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Stable Grip Control on Soft Objects With Time
Varying Stiffness

Thrishantha Nanayakkara, Member, IEEE, Allen Jiang, Student Member, IEEE, Maria D.
Rocio Armas Fernandez Student Member, IEEE,, Hongbin Liu, Member, IEEE, Kaspar Althoefer, Member, IEEE,

and Joao Bimbo Student Member, IEEE,

Abstract—Humans can hold a live animal like a hamster
without overly squeezing despite the fact that its soft body
undergoes impedance and size variations due to breathing and
wiggling. Though the exact nature of such biological motor
controllers is not known, existing literature suggests that they
maintain metastable interactions with dynamic objects based on
prediction rather than reaction. Most robotic gripper controllers
find such tasks very challenging mainly due to hard constraints
imposed on stability of closed loop control and inadequate rate
of convergence of adaptive controller parameters. This paper
presents experimental and numerical simulation results of a
control law based on a relaxed stability criterion of reducing the
probability of failure to maintain a stable grip on a soft object
that undergoes temporal variations in its internal impedance.
The proposed controller uses only three parameters to interpret
the probability of failure estimated using a history of grip forces
to adjust the grip on the dynamic object. Here we demonstrate
that the proposed controller can maintain smooth and stable
grip tightening and relaxing when the object undergoes random
impedance variations, compared to a reactive controller that
involves a similar number of controller parameters.

I. INTRODUCTION

To date, one of the main challenges encountered in the
field of robotics is to maintain the performance of controllers
in an uncertain environment [1], [2], [3]. Uncertainty of
the environment often causes the dynamic interactions to be
metastable, wherein the states remain within a safe region most
of the time, with a guarantee that there will be an instance
where they depart that region given sufficient time. Grasping
tasks on variable stiffness soft objects like holding a pet
hamster and holding a pulsating tissue during surgery fall into
this class. Control actions on such metastable grasps should
be assessed based on their ability to keep the probability of
failure low rather than traditional strict asymptotic stability
criteria used in robust controllers.
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In [4], the authors have shown that the human brain learns
internal models of the environment even in the presence of
random disturbances. This highlights the importance of an
internal mechanism to predict the consequences of the efferent
motor commands even when the environment is variable.
Adaptive predictive control in force field learning tasks [5]
also show how the human motor system changes predictive
forward models when the task dynamics change. Work done on
human subjects in grasping tasks [6] show that the uncertainty
of an object leads to variability even in the hand reaching
trajectories. The above findings show that human motor system
uses internal models of the past experiences with an object
to make predictive decisions rather than being reactive in a
variable environment. In robotics, such predictive methods
based on the estimation of impedance parameters of the
environment are proposed in disturbance observers [7] and
linear estimation of environment’s impedance parameters [8].
However, the performance of these methods depends on the
adequacy of the speed of convergence of model parameters
relative to the rate of change of object’s impedance parameters
[9].

Solutions to manipulation in uncertain tasks such as non-
linear model tracking for flexible arms with parametric un-
certainty [10] [11], sliding mode control of robotic arms
in uncertain environments [12], and time varying impedance
center to adaptively change the desired impedance [13] impose
a demanding computational burden on the real-time controller.
Hybrid position/force control has been established by groups
such as the NASA Jet Propulsion Laboratory (JPL), where
in [9], a set of stability criteria were made for a known
manipulator on a variable environment. However, the authors
agree that a trade-off between stability and accuracy of control
exists.

2D and 3D imaging has been used to determine optimal
grasping locations on a target object of uncertain shape [14]
and [15] uses vision when the object is deformable. However,
vision cannot provide a solution to objects that undergo
internal impedance variations. Other groups use active sensing,
with [16], [17], [18] employing tactile sensors on the fingers
and [19] examining joint torques to develop a model of the
uncertain object. The third approach is to use historical data
or learning to develop better grasps. This approach ranges
from object templates with pre-calculated optimal grasps [20]
to primitives and reinforcement learning [21]. A method to
control the grasp force on a rigid object based on past
knowledge of stick-slip distributions has been proposed in
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Fig. 1. The Barrett hand gripping a variable object in three different scenarios.
A) The variable impedance object is pulled against a counter force (e.g. a
pulsating artery is pulled by a robotic gripper in a minimally invasive surgery).
B) The object is rotated against counter torque (e.g. a lung tissue is twisted
by a robotic gripper to open a site covered by it in a minimally invasive
surgery, twisting a doorknob, wringing a wet towel, or turning a key, where
the stiffness is not uniform over the twisted angle). C) The object changes
diameter by inflation.

[22]. Including our recent work [23], methods to identify
parameters of friction models by interacting with rigid objects
have been studied elsewhere [24]. However, to the best of
our knowledge, this is the first time a mathematical model is
proposed to control the grip forces on a variable impedance
object by estimating the probability of failure. We presented
the preliminary work in [25]. In this paper, we provide new
derivations to establish a criterion to reduce the probability of
failure, and provide extensive analytical results.

In this paper, we propose a novel controller that uses a
realtime estimate of the standard deviation of a pinch grip
force on a variable stiffness soft object to compute a biased
probability of failure in order to adjust the level of grip.
The proposed controller uses only three design variables -
1) a bias parameter that determines the relative gradient of
grip tightening vs relaxing when the probability of failure
increases vs decreases, 2) a safety threshold parameter that
determines the buffer added on top of a critical grip force
to maintain safe grip forces when the object goes through
stiffness variations, 3) a sensitivity parameter that determines
the rate of grip update when the probability of failure varies.
Therefore, this proposed controller is simple enough to be
compared with a PID controller of three parameters except
that the proposed controller allows a designer to 1) bias
the sensitivity to increases and decreases of the probability
of failure, 2) take the historical behavior of the object into
account to update the computation of the probability of failure,
whereas in a PID controller there is no bias for positive or
negative errors nor any regard for the historical behavior of
the object to interpret grip force errors.

The rest of the paper is organized as follows. Section II
defines the problem and provides analytical insights into the
derivation of the grip controller on a variable impedance
object. We show numerical simulation and experimental results
with comparisons to confirm the effectiveness of the proposed
method in section III. Finally, section IV provides concluding
remarks.

II. PROBABILISTIC EXPECTATION OF FAILURE AS A
FEEDBACK SIGNAL TO CONTROL GRIP FORCE

The problem addressed in this paper is to maintain a pinch
grip without any resort to use form closure on a soft cylinder
with stiffness and damping parameters undergoing random
variations. Real-life applications can range from holding a
pulsating artery during minimally invasive surgery, holding
live animals like hamsters, to industrial maintenance of liquid
transporting tubes. In our numerical simulations we limit
the impedance parameter variation to a Gaussian distribution.
However, we show that the controller performs well even in a
non-Gaussian scenario.

Figure 1 shows three scenarios of manipulating a variable
cylinder. In the case of pulling a cylinder against a linear spring
of stiffness Kl by a length l in Figure 1 (A), the tangential
friction force Ft should meet the condition given by

Ft ≥ Kl l

Fn ≥ Kl l
µ

(1)

where, µ is the coefficient of static friction.
In the case of rotation of a cylinder of nominal diameter D

against a spring of stiffness Kθ in Figure 1 (B), the tangential
friction force Ft at a gripper finger gap d (d ≤D) and rotation
θ , should meet the condition given by

Ft(D−d) ≥ Kθ θ

Fn ≥ Kθ θ

µ(D−d)
(2)

In the variable radius case in Figure 1 (C), gravity Fg pulls
the cylinder. Thus, the condition is given by

Ft = Fg/2

Fn ≥
Fg

2µ
(3)

Therefore, the common criterion to maintain grip is given
by

Fn ≥ F∗n (4)

where, F∗n is a critical normal force that should be determined
apriori. Any controller using a reference point, such as PID,
requires us to know this critical force F∗n that can be easily
determined using few apriori experimental trials and updated
every time a grip failure occurs. In the experiments, we first
obtain an initial estimate by gripping the object with finger
aperture set at the nominal diameter of the object. The robot
holds the object that undergoes random inflation/deflation
without any grip control till a failure occurs. We take the force
at grip failure to be the initial estimate of F∗n .

A. Computing a probability of failure for a pinch gripper

The gripping of a variable impedance object is a metastable
task, wherein the system is not always truly stable due to the
random variations within it. Thus, the Lyapunov type stability
does not strictly apply to this class of systems, making a formal
proof for stability difficult to address.



Let V (k) = P(k)2 be a candidate positive definite Lyapunov
function, where P(k) is the probability of failure at sample
step k. Then for stability, V (k)−V (k−1) < 0 for all k. This
leads to the condition:

P(k)2−P(k−1)2 < 0
P(k) < P(k−1) (5)

This Lyapunov requirement for a monotonic reduction of the
probability of failure can never be guaranteed in a metastable
system, and is in fact not needed. Instead, we use a relaxed
condition like keeping the probability of failure below a given
threshold.

Let us assume that normal force Fn exhibits a Gaussian
variation given by

g(Fn) =
1√

2πσFn

exp

(
− (Fn− F̄n)

2

2σ2
Fn

)
(6)

where F̄n is the expected value of Fn and σ2
Fn

is the variance
of Fn in a general case where the nominal diameter of the
tube D, and the distance between the fingers of the gripper d
undergoes variations such that d ≤ D.

Then, the probability of the normal force Fn falling below
a β distance from the critical force F∗n , is given by

P(Fn < F∗n +β ) =
∫ F∗n +β

0
g(Fn)dFn (7)

The limits of equation (7) can be re-written as given by

P(Fn < F∗n +β ) =
∫ (

F∗n +β

2 )+(
F∗n +β

2 )

(
F∗n +β

2 )−( F∗n +β

2 )
g(Fn)dFn (8)

Following the mean value theorem of definite integrals of
Gaussian density functions [30], there is an ε (0 < ε < β ),
so that the above integral in equation (8) can be simpli-
fied to the difference between the limits of the integral[(

(F∗n +β

2 )− (F∗n +β

2 )
)
−
(
(F∗n +β

2 )+(F∗n +β

2 )
)
= F∗n +β

]
multi-

plied by g(ε) as given in

P(Fn < F∗n +β ) =
F∗n +β√

2πσFn

g(ε) (9)

It should be noted in equation (7) that β can inflate the
probability of ”failure” by providing a conservative margin on
top of the true failure point when Fn falls below the critical
force F∗n . Moreover, β serves as a correction for the uncer-
tainty of experimental estimation of F∗n . In the experiments, we
estimated the critical force F∗n by gradually relaxing the grip
on the variable impedance object till the object was dropped.
We took the average of the grip force just before the failure
as an initial estimate of the critical force. Findings on how
humans manage grip forces during in-hand manipulation of
objects indicate that the brain uses internal models of the
object dynamics to estimate safety margins for grip forces that
are updated during manipulation [29]. Here, in this case, our
initial guess of F∗n somewhat similar to that process. However,
a machine learning approach based on a Bayesian model to
update F∗n will be the focus on future research.

Now let us consider an arbitrary feedback controller in the
form given by

d(k+1) = d(k)+ηz (10)

where d is the distance (aperture) between the two fingers,
η is the grip adaptation rate, and z is an arbitrary feedback
variable related to the probability of failure.

Then, this control law will lead to a stable grip if the
expected value of grip force over a finite horizon increases
when the probability of failure increases and vice versa.

Let us apply the control law on an object with a variable
internal stiffness K.

The grip force at time k and k+1 are given by

Fn(k) = K(k)(D−d(k)) (11)

Fn(k+1) = K(k+1)(D−d(k+1)) (12)

Substituting d(k+1) from equation (10) in (12),

Fn(k+1) = K(k+1)(D− (d(k)+ηz))

= K(k+1)((D−d(k))−ηz) (13)

By subtracting equation (13) from (11), we obtain the incre-
mental force given by

∆F = (∆K)(D−d(k))−K(k+1)ηz (14)

Taking the expected value of both sides of equation (14),

E [∆F ] = E [(∆K)(D−d(k))]−E [K(k+1)ηz] (15)

Since stiffness variation is independent from grip aperture, we
can write equation (15) as given by

E [∆F ] = E [∆K]E [(D−d(k))]−ηE [K(k+1)z] (16)

Assuming the stiffness variation of the object follows a Gaus-
sian distribution, E [(K(k+1)−K(k))]≈ 0 for a finite horizon.

Then equation (16) can be re-written as

E [∆F ] = −ηE [K(k+1)z] (17)
= −ηE [K(k+1)]E [z]

= −ηKE [z]

where K is the expected value of tube stiffness, which is a
positive value.

Therefore, in order to obtain a positive expected value for
the incremental force when the probability of failure increases,
and vice versa, we can write z as given by

z =−(P(Fn < F∗n +β )−δ ) (18)

where 0 < δ < 1 is a controller design parameter to choose
how conservative the control effort should be. For instance,
if δ is chosen to be small, then the controller is ”stricter”,
requiring a very low probability of failure to relax the grip. In
other words, δ biases the controller to interpret the probability
of failure to take a decision to increase or decrease the grip.

Hence by substituting z from equation (18) in equation (10),
the final stable controller is given by

d(k+1) = d(k)−η(P(Fn < F∗n +β )−δ ) (19)



−3 −2 −1 0 1 2 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x = (F n−(F ∗

n+β ) )
√

2σ F n

1 2
[1

−
e
r
f
(x

)]

Fig. 2. Plot of the probability computation in equation (20) based on the
σFn found in the experimental results. The dashed vertical lines demarcate
the range of the input (Fn−(F∗n +β ))√

2σFn
in the experiment.

We used the standard error function for real-time computation
of the probability of failure [31] given by

P(Fn < F∗n +β ) =
1
2

[
1− er f (

(Fn− (F∗n +β ))√
2σFn

)

]
(20)

where er f stands for the error function, which is related
to the cumulative distribution or the integral of the stan-
dard normal distribution. Figure 2 shows the shape of
1
2

[
1− er f ( (Fn−(F∗n +β ))√

2σFn
)
]

in equation (20) for the σFn found
in the experimental data for the grip force Fn. Since β > 0
inflates the probability of failure, P(Fn < F∗n +β ) serves as a
likelihood of failure. It becomes an instantaneous probability
of failure when β = 0. The major advantage of this controller
is that it does not require to know the impedance parameters of
the object. Rather, a memory of past normal forces is enough
to compute the variance of interaction forces. In this case,
we took the whole history of forces up to any given time to
compute σFn since it accounts for the total range of interactions
experienced by the gripper. We set the grip adaptation rate to
be η = 0.0001 in this case.

Now, let us investigate the relationship between the upper
bound of the safety margin β and the standard deviation of
the variability of the experienced normal force σFn .

We take the derivative of the probability given in equation
(9), given by

∂P(Fn<F∗n +β )
∂σFn

=
∂

∂σFn

[
F∗n +β√

2πσFn

exp

(
− ε2

2σ2
Fn

)
+Fn

]

=
F∗n +β√

2πσ2
Fn

exp

(
− ε2

2σ2
Fn

)
γ (21)

where γ = (
ε2−σ2

Fn
σ2

Fn
) and Fn is the expected value of the grip

forces so that ∂Fn
∂∂σFn

= 0.

Equation (21) shows that the probability of failure for a
given safety margin β decreases when σFn increases, only if
∂P(Fn<F∗n +β )

∂σFn
< 0. Since F∗n +β√

2πσ2
Fn

exp
(
− F2

n
2σ2

Fn

)
> 0, ∀β > 0, ∀ε

in equation (21), this condition can be satisfied if γ < 0.
This leads to the condition ε ≤ σFn . Since 0 < ε < β , this

condition for a stable grip can be guaranteed by β ≤ σFn .
Based on the above insights, we propose that an estimate

of the probability of failure in equation (9) for β > 0, can be
used as a feedback signal to control the grip on the variable
impedance object. Moreover, we set δ = 0.3 in the following
numerical simulations and experiments.

The proposed controller was compared with a PID control
law given in equation (22) (for simulations) for different
settings of parameters.

d(k+1) = d(k)+

[
PsimFe +DsimḞe + Isim

i=k

∑
i=0

Fe

]
(22)

where, Fe = (Fn− (F∗n +β )), Psim, Dsim, and Isim are P-gain,
D-gain, and I-gain used in the simulations, i is the sampling
step count, and k is the present sampling step.

We used the same PID control law in the experiments. For
clarity, we use different notations for PID parameters as shown
in equation (23).

d(k+1) = d(k)+

[
PexpFe +DexpḞe + Iexp

k

∑
i=0

Fe

]
(23)

where, Pexp, Iexp and Dexp gains were experimentally set to
0.35, 0.02 and 0.02 respectively, for best performance.

III. RESULTS

Before proceeding to results, let us discuss the essential
difference between the proposed controller given in equation
(19) and the PID controller given in equations (22) for sim-
ulation and (23) for experiments. In the proposed controller,
the error of a given grip force Fn compared to a reference
F∗n +β is given a context dependent interpretation using the
probability of failure that changes depending on the shape
of the Gaussian distribution of Fn itself. However, in PID
control, the grip force error is given a uniform meaning across
different contexts of the object. Moreover, the parameter δ in
the proposed controller allows a designer to change the bias
of the controller to grip or relax with the changes of failure
probability reduces. For instance, lower values of δ will make
the controller grip more when the failure probability increases,
but relax less when failure probability reduces by the same
amount. PID controller does not allow us to design such a
bias.

A. Simulation results

Algorithm 1 shows the procedure taken to simulate the
proposed controller and the PID controller under different
conditions. The actual servo control details of the Barrett hand
were not available. Therefore, lines 19 and 20 of algorithm
1 model the internal servo controller of the motors used to
control the robotic gripper.



Algorithm 1 Algorithm for pinch grip control on a soft object
with variable impedance and nominal diameter

1: <Initialize parameters>
2: Set parameters in the first column of table I
3: <Initialize variables>
4: x← (D−a) . Desired compression of the soft

object. Set initial a = 20 mm.

5: x̂← x . Set current compression real-
ized by the robot x̂ to be x.

6: Fn← Kx+Cẋ . Compute grip force
7: for <Set length of time> do
8: if time = n/ f then . Frequency f as in table I, n =

1,2,3, · · · .
9: K← N(K̄,σ2

K) . N() is the normal random num-
ber generator.

10: C← N(C̄,σ2
C)

11: D← Do +ζ (K− K̄) . ζ = 0 if D is uniform.
ζ = 10−5 for moderate
variability in D.
ζ = 5 × 10−5 for high
variability in D.

12: end if
13: Compute σFn from the history of Fn.
14: Compute P(Fn < F∗n +β ) in eq. 19 using the error

function.

15: Update a from eq. 19 if proposed controller is
simulated

16: Update a from eq. 22 if PID controller is simulated
17: x← (D−a) . Desired compression
18: e = x̂− x . Compute the grip error
19: Simulate the robot’s grasp controller using the state

equation ė = Ae+Bu, where A = −K/C, B = 1/C,
and u is the control command.

20: Compute u =−Ge . G is the optimal gain obtained
from the linear quadratic regu-
lator function in Matlab

21: x̂← x+ e . Obtain e by integrating ė
22: if Time = 10 sec then
23: Change K̄, σ2

K , C̄, σ2
C, and f to the second

column of table I

24: end if
25: if Fn < F∗n then
26: Terminate . Grip force is not enough
27: end if
28: end for

1) Statistical summary of the behavior of the proposed con-
troller and the PD controller for a variable impedance cylinder
with variable nominal diameter: The following table I shows
all the relevant parameters found from the experimental results.

TABLE I
SIMULATION CONDITIONS.

Tube variables First 10 sec Second 10 sec
Impedance variation frequency ( f ) 0.5 Hz 1 Hz
Average stiffness (K̄) 263.3 N/m 259.3 N/m
Standard deviation of K (σK ) 19.3 N/m 30.8 N/m
Average damping C̄ 1571.9 Nsec/m 1535.6 Nsec/m
Standard deviation of C (σC) 218.62 Nsec/m 344.56 Nsec/m
Initial diameter of the tube Do 24.63 mm 24.63 mm
F∗n 1 N 1 N
η 1×10−4 1×10−4

We conducted simulations for a range of possible levels of
variability of D for the conditions shown in table I to quantify
the average time taken to failure and its variability. In this
study, we conducted 100 trials for a given level of variability
of D. This was repeated for 20 levels of variability in D.
Simulation time was limited to 20 seconds to highlight the
behavior around the 10 second mark where the tube stiffness
variation frequency changes from 0.5Hz to 1Hz. Therefore
flat failure time at 20 seconds in some plots correspond to
”infinite” failure time for practical purposes. The integral gain
Isim was set to zero in all simulations because there is little
interest in the steady state accuracy in this application where
the tube frequently undergoes stiffness variations. From figure
3, we can notice that the time to failure reduces with increasing
standard deviation of variations in D. It should be noted that
the performance significantly improves with a reduction of δ

from 0.3 to 0.2 for β = 1 (p < 0.006, multivariate ANOVA
test). If we consider 10 sec as a reference point of failure,
where the frequency of impedance variation transits from a
low 0.5 Hz to a high rate 1 Hz, we notice that the case of
δ = 0.2 can afford to have a standard deviation of D at 2.3
mm in contrast to 1.4 mm in the case of δ = 0.3. We also
note that the improvement is not linear. When the variability
of D increases, the improvement due to a reduction of δ makes
relatively higher improvements at larger variability of D.

Obviously, the effect of β on the performance is very
significant (p < 0.001, multivariate ANOVA test). An increase
of β from 1 to 2 manages to keep the time to failure above 10
sec for both cases of δ . The multivariate ANOVA test showed
that there is no statistically significant influence from the
interaction effect between δ and β on the failure time (p> 0.1,
multivariate ANOVA test). This finding also highlights that β

and δ can be treated as two independent parameters in the
controller. In general, these observations further confirm the
effectiveness and flexibility of the proposed controller that
allows to give a relative interpretation to the probability of
failure by choosing appropriate levels of δ and β .

Figure 4 shows how the time to failure behaved for different
values of the grip adaptation rate η . We notice that when
it reduced from η = 0.0005 to 0.0001, the curve shifted up
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Fig. 3. Behavior of time to failure for the proposed controller on a soft
tube that undergoes temporal impedance variation with different levels of
variability in D. Each error bar corresponds to 100 trials. For each pair of δ

and β , batches of 100 trials were repeated for 20 levels of variability in D
for F∗n = 3N. The cyan horizontal dashed line shows the time at which the
frequency of impedance variation changed from 0.5 Hz to 1 Hz.

significantly (p < 0.00001, Mann-Whitney U-test for non-
Gaussian distributions). However, when it further reduced to
0.00005, the curve did not show a statistically significant
upward shift (p > 0.5), though there is a slight visual effect
of shifting upwards. When it reduced to 0.000001, the curve
started to shift downwards. These observations suggest that
the grip adaptation rate η does have a significant effect on the
failure rate when it is at a high range η > 0.0001, and the
sensitivity drops in a large range of small values 0.000001 <
η < 0.0001. However, this range also depends on the randomly
varying object itself. Therefore, our recommendation is to tune
this design variable starting from a small value.

In figure 5 we notice that the stability of the PID controller
reduces at high variability in the nominal tube diameter on
top of the variation in impedance parameters. The stability
improves for low Psim and Dsim parameters, though it settles
down at a maximum level of stability. Multivariate ANOVA
test showed that the Pgain does not have a statistically signif-
icant impact on the time to failure (p > 0.3), while the Dgain
does (p < 0.008).

Comparing the ”infinite” time to failure regions (the flat
region of certain curves) we notice that the best case in figure
4 for the proposed controller extends to 1.7 standard deviation
of D whereas that in figure 5 for the PID controller is 1. This
shows superior stability of the proposed controller.

B. Experimental results

Figure 6 shows the experimental setup where the variable
stiffness tube was gripped by a ROS-operated Barrett hand
with two ATI Nano17 F/T sensors attached to the fingers. Two
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δ = 0.3, β = 2N, η = 0.0005

δ = 0.3, β = 2N, η = 0.0001

δ = 0.3, β = 2N, η = 0.00005

δ = 0.3, β = 2N, η = 0.000001

Fig. 4. Behavior of time to failure for the proposed controller for different
values of η for δ = 0.3 and β = 2 N. All other conditions were identical to
those in figure 3.

variable stiffness tubes were tested, with different stiffness
properties. In all experiments, the controllers were run at
100Hz. The custom fingertips have been developed in [26].
The finger consists of a 6-axis force/torque sensor (ATI
Nano17, resolution = 0.003 N, sampling rate = 100 Hz) and
a hemispherical fingertip. The fingertip was made of the rigid
ABS (Acrylonitrile butadiene styrene) plastic material and has
a diameter of 18 mm. A contact sensing algorithm to allow the
fingers to accurately estimate the instantaneous friction force
and the normal force was developed in [26]. The estimation
errors of normal force and friction force were less than 0.04N
for the rigid finger. It has also been shown in [27], the contact
sensing algorithm can also be extended to fingertip covered
with soft layers, allowing the proposed controller work for
compliant fingertips as well.

We show experimental results of two rubber tubes that
were randomly inflated and deflated, changing its internal
impedances, using an air compressor and an SMC ITV0030-
3BS-Q pressure regulator. The internal pressure varied be-
tween 0 kPa and 217 kPa (gauge pressure), changing its di-
ameter and stiffness according to random inputs that followed
a Gaussian distribution.

Since the standard deviation of the variation of diameter
of both tubes were found to be in the range 0.7− 1.2, we
conducted experiments with δ = 0.3 and F∗+ β = 2N was
chosen after several experiments.

The distance between the contacts was obtained from the
forward kinematics of the Barrett Hand together with the
contact sensing method described in [28].

In order to evaluate the performance of the proposed con-
troller, a comparison was made to a tuned PID controller.
The main reason as to why we use a PID controller to
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Fig. 5. Behavior of different PID grip force controllers for various levels
of variability in the nominal tube diameter in addition to Gaussian variation
in impedance parameters. For simplicity, Isim was set to zero. Each error bar
corresponds to 100 trials. For each pair of δ and β , batches of 100 trials
were repeated for 20 levels of variability in D. The cyan horizontal dashed
line shows time at which the frequency of impedance variation changed from
0.5 Hz to 1 Hz. The exponent 1e−N denotes 1×10−N

Fig. 6. Experimental Setup Diagram

compare results is that it has a comparable number of pa-
rameters, whereas many other more complicated controllers
like adaptive-predictive controllers use larger number of pa-
rameters that have to be manually tuned or adapted real-
time. Moreover, the order selection (the number of historical
samples of the state to be used to make a prediction) of those
controllers require a lot of effort. Therefore, by using a PID
controller which too requires tuning of parameters, we can
compare the performance of the proposed controller given
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(A) Tube-1, proposed Controller

Average: 75.1, Median: 70.04, Std: 42.05
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(C) Tube-1, PID Controller

Average: 70.96, Median: 67.26, Std: 42.24
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(D) Tube-2, PID Controller

Average: 51.61, Median: 44.84, Std: 35.01
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(B) Tube-2, proposed Controller

Average: 47.05, Median: 41.47, Std: 32.76

Fig. 7. Overall distribution of pressure variation in each tube under the
proposed and PID controllers.

comparable user-friendliness.
The input for both controllers was the normal force, ob-

tained through an intrinsic tactile sensing scheme [28]. The
command on the robot fingers was a velocity command, which
is converted to a motor torque by the Barrett Hand’s internal
micro-controller.

The proposed controller was tested in 66 trials for tube-1
and 38 trials for tube-2, and the PID controller was tested in
9 trials for the tube-1 and 12 trials for tube-2. In each trial,
the frequency of variation of internal pressure of the tube was
increased in steps and then decreased in the same steps to
test the performance of the grip controllers under different
statistical conditions. However, there was no statistically sig-
nificant difference in the overall variability of pressure (figure
7, p > 0.5, Mann-Whitney U test) between the two controllers
for each tube.

The standard deviations of the nominal tube diameters
corresponding to the pressure distributions in figure 7 were
3.23, 2.71, 2.19, and 2.27, for the tube-1 under proposed
controller, tube-1 under PID control, tube-2 under the proposed
controller, and for the tube-2 under PID control. Therefore, the
experimental conditions fall within the upper range of vari-
ability in nominal tube diameter considered in the simulations
(figures 3, 4, and 5).

Figure 8 shows the experimental results for the proposed
controller in a representative trial. The proposed controller
did not fail in all 66 trials on the tube-1. Subplot (A)
shows how the frequency of tube pressure was changed from
2→ 4→ 8→ 4→ 2 Hz. The corresponding pressure profiles
are shown in subplot (C) that varies with a mean 75.1kPa
and a standard deviation of 42.05. Subplot (B) shows the
estimated probability of grip failure. It should be noted that
the probability of failure in this case is an inflated estimate
of the true probability of failure due to the use of β in the
calculation. Therefore, a failure probability of 1 does not mean
a certain failure. This is also evident in the fact that all grip
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Fig. 8. A representative trial for the tube-1 under the proposed controller.
The red dashed vertical lines mark where the changes in the frequency of tube
pressure variations occur. In subplot (E) the left and right y-axes correspond
to the grip force and its standard deviation respectively. The red dashed
horizontal line shows the critical force. The black dashed line shows the
variation of the standard deviation of the grip force.
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Fig. 9. A representative trial for tube-1 under the PID controller. The red
dashed vertical lines mark where the changes in the frequency of tube pressure
variations occur.

forces in subplot (E) are well above the threshold even where
the failure probability is high. The variation of σFn shown
in subplot (E) was computed using a moving window of 500
samples. From figure 8 (E) we can see that sudden large peaks
of grip force increases σFn that leads to higher sensitivity of
failure probability estimates (see equation (20) and figure 2)
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Fig. 10. A representative trial for tube-2 under the proposed controller. The
red dashed vertical lines mark where the changes in the frequency of tube
pressure variations occur.
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Fig. 11. A representative trial for tube-2 under the PID controller. The red
dashed vertical lines mark where the changes in the frequency of tube pressure
variations occur.

to the drops in grip force. This leads to several subsequent
peaks in grip forces between due to the elevated sensitivity
of the grip controller given in equation (19). Subplot (D)
shows the control effort (speed command) which represents
the power consumed to control the grip. Subplot (F) shows
how the changes of this control effort are related to the
changes of probability of failure. We notice that drops of
failure probability and corresponding drops of effort are larger



than their increases.
Figure 9 shows the experimental results for the tuned PID

controller in a representative successful trial. In addition to
larger probabilities of failure in subplot (B) compared to that
of figure 8, we can also notice in subplot (F) that the change of
control effort in response to the change of failure probability is
noisier under the proposed controller. The PID controller has
no mechanism to make use of the variation of σFn (dashed
line in figure 9(E)) due to its pure reactive nature. Due to this,
subplot (B) shows higher probability of failure compared to
the corresponding plot in figure 9.

Figure 10 shows representative experimental results for the
proposed controller on tube-2. The proposed controller did
not fail. However, the corresponding results for PID controller
shows that it failed at 8Hz in this particular trial at about 70
seconds (figure 11).

The proposed controller failed 0% in tube-1, 9% in tube-2,
and the PID controller failed 0% in tube-1 and 17% in tube-2.

Figure 12 summarizes the response patterns of the two
controllers on the two tubes across all trials. The proposed
controller was tested for δ = 0.2,0.3 and 0.4 to show the
effect of this design parameter that biases the controller in
the range of failure probabilities. We can notice that the
average probability of failure for the proposed controller is
smaller for both types of tubes (0.28,0.42,0.48 for tube-
1 and 0.29,0.43,0.49 for tube-2 for the three values of δ ,
compared to 0.53 and 0.54 in the PID controller). When
δ approaches 0.5, the proposed controller approaches the
unbiased behavior of the PID controller with an accompa-
nying increase in the probability of failure. This behavior
can also be seen in figure 13 where we show the change
of control effort against the change of probability of failure.
The average control effort is the same for both controllers.
However, its variability is larger for PID compared to the
proposed controller (PID having a standard deviation of 0.07
[rad/sec] and 0.08 [rad/sec] for tube-1 and 2 while that for
the proposed controller is 0.03,0.05,0.06 [rad/sec] for tube-1
and 0.04,0.05,0.06 [rad/sec] for tube-2 for the three values
of δ ). Moreover, the incremental relationships in figure 13
show that the proposed controller has more tendency to reduce
probability of failure and accompanying reduction of control
effort at low values of δ compared to the symmetric behavior
of the PID controller. The average grip force for the proposed
controller is slightly higher for both tubes (6.02N and 6.67N
for tube-1 and 2 for δ = 0.2 compared to 4.71N and 4.48N for
the PID controller). However, we notice that the grip forces
in the proposed controller approach the PID range when δ

is increased beyond 0.3. When δ was increased from 0.2 to
0.3, the average diameter of tube-1 increased from 15.61mm
to 18.61mm indicating that the increase of δ amounts to a
relaxation of the controller. This was also true for tube-2. The
summary of all key values are given in table II.

It should be noted in figure 13 that the proposed controller
has a less noisy response to changes in failure probability
compared to the PID controller, which is also evident by the
lower variance of control effort in figure 12. This comes from

Fig. 13. Change of control effort in response to change of failure probability
in the proposed controller and that in response to change of grip force error
in the PID controller for both tubes.

the parameter δ that biases the proposed controller to tighten
the grip when the probability of failure increases but does not
relax by the same amount for the same drop in probability
of failure. This ability to control the bias gives an added
advantage to the proposed controller with just two parameters
to be tuned - β and δ .

IV. CONCLUSION

Despite many advancements in robust control algorithms,
industries still prefer to use conventional PID controllers for
robotic grippers mainly due to their simplicity and fewer
number of parameters to be tuned. This study was focused
on testing an alternative approach that uses a comparable
number of parameters that build in an ability to interpret
the grip force errors relative to its context by using an
estimate of the probability of failure given a grip force. We
showed here that the proposed controller performs better than
tuned PID controllers for a number of configurations of the
parameters. In particular, the proposed controller had a higher
time to failure when the nominal diameter of the tube was
variable on top of the variability of the internal impedance
parameters. This superior performance comes from the fact
that the probability of failure computation of the proposed
controller uses a Gaussian map from the force error to the
probability, whereas a PID controller uses the error as it is,
causing it to be reactive when the object undergoes random
temporal variations in internal impedance and nominal tube
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Fig. 12. Summary of 125 trials in total. Tube-1: 9 trials with PID and 66 trials with the proposed controller. Tube-2: 12 trials with PID controller and 38
trials with the proposed controller.

diameter. Moreover, the PID controller views the desired safe
threshold force as a reference to be maintained whereas the
proposed controller views it as a lower bound to be maintained.
This leads to the PID controller to demonstrate more symmetry
of grip forces around the average force than the proposed
controller. This poses higher risks to the PID controller when
the uncertainty of the object increases. This phenomenon is
also seen in the probability distributions of the experimental
grip forces experienced by the two controllers in figure 12.

This study was limited to a pinch grip typically used in
many industrial applications. This is the most difficult grasping
mode for a dynamic object because it does not offer the
advantage of form closure in a multi-fingered grasp. However,
this controller can be extended to a multi-fingered grasp by

treating each finger in contact with the object to form a pair
with the thumb to perform pinch grips. Then form closure
comes as an additional kinematic support. However, multi-
finger grasping is outside the scope of this study mainly
due to the fact that it is not required to demonstrate the
performance of the proposed controller. Moreover, this study
focused only the effect of stiffness variation on the controller.
There are other types of sources such as variation of the
moment created by tangential force due to more complex
deformation of soft objects. This is an interesting future area
to be studied. Since we limited our study to cylindrical objects
to clearly demonstrate the effect of stiffness variation on the
planar pinch grip controllers the ratio of the two tangential
forces had a distribution with an average 1.0002 and standard



TABLE II
SUMMARY OF EXPERIMENTAL RESULTS. THE VALUES ARE GIVEN IN (AVERAGE, STANDARD DEVIATION2) FORMAT.

Tube-1 Tube-2
Proposed controller PID Proposed controller PID

Criteria δ = 0.2 δ = 0.3 δ = 0.4 δ = 0.2 δ = 0.3 δ = 0.4
Probability of failure (0.28,0.152) (0.42,0.22) (0.48,0.222) (0.55,0.222) (0.29,0.172) (0.43,0.22) (0.49,0.192) (0.58,0.232)
Effort [rad/sec] (0.01,0.032) (0,0.052) (0,0.062) (0,0.072) (0.01,0.042) (0,0.052) (0,0.062) (0,0.082)
Grip force (Fn N) (6.02,2.852) (4.55,1.632) (4.18,1.062) (4.57,12) (6.67,3.432) (4.43,1.282) (4.21,1.112) (4.27,0.992)
Tube diameter [mm] (15.61,2.722) (17.58,2.792) (18.61,3.372) (17.93,2.712) (13.33,2.962) (14.7,2.782) (15.09,2.22) (15.01,2.272)

deviation 0.03 for the proposed controller (worse case scenario
of δ = 0.04), and that for the PID controller had an average
1.0008 and standard deviation 0.13. We can see from table II
that these variations are negligible compared to the variability
of the normal forces. However, we predict that variability of
moment can be countered by introducing the same controller
on roll of the object with a critical margin on the moment.

In the experiments and simulations, we took the moving
window of 500 past samples of grip forces up to any given
time to compute σFn since it helps to account for the total range
of interactions experienced by the gripper. A user may choose
a different size of a moving window of forces to compute
σFn . However, this has to be done without posing the risk of
making the probability of failure too sensitive to the recent
behavior of the gripper itself.

The derivations in this paper considered only the stiffness
variation of objects ignoring any effect due to damping.
However, the fact that the proposed controller was stable in
actual experiments show that the effect due to variation of
damping in the rubber tubes is reasonably negligible. However,
we would expect that any consideration of damping would
inform the selection of the grip adaptation rate η because it
determines how fast the grip adjustment should be made.

Future work for this controller includes automatic learning
the critical force. One possible approach would be to use a
prior assumption of a conservative critical force and learn
an optimum value using break-away force prediction using
our previous results [23] together with a suitable method to
estimate the parameters of a friction model [32]. Our approach
in [23] was based on the parameter identification of LuGre
friction model [33] where the sliding contact between two
surfaces is modeled as interactions of micro-elastic bristles.
The approach requires the robotic hand to perform a short
stroke haptic surface exploration to estimate the frictional
properties of the finger-object contact. The break-away friction
force is predicted at the state which results in a rapid increase
in the bristles’ displacements. A combination of the physical
model based slip prediction approach in [23] with the proposed
probabilistic approach for slip avoidance involves integrating
slip detection to the controller. It will help to counter the
uncertainty that comes from the friction coefficient itself
though it is less crucial in the case of maintaining the grip
at a given point as discussed in this paper. However, if the
gripper were to lose contact momentarily, maintaining a safe
grip at the new location may be jeopardized by an inaccurate
estimate of the friction dynamics. On the other hand, slip can
be used to estimate the friction coefficient.
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