 3 species and 4 catalytic 
reactions (the top left hollow ball and arrow, for example, represents the reaction + → +x y y x0 1 for y 
deriving from another node). Species x0 stands for the modified state of x, and species x2 stand for the restored 
state of x. The purpose of species x1 is to act as an internal intermediary in the conversions between x0 and x2, so 
that the resulting kinetics of the four reactions (in mass action) amounts to a Hill transition between those 
states. If such a node expansion is applied to all the nodes of an influence network, an unambiguous chemical 
reaction network results. Remaining degrees of freedom consist in fixing the invariant amounts of + +x x x0 1 2 
for each x, and fixing the rates of the four mass action reactions in each node, at which point the kinetics of the 
whole network is fixed.

Figure 2. Basic switching networks: deterministic solution. Four networks that are discussed in the text.  
(A) Influence network diagrams. (B) Chemical reaction network diagrams and feedback loops. This is the 
expansion of the influence networks into the corresponding chemical reaction networks according to Fig. 1. 
Colored arrow illustrate feedback relationships and are not part of the reaction network. (C) Numerical solutions 
of the deterministic kinetics of the networks. First some initial conditions are chosen for AM, and then the initial 
conditions of the other networks are chosen in such a way that each trace of each of the lower networks retraces 
exactly one trace of AM. This can be done for any initial conditions chosen for AM, and indicates the potential of 
each of the lower networks to operate as a simpler switch. Simulation scripts are in S5 Appendix.
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Figure 2 shows four networks of interest, where a common characteristic is antagonism between two primary 
species that results in mutual inhibition leading to to bistability: if either species becomes dominant as a popu-
lation, it becomes self-supporting and forever dominates the other. All of these networks are based on multiple 
interlocked positive feedback loops. Some of these come in the form of pure positive autocatalytic loops while 
others are based on double-negative, antagonistic interactions29. It has long been known that positive feedback 
loops are necessary for the emergence of multistability in dynamical systems30–32; the interesting feature of these 
networks is that multiple positive loops are intertwined in a way that generates at least two stable states. The sec-
ond requirement for multistability is the presence of non-linearity in the system33, which comes here in the form 
of the double-step modifications between modified and restored forms that can be observed in Fig. 2B, where 
each influence network is expanded into the corresponding chemical reaction networks.

The smallest network, in Fig. 2A(AM), has a single influence species; it depicts the Approximate Majority 
algorithm9 and also matches the pattern of the epigenetic switch from Ref. 34. Here the mutual inhibition is inter-
nal to x, between the x0 and x2 molecular states, which compete for dominance as can be seen in more detail in 
the corresponding chemical reaction network in Fig. 2B(AM).

Figure 2A(SI) depicts a network with two influence species, where both modified and restored states are 
active. The mutual inhibition in SI is achieved by each relevant molecular state of y (y0, y2) antagonizing the cor-
responding molecular state of z (z2, z0), but without direct self-modification. SI is inspired by the spatial regula-
tion of the Septation Initiation Network, where two molecules compete for localization at a given cellular 
structure13.

An example of a network where only the modified states have a downstream activity on other species is shown 
in Fig. 2A(MI), where y and z modify themselves and restore the other. This basic arrangement of cross-inhibition 
of two enzymes in their active forms can be found in many natural and synthetic biological systems, at least in 
simplified form (in genetic toggle switches, for example, the self-activation loops are usually replaced by inducers 
or constitutive transcription)35–40.

Finally, the network in Fig. 2A(CCr) is a modified version of the classical Cell Cycle Switch (CC) network8. 
Recognizable are the two smaller feedback loops on the left hand side, the upper one that is double negative, and 
the lower one that is double positive. In the original CC network (not shown), s (corresponding to Wee1) and r 
(Cdc25) are directly regulated by x (Cdk), and counterbalanced by fixed biases. Here we connect these counter-
balancing reactions to the restored (inactive) form of x to allow for the modification of s and the restoration of r 
to revert when no stimulus is applied to the system. These additional regulatory feedbacks recapitulate the contri-
butions of known (but more complex) biological feedback loops41. As a result, as we shall see, CCr can be better 
related to the other networks than the original CC. Moreover, as discussed in Ref. 7, the additional feedbacks 
result in better switching performance.

Deterministic Trajectories of Basic Bistable Networks. Each network in Fig. 2 should be understood 
in a wider context where external signals are applied to it that cause the network to switch from one stable state to 
another (e.g. between y-modified and z-modified in MI). We investigate these external contributions below. Here, 
however, we begin by studying the core networks, where switching is symbolized by starting from some unstable 
initial conditions and observing the network settle in one steady state or another.

There is a special relationship between the switching networks in Fig. 2, which we call emulation, such that 
a network A can emulate another (typically simpler) network B.  Emulation means that for any choice of rates 
and initial conditions for B we can systematically find rates and initial conditions of A such that every trajectory 
of a species of A exactly overlaps a trajectory of a species of B (assuming mass action reaction kinetics). That is, 
when a complex network emulates a simpler network, the complex network behaves redundantly like the simpler 
network. This relationship is based on a mapping of species of A to species of B and on other technical require-
ments14, but the important point is that these requirements can be reduced to checks on the stoichiometry, rates, 
and connectivity of A and B.  That is, they depend only on the structure of A and B, and do not require examining 
their kinetic equations.

In Fig. 2C we demonstrate some of these emulation mappings. For sake of example, we fix the initial condi-
tions for AM as shown in Fig. 2C(AM), and we choose unit rates for all reactions. For each of MI, SI, and CCr, we 
then map their species into species of AM as indicated; for example we map y2 and z0 of MI to x0 of AM, which 
also determines the initial conditions for y2 and z0 in MI. Implicitly, the mappings of species induce mappings of 
reactions of those networks into reactions of AM: these are the natural homomorphic mappings determined by 
the species mapping. A mapping of species and a mapping of reactions together constitute an emulation, and 
under these emulation mappings each trajectory of MI, SI, CCr retraces one trajectory of AM, as shown in Fig. 2D. 
Moreover, this exact retracing persists no matter what initial conditions we choose for AM, provided we choose 
initial conditions for the other networks according to the species mapping in Fig. 2C. Similarly, we can vary the 
reaction rates of AM and the retracing persists if we vary the reaction rates of the other networks according to the 
homomorphic reaction mapping14.

The more complex networks will usually have additional behaviors when starting from initial conditions that 
do not obey the emulation constraints, yielding trajectories that do not match any AM trajectories. Hence, emu-
lation is only able to detail a certain facet of a complex network. Still, this can be illuminating; for example, we can 
conclude that although SI and MI are different networks with different connectivity, found in diverse biological 
situations, and ultimately exhibiting different kinetics, they still have a common functional facet. Because of the 
connection of both networks to the AM network, that functional facet is the fundamental consensus algorithm 
that AM represents, Approximate Majority9, which is an instance of computationally optimal switching. So we 
immediately know from properties of AM that SI and MI are (at least) bistable and can switch with optimal speed. 
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We can then separately ask whether SI and MI have other functions in nature, or in what ways they exploit their 
greater generality, and why biology uses such more complex network instead of a simpler one like AM.

In a similar way, the fact that CCr emulates AM provides the simplest explanation of the core structure of 
the G2/M cell-cycle switch. That is, it shows that the double-negative and double-positive feedback loops found 
there42, together produce a switching function that is robust and asymptotically optimal: those are properties of 
AM that CCr can emulate exactly.

In the following sections we explore the nuances of this commonality, also investigating other networks that 
fold onto AM in the above sense.

Stochastic Trajectories of Basic Bistable Networks. To reveal possible differences between the net-
works of Fig. 2 we now study the intrinsic noise characteristics of these networks. A key issue is how to compare 
stochastic variations in networks that have different numbers of species, and how to choose population sizes for 
those species so that the comparison is in some sense fair. Our strategy is to compare the networks under an 
emulation mapping, so that a larger network is reduced in a kinetically compatible way to a smaller network. The 
emulation mapping constrains the initial conditions for the larger network, as described in the previous section. 
Since the deterministic trajectories can be interpreted as limits of mean values of stochastic trajectories, we set 
the stochastic initial condition according to the ones for the deterministic emulation mappings, so that in the 
limit of large number of molecules the stochastic networks become increasingly similar. Even under those initial 
conditions, the stochastic trajectories (either their mean or variance) at a particular system size need not coincide.

For example, imagine comparing AM with a network that consists just of two separate copies of AM. There is 
a trivial emulation mapping from the two copies to the single AM that preserves all deterministic trajectories. In 
this comparison, the two networks also have the same stochastic behavior for the corresponding species, since the 
two copies of AM are independent. But, more generally, if the two copies of AM are intertwined (SI, for example, 
can be seen at two copies of AM that have been rewired together), then the stochastic behavior will be affected, 
and we can compare it fairly with that of AM. Moreover, note that SI and MI have the same number of molecules 
and reactions, but a different structure, so any differences between them will be attributable to the structure, par-
ticularly in conditions where they are both emulating AM.

In summary, we compare the means and variances of stochastic networks under emulation mappings. 
Although the notion of emulation has a deterministic origin, this strategy can be justified by the fluid limit 
approximation, by which the mean of a stochastic process converges to a differential equation43. We further ana-
lyze the noise by the central limit approximation43,44 (also known as the linear noise approximation45) by which the 
variance of a stochastic process can be computed as fluctuations around the deterministic means.

We begin our analysis by comparing networks via the numerical solution of their Chemical Master Equation 
(CME), by fixing the emulation mapping and the corresponding initial conditions as in Fig. 2: initial values now 
represent molecule counts. Figure 3C shows, for example, that solutions of the CME for AM and MI are very 
similar in mean and variance at steady state (at time t >  5), with MI showing a slight narrowing of variance. Also, 
MI shows some initial divergence of pairs of trajectories due to asymmetries in the first few steps of its stochastic 
process. SI does not exhibit that asymmetry, and at steady state has a markedly narrower variance bands than AM; 
CCr has narrower bands still. Note again that SI and MI have the same number of species and molecules, and that 
they are compared in conditions where they both emulate AM.

Figure 3D shows solutions of the Central Limit Approximation (CLA) for each network; this is a way of 
approximating the variance in the CME of a finite network by considering a certain limit of increasing system 
sizes. Unlike the CME, which has one differential equation for each system state, the CLA has one differential 
equation for each species and one for each pair of species (for their covariance); hence the CLA scales much better 
than the CME to large networks and initial conditions. We can thus obtain a good approximation of behavior in 
a range of system sizes that fall beyond what is feasible for the CME, while retaining stochastic information that 
is lost in the corresponding ODEs.

In some detail, a stochastic process ( )X t  for a CRN associates a discrete random variable over the CRN system 
states to each time instant t. We can consider a sequence ( )X tN  of stochastic processes, with initial states multi-
plied by an increasing volume N , and a normalized sequence ( )/X t NN  over now continuous random variables. 
In the limit of N  going to infinity, the rescaled mean ( ) /E X t N[ ]N  converges to the solution of the ODE system 
v(t) for the original CRN, justifying the approximations ( ) ⋅ ( )~X vt N tN . The rescaled variance 
( ( ))/ = ( ( )/ )X XVar t N Var t NN N , instead converges to the variance of a Gaussian process ( )Z t , obtained as 

t h e  l i m i t  o f  t h e  s e q u e n c e  o f  p r o c e s s e s  ( ) = ( )/ − ⋅ ( )Z X vt t N N tN N .  N o t e  t h a t 
( ( )) = ( ( ) − ⋅ ( ))/Z X vVar t Var t N t NN N , representing the fluctuations of the stochastic process ( )X tN  around 

the deterministic mean ⋅ ( )vN t . Importantly, ( ( ))ZVar t has an analytical form, which enables the fast compu-
tation of the CLA. A stochastic process ( )X tN  for a given CRN in volume N  is thus replaced by the stochastic 
p ro c e s s  ( ) = ⋅ ( ( ) + ( )/ )CLA v Zt N t t NN ,  f ro m  w h i c h  w e  c a n  a n a l y t i c a l l y  ap p rox i m at e 

( ) ( ) = ⋅ ( )~X CLA vE t E t N t[ ] [ ]N N  a n d  ( ( )) ( ( )) = ⋅ ( ( )).~X CLA ZVar t Var t N Var tN N  S e e  S 3 
Appendix for further details.

When comparing the CME (Fig. 3C) to the CLA (Fig. 3D) we should keep in mind two main facts. First, these 
networks are stochastic and bistable; that is, the distribution of outcomes in final states is highly bimodal at small 
copy numbers. This can be seen in Fig. 3B, and in the CME solutions of Fig. 3C that have two wide and persisting 
standard deviation bands for e.g. x0 and x2 in AM. The bands represent the fact that, with these initial conditions, 
x0 is more likely, but not certain, to settle at the highest level, and x2 is more likely, but not certain, to settle at the 
lowest level. In any final state x1 always reaches 0, and this can be seen in its profile: by time 5 is highly likely that 
a final state has been reached. In a final state there is no noise left in the system (no reactions are enabled), but the 
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distribution of outcomes is bimodal: the standard deviation bands in the final state thus represent uncertainty in 
outcome rather than sustained noise. A reduction in the widths of these bands means that the outcome is more 
likely to agree with the initial conditions, that is, with x0 settling at the highest level because it started higher than 
x2. (All the individual stochastic trajectories lie between 0 and 3: bands that go outside of this range are an artifact 
of plotting the standard deviation around the mean.)

Second, the CLA characterizes a situation at higher copy number, closer to the deterministic limit45, where the 
bimodal distribution becomes gradually more unimodal: at higher copy number x0 is increasingly more likely to 
settle at the highest level. This is why in the CLA the standard deviation thins out at greater time points, represent-
ing the fact that the distribution becomes unimodal. At earlier time points however x0 is still noisily finding its 
way to the top, and it is has non-zero variance. The progression in the CME and CLA from low counts to high 
counts for the AM network can be seen in Fig. 4. The CLA does not provide a good approximation at low molec-
ular counts (since its central limit assumption is violated by bimodal distributions), where we should rely on the 
CME. The CLA approximation improves at higher counts, and eventually the CME and CLA converge to each 
other and to the deterministic mean. There is also convergence in the standard deviation about the mean, which 
become proportional to the square root of the copy number (Fig. 4J).

Careful comparison of the CLA and also of the CME solutions of the various networks of Fig. 3 reveals that 
the noise is a little bit smaller in the more complex networks. Thus our analysis so far suggests that emulation of 
a simpler network by a more complex one can perfectly match its deterministic behavior, but the more complex 
network might reduce the effect of molecular noise. To investigate this hypothesis further we turn to more com-
plex bistable networks.

Complex cell cycle switch networks. We have shown above that AM can summarize the behavior of a 
minimal cell cycle switch model (CCr). Our earlier results show that the original cell cycle network extended with 
the Greatwall kinase also matches the kinetics of AM7 . That model, GW, contains four molecular species (Fig. 5 
GW), where x stands for the core cell cycle regulator kinase Cdk, z for its inhibitory kinase Wee1, r for the acti-
vating phosphatase Cdc25 and s for the phosphatase PP2A, which reverts the phosphorylations originally driven 
by Cdk. The Greatwall kinase (which is not modelled explicit in GW) is a component on the pathway from x to s.

A more recent and detailed model, NCC (the Fisher-Krasinska-Coudreuse-Novak Cell Cycle switch12), is 
shown in Fig. 5. The Greatwall kinase is represented by the species p, along with the phosphatase PP1 represented 

Figure 3. Basic switching networks: stochastic solution. Horizontal axes represent time, vertical axes 
represent number of molecules. (A) Influence networks. (B) Chemical Master Equation solution: probability 
distribution, with color (in 10 bands from light =  0 to dark =  1) indicating the probability that at time t there 
are y molecules of the single indicated species. (C) Chemical Master Equation solution: mean (solid lines) and 
standard deviation (color bands) for the species in the network. (D) Central Limit Approximation solution: 
mean (solid lines) and standard deviation (color bands) for the species in the network. Simulation scripts are in 
S5 Appendix.
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Figure 4. Evolution of CME and CLA solutions with increasing molecular counts. (A–I) The AM network 
was analyzed for its stochastic mean (solid lines) and standard deviation (area plots), using the CME and CLA 
methods. (J) Shown are the standard deviations normalized by the square root of the total copy number, N. 
CME is indicated by solid lines and CLA with dashed lines.

Figure 5. Complex switching networks: stochastic solution. Horizontal axes represent time, vertical axes 
represent number of molecules. (A) Influence networks. (B) ODE solutions for comparison with Fig. 2C 
Chemical Master Equation solution: mean (solid lines) and standard deviation (color bands) for the species 
in the network. (D) Central Limit Approximation solution: mean (black lines) and standard deviation (color 
bands) for the species in the network. Simulation scripts are in S5 Appendix.
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by q. This network wiring was originally proposed in Ref. 12, but its kinetic behavior was not investigated. Here 
we show that not only GW, but also NCC can emulate AM, again in the sense that GW and NCC deterministic 
traces can reproduce AM deterministic traces for all possible combinations of AM rates and initial conditions. 
An example of such traces is shown in Fig. 5B. We further investigate the stochastic behavior of these networks: 
following the same methods as used above, we calculate the CME and CLA trajectories of these larger systems 
and compare their standard deviations.

Summarizing, in Fig. 6 we compare the standard deviation of the principal species (those representing Cdk) 
of all the networks in Figs 3 and 5. Two sets of initial conditions are checked: they each make all the networks 
exhibit identical deterministic trajectories, as in Figs 2C and 5B. One set of initial condition results in the net-
works settling with higher probability with the principal species (x0 or z0) high. The other, symmetrical, set of 
initial condition results in the networks settling with the principal species low and the complementary species (x2 
or z2) high. Note that the deterministic means of the principal species in the first case match the means of the 
complementary species in the second case, but this symmetry does not always hold for standard deviation.

The simplest network, AM, is the one exhibiting uniformly the highest standard deviation, both in the CME 
and the CLA. As network complexity increases, there is a trend towards lower standard deviation, with GW and 
NCC exhibiting the least amount overall. Note that GW has a different relative performance in the two initial 
conditions. In this kind of comparative analysis, the computation of the CME for networks as complex as NCC 
becomes very expensive and problematic even with very small numbers of molecules of each species: the CLA 
becomes in practice necessary for a deeper analysis or for larger networks.

So far we have analyzed the behavior of various switching networks by comparing their time evolution, both 
deterministically and stochastically: this characterizes their switching speed when starting from some arbitrary 
state. These networks were considered to work in isolation, which is not typical of real biological systems. External 
stimuli can drive transitions between the two stable states of the cell cycle similarly to many other biological 
switches29. The response of biological switches to external input is traditionally investigated by bifurcation anal-
ysis46. This technique works only for deterministic systems, thus we need to develop a method for comparing the 
noise of our models as they are driven back and forth between the two steady states through a hysteresis loop.

For this kind of analysis, we place the switching networks in hysteresis harnesses (Fig 7A, S4.1) as in Ref. 7, 
in order to compare their stimulus-response behavior: a varying input stimulus that is pushing the switch in one 
direction is competing against a fixed bias that is pushing the switch in the opposite direction. Again the ques-
tion is how to make harnesses for networks of different sizes so that we can compare them in some sense fairly. 
Our strategy here too is based on emulation: the harnesses must be such that the deterministic equivalence of 
networks together with their harnesses still holds (see details in S4 Appendix). On that basis we can compare the 
probability distribution of each network for each amount of stimulus.

The plots of Fig. 7A show the stationary distribution of states at various input levels. The plots look quite sim-
ilar, but not totally the same. Each network gives a bistable system when the input stimulus is close to the value of 
the opposite fixed bias (indicated by the dashed lines of Fig. 7B). The width of this bistable region, however, differs 
between networks. We compare the overall shape of the response by computing the summed Wasserstein metric47 
(also known as the “earth-mover’s distance”, EMD) between each pair of networks and mapping these into a 2D 
space (Fig. 7C). This reveals that AM is quite different from GW, NCC and MI, but AM, SI, CCr and NCC line up 
on a single line following their increasing complexity.
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Figure 6. Complexity improves overall performance of the cell cycle switch. The performance of different 
networks was evaluated by calculating the standard deviation of the main molecular states (x0 or z0, depending 
on the network) over time. Standard deviations are calculated via numerical integration of the chemical master 
equation (CME) using the Visual GEC software, and via numerical integration of the central limit 
approximation (CLA) in Matlab. We investigate switching in one direction or the other by providing different 
initial conditions that settle (more likely) in different steady states. (A) In the forward direction, principal 
molecular states were initialised at 2 copies, and complementary molecular states were initialised at 1 copy, as 
shown in Fig. 2C and Fig. 5B. (B) In the reverse direction, principal molecular states were initialised at 1 copy, 
and complementary molecular states were initialised at 2 copies.
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Effects of extrinsic noise. Our results so far suggest that the complexity of a network determines how it 
responds to intrinsic noise caused by low molecule numbers. In real biological systems the external conditions 
fluctuate as well, resulting in extrinsic noise that could be captured by variations in the rate constants of the mod-
els48. So far in all our models we have used unity rates for all reactions; next we test how the different networks 
respond to noise applied to the reaction rates.

In Fig. 8 we show that, with respect to the basal models (with unit rates), the same level of parameter varia-
tion49,50 leads to smaller deviations in the more complex networks49,50. To simulate extrinsic noise, the reaction 
rates are randomly sampled from Gaussian distributions with mean 1 and standard deviation 0.5. The total size 
of the perturbation is then quantified using the metric in Ref. 49, which takes the sum of the deviations on a log-
arithmic scale. By combining parameter perturbations into a single quantity, networks with different numbers of 
parameters can be easily compared, though networks with more parameters naturally have a larger total param-
eter variation. The perturbed system is simulated using hysteresis harnesses (as in Fig. 7A), then compared with 
the equivalent behavior from the basal rates, again quantified using the Wasserstein metric (see S5 Appendix). 
This approach resembles classical sensitivity analysis in that we quantify the magnitude of the response to param-
eter perturbations. However, by generating the perturbations with random variables (taken from a fixed distribu-
tion for all parameters), the sensitivity measure is a probability distribution. In Fig. 8B, we use summary statistics 
to conveniently compare the sensitivity of the networks. Specifically, the mean and standard deviation are com-
puted over all 250 random perturbations. Note that we do not attempt to normalize by the number of reactions/
parameters. Interestingly, we see that the six-component NCC and, to a lesser extent, the two-component MI net-
works are more robust to extrinsic noise than the one-component AM, while other multi-component networks 
are considerably less robust than AM (Fig. 8). Thus, complexity can help to reduce extrinsic noise, but the actual 
structure of networks is crucial.

d

c

x

d

c

z
s

r
y

p

q

A

B C

Hysteresis harness, c

GW

0 0.5 1 1.5
0

1

2

3

AM

0 0.5 1 1.5
0

1

2

3

AM

MI

0 0.5 1 1.5
0

1

2

3
SI

0 0.5 1 1.5
0

1

2

3

CCr

0 0.5 1 1.5
0

1

2

3
NCC

C
op

y 
nu

m
be

r f
or

 x
0or

 z
0

NCC

0 0.5 1 1.5
0

1

2

3

AM

MI

SI

CCr

GW

NCC

Figure 7. Hysteresis in cell cycle networks. The response to varying input against opposing fixed bias was 
evaluated as in Ref. 7. (A) The networks were placed in hysteresis harnesses, with a stimulus c pushing the 
switch the one steady-state, and an opposing bias d pushing towards the other steady-state (see Figure S4.1 
for additional networks). (B) The stationary distribution was computed by integrating the chemical master 
equation for 100 time units, fixing bias d at 0.5 (indicated by the dashed black line), and varying stimulus c in 
the interval [0,1.5]. (C) The networks were compared by computing a summed Wasserstein metric between 
each pair of networks. The metric scores were then mapped onto a 2d space using classical multidimensional 
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Discussion
We have investigated similarities and differences between robustly switching networks of various complexity. A 
common feature of all the networks is that they contain at least two positive feedback loops, which are important 
for their efficient switching dynamics51,52. We have shown that with corresponding initial conditions all investi-
gated networks show exactly the same average behavior. Moreover, this property extends to different, correspond-
ing, choices of reaction rates. We summarize this kinetic matching between networks by saying that the larger 
networks emulate (deterministically) the smaller networks7.

The fact that CCr emulates AM provides the simplest explanation of the core structure of the G2/M cell-cycle 
switch. That is, it shows that the (mysterious) double-negative and double-positive feedback loops found in the 
control of Cdk activation53 produce a switching function that is robust and asymptotically optimal: those are 
known theoretical properties of AM, which CCr can emulate exactly. Many other biological switches contain a 
similar two-positive-feedback loop structure. AM has the exact same structure as the epigenetic switching net-
work of nucleosome modification34. SI resembles the asymmetry regulating switch in fission yeast’s Septation 
Initiation Network13. Many other symmetry breaking systems are controlled by similarly wired networks with 
various levels of complexity.

Given that baseline of kinetic similarity in mean behavior, we have shown that more complex networks are 
better in coping with both intrinsic and extrinsic noise. Intrinsic noise tends to decrease with complexity, and 
extrinsic noise tends to have less impact. To be clear, the absolute noise (the variance, or standard deviation) 
increases in absolute terms with increasing molecular numbers, as can be seen in Fig. 4 for AM, and in fact it is 
known that noise in protein levels scales with mean protein abundances54. At the same time, the relative noise, or 
more precisely the signal-to-noise ratio, or coefficient of variation, which is given by the ratio of mean to standard 
deviation, decreases with increasing molecular number. We have compared networks of different complexity 
were all the species are kept at the same identical levels, and where the more complex networks just have more 
species (and higher total molecular numbers). We have shown that in those comparable conditions the more 
complex networks exhibit less absolute intrinsic noise for each species, and less overall variation in response due 
to extrinsic noise.

It has been argued that in highly optimized biological systems there is a trade-off between robustness (such 
as robustness to perturbations) and performance, while at the same time there is an evolutionary requirement 
for both1. The cell cycle is surely optimized for biomass production, and presumably operates on the “efficient 
frontier” of that trade-off55. Further, the cell cycle switch implements a computationally optimal algorithm; hence 
it seems that its performance has not been fundamentally compromised. If performance is held high, then the 
main way to increase robustness of a system may be to increase the complexity of the biochemical network. This is 
precisely what we observe in the relationship between the current network of the cell cycle switch and potentially 
simpler and more ancient versions: performance is maintained, while complexity and robustness is increased. 
Robustness here can be intended both as resistance to point failures, and resistance to noise.

The real cell cycle switch is likely even more complex than our most detailed model (NCC), but must have 
originated from some simpler network. Larger networks are obviously more expensive to maintain, even just 
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by varying the reaction rates of each basal model. (A) The extent of 250 reaction rate variations was quantified 
using the metric in Ref. 49. Variations in network behavior were assessed in comparison to the behavior of 
the default parameterization, in which all reaction rates are set equal to 1, by simulating the networks under 
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considering the total number of proteins that must be synthesized. Hence, complex networks are less of a burden 
in situations where resources are not a problem. Based on this we suggest that complex networks are selected to 
control crucial biological switches in energy rich conditions. In that respect, cell cycle transitions are essential for 
reproduction and nutrient sensing pathways, where various mechanism ensure that these transitions happen only 
in good environmental conditions56. Thus, the cell cycle switch perfectly matches the conditions that can support 
complex networks. Conversely, complex networks tend to reduce noise level, and hence for a fixed noise level that 
can be tolerated, they can support economizing on protein levels.
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