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ABSTRACT 

Lipoxygenases (LOXs) are a family of enzymes involved in the biosynthesis of several 

lipid mediators. In the case of human 15-LOX, the 15-LOX-1 and 15-LOX-2 isoforms 

show slightly different reaction regiospecificity and substrate specificity, indicating that 

substrate binding and recognition may be different, a fact that could be related to their 

different biological role. Here, we have used long molecular dynamics simulations, 

QM(DFT)/MM potential energy and free energy calculations (using the newly 

developed  DHAM method), to investigate the binding mode of the AA substrate into 

15-LOX-2 and the rate-limiting hydrogen-abstraction reaction 15-LOX-2 catalyzes. Our 

results strongly indicate that hydrogen abstraction from C13 in 15-LOX-2 is only 

consistent with the “tail-first” orientation of AA, with its carboxylate group interacting 

with Arg429, and that only the pro-S H13 hydrogen will be abstracted (being the pro-R 

H13 and H10 too far from the acceptor oxygen atom). At the B3LYP/6-31G(d) level the 

potential and free energy barriers for the pro-S H13 abstraction of AA by 15-LOX-2 are 

18 and 18.6 kcal/mol, respectively. To analyze the kinetics of the hydrogen abstraction 

process, we determined a Markov model corresponding to the unbiased simulations 

along the state-discretized reaction coordinate. The calculated rates based on the 

second largest eigenvalue of the Markov matrices agree well with experimental 

measurements, and also provide the means to directly determine the pre-exponential 

factor for the reaction by comparing with the free energy barrier height. Our 

calculated pre-exponential factor is close to the value of kBT/h. Our results suggest that 
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the spin inversion of the complete system (including the O2 molecule) that is required 

to happen at some point along the full process to lead to the final hydroperoxide 

product, is likely to take place during the hydrogen transfer, which is a proton coupled 

electron transfer. Overall, a different binding mode from the one accepted for 15-LOX-

1 is proposed, which provides a molecular basis for 15-LOX-2 exclusive 15-HPETE 

production in front of the double (although highly 15-) 12/15 regiospecificity of 15-

LOX-1. Understanding how these different isoenzymes achieve their regiospecificity is 

expected to help in specific inhibitor design. 

 

 

KEYWORDS 

Human enzyme 15-lipoxygenase-2; rate-limiting hydrogen-abstraction reaction; 
regiospecificity; Quantum Mechanics/Molecular Mechanics calculations; Dynamics 
Histogram Analysis Method. 
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1. INTRODUCTION 

Lipoxygenases (LOXs) are a family of non-heme, non-sulfur iron dioxygenases that 

catalyze the peroxidation of the 1,4-Z-Z-pentadiene units of polyunsaturated fatty 

acids.1,2 The fatty acid hydroperoxides formed by the different LOX isoenzymes are the 

starting points for the biosynthesis of a number of lipid mediators involved in many 

relevant cell processes and human pathologies.3-7 

The rate-determining step of the complete hydroperoxidation reaction is an initial 

hydrogen atom abstraction from a bisallylic methylene group of the fatty acid 

substrate by the Fe(III)-OH- moiety that precedes the addition of molecular oxygen to 

the fatty acid and the subsequent retro-hydrogen transfer to the peroxy radical (Figure 

1).4,8 These reactions are highly specific. Accordingly, animal LOXs are classified on the 

basis of the position of hydroperoxidation on the substrate arachidonic acid (AA).5,8-12 

There are 6 available carbon atoms in AA that can be attacked by molecular oxygen, 

and specific animal LOXs exist for 5 of them (5-, 8-, 11-, 12- and 15-LOX).5,13 This 

specificity is extremely relevant because the different LOX metabolites often exert 

opposing biological effects, and high specificity is therefore required. For instance, 5-

LOX converts AA to the pro-inflammatory leukotrienes. Conversely, the combined 

action of first 15-LOX and then 5-LOX leads to the synthesis of lipoxins that are 

involved in the resolution phase of inflammation.5  
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Figure 1: The three reaction steps of hydrogen abstraction, oxygen insertion and 

hydrogen recovery are drawn with the corresponding structures (reactant, R, 

intermediate I1 and I2, and product P). 

 

One of the most important LOX enzymes is 15-LOX. There are two human LOXs, with 

less than 40% sequence identity, that hydroperoxidate AA at position 15: reticulocyte 

15-LOX-1 and epithelial 15-LOX-2.14,15 In spite of the chemically analogous mechanism 

to oxidize AA at the same carbon atom 15, their biological role is distinctly different.16 

On the other hand, 15-LOX-1 preferentially metabolizes linoleic acid primarily to 13-

hydroperoxyoctadecadienoic acid (13-HPODE), but also catalyzes the conversion of AA 

mainly to 15-hydroperoxyeicosatetraenoic acid (15-HPETE) and, in a lesser extent, to 

12-hydroperoxyeicosatetraenoic acid (12-HPETE).15,16 Conversely, 15-LOX-2 

metabolizes linoleic acid poorly and converts AA exclusively to 15-HPETE.16 In addition, 

based on crystallographic structures with an inhibitor positioned as a substrate mimic, 

a so-called U-shaped substrate binding cavity has been assumed in human 15-LOX-2, 

but a boot-shaped was derived in rabbit 15-LOX-1 that has approximately 80% 

sequence identity with human 15-LOX-1.2 Holman and coworkers17 have suggested 

that binding and recognition for human 15-LOX-2 are fundamentally different from 

that of human 15-LOX-1. This could explain the difference in their substrate specificity. 

In particular, they have performed the AA docking to a human 15-LOX-2 homology 

model built using the rabbit 15-LOX-1 crystallographic structure and found a salt bridge 

between the carboxylate group of AA and Arg429. However, the long distance (over 17 

Å) between Arg429 and the active site did not allow proper positioning of AA for 

hydrogen atom abstraction, with an unlikely position of the methyl end of the 

substrate near the iron atom. In contrast to human 15-LOX-1, there were no positively 

charged residues in the vicinity of the human 15-LOX-2 active site to facilitate binding 

of the carboxylate group of AA.  

The apparently opposite biological function between the two 15-LOXs warrants the 

development of specific inhibitors of these isoforms. To this aim, a detailed knowledge 

of their respective mechanisms at the molecular level and a comparison between them 
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is highly desirable. In recent years we devoted significant effort to theoretically study 

the 15-LOX-1 enzyme and its catalytic mechanism.18-23 In particular, we have recently 

carried out quantum mechanics/molecular mechanics (QM/MM) calculations to study 

the hydrogen abstraction reaction from AA catalyzed by rabbit 15-LOX-1.24 We have 

shown that, in good agreement with the experimental results, most of the products of 

this reaction arise from the initial hydrogen abstraction from the carbon C13 of AA, 

although hydrogen abstraction from C10 is also possible. Moreover, we have found 

that there exist a wide range of geometries of the AA:15-LOX-1 Michaelis complexes in 

a suitable position to transfer one of the hydrogen atoms to the acceptor oxygen atom 

of the cofactor Fe(III)-OH-  and likewise a wide range of the corresponding potential 

energy barriers.  

This paper is aimed at understanding how the human enzyme 15-Lipoxygenase-2 

manages to catalyze the hydrogen abstraction from arachidonic acid in a highly regio- 

and stereospecific way. To this purpose we have combined molecular dynamics 

simulations, QM/MM calculations, and Umbrella Sampling free energy simulations 

using the very recently developed dynamic histogram analysis method (DHAM),25 

which is not only able to provide the free energies, but also the kinetic rate of the 

reaction. We also determined the pre-exponential factor for the reaction using the 

free energy barrier height and the calculated kinetic rate. The comparison with the 

enzyme 15-Lipoxygenase-1 is also presented.  
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2. COMPUTATIONAL  METHODS  

2.1. Initial coordinates 

The complex AA:15-LOX-2 structure is based on the 4NRE crystal structure recently 

available in the Protein Data Bank.15 The newly reported structure has a substrate 

mimic bound at the active site of the protein occupying the position expected for 

arachidonic acid (AA), the natural substrate of the enzyme. This crystallized inhibitor 

has the same number of atoms as AA and similar flexibility. This crystal structure 

therefore provides a good model for the positioning of the substrate within the active 

site, but details about the precise orientation are missing. Hence, we considered three 

possible orientations: i) “head-first” (carboxylate group pointing to the core of the 

protein); ii) “tail-first" (carboxylate group pointing to the surface) with the pro‐S H13 in 

a reactive position; and iii) “tail-first" with the pro‐R H13 in a reactive position. On the 

other hand, Newcomer and coworkers 2, 15 have suggested that formation of 15-HPETE 

(arising from abstraction at C13 in AA) is only consistent with the tail-first entry of AA. 

In the crystallographic structure there are two water molecules coordinating the iron 

atom. This situation differs from most of the reported structures of 15-lipoxygenases 

that have only a single coordinating water molecule.26-29 We analysed the electron 

density map (Figure S1 in SI) from the structure factors deposited in the PDB under the 

4NRE code using the PHENIX software.30 According to this map, the region with the 

second water molecule (801 in PDB file) could also be occupied by the side chain of 

Ser557. Therefore, we tested a second model where the oxygen atom of the Ser557 

side chain coordinates the iron instead of the water molecule. As will be shown below, 

the fact that a water or Ser557 coordinates the iron, does not considerably affect the H 

abstraction reaction.   

2.2. Molecular dynamics simulations  

Hydrogen coordinates were generated with standard protonation states for all 

ionisable residues using CHARMM.31 The system was solvated with a pre‐equilibrated 

TIP3 cubic water box of 116 Å3. Water molecules were randomly replaced by ions to 

ensure the neutralization of the system, and an additional KCl salt concentration 

corresponding to 0.15 M. The resulting system contains 147471 atoms, including the 
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water molecules. For all the three possible orientations mentioned above, we carried 

out 10000 steps of energy minimization and then molecular dynamics (MD) 

simulations using periodic boundary conditions (PBC).  The production trajectories 

were run for 100 ns after 1 ns of equilibration using NAMD.32 A time step of 2 fs was 

used. Temperature and pressure were held constant at 300 K and 1 atm, respectively. 

All of the bonds and angles involving hydrogen atoms were constrained by the SHAKE33 

algorithm. We used the CHARMM3634 force field, and the particle mesh Ewald 

method35 for the long range electrostatics in combination with a 12 Å cutoff for the 

evaluation of the non‐bonded interactions. 

 

2.3. QM/MM calculations 

Once the system was classically equilibrated, it was trimmed to a sphere of 20 Å radius 

centred at the AA.  Atoms further than 15 Å from the AA were kept frozen during all 

the QM/MM calculations. No cutoffs were introduced for the non-bonding MM and 

QM/MM interactions. We have used Q-Chem v4.136,37 and Gaussian09 rD0138 program 

packages to perform the all-electron QM calculations using the B3LYP functional with 

or without the D3 version of Grimme’s dispersion correction39,40 and in combination 

with the 6-31G(d), 6-31G(d,p), 6-31+G(d), 6-311G(d)  or 6-311+G(d,p) basis sets. The 

quantum mechanical system was coupled with the CHARMM program31 for the MM 

region. A full electrostatic embedding scheme41 has been adopted in all the 

calculations and hydrogen link atoms have been used to treat the QM/MM 

boundaries. The reaction paths were scanned by performing restrained geometry 

optimizations along the reaction coordinate z = r1(C13-H13) – r2(H13-O) (see Figure 2), 

using a step size of 0.2 Å both in the forward and backward directions to obtain 

hysteresis-free results.42 The QM region for all geometry optimizations encloses all the 

50 atoms depicted in red in Figure 2, including the AA from C10 to C16, the Fe atom (all 

electrons), part of the side chains of His373, His378, His553 and Ile676, one water 

molecule (or Ser557 side chain; 52 atoms in this case) and the catalytic hydroxide 

anion. 
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2.4. Sequence alignments 

Alignments were performed using the default parameters of the ClustalΩ43 algorithm 

via the Uniprot44 portal.    

 

2.5. Free energy calculations 

Umbrella sampling free energy calculations were performed to compute the potential 

of mean force (PMF) and the 2D free energy profile along the reaction coordinate. We 

used the same level of theory, B3LYP/6-31G(d), and QM region (Figure 2) as described 

above. 20 umbrella windows were run placing harmonic biasing potentials along the 

reaction coordinate at steps of 0.2 Å (-1.6 ≤ z ≤ 2.0 Å with z = r1-r2) using a spring 

constant of 250 kcal/(mol Å2). The QM/MM dynamics in each window was run for at 

least 6 ps after equilibration using a Langevin thermostat and a time step of 1 fs. 

Two alternative algorithms were used to calculate the free energies. We used a high-

precision implementation of the dynamic histogram analysis method (DHAM)25 to 

calculate the free energies and the kinetic rate of the reaction. We also evaluated the 

free energies using a binless implementation (MBAR)45-47 of the weighted histogram 

analysis method (WHAM).48,49 

 

Figure 2.  Schematic view of the QM/MM partition. The QM atoms are depicted in 

red, the boundary between the QM and MM regions is indicated by wavy lines. The 

reaction coordinate is defined as a function of the r1 and r2 distances. 
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3. RESULTS AND DISCUSSION  

3.1. Ligand orientation 

The newly reported crystal structure has an inhibitor bound at the active site of the 

protein. This crystallized ligand was replaced by AA taking advantage of the similarities 

in the molecular constitution and flexibility. As recognized by Newcomer and 

coworkers, the resolution of the electron density map does not allow the precise 

determination of the orientation even for the crystallized inhibitor.15 Hence, we 

considered two possible orientations: “head-first” and “tail-first” (Figure 3). We also 

took into account two possible conformations of AA in the “tail-first” orientation: one 

positioned for the abstraction of the pro-S H13 and one favouring the abstraction of 

the pro-R H13.  

i) “head-first” orientation: The carboxylate group of the ligand points to the core of the 

protein and is directly facing Val426, Val427 and Ile420 hydrophobic residues. This 

aliphatic non-polar environment seems unsuitable for binding of the charged 

carboxylate end of AA. Accordingly, our MD simulations showed that the carboxylate 

group is unstable in this binding mode and it moves away towards the protein surface 

(see Figure S2). Once the head of AA reaches the surface, the position of the fatty acid 

is stabilized due to the carboxylate group’s interactions with the surrounding solvent 

waters. 

 



10 

 

Figure 3: Licorice representation of the original inhibitor crystallized with the protein (C 

in green, O in red) replaced by AA (C in light blue, O in red). a) “head-first” orientation, 
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also highlighting interactions with Val426, Val427 and Ile420 hydrophobic residues. b) 

“tail-first” orientation, also highlighting interactions with Arg429. 

 

ii) “tail-first orientation” with the pro‐S H13 in a reactive position: In this position, the 

carboxylate group of AA directly interacts with Arg429. This strong interaction 

between two oppositely charged groups stabilizes the position of AA inside the binding 

pocket. During the 100 ns long MD simulations, AA moves between two 

conformations. The first conformation corresponds to the one observed for the 

inhibitor in the crystal structure and it is perfectly positioned for the abstraction 

reaction, as the H13 of AA is located very close to the hydroxide ion (Figure S3, green, 

in SI). The second conformation occurs following a twist in the first moiety of the fatty 

acid (C1 to C7) resulting in an even stronger interaction with the Arg429. This 

conformer corresponds to an unproductive H abstraction position, due to the larger, 

over 5 Å, distance of carbon positions 13 and 10 (Figure S3, cyan, in SI) to the acceptor 

oxygen, and the large distance between the hydroxide ion and the hydrogen atoms of 

C13. 

Figure 4a shows the time evolution of the distances between the oxygen of the 

hydroxide anion and the nearest H atoms, pro-S H13 and pro-S H10, that can 

potentially be abstracted. According to the MD simulation, and based on the distances, 

AA stays most of the time in the “non-reactive” conformation and eventually comes 

back to the conformation able to start H-abstraction. We have used the data produced 

in this simulation to estimate the free energies corresponding to the distances data 

shown in Figure 4a. According to the free energy plots shown in Figure 4b, there are 

two well-defined populations for the O-H13 distances data, one of them corresponding 

to a small minimum at approximately 2.5 Å (distance pro-S H13 - O), and the other one 

corresponding to a minimum at ~4.8 Å. For the O-H10 distances data, there is only one 

populated minimum where pro-S H10 is located at around 4.5 Å away from O. As the 

distance from the OH group to the pro-S H10 is quite large in both conformations, 

(“productive” and “unproductive”), it is very unlikely that the H-abstraction reaction 

occurs in this position. This would be the reason why 15-LOX-2 metabolizes AA 
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exclusively to 15-HPETE, the abstraction in C10 (needed for the formation of 12-HPETE) 

not being accessible. On the other hand, the conformation of the substrate based in 

the crystal, which coincides with one of the populated conformations in our MD 

simulations, locates the pro-S H13 at a distance short enough from the hydroxide 

anion to be the abstracted hydrogen. Hence, based on the actual structure of 15-LOX-

2, our simulations confirm that the carboxylate group of AA interacts with Arg429, as 

also found previously by Holman and coworkers17 who showed that AA is positioned in 

a catalytically competent way for the pro-S H13 abstraction to happen. 

 

Figure 4: a) Distances from the oxygen of the hydroxide to the AA pro-S H13 (blue) and 

pro-S H10 (red) during the MD simulation. b) Free energy profiles obtained from the 

MD data at 300 K using DHAM. 

 

iii) “tail-first orientation” with the pro‐R H13 in a reactive position: In this orientation, 

the carboxylate group of AA interacts directly with Arg429 as in the previous 
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orientation. However, the conformation of AA has been changed to favor the 

abstraction of the pro-R H13. When the pro-R H13 points to the OH-, AA loses, in some 

extent, the so-called “U shape” needed for the proper accommodation inside the 

binding pocket. This twisted conformation is not stable, and after no more than 2 ns of 

MD simulations the AA converges to the conformation ii with the pro-S H13 pointing 

towards the hydroxide group.  

Thus, our results show that hydrogen abstraction from C13 of AA by 15-LOX-2 is only 

consistent with the “tail-first” orientation of AA, and also that only the pro-S H13 will 

be abstracted.  

3.2. Binding mode of human 15-LOX-2 in comparison to rabbit 15-LOX-1  

Our MD results suggest that AA accommodates in the active site of 15-LOX-2 with a 

“tail-first” orientation and its position seems to strongly depend on the interaction 

with Arg429. It is worth mentioning that, in rabbit 15-LOX-1 (and presumably in human 

15-LOX-1) there is also an Arginine residue (Arg403) defining the position of  AA inside 

the protein.50 This Arginine residue is conserved in mammalian, including human, 15-

LOX-1 enzymes, however it is not conserved in the human 15-LOX-2 enzyme (Table 1). 

In fact, the equivalent residue in human 15-LOX-2 is a Leucine. Adjacent to this Leu415 

in 15-LOX-2 there are two other residues, Thr414 and Ala416. Consequently, we 

propose that AA binds to the human 15-LOX-2 in a different binding mode than in 

mammalian 15-LOX-1 enzymes. At the same time, in mammalian 15-LOX-1 the amino 

acids corresponding to Arg429 in 15-LOX-2 are negatively charged (Asp) or Gln, Ile or 

Val depending on the organism. This also strongly suggests that the binding modes of 

AA in the 15-LOX-1 and 15-LOX-2 enzymes are significantly different.  

Furthermore, comparison of the structures of rabbit 15-LOX-1 and human 15-LOX-2 

makes apparent that the binding of AA in 15-LOX-2 does not require the 

conformational change that has been proposed for 15-LOX-1.2,15,28,51 In fact, the 15-

LOX-2:AA structure is very similar to the apo 15-LOX-1 one. One of the differences 

observed between the two ligand-bound structures is that the helix α18 fills a larger 

part of the binding site cavity in 15-LOX-2:AA (see Figure 5). As a consequence of that, 

for example, the minimum C-C distance between hLeu420 and hLeu610 (rLeu408 and 
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rLeu597), two residues important in binding AA, is of ~8 and ~4 Å in 15-LOX-1 and 15-

LOX-2, respectively. This restrains the ligand motion and could contribute to a more 

rigid binding of AA in 15-LOX-2.  

(a)                                                          

 

 

 

 

 

 

(b) 

 

 

 

 

 

 
 

(c) 
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Figure 5: Comparison of the 15-LOX-151 (orange) and 15-LOX-2 (cyan) complexes with 

the AA substrate. Structures taken from molecular dynamics simulations of models 

built based on crystallographic data.15,28 (a) Differences in the conformation adopted 

by the α18 helix, which modulates the space available in the active site. As an example, 

the (b) Leu420 – Leu610 distance (15-LOX-2:AA), and (c) the equivalent Leu408 – 

Leu597 distance (15-LOX-1:AA) are shown. The location of Ile593 with respect to 

Leu408 is also indicated. 

Interestingly, two water molecules coordinate the iron atom in the human 15-LOX-2 

crystallographic structure.15 This is different from all the reported structures of 

mammalian 15-lipoxygenase structures, which have only a single water molecule (or 

hydroxide group) coordinating the Fe atom.26-29,50,51 We considered the possibility of 

an alternative assignment of the observed density at the position of the second water 

molecule as the nearby Ser557 group. However, our results do not indicate significant 

differences in the reaction profiles regarding this assignment (see SI for further 

details). 

Table 1. Sequence alignment of human 15-LOX-2 with mammalian 15-LOX-1 isoforms. In 

red, key Arg residues are highlighted interacting with bound AA in 15-LOX. In blue, 

equivalent residues that occupy approximately the same space as those Arg residues. 

414 T L A R E L L I V P G Q V V D R S 430 
 HUMAN  

15-LOX-2 

 

402 V R A R N G L V S D F G I F D Q I 418 
RABBIT  

15-LOX-1 

401 V R A R T G L V S D M G I F D Q I 417 
HUMAN  

15-LOX-1 

401 V R A R T G L V S D M G I F D Q I 417 
PONAB  

15-LOX-1 

402 V R A R N G L V S D L G I F D Q V 418 
PIG  

15-LOX-1 

402 I R A R T G L V S D S G V F D Q V 418 
BOVIN  

15-LOX-1 
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3.3. Reaction energy profiles 

After the classical equilibration of the system in the “tail-first” orientation with the 

pro-S H13 in a reactive position (the only orientation that stays stable along the MD 

simulation), a snapshot belonging to the free energy well centered at a pro-S H13-O 

distance of 2.5 Å (see Figure 4b) was chosen and a full QM/MM geometry optimization 

was performed. The QM region included the iron atom (all electrons), part of the 

aminoacid side chains coordinating the iron, the hydroxide group and part of the AA 

acid as described in the Methods section and in Figure 2. The optimized geometry was 

used as the starting point for the potential energy reaction profile. The reaction path 

was scanned by performing partial geometry optimizations along the reaction 

coordinate defined by z = r1(C13-H13) – r2(H13-O) (Figure 2). The potential energy 

reaction profile was initially calculated at the B3LYP/6-31G(d) level (Figure 6a, green 

line), using backward and forward minimizations until convergence was achieved.42 

The barrier height for human 15-LOX-2 obtained in this work at the B3LYP/6-31G(d) 

level is 18.0 kcal/mol (see Figure 6a). This potential energy barrier is similar to the one 

reported recently for a set of potential energy reaction paths corresponding to the 

abstraction of H13 in rabbit 15-LOX-1.24 The reaction is exoergic by approximately 7 

kcal/mol. The reactants lie at approximately z=-1.2 Å and the products at 1.2 Å. The 

transferred hydrogen is equidistant to the H-donor and acceptor in the transition state 

structure at z= 0.0 Å. 

To account for potentially missing thermal and entropic contributions, we computed 

the free energy profile using Umbrella Sampling. Biased QM/MM molecular dynamics 

simulations were performed for at least 6ps on each umbrella window at the B3LYP/6-

31G(d) level using the same QM region as previously defined (see more information in 

SI). Here we have used the recently developed DHAM method52 to calculate both the 

free energies as well as the kinetic rate corresponding to the catalytic reaction. We 

used a new high precision Matlab implementation of the DHAM method52 to allow us 

to numerically obtain accurate free energy profiles for the reaction with a high free 

energy barrier where the largest eigenvalues of the Markov matrix are almost 
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degenerate. We calculated the Markov matrices corresponding to the unbiased 

transition probabilities of the system at three different lag times, 1 fs, 10 fs, and 50 fs 

and determined their spectral decompositions (Table S2 in SI). The slowest relaxation 

rate corresponding to the second largest eigenvalue was consistent between the three 

lag times considered, and provided an average rate constant of 0.22 ± 0.05 s-1. The 

fact that the calculated rates obtained at different lag time values are very similar (see 

Table S2 in SI) indicates that our choice of reaction coordinate describes well the 

kinetically important degrees of freedom for the catalytic process. The free energy 

barrier using the DHAM method was found to be 18.6±0.5 kcal/mol (see Figure 6a), 

very similar to the potential energy barrier, thus indicating that thermal and entropic 

contributions to the free energy are small. We have also calculated the unidimensional 

free energy profile using the traditional WHAM method with a binless implementation 

(MBAR) for comparison with DHAM (see Figures 6a and 6b). Moreover, a two-

dimensional free energy surface as a function of the coordinates r1 and r2, the two 

components of the reaction coordinate z, has been calculated using the WHAM 

method (see Figure 6b).  All methodologies give roughly identical results. 

At this point, it can be noted that, according to Canonical Variational Transition-State 

Theory,53,54 the free energy barrier (ΔGCVT) is related to the rate constant by means of 

the equation  

𝑘(𝑇) =  𝛤 𝑘𝐵𝑇 
ℎ

 𝑒−∆𝐺𝐶𝑉𝑇

𝑅𝑇                                                                                             (eq. 1) 

where k is the rate constant, T is the temperature, kB is Boltzmann's constant, h is 

Plank's constant, R is the gas constant, and Γ is the quassiclassical transmission factor 

that corrects the rate constant for dynamical recrossing through the dividing surface 

corresponding to the canonical variational transition (CVT) state (that is, where the 

generalized transition-state free energy of activation is maximum). The frequency 

factor kBT/h equals 6.3x1012 s-1 at T=300 K, but the calculation of Γ is not easy. The 

advantage of using the DHAM method is that, at least at an approximate level, the 

barrier-crossing times can be estimated directly from the global analysis of local 

Umbrella Sampling trajectories, so that the effect of the dynamical recrossing is 

incorporated. Thus, the entire pre-exponential factor in eq.1 can be obtained 



18 

substituting in that equation the rate constant and the free energy barrier calculated 

by the DHAM method, leading to a value of approx. 7.8x1012 s-1 at 300 K, remarkably 

close to the value of kBT/h. Thus, the dynamical recrossing is not significant in this case  

at the CVT dividing surface. 

 

Figure 6: a) Potential energy (green) and free energy profiles (blue-WHAM, red-DHAM) 

calculated at the B3LYP/6-31G(d) level of theory. b) 2D-Free energy surface obtained 

by the WHAM method. c) Potential energy profiles calculated at the B3LYP/6-31G(d) 

(green) and B3LYP-D3/6-311+G(d,p) (pink) levels of theory. d) Potential energy profiles 

calculated at the B3LYP-D3/6-311+G(d,p) level with multiplicity 6 (pink) and multiplicity 

4 (orange). 

 

To test how sensitive is the potential energy barrier to the electronic structure level 

used, we also calculated the fully optimized potential energy profile at a higher level of 

theory. Both the potential energy barrier height and the reaction energy change are 
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considerably lower when a higher level of theory including additional diffuse and 

polarization basis functions is used (Figure 6c). A decrease in the barrier height of 

around 6 kcal/mol and 10 kcal/mol in the reaction energy is obtained at the B3LYP-

D3/6-311+G level. Nevertheless, if we use an even larger basis set like cc-pVQZ 

(quadruple-ζ) to perform single point calculations over the already obtained 

geometries, we get a barrier height of 16.6 kcal/mol (see Figure S8 in SI). Furthermore, 

if we use a mixture of the aug-cc-pV5Z (quintuple-ζ) basis set for the atoms directly 

involved in the reaction (methylene group containing the transferred H, hydroxyl 

group receiving the transferred H and Fe atom) and the triple-ζ basis set already used 

(6-311+G(d,p)) for the rest of the atoms to perform the single point calculations, we 

get a reaction barrier height of 16.2 kcal/mol. These results indicate that the decrease 

in the barrier height when used the 6-311+G(d,p) could be overrated. We performed 

additional calculations at different levels of theory using B3LYP with and without D3 

Grimme’s dispersion correction in combination with the 6-31G(d), 6-31G(d,p), 6-

31+G(d), 6-311G(d)  or 6-311+G(d,p) basis sets (see SI).  

The entropic contribution to the reaction is expected to be very small based on our 

free energy calculations (Figure 6a). We note that the system was trimmed to a sphere 

of 20 Å radius centred at the AA. Recent work indicated that this might contribute to 

the fact that the entropy contributions remain small, although the free energies are 

nevertheless consistent.55,56 In the present particular case, once the reactive structure 

with the pro-S H13 near the oxygen acceptor atom is chosen, the evolution to the 

transition state is rather a local phenomenon for the first reaction step. Binding of the 

oxygen molecule in the second step could incur a large entropy change, and additional 

protein rearrangements after the product formation are also expected to give larger 

entropy changes. Thus, we estimate that the exclusion of the outside part of the 

protein for the first reaction step should be a good approximation in this specific case. 

The similarity between the potential energy profile and the free energy profile has 

been previously found in the hydrogen abstraction from linoleic acid catalyzed by 

soybean lipoxygenase-1.57 We also expect similar free energy and potential energy 

values at the higher level of theory. The results at the B3LYP-D3/6-311+G level of 
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theory have been used for the subsequent analysis of spin states and electronic 

structure. 

The sensitivity of the barriers to the electronic structure level of calculation opens an 

interesting point to be discussed. Using the 6-31G(d) basis set, the DHAM method 

directly uses Umbrella Sampling simulations to give a rate constant of 0.22±0.05 s-1. 

The experimental results obtained by Holman and coworkers17,58 are 0.74 ± 0.03 s-1 or 

1.5 ± 0.03 s-1 at 22 °C and pH=7.5. The excellent agreement turns out to be quite 

impressive, but it could actually be somewhat fortuitous. As seen above, a barrier 6 

kcal/mol lower would be predicted at the B3LYP-D3/6-311+G level of theory, a value 

that breaks the nice concordance with experiments. However, single point calculations 

using an even larger basis set like cc-pVQZ only lower the potential energy barrier 1.4 

kcal/mol with respect to the 6-31G(d) value. At this point we should be aware that the 

current state-of-the-art of both, experiments and theory, does not allow the direct 

comparison between the respective rate constants (measured vs. calculated) in the 

present case (and for many other enzyme reactions) for several reasons: 

1) Experimental rates17,58 were determined spectrophotometrically by following the 

formation of the conjugate diene product of hydroperoxidation at 234 nm. To the best 

of our knowledge, no direct measure of the rate of the hydrogen abstraction exists.  

2) Sometimes a more extended basis set is not balanced enough to warrant necessarily 

better results for this kind of systems. For instance, the inclusion of diffuse functions 

on Fe could be a poor match when used with the underlying 6-31G or 6-311G basis 

sets.59 

3) As seen in Figure 4, along the 100 ns molecular dynamics simulation many 

structures with the pro-S H13 near the oxygen acceptor atom (and then ready to 

transfer) appear, but most of the structures have H13 too far to contribute to the 

abstraction (that is, the corresponding abstraction would involve quite high barriers). 

As a matter of fact, we should randomly select a huge number of snapshots along the 

MD simulation, calculate the hydrogen abstraction barriers starting from each of them, 

and average the corresponding rate constants.60 However, this procedure would 

involve a computational effort beyond our current capabilities. The choice of one (or a 
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few) snapshots, just the one (or ones) more prone to produce the reaction is evident 

that biases the result towards lower barriers, so overestimating the rate constants.  

To summarize this point, the results obtained in this paper are reasonable and provide 

useful, reliable, and detailed information at the molecular level about the catalytic 

mechanism that human 15-LOX-2 employs to abstract a hydrogen atom from AA. 

However, the state-of-the-art of the methods is not mature enough to give accurate 

values of the rate constants of these enzyme reactions yet.  

 

On the other hand, in this work we have not taken into account the quantum nature of 

the hydrogen atom that is transferred.  However, we think that inclusion of quantum 

mechanical tunneling would not significantly change the main qualitative trends of this 

hydrogen transfer reaction catalyzed by human 15-LOX-2 that we have described here. 

 

 

 

3.4. Spin states 

There is a strong experimental evidence that the iron is in its high spin state in the 

active, ferric form of lipoxygenases.61 For that reason we have performed most of our 

calculations using multiplicity M= 6, corresponding to a closed shell arachidonic acid 

and a high spin ferric ion in the reactants. Nevertheless, we have also calculated the 

potential energy profile with M= 4. Multiplicity 2 corresponds to the significantly less 

stable low spin state of the ferric iron and the M= 4 is plausible for the products of the 

reaction as will be clarified below. The possible spin states along each step of the 

reaction (see Figure 1) are illustrated in Figure 7. We refer to the multiplicity of both 

the current system considered in this work (not including the oxygen molecule, boxed 

in red in Figure 7), and also to the full system including the oxygen molecule needed 

for the subsequent reaction steps (boxed in blue in Figure 7).  In the reactants (R in 

Figures 1 and 7) the multiplicity of the current system is 6, considering that the iron is 

in the high spin state. With the oxygen included, the system could have M= 8 or 4. 

After H abstraction (I1 structure in Figures 1 and 7) the system can go through various 

spin multiplicity states, but in the products the only possible one is M=6 since the only 
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atom bearing unpaired electron would be the recovered ferric iron (P in Figures 1 and 

7). As the possible multiplicities in the reactants were 8 or 4, there must be a change of 

spin state during the course of the full reaction. According to the reaction profiles 

obtained in this work, that change of spin state could occur in the first rate-limiting 

step of the reaction, from 6 to 4 (without including the oxygen), where the B3LYP-

D3/6-311G+(d,p) potential energy profiles with M=6 and 4 become degenerate after 

the transition state of the hydrogen abstraction step (Figure 6d). If the iron were more 

stable in a low spin state a spin crossover would not be necessary, since the 

multiplicity of the system could be 2 over the entire reaction (Figure 7, bottom). Note 

that the spin state of the low spin iron is not exactly the same in P and R (the unpaired 

electron spin is inverted), but that does not mean that a spin inversion is required. 

Nevertheless, as already mentioned, there is strong experimental evidence that the 

iron is in its high spin state. Therefore we suggest that, according to our calculations, 

the multiplicity of the reactants would be 8 or 4 (6 without including the oxygen), and 

both would be equally likely since the oxygen molecule doesn’t need to be close to the 

reaction center at this step. After H-abstraction, the probability of (i) to remain in the 

M=6 state or (ii) to change one electron spin at M=4 is the same due to the near 

degenerate energies, however the choice of (ii) would lead to the final product 

directly, without additional spin inversion. Any other choice would require a further 

spin inversion to reach the final product multiplicity state during subsequent steps.  
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Figure 7: Possible spin multiplicity states of the system during the complete 

hydroperoxidation reaction. Boxed in red, the system studied in this work (that is, 

without considering the oxygen); the full system, boxed in blue. 
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3.5.  Electronic structure analysis 

Atomic populations evaluated from the spin density, indicating the excess of α spin 

have been calculated along the potential energy profiles at the same level of theory 

B3LYP-D3/6-311+G(d,p) with multiplicities 6 and 4. Figure 8 shows the evolution during 

the H-abstraction reaction on the carbon atoms C11, C12, C13, C14 and C15 of the 

pentadienyl system of AA, the abstracted pro-S H13 atom and the Fe. As the H13 is 

being abstracted by the hydroxide group, the spin density on C13 increases and 

delocalizes over C11 and C15, up to half an electron in each atom. The spin densities 

on C12 and C14 change from 0 to approximately -0.3 a.u. The sum over all carbon 

atoms is approximately one unpaired electron spread over the pentadienyl radical 

system. The spin density on the Fe atom changes from approximately 4.2 to 3.7 a.u., 

which corresponds to the change of the oxidation state from Fe(III) sextet to Fe(II) 

quintet configuration. The spin density on the H13 remains virtually zero during the 

reaction, which suggests that the transferred hydrogen is rather a proton not bearing 

any electron. Spin density isosurfaces along the reaction pathway are shown in Figure 

9. On the other hand, the H13 atom is positively charged during the reaction course 

(magenta line in Figure 8) with the charge changing from 0.25 to 0.5 a.u., confirming 

that this atom is in fact a proton. The analysis of the evolution of the electronic 

structure along the H abstraction shows that the reaction corresponds to a proton 

coupled electron transfer (PCET) process,62-68 in which the electron and proton are 

transferred in a concerted way. The proton is transferred to the OH−group oxygen to 

form water, whereas the electron is transferred from the AA C11−C15 pentadiene 

moiety to the Fe(III) atom to produce Fe(II). 
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Figure 8: Spin densities (a.u.) on atoms pro-S H13 (orange), C11(black), C12(red), 

C13(cyan), C14(blue), C15(green) and Fe(brown) along the H-abstraction reaction. In 

magenta, the charge (a.u.) of pro-S H13 along the reaction is given. 

 

 

 

 

Figure 9: Spin density surfaces in the reactants (a), transition state structure (b) and 

products (c). 

An NBO analysis69 at the transition state structure shows a simultaneous bonding 

pattern between the H donor (C13) and the H acceptor (O) since the bond order (via 

Wiberg bond index) is around 0.4 for C13-H13 and H13-O. Also, the analysis of the 

occupancy of α electrons shows that there is almost one electron (occupancy = 0.92) 



26 

occupying the σ(bonding) orbital of the C13-H13 bond. Nevertheless, as for β 

electrons, the populated (occupancy = 0.88) σ(bonding) is H13-O. Figure 10 shows the 

relevant occupied orbitals in the reactants, transition state structure and products.  

 

 

Figure 10: Evolution of selected natural bond orbitals at reactants (a) transition state 

structure (b) and products (c). Occupancies (occ) and bond orders (bo) are labeled in 

each case.  
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4.  CONCLUSIONS 

In this paper we have combined molecular dynamics simulations, QM/MM calculations 

and Umbrella Sampling free energy simulations to study the hydrogen atom 

abstraction from arachidonic acid catalyzed by the human enzyme 15-lipoxygenase-2.  

The orientation of AA inside the active site of the enzyme cannot be determined from 

the electron density of the crystallographic structure15, but it may be a key aspect to 

better understand the regiospecificity of the different LOXs isoforms. Our molecular 

dynamics simulations show that the "head-first" orientation of AA is unstable. Instead, 

we have confirmed that when AA adopts a "tail-first" orientation, its carboxylate group 

clearly interacts with Arg429 and many structures ready for the pro-S H13 abstraction 

appear. Conversely, the pro-R H13 is not placed in a suitable conformation to be 

abstracted.  

The hydrogen atoms in position 10 remain most of the time too far from the acceptor 

oxygen atom to compete with H13 abstraction. This fact can explain why human 15-

LOX-2 metabolizes AA exclusively to 15-HPETE, 12-HPETE not being produced.  

The fact that the "tail-first" orientation of AA strongly depends on the interaction with 

Arg429 indicates that the binding modes of AA in human 15-LOX-2 and mammalian 15-

LOX-1 are significantly different. Moreover, the binding of AA is more rigid in human 

15-LOX-2 than in rabbit 15-LOX-1. 

At the B3LYP/6-31G(d) level the potential energy barrier for the pro-S H13 abstraction 

of AA by human 15-LOX-2 is 18 kcal/mol. Performing Umbrella Sampling simulations 

along with either the very recently developed dynamic histogram analysis method 

(DHAM)52 or the WHAM48 method, a free energy barrier of 18.6 kcal/mol has been 

obtained, indicating that thermal and entropic contributions to the free energy barrier 

are small in this case. DHAM calculations also provide directly the catalytic rate 

constant and show that the dynamical recrossing is negligible at the canonical 

variational transition state. This is the first time that the kinetics is determined directly 

from biased umbrella sampling simulations using the DHAM method for catalytic 

reactions, allowing also the estimation of the pre-exponential factor for the reaction. 
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The above electronic structure calculations correspond to a multiplicity M=6, that is, a 

closed shell for AA and a high spin ferric ion in the reactants. Multiplicity M=4 is 

significantly more unstable than M=6 in the reactants, but both spin states become 

nearly degenerate after the transition state of the hydrogen abstraction. As a 

consequence, we propose that the spin inversion of the complete system (including 

the O2 molecule) that is required to happen at some point along the full process to lead 

to the final hydroperoxide product, is likely to take place during the hydrogen transfer.  

Finally, the hydrogen transfer occurs by means of a proton coupled electron transfer 

(PCET) mechanism, in which the electron and the proton are transferred in a concerted 

way to different atomic centers. 
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