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The ternary V-VI-VII chalcohalides consist of one cation and two anions. Trivalent antimony—

with a distinctive 5s2 electronic configuration—can be combined with a chalcogen (e.g., S or Se)

and halide (e.g., Br or I) to produce photoactive ferroelectric semiconductors with similarities to

the Pb halide perovskites. We report—from relativistic quasi-particle self-consistent GW theory—

that these materials have a multi-valley electronic structure with several electron and hole basins

close to the band extrema. We predict ionisation potentials of 5.3–5.8 eV from first-principles for

the three materials, and assess electrical contacts that will be suitable for achieving photovoltaic

action from these unconventional compounds. VC 2016 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4943973]

Building on the success of elemental semiconductors,

binary II-VI (e.g., CdTe) and III-V (e.g., GaAs) semiconduc-

tors have been widely studied for application in solar energy

conversion. More recently, the chalcopyrite I2-III-VI2, per-

ovskite I-II-VII3, and kesterite I2-II-IV-VI4 systems have

gathered significant interest and increasingly high light-to-

electricity conversion efficiency in photovoltaic devices.1

A common feature of these multi-component semicon-

ductors is that they combine multiple cations (or metals) with

a single anion. One potential issue arises where species with

similar size and co-ordination preferences are present in the

same material, which can lead to the formation of anti-site

defects in high concentrations. Cation disorder has been

observed in systems ranging from ZnSnP2
2,3 to Cu2ZnSnS4

4,5

and is typically associated with poor photovoltaic perform-

ance (low open-circuit voltages resulting from high electron-

hole recombination rates).6,7

V-VI-VII semiconductors are interesting chemically as

they are ternary materials, usually formed of a trivalent cat-

ion with divalent and monovalent anions. From this family

of compounds, SbSI (see Fig. 1) was extensively studied in

the 1960s as a photoactive ferroelectric semiconductor.8–12

The Curie temperature for phase transition between the po-

lar (Pna21, C2v symmetry) and paraelectric phases (Pnam,

D2h symmetry) was measured to be 295 K.8 In this structure

class, c is the polar axis and the phase transition is associ-

ated with a shift in the Sb and S sublattice with respect to I

along this direction.13

The ferroelectric behaviour of SbSI can be associated

with the 5s2 lone pair electrons of Sb3þ. As with other group

14 and 15 cations (e.g., Pb2þ, Sn2þ, Bi3þ), a second-order

Jahn-Teller instability can exist, which is associated with the

change from a symmetric to asymmetric coordination envi-

ronment of the cation with on-site s–p hybridisation.15,16

SbSI exhibits an optical band gap of �2 eV, and the value

can be tuned by the choice of chalcogen and halide.17 The

reference optical band gaps of SbSI, SbSBr, and SbSeI fall

in the range 1.7–2.2 eV.18 The predicted electron and hole

effective masses are less than 1 me,
19 while the static dielec-

tric constant is �70,20 consistent with its tendency for spon-

taneous polarisation.

The application of ferroelectric materials for solar energy

conversion has enjoyed a recent renaissance. The coexistence

of photo-activated electron hole generation and an intrinsic

electric field offers the opportunity for simultaneous charge

carrier generation and separation in the bulk material. There

has been success in the application of ferroelectric perovskite

oxides,21 and suggestions that the polarisation of hybrid per-

ovskites contributes to their high-performance.22–24 We dis-

cussed the physics underpinning photoactive ferroelectrics in

a recent perspective review, which also looked at the V-VI-

VII semiconductors as an interesting case study.19 The materi-

als also emerged in a subsequent theoretical screening of

defect tolerant semiconductors.20

Sb-based V-VI-VII materials combine near visible-

range absorption with polar instabilities and represent a

promising class of photovoltaic absorbers. In this letter, we

consider the band structure, ionisation potentials (IPs), and

electron affinities (EAs) of several promising V-VI-VII com-

pounds, in order to facilitate device design, in particular,

suggesting optimal contact layers to achieve efficient charge

extraction.a)Electronic mail: a.walsh@bath.ac.uk

0003-6951/2016/108(11)/112103/4/$30.00 VC 2016 AIP Publishing LLC108, 112103-1
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The crystal structures of SbSI, SbSBr, and SbSeI were

fully optimised, using the set-up previously described,19 with

density functional theory (DFT) under periodic boundary

conditions. In this study, only the room temperature non-

polar phase is considered. Reciprocal space sampling of

3� 2� 6 k-points was used for the bulk calculations, with a

single k-point normal to the surface termination for the vac-

uum level (VL) calculations. Electronic structure informa-

tion was obtained with the local density approximation

(LDA) and using a screened hybrid functional (HSE06).25,26

Parallelism across k-points was performed to utilise up to

512 computing cores.27 In order to provide quantitative elec-

tronic structure information, additional calculations were

performed using self-consistent quasi-particle GW theory28

(QSGW) as implemented in the all-electron (linear muffin tin

orbital basis) package LMSuite.29 Starting from calculations

within the LDA, self-consistency of the quasi-particle states

was performed for each material including spin-orbit cou-

pling within the formalism recently reported for the hybrid

perovskite CH3NH3PbI3.30

To calculate the IP, the non-polar (110) termination was

cut from the relaxed bulk structure using a slab thickness of

4 layers (�30 Å) and vacuum thickness of 30 Å. Alignment

of the VL to the valence band maximum (VBM) was per-

formed using the package MacroDensity.31 The electron re-

moval energy is calculated from LDA-DFT, but includes

spin-orbit coupling effects (DSOC) and a quasi-particle cor-

rection from the bulk material (D�QSGW) according to

UIP ¼ �VBM
DFT þ DSOC þ D�VBM

QSGW � VL: (1)

The corresponding EA is found by subtracting the value

of the QSGW band gap, i.e., EA¼ IP - Eg. The various con-

tributions to the IP are reported in the supplementary

material.32

A representative electronic band structure of SbSBr is

shown in Figure 2. Here, the quasi-particle corrections increase

the magnitude of the band gap, but do not alter the dispersion

in reciprocal space. This is in contrast to CH3NH3PbI3, where

large many-body renormalisation occurs,30 and has the benefit

that a simple “scissors” correction to a DFT band structure can

provide a reasonable description of the valence and conduction

bands. The associated band parameters for all materials are

summarised in Table I.

SbSI, SbSBr, and SbSeI have indirect band gaps, each

with a conduction band minimum (CBM) in the xy plane

(bounded by the triangle between the C, Y and S special

k-points). The mirror and inversion operations yield four sym-

metry equivalent points. In each case, the next nearest mini-

mum is multiples of kBT (T¼ 300 K) higher in energy. SbSI

has a valence band maximum between U and X, that is two-

fold symmetry degenerate, and a second maximum (within

kBT of the global maximum) between C and Z that is also

two-fold degenerate. Substitution of I by Br in SbSBr results

in a VBM (with two-fold degeneracy) between C and Z that is

multiples of kBT higher than the next maximum. Substitution

of S by Se in SbSeI also produces a lone VBM (two-fold

degenerate), close to the Y point, on the line between C and

Y. The difference between direct and indirect band gaps is

around 0.2 eV. The consequences of this unusual band disper-

sion are that optical absorption (vertical transitions) will be

strong due to the high degeneracy of bands, while electron-

hole recombination should be suppressed due to thermalisa-

tion of carriers to basins of different electron momentum.

FIG. 1. Representation of the crystal structure of SbSI (Pnam phase) consist-

ing of pseudo-1D channels. These channels are bridged by a long Sb–I bond

(3.87 Å), which compares to intra-chain separations of 2.5 and 2.7 Å.

Analysis of the electronic structure confirms that this structural motif is due

to a stereochemically active lone pair, a feature of other Sb compounds.14

FIG. 2. Electronic band structure of SbSBr from LDA (dotted lines) and

quasi-particle self-consistent GW theory (dashed lines) including spin-orbit

coupling. The highest occupied state (EF) is set to 0 eV. Note that the band

gap is indirect, with the valence band maximum lying along C! Z and the

conduction band minimum lying along C! Y.

TABLE I. Calculated electronic band gap (Eg), ionisation potential (IP), and

electron affinity (EA) of three V-VI-VII semiconductors. Results are shown

for both density functional theory (HSE06 hybrid functional) and many-

body QSGW theory. All values include spin-orbit coupling (the contribution

is given by DSOC) and are in eV. Note that the band gaps exclude finite-

temperature and excitonic effects. Effective masses for the valence (m�h) and

conduction (m�e) bands are given in units of me.

Material EHSE06
g EQSGW

g m�e m�h DSOC IP EA

SbSI 2.11 2.22 0.43 0.57 �0.16 5.37 3.15

SbSBr 2.31 2.53 0.51 0.64 �0.11 5.80 3.37

SbSeI 1.86 2.03 0.54 0.58 �0.18 5.26 3.23

112103-2 Butler et al. Appl. Phys. Lett. 108, 112103 (2016)

 Reuse of AIP Publishing content is subject to the terms at: https://publishing.aip.org/authors/rights-and-permissions. Download to IP:  137.73.121.42 On: Fri, 15 Apr 2016

11:34:30



Therefore, these systems in principle combine the benefits of

direct and indirect band gap materials.

The isotropic electron and hole effective masses are all

calculated to be below 0.65 me, which can support high-

mobility band transport. The values shown in Table I are

obtained via a geometric mean of the eigenvalues along the

principal axes of an ellipsoidal fit. The effective masses are

found to be larger for higher lying extrema, e.g., the second

valence band maximum of SbSI has an isotropic effective

mass of 0.92 me.

The calculated band gaps in Table I show that the

QSGW value is slightly larger than for HSE06. The energies

compare well to available experimental data (2.07 eV

(Ref. 33) and 2.11 eV (Ref. 17) for SbSI, 1.76 eV (Ref. 34)

and 1.67 eV (Ref. 17) for SbSeI, and 2.18 eV (Ref. 17) for

SbSBr) but are consistently overestimated. There are two

main sources of error here: first, they omit renormalisation of

the gap from the electron-phonon interaction. Second, the

ladder diagrams coupling electrons and holes are omitted.

These two effects together largely account for the well

known overestimation of QSGW gaps. In contrast to other

approaches such as hybrid DFT, the theory is true ab initio
(parameter-free). Moreover, the errors are systematic for a

wide range of materials, including most semiconductors.28

There may be a further discrepancy because of uncertainties

in structure, and also in the experimental values themselves.

SbSI, for example, has a strong negative band gap deforma-

tion potential with increased temperature.33

The predicted ionisation potentials for SbSI, SbSBr, and

SbSeI are 5.37, 5.80, and 5.26 eV, respectively (Table I).

These values are referenced to a bulk calculation and are there-

fore exclusive of surface state contributions. We found a rela-

tively small contribution of <0.25 eV from surface states in all

cases. There are no strong interatomic bonds broken to form

the surface, which contrasts to structures where states are pro-

duced by bond breaking (e.g., dangling bonds); for example, a

surface contribution of 1.16 eV was found in SnO2.
36 The IP

values exclude the effects of interfacial strain and chemical

interactions that may influence the band offset at a particular

interface; however, they offer a good first approximation of the

band alignment of a single phase material, as evidenced by the

widespread application of Anderson’s rule37 for estimating

band offsets.

The predicted band energies are compared to other com-

mon materials for solar energy conversion in Figure 3. The

positions of the band edges are related closely to the nature

of the halide ion; the band edge states are largely composed

of the halide electronic states. The valence band of SbSBr is

therefore significantly deeper in energy than the iodide mate-

rials. SbSBr is similar in energy to several Cu based photo-

absorbers—these include Cu2ZnSnS4 (CZTS), Cu2S, and

CuInS2—where the upper valence band is composed of

Cu 3d states;38 therefore, similar contacting materials to the

copper materials could be applied for SbSBr. The difference

in the energy levels for the iodide-containing compounds

means that alternative contact materials are necessary for

optimal performance. This point was recently demonstrated

for layered Sn-based photoabsorbers, which exhibit even

lower ionisation potentials.39,40 Although both Sb(III) and

Sn(II) feature a 5s25p0 electronic configuration, the lower

nuclear charge and oxidation state of Sn decreases their bind-

ing energy and hence ionisation potential of the Sn(II)

materials.

A common architecture for thin-film solar cells—inherited

from CuInSe2 technology and used in CZTS solar cells—is a

back-contact of Mo-coated glass, which is responsible for

hole collection. Electron collection is facilitated by a buffer

layer of CdS towards a transparent conducting oxide such as

ZnO or CdSnO3. All three V-VI-VII semiconductors have

relatively low electron affinities, so an alternative electron

contact would be required. CdS can be replaced by a tunable

(Cd,Zn)S or Zn(O,S) alloy. Applying the electronic matching

criteria from a recently reported method for screening semi-

conductor contacts,41 we suggest can further suggest ZnTe,

Cu2O, Zn2TiO4, KTaO3, AlTiO3, and MgTiO3 as potential

replacements for CdS. For the hole-collecting contact, since

SbSBr has a similar valence band energy to CZTS, Mo

should still suffice. SbSI and SbSeI have lower binding

energy valence bands and possible candidates for replacing

Mo include Au or Ni, which have well matched workfunc-

tions. Due to the wide band gaps of these V-VI-VII semicon-

ductors, they could also find potential application in low-cost

tandem solar cells or in solar fuel applications where higher

voltages (over-potentials) are required.

In summary, we have analysed the electronic structure of

three V-VI-VII semiconductors. Owing to the unusual crystal

structures, the electronic band dispersion is complex with

multiple valleys close to the valence and conduction band

extrema, which is expected to result in non-conventional

photo-physical behaviour. These Sb-based compounds display

expected chemical trends with smaller band gaps found for

heavier chalcogenide and halide compositions. These trends

also appear to be observed in the Bi-based compounds.42 We

predict their ionisation potentials compared to common active

layers in thin-film solar cells, and suggest that alternative con-

tact materials should be considered in order to optimise per-

formance. The smallest band gap of 2 eV is calculated for

SbSeI, which is at the upper end for application in single-

junction solar cells. The replacement of Se by Te to form

SbTeBr and SbTeI may provide a route to further red-shift the

optical response, albeit at the cost of elemental abundance and

sustainability.

We thank J. M. Frost for useful discussions, and

acknowledge membership of the UK’s HPC Materials

FIG. 3. Calculated ionisation levels of SbSI, SbSBr, and SbSeI, with respect

to the vacuum level. Also shown for comparison are values for Si and

Cu2ZnSnS4 adapted from Ref. 35.
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