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Abstract  

Introduction: Computational modelling of cardiac arrhythmogenesis and arrhythmia maintenance 

has made a significant contribution to the understanding of the underlying mechanisms of arrhythmia. 

We hypothesized that a cardiac model using personalized electro-anatomical parameters could define 

the underlying ventricular tachycardia (VT) substrate and predict reentrant VT circuits. We used a 

combined modelling and clinical approach in order to validate the concept. 

Methods and results: Non-contact electroanatomic mapping studies were performed in 7 patients (5 

ischemics, 2 non-ischemics). Three ischemic cardiomyopathy patients underwent a clinical VT 

stimulation study. Anatomical information was obtained from cardiac magnetic resonance imaging 

(CMR) including high-resolution scar imaging. A simplified biophysical mono-domain action 

potential model personalized with the patients’ anatomical and electrical information was used to 

perform in silico VT stimulation studies for comparison. The personalized in silico VT stimulations 

were able to predict VT inducibility as well as the macroscopic characteristics of the VT circuits in 

patients who had clinical VT stimulation studies.  Patients with positive clinical VT stimulation 

studies had wider distribution of action potential duration restitution curve (APD-RC) slopes and 

APDs than patient 3 with a negative VT stimulation study. The exit points of reentrant VT circuits 

encompassed a higher percentage of the maximum APD-RC slope compared to the scar and non-scar 

areas, 32%, 4% and 0.2% respectively. Conclusions: VT stimulation studies can be simulated in 

silico using a personalized biophysical cardiac model. Myocardial spatial heterogeneity of APD 

restitution properties and conductivity may help predict the location of crucial entry/exit points of 

reentrant VT circuits.  

Keywords: Ventricular tachycardia; computer modelling; APD restitution; conductivity; cardiac 

magnetic resonance imaging. 
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Introduction 

Implantable cardioverter defibrillator (ICD) shocks are a cause of substantial morbidity in patients 

with ventricular arrhythmias.
1 
Radiofrequency ablation is increasingly used to treat ventricular 

tachycardia (VT) to reduce ICD discharges and improve patient quality of life and mortality.
2,3 

The 

current arrhythmia risk stratification strategy is imperfect and is determined largely on left ventricular 

(LV) function with not all high-risk patients receiving an ICD, and those who received ICDs never 

experiencing appropriate therapies. Similarly ablation of VT is technically challenging with a 

recurrence rate of up to 40% with a lack of clinical consensus on the optimal ablation strategy.
4
 Better 

risk stratification and higher ablation success rates would potentially improve patient outcomes. There 

is therefore a need to identify individuals at high risk of developing ventricular arrhythmia and the 

arrhythmia substrate in order to guide the optimal ablation strategy.
5
  

 

Computational modelling of cardiac arrhythmogenesis and arrhythmia maintenance can be used to 

contribute to the understanding of the underlying mechanisms of arrhythmia.
 
Image-based 

computational models have incorporated cardiac structural information such as heterogeneity of scars 

into such simulations.
6-8 

However, the heterogeneity in action potential duration (APD) restitution, the 

adaptation of APD as a function of the cardiac cycle length, has a crucial role in arrhythmogenesis.
9,10

 

The integration of both personalized structural and functional data has not previously been performed.  

 

We hypothesized that, using personalized electrophysiological mapping data and structural anatomical 

data acquired respectively from electrophysiology studies and high-resolution cardiac magnetic 

resonance imaging (CMR) we could develop a patient-specific biophysical model to perform in silico 

VT stimulation studies to assess inducibility of VT and circuit morphology. 
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Methods 

Patients 

Patients under consideration for primary prevention ICD on the basis of their LV function were 

prospectively invited to participate in the study following local research ethics committee approval. 

Seven patients, 5 with ischemic cardiomyopathy (ICM) and 2 with non-ischemic dilated 

cardiomyopathy (NICM) gave written consent prior to study inclusion.  

 

CMR Acquisition and Image Processing 

CMR was performed on a Philips Achieva 1.5T scanner using a 32 channel cardiac coil. All 7 patients 

completed CMR morphological and volumetric assessment as well as high-resolution scar 

characterization by late-gadolinium-enhanced (LGE) imaging with acquired voxel size 

1.3x1.3x2.6mm
3
. A personalized 3D model of the ventricles was derived from the CMR images: a 

tetrahedral mesh was generated from the binary mask of the ventricles. The LV myocardial scar 

distribution was segmented using signal intensity (SI) based analysis from the high-resolution LGE 

images to distinguish between scar core and gray zone. Each element of the mesh was labelled 

(healthy/scar core/gray zone).  

(Details of CMR image acquisition protocol and imaging processing data is provided in the online 

supplemental material) 

 

Invasive Electrophysiological Study with Electroanatomic Mapping and Signal Processing 

LV electroanatomic mapping (EAM) was performed using a multi-electrode array catheter (EnSite 

Velocity System, St Jude Medical, MN, USA) in all 7 patients. The chamber geometry was 

reconstructed using locator signals from a steerable electrophysiological catheter. Three patients 

(patients 1-3) with ICM underwent a simultaneous VT stimulation study according to the Wellens 
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protocol during the mapping study.
11 

Unipolar electrograms (UEG) derived were filtered with a band-

pass filter (10Hz/300Hz and 0.5Hz/30Hz) to optimize QRS complex and T wave detections. The 

depolarization times were detected within the QRS window and derived from the zero crossings of the 

laplacian of the measured UEGs; the repolarization times were detected within the ST window for the 

signals.
9
 The difference between the depolarization and repolarization times was used to estimate the 

activation recovery time (ARI) that is used as a surrogate marker for APD.
12

 The APD restitution 

curve (APD-RC) was estimated from steady-state RV pacing (500ms) with sensed pacing extras at 

progressively shorter coupling interval at a decrement of 20ms till 200ms or refractory period. The 

APD-RC was represented by a non-linear equation using a least-squares fit to the mono-exponential 

function as previously detailed on experimental and clinical data: a single APD-RC was fitted for each 

measured point from the EAM and the maximum APD was estimated as the asymptotic APD of the 

APD-RC when the diastolic interval tends to infinity.
13,14

  

Construction of Personalized 3D Cardiac Model 

Building on the framework that we have previously described and validated, the anatomical 

mesh was registered with the electrical information offline and used to generate a 

personalized 3D cardiac model, which combines the benefits of an Eikonal (EK) model (fast 

and robust for conduction velocity (CV) personalization) and those of a simplified 

biophysical mono-domain action potential Mitchell-Schaeffer (MS) model (well suited for 

personalising APD restitution properties).
13-15

 The MS model was personalized with the 

apparent conductivity (AC) values derived from the patient’s CV computed from the EAM 

data. AC is the diffusion coefficient that represents an intrinsic parameter of the cardiac tissue 

electrical conductivity in the electrophysiological cardiac model. AC (m
2
s

-2
) is proportional to 

the product of the square of CV and a time constant parameter in the model.
8
 AC is used as 

an independent estimation of the intrinsic biophysical electrical conductivity property of the 

tissue rather than CV that could be dependent on the activation sequence and the shape of the 
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propagation wave front. The process of building the models from the CMR and EAM data is 

illustrated in Figure 1. 

(The estimation of the electrical parameters and computer modelling is described in detail in 

the Supplemental material: Computer modelling)  

In silico VT Stimulation Study 

In 3 patients (patients 1-3) with ICM, the personalized cardiac model was used to simulate a clinical 

VT stimulation study in silico in order to predict the initiation and maintenance of ventricular 

arrhythmia induced during clinical study. The simulated study was performed in accordance with the 

clinical study protocols that were carried out: the pacing stimuli were applied from the RV apex 

following the Wellens protocol. We also simulated the study from alternate pacing sites in the RV and 

LV that encompassed the basal and apical freewall/lateral/septum/anterior and inferior walls. The exit 

points identified from the clinical VT stimulation studies and the in silico simulations were 

characterized in terms of the spatial heterogeneities of the AC, APD restitution properties. 

 

Statistical analysis 

The electrical parameters consisted of multiple data points, each corresponding to a different location 

within the LV of an individual patient. The data were expressed by median and inter-quartile range 

(IQR) or mean and standard deviation. Continuous variables were compared using Median test. A p 

value < 0.05 was considered to be statistically significant. All statistics were performed using 

computer software SPSS Statistics, version 21, SPSS Inc., IBM, USA. 

 

Results 

All 7 patients underwent successful validation of the personalization strategy of the computer cardiac 
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model. Of these, 3 patients (ICM) underwent further clinical VT stimulation test in order to validate 

the accuracy of the personalized cardiac model in predicting VT substrate.  

Baseline patient characteristics and CMR findings are summarized in Table 1. During the clinical VT 

stimulation studies, patients 1 and 2 developed sustained monomorphic VT; patient 3 was non-

inducible. All 7 patients were implanted with ICDs for primary prevention following clinical 

assessment. During a median follow-up period of 22months, IQR 9 months, patient 2 received 

appropriate ICD therapy for sustained VT.  

 

Heterogeneities in Apparent Conductivity (AC) and APD Restitution Properties  

The IQRs of AC and APD restitution data representing the heterogeneities of these electrical 

parameters were calculated for each patient (shown in online supplementary Figure 1). The range of 

AC across the LV was comparable across the 7 patients. The median APD-RC slopes and maximum 

asymptotic APD for NICM patients was lower than that for ICM patients (p<0.01). Amongst the 3 

patients who underwent a clinical VT stimulation study, patients 1 and 2 with positive clinical VT 

stimulation studies had APD-RC slopes IQRs of 1.50 and 1.02; and maximum asymptotic APD IQRs 

of 123ms and 66ms. These IQRs were greater than that of patient 3 with a negative clinical VT 

stimulation study; in whom the APD-RC slope IQR and APD IQR were 0.48 and 36ms, respectively.  

 

The APD-RC properties and ACs are also illustrated with LV polar plots to provide a qualitative 

assessment of the spatial heterogeneity of these parameters across the LV in Figure 2.  

There appeared to be the same broad spatial heterogeneity in AC in all the study patients including the 

2 patients with NICM who also had regions of low AC in areas without scars seen on CMR. However, 

there was a wide variation in the spatial heterogeneity of APD-RC properties across the cohort, with 

patients 1 and 2 showing the most heterogeneity.  
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Visually, the VT exit points that were observed during the clinical VT stimulation studies in patients 1 

and 2 appear to be at the neighboring regions with varying degree of APD-RC properties and AC. 

These VT exit points were in the scar border zone/gray zone as determined by the LGE CMR scans. 

In order to explore the role of local spatial heterogeneity of electrical properties play in 

arrhythmogenesis we assessed the differences in AC, APD and APD-RC between neighboring regions 

in LV (each region ≈ 3mm
3
) by evaluating the gradient of the parameters in polar coordinates in 

Figure 2. The gradient amplitude reflects how smooth or abrupt the transition is between values in the 

spatial domain. Using a definition of “high gradient” being greater than the 90th percentile of the 

gradient range, the proportion of LV regions with high gradients was analyzed for each patient. For 

each of the electrical parameters, AC, APD and APD-RC, there was no statistically significant 

difference in the number of elements with high gradients (≥ 90 percentile) between patients. However, 

patient (1 and 2) with inducible VT had a combined greater heterogeneity of both AC and APD-RC, 

shown in Figure 3. 

 

 

Induction of VT and Clinically Observed Monomorphic VT Exit Points  

Patient 1 had induced sustained monomorphic VT (SMVT) with a cycle length (CL) of 275ms at 

Wellens’ stage 11. Patient 2 had induced SMVT with a cycle length of 245ms at Wellens’ stage 4. 

The patterns of activation for both reentrant VT circuits are illustrated in Figure 4. Analysis of the 

UEG recording from the EAM showed a higher percentage of maximum APD-RC slope that is 2 

standard deviation (SD) above the mean LV APD-RC slope at the observed exit points (32%) 

compared to the scar (4%) and non-scar regions (0.2%). The absolute values in APD and tissue 

conductivity between the three areas were not as distinct although the exit point values (APD: median 

319ms, IQR 45ms; AC: median 3.4m
2
s

-2
, IQR 2.5m

2
s

-2
) appeared to lie between those of the scar 
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(APD: median 385ms, IQR 136ms; AC: median 0.4m
2
s

-2
, IQR 2.1m

2
s

-2
) and non-scar regions (APD: 

median 305 IQR 49ms; AC: median 4.7m
2
s

-2
, IQR 2.4 m

2
s

-2
). It is possible that it is the heterogeneity 

in regional tissue electrical properties distributions rather than the absolute value (mean or median) 

that may allow us to identify the exit points from other regions of the myocardium.  

Comparison of Model-Predicted and Clinically-Observed Induced VT 

Sustained monomorphic VT was induced in silico at stage 7 of the virtual Wellens protocol for Patient 

1 and stage 5 for patient 2. Sustained VT was not inducible in silico for patient 3. LV polar plots of 

the clinical and virtual VT isochrones are illustrated in Figure 5A for comparison. Both macroscopic 

reentrant VT circuit and exit points were matched between the clinical and simulated studies (shown 

in Figure 5A). 

 

Three-Dimensional VT Circuit Visualization 

By taking into account the 3D geometric information including transmural scar core and gray zone 

across the LV wall, the computer model enabled the prediction of a 3D VT circuit as opposed to the 

2D VT activation pattern observed by endocardial EAM. Computational simulation allowed this 

additional insight to the wave propagation within the myocardium. For patient 2, the activation wave 

front of the reentrant VT is shown propagating in the region of the gray zone in Figure 5B. The 

estimated wave front path surrounds the scar core and lies within the scar border zone, entering from 

the endocardial surface, meandering within the ventricular wall, and exiting via the epicardial surface 

(shown in Figure 5B).  

 

A comparison of clinically observed and predicted exits points in terms of anatomic location were 

made. We defined the exit region compassing anatomical points with an activation time within 10ms 

of the earliest activation. The distance between the clinically observed and simulated exit points was 
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defined as the 3D Euclidean distance between the centers of both exit regions. A difference of 7mm 

and 8mm were found, respectively, for patients 1 and 2.  

 

Simulated VT Stimulation from Additional Sites 

VT stimulation study was also performed in silico by pacing from other sites than the RV 

apex used during the clinical study for patients 1 and 2. Different VT circuits with three 

additional exit points were observed in both patients. The exit points were located on the 

boundary of scar in the region of the gray zones from the CMR LGE images. Similar to the 

clinically observed exit points, they were mostly in the region of maximum APD-RC slope. 

The composite of different exit points are plotted in Figure 6 in terms of their APD restitution 

properties and AC.  

 

 

Discussion 

The present study provides new insights into the prediction of VT circuits using a biophysical model. 

The principal findings of our study are as follows: 1) the location of scar border zone (gray zone) on 

high-resolution CMR correlates with areas of abnormal measured and model derived electrical 

properties; 2) the VT exit points have a substantially higher percentage of tissue with steep APD-RC 

slopes compared to surrounding tissues; and combined tissues heterogeneity in APD-RC and CV may 

underlie the substrate for the inducibility of VT; 3) in silico VT stimulation studies were able to 

predict inducibility of VT in patients at risk of ventricular arrhythmia; 4) the characteristics of the 

modeled VT circuits correlated well with the clinically observed circuits in terms of cycle length, 

macroscopic activation patterns and VT exit sites. 
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Tissue Heterogeneity (admixture of scar and myocardium) co-location with Heterogeneity in APD 

Restitution Properties and Tissue Conductivity 

A correlation between the spatial heterogeneity in APD, APD-RC slopes and AC and the location of 

gray zone detected on high-resolution CMR supports the notion that myocardial scars can alter the 

regional restitution properties and provide potential substrate for arrhythmia.
16

 Data from the 2 

patients who developed sustained VT suggest that VT exit points are co-located with heterogeneous 

APD-RC slopes. Ciaccio et al. has demonstrated potential mechanisms using a geometric model that 

could account for this co-location between exit zones and conducting channels in terms of tissue 

conductivity.
17

 The presence of clumps of fibroblasts, although electrically non-excitable, results in a 

slowing of the electrical wave front propagation in the myocardial tissue in which they are embedded. 

Fibroblasts can modulate cellular ion channel remodelling and therefore tissue electrical properties 

through a variety of mechanisms including mechano-electric feedback via stretch-activated ion 

channels, close coupling of nearby cardiac myocytes via connexin, and by altering surrounding 

myocardial fibres anisotropy.
18

 Some of these mechanisms have been shown in vitro, but remains 

speculative in vivo. The suggested relationship between the degree of heterogeneity demonstrated by 

the electrical gradients between neighboring tissue domains and the propensity for sustained 

ventricular arrhythmia is therefore likely being non-linear as observed in the present study. The 

present study supports the notion that potential successful ablation sites for VT lie in areas of 

heterogeneous tissue zones that can be identified with CMR.
19,20 

 

Heterogeneity in electrical properties have been observed in LV.
9,10

 Computation modelling have 

demonstrated that theoretically APD-RC slope >1 is needed to result in electrical instability and 

initiate ventricular arrhythmia.
21

 In keeping with the observed tissue functional heterogeneity at the 

VT exit points in the present study, others have also demonstrated that the heterogeneity in APD-RC 

slopes is needed for the initiation and stability of reentry VT.
10,22

 These prior studies did not have the 
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benefit of high-resolution CMR scar information, and so could not explain the anatomical cause of 

this. Nash et al. speculated that regional stretch strain pattern resulting from ischemia might have led 

to electrical remodelling through mechano-electric feedback.
10

 It may well have been that these 

regions had areas of gray zone as they correlated to the territories of the diseased coronary arteries.  

 

In silico VT stimulation studies in patients 

Encouragingly, the personalized cardiac models encompassing both anatomical and electrical 

properties were able to predict not only the inducibility of VT, but also the reentrant VT circuit 

properties and anatomical locations of the substrate. The present study is unique in that, as well as 

anatomical and scar information it incorporated personalized functional data including APD-RC 

properties and tissue conductivities into the patient-specific cardiac models. Previously, Arevalo H et 

al. suggested that VT dynamics were primarily governed by the geometric parameters of the scar-core 

and border zone using image-based computational VT modelling work.
7
 The present study 

highlighted the advantage of incorporating detailed geometric information gained from CMR, 

demonstrating the possibility of using high-resolution 3D scar data to help predict potential critical 

isthmus on the epicardial surface.  This is important, as conventional mapping techniques used during 

ablative therapy are limited to two-dimensional geometry when the substrate of the VT circuit could 

be on the opposite side of the mapping surface.  

 

While we realize that CMR can provide important scar geometry that governs the substrate of 

reentrant VT, we also recognize that the resolution of the current standard clinical CMR technique is 

limited (common voxel size 2x2x8mm
3
) in providing the level of spatial geometry details that we 

would like to see at the border zone. We believe that additional knowledge and understanding of 

patient-specific heterogeneities in local electrical parameters would assist in predicting the likely 

culprit conduction channels/isthmus, and not the bystanders, that is critical to the clinical VT. We 
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have performed additional sensitivity analysis using empirical electrical parameters instead of 

personalized patient-specific electrical data in the 2 patients with positive clinical VT stimulation 

studies and found that using combined personalized electrical and image data can potentially improve 

the accuracy of VT inducibility and predictions regarding the location of exit zones predictions. VT 

was not inducible in Patient 1 using non-personalized empirical electrical parameters that also induced 

a different macroscopic VT circuit morphology from the one seen during the clinical study in Patient 

2. The Euclidean distance between the center of the clinical exit region and that predicted using non-

personalized electrical parameters was 37mm, and with using personalized electrical parameters it 

was 8mm. (See Supplemental Material: Personalized vs. non-personalized empirical electrical 

parameter) However, recognizing the small number of patients included in this analysis, a larger study 

would be necessary to help draw more reliable conclusions between using personalized vs. non-

personalized electrical parameters. 

 

 

Clinical application: Potential for Circuit Prediction using Personalized Computer Models to 

Guide Ablation 

While cardiac modelling has been an active research area for decades, personalized cardiac modelling 

using patient-specific clinical data is in its infancy. In silico personalized models may offer significant 

clinical benefit in predicting the risk of ventricular arrhythmia in patients and guiding treatments 

including ICD implantation and VT ablation. Successful VT termination through ablation may be 

achieved when the critical isthmus is successfully interrupted with ablation lesions. If VT exit points 

can be predicted with biophysical models, then this information may be used to guide ablation. Such 

models also offer additional flexibility as the model can simulate any combination of paced stimuli 

from different locations with varying pacing cycle lengths, which may not be feasible in clinical 

practice. Recently, Ashikaga et al. presented a retrospective study that found a good correlation 

between the predicted ablation sites and the actual target VT ablation sites at the scar border zone.
23
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We have indeed demonstrated that additional exit points can be induced from in silico VT stimulation 

studies, which could be potential targets for ablation. Our results suggest that patient-specific cardiac 

models may offer incremental clinical benefit in terms of ventricular arrhythmia risk stratification and 

in the planning and delivery of ablation strategies for reentrant ventricular arrhythmias. Non-invasive 

body surface mapping could be incorporated to routine simple electrophysiology study to gain such 

personalized whole heart electro-anatomic data in order to facilitate the translation of the biophysical 

cardiac model processing pipeline to clinical practice.
24

 A larger validation study can be performed in 

the secondary prevention patient cohort when simple electrophysiology study can be performed via 

the cardiac rhythm management device (at time of device implant) with simultaneous body surface 

mapping recording to acquire the personalized APD, APD-RC slopes and AC data. This coupled with 

scar data acquired from CMR prior to device implant could generate personalized modelling, the 

outcome of which can then be further validated at the time of VT ablation prospectively in this 

secondary prevention cohort 

 

Study limitations 

Given the invasive nature of the study precludes analysis of a large number of patients, the study is 

limited by the small number of patients included with only a subset of patients undergoing a VT 

stimulation procedure. The electro-anatomical data are derived from non-contact mapping with the 

inherent limitations of this type of mapping. It was chosen for its ability to provide ‘beat-to-beat’ 

mapping in the setting of rapid and unstable VT circuits. The registrations between the 

electroanatomic mapping and CMR scar mapping and between the clinical and in-silico data are 

performed through anatomical landmark registration. Though this is a simple but effective way of 

registration, it is susceptible to arbitration. This process can be further refined through a deformable 

registration method that has the advantage of improved reproducibility, however at the expense of 

introducing systematic error with resultant over-fitting.
25

 The cardiac model also made several 

simplifications in particular for the Purkinje network and pathological changes of cardiac fiber 
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orientations. With any personalization of computational physiology model, there is a degree of 

uncertainty due to the limitations in acquired temporal and spatial resolution clinical data. Extending 

computational methods used in the study to incorporate an efficient Bayesian inference method could 

account the uncertainties in the application of the model.
26

 

Conclusion 

Patient-specific spatial heterogeneity of restitution properties were the distinguishing features of 

ventricular arrhythmogenicity, with reentrant VT exit points present in regions of higher maximum 

APD-RC slopes compared with the surrounding tissue. These regions were within the gray zone 

identified by LGE CMR. Personalized biophysical model was able to predict macroscopic VT circuits 

and exit point locations in agreement with clinically observed datasets.  
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Figure 1 (A) high-resolution contrast-enhanced CMR scar images; (B) whole heart model 

segmented from 3D steady-state free precession (SSFP) CMR with scar (core and gray zone) 

in violet; (C) low voltage areas from electroanatomical mapping. Lower panel: (D) model 

personalization and in silico VT stimulation study procedure workflow. 

 

 

 

The above figure describes the study protocol and workflow of the data analysis. High-resolution 

CMR images (A) provided an accurate structure of the cardiac model, incorporating scar details 

including scar core and score border zone (gray zone) (B). Additional whole heart (LV) electrical 

parameters such as APD, APD restitution properties and conductivity (C) are acquired through 

electrophysiology studies and incorporated into the model personalization (D). VT stimulation study 

is performed clinically and in silico in parallel on a subset of patient cohort to allow a comparison of 

outcomes. The electrical parameters at the site of VT exit points are analyzed to assess the 

characteristic features that would support the arrhythmia substrate. 
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Figure 2. LV polar plot representation of the spatial distribution of the maximum slope for 

APD-RCs, maximum asymptotic APD and AC.  

Scars identified by LGE CMR with its border zone (highlighted by gray contors) and clinically 

observed exit points (highlighted in Patient 1 and 2 by fang-shaped* white contours during reentrant 

VT are overlaid to the polar plots.  

*Fang-shaped due to unfolding of 3D volume surface to 2D polar plot) 
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Figure 3. Percentages of LV spatial domains with high gradient (> 90th percentile of the 

gradient range) as a representation of spatial differences between neighboring regions in terms 

of AC and APD-RC slope for each patient (P1-P7).  

The separating line with a maximal margin was computed here using the Support Vector Machine 

algorithm. 
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Figure 4. Isochrones map during reentrant VT. 

(A) Patient 1 with VT cycle length 275ms; (B) Patient 2 with VT cycle length 245ms. In 

Patient 1, the sustained VT self-terminated 42 seconds after failed attempts of overdrive pacing 

given due to patient’s stable hemodynamic response. In Patient 2, the sustained VT required DC-

cardioversion due to patient’s unfavorable hemodynamic response. The 3D VT isochrones with 

exit points (red) in relation with scar core (white) and gray zone (gray) are shown in the left 

panels. Unipolar electrograms recording during VT are shown in the middle panels. LV polar 

plots of VT isochrones illustrating the direction of activation pattern are shown in the right panels.  

In Patient 1, the endocardial activation recorded from EAM showed the reentrant VT circuit 

initiating from the LV lateral wall, spreading anteriorly and then posteriorly before returning to 

the lateral wall. In Patient 2, the reentrant VT circuit exited from the LV infero-lateral wall, 

spreading antero-laterally and then towards the septum, before returning to the infero-lateral wall. 
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Figure 5.  

A. VT isochrones of induced reentrant VT during clinical VT stimulation study (left panel) and 

during in silico VT stimulation study (right panel). 

The arrows point towards the directions of propagation. Scars (core and gray zone) are superimposed 

to the LV shell shown in darkened regions. The personalized model of patient 1 predicted a sustained 

reentrant VT circuit with a cycle length of 260ms compared with the clinically observed cycle length 

of 275ms with a macroscopically similar activation pattern and a predicted exit point that matched 

with the observed clinical one. The personalized model of patient 2 also predicted a positive VT 

stimulation study with a cycle length of 250ms compared with 245ms for the clinical VT. The induced 

VT was sustained and the reentrant pathway stable. Notably the direction of the activation pattern 

during the predicted reentrant VT was reversed from that observed clinically; however, the predicted 

exit point correlated with the clinically observed one. 

 

 

B. Estimation of the intra-myocardial path between the entry and exit points during reentrant 

VT.  

The isochrones map demonstrates estimated endocardial 2D geodesic path between the entry and exit 

points from electroanatomical study during clinical VT stimulation study.  Estimated intra-myocardial 

3D geodesic path (red line) takes into account of the scar heterogeneity from the high-resolution CMR 

images. The graded colors on the 3D path with blue denoting late activation and red denoting early 

activation illustrate the entry and exit points. The activation wave front of the reentrant VT propagates 

in the region of the gray zone. The estimated wave front path surrounds the scar core and lies within 
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the scar border zone, entering from the endocardial surface, meandering within the ventricular wall, 

and exiting via the epicardial surface. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

This article is protected by copyright. All rights reserved. 

 

25 

 

Figure 6. Correlation of predicted exits points with structural heterogeneity and functional 

heterogeneity. 

A = Patient 1. B = Patient 2. The left panel shows the isochrones for the three predicted VT circuits 

with fangs of white lines denoting the exit points. The middle panel demonstrates the LV scar 

distribution with black region denoting healthy myocardium, white region denoting the scar core and 

the gray region denoting the gray zone/scar boarder zone with overlying composite exit points (fanged 

green lines). The right panel demonstrates the electrical properties with overlying composite exit 

points (fanged green lines). 
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Tables 

 

Table 1. Baseline patient characteristics and CMR findings.  

ACE-I= angiotensin converting enzyme inhibitor; AF= atrial fibrillation; ARB= angiotensin receptor 

blocker; CMR= cardiac magnetic resonance imaging; EDV= end-diastolic volume; EF= ejection 

fraction; ICM= ischaemic cardiomyopathy; LV= left ventricle/ventricular; NICM= non-ischemic 

dilated cardiomyopathy; PAF= paroxysmal atrial fibrillation. 

Patient 1 2 3 4 5 6 7 

Condition ICM ICM ICM ICM ICM NICM NICM 

Gender M M M M F M M 

Age  73 69 64 60 65 75 81 

Co-morbidities HTN None HTN, AF DM None AF PAF 

B-blocker Yes Yes Yes Yes Yes Yes Yes 

ACE-I/ARB Yes Yes Yes Yes Yes Yes Yes 

Statins Yes Yes Yes Yes Yes No Yes 

LVEF, % 27 35 35 25 31 36 17 

LVEDV, ml 199 292 245 304 185 196 285 

LV mass, g 129 172 147 182 118 119 206 

Scar on CMR Yes Yes Yes Yes Yes Yes Yes 

Scar core, g 14 22 24 31 16 23 18 

Gray zone, g 27 28 20 19 12 16 28 
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