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Abstract—There has been a rapid rise in the IP traffic
throughout the Internet which takes advantage of the already
established widespread IP infrastructure. Different suggestions
are being explored to facilitate the next-generation access net-
works via IP mechanisms, with a growing trend towards a
flat-IP structure and novel topological set-ups in the backhaul.
Aligned with this evolution, there are increasingly more user
applications flooding the Internet that calls for a consistent
routing strategy to minimize loss in data transmission. In this
paper, Multi-Plane Routing (MPR), which incorporates various
aspects in all-IP infrastructure will be studied under the new
access network structure. MPR is based on Multi-Topology Open
Shortest Path First (MT-OSPF) principle and divides the physical
network topology into several logical Routing Planes (RPs). The
offline Traffic Engineering (TE) strategy for MPR has been
optimized using a heuristic hop-constraint solution that suits
the “flattened” network realized through the incorporation of
direct communication between Aggregation Routers. With our
approach, despite of a higher number of Ingress−Egress pairs
for traffic in the access network, the number of RPs has been
kept to the desirable level whilst the reliability indicator and
the path diversity index ratio have increased up to 47% and
33% respectively. Our proposed MPR-based offline approach has
also shown improvement compared with the Multi-Protocol Label
Switching (MPLS) offline approach.

I. INTRODUCTION

THE exponential growth of Internet has turned it into

a multi-faceted collaborative environment connecting a

wide range of users. The emergence of exciting new devices

along with new highly demanding applications have put even

more burden on the Internet. Today, Internet is still best-effort,

this means that with the advent of high speed links, IP Network

Providers (INPs) have increasingly adopted bandwidth over-

provisioning strategy [1]. It is essential for the INPs to apply

Traffic Engineering (TE) in order to deal with both inter-

and intra-domain traffic, aimed at improving the network’s

performance. IP is now the dominant internetworking protocol

and with the rapid rise in the IP-based applications combined

with faster radio access technologies throughout the Internet;

cellular wired backhaul and Internet access based network

designs are converging on the IP-based infrastructure model.

Currently, most access networks use Multi-Protocol Label

Switching (MPLS) [2] which delivers services over a dedicated

single infrastructure through creating Labelled Switched Paths

(LSPs). In MPLS, the scalability and robustness become an

issue due to the complexity and overhead associated with

building and maintaining LSPs to which flows are mapped.

Open Shortest Path First (OSPF) is a commonly used intra-

domain dynamic link-state IP protocol. OSPF is scalable and

robust against element failures but does not support arbitrary

traffic splitting as opposed to MPLS. Equal-Cost Multi-Path

(ECMP) is an add-on option of OSPF [3] that allows the equal

splitting of traffic which is not sufficient for near-optimal per-

formance as compared to MPLS. ECMP is highly intractable

in case of diverse and random topologies for numerous cases

of sources and destinations.

A. Related Work and Background

In order to address the deficiencies of OSPF in terms of

utilizing multiple routes, MT-OSPF has been proposed [4]

which suits the all-IP network infrastructure, improves load

balancing and avoids problems associated with MPLS and

ECMP [5]. Also, Wang. et al. [6] claimed that by partitioning

the overall network demand into multiple subsets at the edge

of the network, near-optimal performance could be achieved.

Multi-topology routing has initially been introduced for core

and transit networks. The structure of IP access networks

demands new considerations in IP-routing primarily due to

tree-like topologies. Access networks generally consist of a

transit routing space that connects the access nodes to the

core network through gateway. Traffic flows between gateway

and access nodes in both directions, and between access

nodes. In accordance, path diversity in access networks is

increasingly being considered. The potential gain offered by

path diversity in access networks was investigated in [7].

This study substantiated the need for next generation access

networks’ evolvement to more meshed topologies in order to

exploit path diversity materialized by multi-path routing. MPR

is a MT-OSPF based approach which incorporates various

aspects in the all-IP infrastructure and applies an IP-based

TE approach based on maximizing path diversity facilitated

by multiple logical RPs of OSPF routing. MT-OSPF was

originally laid out for fast re-route in case of node/link failure

whereas MPR employs MT-OSPF for load balancing. MPR

is designed to improve network’s performance through the

application of an offline TE method in order to build RPs

ahead of the traffic flow in the network which follows an

online TE approach [8,9]. MPR is envisioned to be configured

using the IP-header integrated ToS/DiffServ’s unused bits (i.e.
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3 precedences). A reference scenario was applied showing

how MPR outperforms OSPF in terms of different network

metrics [8]. The case where there exists dedicated paths for

every Gateway (GW)-Aggregation Router (AR) pair was

previously studied. Under this scenario, the traffic destined for

outside of the network towards the big Internet and the internal

traffic between the ARs would pass through the gateway.

This structure is restricted to 3G environment’s architectural

functionality where the entire traffic travels through the core.

We are targeting to expand our model to converge the In-

ternet routing and future cellular systems’ requirements by

modifying the RP structure, allowing for direct communication

between the ARs.

B. Outline and Contributions

In this paper, we propose a new TE mechanism aligned

with the changing access network structure based on the MPR

scheme. To this end, we extend the research conducted in

[8] and [9] by building direct communication paths between

the ARs in our reference topologies (as normally envisaged

in OSPF implementations) achieved through the modification

of the RP structure and based on the newly proposed RP

construction methods. This was materialized through the ex-

tension and enhancement of the offline algorithm. In addition

to topologies with ARs strictly positioned at the edge, new

topologies are added to our study with ARs spread out in the

transit space. In this work, we focus on the offline TE aspect

(network planning phase) of MPR which has the physical

topology with associated link capacities as the input. Under

the new scenario, the topology independent RP construction is

optimized through the introduction of new properties to the RP

construction algorithm. Our design concept is equally reflected

in the trends towards a flat-IP structure in cellular networks

[10,11]. Hence, base stations are directly interconnected by

IP and the forwarding domain barriers in these networks (i.e.

radio access and core networks) are being abolished making

the new backhaul connection space open to diversification of

paths via meshed hierarchical topological set-ups. In fact, with

the expected increase in the backhaul traffic, wired backhaul

links’ overload could be alleviated by the diversity offered by

MPR. Since we add AR-AR routes under the new scenario,

each plane would end up with a larger number of paths than

in the initially investigated scenario, hence the overall hop-

count and utilization of the topology in each plane become

important metrics. In earlier studies for MT-OSPF [6], it was

concluded that overall near-optimal network performance in

terms of cost and link utilization can be achieved with up

to 3-5 RPs as also substantiated in [8] for MPR. Lower

number of RPs would also ensure minimum implementation

and routing table maintenance overhead. In order to obtain

the desired number of planes aimed at the improvement in

the QoS performance as concluded in [12], hop-constraint

was introduced. It was shown that despite hop-constraint’s

application led to higher path costs, it improved the QoS and

service delivery for the various tested network designs. Hop-

constraint can be associated with lower delays. The traversal of

many links during transmission leads to higher overall delays

[13]. Hop-constraint is also aligned with reliability defined as

the probability of the session for every Ingress − Egress
pair not being interrupted by any external factors such as

link failure [14]. Lower reliability can have a negative impact

on service delivery and QoS performance [15]. RP construc-

tion considering the aforementioned metrics is investigated

through the introduction of the Quality of Plane-set (QoP)

which provides an analytical overview of the constructed RPs’

configuration efficiency. We will also show the superiority of

our MPR-based approach over the MPLS offline approach.

The contributions of this paper are threefold. First, we

propose three novel heuristic RP construction methods based

on which the extent of building paths in each logical topol-

ogy is investigated by adding direct paths between ARs

to accommodate the changing structure of access networks.

Second, hop-count was introduced as a constraint in each RP

which is used as an investigation parameter for finding the

optimal configuration based on the number of RPs in physical

topologies. Third, we proposed a method for assessing the

quality of logical topologies.

II. OFFLINE ALGORITHM FOR BUILDING RPS

A. Concept

MPR divides the network into multiple logical planes. This

allows the routers in one OSPF area to maintain several

independent logical planes. Each RP is an instance of OSPF

associated with a dedicated link weight configuration and it

can overlap with another or share any subset of the underlying

network. Each router maintains different routing information

bases and forwarding information bases through which routes

between ARs and the gateway are defined in every plane. Each

RIB/FIB represents one RP.

Fig. 1: Sub-topology (T1M5, see TABLE I) of the 19 node

based network. 4 RPs are demonstrated.

B. Simulation Setup

The network in Fig. 1 represents an autonomous system

which can be a campus or metropolitan access network with a

single gateway towards the big Internet. This reference fat-

tree model is based on [16]. Nodes are considered to be
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Topo Nodes ARs Links Avg. Node Total capacity
degree (Gb)

T1M1 19 6 18 1.9 7.84
T1M2 19 6 32 3.36 11.94
T1M3 19 6 36 3.79 12.98
T1M4 19 6 39 4.1 14.06
T1M5 19 6 41 4.32 15.34
T2M1 32 14 31 1.94 9.84
T2M2 32 14 53 3.31 15.28
T2M3 32 14 59 3.7 16.48
T2M4 32 14 61 3.82 16.88
T2M5 32 14 65 4.06 18.00
T2M6 32 14 67 4.19 18.40

TABLE I: Setup of the topologies

interconnected by wired Ethernet links. The network is com-

prised of 6 base stations acting as Aggregation Routers. Link

capacities are set up depending on the level they belong to as

demonstrated in the reference network. 34, 27, 20 and 10 Mbps

(values used for normalization) are used for four different

levels respectively in the first network studied (19 nodes).

34, 27, 20, 15 and 10 Mbps are used for five different levels

respectively in the second network studied (32 nodes) with 14

base stations. It should be noted that the network portrayed is

the base topology to which a different meshing degree (node

degree) is applied to create several sub-topologies. The RPs are

built considering that traffic can exist internally between the

ARs and towards the Internet through the gateway. TABLE I

presents the specifications of the eleven topologies investigated

to provide diversified network scenarios for demonstrating the

concepts of MPR. x indicates the topology number and y
denotes the meshing configuration in every topology TxMy.

T1M1 and T2M1, which are sub-topologies for the network

1 and network 2 respectively, represent strict trees. T2My
topologies include added ARs spread out in the transit space

which set it apart from the previously studied scenario with

ARs strictly located at the edge, i.e. T1My topologies.

C. Graph Theoretical Representation

Topology of a given communication access network is

represented by a connected directed graph G = (V, E). The

network is comprised of a set E of E (E : e = 1, ..., E) edges

with finite capacities Ce and a set V of V (V : v = 1, ..., V )
vertices. Let K : k = 1, ...,K symbolize the number of ARs in

the network. The set of Routing Planes (RPs) is represented as

N : n = 1, ...., N . Every e ∈ E is assigned with |N | distinct

link weights denoted by (w(n, e), n ∈ N ). The network

supports a set of demands for every Ingress − Egress pair

denoted by D of D(D : d = 1, ..., D). The egress nodes are

Egress : {GW & {ARk}
K
k=1\{ARS}

S
S=1}. Let f symbolize

the number of destination nodes. Let ARS (∈ ARk) be the

source AR (S = 1, 2, .., S). ARfi (∈ ARk) represents the

first destination AR while ARla (∈ ARk) represents the last

destination AR on the network in one iteration before the

source AR (ARS ) changes for the next iteration until all the

ARs are covered. The connections are duplex therefore, all

the destinations can be sources as reflected in the overlapping

RPs built for all the ARs and GW. Every RP is comprised

of ρKn : ρkn = ρ1n, ρ
2
n, ..., ρ

K
n , ρK+1

n set of shortest paths.

ρKn incorporates the demand-set D for P d=1
n , ..., P d=D

n in

routing plane n for all the ARs and GW. Therefore there are

P d=D
n ⊂ ρKn acyclic shortest paths for demand d and RP n

according to the link weight configuration Wn for that RP.

The position of every link in path P d
n is represented by a

set H of H(H : h = 1, ..., H) hops. The set of path sets

(ρ1n, ρ
2
n, ..., ρ

K
n , ρK+1

n ) for all the ARs and GW represent one

RP.

ρkn =













ARS . . . GW : P dk=1
n

ARS . . . ARfi 6= ARS : P dk=2
n

...

ARS . . . ARla 6= ARS : P dk=f
n













(1)

The AR-GW pair is reserved in every RP for the case that

the network id of the desired address is located outside of the

network and vice versa. d = 1 represents the AR1-GW pair in

path-set ρ1n and the demand increments up to D corresponding

to the final pair in path-set ρK+1
n .

An N ×E matrix Rd represents the link usage. Rd
ePd

n

= 1

if path Pn of pair d uses link e and Rd
ePd

n

= 0 otherwise. Path

Diversity Index (PDI) as originally presented in [8] represents

the number of RPs that include e in their shortest path for

demand d:

PDIde =
∑

n∈N

Rd
ePd

n

∀e ∈ E and ∀d ∈ D (2)

The ultimate objective is to minimize the chance that for

a given demand all RPs share a single link; secondly to

maximize the chance that any link is used in at least one RP.

Full Path Diversity Index (FPDI) is introduced in [8] which

designates whether a critical link e is included in shortest path

for pair d in all RPs. FPDI is equal to 1 if PDIde =| N − 1 |
and 0 otherwise. The link weight assignment is described

as follows: to calculate | N | set of positive link weights

Wn = w(n, e) : 1 � w(n, e) � L, with ∀n ∈ N , ∀e ∈ E and

L(= 216 − 1) as the highest value that OSPF can handle in

order to maximize:
∑

d∈D

∑

e∈E

FPDIde (3)

d̄s is represented as the average length of the shortest path

in terms of hop-count from any source u to all the destinations

v across the available planes under a given topology. dkn(u, v)
is the length of the shortest path from node u ∈ Ingress to

v ∈ Egress in every path-set ρkn.

|d̄s| =
1

N





N
∑

n=1

K+1
∑

k=1

(|
1

|V | − 1

∑

(u,v)ǫV,v 6=u

dkn(u, v)|)



 (4)

D. RP Construction

The pseudo-code of the algorithm is presented as Algo-

rithm 1. Initially, Cisco’s InvCap is applied in assigning

weights to the links. i.e. for each link e ∈ E, w(1, e) = 1/Ce.

After building the first RP, three heuristic methods are used for

computing the link weights. 1) Iterative Plane Construction,

2) Link Degree of Involvement, 3) Maximum link degree
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Fig. 2: Number of planes with and without hop-constraint,

X = 64

involvement per demand. The link weight configuration for

these methods is obtained as follows:

w(n, e) =
max
e∈E

(Ce)

Ce

+
1

N

N−1
∑

n=1

w(n, e)

+ αe(n)/βe(n)/γe(n) ·X

(5)

with ∀e ∈ E , ∀n ∈ [1, N − 1] and with the following :

αe(n) =

{

1, if link e is in a path in RP n− 1 ;

0,otherwise
(6)

βe(n) =
N−1
∑

n=1

αe(n), γe(n) = max
d∈D

(

N−1
∑

n=1

αd
e(n)

)

(7)

αe(n), βe(n), γe(n) represent method 1, method 2 and method

3 respectively. X is a multiplicative parameter that is used for

the granularity of the methods. The higher the value of X,

the more RPs will be tested. X ranges from 1 to Xmax incre-

mented by 1 with Xmax = {2; 4; 8; 16; 32; 64}. Method 1 only

considers the involvement of a link in RP in N −1. Method 2

considers the involvement of a link e in all RP n ∈ [1, N−1].
Method 3 is in fact a subset of method 2 where the cost

of the most used link e in RP is penalized. Subsequently,

correlation between the three contending planes resulting from

the aforementioned methods is calculated against the fixed

physical topology. The mean correlation is obtained for the

resulting RPs from the (1 : Xmax) loop and the plane with the

lowest correlation is picked, on which the Djisktra’s algorithm

is performed. There is a set of rules which should be met in the

RP construction algorithm: 1) Each link must not be utilized

in at least one plane. This is to ensure that PDIde does not

reach beyond its maximum (| N −1 |) per link. 2) There exits

a route for every demand. Routers in between can be either

sources or sinks. 3) Each link is used in at least one plane in

order to ensure path diversity.

III. PLANE-SET SELECTION CRITERIA

A. Hop-Constraint Optimization

When applying MPR’s off-line algorithm to build RPs

connecting the AR-AR and AR-GW pairs, the resultant paths

would render long routes between the ARs in terms of hop-

count. Some of these routes would pass through the gate-

way or through nodes located very high in the distribution

Algorithm 1: Offline Algorithm for Building RPs

1: procedure RP-CONSTRUCTION

2: Build InvCap Link Weight Matrix

3: if rules (1 & 2 & 3) are respected: jump to step 8

else: go to step 4

end if

4: for X = 1 : Xmax

Construct RPs using Method 1, Method 2,

Method 3

end for

5: Find the best plane resulted, through correlation

6: Compute Dijkstra on the resultant plane

7: Go back to step 3 (the verification process)

8: Application of hop-constraint, minimizing |d̄s|
a) Check the hop number for all the routes

(P d=1
n , ..., P d=D

n ) in every plane

if there exits a corresponding arc(i,j) in position h:

Discard the corresponding planes for that

hop number h
end if

b) Test the output to ensure the constraints’ criteria

(equation 11) are met

if the constraints’ criteria are met:

Pick a hop-constraint value: Algorithm

terminated, go to step 9

else:

Hop-count is incremented: go back to step 8

end if

9: RPs are obtained for AR-AR and AR-GW pairs

10: end procedure

layer. This would not be desirable in our study to apply

the MPR technique under the new scenario where access

points communicate directly. The long routes between ARs

contribute to a higher number of RPs constructed per topology

as there will exist more redundant paths available per plane.

That’s why we use hop-constraint to select an optimal set of

RPs. Hop-constraint optimization was originally introduced

in [17]. Here, we have added more constraints and have

reformulated certain representations in order to adjust the

optimization problem to our work. Weight of link e between

any two nodes (i, j) for demand d in plane n is denoted

by wd
ij(n, e). The decision variables are defined as followed:

Rd
(ij)Pd

n

is equivalent to equation (1) and is defined as the

binary directed variable which indicates whether arc(i, j) is in

the minimal spanning tree and Zd
(ijb)Pd

n

is the directed binary

flow variable that indicates whether arc(i, j) is included in

the only path from the source to the destination node b

∈ Destinations : {GW ;ARk 6= ARS} at position h in RP

n.

Zd
(ijb)Pd

n

=















1, if arc(i, j) is in the path from root node t

to node b, b 6= i

0, otherwise
(8)

We are minimizing the number of hops across a set of RPs
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obtained under a given topology. (∀e ∈ E & ∀d ∈ D)

min

N
∑

n=1

∑

(i,j)ǫV

wd
ij(n, e).R

d
(ij)Pd

n

(9)

s.t.






























































2 < N < 6 ∀Topolgies 6=T1M1,T2M1 (1)
∑

(i)ǫV Rd
(ij)Pd

n

= 1 ∀jǫV 6= ARS (2)
∑

(i)ǫV Zd
(ijb)Pd

n

−
∑

(i)ǫV 6=t Z
d
(ijb)Pd

n

= 0,

∀b, jǫV 6= ARS , j 6= b (3)
∑

(i)ǫV Zd
(ijj)Pd

n

= 1 ∀jǫV 6= ARS (4)
∑N

n=1

∑

(i,j)ǫE Zd
(ijb)Pd

n

≤ H.D.N ∀bǫV 6= ARS (5)

Zd
(ijb)Pd

n

≤ Rd
(ij)Pd

n

∀(i, j)ǫE, bǫV 6= ARS (6)
(10)

As a result of this optimization, every plane-set would be-

come constrained by a hop number denoted by H . Constraint

(1) represents the plane-constraint for all the topologies except

for T1M1 and T2M1 which are strict trees. This means that

only one plane is achieved under these two topologies. It is

assumed that with higher number of planes and accordingly

a higher number of paths, traffic can be better balanced. As

stated earlier in section I-B and shown in [6] and [8], this

assumption is wrong and 3-5 planes would be sufficient in

achieving near-optimal performance. We considered a smaller

upper bound (< 4) for T1M2 and T2M2 as a lower number of

RPs with long redundant routes result due to lower meshing.

Constraint (2) ensures that every node in the path is in the

solution and has only one arc entering it. Constraint (3) states

that only one arc enters a node in position h in any path and

there is only one arc leaving that node in position h + 1.

Constraints (4) and (5) ensure that only one arc in position h
enters the destination node for every demand in every path-

set ρkn. These two constraints guarantee the feasibility of the

solution. Constraint (6) states that if arc(i, j) is included in

the solution, it exists in the path between the source and

its corresponding destination node. Fig. 2 demonstrates the

decline in the number of planes to the desired range post hop-

constraint. In our study, X = 64 results in the best set of RPs

obtained under the tested topologies.

B. Quality of Plane-set (QoP)

QoP determines the quality of every set of RPs post con-

struction based on some generic parameters. QoP also provides

a comparative analysis in order to determine whether the hop-

constraint which was introduced to select the optimal number

of planes, improves the quality of the RPs. We also compare

our MPR based methods with the MPLS offline TE approach.

In the latter case, the weight for every link was set to 1 and

the same number of paths as the MPR constrained case were

built for every demand simply by using hop-count increment to

allow for the creation of Q multiple paths. This approach aims

to mimic the MPLS offline TE approach where multiple LSPs

are built for every demand with a hop-count threshold while

ensuring one node-disjoint path (or atleast a maximum number

of nodes being disjoint if not all)[1]. The number of LSPs are
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Fig. 3: Overall PDI Ratio for all the available links across a

set of planes, X = 64

set based on a a set of given metrics as detailed in [1] (such

as hop-threshold and a node-disjoint path) hence reducing the

number of LSPs needed, obtaining as many as desired by the

network planner. Accordingly, we set the metrics such that the

same number of LSPs as the RPs in the MPR constrained case

were obtained (i.e. equivalent to our optimum configuration).

Henceforth for simplicity in formulation, N will also represent

Q number of LSPs (Q ≡ N).
1) Path Diversity Index Ratio (PDI Ratio): We define PDI

Ratio as PDI across a set of available RPs relative to the

maximum possible PDI across a set of available RPs under

a given topology (PDI was introduced in subsection II-C).

QoP ∝

∑D

d=1

∑N

n=1 R
d
ePd

n

(
∑E

1 e).(|N − 1|)
(11)

PDI Ratio is indicative of how close to optimum (i.e. 1) our

network is in terms of PDI. Fig. 3 shows that PDI is generally

closer to optimum with a lower number of available RPs (as it

is the case post-constraint) for most of the topologies. There is

an exception in case of T1M1 and T2M1 (strict trees) where

the PDI Ratio is higher than optimum as more links get over-

utilized relative to the only available RP. We haven’t included

MPLS in Fig. 3 as the MPLS method does not consider path

diversity in building multiple LSPs to obtain a balanced link

usage distribution (no optimum to compare against). In fact;

the absence of path diversity in the MPLS case leads to some

links ending up not being used, putting a burden on other links.

From a network planning perspective; as explicit routing (pre-

defined routes for every demand) is applied in both MPR and

MPLS, the imbalance of link usage in case of MPLS in the

offline mode will lead to a higher maximum link utilization

when traffic flows in the network with certain links getting

congested quicker. The average maximum LSP occupation of

a link was measured as |1.07×N | and |1.13×N | (Q ≡ N)
throughout the first and second set of topologies respectively

as opposed to |N − 1| in the MPR case for both cases.

2) Reliability: If failure is associated with some probability

p, assuming failures are independent and equal for all the links,

the probability of a path with h arcs being operational is given

by (1−p)h [13]. The links would also get penalized if included

in more than one plane or overlapping with more than one LSP

path. Consequently, the overall reliability per demand across

a set of available independent planes associated with QoP can
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Fig. 4: Overall per-demand reliability indicator obtained under

randomly generated probabilities of failure p across the links,

X = 64
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Fig. 5: The maximum hop number, X = 64

be derived as follows:

QoP ∝
D
∑

d=1

1

N

(

N
∑

n=1

H
∏

h=1

(1− p)

∑

N

n=1
Rd

ePd
n

)

(12)

It is easy to conclude that every individual path in one plane

with a lower hop-count would have a higher reliability. Fig.

4 demonstrates the reliability indicator for all the demands

across the total available RPs being higher post-constraint,

which is due to shorter paths in terms of hop-count. The

reliability in case of the MPLS method is consistently lower

compared to the MPR constrained case (where the number of

LSPs and RPs built are equivalent), mainly due to more links

having been overused and hence penalized more throughout

the constructed LSP paths. The results obtained in Fig. 4

are based on a set of distinct probabilities of failure being

randomly distributed among the links.

3) Hop-count: As reflected in Fig. 5, the maximum hop-

count per plane-set across all the demands would decline

as a result of hop-constraint. It can be also observed that

lower number of hops are transversed in the MPR constrained

case compared to the MPLS case. The maximum hop-count

represents the worst case of path length in a topology among

the RPs. The maximum path length for the MPLS method is

indicative of the maximum hops needed to build multiple LSP

paths per demand.

QoP ∝
D

max
d=1

(

N
max
n=1

H
)

(13)

IV. CONCLUSION

In this paper, we have proposed an extended modified

MPR-based TE approach in all-IP access networks. The trend

towards a flat-IP structure reflected through the expected direct

IP connectivity between the base stations demands a new

routing mechanism. This mechanism allows the network to

maintain several independent logical topologies which can

be used to balance the traffic load in the network. Hop-

constraint is introduced to select a set of RPs, resulting in

an optimally configured network. QoP is proposed as an

evaluation metric to gauge the quality of the RPs in terms

of various metrics in the offline mode. With our approach, the

number of RPs has been kept to the desirable level despite

of having a higher number of Source − Destination pairs.

Moreover, the reliability indicator and the PDI Ratio have

increased by 21% and 10% on average respectively. Our MPR-

based approach has also shown enhancement over the MPLS

approach. For future work, mobility and heterogeneity aligned

with 5G concepts in MPR-based networks will be investigated.
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