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ABSTRACT 

Genome-wide association studies (GWASs) have been effective approaches to dissect 

common genetic variability underlying complex diseases in a systematic and unbiased way. 

Recently, GWASs have led to the discovery of over 20 susceptibility loci for Alzheimer’s 

disease (AD).  

Despite the evidence showing the contribution of these loci to AD pathogenesis, their 

genetic architecture has not been extensively investigated, leaving the possibility that low 

frequency and rare coding variants may also occur and contribute to the risk of disease. We 

have used exome and genome sequencing data to analyse the single independent and joint 

effect of rare and low frequency protein coding variants in 9 AD GWAS loci with the 

strongest effect sizes after APOE (BIN1, CLU, CR1, PICALM, MS4A6A, ABCA7, EPHA1, CD33, 

CD2AP) in a cohort of 332 sporadic AD cases and 676 elderly controls of British and North 

American ancestry.   We identified coding variability in ABCA7 as contributing to AD risk. 

This locus harbors a low frequency coding variant (p.G215S, rs72973581, MAF=4.3%) 

conferring a modest but statistically significant protection against AD (p-value= 6x10
-4

, OR= 

0.57, 95% CI 0.41-0.80). Notably, our results are not driven by an enrichment of loss of 

function variants in ABCA7, recently reported as main pathogenic factor underlying AD risk 

at this locus. In summary, our study confirms the role of ABCA7 in AD and provide new 

insights that should address functional studies.  

 

KEYWORDS 

Alzheimer´s disease (AD); Genome-wide association studies (GWASs); ABCA7; whole exome 

sequencing (WES); whole genome sequencing (WGS); protective variant 

 

1. INTRODUCTION 

Alzheimer’s disease (AD) is the most common cause of progressive dementia in the elderly. 

Aging and genetic factors play a critical role for the disease development. Rare coding and 

fully penetrant mutations in APP, PSEN1 and PSEN2 explain part of the AD autosomal 

dominant cases. On the other hand, APOE ε4 allele and rare coding variants in TREM2 
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represent the main risk factors for late-onset and apparently sporadic AD (Chartier-Harlin et 

al., 1994) (Guerreiro et al., 2013). In the last 5 years, genome-wide association studies 

(GWASs) identified over 20 main risk loci influencing AD susceptibility (Harold et al., 

2009)(Hollingworth et al., 2011)(Lambert et al., 2009)(Naj et al., 2011)(Seshadri et al., 

2010)(Lambert et al., 2013). Among these, 9 have been replicated by at least two 

independent GWASs and present the strongest effect sizes after APOE (BIN1, CLU, CR1, 

PICALM, MS4A6A, ABCA7, EPHA1, CD33, CD2AP). 

GWASs have been a successful strategy to identify loci associated to a common trait, 

shedding light on disease pathways, and for AD these include 1) immune response (CR1, 

MSA4A/MSA7A, CD2AP, CD33, EPHA1, ABCA7), 2) vesicles trafficking (PICALM, BIN1), 3) lipid 

metabolism (CLU, ABCA7) and 4) Aβ peripheral clearance (PICALM, BIN1, CD33 and ABCA7). 

(http://www.alzgene.org/). Nevertheless, the functional variant(s) within these risk loci have 

not yet been fully defined.  

GWAS arrays tag common, low penetrant and generally non coding variants that likely exert 

a subtle  regulatory effect (0.8<OR<1.5) on a trait,  affecting gene expression, CpG islands 

methylation and splicing, in cis or trans (Visscher et al., 2012)(Ramasamy et al., 2014). 

Whereas, low frequency (1%<MAF<5%) and rare variants (MAF<1%) with a modest 

penetrance remain mostly undetected either because they are not in the array or because, 

even with the implementation of imputation, the detection of variants with MAF <2% is not 

sufficiently accurate. As an illustrative example, APOE GWAS hit maps to an intronic region 

and it is likely driven by the APOE ε4 allele, which is a common coding haplotype (rs429358, 

p.C130R and rs7412, p.R176R MAF=15%) in exon 4, that it is not tagged by the custom 

genotyping arrays mostly used. 

Recently, resequencing studies have been powerful strategies to bridge the gap between 

susceptibility loci identified and actual disease-modifying variant(s) (Beaudoin et al., 

2013)(Rivas et al., 2011)(Service et al., 2014)(Lohmueller et al., 2013).  

Therefore, we have used exome and genome sequencing data 1) to identify rare and low 

frequency coding variants in BIN1, CLU, CR1, PICALM, MS4A6A, ABCA7, EPHA1, CD33, CD2AP 

and 2) to investigate their single independent and combined effect on AD susceptibility. 

Both the single-variant and the gene-based association tests confirmed ABCA7 as 
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susceptibility locus associated with AD. Importantly, although ABCA7 loss of function (LoF) 

mutations (indels, nonsense, splice-site mutations) have been recently reported as main 

mechanism increasing AD risk at this locus (Steinberg et al., 2015), our results are not driven 

by such variants. Whereas, we report an enrichment for ABCA7 common and low frequency 

coding variants with a potential protective effect, that is mainly responsible for our gene-

based signal. Among these, ABCA7 p.G215S is the main low frequency missense hit in the 

single-variant analysis in the discovery cohort. The potential protective role of this variant 

has been further confirmed in an independent European and North American cohort. Our 

results show that ABCA7 p.G215S exerts a mild but statistically significant influence, 

lowering the risk for AD. Thus, confirming ABCA7 to be a good potential target to address 

functional studies. 

2. MATERIALS AND METHODS 

The discovery cohort was composed of 332 apparently sporadic AD cases and 676 elderly 

controls, neuropathologically and clinically confirmed, originating from the UK and North 

America. The mean age at disease onset was 71.66 years (range 41-94 years) for cases and 

the mean age of ascertainment was 78.15 years (range 60-102 years) for controls (Table 1).  

The majority of the cases (77%) were late-onset (> 65 years at onset). 

Among the cases and controls, 42% and 51% were female, respectively. 58% and 47% of the 

cases and controls carried the APOE ε4 allele, respectively. The APOE ε4 allele was 

significantly associated to the disease status in the NIH and ADNI series (p-value= 0.02 and 

1.19x10
-9

, respectively) . The threshold call rate for inclusion of the subject in analysis was 

95%. On this cohort we performed 1) gene-based analysis (SKAT and c-alpha tests) and 2) 

single-variant association analysis, targeting 23.5 Kilobase pairs (Kbs) of coding sequence. 

Finally, we followed-up, in an independent Caucasian dataset, ABCA7 p. G215S, the only 

nominal significant low frequency missense variant in the single-marker association test in 

our discovery set (Figure 1).  

The follow-up dataset was composed of 307 late-onset apparently sporadic AD cases from 

North America and Europe and 501 elderly Caucasian controls from North America (Coriell 

repositories), Europe, Australia and Canada (Table 1). Written informed consent was 
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obtained for each clinically assessed individual and the study was approved by the 

appropriate institutional review boards. All samples had fully informed consent for retrieval 

and were authorized for ethically approved scientific investigation (UCLH Research Ethics 

Committee number 10/H0716/3, BYU IRB, Cardiff REC for Wales 08/MRE09/38+5, REC 

Reference 04/Q2404/130, National Research Ethics Service [NRES]). 

 

2.1 Exome sequencing  

DNA was extracted from blood or brain for cases and brain only for controls using standard 

protocols. Library preparation for next generation sequencing used DNA (between 1 µg and 

3 µg) fragmented in a Covaris E210 (Covaris Inc.). DNA was end-repaired by 

5’phosphorylation, using the Klenow polymerase. A poly-adenine tail was added to the 

3’end of the phosphorylated fragment and ligated to Illumina adapters. After purification 

using an AMPure DNA Purification kit (Beckman Coulter, Inc), adapter-ligated products were 

amplified. The DNA library was then hybridized to an exome capture library (NimbleGen 

SeqCap EZ Exome v2.0, Roche Nimblegen Inc. or TruSeq, Illumina Inc.) and precipitated 

using streptavidin-coated magnetic beads (Dynal Magnetic Beads, Invitrogen). These exome 

libraries were PCR-amplified, and then DNA hybridized to paired-end flow cells using a cBot 

(Illumina, Inc.) cluster generation system. Samples were sequenced on the Illumina HiSeq™ 

2000 using 2x100 paired end reads cycles.  

 

2.2 Whole Genome sequencing 

Genome sequencing was performed in 199 controls, from the Cache County Study on 

Memory in Aging. All samples were sequenced with the use of Illumina HiSeq technology.  

 

2.3 Sanger sequencing 

ABCA7 p. G215S (rs72973581) was screened in an additional follow-up cohort composed of 

307 late-onset cases and 501 elderly controls. Primers were designed in Primer3 

(http://bioinfo.ut.ee/primer3-0.4.0/) using UCSC (http://genome.ucsc.edu/) reference 

sequences NM_019112 (ABCA7). 
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Purified sequences were analysed on an ABI 3730 DNA Analyzer (Applied Biosystems, CA, 

USA) and chromatrograms were visualized in Sequencher software (version 4.2 Gene Codes 

Corporation, MI, USA). 

 

 

 

2.4 Bioinformatics 

Sequence alignment and variant calling were performed against the reference human 

genome (UCSC hg19). Alignment was performed with the use of CASAVA software and 

variant calling was performed with the use of SAMtools (Li et al., 2009) and GATK (McKenna 

et al., 2010). Paired end sequence reads (2x100bp paired end read cycles) were aligned 

using the Burrows-Wheeler aligner (Li and Durbin, 2009). Format conversion and indexing 

were performed with Picard (www.picard.sourceforge.net/index.shtml). GATK was used to 

recalibrate base quality scores, perform local re-alignments around indels and to call and 

filter the variants (McKenna et al., 2010). VCFtools was used to annotate gene information 

for the remaining novel variants. We used ANNOVAR software to annotate the variants 

(Wang et al., 2010). Variants were checked against established databases (1000 Genomes 

Project and dbSNP v.134). Calling algorithms, pipe-lines and reference panels were the same 

the pooled datasets. The protein coding effects of variants was predicted using SIFT, 

Polyphen2 and SeattleSeq Annotation (gvs.gs.washington.edu/SeattleSeqAnnotation). All 

variants within the coding regions of the 9 risk loci (ABCA7 [NM_019112]; CD2AP 

[NM_012120]; MS4A6A [NM_152851]; CR1 [NM_000573]; BIN1 [NM_139343]; PICALM 

[NM_001206946]; EPHA1 [NM_005232]; CLU [NM_001831]; CD33 [NM_001772] have been 

collected and analysed. Indels were excluded from the merged dataset because not 

targeted in the ADNI subcohort (Figure 1). (Further details are provided in the 

supplementary materials). 
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2.5 Statistical Analysis 

 
In the single-variant analysis, allele frequencies were calculated for each low frequency 

and rare coding variants in cases and controls and Fisher’s exact test on allelic association 

was performed. To study the joint effect of the variants detected, we performed a gene-

based analysis with SKAT and c-alpha test and we analysed together for each gene the 

whole spectrum of allelic variability (common, low frequency, rare, coding and non-coding).  

C-alpha test and SKAT are closely related, being both non-burden test, analyzing and 

collapsing the effect of genetic variants of different frequency (common and rare), effect 

(protective, damaging and neutral) and effect size (modest, moderate, strong). SKAT can be 

considered an expansion of the c-alpha test because overcomes some of its limits. Indeed, 

SKAT 1) can be applied also to the study of continuous traits and 2) do not need any 

permutation. 

Low frequency and rare variants were defined as having a 1%<MAF<5% and MAF<1%, 

respectively, either in cases or controls. 

All computations, C-alpha and SKAT tests were performed in R (version x64 3.0.2, 

http://www.r-project.org/) and PLINK/SEQ. 

A p-value of 0.05 was set as a nominal significance threshold. Based on multiple testing 

correction, the thresholds for single variant and gene-based association tests are defined by 

p-value=1.25x10
-3 

(0.05/40 [total number of coding low frequency and rare variants 

detected in our study]) and 5.5x10
-3 

(0.05/9genes), respectively. Furthermore, we excluded 

singletons from the single-variant analysis, since a variant observed only once is not largely 

informative about the overall distribution (Neale et al., 2011). However, we pooled the 

singletons together and analysed their collective effect in the gene-based analysis (SKAT 

and c-alpha test).  

In addition, we report the complete list of coding variants detected in these GWAS loci in 

the supplementary table (Table S1).  
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3. RESULTS 

The discovery set consisted of a total of 332 sporadic and mainly late-onset AD cases and 

676 elderly controls of British and North American ancestry (Table 1).  

A total of 289 single nucleotide variants (SNVs) were identified. Among these, 128 (44.3%) 

were nonsynonymous, 72 (24.9%) were synonymous, 83 (28.7%) UTR and 6 (2%) were 

intronic variants. Among the missense variants, 99 (77.34%) were rare (MAF<1%), and 

72.72% of these (72) were singletons (a variant observed only once either in cases or 

controls). 15 nonsynonymous variants (11.7%) were low frequency (1 %< MAF<5%) and 16 

(12.5%) were common (MAF≥5%). In addition, we report 14 novel coding variant (not 

reported in ExAC, released 13 January 2015, or dbSNP 137). None of the detected low 

frequency and rare coding variants cluster within common haplotypes (MAF≥5%) and 

therefore could have been missed by GWASs and chip based fine-mapping approaches. 

(Table S1, Table S2). We report the presence of two or three low frequency and/or rare 

variants in the studied genes in the same individual, both for cases and controls (Table S3a 

and Table S3b ). 

Overall, the total variant frequency of the 9 GWAS loci in our study was in line  with the one 

reported for the European-American cohort in the Exome Variant Server 

(EVS)(http://evs.gs.washington.edu/EVS/). The only exception was represented by CR1, that 

showed a 2.7-fold higher relative frequency of total variants, compared to the EVS database. 

(Table S4). 

PICALM harbors the lowest burden of low frequency and rare coding variants (3.27 coding 

variants per kb of coding sequence). By constrast, CD33, presents the highest relative 

frequency of coding variants and the lowest relative frequency of damaging variants (9.14 

and 0.91 coding and damaging variants, respectively), suggesting that the majority of coding 

variability in CD33 is likely non-functional (Table S5). 

BIN and ABCA7  display the highest relative proportion of damaging variants (3.92 [87.3% of 

its coding variability] and 3.72 [60% of its coding variability]  damaging coding variants per 

kb of coding sequence, respectively), thus arguing for a potential functional impact of 
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missense mutations at these loci (Table S5).Moreover, ABCA7 was the only gene harboring 

nonsense mutations.  

Most of the low frequency and rare coding variability identified within these loci exerts 

generally a relatively modest effect (mean OR=1.1) that is comparable to those observed for 

common and generally noncoding variants identified by GWASs (Table S1). 

 

 

 

3.1 Single coding variant association test 

The main hits of the single-variants association test map mainly to ABCA7 (Table 2). 

Particularly, we report ABCA7 p.G215S (rs72973581), that was the only low-frequency 

(MAF=4.3%) missense variant showing a trend towards significance in the single-marker 

association test (p-value =0.02 and corrected p-value=0.8) in the discovery set and was 

statistically significant after Bonferroni correction (p-value = 6x10
-4

 and corrected p-value= 

0.024) in the combined datasets (discovery set and follow-up dataset). 

Rs72973581 [A] results in a glycine to serine amino acid change at the position 215 of 

ABCA7 (G215S) and its frequency was 1.56-fold higher in controls compared to cases (MAF= 

4.66 and 7.24 for cases and controls, respectively), arguing for a protective effect (OR=0.6, 

95% CI=0.38-0.95). This variant was present in homozygosity in one control. The study 

possessed relatively low power to detect a significant association between cases and 

controls for low frequency and rare variants. Therefore, we have followed up ABCA7 

p.G215S, carrying out Sanger sequencing in an independent dataset composed of 307 

Caucasian late-onset AD cases and 501 elderly Caucasian controls (p-value= 0.012; OR= 0.54, 

95% CI 0.31-0.89). In this follow-up dataset, we confirmed a higher frequency of the ABCA7 

p.G215S variant in controls compared to cases (carrier frequency= 13.5% vs 7.8% [1.7-fold], 

MAF= 7% vs 4.3% [1.6-fold], respectively).  

Finally, we report also a common coding polymorphism in ABCA7 (p.R1349Q, rs3745842) in 

our cohort, that map 1.3 kb from a reported GWAS hit, rs3752246, but cluster within a 
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different common haplotype block (MAF>5%)(Naj et al., 2011)(Table S2). Rs3745842 major 

allele (G) was more frequent in cases compared to controls, although the association was 

nominally significant after multiple testing correction (p-value= 1.4x10
-3

, corrected p-

value=0.081) (Table S6).  

 

3.2 Loss of function mutations in ABCA7 

Loss of function mutations in ABCA7 have been recently reported as main mechanism 

explaining the GWAS signal and the increased susceptibility to AD. 

In our cohort, we detected 5 loss of function mutations in ABCA7:  2 stopgain mutations 

(p.Y1579X and p.E1974X) and 3 splice-site or near splice-site mutations (c.-7-2 A>G, c.-7-7 

T>C and c.231-12C>A). ABCA7 p.E1974X and c.231-12C>A are novel variants and, together 

with p.Y1579X, are singletons, detected only in controls (Table S7). 

Importantly, the enrichment for ABCA7 LoF mutations and novel variants in controls did not 

rely on the sequencing strategy (exome sequencing vs genome sequencing). These variants 

have not been indeed mainly detected in the 199 BYU controls, that underwent genome 

sequencing (Table S8) 

Moreover, 3 very rare indels have been identified in controls in the NIH-UCL cohort 

(p.1402delT, p.1638delCTT and p.1749delCTACTG). ABCA7 p.1749delCTACTG is a novel 

mutation and ABCA7 p.1402delT was present also in one case. These indels have been 

excluded from the pooled dataset because not targeted in the ADNI subcohrt (Table S9) 

(Figure 1). 

Finally, 3 nonsense mutations (p.W749X, p.W903X and p.R1754X) and one splice-site 

mutation, (c.4416+2T>G) did not pass either the sample or variant quality 

control (QC) criteria and therefore have not been included in the study (Table S10). 

 

3.3 Gene-based association test 

In addition to single-marker analysis, we carried out gene-wide analysis to combine the joint 

signal from multiple variants (coding variants and flanking UTRs) within a gene and to 
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provide greater statistical power than that for single-marker tests. All the variants 

(nonsynonymous, synonymous, UTRs, singletons) located within the studied genes and their 

exon-intron flanking regions were collapsed together and their combined effect was 

studied. ABCA7 was the main hit both in the SKAT and c-alpha test, nominally and 

statistically significant, respectively, after multiple testing correction (corrected p-value=  

0.6 and 5.3x10
-3

 respectively) (Tables 3a and 3b). Importantly, given the exclusion of indels 

in the merged discovery dataset, the presence of only 2 nonsense singleton mutations in 

ABCA7 (p.Y1579X and p.E1974X, both detected in controls) and 4 putative splice-site 

mutations (rs3752229, rs2242437, c.231-12C>A and rs182233998, the latter one nominally 

significant in controls), our findings are not influenced by a burden of LoF mutations in 

ABCA7. Considering the very rare frequency of these LoF variants, their detection with 

sufficient power would have required a very large sample size. By contrast, the top signals 

are represented mainly by common-low frequency coding variants with an higher frequency 

in controls compared to cases and with a modest to intermediate protective effect 

(0.329<OR<0.755) (Table S6). 

 

4. DISCUSSION 

We report the results of single-variant and gene-based association tests performed in BIN1, 

CLU, CR1, PICALM, MS4A6A, ABCA7, EPHA1, CD33, CD2AP  in a cohort composed of 332 

apparently sporadic and mainly late-onset AD cases and 676 elderly Caucasian controls from 

North America and UK. In the single-variant association test we have analysed the effect of 

low frequency and rare coding variants (MAF<5%), aiming to identify potential functional 

variant(s) underlying the GWAS hit(s). In the gene-based analysis (SKAT and c-alpha test), we 

collapsed the full spectrum of variants identified in these loci to study their collective effect.  

We do not report any pathogenic mutation in APP, PSEN1 and PSEN2 in our cohort. 

However, one of the controls was an heterozygous carrier of the protective variant APP 

p.A673T (MAF 7x10e
-4

 in our cohort and MAF 5x10e
-4

 among the European non-finnish,  

ExAC database, released 13 January 2015)(Jonsson et al., 2012) 
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TREM2 p.R47H, the second most common risk factor for sporadic AD, has been detected in 

6 cases (1.8%) and 4 controls (0.59%) and, likely given our small sample size, with a 

MAF=0.2%, was not significantly associated to AD (p-value= 0.09). 

 

ABCA7 was the only significant hit in the c-alpha test and harbors a low-frequency coding 

variant (p.G215S, rs72973581), whose minor allele confers a modest (OR=0.57, 95% CI= 

0.41-0.80) but statistically significant protection (corrected p-value =0.024) against AD. 

Importantly, this SNP was not present in several GWAS or exome SNP arrays and does not 

cluster within common haplotypes identified by tagging SNPs, whereas it has been detected 

through ABCA7 direct sequencing in the current study. Therefore, rs72973581 would have 

stayed likely undetected using common fine-mapping genotyping arrays. In addition, it does 

not cluster in the risk haplotypes identified by GWAS main hits (rs3764650, rs115550680, 

rs3752246, rs4147929), suggesting an independent signal and a likely different pathogenic 

mechanism of the major allele (Hollingworth et al., 2011)(Reitz et al., 2013)(Naj et al., 

2011)(Liu et al., 2014). Importantly, the ABCA7 p.G215S significant protective role against 

AD is supported by a targeted resequening study of ABCA7 in a Belgian cohort, where 

rs72973581 (A) frequency was 1.34-fold higher in controls compared to cases (p-value= 

0.055) (Cuyvers et al., 2015). Notably, the main variant associated to LOAD in this Belgian 

cohort was a low frequency intronic variant (rs78117248) that did not pass our QC filter. 

However, in line with our findings, Cuyvers et al. report an enrichment for common and low 

frequency polymorphism with a modest protective role in ABCA7. Importantly, among the 

top 10 genetic variants identified in our study, 3 missense mutations (rs74176364, 

rs114782266, rs117187003) have been described associated also to autism spectrum 

disorder (ASD), strongly pointing towards a functional role of these amino acid changes and 

suggesting a possible shared pathogenic mechanisms underpinning neurodegenerative and 

neurodevelopmental  diseases (He et al., 2014). 

Interestingly, several lines of evidence reported that a significant decrease in ABCA7 levels is 

associated to AD. At this regard, different and likely not mutually exclusive mechanisms 

have been described to influence the protein level: 1) common and generally non-coding 

variants in regulatory regions; 2) alternative splicing; 3) increased CpG island methylation 
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(Humphries et al., 2015)(Vasquez et al., 2013). Recently, also LoF mutations in ABCA7 have 

been shown to significantly increase the susceptibility to AD in the Islandic population 

(Steinberg et al., 2015). This has been replicated in two different populations (Caucasian 

North American and Belgian) by two independent studies (Vardarajan et al., 2015)(Cuyvers 

et al., 2015). Therefore we report another potential mechanism, through which low 

frequency protein coding variability in ABCA7 may influence AD risk. 

Notably, ABCA7 p.G215S provides critical insights into the genetic architecture of diseases, 

reinforcing the view that GWAS loci, likewise Mendelian genes, harbor low frequency and 

rare protective coding variants that can counteract with a similar effect size the damaging 

alleles (OR ≈0.6 vs ≈1.1 and ≈0.2 vs ≈5, for GWAS loci and Mendelian genes, respectively) 

(Nejentsev et al., 2009)(Rivas et al., 2011)(Jonsson et al., 2012)(Asante et al., 2015). 

ABCA7 is mainly expressed in leukocytes and in myelo-lymphatic tissues (thymus, spleen and 

bone marrow) and microglia in the brain 

(http://web.stanford.edu/group/barres_lab/brain_rnaseq.html)(http://www.uniprot.org/) 

(Kim et al., 2008). ABCA7 encodes for ATP-binding cassette sub-family A member 7 (ABCA7), 

a multi-pass protein, present on the cell, Golgi and endosome membranes 

(http://www.uniprot.org/). In vitro and in vivo experiments have shown ABCA7 pivotal role 

in phagocytosis and a likely modest role in HDL biogenesis. In Abca7
−/−

 mice, macrophages 

and microglia display impaired phagocytosis and clearance of amyloid from the brain, which 

leads to cognitive impairment (Iwamoto et al., 2006)(Tanaka et al., 2011) .  

Therefore, ABCA7, likewise TREM2 and CD33, may play an important role in regulating 

microglial uptake and clearance of Aβ debris. 

ABCA7 p.G215S clusters within the extracellular topological domain of ABCA7. Remarkably, 

at the homologous residue, the serine is the reference amino acid in ABCA7 in different 

mammals and in the homologous protein ABCA1 in humans. Thus, suggesting that this 

amino acid may confer some biologic advantage and may have been positively selected 

during the evolution (Figure S1 and S2). 
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Likewise other low frequency and rare protective variants at the GWAS loci (Table S11), 

ABCA7 p.G215 is a relatively conserved residue among different species (Figure S1) and this 

amino acid change (glycine to serine) may only slightly modify the protein activity (-5.86, 56, 

Gerd and Grantham score, respectively). Moreover, it has been reported as a tolerated 

change and benign, arguing against any possible loss of function or significant impairment of 

ABCA7, that have been indeed associated to increased risk for AD (Steinberg et al., 2015). 

The biological effect of this substitution may therefore lead to a mild ABCA7 gain of 

function, possibly strengthening the interaction with a binding protein or regulating its 

expression. Although ABCA7 p.G215 has not been predicted to be a coding target for miRNA 

(https://www.umm.uni-heidelberg.de), a possible post-transcriptional or post-translational 

regulation should not be excluded. Importantly, the substitution of a glycine with a serine 

may imply an additional substrate for serine-kinases or proteases. Moreover, in a similar 

way, ABCA1, whose LoF variants have been associated to AD (Nordestgaard et al., 2015)(Kim 

et al., 2012), has been reported to be particularly enriched for low frequency and rare 

coding variants with an average 1.5-fold  higher frequency in controls compared to LOAD 

cases and a modest protective effect in a Greek cohort (OR =0.96-0.38)  (Lupton et al., 2014) 

(Table S12). 

Thus, understanding the effect of ABCA7 p.G215S has the potential of unravelling new 

pathogenic mechanisms underpinning AD and may provide a promising therapeutic target 

that would not significantly alter ABCA7 overall physiological function, which is critical for 

AD development. 

Finally, we support Vardarajan et al. resequencing study of the GWAS loci (Vardarajan et al., 

2015), confirming a burden of damaging variants in ABCA7 and BIN1 (Table S5) and to a 

lesser extent in CD2AP, EPHA1 and MS4A6A (main hits in the gene-based analysis) (Table 3a 

and 3b), highlighting their potential role as susceptibility loci for LOAD. 

However,  we could not replicate the main hits detected by Vardarajan et al. in the single-

variant analysis, either because such variants have been targeted but not detected in our 

cohort (ABCA7 p.E1679X, EPHA1 p.P460L and BIN1 p.K358R) or because the variants have 

been targeted but eliminated by the QC filter (CD2AP p.K633R). Thus, suggesting a possible 
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lack of replication compared to the previous studies attributable to the different population 

but also different sequencing strategies, capture and coverage. Nevertheless, EPHA1 and 

CD2AP harbor 2 of the main hits detected in the single-variant analysis in our cohort 

(rs11768549 and rs143297472, respectively)(Table 2), with rs11768549 already associated 

with the rapid progression of the disease in a cohort of Caucasian North American LOAD 

cases (Wang et al., 2015).   

In summary, we support previous studies, suggesting that 1) ABCA7 significantly influences 

AD risk; 2) ABCA7 p.G215S is likely to reduce the susceptibility to AD;  3) GWAS hits are 

pleomorphic loci harboring a complex spectrum of variants synergistically contributing to 

the disease phenotype with different mechanisms, effects (damaging, protective and 

neutral) and effect sizes (0<OR<4) and  4) gene-based approaches are effective methods to 

mine genetic data and to accurately filter potential candidate genes. 
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COHORTS N TYPE SEQUENCING STRATEGY ORIGIN AGE (YRS) MALE APOE 

     
MEAN ±SD(RANGE) (%) E4+ (%) 

DISCOVERY SET 

NIH-UCL 
       

cases 127 neuropath Exome sequencing Caucasian (British) 65.5(41-94) 46.4 58 

controls 204 neuropath Exome sequencing 
Caucasian (British, North 

American) 
79.8 (61-102) 58.3 45 

     

WashU 
 

cases 23 clinical Exome sequencing 
Caucasian 

(North American) 
57 (46-75) 52.17 NA 

controls 16 clinical Exome sequencing 
Caucasian 

(North American) 
79.5 (75-92) 43.7 NA 

        

ADNI        

cases 182 clinical Exome sequencing 
Caucasian  

(North American) 
74.65 (55-90) 67 56.6 

controls 257 clinical Exome sequencing 
Caucasian  

(North American) 
74.68 (60-90) 50.1 27.6 

        

BYU 
      

  

controls 199 clinical Genome sequencing 
Caucasian  

(North American) 
80.8 (75-94.5)                    37.7    100 

  
      

   

FOLLOW-UP GENOTYPING SET  

ABCA7 rs72973581    
  

NIH-NIA Caucasian 

(North American, British, 

Dutch, Italian, 

Portuguese) 

  

cases 307 clinical Sanger sequencing  average >65y 
  

controls 501 clinical Sanger sequencing  

Caucasian, 

(North American, British, 

Greek, German, Polish, 

Australian, Canadian) 

 >60y 

  

                

 

Table 1. Description of the different cohorts used in this study. N, number; WES, whole exome sequencing; WGS, whole genome sequencing; YRS, years.
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GENE POSITION MA 
cDNA  

change 

Aa  

change 
rs 

MAF  

cases-ctrls  

(%) 

MAF 

 ExAC  

(%) 

SIFT POLYPHEN 
Mutation  

assessor 

aa/Aa/AA 

 cases 

aa/Aa/AA 

controls 
p-value 

Corr. 

p-value 

OR 

 (95% CI) 

ABCA7 19:1043103 A c.G643A p.G215S rs72973581 4.66-7.24
§ 

4.31*** Tolerated  Benign low 

0/31/301 1/96/579 0.02 0.8 
0.61  

(0.38-0.95) 

0/55/584* 1/164/1012* 0.0006* 0.024 
0.57* 

(0.41-0.80) 

ABCA7 19:1050996 A c.G2629A p.A877T** rs74176364 0.3-1.18 1.69 Deleterious Benign  low  0/2/330 0/16/660 0.07 2.8 
0.25  

(0.02-1.07) 

EPHA1 7:143095153 A c.G1475A p.R492Q
# 

rs11768549 2.56-1.47 1.21 tolerated benign   0/17/315 1/18/657 0.07 2.8 
1.86  

(0.89-3.84) 

ABCA7 19:1059056 A c.G5435A p.R1812H** rs114782266 1.5-0.81 1.05 Tolerated  Benign  neutral 0/10/322 0/11/665 0.16 6.4 
1.87  

(0.70-4.92) 

ABCA7 19:1057343 A c.G4795A p.V1599M** rs117187003 0.6-0.22 0.3 Deleterious 
Possibly 

damaging 
medium 0/4/328 0/3/673 0.22 8.8 

2.73 

 (0.45-18.7) 

CD2AP 6:47573971 A c.G1488A p.M496I rs143297472 0.3-0.07 NA Tolerated  Benign   0/2/330 0/1/675 0.25 10 
4.08  

(0.21-241.3) 

ABCA7 19:1047537 C c.A2153C p.N718T rs3752239 1.65-2.44 7.02 Deleterious Benign  low  0/11/321 0/33/641 0.32 12.8 
0.66  

(0.29-1.37) 

 

Table2. Most significant variants detected in our discovery set. Position is in hg19/GRCh37. MAF, minor allele frequency; OR, odds ratio; CI=confidence interval. Corr, 

Corrected p-value, p-value after Bonferroni correction (p-value*40 [number of variants considered in the single-variant association test])  

*Combined results discovery and follow-up data set. 
§ 

MAF cases-ctrls reported a Belgian cohort = 4.66-6.27(Cuyvers et al., 2015) **Variants reported associated also with 

autism spectrum disorders (ASD) (He et al., 2014). ***MAF in ExAC (European non Finnish)= 6.14% and MAF in EVS (European American)= 6.24%. 
# 

Variant reported 

associated to a more rapid disease progression 
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TRANSCRIPT ID POSITION GENE N.VARIANTS TEST P-VALUE CORRECTED P-VALUE 

NM_019112 chr19:1040131..1065563 ABCA7 72 CALPHA 0.000590992 0.0053 

NM_012120 chr6:47445789..47594915 CD2AP 20 CALPHA 0.0353261 0.31 

NM_152851 chr11:59939123..59950523 MS4A6A 11 CALPHA 0.0548523 0.49 

NM_000573 chr1:207669709..207814864 CR1 72 CALPHA 0.0677083 0.6 

NM_139343 chr2:127805799..127864546 BIN1 27 CALPHA 0.0730337 0.65 

NM_001206946 chr11:85668697..85779900 PICALM 19 CALPHA 0.0742857 0.66 

NM_005232 chr7:143088365..143105830 EPHA1 30 CALPHA 0.106557 0.95 

NM_001831 chr8:27454493..27472251 CLU 29 CALPHA 0.444444 3.99 

NM_001772 chr19:51728380..51743144 CD33 13 CALPHA 0.714286 6.42 

 

Table 3a. Results from the  c-alpha test performed. Position is in hg19/GRCh37. Corrected p-value, p-value after Bonferroni correction (p-value*9[number of genes 

considered in the single-gene based analysis]). 
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TRANSCRIPT ID POSITION GENE N.VARIANTS TEST P-VALUE CORRECTED P-VALUE 

NM_019112 chr19:1040131..1065563 ABCA7 72 SKAT 0.0737249 0.66 

NM_005232 chr7:143088365..143105830 EPHA1 30 SKAT 0.298155 2.68 

NM_139343 chr2:127805799..127864546 BIN1 27 SKAT 0.447218 4.02 

NM_012120 chr6:47445789..47594915 CD2AP 20 SKAT 0.448924 4.04 

NM_000573 chr1:207669709..207814864 CR1 72 SKAT 0.510539 4.59 

NM_001831 chr8:27454493..27472251 CLU 29 SKAT 0.59029 5.31 

NM_152851 chr11:59939123..59950523 MS4A6A 11 SKAT 0.937765 8.43 

NM_001772 chr19:51728380..51743144 CD33 13 SKAT 0.93899 8.45 

NM_001206946 chr11:85668697..85779900 PICALM 19 SKAT 0.943777 8.49 

 

Table 3b. Results from the SKAT test performed. Position is in hg19/GRCh37. Corrected p-value, p-value after Bonferroni correction (p-value*9[number of genes 

considered in the single-gene based analysis]). 
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Highlights 

• Genome-wide association studies (GWASs) have been effective approaches to 

investigate common genetic variability underlying complex traits in a systematic and 

unbiased way.  

• Despite the evidence showing the contribution of these loci to AD pathogenesis, their 

genetic architecture has not been extensively investigated. 

• We have used exome and genome sequencing data to analyse the single 

independent and joint effect of rare and low frequency protein coding variants in 9 

AD GWAS loci with the strongest effect sizes after APOE (BIN1, CLU, CR1, PICALM, 

MS4A6A, ABCA7, EPHA1, CD33, CD2AP) in a cohort of 332 sporadic AD cases and 676 

elderly controls of British and North American ancestry.    

• We identified coding variability in ABCA7 as contributing to AD risk. This locus 

harbors a low frequency coding variant (p.G215S, rs72973581, MAF=4.3%) conferring 

a modest but statistically significant protection against AD (p-value= 6x10
-4

, OR= 0.57, 

95% CI 0.41-0.80).  

• Notably, our results are not driven by an enrichment of loss of function variants in 

ABCA7, recently reported as main pathogenic factor underlying AD risk at this locus. 

• Our study confirms the role of ABCA7 in AD and provide new insights that should 

address functional studies.  

 


