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LOCALIZATION PRINCIPLE FOR COMPACT HANKEL
OPERATORS

ALEXANDER PUSHNITSKI AND DMITRI YAFAEV

Abstract. In the power scale, the asymptotic behavior of the singular values
of a compact Hankel operator is determined by the behavior of the symbol in
a neighborhood of its singular support. In this paper, we discuss the localiza-
tion principle which says that the contributions of disjoint parts of the singular
support of the symbol to the asymptotic behavior of the singular values are
independent of each other. We apply this principle to Hankel integral operators
and to infinite Hankel matrices. In both cases, we describe a wide class of Hankel
operators with power-like asymptotics of singular values. The leading term of
this asymptotics is found explicitly.

1. Introduction and main results

1.1. Hankel operators on the unit circle. Hankel operators admit various
unitarily equivalent descriptions. We start by recalling the definition of Hankel
operators on the Hardy class H2(T). Here T is the unit circle in the complex plane,
equipped with the normalized Lebesgue measure dm(µ) = (2⇡iµ)�1dµ, µ 2 T; the
Hardy class H2(T) ⇢ L2(T) is defined in the standard way as the subspace of
L2(T) spanned by the functions 1, µ, µ2, . . . . Let P

+

: L2(T) ! H2(T) be the
orthogonal projection onto H2(T), and let W be the involution in L2(T) defined
by (Wf)(µ) = f(µ̄). For a function ! 2 L1(T), which is called a symbol in this
context, the Hankel operator H(!) is defined by the relation

H(!)f = P
+

(!Wf). (1.1)

Background information on the theory of Hankel operators can be found e.g. in
the books [6, 7].

Recall that the singular values of a compact operator H are defined by the
relation s

n

(H) = �
n

(|H|), where {�
n

(|H|)}1
n=1

is the non-increasing sequence of
eigenvalues of the compact positive operator |H| =

p
H⇤H (enumerated with

multiplicities taken into account). The study of singular values of compact Hankel
operators has a long history and is linked to rational approximation, control theory
and other subjects, see, e.g. [7]. In fact, this paper is in part motivated by its
applications in [12] to the rational approximation of functions with logarithmic
singularities.

2010 Mathematics Subject Classification. 47B06, 47B35.
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2 ALEXANDER PUSHNITSKI AND DMITRI YAFAEV

Singular values s
n

(H(!)) of a Hankel operator with a symbol ! 2 C1(T) decay
faster than any power of n�1 as n ! 1. On the other hand, the singularities of !
generate a slower decay of singular values. Here we will be interested in the case
when the singular values behave as some power of n�1. Optimal upper estimates
on singular values of Hankel operators are due to V. Peller, see [7, Section 6.4]. He
found necessary and su�cient conditions on ! for the estimate

s
n

(H(!))  Cn�↵

for some ↵ > 0. These conditions are stated in terms of the Besov-Lorentz classes.
It is natural to expect that the asymptotic behavior of singular values is deter-

mined by the behavior of the symbol ! in a neighborhood of its singular support.
We justify this thesis and show that the contributions of the disjoint components
of the singular support of ! to the asymptotics of the singular values of H(!)
are independent of each other. We use the term “localization principle” for this
fact. This principle is well understood in the context of the study of the essential
spectrum [8] and of the absolutely continuous spectrum [4] of non-compact Hankel
operators. Our aim here is to bring this principle to the fore in the question of the
asymptotics of singular values of compact Hankel operators.

In our applications the singular support of ! consists of a finite number of
points. We use the results of our previous publication [11] (where the history of the
problem is described) on the asymptotic behavior of eigenvalues of certain classes
of self-adjoint Hankel operators. The localization principle allows us to combine the
contributions of di↵erent singular points and thus to determine the asymptotics
of singular values for a wider (compared to [11]) class of Hankel operators. In
particular, for Hankel matrices with oscillating matrix elements we show that the
contributions of di↵erent oscillating terms to the asymptotics of singular values
are independent of each other. We also establish similar results for Hankel integral
operators whose integral kernels have a singularity at some finite point t

0

� 0 and
several oscillating terms at infinity.

1.2. Localization principle. Recall that the singular support sing supp! of a
function ! 2 L1(T) is defined as the smallest closed set X ⇢ T such that ! 2
C1(T \X). Localization principle for Hankel operators (1.1) is stated as follows.

Theorem 1.1. Let !
1

,!
2

, . . . ,!
L

be bounded functions on T such that

sing supp!
`

\ sing supp!
j

= ?, ` 6= j. (1.2)

Set ! = !
1

+ · · ·+ !
L

. Then for all p > 0 we have the relations

lim sup
n!1

ns
n

(H(!))p 
LX

`=1

lim sup
n!1

ns
n

(H(!
`

))p, (1.3)

lim inf
n!1

ns
n

(H(!))p �
LX

`=1

lim inf
n!1

ns
n

(H(!
`

))p. (1.4)



LOCALIZATION PRINCIPLE FOR HANKEL OPERATORS 3

In particular,

lim
n!1

ns
n

(H(!))p =
LX

`=1

lim
n!1

ns
n

(H(!
`

))p (1.5)

provided that all limits on the right side exist.

In applications, the upper and lower limits in this theorem usually coincide.
However, we prefer to work with these limits separately because it is more general
and, at the same time, it is technically more convenient.

1.3. Discussion. Theorem 1.1 can be equivalently stated in terms of the count-
ing functions. For a compact operator H, the singular value counting function is
defined by

n(";H) = #{n : s
n

(H) > "}, " > 0. (1.6)

We have

lim sup
n!1

ns
n

(H)p = lim sup
"!0

"pn(";H)

and similarly for the lower limits. Thus, focussing for simplicity on the case when
the limits on the right side exist and are finite, we can rewrite (1.5) as

n(";H(!)) =
LX

`=1

n(";H(!
`

)) + o("�p), " ! 0. (1.7)

Our proof of Theorem 1.1 consists of two steps. The first one is to check that
under the assumption (1.2) the operators H(!

`

) are asymptotically orthogonal in
the sense that for all j 6= ` and for all ↵ > 0 we have

s
n

(H(!
`

)⇤H(!
j

)) = O(n�↵), s
n

(H(!
`

)H(!
j

)⇤) = O(n�↵), n ! 1. (1.8)

This result follows from the reduction of the products of Hankel operators in (1.8)
to integral operators in L2(T) with smooth kernels.

The second step is to show that (1.8) implies (1.7). This fact is not specific for
Hankel operators. In order to get some intuition into its proof, let us suppose for
a moment that the operators H(!

`

) are pairwise orthogonal in the sense that

H(!
j

)⇤H(!
`

) = 0 and H(!
j

)H(!
`

)⇤ = 0, 8j 6= `. (1.9)

Then

RanH(!
j

) ? RanH(!
`

) and RanH(!
j

)⇤ ? RanH(!
`

)⇤, 8j 6= `.

Thus, representing the sum H(!) = H(!
1

) + · · · + H(!
L

) as a “block-diagonal”
operator acting from �L

`=1

RanH(!
`

)⇤ to �L

`=1

RanH(!
`

), we conclude that

n(";H(!)) =
LX

`=1

n(";H(!
`

)), 8" > 0.
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Of course, the orthogonality condition (1.9) is too strong. In fact, an operator
theoretic result, Theorem 2.2, shows that the asymptotic orthogonality (1.8) with
↵ > 2/p ensures the relation (1.7).

Representing Hankel operators in the basis {µj}1
j=0

in H2(T), one obtains the
class of infinite Hankel matrices of the form {h(j + k)}1

j,k=0

in the space `2(Z
+

).
We give an application of the localization principle to such Hankel matrices in
Theorem 3.1. Although the localization principle in the form stated above (Theo-
rem 1.1) is quite natural, this application looks far less obvious.

Theorem 1.1 can be equivalently stated (see Theorem 2.6) in terms of Hankel
operatorsH(!) acting in the Hardy spaceH2

+

(R) of functions analytic in the upper
half-plane. In this case the symbol !(x) is a function of x 2 R. This leads to new
results for Hankel operators defined as integral operators in the space L2(R

+

).
We will refer to the Hankel operators in H2(T) and in `2(Z

+

) as to the discrete
case, and to the Hankel operators in H2

+

(R) and in L2(R
+

) as to the continuous
case. We will use boldface font for objects associated with the continuous case. We
have tried to make our exposition in the discrete and continuous cases parallel as
much as possible.

1.4. Related work. Recall that for a bounded operator H, the non-zero parts of
the operators ✓|H| 0

0 �|H|
◆

and

✓
0 H
H⇤ 0

◆

are unitarily equivalent. Therefore various spectral results for |H(!)| are equivalent
to those for the self-adjoint Hankel operator with the matrix valued symbol

⌦(µ) =

✓
0 !(µ)

!(µ̄) 0

◆
.

In particular, the study of the singular values of H(!) is equivalent to the study
of the eigenvalues of the Hankel operator with the symbol ⌦(µ).

Some forms of localization principle are known in the study of the continuous
spectrum of |H(!)|. As far as we are aware, the idea of separation of singularities
of the symbol goes back to the work [8] of S. R. Power on the essential spectrum
spec

ess

of Hankel operators with piecewise continuous symbols !. Let a
j

2 T be
the points where ! has the jumps

(a
j

) = lim
"!+0

!(a
j

ei")� lim
"!+0

!(a
j

e�i") 6= 0.

Although Power was interested in the essential spectrum of H(!) (which we do
not discuss here), it follows from the matrix version of his results that

spec
ess

(|H(!)|) = [0,M ], M = 1

2

sup
aj2T

|(a
j

)|, (1.10)

where the supremum is taken over all points a
j

where ! has a jump.
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A description of the absolutely continuous spectrum of |H(!)| with piecewise
continuous symbol ! follows from the matrix version of the results of Howland
[4], where the trace class method of scattering theory was used. This question
was also studied in our previous paper [9] by using the so-called smooth method of
scattering theory. In both cases, under some mild additional assumptions, including
the condition that ! has finitely many jumps, it can be shown that

spec
ac

(|H(!)|) =
[

aj2T

[0, 1
2

|(a
j

)|]. (1.11)

Every term on the right side of (1.11) gives its own band of the absolutely con-
tinuous spectrum of multiplicity one. Thus, formula (1.11) can be regarded as the
continuous spectrum analogue of the localization principle discussed in this paper:
the contributions of di↵erent jumps of ! to spec

ac

(|H(!)|) are independent of each
other. Of course, formulas (1.10) and (1.11) are consistent with each other.

1.5. The structure of the paper. In Section 2 we prove the localization princi-
ple in the discrete case (Theorem 1.1) and also state and prove its analogue in the
continuous case (Theorem 2.6). In Section 3, we describe the applications of local-
ization principle to the Hankel operators acting in `2(Z

+

). The main result of that
section is stated as Theorem 3.1 and its proof is given in Section 4. In Section 5 we
give applications to integral Hankel operators in L2(R

+

). The main result of that
section is stated as Theorem 5.1 and its proof is given in Section 6. In Section 7
we consider integral Hankel operators whose kernels have local singularities in R

+

.

1.6. Some notation. For ! 2 L2(T), the Fourier coe�cients of ! are denoted as
usual by

b!(j) =
Z

T
!(µ)µ�jdm(µ), j 2 Z.

We will consistently make use of the following constant, which appears in our
asymptotic formulas:

{(↵) = 2�↵⇡1�2↵

�
B( 1

2↵

, 1
2

)
�
↵

, ↵ > 0; (1.12)

here B(·, ·) is the Beta function. We make a standing assumption that the expo-
nents p > 0 and ↵ > 0 are related by ↵ = 1/p.

2. Proof of localization principle

In this section, we prove Theorem 1.1 as well as a similar statement, Theorem 2.6,
for Hankel operators in the Hardy space H2

+

(R) of functions analytic in the upper
half-plane.
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2.1. Preliminaries. Let B be the algebra of bounded operators in a Hilbert space
H, and let S1 be the ideal of compact operators in B. For p > 0, the weak Schatten
class S

p,1 consists of all compact operators A such that

sup
n

ns
n

(A)p < 1.

The subclass S0

p,1 ⇢ S
p,1 is defined by the condition

lim
n!1

ns
n

(A)p = 0.

It is well known that both S
p,1 and S0

p,1 are ideals of B; in particular, they are
linear spaces. Of course A 2 S

p,1 (or A 2 S0

p,1) if and only if the same is true for
its adjoint A⇤. We set S

0

= \
p>0

S
p,1, that is,

A 2 S
0

, s
n

(A) = O(n�↵), n ! 1, 8↵ > 0. (2.1)

First we recall a classical result in perturbation theory (see e.g. [1, Theorem
11.6.8]) on the spectral stability of singular values.

Lemma 2.1. Let A 2 S1 and B 2 S0

p,1 for some p > 0. Then

lim sup
n!1

ns
n

(A+B)p = lim sup
n!1

ns
n

(A)p, (2.2)

lim inf
n!1

ns
n

(A+B)p = lim inf
n!1

ns
n

(A)p. (2.3)

Lemma 2.1 is stated in a slightly more general form than usual (see, e.g., Theo-
rem 11.6.8 in [1]) because we do not require that A 2 S

p,1 and hence the limits in
(2.2) and (2.3) may be infinite; in this case Lemma 2.1 means that both sides in
(2.2) and (2.3) are infinite simultaneously. Note that if A 62 S

p,1, then the expres-
sion (2.2) is infinite, but the expression (2.3) may be finite. Lemma 2.1 can also
be equivalently stated in terms of the singular value counting functions n(", A)
defined by (1.6).

2.2. Asymptotically orthogonal operators. Note the implication

A 2 S
p,1, B 2 S

p,1 ) A⇤B 2 S
p/2,1, AB⇤ 2 S

p/2,1 (2.4)

(see, e.g. [1, Theorem 11.6.9]). We say that the operators A and B in S
p,1 are

asymptotically orthogonal if the class S
p/2,1 on the right side of (2.4) can be

replaced by its subclass S0

p/2,1. The following theorem allows us to study singu-
lar values of sums of asymptotically orthogonal operators. This result is the key
operator theoretic ingredient of our construction.

Theorem 2.2. Let p > 0. Assume that A
1

, . . . , A
L

2 S1 and

A⇤
`

A
j

2 S0

p/2,1, A
`

A⇤
j

2 S0

p/2,1 for all ` 6= j. (2.5)
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Then for A = A
1

+ · · ·+ A
L

, we have

lim sup
n!1

ns
n

(A)p 
LX

`=1

lim sup
n!1

ns
n

(A
`

)p, (2.6)

lim inf
n!1

ns
n

(A)p �
LX

`=1

lim inf
n!1

ns
n

(A
`

)p. (2.7)

In particular,

lim
n!1

ns
n

(A)p =
LX

`=1

lim
n!1

ns
n

(A
`

)p

provided that all limits on the right side exist.

Proof. Let us prove the first relation (2.6); the second one is proven in the same
way. We argue in terms of counting functions (1.6). For an operator A 2 S1, let
us denote

�
p

(A) = lim sup
"!0

"1/pn(";A)

(this limit may be infinite). Then our aim is to prove that

�
p

(A) 
LX

`=1

�
p

(A
`

), (2.8)

which is (2.6) in di↵erent notation. Put

HL = H� · · ·�H| {z }
L terms

and let A
0

= diag{A
1

, . . . , A
L

} in HL, i.e.,

A
0

(f
1

, . . . , f
L

) = (A
1

f
1

, . . . , A
L

f
L

).

Since
A⇤

0

A
0

= diag{A⇤
1

A
1

, . . . , A⇤
L

A
L

}, (2.9)

we see that

n(";A
0

) =
LX

`=1

n(";A
`

)

and therefore, multiplying by "1/p, taking lim sup as " ! 0 and using the subad-
ditivity of lim sup, we obtain

�
p/2

(A⇤
0

A
0

) 
LX

`=1

�
p/2

(A⇤
`

A
`

) =
LX

`=1

�
p

(A
`

). (2.10)

Next, let J : HL ! H be the operator given by

J(f
1

, . . . , f
L

) = f
1

+ · · ·+ f
L

so that J⇤f = (f, . . . , f).
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Then

JA
0

(f
1

, . . . , f
L

) = A
1

f
1

+ · · ·+ A
L

f
L

and

(JA
0

)⇤f = (A⇤
1

f, . . . , A⇤
L

f).

It follows that

(JA
0

)(JA
0

)⇤f = (A
1

A⇤
1

+ · · ·+ A
L

A⇤
L

)f (2.11)

and the operator (JA
0

)⇤(JA
0

) is a “matrix” in HL given by

(JA
0

)⇤(JA
0

) =

0

BB@

A⇤
1

A
1

A⇤
1

A
2

. . . A⇤
1

A
L

A⇤
2

A
1

A⇤
2

A
2

. . . A⇤
2

A
L

...
...

. . .
...

A⇤
L

A
1

A⇤
L

A
2

. . . A⇤
L

A
L

1

CCA . (2.12)

According to (2.9) and (2.12) we have

(JA
0

)⇤(JA
0

)� A⇤
0

A
0

2 S0

p/2,1. (2.13)

Indeed, the “matrix” of the operator in (2.13) has zeros on the diagonal, and its
o↵-diagonal elements are given by A⇤

`

A
j

, ` 6= j. Thus (2.13) follows from the first
assumption (2.5). Therefore Lemma 2.1 implies that

�
p/2

((JA
0

)⇤(JA
0

)) = �
p/2

(A⇤
0

A
0

)

or

�
p/2

((JA
0

)(JA
0

)⇤) = �
p/2

(A⇤
0

A
0

) (2.14)

because for any compact operator T the non-zero singular values of T ⇤T and TT ⇤

coincide.
Further, since AA⇤ =

P
L

`,j=1

A
`

A⇤
j

, it follows from (2.11) and the second as-
sumption (2.5) that

AA⇤ � (JA
0

)(JA
0

)⇤ =
X

j 6=`

A
`

A⇤
j

2 S0

p/2,1.

Using again Lemma 2.1, from here we obtain

�
p

(A) = �
p/2

(AA⇤) = �
p/2

((JA
0

)(JA
0

)⇤).

Combining the last equality with (2.14), we see that �
p

(A) = �
p/2

(A⇤
0

A
0

). Thus
(2.10) yields the relation (2.8). ⇤

Under slightly more restrictive assumptions Theorem 2.2 appeared first in [2,
Theorem 3]. Our proof is quite di↵erent from that of [2].

Remark 2.3. Let us mention two known statements that are similar in spirit to
Theorem 2.2. Below A

1

, . . . , A
L

are bounded operators and A = A
1

+ · · ·+ A
L

.
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(i) If the products A⇤
`

A
j

, A
`

A⇤
j

are compact for all j 6= `, then for the essential
spectra of A one has the formula

spec
ess

(A) [ {0} =
L[

`=1

spec
ess

(A
`

),

see, e.g. [7, Section 10.1].
(ii) If A

1

, . . . , A
L

are self-adjoint operators such that A
`

A
j

are trace class for
all j 6= `, then the absolutely continuous part of A is unitarily equivalent to the
orthogonal sum of the absolutely continuous parts of the operators A

`

. This is
known as Ismagilov’s theorem, see [5].

2.3. Proof of localization principle for Hankel operators in H2(T). First
we state two well-known facts that will be needed for the proof of Theorem 1.1
given at the end of the subsection.

We recall that the Hankel operators H(!) are defined by (1.1); the class S
0

is
defined by (2.1).

Lemma 2.4. (i) Let K be an integral operator in L2(T) with an integral kernel
of the class C1(T⇥ T). Then K 2 S

0

.
(ii) Let ! 2 C1(T); then H(!) 2 S

0

.

Proof. Part (i) is a classical fact; it can be obtained, for example, by approxi-
mating the integral kernel of K by trigonometric polynomials. This yields a fast
approximation of K by finite rank operators.

Part (ii) is also well-known; let us show that it follows from part (i). It will be
convenient to consider the projection P

+

here as an operator acting from L2(T)
to L2(T) (rather than from L2(T) to H2(T)). Recall that P

+

acts according to the
formula

(P
+

f)(µ) = lim
✏!+0

Z

T

f(µ0)

µ0 � (1� ✏)µ
µ0dm(µ0), (2.15)

and that W is the involution (Wf)(µ) = f(µ̄). We have to prove that the operator
P
+

!WP
+

in L2(T) belongs to the class S
0

. Since P
+

WP
+

is a rank one operator
(projection onto constants), it su�ces to check that

P
+

!WP
+

� !P
+

WP
+

= [P
+

,!]WP
+

2 S
0

. (2.16)

It follows from (2.15) that the commutator [P
+

,!] is an integral operator in L2(T)
with the kernel

!(µ0)� !(µ)

µ0 � µ
µ0, µ, µ0 2 T.

This is a C1 function, and so [P
+

,!] 2 S
0

which implies (2.16). ⇤
The following assertion allows us to separate the contributions of di↵erent sin-

gularities of the symbol. Essentially, this is a very well known argument, see, e.g.
[8].
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Lemma 2.5. Let !
1

,!
2

2 L1(T) be such that sing supp!
1

\ sing supp!
2

= ?.
Then

H(!
1

)⇤H(!
2

) 2 S
0

, H(!
1

)H(!
2

)⇤ 2 S
0

.

Proof. Let ⇣
1

, ⇣
2

be real functions in C1(T) with disjoint supports such that

(1� ⇣
k

)!
k

2 C1(T), k = 1, 2.

By Lemma 2.4(ii), we have

H((1� ⇣
k

)!
k

) 2 S
0

,

and hence it su�ces to show that

H(⇣
1

!
1

)⇤H(⇣
2

!
2

) 2 S
0

, H(⇣
1

!
1

)H(⇣
2

!
2

)⇤ 2 S
0

. (2.17)

It follows from definition (1.1) that

H(⇣
1

!
1

)⇤H(⇣
2

!
2

)f = P
+

W!
1

(⇣
1

P
+

⇣
2

)!
2

Wf, f 2 H2(T).
Since the supports of ⇣

1

and ⇣
2

are disjoint, the operator ⇣
1

P
+

⇣
2

has a C1 smooth
integral kernel

⇣
1

(µ)⇣
2

(µ0)

µ0 � µ
µ0, µ, µ0 2 T,

and so by Lemma 2.4(i) it belongs to the class S
0

. This ensures the first inclusion
in (2.17). In view of the obvious identity

H(!)⇤ = H(!⇤) where !⇤(µ) = !(µ̄),

the second inclusion (2.17) follows from the first one. ⇤
Proof of Theorem 1.1. Let us apply the abstract Theorem 2.2 to the Hankel op-
erators A

`

= H(!
`

), ` = 1, . . . , L. Lemma 2.5 implies that the asymptotic orthog-
onality condition (2.5) is satisfied. Therefore the asymptotic relations (1.3) and
(1.4) follow directly from (2.6) and (2.7). ⇤
2.4. Hankel operators in H2

+

(R). Hankel operators can also be defined in the
Hardy space H2

+

(R) of functions analytic in the upper half-plane. We denote by �
the unitary Fourier transform on L2(R),

bu(t) = (�u)(t) =
1p
2⇡

Z 1

�1
u(x)e�ixtdx.

Let H2

+

(R) ⇢ L2(R) be the Hardy class,

H2

+

(R) = {u 2 L2(R) : bu(t) = 0 for t < 0},
and let P

+

: L2(R) ! H2

+

(R) be the corresponding orthogonal projection. Let
W be the involution in L2(R), (Wf)(x) = f(�x). For ! 2 L1(R), the operator
H(!) in H2

+

(R) is defined by the formula

H(!)f = P
+

(!Wf), f 2 H2

+

(R). (2.18)
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There is a unitary equivalence between the Hankel operators H(!) defined in
H2(T) by formula (1.1) and the Hankel operators H(!) defined in H2

+

(R) by
formula (2.18). Indeed, let

w =
z � i/2

z + i/2
, z =

i

2

1 + w

1� w
(2.19)

be the standard conformal map sending the upper half-plane onto the unit disc,
and let U : H2(T) ! H2

+

(R) be the corresponding unitary operator defined by

(Uf)(x) = 1p
2⇡

1

x+i/2

f(x�i/2

x+i/2

), (U⇤f)(µ) = i
p
2⇡ 1

1�µ

f( i
2

1+µ

1�µ

).

Then

UH(!)U⇤ = H(!), if !(x) = �x�i/2

x+i/2

!(x�i/2

x+i/2

). (2.20)

So the localization principle stated for H(!) can be automatically mapped to
operators H(!). This is discussed below.

2.5. Localization principle in H2

+

(R). Symbols !(x) of Hankel operators H(!)
have the exceptional points x = +1 and x = �1; it will be convenient to identify
these two points. The real line with such identification will be denoted R⇤. We write
! 2 C(R⇤) if ! 2 C(R) and

lim
x!1

!(x) = lim
x!�1

!(x),

where both limits are supposed to exist. Similarly, we write ! 2 C1(R⇤) if ! 2
C1(R) and, for all m = 0, 1, . . .,

lim
x!1

!(m)(x) = lim
x!�1

!(m)(x). (2.21)

In particular, the point x = 1 belongs to the singular support of ! if for at least
one m � 0 the relation (2.21) fails (i.e. if either at least one of the limits does not
exist or the limits are not equal).

Let us state the localization principle for Hankel operators in H2

+

(R).

Theorem 2.6. Let !
`

2 L1(R), ` = 1, . . . , L < 1, be such that

sing supp!
`

\ sing supp!
j

= ?, ` 6= j.

Set ! = !
1

+ · · ·+ !
L

. Then for all p > 0 we have the relations

lim sup
n!1

ns
n

(H(!))p 
LX

`=1

lim sup
n!1

ns
n

(H(!
`

))p,

lim inf
n!1

ns
n

(H(!))p �
LX

`=1

lim inf
n!1

ns
n

(H(!
`

))p.
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Observe that formulas (2.19) establish a one-to-one correspondence between the
unit circle T and the real axis R⇤ with the points x = +1 and x = �1 identified.
They yield also the one-to-one correspondence between the singular supports of
the symbols !(µ) and !(x) linked by equality (2.20). Thus, Theorem 2.6 is a direct
consequence of Theorem 1.1.

3. Applications of localization principle: discrete case

3.1. Discrete representation. For a sequence {h(j)}1
j=0

of complex numbers,
the Hankel operator �(h) in the space `2(Z

+

) is formally defined by the “infinite
matrix” {h(j + k)}1

j,k=0

:

(�(h)u)(j) =
1X

k=0

h(j + k)u(k), u = {u(k)}1
k=0

. (3.1)

The Hankel operators �(h) in `2(Z
+

) and H(!) in H2(T) are related as follows.
Let

F : f 7! { bf(j)}1
j=0

, F : H2(T) ! `2(Z
+

),

be the discrete Fourier transform. Then the matrix elements of H(!) in the or-
thonormal basis {µj}1

j=0

are

(H(!)µj, µk)
L

2
(T) = b!(j + k), j, k � 0,

so that

�(h) = FH(!)F⇤ if b!(j) = h(j), j � 0. (3.2)

Since (3.2) involves only the coe�cients with j � 0, for a given sequence h the
symbol ! is not uniquely defined.

3.2. Plan of the approach. In our previous publication [11] we considered com-
pact self-adjoint Hankel operators, corresponding to sequences of real numbers of
the type

q(j) = j�1(log j)�↵ + error term, j ! 1, (3.3)

where ↵ > 0. Under the appropriate assumptions on the error term, we proved in
[11] that the positive eigenvalues of the Hankel operator �(q) have the asymptotics

�+

n

(�(q)) = {(↵)n�↵ + o(n�↵), n ! 1,

where the coe�cient {(↵) is defined in (1.12). For negative eigenvalues, we have
��
n

(�(q)) = o(n�↵) as n ! 1.
In [11] our analysis was based on the asymptotic form (3.3) and did not involve

symbols directly. In this paper, we check (this is an easy calculation, see Lemma 4.3
below) that if q(j) = j�1(log j)�↵, then a symbol � of �(q) can be chosen such
that sing supp � = {1}.
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Theorem 1.1 allows us to find the asymptotics of singular values for more general
“oscillating” sequences of the type

h(j) =
LX

`=1

b
`

j�1(log j)�↵⇣�j

`

+ error term, j ! 1, (3.4)

where ⇣
1

, . . . , ⇣
L

2 T are distinct points and b
1

, . . . , b
L

2 C are arbitrary coe�-
cients. It is easy to see that the symbol corresponding to the `’th term in (3.4)
equals b

`

�(µ/⇣
`

). Hence its singular support consists of one point {⇣
`

}, and so we
are in the situation described by the localization principle for p = 1/↵. The er-
ror term in (3.4) is treated by using the estimates from [10] on singular values of
Hankel operators.

Notice that the operators �(h) corresponding to sequences h of the class (3.4)
are in general not self-adjoint. We have information about the asymptotics of their
singular values, but not of their eigenvalues.

3.3. Main result in the discrete case. In order to state our requirements on
the error term in (3.4), we need some notation. Let

M(↵) =

(
[↵] + 1, if ↵ � 1/2,

0, if ↵ < 1/2,
(3.5)

where [↵] is the integer part of ↵. For a sequence h = {h(j)}1
j=0

, we define itera-
tively the sequences h(m) = {h(m)(j)}1

j=0

, m = 0, 1, 2, . . . , by setting h(0)(j) = h(j)
and

h(m+1)(j) = h(m)(j + 1)� h(m)(j), j � 0. (3.6)

The sequences h(m) provide a natural measure of the oscillation of the sequence
h, similarly to the derivatives of a function. Note that if h(j) = j�1(log j)�↵ for
su�ciently large j, then for all m � 1 the sequences h(m) satisfy

h(m)(j) = O(j�1�m(log j)�↵), j ! 1. (3.7)

Now we are in a position to state precisely our result on Hankel operators with
matrix elements (3.4).

Theorem 3.1. Let ↵ > 0, let ⇣
1

, . . . , ⇣
L

2 T be distinct numbers, and let
b
1

, . . . , b
L

2 C. Let h be a sequence of complex numbers such that

h(j) =
LX

`=1

�
b
`

j�1(log j)�↵ + g
`

(j)
�
⇣�j

`

, j � 2, (3.8)

where the error terms g
`

, ` = 1, . . . , L, satisfy the estimates

g(m)

`

(j) = o(j�1�m(log j)�↵), j ! 1, (3.9)
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for all m = 0, 1, . . . ,M(↵) (M(↵) is given by (3.5)). Then the singular values of
the Hankel operator �(h) defined in `2(Z

+

) by formula (3.1) satisfy the asymptotic
relation

s
n

(�(h)) = c n�↵ + o(n�↵), n ! 1, (3.10)

where

c = {(↵)
⇣ LX

`=1

|b
`

|1/↵
⌘
↵

(3.11)

and the coe�cient {(↵) is given by formula (1.12).

This result means that asymptotically the singular value counting function of
the operator �(h) is the sum of such functions for every term on the right side of
(3.8).

4. Proof of Theorem 3.1

4.1. Singular value estimates and asymptotics. We need two results obtained
in our papers [10, 11]. Let M(↵) be as in (3.5).

Theorem 4.1. [10, Theorem 2.3] Suppose that a sequence g satisfies

g(m)(j) = o(j�1�m(log j)�↵), j ! 1, (4.1)

for some ↵ > 0 and for all m = 0, 1, . . . ,M(↵). Then

s
n

(�(g)) = o(n�↵), n ! 1. (4.2)

In [10] we also have a result with O instead of o in both (4.1) and (4.2), but we
do not use it in this paper. Observe that for ↵ < 1/2 we need only the estimate
on g, whereas for ↵ � 1/2 we also need estimates on the iterated di↵erences g(m).

Theorem 4.2. [11, Theorem 1.1] Let ↵ > 0, and let the “model sequence” q be
defined by

q(j) = j�1(log j)�↵ (4.3)

for all su�ciently large j (the values q(j) for any finite number of j are unimpor-
tant). Then

s
n

(�(q)) = {(↵)n�↵ + o(n�↵), n ! 1.

Of course, this result corresponds to a particular case of Theorem 3.1 with L = 1,
⇣
1

= 1, b
1

= 1.

4.2. The model symbol. In order to combine the contributions of di↵erent terms
in (3.8), we use the localization principle (i.e. Theorem 1.1). To that end, we have
to identify the singular support of the symbol corresponding to the model sequence
(4.3); we suppose that (4.3) is true for all j � 2 and put q(0) = q(1) = 0. We need
to find a function � such that its Fourier coe�cients b�(j) = q(j) for j � 0. Of
course, the choice of � is not unique. We will choose � corresponding to the odd
extension of the sequence q(j) to the negative j.
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Lemma 4.3. Let ↵ � 0, and let q be given by (4.3); set

�(µ) =
1X

j=2

q(j)(µj � µj), µ 2 T. (4.4)

Then � 2 L1(T) and � 2 C1(T \ {1}).
Proof. Note that for all µ 2 T, the series (4.4) converges absolutely if ↵ > 1 and
conditionally if ↵  1.

First, we check that � 2 L1(T). We write µ = ei✓, ✓ 2 (�⇡, ⇡]. For ✓ 6= 0, we
set N = [(2|✓|)�1] and write � = �

1

+ �
2

, where

�
1

(µ) =
NX

j=2

q(j)(µj � µj), �
2

(µ) =
1X

j=N+1

q(j)(µj � µj). (4.5)

We consider these two functions separately. Using the bounds q(j)  (log 2)�1j�1

and

|µj � µj| = 2|sin(j✓)|  2j|✓|,
we obtain the estimate

|�
1

(µ)|  2|✓|
NX

j=2

jq(j)  2(log 2)�1|✓|N  (log 2)�1.

In order to estimate �
2

, let us use summation by parts:

(µ� 1)
1X

j=N+1

q(j)µj =
1X

j=N+1

q(j)(µj+1 � µj)

= �
1X

j=N+1

q(1)(j)µj+1 � q(N + 1)µN+1 (4.6)

where q(1)(j) is defined by (3.6). By (3.7), we have q(1)(j) = O(j�2), j ! 1, and
hence �����(µ� 1)

1X

j=N+1

q(j)µj

�����  C
1

� 1X

j=N+1

j�2 +N�1

�  C
2

N�1.

In view of definition (4.5), it follows that

|�
2

(µ)|  2

�����

1X

j=N+1

q(j)µj

����� 
2C

2

N |µ� 1| =
2C

2

[(2|✓|)�1]|ei✓ � 1|  C.

Thus �
2

2 L1(T).
It remains to prove that � 2 CM(T \ {1}) for any M 2 N. Choose µ 2 T and

put a(j) = µj; then, by definition (3.6), a(M+1)(j) = (µ � 1)M+1µj. Similarly to
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(4.6), by a repeated summation by parts procedure, we obtain the identity

(µ� 1)M+1

1X

j=2

q(j)µj =
1X

j=2

q(j)a(M+1)(j)

= (�1)M+1

1X

j=2

q(M+1)(j)a(j) + p
M

(µ) (4.7)

with some polynomial p
M

. Since, by (3.7), q(M+1)(j) = O(j�2�M) as j ! 1 and
a(j) = µj, the function of µ on the right side of (4.7) is in CM(T). It follows that
� 2 CM(T \ {1}) and hence � 2 C1(T \ {1}). ⇤
Remark 4.4. (i) Of course, the singular support of � is non-empty, that is, 1 2
sing supp �. In fact, it can be verified that

�(ei✓) = ⇡i sign ✓|log|✓||�↵(1 + o(1)), ✓ ! 0.

(ii) If ↵ > 1, then instead of the odd extension of q(j) to the negative j, one
can extend it by zero, i.e. one can choose

e�(µ) =
1X

j=2

q(j)µj.

This doesn’t work for ↵  1 since e�(µ) is unbounded as µ ! 1 in this case.

According to definition (4.4), we have b�(j) = q(j) for all j � 0. Hence, it follows
from relation (3.2) that the operators H(�) and �(q) are unitarily equivalent. So
the next assertion is a direct consequence of Theorem 4.2.

Theorem 4.5. Let the function �(µ) be defined by formula (4.4) where q(j) are
given by (4.3) and ↵ > 0. Then the following asymptotic relation holds true:

s
n

(H(�)) = {(↵)n�↵ + o(n�↵), n ! 1.

4.3. Rotation of the symbol. For a parameter ⇣ 2 T, let R
⇣

be the “rotation
by ⇣” operator:

(R
⇣

f)(µ) = f(µ/⇣).

Obviously, R
⇣

is a unitary operator in L2(T) and in H2(T). Similarly, let V
⇣

be the
multiplication by ⇣�j:

(V
⇣

u)(j) = ⇣�ju(j).

Obviously, V
⇣

is a unitary operator in `2(Z) and in `2(Z
+

).

Lemma 4.6. For arbitrary ⇣ 2 T, we have the following statements:

(i) If ! 2 L1(T), then
H(R

⇣

!) = R
⇣

H(!)R
⇣

.

In particular, if H(!) is compact, then

s
n

(H(R
⇣

!)) = s
n

(H(!)), 8n � 1.
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(ii) For any sequence h such that �(h) is bounded, we have

�(V
⇣

h) = V
⇣

�(h)V
⇣

.

In particular, if �(h) is compact, then

s
n

(�(V
⇣

h)) = s
n

(�(h)), 8n � 1.

Proof. Since
P
+

R
⇣

= R
⇣

P
+

and R
⇣

WR
⇣

= W,

assertion (i) is a direct consequence of the definition (1.1) of the Hankel operator
H(!). Assertion (ii) immediately follows from definition (3.1). ⇤

4.4. Putting things together. Let the symbol �(µ) be defined by relation (4.4)
and let

!
\

(µ) =
LX

`=1

!
`

(µ) where !
`

(µ) = b
`

�(µ/⇣
`

). (4.8)

According to Theorem 4.5 and Lemma 4.6(i) we have

s
n

(H(!
`

)) = |b
`

|{(↵)n�↵ + o(n�↵), n ! 1.

It follows from Lemma 4.3 that !
`

2 L1(T) and !
`

2 C1(T \ ⇣
`

). Since ⇣
1

, . . . , ⇣
L

are distinct points, the localization principle (Theorem 1.1) is applicable to the
sum (4.8). This yields

lim
n!1

ns
n

(H(!
\

))p =
LX

`=1

lim
n!1

ns
n

(H(!
`

))p = {(↵)p
LX

`=1

|b
`

|p, p = 1/↵. (4.9)

Note that, by the definition (4.8),

b!
`

(j) = b
`

⇣�jb�(j)
and hence according to formula (4.4)

b!
\

(j) =
LX

`=1

b
`

⇣�j

`

j�1(log j)�↵ =: h
\

(j), j � 2.

Set h
\

(0) = h
\

(1) = 0. Since the operatorsH(!
\

) and �(h
\

) are unitarily equivalent,
it follows from (4.9) that

lim
n!1

ns
n

(�(h
\

))p = {(↵)p
LX

`=1

|b
`

|p. (4.10)

Next, we consider the error term

g(j) =
LX

`=1

⇣�j

`

g
`

(j)
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in (3.8). According to condition (3.9) it follows from Theorem 4.1 that s
n

(�(g
`

)) =
o(n�↵) as n ! 1. By Lemma 4.6(ii), we also have s

n

(�(V
⇣`
g
`

)) = o(n�↵) and
hence

s
n

(�(g)) = o(n�↵) as n ! 1. (4.11)

Since

�(h) = �(h
\

) + �(g),

we can use Lemma 2.1 with A = �(h
\

) and B = �(g). The required relations
(3.10), (3.11) follow from (4.10) and (4.11). ⇤

5. Applications of localization principle: continuous case

5.1. Hankel operators in L2(R
+

). Integral Hankel operators �(h) in the space
L2(R

+

) are defined by the relation

(�(h)u)(t) =

Z 1

0

h(t+ s)u(s)ds, u 2 C1
0

(R
+

), (5.1)

where at least h 2 L1

loc

(R
+

); this function is called the kernel of the Hankel
operator �(h). Under the assumptions on h below the operators �(h) are compact.

Similarly to the discrete case, Hankel operators H(!) in the Hardy space H2

+

(R)
are unitarily equivalent to integral operators �(h) in the space L2(R

+

):

�H(!)�⇤ = �(h) if h(t) =
1p
2⇡

b!(t) for t > 0. (5.2)

The Fourier transform b! of ! 2 L1(R) should in general be understood in the
sense of distributions (for example, on the Schwartz class S 0(R)) and the precise
meaning of (5.2) is given by the equation

(H(!)�⇤u,�⇤u) = (�(h)u,u), u 2 C1
0

(R
+

).

A function !(x) satisfying (5.2) is known as a symbol of the Hankel operator �(h).

5.2. Main result in the continuous case. In the discrete case, the spectral
asymptotics of �(h) is determined by the asymptotic behavior of the sequence h(j)
as j ! 1. In the continuous case, the behavior of the kernel h(t) for t ! 1 and for
t ! 0 as well as the local singularities of h(t) at positive points t contribute to the
spectral asymptotics of �(h). In the following result we exclude local singularities.
We denote hxi = p

1 + |x|2.
The theorem below is an analogue of Theorem 3.1. In the discrete case, our

assumption on the error term included a bound on the sequences g(m); here it
includes a bound on the derivatives.
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Theorem 5.1. Let ↵ > 0, let a
1

, . . . , a
L

2 R be distinct numbers and let
b
0

,b
1

, . . . ,b
L

2 C. Let the number M = M(↵) be given by (3.5). Suppose that
h 2 L1

loc

(R
+

) if ↵ < 1/2 and h 2 CM(R
+

) if ↵ � 1/2. Assume that

h(t) =
LX

`=1

�
b
`

t�1(log t)�↵ + g
`

(t)
�
e�ia`t, t � 2, (5.3)

h(t) = b
0

t�1

�
log(1/t)

��↵

+ g
0

(t), t  1/2, (5.4)

where the error terms g
`

and their derivatives g(m)

`

satisfy the estimates

g(m)

`

(t) = o(t�1�mhlog ti�↵), m = 0, . . . ,M(↵), (5.5)

as t ! 1 for ` = 1, . . . , L and as t ! 0 for ` = 0. Then the singular values of the
integral Hankel operator �(h) in L2(R

+

) satisfy the asymptotic relation

s
n

(�(h)) = cn�↵ + o(n�↵), n ! 1, (5.6)

where

c = {(↵)
⇣ LX

`=0

|b
`

|1/↵
⌘
↵

(5.7)

and the coe�cient {(↵) is given by formula (1.12).

The proof in the continuous case follows the same general outline as in the
discrete case with the only di↵erence that the singularity of the kernel h(t) at
t = 0 has to be treated separately. It corresponds to the singularity of the symbol
!(x) at infinity.

In Section 7 we consider kernels h(t) that have a singularity at some posi-
tive point and admit representation (5.3) for large t. It turns out that, similarly
to Theorem 5.1, the contributions of the singularities of these two types to the
asymptotics of singular values are independent of each other.

6. Proof of Theorem 5.1

The proof of Theorem 5.1 follows the scheme of the proof of Theorem 3.1. The
only new point is that now we have to additionally establish the correspondence
between symbols singular at infinity and kernels singular at t = 0.

6.1. Singular value estimates and asymptotics. Let us state the analogues
of Theorems 4.1 and 4.2.

Theorem 6.1. [10, Theorem 2.8] Let ↵ > 0, and let the number M = M(↵) be
given by (3.5). Suppose that g 2 L1

loc

(R
+

) if ↵ < 1/2 and g 2 CM(R
+

) if ↵ � 1/2.
Assume that

g(m)(t) = o(t�1�mhlog ti�↵) as t ! 0 and as t ! 1 (6.1)
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for all m = 0, 1, . . . ,M . Then

s
n

(�(g)) = o(n�↵), n ! 1. (6.2)

In [10] we also have a result with O instead of o in (6.1) and (6.2), although we
will not need it in this paper. Observe that for ↵ < 1/2 we need only the estimate
on g, whereas for ↵ � 1/2 we also need estimates on the derivatives g(m).

Next, we define model kernels q
0

, q1. Choose some non-negative functions
�
0

,�1 2 C1(R) such that

�
0

(x) =

(
1 for |x|  c

1

,

0 for |x| � c
2

,
�1(x) =

(
0 for |x|  C

1

,

1 for |x| � C
2

,

for some 0 < c
1

< c
2

< 1 and 1 < C
1

< C
2

.

Theorem 6.2. [11, Theorem 1.2] For ↵ > 0, set

q
0

(t) = �
0

(t)t�1(log(1/t))�↵, q1(t) = �1(t)t�1(log t)�↵, t > 0. (6.3)

Then

s
n

(�(q
0

)) = {(↵)n�↵ + o(n�↵), s
n

(�(q1)) = {(↵)n�↵ + o(n�↵), n ! 1.

Of course, this result corresponds to particular cases of Theorem 5.1 with L = 1,
a
1

= 0, b
0

= 1, b
1

= 0 and b
0

= 0, b
1

= 1.

6.2. Model symbols. In order to put together the contributions of di↵erent terms
in (5.3) and (5.4), we use the localization principle in the form of Theorem 2.6. To
that end, we need to determine the singular supports of the symbols corresponding
to the model kernels q

0

, q1. Again, we will choose functions �
0

, �1 whose Fourier
transform coincides with the odd extension of q

0

, q1 to the real line. The proof
below is very similar to that of Lemma 4.3.

Lemma 6.3. Let �
0

, �1 be defined by

�
0

(x) = 2i

Z 1

0

q
0

(t) sin(xt)dt, �1(x) = 2i

Z 1

0

q1(t) sin(xt)dt, x 2 R, (6.4)

where q
0

(t) and q1(t) are given by (6.3) with ↵ � 0. Then �
0

,�1 2 L1(R) and
�

0

2 C1(R), �1 2 C1(R⇤ \ {0}).
Proof. Note that for all x 2 R, the first integral in (6.4) converges absolutely while
the second one converges absolutely for ↵ > 1 and conditionally for ↵  1.

Since the integral in the definition (6.4) of �
0

is taken over a finite interval,
we can di↵erentiate this integral with respect to x arbitrary many times. Hence
�

0

2 C1(R). To prove that �1 2 C1(R⇤ \ {0}), we integrate by parts 2M + 2
times in the definition (6.4):

�1(x) = 2i(�1)M+1x�2M�2

Z 1

0

q(2M+2)

1 (t) sin(xt)dt.
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Since q(2M+2)

1 (t) = O(|t|�2M�3) as |t| ! 1, we see that �1 2 Cm(R \ {0}) and

�(m)

1 (x) ! 0 for m = 0, 1, . . . , 2M + 1 as |x| ! 1. Finally, we use that M is
arbitrary.

It remains to prove that the functions �
0

and �1 are bounded. Below  = 0 or
 = 1. We may suppose that x > 0. Write �



= �(1)



+ �(2)



, where

�(1)



(x) = 2i

Z
1/x

0

q


(t) sin(xt)dt, �(2)



(x) = 2i

Z 1

1/x

q


(t) sin(xt)dt.

Since |sin(xt)|  xt, for both functions �(1)



we have the estimate

|�(1)



(x)|  2x

Z
1/x

0

q


(t)tdt  C

because q


(t)t are bounded functions. For �(2)



, integrating by parts once, we get

�(2)



(x) = �2i

x

Z 1

1/x

q


(t)(cos(xt))0dt =
2i

x
q


(1/x) cos 1 +
2i

x

Z 1

1/x

q0


(t) cos(xt)dt.

The first term on the right side is bounded because q


(t)t are bounded functions.
The second term is also bounded because the functions q0



(t)t2 are bounded. ⇤
Remark 6.4. (i) Of course the singular supports of �

0

and �1 are non-empty
sets in R⇤, that is, sing supp�0

= {1} and sing supp�1 = {0}. In fact, it can be
verified that the symbols �

0

, �1 satisfy the asymptotics

�
0

(x) = ⇡i sign x|log|x||�↵(1 + o(1)), x ! 1,

�1(x) = ⇡i sign x|log|x||�↵(1 + o(1)), x ! 0.

(ii) For some values of ↵, instead of the odd extension of q
0

(t) and q1(t) to the
negative t, one can extend them by zero, i.e. one can choose

e�
0

(x) =

Z 1

0

q
0

(t)eixtdt, if ↵ < 1,

e�1(x) =

Z 1

0

q1(t)eixtdt, if ↵ > 1,

instead of �
0

(x), �1(x), respectively.

Recall that the Hankel operators in the Hardy space H2

+

(R) were defined by
formula (2.18). The next assertion plays the role of Theorem 4.5.

Theorem 6.5. Let the functions �
0

and �1 be defined by formulas (6.4) where
q
0

(t) and q1(t) are given by (6.3) and ↵ > 0. Then the following asymptotic
relations hold true:

s
n

(H(�
0

)) = {(↵)n�↵ + o(n�↵), s
n

(H(�1)) = {(↵)n�↵ + o(n�↵), n ! 1.
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Proof. Observe that

1p
2⇡

b�
0

(t) = q
0

(t),
1p
2⇡

b�1(t) = q1(t), t > 0, (6.5)

where the Fourier transform is understood in the class of distributions S(R)0.
Indeed, the second equality (6.5) follows directly from definition (6.4) because
q1 2 S(R)0. In order to prove the first equality in (6.5), we have to take into
account that for ↵  1 the function q

0

(t) is not integrable in a neighborhood of
the point t = 0. Therefore we first extend q

0

by the formula

hq(ext)

0

,'i =
Z 1

0

q
0

(t)('̄(t)� '̄(�t))dt

to the distribution q(ext)

0

2 S(R)0. According to the first formula in (6.4), the func-

tion (2⇡)�1/2�
0

is the Fourier transform of q(ext)

0

. Thus (2⇡)�1/2b�
0

(t) = q(ext)

0

(t),
which coincides with the first relation in (6.5) for t > 0.

In view of relation (5.2), it follows from (6.5) that

�H(�
0

)�⇤ = �(q
0

) and �H(�1)�⇤ = �(q1).

Therefore we only have to use Theorem 6.2 to complete the proof. ⇤

6.3. Shifts of symbols. For a parameter a 2 R, let R
a

be the shift

(R
a

f)(x) = f(x� a).

Obviously, R
a

is a unitary operator in L2(R) and H2

+

(R). Of course, now R
a

is
not a rotation, but we keep the letter R in order to maintain the analogy between
the discrete and continuous cases.

Similarly, let V
a

be the multiplication operator

(V
a

u)(t) = e�iatu(t), t > 0.

Obviously, V
a

is a unitary operator in L2(R) and in L2(R
+

).

Lemma 6.6. For arbitrary a 2 R, we have the following statements:

(i) For any ! 2 L1(R), we have

H(R
a

!) = R
a

H(!)R
a

.

In particular, if H(!) is compact, then

s
n

(H(R
a

!)) = s
n

(H(!)), 8n � 1.

(ii) Suppose that �(h) is bounded; then

�(V
a

h) = V
a

�(h)V
a

.

In particular, if �(h) is compact, then

s
n

(�(V
a

h)) = s
n

(�(h)), 8n � 1.
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Proof. Since
P

+

R
a

= R
a

P
+

and R
a

WR
a

= W,

the first assertion is a direct consequence of the definition (2.18) of the Hankel
operator H(!) in H2(R). The second assertion immediately follows from the def-
inition (5.1). ⇤
6.4. Putting things together. Let the symbols �

0

(x) and �1(x) be defined by
relations (6.4) and let

!
\

(x) = !
0

(x) +
LX

`=1

!
`

(x), where !
0

(x) = b
0

�
0

(x), !
`

(x) = b
`

�1(x� a
`

).

(6.6)
According to Theorem 6.5 and Lemma 6.6(i) we have

s
n

(H(!
`

)) = |b
`

|{(↵)n�↵ + o(n�↵), n ! 1,

for all ` = 0, 1, . . . , L. It follows from Lemma 6.3 that !
`

2 L1(R) for all ` =
0, 1, . . . , L, !

0

2 C1(R) and !
`

2 C1(R⇤ \ a`) for ` = 1, . . . , L. Since a
1

, . . . , a
L

are distinct points, the localization principle (Theorem 2.6) is applicable to the
sum (6.6). This yields

lim
n!1

ns
n

(H(!
\

))p =
LX

`=0

lim
n!1

ns
n

(H(!
`

))p = {(↵)p
LX

`=0

|b
`

|p, p = 1/↵. (6.7)

By definition (6.6), we have

b!
0

(t) = b
0

b�
0

(t) and b!
`

(t) = b
`

b�1(t)e�ia`t, ` = 1, . . . , L.

Therefore, according to formulas (6.3) and (6.5), we have

1p
2⇡

b!
\

(t) = b
0

�
0

(t)t�1| log t|�↵ +
LX

`=1

b
`

�1(t)t�1| log t|�↵e�ia`t =: h
\

(t), t > 0.

In view of relation (5.2) it now follows from (6.7) that

lim
n!1

ns
n

(�(h
\

))p = {(↵)p
LX

`=0

|b
`

|p.

Next, we consider the error term

g(t) = h(t)� h
\

(t) = g
0

(t) +
LX

`=1

g
`

(t)e�ia`t

where all functions g
`

(t), ` = 0, 1, . . . , L, satisfy the condition (5.5) both for t ! 0
and t ! 1. It follows from Theorem 6.1 and Lemma 6.6(ii) that s

n

(H(g
`

)) =
o(n�↵) and hence

s
n

(H(g)) = o(n�↵) as n ! 1. (6.8)
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Since
H(h) = H(h

\

) +H(g),

we can use Lemma 2.1 with A = H(h
\

) and B = H(g). The required relations
(5.6), (5.7) follow from (6.7) and (6.8). ⇤

7. Local singularities of the kernel

The localization principle shows that the results on the asymptotics of singular
values of di↵erent Hankel operators can be combined provided that the singular
supports of their symbols are disjoint. This idea has already been illustrated by
Theorems 3.1 and 5.1. Here we apply the same arguments to kernels h(t) satisfying
condition (5.3) as t ! 1 and singular at some point t

0

> 0. Below
+

(t) is the
characteristic function of R

+

.
The e↵ect of local singularities of h(t) on the asymptotics of singular values of

the corresponding Hankel operator �(h) was studied in [3] and later in [13]. The
methods of these papers are quite di↵erent. We use the following result obtained
in [13].

Lemma 7.1. Let t
0

> 0, m 2 Z
+

and

a
m

(t) = (t
0

� t)m
+

(t
0

� t). (7.1)

Then Ker�(a
m

) = L2(t
0

,1) and

�(a
m

)
��
L

2
(0,t0)

= m!A�1

m

where the self-adjoint operator A
m

in L2(0, t
0

) is defined by the di↵erential expres-
sion

(A
m

u)(t) = (�1)m+1u(m+1)(t
0

� t)

and the boundary conditions

u(t
0

) = · · · = u(m)(t
0

) = 0. (7.2)

Note that the operator A2

m

is given by the di↵erential expression

(A2

m

u)(t) = (�1)m+1u(2m+2)(t)

and the boundary conditions (7.2) and

u(m+1)(0) = · · · = u(2m+1)(0) = 0.

Thus A2

m

is a regular di↵erential operator and the asymptotics of its eigenval-
ues is given by the Weyl formula. Therefore the following result is an immediate
consequence of Lemma 7.1.

Corollary 7.2. Let the function a
m

(t) be given by formula (7.1). Then

s
n

(�(a
m

)) = m!tm+1

0

(⇡n)�m�1

�
1 +O(n�1)

�
, n ! 1. (7.3)
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Notice that formula (7.3) was obtained much earlier in [3] by a completely
di↵erent method.

We also note the explicit formula for the symbol ⌧
m

(x) of the operator �(a
m

):

⌧
m

(x) = m!(ix)�m�1

�
eit0x �

mX

k=0

1

k!
(it

0

x)k
�
, x 2 R. (7.4)

Obviously, ⌧
m

2 C1(R) and ⌧
m

(x) is an oscillating function as |x| ! 1.
We are now in a position to consider the general case.

Theorem 7.3. Let t
0

> 0, m 2 Z
+

and � 2 C. Set
h
m

(t) = b(t
0

� t)m
+

(t
0

� t) + h(t)

where h(t) satisfies the assumptions of Theorem 5.1 with b
0

= 0 and ↵ = m + 1.
Then the singular values of the operator �(h

m

) satisfy the asymptotic

s
n

(�(h
m

)) = c
m

n�m�1 + o(n�m�1) (7.5)

with

c
m

=
⇣
⇡�1t

0

(m!|b|)1/↵ + v(↵)1/↵
LX

`=1

|b
`

|1/↵
⌘
↵

, ↵ = m+ 1,

and v(↵) defined by (1.12).

Proof. It is almost the same as that of Theorem 5.1. Let us use notation (7.1).
The asymptotics of the singular values of the operator �(a

m

) is given by formula
(7.3). The operator �(h) satisfies the assumptions of Theorem 5.1 so that the
asymptotics of its eigenvalues is given by formula (5.6). The symbol (7.4) of the
operator �(a

m

) is singular only at infinity. Neglecting the terms satisfying the
assumptions of Theorem 6.1 and using Lemma 6.3, we see that the singular support
of the symbol of the operator �(h) consists of the points a

1

, . . . , a
L

2 R. Therefore
applying Theorem 2.6, we conclude the proof. ⇤
Remark 7.4. We have chosen ↵ = m + 1 in Theorem 7.3 since in this case both
the local singularity and the “tail” of h(t) at infinity contribute to the asymptotic
coe�cient c

m

in (7.5).

Observe that we have excluded the term (5.4) singular at t = 0 in Theorem 7.3
because the corresponding symbol is singular at the same point x = 1 as the
function (7.4). In this case one might expect that the contributions of singularities
of h(t) at t = 0 and t = t

0

> 0 are not independent of each other. In any case, our
technique does not allow us to treat this situation.

For the function (7.1), let us discuss the operator �(a
m

) in the representation
`2(Z

+

), that is, the operator

FU⇤H(⌧
m

)UF⇤ = �(a
m

).

Here a
m

(j) are the Fourier coe�cients of the function ⌧
m

(µ) linked to ⌧
m

(x) by for-
mula (2.20). Making the change of variables (2.19) in (7.4), we see that ⌧

m

(µ) is an
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oscillating function as µ ! 1. Therefore the asymptotics of its Fourier coe�cients
a
m

(j) is determined by the stationary phase method which yields:

a
m

(j) ⇠ m!⇡�1/22�(2m+1)/4j�(2m+5)/4 cos
�
2
p

2j � ⇡(2m+ 1)/4
�
.

Note that these sequences decay faster as j ! 1 than the matrix elements (3.8)
(for any ↵). Nevertheless due to the oscillating factor their contribution to the
asymptotics of singular values of the Hankel operator �(a

m

+ h) is of the same
order.
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