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Abstract

We study problems related to the metric of a Riemannian manifold with a partic-
ular focus on certain cohomogeneity one metrics. In Chapter [2| we study a set of
cohomogeneity one Einstein metrics found by A. Dancer and M. Wang. We express
these in terms of elementary functions and find explicit sectional curvature formulae
which are then used to determine sectional curvature asymptotics of the metrics.
In Chapter [3| we construct a non-standard parametrix for the heat kernel on a
product manifold with multiply warped Riemannian metric. The special feature of
this parametrix is that it separates the contribution of the warping functions and
the heat data on the factors; this cannot be achieved via the standard approach.
In Chapter 4] we determine explicit formulae for the resolvent symbols associated
with the Laplace Beltrami operator over a closed Riemannian manifold and apply
these to motivate an alternative method for computing heat trace coefficients. This
method is entirely based on local computations and to illustrate this we recover
geometric formulae for the heat coefficients. Furthermore one can derive topolog-
ical identities via this approach; to demonstrate this application we find explicit
formulae for the resolvent symbols associated with Laplace operators on a Riemann
surface and recover the Riemann-Roch formula. In the final chapter we report on
an area of current research: we introduce a class of symbols for pseudodifferential
operators on simple warped products which is closed under composition. We then
extend the canonical trace to this setting, using a cut - off integral, and find an

explicit formula for the extension in terms of integrals over the factor.
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Chapter 1

Introduction

In this thesis we consider a variety of problems in Riemannian geometry, both on
non - compact as well as compact spaces. The aim in most cases is to obtain more
explicit formulae in order to conduct computations; frequently we shall assume
special symmetry to attain this goal. The main body of the thesis consists of four
chapters. We start off in Chapter [2| by conducting an asymptotic analysis for the
sectional curvature of a set of cohomogeneity one Einstein metrics constructed in
[11] by A. Dancer and M. Wang via the Hamiltonian formalism. In Chapter [3| we
construct a non-standard parametrix for the heat kernel on a Riemannian product
manifold with multiply warped metric, with the aim of isolating the effect of the
warping functions on the heat kernel. Chapter |4 is about resolvent symbols of
Laplace operators and their applicability, in particular to heat trace computations.
We find explicit formulae for these in the context of a closed Riemannian manifold of
arbitrary dimension and apply the result to compute heat trace coefficients; though
computationally involved this approach has the advantage that it uses only local
data. Resolvent symbols can also be used to derive index formulae; to demonstrate
this we determine explicit formulae for Laplace operators over a Riemann surface
and recover the Riemann Roch formula. Again this method is local and, moreover,

does not rely on the Getzler rescaling. Finally Chapter o turns the focus on a



class of symbols for pseudodifferential operators on simple warped products; we
define symbols of what we call log - polyhomogeneous radial growth and show that
the class is closed under symbol composition. We then extend the canonical trace
to this setting, using a cut - off integral, and study its basic properties. We also
investigate in some detail the symbol expansion of an example which is of particular
interest to us, namely the resolvent and complex powers of the Laplace - Beltrami
operator on a warped product.

Let us now elaborate a little on each topic, a more detailed introduction is given at

the start of the individual chapters.

Chapter Sectional curvature asymptotics for certain non-compact co-
homogeneity one Einstein metrics. One says that a Riemannian manifold
(M, g) is an Einstein manifold if its Ricci tensor Ric is proportional to the metric,
that is

Ric = \g

for some constant A\. The origin of this condition is to be found in Einstein’s field
equations describing general relativity, however the study of this structure is in-
teresting from the purely mathematical viewpoint as well. For instance, Einstein
metrics on compact manifolds provide critical points of the scalar curvature func-
tional. First examples of Einstein manifolds are Euclidean space R"™ which is Ricci
- flat and hence an Einstein manifold with A = 0, the unit sphere S™ with the
round metric is a compact Einstein manifold with A = n — 1 > 0, whilst hyper-
bolic space H" with the canonical metric provides an example of a non-compact
Einstein manifold with A < 0. All these spaces are homogeneous in the sense that
one can identify for each case a Lie group that acts transitively by isometries. One
step higher up in complexity are cohomogeneity one manifolds where a compact Lie
group acts by isometries such that the principal orbits have codimension one. This

simplification is mathematically appealing as it reduces the Einstein equations to a



non-linear system of ODEs in the coordinate transverse to the orbits. If we denote

this coordinate by ¢ then the metric takes the form
EdtQ + ¢

where ¢g; denotes a metric on the principal orbit that varies in the parameter ¢
and € = 1 in the case Riemannian manifolds whilst ¢ = —1 in case the underlying
manifold is Lorentzian. From the physical point of view the cohomogeneity one
assumption provides a fruitful testing ground since, away from special orbits, a
cohomogeneity one Einstein manifold yields a spatially homogeneous Lorentz Ein-
stein manifold, in fact the Schwarzschild metric and the Taub-NUT metric satisfy
the cohomogeneity one condition. The first case of a Riemannian (as opposed to
Lorentzian) cohomogeneity one Einstein manifold that is not homogeneous was con-
structed in [35] by D. Page on the non-trivial S? - bundle over S? with respect to
a U(2) - action, with principal orbit S® = U(2)/U(1); a result that motivated L.
Bérard Bergery to study the underlying mathematical structure of cohomogeneity
one Einstein manifolds in its own right and to find new examples, both of compact
as well as complete non - compact type [3].

In [9] and [I1] A. Dancer and M. Wang investigate the relationship between no-
tions of integrability in Hamiltonian systems and solutions to the cohomogeneity one
Einstein equations. They find that under certain assumptions (such as the presence
of a strictly lower - dimensional special orbit or the isotropy representation of the
principal orbit decomposing into distinct subrepresentations) the latter equations
are equivalent to the Hamiltonian flow on the zero - energy surface of a Hamilto-
nian H whose kinetic energy term is an indefinite non - degenerate quadratic form.
Furthermore, in particular cases they find non-trivial functions F, ¢ that satisfy the
equation {F,H} = ¢H (where {, } denotes the Poisson bracket). As the phase space
in these cases is of low dimension this makes the system integrable on the zero set
of the Hamiltonian. In this way they find new cohomogeneity one Einstein metrics.

In this chapter we study the sectional curvature of some of these metrics as

9



t — oo. First we find a new representation for the solutions given in [I1] using
only elementary functions. Then, to calculate the sectional curvature we make
use of the fact that cohomogeneity one metrics are Riemannian submersions, thus
the formulae of O’Neill apply. In the particular case at hand we are dealing with
doubly warped products; such metrics take the form dt? + f2(t)g1 + f2(t)go with
f1, fo smooth functions (called the warping functions or warping factors) depending
on the transverse variable only and g1, g» fixed background metrics. This enables
us to find explicit and simple formulae for the sectional curvature in terms of the
warping functions which are then applied to the particular case at hand to directly

compute the long - time sectional curvature limit.

Chapter 3t A non-standard parametrix for the heat kernel on multiply
warped products. Here we generalise the construction of a parametrix for the
heat kernel on multiply warped products, first proposed by P.C. Lue [29] in the
context of simple warped products. The parametrix studied here differs from the
standard approach, let us briefly describe the latter: we recall that the heat kernel
is a fundamental solution to the heat equation on a Riemannian manifold (M, g);
that is a continuous function s(t,z,y) on (0,00) x M x M that is continuously

differentiable in ¢, twice continuously differentiable in x, y, satisfies the heat equation
(Or+4A,)s=0 (1.0.1)

(here A\, denotes the Laplace - Beltrami operator with respect to the variable )
and finally has the property that lim; .o s(¢, x,-) = 0, (the Dirac - delta distribution
based at « € M). In some cases this function can be written down explicitly, such

as for Euclidean space R"™ where

1 Iz —yll?

However generically one needs to revert to indirect methods to study this object,

and one way to do so is by constructing an approximation to the heat kernel (also
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referred to as a parametrix). Such a parametrix is sufficient to study the short time
behaviour of the trace of the heat kernel which provides geometric information about
the underlying manifold. Formally it is a smooth function p(¢, x,y) on (0, 00) x M X
M such that (9; + A,)p extends to a continuous function on [0,00) x M x M and
such that lim; o p(t,z,-) = 0, is the Dirac - delta distribution based at x € M (it
is helpful to compare these conditions for p(t,x,y) with the defining properties of
the heat kernel s(¢,x,y) to see the similarities of the two objects). The standard
approach to its construction was introduced by S. Minakshisundaram and A. Pleijel
for compact Riemannian manifolds without boundary in [31]: based on the premise
that the heat kernel on a Riemannian manifold ought to be a perturbation of the
Euclidean heat kernel (at least for a small initial time period) the idea is to
start with an expression of the form

1 P’ (z,y)
(47t)/? xp{=—7

[\

~
Euclidean form of the heat kernel

Hk(t,l’,y) = } (Uo(l’,y) + Ul(x7y)t +o Uj(xay)tk)

(1.0.3)
where p denotes the Riemannian distance. These functions should approximate the
heat kernel, in particular they should ”almost” solve the heat equation. Formally

this is implemented by demanding that

2
Xp _px(y) } Ay Uk(l‘a y)tk )

(O + D) Hy (-, 2,-) = We { m

i.e. all the terms vanish when the heat operator is applied except for the t* -
coefficient (i.e. the highest power in ¢). This condition gives rise to a recursive
system of differential equations in the coefficient functions U; which can then be
solved (note from the right hand side of inherently yields an expansion in
powers of t). Having constructed the series H, (¢, x,y) one can deduce a short time

expansion of the heat trace:

/M s(t,z, x) dp(z) o Z ﬁ /M Ui(z) du(z) t=279 (1.0.4)
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and the geometric insight here is contained in the coefficients Uj;, for example
J3y Uo(@)dp(x) is equal to the Riemannian volume of M, and in the case where
M is a surface we have [, Uy(z)du(z) = mx(M)/3 with x(M) the Euler character-
istic of M.

Now this method works well for compact manifolds and a generic metric g. Let us

then consider a product manifold
M =1x M; x My with metric  dr? + f2(r)g, + f2(r)gs (1.0.5)

where (M, g;) for i = 1,2 are compact Riemannian manifolds, I is an open interval
and the warping functions fi, fo: I — (0, 00) are smooth positive functions. Natu-
rally one would like to know whether an expansion similar to , parametrised
in 7, can be obtained and to what extend its coefficient functions U;((r, ), (r',y))
can be factored into terms of the warping functions fi, fo and the coefficients from
the expansion ({3.1.6)) on M; x Ms. It turns out that the answer to the second part
of the question, if one uses the standard parametrix construction described above,
is“very limited” - already in the setting of simple warps. This was pointed out by
Ping-Charng Lue in [29] and motivated him to study an alternative construction
which provides a parametrix where the contributions of the warping function f and
the contribution from the fibre M are more explicit. In this chapter we generalise
this approach to multiply warped products. The main result, shown in Section
[3.3] is that the resulting parametrix as well as the structural features of the proof
in [29] adapt to this case and that the newly arising features, compared to single
warps are due to the fact that the coefficients U; are now polynomials in several
eigenvalues coming from distinct factors, requiring additional care so as to maintain

the essential estimates in the proofs.

Chapter (4} Explicit formulae for resolvent symbols and their application
In this chapter we step away from non-compact manifolds to compact manifolds

without boundary and motivate a new approach for deriving heat trace coefficients
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directly. The method is based on resolvent symbols, in particular it avoids the use of
global estimates on the heat kernel, the latter approach was taken by H.P. McKean
and .M. Singer in [24]. Resolvent symbols also facilitate the derivation of index
formulae without the use of Getzler’s rescaling (i.e. the reduction of the proof to
the case of a generalised harmonic oscillator via a rescaling of both the space and
Clifford variables) and we shall demonstrate both applications in this chapter.

Concretely, let (M, g) be a compact Riemannian manifold without boundary of di-
mension n and denote by A the corresponding Laplace Beltrami operator. The heat
kernel was described for the purposes of the previous chapter as the fundamental
solution s(t, z,y) to the heat equation 0; + Ay on M; here we shall use the equiva-
lent formulation as the Schwartz kernel ka (t,x,%), of the heat operator e=*2. The

latter is defined as a Cauchy integral via the holomorphic functional calculus by

et = [ e (A = A)LdA (1.0.6)

=g ;
where the contour 7 properly encloses the positive real axis which contains the
spectrum of A. The connection between the operator and its Schwartz kernel is
that the latter is, in general, a family of distributions over M, parametrised in x

and t, satisfying the equation

(e ) (@) = (kalt,, ), f)  (f € C¥(M))

(though for the heat operator the Schwartz kernel identifies with a smooth function).

Locally kA is given by an oscillatory integral

1 )

kA(taxay) =

with local symbol
o(w.6) = 5 [ € Prla.& N

.
where r(x,&, \) in turn denotes the local symbol of the resolvent operator. The

latter admits an asymptotic expansion

r(z,&,\) «~ Z?”_z—j(ﬂ% &M\

>0
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which is valid for |¢| 4+ |A|"? > 1 and X in a suitable sector A C C. This expansion
is of central importance to the chapter, the terms on the right hand side are the
resolvent symbols mentioned above and we shall study these in detail. In particular
we provide explicit formulae for the first terms in the asymptotic expansion, to the
best of our knowledge these do not appear elsewhere in the literature. These closed
formulas facilitate a direct and elementary calculation of the heat coefficients in the

short-time asymptotic expansion of the heat trace
Tr (e_m) :/ tr (k:A(t,x,x)) dr 0, ch 2" (1.0.7)
M

via well - known formulas for the coefficients ¢; (here tr refers to the usual trace de-
fined on matrices and dx locally identifies with Lebesgue measure). The coefficients

with odd index are known to vanish whilst those with an even index are given by

Col = /Mtr (cop(z)) dx (1.0.8)

where

cor(T) = /n/ r_o_or(x, &, N) dNdE (1.0.9)

(here d\ = idA\/27 and d§ = d¢/(2m)"). We shall illustrate this by applying our
result to determine the first three of these integrals and thereby recover well -
known geometric identities for these coefficients.

A further application of resolvent symbols is that they are effective for deriving
index formulae. As a demonstration of this we determine explicit formulae for
the resolvent symbols of Laplace operators defined over a Riemann surface and
recover the Riemann-Roch formula, again by a direct and elementary calculation.
Let us briefly outline the approach: let M be a smooth compact manifold without
boundary of even dimension n = 2k with vector bundles £* over M and consider a

first - order elliptic differential operator
D: C®(M,EY) — C®(M,E7) (1.0.10)

14



acting on smooth sections. It was observed by H.P. McKean and I.M. Singer in
[24] that the index of D (i.e. the integer given by difference of the dimension of
the kernel and cokernel of D, denoted ind D) identifies with the heat trace of the
Laplacians A = D*D and A = DD*:

ind D = Tr(e™'?) — Tr(e™?) = / tr(k‘A(t,x,x)> - tr(kg(t,x,x» |dx| .
M
(1.0.11)
On the other hand, if M is a Riemannian spin manifold and D is of Dirac - type,

that is
D=DPI+IxV': C*MS ®F) — C°(MS ®F)

where ST denotes the spinor bundle and F — M is some coefficient bundle, then
the Atiyah-Singer index theorem states that

: 1 M) e
mdD_—(27r)"/2/MA<M) h(F) (1.0.12)

where A(M) is the A - genus form with respect to Riemannian curvature R whilst
ch(F) denotes the Chern character of the coefficient bundle F. There are different
approaches to proving the identity . One is to use the McKean - Singer
formula (1.0.11)) and the short time asymptotic expansion

tr(kalt, o) wiso, O cla)t'= (1.0.13)

J=0

of the heat kernel along the diagonal as follows. One first substitutes into
the right hand side of to get

ind D = Z/ cj(z) — ¢j(x)dx e (1.0.14)
20 oM
for t small (here ¢;(x) refers to the coefficients of the asymptotic expansion of

Tr(e_t&).) Since the left hand side does not depend on ¢ one can take t — 0, and

obtain a finite expression. The task is then to identify the expression
co(x) — co(z) dx

15



coming to the constant coefficient in the expansion with the local index density on
the right hand side of .

The proof by McKean and Singer in [24] in conjunction with [31] uses global es-
timates of the heat kernel (see also [22] for the case of the Riemann Roch theorem).
Alternatively, a rescaling of variables can be applied, leading to a transformation
of the Laplacian operator into a generalized harmonic oscillator for which an iden-
tification of the corresponding heat kernel with the index density is known (this
method is referred to as Getzler rescaling as it was introduced by E. Getzler in
[13]). Instead we study an alternative, more elementary method. The key input are
the formulae — for the heat coefficients and an explicit knowledge of
the resolvent symbols r_5_or which appear there. Substituting these into
and take t — 0, yields

ind D :/ (/ /e_A{trT_Q_Qj((L'7§,)\) —tr?_Q_Qj(x,ﬁ,A)}dAd§) dr. (1.0.15)
M n Sy

The task is then to derive the equality of densities by relating the integrand above
to the topological index density. Compared to existing methods, this approach has
the advantage that it computes the index directly from the first n terms of the local
symbols of the resolvent operator. These are polynomials whose coefficients are
determined by the local symbol of the Laplacians, together with a finite number of
its derivatives. Thus it reflects the local nature of the index quite well.

In Section |4.3| we shall study this technique using as a concrete example the
Riemann-Roch-Hirzebruch theorem. Section [£.3.1] sets out the context of the theo-
rem, then in Section we determine explicit formulae for the resolvent symbols
of Laplace operators defined over a Riemann surface. These are then applied to
derive the Riemann-Roch formula in Section [4.3.3] again by a direct and elemen-
tary calculation. As in the case of heat trace coefficients for the Laplace Beltrami
operator in the first part of this chapter, the explicit form of our formulae and the

method to derive the Riemann Roch theorem are new in the literature.
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Chapter On log-polyhomogeneous symbols over simple warped prod-
ucts. In this chapter we establish an extension of the canonical trace on log -
polyhomogeneous pseudodifferential operators as considered by M. Lesch in [27]
to a suitable class of pseudodifferential operators over single warped Riemannian
product manifolds.

Let m: E — M be a smooth vector bundle over an n-dimensional closed Rie-
mannian manifold M and consider a classical pseudodifferential operator (¢ do)
A: C®(M; E) — C*(M; E) with local symbol o. If A has non-integer order then
the canonical trace TR(A) is defined by the formula

TR(A) := / TR, (A) dx (1.0.16)
M
where dx locally identifies with Lebesgue measure and

TR.(A) ::]é*Mtrx (o(z,&))de (1.0.17)

is a finite - part integral (the finite part integral systematically ignores divergent
terms in the following way: one shows that there exists an asymptotic expansion
of the integral [ B:(r) o (o(x,€))d€ where Bi(R) denotes the ball in T M centered
at the origin of radius R (the expansion is in terms of R); and then the finite part
integral is defined to be the constant coefficient in this expansion. In this way one
discards the divergent terms of fT; e (0(93, 13 ))df . This procedure is similar to the
Hadamard regularisation and is sometimes also referred to as a cut - off integral.)
Motivated by the appearance of logt - powers in the heat trace expansion of the
Laplacian in certain contexts, and by the search for a natural algebraic setting of
classical pseudodifferential operators with respect to commutator presentations, M.
Lesch introduces in [27] a slightly larger class of pseudodifferential operators with
log - polyhomogeneous symbols and studies extended notions of the canonical trace

(and the residue trace) in this context. The symbols that he considers admit an
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expansion of the form a «¢_,o0 Y.< @u—; Where for a fixed k and each j

720

k

(7, §) :Zau ji(2,€) log' [¢]

i=0
with each a,_;; homogeneous in ¢ of degree ;x — j. A similar pattern arises when
one considers the leading symbol of the resolvent of the Laplace Beltrami operator
over a warped product. In this case however, the log - polyhomogeneous expansion
arises not only in the ¢ - variable but also in the non - compact space variable. This
led us to study a generalised class of log - polyhomogeneous symbols: we consider
log - polyhomogeneous symbols in the setting of a simple warped product M :=
[0,00) x M where (M, g) is a closed Riemannian manifold together with a metric
of the form dr? + h%*(r)g where f: [0,00) — R is a smooth positive function that
diverges to +00 as r — oo. For example metric cones are of this form with f(r) = r*
(k a positive integer), such as the polar coordinate representation dr? + r2gg.-1 of
the Euclidean metric on (0,00) x S*™! 2 R"\ {0}. Another example is hyperbolic
space, where the metric takes the form dr? + sinh?(r)ggn-1.

The symbols we study are log - polyhomogeneous in the {-variable, as defined
by Lesch, and moreover exhibit the log - polyhomogeneous property in the "radial”
space variable that parametrises the factor [0, 0c0). We show that this class is closed
under symbol multiplication and therefore provides a calculus. To study the canon-
ical trace in this setting we consider families of operators over M, parametrised
in r € [0,00) and locally defined by our symbols. The canonical trace then arises
via a repeated finite - part integral, first with respect to the ¢ variable and then
with respect to the parameter r. The obstruction to global well - definedness of
this parametrised trace on the factor M needs to be taken into account, however
there are certain types of operators (analogues to the compact case) in which the
obstruction vanishes and for those we identify a formula for the canonical trace in
terms of certain finite part integrals over the factor M that resemble the standard

canonical trace, except for the presence of an additional dimension in the cotan-
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gent space at each point corresponding to the non-compact space variable. With
respect to the asymptotic expansion of the leading symbol of the resolvent of the
Laplace Beltrami operator mentioned above, this additional dimension defines the
hypersurface where the terms in the asymptotic expansion diverge, away from this
hypersurface the terms in the expansion decay at least polynomially in r. To il-
lustrate this phenomenon we describe the case of the Laplace Beltrami operator in

detail.
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Chapter 2

Sectional curvature asymptotics
for certain non-compact
cohomogeneity one Einstein

metrics

2.1 Introduction

An Einstein manifold is a Riemannian manifold (M, g) where the Ricci tensor sat-
isfies the equation Ric = Ag for some constant A. As mentioned above, the concept
originated in Physics from Einstein’s theory of general relativity (in the context of
Lorentzian manifolds). However, studying Einstein spaces is of interest also from
a mathematical point of view. For example on a given compact manifold M, an
Einstein metric provides a critical point of the total scalar curvature functional
Slgl = [y s¢(x)dug(x) on the space of unit volume metrics. Furthermore, the Ein-
stein condition also provides a good way to distinguish certain metrics as “optimal”
similar to the way this is achieved on surfaces by asking for metrics of constant scalar

curvature. On Riemannian manifolds of dimension 2 scalar curvature is the only no-
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tion of curvature whereas for higher dimensional Riemannian manifolds there is the
Riemann curvature tensor (respectively the sectional curvature function), the Ricci
curvature tensor and the scalar curvature function. Generalising constant scalar
curvature condition to higher dimensions yields a large class of metrics satisfying
this constraint; for example on any compact manifold of dimension > 3 the family
of Riemannian metrics with constant scalar curvature is infinite - dimensional. On
the other hand, if one generalises the constant curvature condition by requiring
constant sectional curvature then the resulting class of metrics is very small; in fact
for each sign of the constant sectional curvature there is exactly one complete, sim-
ply connected Riemannian manifold (up to isometry), namely the sphere S™ with
the round metric for sectional curvature +1, R™ for zero sectional curvature and
hyperbolic space H" with the canonical metric for the case where sectional curva-
ture equals —1. Hence for dimension n > 3 many manifolds do not admit a metric
of constant sectional curvature (more details may be found in [4]). Thus constant
scalar curvature is too weak a condition whereas constant sectional curvature is
too strong; and one is left with constant Ricci curvature. But Ricci curvature as a
function on the unit tangent bundle UM of M is constant precisely when Ric = A\g
for some A € R; this is the Einstein condition.

Now without simplification the Einstein equations Ric g = Ag are hard to study
so it is natural to start by imposing simplifying assumptions on the metric g, such
as possessing large isometry groups. In fact, if one assumes that the metric is ho-
mogeneous (i.e. there is an isometric and transitive Lie group action) then the
Einstein condition becomes algebraic. Slightly less restrictive is the assumption of
cohomogeneity one where the metric g is required to be invariant under the action
of a Lie group G that acts properly on the manifold M with principal orbits of
codimension one. In this case the Einstein equations reduce to a nonlinear sys-
tem of ODEs, examples of such metrics were pointed out in Physics by Page [35],

which motivated the mathematical generalisation by Bérard-Bergery [3]. But also
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the Schwarzschild metric, the Eguchi - Hanson metric, the Taub-NUT metric or the
cohomogeneity one manifolds of [8] in Physics as well as examples found in Mathe-
matics [10, [42] and more recently [5], just to name a few, illustrate the pervasiveness
of cohomogeneity one metrics.

In this chapter we shall study metrics that arise from the consideration of the
cohomogeneity one Ricci - flat Einstein equations Ricg = 0 as a Hamiltonian
system with an additional constraint, an approach taken by Andrew Dancer and
McKenzie Wang in [9, [I1] to construct new examples of cohomogeneity one Ein-
stein manifolds. The treatment in [T1] assumes that the principal orbit is a product
(G1/ K1) x (G K3) of distinct isotropy irreducible spaces which means that the

metric is diagonal of the form

dt* + f{ ()G + f3 (62 (2.1.1)

where g, is a homogeneous background metric on the 7*" component of the principal
orbit. For the dimension pairs (di,d2) = (2,8),(3,6) and (5,5), Dancer and Wang
find that

a1
25 R tanh (%) (cosh R — 1)@t
= Keoth | 5 2.1.2
& ot (2 sinh R dR (2.1.2)
and
- C
f1(d1 1)f2~2 = —(coshR — 1) (2.1.3)
24,
solve the above system. Here R = (dljjj)Alr + const. depends on t via 1’ 1= 1/f;

and C, K are non-zero constants. In this chapter we pick up from the representation
above and find a description for f; and f5 in terms of elementary functions. These
are then used to study sectional curvature asymptotics directly. Let us briefly
outline the organisation of the sections: we shall start by recalling the basic notions
of cohomogeneity one manifolds in Section followed by Section where we

determine the elementary function representation for f; and f;. We then turn
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to the study of sectional curvature in section [2.2.2] Since we are dealing with
Riemannian submersions, O’Neill’s formulae turn out to be particularly helpful to
find expressions for the sectional curvature of our cohomogeneity one manifolds in
terms of sectional curvature in the principal orbits. Finally, Section is concerned

with the sectional curvature asymptotics as t — oo for the metrics from Section

23

2.2 Cohomogeneity one manifolds

In this section we outline the properties of cohomogeneity one manifolds as intro-
duced by B. Bergery in [3], focusing on those aspects that are important to the
study in this thesis.

2.2.1 Definition and basic properties

A connected Riemannian manifold (M, g) is said to be of cohomogeneity one (or
a cohomogeneity one manifold) with respect to a group G if the latter acts by
isometries on M such that the codimension of its principal orbits in M is one.
The systematic study of cohomogeneity one Riemannian manifolds was initiated by
a construction of an Einstein metric on the non-trivial sphere bundle over S? by
D. Page [35], the group of isometries of that metric is of dimension four and its
principal orbit had codimension one. In [3] Berard Bergery generalised this metric
by putting the cohomogeneity one property into focus and introduced a theory
for such objects in the context of Riemannnian geometry in n dimensions. As
suggested by this line of development, cohomogeneity one manifolds are interesting
for example for the study of Einstein manifolds, i.e. Riemannian manifolds whose
metric g satisfies Ric(g) = Ag for some constant A. Seen as a partial differential
equation, the latter condition on the metric is a rather complicated non - linear

system, however in the case of a cohomogeneity one manifold it reduces to a system
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of ordinary differential equations where the independent variable is a coordinate
transverse to the orbits. Also, the problem of finding curvature formulae simplifies
in the setting of cohomogeneity one Riemannian manifolds. Generally, for a non-
homogeneous Riemannian manifold M, (i.e. with non - transitive isometry group)
the curvature formulae at a point in a principal orbit (which is a homogeneous
space) involve the curvature of the orbit, the curvature of the coset space M/G
and cross - terms. However, in the cohomogeneity one case the coset space is one -
dimensional and therefore has no curvature, hence the curvature formulae for such
spaces simplify.

The coset space M /G is a connected differentiable manifold, and since G acts by
isometries it inherits a Riemannian metric as a quotient space relative to which the
quotient map m: M — M /G is a Riemannian submersion. The principal orbits lie
over the interior of M/G whereas the orbits over boundary points (if any) are not
principal. Essentially, that is up to isometry, there are only a finite number of forms
that M/G can take on: if M is compact then M /G either has no boundary and is
isometric to a circle of length ¢, or it has two boundary points and is isometric to
the interval [0,a]. On the other hand, if M is not compact then the same is true
for M/G (if G is compact). In this case the latter may have no boundary - the
possible isometry types for M /G then are the real line R, the ray (0,00), or the
finite - length interval (0, a). Otherwise M/G has a boundary point and is isometric
to the ray [0,00) or [0,a). We summarise the possible space forms and associated

basic properties below:
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M/G = | Non-principal orbits | M compact | M com-
plete
(S',¢) | None Yes Yes
0, al Two Yes Yes
R None No Yes
[0,00) | One No Yes
(0,00) | None No No
(0,a) None No No
[0, a) One No No

In all cases above the model manifolds in the left-most column are understood to
carry their respective canonical metric.

Next we briefly discuss a parametrisation for M with reference to M/G and a
fixed principal orbit O. Given a point p € O one can choose a geodesic v: [ — M
(with I C R) passing through p and perpendicular to O. It then is orthogonal to
all orbits that it crosses. Indeed, let X be a Killing field with respect to G, this is
a vector field whose flow generates an isometry induced by G, in particular the Lie
derivative with respect to X of the metric vanishes, that is Lxg = 0. Let D denote

the Levi-Civita connection. Starting from the identity
WY, X) = (D33, X) + (1, D; X) (2.2.1)

we know that the first term on the right hand side vanishes since D;y = 0. Fur-
thermore, the second term also vanishes since X is Killing. To see this we start

with the definition of the Lie derivative
Lxg(Y,Z) = (Lxg)(Y,2Z) + g(LxY,Z) + g(Y,LxZ),

the first term on the right is zero because X is Killing. By definition the Lie
Derivative Ly acts on functions via Lx f := X f, furthermore on a vector field Y

one has the identity LxY = [X, Y], so the equation above is equal to
Xg(Y.Z) =g([X,Y], 2) + g(Y,[X, Z])
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which can be rewritten as
9(DxY,Z)+g(Y,DxZ) = g(DxY — Dy X, Z) + g(Y,DxZ — Dz X).
Subtracting common terms from both sides and rearranging yields the identity
9(Y,DzX) = —g(Dy X, Z),

in particular with Y = Z = 4 this tells us that the second term in (2.2.1)) van-
ishes. So we see that (¥, X) is constant along c. As it is zero at the point p the
assertion follows. In this way we obtain an isometry mo~y: I — M/G (where [ is
equipped with its canonical metric and if necessary we may restrict I or translate

the parameter, or identify endpoints to obtain the circle). We set
¢ I xG/K — M, ¢t gK)=g-7(t) (2.2.2)

where K denotes the isotropy subgroup of p in G (it is equal to the isotropy sub-
groups K.,y whenever ~(t) lies in a principal orbit, so ¢ is well defined). This map
induces a diffeomorphism [ x G/K — M := gzﬁ(f x G/K), the image M being an
open dense subset of M (here I denotes the interior of I). Moreover if we let G act
on I xG/K by g- (t,aK) = (t,gaK) then ¢ turns into an G-equivariant map,
hence in the third, fifth and sixth case of the table above ¢ is a global diffeomor-
phism. In the first case where M /G is a circle, all the orbits of G are principal orbits
and the mapping 7: M — M/G is a fibration that is locally trivialised with base a
circle and fibre G/ K. In all the remaining cases the dense open subset qb(f xG/K )
of M is exactly the union of the principal orbits of M, the question that remains
is what happens when we pass to the special orbits. Now if p = ¢(0) correspond
to a boundary point in M /G then the isotropy group H of p contains the principal
isotropy group K and the coset space H/K identifies with the unit sphere in the
subspace of T, M normal to the orbit of p.

With this parametrisation in place one uses ¢ to pull back the metric on M to a
metric dt2 4+ ¢, on I x G /K in order to conduct curvature computations and study

their limit as we approach potential edges of I.
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2.2.2 Formulae for sectional curvature

The metrics we study here are Riemannian submersions, enabling us to compute
the curvature of the total space in terms of the curvature of the base and the fibre
using O’Neill’s T-tensor. These concepts are shortly explained here, following the
exposition in [4]. Afterwards we apply the formalism in the particular cohomogene-
ity one setting of multiply warped products and write down sectional curvature

formulae.

Preliminary material on Riemannian submersions

Let (M, g) and (B, §) be Riemannian manifolds and let S: M — B be a submersion
(i.e. at each point p € M the differential S, ,,: T,M — Ts,)B is surjective). The
kernel of S, , is the tangent space to the fibre F}, := S7'(p) (here b := S(p)). It is
called the vertical subspace at p and denoted by V), and the orthogonal complement
is called the horizontal subspace at p, denoted H,. The latter is identified with T, B
via the isomorphism of linear spaces

M, — T,M 25 T,B. (2.2.3)

We say that S is a Riemannian submersion if (at each point p € M) we have
i.e. relative to the restriction gj3 of g to the horizontal subspace this map is an
isometry.

A class of examples of Riemannian submersions arises as follows: take a Rie-
mannian manifold (7, §), a smooth manifold N together with a family of metrics
{gi}1er on N parametrised by I, and consider the product manifold I x N with
metric g = proj;(g) + proj;(g:) where proji, proj; denotes the pullback with respect
to the canonical projection maps of the product I x N. Then proj, is a Riemannian

submersion.
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Example: Cohomogeneity one metrics Of course the case where [ is one -
dimensional covers all those metrics on I x N of the form dt? + g; so, in particular,
cohomogeneity one metrics fall into this class. Let us just point out the simplest
cases below, the last example is the situation that we shall be concentrating on

later.

o Simple product: if the family of metrics on N is independent of the parameter, so
that g, = g is constant in ¢, then we recover the usual product of two Riemannian

manifolds (I x N, g+ g) (in this case proj, is also a Riemannian submersion).

o Warped product: here the family of metrics on N is given by g; = f2(t)g where f

is a smooth real valued function on I and g a fixed background metric on N.

o Multiply warped product: slightly more general is the case where N itself is a
product, say N = Ny X --- x N,., and the fixed background metric on N arises as

asum g = g; + - - - + g, of fixed metrics on the factors, and the family is given by
g0 =ft)g1 + - f2 ()G

Suppose now that S: M — B is a Riemannian submersion and let 7 (M) denote the
space of smooth vector fields on M. We shall decompose a vector field X € T (M)
into its vertical and horizontal component relative to the submersion by writing
X =H(X) + V(X) where, pointwise for p € M, the maps H and V are simply the
orthogonal projections of T,,M onto H, respectively V,. We say that X € T (M)
is vertical (respectively horizontal) if H(X) = 0 (respectively V(X) = 0). Further,
let V be the Levi - Civita connection of the metric ¢ on M. For each b € B we
denote by g, the metric on the fibre F}, obtained by restricting ¢ and V° denotes the
associated Levi - Civita connection. We would like to decompose the curvature of
the space M in terms of the curvature of the spaces Fj, and B. To this end Barrett
O’Neill [34] introduced the so - called T-tensor T: T (M) x T (M) — T (M) defined
by

TxY = H(Tuo (V) ) + V(oM (Y)) (2.2.4)
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This map is simply the second fundamental form of each fibre as one can see by
applying it to vertical vector fields. There is an additional tensor (the A-tensor) that
is needed to analyse the curvature of Riemannian submersions in general - however
for cases where the base manifold B is one -dimensional this tensor vanishes so we

shall not need it. We list and some of the properties of the T-tensor below:

Proposition 2.2.1. Given vertical vector fields X,Y and a horizontal vector field

H we have

TyX =0 and  TyH =0 (2.2.5)
TxY = H(VxY) is horizontal (2.2.6)
TxH =V(VxH) is vertical (2.2.7)
TxY =Ty X (2.2.8)
g(ITxY,H) = —g(TxH.,Y) (2.2.9)

Proof. The first three lines are immediate. For the fourth we recall that the second
fundamental form is symmetric in its arguments. To see the final statement, note
that

TxY =VxY —V(VxY) and TxH=VxH—-H(VxH),

whilst the Levi - Civita connection satisfies the identity
X =g(VxY,H) +g(Y,VxH). (2.2.10)

The left hand side in (2.2.10)) vanishes since H and Y are orthogonal, hence

[\

10)

9(TxY. H) = g(VxY, H) = g(V(VxY), H) B2 (v, Vi H)

~~
=0

= —g(TxH.,Y) —g(H(VXH),Y) . O

J/

-
=0

Equipped with the T-tensor and the A - tensor O’Neill then writes down curva-

ture formulae (sometimes called O’Neill’s curvature formulae) that decompose the
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Riemann curvature tensor
R(U, VYW = VW = VygVyW + Vy VW for U, VW € TM .
on M. For our purposes the following special case is important:

Proposition 2.2.2 ([34], Theorem 1 and 3). Let S: M — B be a Riemannian
submersion of a Riemannian manifold (M,g) where B is one - dimensional. Let
X, Y, Z, V be vertical vector fields and H, F horizontal vector fields as described
above, further, let R, denote the Riemannian curvature tensor of the metric g

obtained by restricting the metric g to the fibore S~1(b). Then

g(R(X,Y)Z,V) = g(Rp(X,Y)Z,V) — g(TxZ,TvV) + g(Tv Z, Tx V)
g(R(X,Y)Z,H) = g((VyT)xZ,H) — g((VxT)yZ,H) (2.2.11)
g(R(H, X)F,Y) = g((VuT)xY,F) — g(TxH, Ty F) .

This is all the material needed from the basic theory of Riemannian submersions.
Before we move on to sectional curvature formulae for special cohomogeneity one
manifolds let us mention that, instead of approaching curvature studies from the
point of view of sectional curvature, one can of course also focus on the relationship
of the Ricci curvature Ric and scalar curvature u of g to the Ricci curvature Ricy
respectively scalar curvature u; of g;. A proof for the next result can be found in
[3, Proposition 3.11], it is essentially another application of the formulae given in

Proposition and holds for arbitrary cohomogeneity one metrics.

Proposition 2.2.3 ([3]). Let (X;)!=' be a local orthonormal basis for the space
tangent to the factor My in (2.2.19)). If X and Y are vertical then

Ric (X,Y) = Ric, (X,Y) — g(N, TxY) + g((V&T)xY, H) (2.2.12)
Ric (X, H) = g(6,T(X), H) (2.2.13)
Ric (H,H) = Hg(N, H) — ||T|]? (2.2.14)

u=u —|N|*=|T|*+2Hg(N,H). (2.2.15)
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where N := >, Tx,X; is the mean curvature vector, ||T||* = >, | Tx,H|* is the
norm of T and 6,T(X) = — > ,(Vx,T)x,X if X is vertical (all the expressions are

independent of the chosen basis).

The formulae above are useful for the study of complete cohomogeneity one Einstein
manifolds. If we assume ¢g to be Einstein, so that Ric = Ag for some constant A,

then the first three equations in Proposition read

Ric; (X,Y) = g(N,TxY) + g((VaT)xY,H) = M\g(X,Y) (2.2.16)
9(6T(X),H) =0 (2.2.17)
Hg(N,H) —||T|* = A (2.2.18)

Locally these equations always have a solution, hence G/K X (a,b) always admits
G-invariant Einstein metrics where (a,b) is an interval. It is not, however, always
possible to find such a metric that is also complete (i.e. the geodesics y(t) are defined
for all ¢ € R): in [3] L. Berard Bergery shows that a compact space G/K which
admits an isotropy irreducible linear representation gives rise to an example where
G/K x R does not admit a complete G-invariant Einstein metric. (A homogeneous
space M = G/K is called isotropy irreducible if the action V: K — GI(T,M),
U(h)X = h.p(X) for X € T,M is irreducible (here h,, is the differential map
induced by left translation by h). Irreducible in this context means that there is
no proper invariant subspace, an invariant subspace is a linear subspace W of T, M
satisfying W(h)W C W for all h € K.)

On the other hand, if one assumes completeness of an Einstein manifold then
general results about Ricci curvature reduce the list of possible spaces. More con-
cretely, if A > 0 then Myers’s theorem [32] implies that M is compact and has finite
fundamental group, which means that the one - dimensional factor M /G cannot
be the circle. For A < 0 there is a result due to Bochner [6] which says that if
M is a compact Riemannian manifold with non-positive Ricci curvature then all

Killing fields X are parallel (A Killing field is a vector field whose integral flow
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induces diffeomorphisms that are isometries, that is the Lie Derivative Lxg van-
ishes. On the other hand, a vector field Y is said to be parallel if VY = 0.) In the
cohomogeneity one setting this implies that the Riemann curvature tensor vanishes
identically. Thus, if M is a compact Einstein manifold of cohomogeneity one then
either its scalar curvature is strictly positive or sectional curvature of M vanishes
everywhere. Finally, let us also mention that the splitting theorem by J. Cheeger
and D. Gromoll [7] implies complete Ricci flat metrics that are irreducible must be
either compact or the quotient space M /G must be isometric to [0, c0); in particular

this tells us that there is a special orbit present in the space.

Sectional curvature formulae for multiply warped products

Let us now restrict considerations to multiply warped products as this is sufficient
to study the sectional curvature of the concrete metrics considered in the following
sections. In the case of multiply warped products the sectional curvature simpli-
fies quite elegantly into separate terms that depend on the warping functions. So

consider the total space
M=1IxMy=1x(M; x---x M,) (2.2.19)

where (M;, g;) is a Riemannian manifold of dimension d; for each i = 1,... 7. We

endow M with a family of metrics
g=dt* +¢g  where g = f{()g +---+ 27, (2.2.20)

with f; > 0 a given smooth function for each 7. In this case the projection map
I x My — I is a Riemannian submersion as described above.

Let us determine the T-tensor in terms of a local orthonormal frame of (M, g).
Let H = 0/0t =: 0,. For each i =1,...,r let {Y,;: 1 <j < d,;} be an orthonormal
frame for (M;, g;), then

{H,Yi;=1/fi)Yy|1<i<r,1<j<d} (2.2.21)
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is an orthonormal frame for (M, g). As suggested in [3], §3.7] we choose the base

Y;; so that it commutes with H. In this case we have the following

Lemma 2.2.4. If X, Y are vertical vector fields and H a horizontal vector field that

commutes with X and Y then
1
9(TxY,H) = —§Hg(Y, X) (2.2.22)

Remark 2.2.5. This identity is valid not only for multiply warped metrics but for

cohomogeneity one metrics in general. It is also stated in [3, § 3.7].

Proof. We shall need the basic formula

o(VxY, H) = 5 [Xg(V, H) + Y g(H, X) — Ho(X,Y) +g(1X, Y], H)

— g([v H], X) = g([X, H], V)] (2.2.29)
Now, using the Levi-Civita connection V on the fibre we write
g(ITxY,H) = g((VxY — VxY),H) = g(VxY, H)

where the last equality uses the orthogonality of VyY to H. But this is then equal

to
1
- §Hg(X, Y) (2.2.24)

where we have used the identity (2.2.23]) together with the assumption that X and
Y are chosen so as to commute with H ([X, H] = [Y, H] = 0), and finally that
[X,Y] is again a vertical vector field. To see the latter, choose local coordinates
(t,zt, ..., 2") and write
X=) d0u, Y=Y Vo,, (X, Y] =0+ o
i j 1=1
Applying the bracket to the coordinate function t gives

"ot .ot
coz[X,Y](t):Z(az&Ei—bzaﬁ):O. O

i=1
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From here we get the following identities:

Theorem 2.2.6 (Formulae for the T-tensor). Using the notation introduced in this

section, we have

whilst
. —(fif H ifi=kandj=1,
0 otherwise.
Finally,
1 _ r__
Ty H = ?g(T%H, Y)Y = ALK

Proof. From ([2.2.6]) we see that
Tyij?kl = g(T?iijl, H)H

is horizontal whereas ([2.2.7)) shows that

rdg

Ty, H = Z Zg(Tvin, Yir) Y

k=1 I=1
is vertical. Now from the identity in Lemma

_ 1 _ —fifi fi=kandj=1I,
Q(szykl,]‘f) = _éHg(YijaYkl) =
0 otherwise .

On the other hand, using we see that

9(Ty, H, V1) = —g(Ty, Vo, H)
and another application of Lemma shows that this is equal to
fifi ifi=kandj=1

1 .
= §H9(Yz’j7ykl) =
0 otherwise .

(2.2.25)

(2.2.26)

(2.2.27)

(2.2.28)

Combining these results gives the identities (2.2.26)) and ([2.2.27]) in the list of expres-
sions for the T-tensor (the other follow immediately from Proposition 2.2.1). [
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Now that we have computed the 1" - tensor we can turn to sectional curvature.
Sectional curvature of a Riemannian manifold M is a pointwise measure of cur-
vature, denoted K,(X,Y) for p € M and (linearly independent) tangent vectors
X,Y € T,M. The tangent vectors span a plane II in 7,,M, and sectional curvature
is the Gaussian curvature of the surface obtained via the exponential map at p
restricted to II. In fact, this means that K,(X,Y") depends on X, Y only up to the
plane that they span.

We shall use the following formula for sectional curvature in terms of the Rie-

mann curvature tensor:

g(R(X,Y)X,Y)

K(X)Y)= , (2.2.29)
(X, X)g(Y,Y) —g(X,Y)
if we choose X and Y to be orthogonal unit vectors then
K(X,Y)=g(R(X,Y)X,Y). (2.2.30)

Of course the sectional curvature may be computed once we know it on our basis
vectors, that is K(Y;;, ) respectively K(Y;;, H). The goal is to find formulae for
these in terms of the sectional curvature K; of the metrics ¢; in the fibres, and it
is here where the T-tensor becomes important, as can be seen from the following

identities which are valid not only for multiply warped product metrics but more

generally for cohomogeneity one metrics.

Proposition 2.2.7 ([4], Cor 9.29(a)). Let (M, g) be the Riemannian manifold de-
scribed in (2.2.19)), let K respectively K; denote the sectional curvatures of the
metrics g respectively g;. Let H be a horizontal vector field and X,Y be vertical
vector fields with g(H,H) = g(X, X) =g(Y,Y) =1 and g(X,Y) = 0. Then

K(X,Y) = K(X,Y) + g(TxY, TxY) — g(Tx X, TyY) (2.2.31)

K(H,X)=9((VaT)xX,H) — g(TxH,TxH) . (2.2.32)
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Proof. The basic ingredient for the proof are O’Neill’s Curvature formulae stated

in Proposition [2.2.2] From the first line we see that with Z =X and V =Y,

K(X,Y)=g(RX,V)X,Y) = g(R(X,V)X,Y) = g(Tx X, Ty'Y) + g(Ty X, TxY)
= Ki(X,Y) — g(TxY,TxY) + g(IyY, Tx X)

where we used the symmetry (2.2.8]) to obtain the last equality. Likewise, substi-
tuting F' = H and Y = X into the third formula of (2.2.11]) gives

as required. O

We are now ready to find the terms on the left hand side of (2.2.31]) and (2.2.32))
for our basis. Such formulae are stated for example in [12], we derive them here for

our particular case.

Theorem 2.2.8 (Sectional curvature formulae). Given a multiply warped metric
(2.2.20) and an orthonormal frame (2.2.21)), let Yi;, Yy be any choice of distinct

members. Then

! £l
K(Y;j) Ykl) = Kt(}/;]’ Ykl) f fk . (2233)
flfk
whilst for any Y;;,
fl/
K(H,)Y;;) = T (2.2.34)

Proof. Equation ([2.2.31)) tells us that

K(Y;jy}/z]) Kt(Y;m}/z] ) +g(TY Yii TY Yi ) (TY Y TYZ,,,Y;]")

ij ’L] ij Z] ij ’L] 9

= Ky(Y, ijs ) fi ( ( YzvaY Ym)_9<TY YWTE]-/YU’))

and the second term vanishes by if j = j'. If j # j’ then substituting (2.2.26)) into
the above gives

K (Yig, i) = KoV, Vi) = 17 (9 = (RSO H, ~(fif)H) )
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— KV, Vi) - (?)

On the other hand, if ¢ # k then
K(Yij, Yi) = Ko(Yij, Yi) + 9(Tv, Yio, Ty, Yia) — 9(Tv,, Y Ty Vi)
= (Y5, Vi) + (i)~ (9(Ty, Yia Ty, Yia) = 9(Ty, Vigs T, Vi) )

KoYy, V) + (i)~ a(— oD H, (S H))

itk

For the sectional curvature K (H,Y;;), equation (2.2.32)) tells us that

= Ki(Yyj, Vi) —

K(H,Yy) = f ( ((VuT)y, Vs, H) — g(Ty, H, TYUH)> (2.2.35)
whilst from the definition of V on tensors we have

o(V )5, Vi H) = Ho (T5, ¥y H) — 9(Te,v, iy H) — o(T5, VirYsy. H)

Note that Vg H = 0. Also VyYj; is vertical, hence equation (2.2.8) says Tv,v,Yij =

TyijV HS_QJ This simplifies the above expression to

9((VuT)y, Yy, H) = Hg(Ty, Yy, H) — 29(Ty,,V 5 Yi;, H)

and then gives
9((VuT)y, Yy, H) = Hg(Ty, Yy, H) + 29(Ty,, H, V) . (2.2.36)

We recall that H and YZJ commute, so VHY = Vy, H. Finally, Ty, H is vertical,

therefore

9(Ty, H,Vy, H) = g(Ty,,H,V(Vy, H)) = g(Ty, H, Ty, H) .
Applying the last two statements to yields

9(VuT)y,Yij, H) = Hg(Ty,,Yi;, H) +29(Ty, H, Ty, H)
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and the formulae for the T-tensor in Theorem [2.2.6] imply that

((VHT> Y;]aH) ( ffz)+2 (:];-/ zj7fl/Y;])

= —fi fi= (22000 = (f) = 1 fi. (2.2.37)
Substituting this into we obtain
K(H,Yy) = 12 (9((FuT)y, Vi, H) = g(Ty, H, Ty, H) )

=2 - £ s ) =

i (2.2.38)

]

We should also note that the product structure of g simplifies the situation due to

the following Lemma, it will be the main ingredient to prove Proposition [2.2.10}

Lemma 2.2.9. Let (M;, g*) fori = 1,2 be Riemannian manifolds, with vector fields
X; respectively. We can view the X; as vector fields on the product manifold My x My
with product metric g, @ g2 (that is g1 and g, are orthogonal). Then Vx, X; =0 for

1 # j, where V denotes the Levi - Civita connection of the product metric.

Proof. Let dim M; = m;. Relative to local coordinates (z',..., ™) for M; and
(xmtL o gm™itm2) for M, the metric tensor is represented by the components
(
9i; if1<i,j<m
9ij = < g(Qifm1)(j*m1) if mp < Z,] S my + mo (2239)
0 otherwise.

\

Since X is tangent to M; we can represent it in the form X; = 2221 1,0, with

ay; independent of 27 for m; < j < my + my and similarly X, = ZZ;’TI 2,0y,
with ag; independent of 27 for 1 < j < m;. Now
m1 mi+mse m1 mi+ma
leXQ = Z Z al,i(&-ag,j)@j + Z Z al,iaz,jvaﬁj . (2240)
i=1 j=mi+1 i=1 j=mi+1
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The first term in (2.2.40)) vanishes since J;as; = 0 in each summand. The second
term vanishes because Vy,0; = 0 in each summand. To see this, recall that

mi+mg

Z T'%.0) (2.2.41)

where

m1+m2
Z g < ]gsz + a g3] 8sgij) . (2242>
—— =

(A) (B) (©)
The terms (A) — (C') vanish identically. Indeed, from (2.2.39) we see that g, = g,
if 1 < s < m;. The left hand side is independent of 27 whenever m; < j < my +my
and so d;gs;; = 0 in that case. Otherwise, for m; < s < m; 4+ my we have g;; = 0
hence 0;¢5 = 0 and thus the terms labelled by (A) all vanish. The terms labelled
by (B) vanish by a similar argument, finally the terms labelled with (C) vanish

since g;; = 0 whenever 1 < ¢ < m; and m; < j < my + mao.
This shows that the Christoffel symbols I‘fj in (2.2.41)) are all zero and therefore
the claim holds. O

Proposition 2.2.10.
R(Y;;,Yij)Yu =0 ifi#k. (2.2.43)

Proof. By definition,
R(Yij, Yy )Yy = Vv Vv, Y = Vy, Vv, Y = Vv, v, Y

Now Y;;, Vi are tangent to the factor M;, and so is [Y;;,Yi;]| (see the proof of
Lemma [2.2.4). On the other hand, Y}, is tangent to the factor My and i # k, so
the result follows from Lemma 2.2.9 O

The context above will suffice to conduct our study of sectional curvature asymp-

totics in Section 2.4
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2.3 Elementary function representation for the
metrics found by Dancer and Wang

In this Section we establish elementary function representations for the metrics
constructed by Dancer and Wang in [I1]. They study the system of ODEs given by
the cohomogeneity one Ricci - flat Einstein equation Ricg = 0 as the Hamiltonian
flow on the zero level set of a suitable Hamiltonian H and look for a function F such
that

{F,H} = ¢H (2.3.1)

for some function ¢. In this case F' is a conserved quantity on the zero level set
of the Hamiltonian (as we have {F,H} = 0) and, due to the low dimensionality of
the phase space under consideration, this is enough to render the system integrable
when restricted to the zero level set. For a large class of orbit types no non-trivial
solutions exist, however in particular instances one can find functions F), ¢ that do
not vanish identically, thereby making the system integrable on the zero level set of
the Hamiltonian. From these cases Dancer and Wang construct new cohomogeneity
one Einstein metrics. In the cohomogeneity one context, the treatment in [I1]
assumes that the principal orbit is a product (G1/K;) % (G2/ Ks) of distinct isotropy

irreducible spaces which means that the metric is diagonal of the form
dt* + f1 (g1 + f3 ()5 (2.3.2)

where g; is a homogeneous background metric on the i** component of the principal

orbit. Setting Ricg = 0, the equations (2.2.12)-(2.2.14)) in Proposition then

reduce to the following system of non - linear ODEs:

Ut AN T .

@ (f) Tl Y (2:3:3)

Iy (BN L s A

7, + (dz 1) (f2) + d; il d2f22 =0 (2.3.4)
dlf—l1 + d2f—z =0 (2.3.5)
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where A;, A, are non-zero constants, d; denotes the dimension of the i** component
of the principal orbit, and we use a prime to denote differentiation with respect to
t. In fact, the equations above may be derived in the presence of the metric from
alone when there may be no group action, with background metrics g; that
need not be homogeneous in general (though still Einstein).

Using the first two equations one can see that the third constraint is equivalent to

A fifs BY A A

2
T 7 + do(dy — 1) (E) R =0, (2.3.6)

this provides the additional constraint H = 0 to the Hamiltonian system (we refer to
[9, (1] for details). For the dimension pairs (dy, ds) = (2,38), (3,6) and (5, 5), Dancer
and Wang find that there exists a non-trivial solution to (2.3.1) which yields the

2
dy(dy — 1) ( ) + 2d,d,

Hamiltonian system integrable when restricted to the zero energy surface. The

resulting cohomogeneity one Einstein metrics are defined by

dy+1
291t R tanh (£) (cosh R — 1)@=
7 = Kcoth | — 2 d 2.3.
£ «© (2)/ sinh R R (23.7)
and
(di—=1) p2 g o
fi fs = (coshR — 1) (2.3.8)
2A,
where R = (dlzl})Alr + const. depends on t via ' := 1/f; and C, K are non-zero
constants.

Proposition 2.3.1. For each of the stated dimension pair the following formulae

for fi and fy satisfy (2.3.8)-(2.3.7).

For (dl, dg) = (2, 8)

¢ K 30R — 16sinh R + sinh(2R) — 32tanh (R/2) + 4E
=7 tanh (R/2)

5 B(cosh R — 1)3 tanh(R/2)
= 30R = T6smh R + sinh(2R) — 32tanh(R/2) + 4E

(2.3.9)

(2.3.10)
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where B = and E is a constant of integration.

3
2A3K 7

For (dl,dg) = (3,6)
sinh R + 4 tanh(R/2) — 3R+ E

fr=K tanh(R/2) (2.3.11)
_1)2
fi = Bsinh(j%oilﬁianlll)(gjg)hyz/l?jL E- (2:3.12)
where B = % and E is a constant of integration.
For (dy,ds) = (5,5):
f3 = K(ﬂcseh(Rﬂ) (coshR+3)+ E coth(R/2)> (2.3.13)
\’=B (cosh & — 17 (2.3.14)

2
<\/§ csch(R/2)(cosh R+ 3) + E coth(R/Q))
where B = ﬁ and E 1s a constant of integration.

Proof. We treat the dimension pair separately and start with (di,ds) = (3,6). In
this case equation ([2.3.7)) simplifies to

f§l — K coth (R/2) / tanh (R/zirfﬁcth _ 1)2 .
We have tanh (E) (COShR . 1)2 4
2 o h = cosh R + P 3. (2.3.15)
Indeed, since ) . 2
coshR —1
oS Rt g 3=

we only need to show that
tanh(R/2)csch R = (cosh R+ 1)7!. (2.3.16)

But this follows at once by expanding out the left hand using the identities cosh(2x)-+

1 = 2cosh? z and sinh(22) = 2sinh 2 cosh .
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Thus

/ tanh (£) (cosh R — 1)

sinh R dR = sinh R + 4 tanh (R/2) — 3R + Const

so that equation (2.3.11]) is now clear. On the other hand, equation ({2.3.8)) simplifies

to

fifz = C (coshR— 1),

hence f{ = | A2 (coshR —1)2f,%, as requlred for equation (2.3.12)).

Next we prove the claim associated to (dy,ds) = (5,5). In this case we have

fifs = C (CoshR— 1) (2.3.17)
and
3 tanh (R/2) (cosh R — 1)%
f5 = K coth (R/Z)/ LR dR. (2.3.18)
We rewrite

tanh (R/2) (cosh R — 1)% ~ VcoshR —1(coshR—1) sinh R(cosh R — 1)
sinh R B coshR+1 ~ (cosh R+ 1)3/2

(2.3.19)

Changing variables to u = cosh R + 1 this integrates to

sinh R(cosh R — 1) L s
/ (COShR + 1)3/2 dR = 2<COShR + 1) / + 4<COShR + 1) / + Const
(cosh R + 3)

W + COHSt (2320)

and multiplying this with K coth(R/2) gives (2.3.13)) from which (2.3.14) is also
clear.

Finally we deal with the case (di,ds) = (2,8). Here equation ([2.3.7) reduces to

tanh(R/2) (cosh R — 1)*

dR. 2.3.21
sinh R R (2.3.21)

19 = Kcoth(R/Z)/
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Using again ([2.3.15)) we see that

tanh(R/2) (cosh R — 1) 4
dR = h _— - hR—-1)d
/ sinh R & / cosh ft -+ coshR+1 3 ) (cosh R = 1) dR
coshR —1
= h? 4————— —4cosh 2.3.22
/cos R+ coh BT 1 cosh R+ 3dR (2.3.22)

and the latter expression has elementary anti - derivatives. Indeed, with
1
/Cosh2 RdR = 3 (R + sinh(R) cosh(R)) + constant

and

coshR+1
the integral in ([2.3.22) is

= %(R + sinh(R) cosh(R)) + 4(R — 2tanh(R/2)) — 4sinh R+ 3R+ C

1 15
=3 sinh(R) cosh(R) — 8tanh(R/2) — 4sinh R + 7]% +C

hR—-1
/& dR = R — 2tanh(R/2) + constant

1
=1 (sinh(2R) — 32 tanh(R/2) — 16sinh R + 30R) + C'.

Substituting this into (2.3.21)) yields (2.3.9)). On the other hand, equation ([2.3.7)

reduces to

fif? = C (coshR—l)

1

hence f} = (coshR — 1) f;7% which is equation (2.3.10)). O

2.4 Sectional curvature of the example metrics

The explicit solutions in Section for fi, fo are now studied in the context of the

results from section [2.2.2] We take on the dimension pairs in turn.

2.4.1 The dimension pair (2,8)

Starting with (dy, ds) = (2,8), we compute
5 df1 \/ 2 dfi\JAL/2
f1 =3f1fi =31} (LR%) 3f7 d% fl/ = % fll/ (2.4.1)
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so that

. dff VA/18 _ df} A1 30R — 16sinh R + sinh(2R) — 32tanh(R/2) + 4F
'Y drR f3  dRV 18 B(cosh R — 1)3 tanh(R/2)

(2.4.2)
where B = ; A2 = and FE is a constant of integration. From the r.h.s. of m we
see that
dff ~ 4Bsinh'(R/2) tanh®(R/2)(3 cosh R + 4)
dR  30R — 16sinh R + sinh(2R) — 32tanh(R/2) + 4E

B 64B tanh(R/2) sinh®(R/2) csch® R (2.43)
(30R — 16 sinh R + sinh(2R) — 32 tanh(R/2) + 4FE)? o
which asymptotically as R — oo behaves like
4B 2R R 4 AB 4R _,—2R
e’ (3e™ 4 4) B 64Be*"e - 0(12BeR)
30R — 16ef 4+ 2R — 32 +4E  (30R — 16e® + €2f — 32 + 4F)?
(2.4.4)

On the other hand, the third factor in (2.4.2)), which is just f;?, behaves for R large
like

30R — 16eft + ¢2F — 32 + 4F O( 1
Be3E Bel

) (2.4.5)

and, recalling the fact that ¢t — oo as R — oo it follows that

Proposition 2.4.1. For the dimension pair (dy,ds) = (2, 8)
fi-0(1) as t — 0o. (2.4.6)
We can also see from ([2.4.5)) that f; « O(ef¥/?), thus

Proposition 2.4.2. For the dimension pair (di,ds) = (2,8),

fi
S

Next we turn to fy and its derivative. We have

d ,c dfy dR sdfs /A2 df$ /A )2
dtf =0ff; = fg(det) deR fi _ﬁ i (248)

— 0 ast — 0. (2.4.7)
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The r.h.s. of (2.3.9) yields f$ «» O(e?*) as R — oo, and we can also compute from
it that

df§ K 64sinh®(R/2)csch® R K 30R — 16sinh R + sinh(2R) — 32tanh (R/2) + 4E

dR 4 tanh (R/2) 8 sinh? (R/2)
(2.4.9)
(here K and E are constants). As R — oo this behaves like
K 64 4R ,—2R K -1 R 2R __ 24 AR
K 64e™ e K 30R —16e™ + ¢ 32+4F O(e2) . (2.4.10)

4 1 8 el
Using these asymptotics as well as f; «» O(ef'/?) as R — oo, and the fact that

t — oo if R — oo we deduce

Proposition 2.4.3.

Lem [Ady L

—_— = — 0 ast — oo 2.4.11
7 2 dR6f5H (2.4.11)

This gives the asymptotics for sectional curvature K (Y;;,Yy) determined by two

vertical vectors in our base to be that of the fibre, we summarise this in a theorem.

Theorem 2.4.4. For the dimension pair (di,ds) = (2,8) sectional curvature of the
plane spanned by pairs of basis vectors of the form {Yi;, Y} is asymptotically given

by the sectional curvature in the fibre, that is

K (Y, Yu) = K (Y, Yu) ast— oo, (2.4.12)

]

Proof. From equation ([2.2.33)),

I
K (Y, Yia) = K(Yyj, Via) — =F
Jifx
so the result follows directly from Proposition [2.4.2] and [2.4.3] O

In order to determine the sectional curvature K (H,Y;;) related to a plane spanned

by a vertical vector H and the horizontal basis vector we need to determine second

derivatives, for which we use the r.h.s. of (2.4.2) in the case of f;. We have
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d
%fl ~ dt dR \ dRV 1 B(cosh R — 1)3 tanh(R/2)

Ay (f30R — 16sinh R + sinh(2R) — 32 tanh(R/2) + 4E
~6f1 \ dR? B(cosh R — 1)3 tanh(R/2)

dRdR B(cosh R — 1)3tanh(R/2)

dR d (@ [A130R — 165sinh R + sinh(2R) — 32 tanh(R/2) + 4E)
g

dfy d {301—2 — 16sinh R + sinh(2R) — 32 tanh(R/2) + 4E} ) (2.4.13)

Looking at the term inside the brackets we already know that the second factor in

the first summand is O(e™) and the first factor in the second summand is O(ef?).

For the remaining terms we compute

4
S R
=1

dR?
where
Fi(R) - sinh®(R/2) tanh®(R/2) (40 cosh R + 9 cosh(2R) + 35)
YT 4(30R — 16sinh R + sinh(2R) — 32 tanh(R/2) + 4E)
e (40e™ + 9! + 35) R
“"R—00 = O<e )
4(30R — 16e® + €21 — 32 + 4F)
Fy(R) = 256 B sinh'?(R/2) tanh?*(R/2)(3 cosh R + 4) csch® R
27 (30R — 16sinh R + sinh(2R) — 32 tanh(R/2) + 4E)?
256 Be®f(3eft 4 4)e 721 R
““R—oco = O(_e )
(30R — 16eF + ¢2F — 32 + 4F)?
Fy(R) = 128 Bsinh'’(R/2)(2cosh R + 5) csch® R
YT (30R — 16sinh R + sinh(2R) — 32 tanh(R/2) + 4E)?
128 BePf (2ef + 5)e 1
(30R — 16eF + €2F — 32 + 4F)?
Fu(R) = 8192B tanh(R/2) sinh'°(R/2) csch® R
Y7 (30R — 16sinh R + sinh(2R) — 32 tanh(R/2) + 4E)3
8192 BeBlie—1R R
“"R—00 = 0(6 )
(30R — 16eF + ¢2F — 32 + 4F)3
Hence

Proposition 2.4.5. As R — oo,

d?f} 30R — 16sinh R + sinh(2R) — 32tanh(R/2) + 4E o)
dR? B(cosh R — 1)3 tanh(R/2) B '
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For the second summand in (2.4.13]) we still need to find the asymptotics of the
second factor:
d [30R — 16sinh R + sinh(2R) — 32tanh(R/2) + 4F
dR B(cosh R — 1)3 tanh(R/2)
_ 64sinh®(R/2) csch?(R)
~ B(cosh R — 1)3tanh(R/2)
~ 30R — 16sinh R + sinh(2R) — 32tanh(R2/2) + 4E y
(B(cosh R — 1)3 tanh(R/2))

(4B sinh*(R/2) (3 cosh R + 4) tanh*(R/2))

30R — 16ef 4+ 2 — 32+ 4F

(4Be*(3e™)) =0( —¢e*) . (2.4.20)
and we see that

Proposition 2.4.6. As R — oo
ﬁi 30R — 16sinh R + sinh(2R) — 32tanh(R/2) +4E | O( = )
dRdR B(cosh R — 1)3 tanh(R/2) B
(2.4.21)

Finally we need the asymptotics of f; which we know is O(eR/ 3). Using Proposition

[2.4.5| and [2.4.6] we now find the asymptotic behaviour for (2.4.13) to be

'=0(—e*?) asR— oco. (2.4.22)
so that, since t — oo if R — oo,

Proposition 2.4.7.

"
—120(—67R/3) —r 00 ast—o00. (2.4.23)

h

This gives the first result for sectional curvature determined by planes spanned

partially by the vector H:

Theorem 2.4.8. For the dimension pair (di,ds) = (2,8) sectional curvature of the
plane spanned by the pair {H,Y1,;} for 1 < j < dy asymptotically tends towards
infinity, that is

K(H,Yyj) =00 ast— oo. (2.4.24)
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Now for the analysis of fj we start by reading from equation (2.4.8) that f; =

dfg /A2

and compute

dR 6f;fi
podp dRd (dsy = ZF (2.4.25)
dt dt dR \ dR 6f5f1 12f1
where
d2f6 1 3 B
Fi(R) = d_Rgfl_f;’ =0 (e*fe B/3e 5R/3) =0(1) asR— o0 (2.4.26)

since fi = O(ef/?), f§ = O(e*!) and, from (2.4.9),

EfS
T = Zl G;(R) (2.4.27)
j:
with
K (16 sinh®(R/2)( cosh(R) + 2) tanh®(R/2)) -
Gi(R) = Atanh(R/2) e O(e)
8K sinh®(R/2) csch?(R)
Go(R) = — AR O — e,
2(R) sinh?(R/2) oo O( =€)
K64sinh®(R/2) csch?(R)
G3(R) = — ARoeo O( — e,
o(B) 8sinh?(R/2) f (=<9
Gu(R) = K (30R — 16 sinh(R) + sinh(2R) — 32 tanh(R/2) + 4F) sinh(R)
e 2sinh*(R/2)
K (30R — 16e" 4 €2 — 32 + 4F) "
T R—o0 9p2R = O(eR) :
1 df}
Further, from (2.4.1) we see that df,/dR = 37 4R’ and (2.4.4) tells that df}/dR =
1

O(e®) whilst df§/dR = O(e*F) from (2.4.10). Hence

dfy df/dR dfgdfl/dR I -
~ar g~ arsg O\ wmans) = O

Finally the last summand in the second factor of (2.4.25)) is
g dp/dR 5 (dff 1 (e 1
dR f2 f dR 211f1 - ellR/3oR/3

1 df
6f5 dR’

Fy(R) = (2.4.28)

F3(R) = ) =0(1) (2.4.29)

where we have used (2.4.8) to find dfy/dR = We conclude that

49



Proposition 2.4.9.
5 — 0 ast — oo. (2.4.30)

Proof. Substituting the asymptotics (2.4.26)), (2.4.28) and (2.4.29) into the r.h.s
of equation (2.4.25)) shows that the second factor asymptotically behaves like a

constant as R — oo. Since f; ! = O(e™f/?) for R large and t — oo if R — oo the

result follows. O

Theorem 2.4.10. For the dimension pair (di,ds) = (2,8) sectional curvature of
the plane spanned by the pair {H, Y2} for 1 < j < dy asymptotically tends towards

zero, that is

K(H,Ys) =0 ast— o0, (2.4.31)
Proof. From ([2.2.34)),
"
K(Hv Yé]) =2 :
fa
The result is thus an immediate consequence of Proposition since fy = O(ef/3).
O

2.4.2 The dimension pair (3,6)

From (2.3.12)) we obtain

dhdR _df 241

d 4 3 g/ 3
—fi_y =14 = —— 2.4.32
dtfl flfl fldR dt dR 3 f]_ ( )
and the r.h.s of (2.3.12)) shows that
dff 8B sinh®(R/2)(2 cosh R + 3) csch® R
dR ~  sinhR+4tanh(R/2) —3R+ E
B(cosh R — 1)*tanh(R/2)(cosh R + 2sech*(R/2) — 3) (2.4.33)
(sinh R + 4 tanh(R/2) — 3R + E)* h
which asymptotically as R — oo behaves like
8B (e3f/64)eft4e2F  B(e2£/4) (/2
(2/64)eMe™ B ooy, (2.4.34)

eft/2 (e2R/4)
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Also, looking at ([2.3.12)) we see that f! = O(e”). Hence

, [2A0dfE 1
fi= TﬁTﬁ_O(l) (2.4.35)

and we conclude

Proposition 2.4.11.

/
% — 0 ast— o0o. (2.4.36)

1
Proof. Follows immediately from the asymptotics (2.4.35)), fi = O(eR/ 4), and the
fact that t — oo if R — o0. m

Next we analyse f5. From (2.3.11) we obtain

d .4 dfs dR  df} [2A; 1
iy G S A i e S R et 2.4.37
dth f2f2 deR dt dR 3 fl ( )
whilst from the r.h.s. of the same equation one has
dfs  K(cosh R+ 2sech’(R/2) —3)
dR tanh(R/2)
K (sinh R 4 4 tanh(R/2) — 3R + E) sech®(R/2) (2.4.39)
2tanh®(R/2) o
which, as R — 0o, behaves like
K(leR +8e 1 —3) — 5(163 +4-3R+E)4e "=0(")  (2.4.39)
2 2 12 B o
so that
Proposition 2.4.12.
/
% — 0 ast— o0o. (2.4.40)
2

Proof. Equation ([2.4.37)) gives

g A

fo V24dRfif)

hence f5/fo = O e */4) from (2.4.39) and the asymptotics f; = O elt/4 [ =
2 2

O(e™), hence the result follows since ¢ — oo if R — co. O
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Propositions [2.4.11] and [2.4.12] suffice to determine that sectional curvature of g

induced by planes inside the fibres is asymptotically given by sectional curvature of

the metric in the fibres, that is

Theorem 2.4.13. For the dimension pair (di,ds) = (3,6) sectional curvature of
the plane spanned by pairs of basis vectors of the form {Y;;, Y} is asymptotically

given by the sectional curvature in the fibre:

J 5 Ya)  ast— oo, (2.4.41)

Next we determine f/ for i = 1,2. Starting with (2.4.32) it follows that

. A d (dft 1 _\/AT1d dfé 1 _\/711 i
e (T7) = Vot am () = 217, 2 )

(2.4.42)

1B tanh’®(R/2)(9 cosh R + 2 cosh(2R) + 9)
- f sinh R + 4tanh(R/2) — 3R+ F
1 8Bsinh®(R/2)(2cosh R + 3) csch? R(cosh R + 2sech®(R/2) — 3)

A (sinh R + 4tanh(R/2) — 3R + E)”

which comes from the first term in ([2.4.33)). Since f}! = O(eR), we see that the

asymptotics of this term are

L (B g) | SBEOR YA 21 8
P\ eR/2+4—3R+E (eR/2+4 - 3R+ E)’ o

next from the second term in (2.4.33)) we obtain

1 192Bsinh™*(R/2)(cosh R + 2) csch® R

fi (sinh R+ 4tanh(R/2) — 3R + E)’

N 1 2B(cosh R — 1)? tanh(R/2)(cosh R + 2sech?(R/2) — 3)2
fi (sinh R + 4 tanh(R/2) — 3R + E)°

Hy(R) =
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1 192Be87 /4096 (/2 + 2)16e ™47 2B(e®/2 —1)2(e/2 + 8¢~ — 3)*
e eR (¢F/2+4— 3R+ E)’ (eR/2+4— 3R+ E)°
=0(1), (2.4.44)

and finally
dft d (1
m(m = Ghan (51)

here we can use the r.h.s. of (2.3.12)) and compute

d (1 d (sinh R+ 4tanh(R/2) —3R+ E
dR (f_f> " dR ( B(cosh R — 1)% tanh(R/2) )
cosh R + 2sech?(R/2) — 3
- B(cosh R — 1)? tanh(R/2)
(sinh R + 4tanh(R/2) — 3R + E)8sinh®(R/2)(2cosh R + 3) csch®(R)

B2(cosh R — 1)*tanh?(R/2)

and as R — oo, this behaves like

efl/2 48~ -3 (ef/244—3R+ E)8e3 /64cl4e2

_ _ -R
Be2R 4 B2 /16 ().
(2.4.45)
Therefore
Hs(R) = 0(1) (2.4.46)
d 4
here we have also used ([2.4.34) which tells us that df_é = O(eR). We can now draw

the conclusion that sectional curvature of planes spanned by base pairs of the form

{Hvyij}:

Theorem 2.4.14. For the dimension pair (di,ds) = (3,6) sectional curvature of
the plane spanned by the pair {H,Y:;} for 1 < j <d; asymptotically tends towards
zero, that is

K(H,Yy;) -0  ast— oo, (2.4.47)

"

Proof. Recall from (2.2.34) that K(H,Y3;) = —J;,—l. Substituting ([2.4.43)), (2.4.44]))
1
and (2.4.46)) into (2.4.42)) and using the asymptotic behaviour f; = O(ef/*) we see
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that

"
A 50 as R — o>

fi
hence the result follows from the fact that t — oo if R — oo. O
" : : , 2A1dfy 1
Now for f;. We start with (2.4.37)) from which we see that f5 = \/ ———5 —5—,
3 dRAfSf1
hence
dR d 24, 1 d [(dff 1 24, 1 <
= ———fo=——— = | = —— ) AR 2.4.48
2 dt de2 3 4f,dR (deS’fl 3 4f1; () ( )
with
1 ddff 1 <
= R aRdR 3 ; 8]
where (from the r.h.s. of (2.4.38])) we have
K (sinh R — 2sech®(R/2) tanh(R/2))
F — — R
1(R) tanh(R/2) oo O(¢7)
K (cosh R + 2sech®(R/2) — 3) sech’(R/2)
Fy(R) =— =R O(1),
2(F) 2 tanh®(R/2) noe O(1)
Fy(R) = —K (cosh R + 2sech®(R/2) — 3) sech®(R/2)
T 2 tanh’(R/2)
K (sinh R + 4 tanh(R/2) — 3R + E) tanh(R/2) sech®(R/2) n
+ ) —R—o0 O(Re ) ’
2tanh*(R/2)
K (sinh R + 4tanh(R/2) — 3R + E) sech®(R/2)
Fy(R) = = poeo O(e7F) .
W(R) 2 tank® (R /2) ree O(7)
(2.4.49)

Thus the term A; is asymptotically constant for R large, since fj f; = O(eR):

Ai(R) =poe O(1)- (2.4.50)
Further,
Cdff 1t d 1 dfs 1 dfs 3 /dfi\? 1
0 = g ans = g1 (k) ng G
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3d
where we have used the identity dg 413 dJ;iL to obtain the last equality. Now

from ([2.4.39)) we know that f2 = O(e ), also f1 = O(eR/4) = f5, hence

A3(R) =r00 O(1) . (2.4.52)

Similarly,

dfy 1 d 1 dfy 1 dfp dfy dff 1
A w2 - - - __ D2 - WL _ _ W21 - 1 2.4.
(B =R f3dRf, dRff;dR dRdRAfif3 "7 O1)  (2453)

4

df;
since % = O(eR) (see ([2.4.35))). We are now ready to state the sectional curvature
asymptotics determined by planes spanned by the horizontal basis vector and basis

vectors of the second component to be zero:

Theorem 2.4.15. For the dimension pair (di,ds) = (3,6) sectional curvature of

the plane spanned by the pair {H,Ys;} asymptotically vanishes, that is
K(H,Ys) =0 ast — 00. (2.4.54)

Proof. Recall from theorem that the sectional curvature formula for this case is
"

K(H, ng) = —f—2. Using the asymptotics (2.4.50)), (2.4.52) and (2.4.53) to analyse

f2
5 for large t we see that fJ — 0 as t — oo (recall we use the property that ¢ — oo
if R — 00). Since 1/f, = O(e~®/*) the result follows. O

2.4.3 The dimension pair (5,5)

For the last case (di,ds) = (5,5), using ([2.3.14) one has

d ;o (dfdR Vdf VAASdfi2 A5
dt =120 =12, (det) 1271 dR  fi _2dR i
(2.4.55)
hence

. df \/m df 12 \/7 <\/§CSCh(R/2)(COShR +3) + Ecoth(R/2))
fi= dR  6f}? dR \ 180 B(cosh R —1)3
(2.4.56)
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where B = SAE% and F is a constant of integration. Further, from the r.h.s. of
1

(2.3.14]) we calculate
af? 3sinh R(cosh R — 1)?
dR (V2(cosh R + 3) csch(R/2) + E coth(R/Z))2
N 4sinh”(R/2)(9v/2 cosh(R/2) — V2 cosh(3R/2) + 2E)
(E cosh(R/2) + v/2(cosh R + 3))3
which asymptotically as R — oo behaves as
3(3 —e e ok
( 2(2v2(3 + 3¢ R) + E'(3—R/2)26
(2v/2e R — 32 1 2Fe38/2) 62R> _ 0(1623)
32(£e R/2+f( +3e- 1))’ 8
On the other hand, the third factor in (2.4.56) (which is f;'?) behaves for large R
like

(2.4.57)

(2.4.58)

(e
B(eR/2)?

and, recalling the fact that t — oo as R — oo it follows that

« O(e™2h) (2.4.59)

Proposition 2.4.16. For the dimension pair (dy,ds) = (5,5)
fi > O(-1) ast — 0o. (2.4.60)

Moreover, ([2.4.59) also tells us that 1/f; «~ O(e~%/), thus

Proposition 2.4.17. For the dimension pair (dq,ds) = (5,5),

fi
h

Next we consider f; and its derivative. We have

d ., o (df2dR Jdfs /A5 df 4A1
ar=ann = (o) —sp B S @)

The r.h.s. of (2.3.13) shows that f3 « O(v/2e®/2) as R — oo, and from it we can

—0 ast — 00. (2.4.61)

also compute

af
dR

= K<2\/§ cosh(R/2) — \/75 coth(R/2) csch(R/2)(cosh R+ 3) — g CSChQ(R/2)>

(2.4.63)
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(here K and E are constants). As R — oo this behaves like

2 E 2
K(\/ﬁe_RﬂeR - ge_RﬂeR - §4€_R> - O(K\/?_eRﬂ) (2.4.64)

Using these asymptotics as well as 1/ f; «~ O(Ze /%) as R — oo, and the fact that

t — oo if R — oo, we deduce

Proposition 2.4.18.

oy 5 J4A; 1 A B
P T TG 20w,

(2.4.65)

This tells us that the asymptotics for sectional curvature K (Y;;, Yy;) determined by
two wertical vectors in our base to be that of the fibre. We summarise this in a

theorem:

Theorem 2.4.19. For the dimension pair (di,ds) = (5,5) sectional curvature of
the plane spanned by pairs of basis vectors of the form {Yi;,Yu} is asymptotically

given by the sectional curvature in the fibre, that is

K(Y;j, Y;cl) — K, (Y;]Hl_/kl) ast — oo. (2466)

Proof. From equation ([2.2.33)),

N
K (Yij, Yi) = Ko (Y, Vi) — 55
fifk
so the result follows directly from Proposition [2.4.17] and [2.4.18| m

In order to determine the sectional curvature K (H,Y;;) related to a plane spanned
by a vertical vector H and the horizontal basis vector we need to determine second

derivatives; for this we use the r.h.s. of (2.4.56)) in the case of fi:

d dRr d (df? [A, (ﬁcsch(R/Q)(coshR+3)—|—Ecoth(R/2)>2

dt dR\ dR B(cosh R — 1)3
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A1 <d2f112 <\/§csch(R/2)(coshR+ 3) + Ecoth(R/2)>2

T 15 f; \ dR? B(cosh R —1)3
dfi2 d (ﬁcseh(R/Q)(coshR +3)+ Ecoth(R/Q))2
dR E{ B(cosh R —1)3 }) (24.67)

Regarding the expression in brackets we already know from ([2.4.59) that the second
factor in the first summand is O(e™2%) whilst from (2.4.58) we see that the first

factor in the second summand is O(e?®). For the remaining terms we compute

2 112 4
T = > Fi(R) (2.4.68)
=1

where taking derivatives of the first summand in (2.4.57)) results in the terms

12sinh*(R/2)(3 cosh R + 2)
(v2(cosh R + 3) csch(R/2) + E’coth(R/2))2
3,2R(3 | 9,~R
G 2T) 5D en (2.4.69)
(2v2(3 + 3e~R) + Ee~R/?) 16

3sinh R(cosh R — 1) csch(R/2)

(V2(cosh R + 3) esch(R/2) + E coth(R/2))’
(2\/5 sinh R — v/2(cosh R + 3) coth(R/2) — E csch(R/2)>
32 (5 — 6*3)2(\/5 —V2(3 +3e7 ) - 2Ee*3R/2>
(2v2(L + 3¢=R) + Be—R/2)°
3

=0(- EeZR) (2.4.70)

Fl(R) =

“"R—o0

Fy(R) = —

“"R—oco —

whilst taking derivatives of the second summand in (2.4.57)) yields
_ 2sinh®(R/2)(14E cosh(R/2) + v/2(34 cosh R — 5 cosh(2R) + 27))

F3(R)
’ (E cosh(R/2) + v/2(cosh R + 3))3
. 5 (TEe? 4 V(177 — § 4 27¢720)) O(- 227y (2.471)
- eSR(EeR/2 4 \/3(L + 36—R))3 16
and
3(:Esinh(R/2) ++/2sinh R
Fy(R) = — ($Esinh(R/2) + v/2sinh R)

(E cosh(R/2) + v/2(cosh R + 3))4 :
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(4 sinh”(R/2)(9v/2 cosh(R/2) — V2 cosh(3R/2) + zE))

%BGRGE(RQ + \/75)(%\/5673 _ \/75 + 2E673R/2) (
“"R—oo — =

362R)
64R(§e_R/2 + \/5(% + 36_R))4

16

(2.4.72)

Hence
Proposition 2.4.20. As R — oo,

afi2 [ 4, <\/§ csch(R/2)(cosh R + 3) + Ecoth(R/2)>2 B
—=\ a0 Bleosh B 1)° =0(1). (2.4.73)

For the second summand in (2.4.13)) we also need to find the asymptotics of the

second factor:

d (\/§ csch(R/2)(coshR+3) + E coth(R/Q)) ’
E{ B(cosh R — 1)3 }
B V2(E coth(R/2) + v/2(cosh R + 3) csch(R/2))
B B(cosh R — 1)3 %

(4 cosh(R/2) — %E csch®(R/2) — (cosh R + 3) coth(R/2) csch(R/2))

3sinh R<\/§ csch(R/2)(coshR+3) + E co‘ch(R/Z))2
- B(cosh R — 1)*
2\/§(E6*R/2 + \/5(% + 36*R))
oo Be?R(1 — ¢~ R)3
3 (2v3(3 + 867 + Be2)’
N BGZR(% — R

Thus we see that

1
x (2 —2V2Ee /% — 2(5 +3e7))

=0(—-—=e?M). (2.4.74)

Proposition 2.4.21. As R — o

df12 i{ <\/§ csch(R/2)(cosh R 4 3) + Ecoth(R/Q))2 }
dR dR B(coshR —1)3

Using Proposition and and the asymptotic behaviour of 1/f; (which

we know is O(e*R/ 6)) we now find the asymptotic behaviour for to be

=0(1) (2.4.75)

' =0(e"") asR— . (2.4.76)

99



so that, since t — oo if R — oo,

Proposition 2.4.22.

"
J1

S

which gives the first result for sectional curvature determined by planes containing

= O(eR/S) — 00 ast—00. (2.4.77)

the vector H:

Theorem 2.4.23. For the dimension pair (dy,ds) = (5,5) sectional curvature of
the plane spanned by the pair {H,Y1;} for 1 < j < dy asymptotically tends towards
infinity, that is

K(H,Yyj) =00 ast— oo. (2.4.78)

Now for the analysis of f} we start with equation (2.4.62)),

f/ _ df23 4"41 1
2T dr\ 5 2f3f;

and compute

L, d. dRd [df8 [44, 1 Al o
_ Gy _ane 4y j24 L )[4 N 2.4.
2 = = G an <dR 5 2f2h 5f1; (B) (2.4.79)
where

21
Fi(R) = ng f%fle(l) as R — oo (2.4.80)

since 1/f1 = O(e™%°), 1/ f3 = O(e7®/?) and from (2.4.63),

% = %(SE cosh(R/2) + V2(4 cosh R + cosh(2R) + 27)) csch®(R/2) (2.4.81)

which for R large behaves like

K 1 2K
s A (ABC I 4 226 4 L 427 e = o(fTeR/Q) |
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d d 12
Further, from ([2.4.55]) we see that i Ui

1
i IR 6/ hence (2.4.64)) and (2.4.58)) show

1

that

afy 1 dfy - 1df 1 dflu_O(_eR/Q 1 e2R) = O(1).

B =~ R B dR = 6 dR f27° dR RERELT

Finally the last summand in the second factor of (2.4.79) is

a1 d 2 (df3\° 1 1
F3(R) = —2 f3 22 (ﬁ) i O(eRW) = 0(1) (2.4.83)

dR f3fidR ~ 3 \dR
dfy df3 1
where we have used ([2.4.62) to find — = —= 5. We conclude that
dR  dR3f;5
Proposition 2.4.24.
5 — 0 ast — o0o. (2.4.84)

Proof. Substituting the asymptotics (2.4.80)), (2.4.82) and (2.4.83) into the r.h.s
of equation (2.4.79) shows that the second factor asymptotically behaves like a

constant as R — oo. Since 1/f; = O(e™#/6) for R large and t — oo if R — oo the

result follows. N

Theorem 2.4.25. For the dimension pair (di,ds) = (5,5) sectional curvature of
the plane spanned by the pair {H,Ys;} for 1 < j < dy asymptotically tends towards

zero, that is

K(H,Yy) =0 ast— oo, (2.4.85)
Proof. From (2.2.34)),
K(H,Yyy) = — 22
f2
The result is thus an immediate consequence of Proposition since 1/fy =
O(e= /). O
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Chapter 3

A non-standard parametrix for
the heat kernel on Riemannian
manifolds with multiply warped

metric

Given smooth compact Riemannian manifolds (M, g1) and (M, go) we generalise
the results of P.C. Lue in [29] and construct a parametrix for the fundamental
solution to the heat equation on I x M; x M, with doubly warped metric dr? +
f2(r)g1 + f2(r)ge. This gives rise to an asymptotic expansion for the heat trace in

terms of the warping functions.

3.1 Introduction
Let M be a Riemannian manifold of dimension n. A continuous function

5:(0,00) x Mx M —C, (t,z,y) s(t,z,y)

62



that is continuously differentiable in ¢ and twice continuously differentiable in z and
y such that
(O +2A,)s=0 (3.1.1)

and with lim; ,¢ s(¢,z,-) = 0, (the Dirac - delta distribution based at = € M) is
called a fundamental solution of the heat equation on M, it is often referred to
as a heat kernel. Here A, denotes the Laplace - Beltrami operator with respect
to the variable y, and the convergence means that for any smooth function ¢ with
compact support on M the function u(t,z) = [,, s(t,z,y)¢(y)du(y) is continuous
and u(t,z) — ¢(x) as t — 0, where du denotes the Riemannian volume element on
M, locally given by \/@ dx where |g| denotes the determinant of the metric tensor
and dz is Lebesgue measure in R”. A heat kernel exists and is unique, for example,
on compact Riemannian manifolds without boundary. It is known explicitly for
some manifolds, for example in the case where M = R" is Euclidean space endowed

. . 2 . . .
with the standard metric, we have A =" | % in Cartesian coordinates, and

lz — ylI?

o (3.1.2)

S(taxay) = ( exp{—

4t )n/?
If M is compact of dimension n then there exists an asymptotic expansion [30] for

s along the diagonal y = x,
1 _n
s(t, z,x) i g Zaj(a;)t 347 (3.1.3)
7>0

The coefficients a;(z) depend on the curvature tensor R and its covariant derivatives,
when integrated over the manifold M the resulting data can be interpreted in terms
of the geometry of M, for example [ v @o(z)d is equal to the Riemannian volume
of M, and in the case where M is a surface [, a;(z)dz = mx(M)/3 with (M) the
Euler characteristic of M. To obtain the asymptotic expansion (3.1.3)) if suffices to
construct an approximation to the heat kernel, also called a parametriz. Concretely

one looks for a smooth function
p: (0,00) X M x M —C, (tz,y)— p(t,x,vy) (3.1.4)
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such that (0; + A)p extends to a continuous function on [0, 00) x M x M and such
that lim o p(¢, x,-) = 0, is the Dirac - delta distribution based at x € M (a com-
parison of the defining conditions for p(¢, z,y) and s(¢, z,y) helps to appreciate the
similarities of these two objects). There is standard procedure for this construction
which was introduced (for the operator A —0d;) by S. Minakshisundaram and A.
Pleijel in [31], let us briefly recall the key steps (see for example [36, Chapter 3.2.1]
for a more detailed exposition). One introduces Riemannian normal coordinates in
a neighbourhood of a point x € M, these are coordinates induced at a point x by
the diffeomorphism exp,: B,(0,e) — U, := exp, (B,(0,¢)) C M, v — 7,(1) where
Yo: (—0,0) — M is a geodesic that passes through = (i.e. 7,(0) = x) and satisfies
72 (0) = v. (The freedom in the choice of € for the size of the ball B,(0,¢) ensures
that ¢ can be chosen > 1.) Let p, = p: U, = R, y — p,(y) = p(x,y) denote the

length of the radial geodesic from x to y. To simplify the notation let us also denote

F,(v) = F(v) := det (exp, ) for v € B,(0,¢). (3.1.5)

*,V

Now, based on the Euclidean solution (3.1.2)) one may argue that locally (i.e. in
U, or smaller if necessary) the heat kernel on M ought to be a perturbation of the

function (47t)~"/2 exp{—p?/(4t)}, so consider the sum

Hy(t,z,y) = (4T1)/2 exp{—pgil(f)}z Uy (z, )t (3.1.6)

=0
If we then construct the functions U;(z,y) on the right hand side recursively as

solutions to the differential equations U_; = 0,

oU, 0F/0o
0, POF/op,,

p o T2 F =0 (3.1.7)
and
p%§+(gmzaﬂw>@+ﬁw@lzo for j=1,... k. (3.1.8)
it follows that satisfies the equation
(O + A Hy (-, 2,0) = ! exp{—pi(y) A, Up(, y)th

(4rt)n/? 4t
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That is, even though (3.1.6) is not an exact solution to the equation (3.1.1)), the
expression vanishes up to the highest power of ¢ (i.e. up to the t* term). Furthermore
if one requires the U; to be finite at © = y and that Uy(z,z) = 1 (the normalising

condition) then there are unique solutions

1
Uo(z,y) = —=—=—= (3.1.9)
F(exp;*(y)
and for j > 1:
Uj(z,y) = AT / VE@(s)) Ay ujq(v(s),y)s’ " ds. (3.1.10)
0

Finally we extend Hj to M x M by choosing a bump function ¢ with ¢(s) = 1 for
s < R/2 and ¥ (s) = 0 for s > R where the constant R > 0 is small enough so that
the geodesic ball Br(z) of radius R centered at x is contained in U, for each z € M
(such an R exists uniformly in x in view of the assumption that M is compact and
boundaryless). One can then prove that py(t,z,y) = ¥ (r(z,y)) Hy(t, z,y) yields
a parametrix whenever k > n/2. Furthermore, one can see from the definition
of the partial sums Hj, in (3.1.6) that the result inherently yields an (asymptotic)
expansion in t. This is the standard construction on compact manifolds without
boundary.

Now let us consider a product manifold
M =1x M; x My with metric dr? + f2(r)g1 + f2(r)g2 (3.1.11)

where (M,, g;) for i = 1,2 are compact Riemannian manifolds, I is an open in-
terval and the warping factors fi, fo: I — (0,00) are smooth positive functions.
Naturally one would like to know whether an expansion similar to can be
obtained (in case the heat kernel exists), and to what extend its coefficient func-
tions U;((r, ), (r',y)) are determined in terms of the warping functions f1, f> and
the coefficients from the expansion on M; x M. This question was studied

by P.C. Lue [29] for a generalised surface of revolution or warped product, that is
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a product manifold
M =1xM with warped metric  dr® + f*(r)g. (3.1.12)

He remarks that this turns out to be very complicated if one uses the Ansatz (3.1.6))
by making the following example calculation with f(r) = r (in this this case (3.1.12)
is sometimes called a metric cone): from one sees that the first coefficient is
the reciprocal of the square root of the determinant of the exponential map. Now

for the metric cone one has

Flomy (expiiy (') = (éﬂf%i%%%j}) F,(exp, ' (y)) (3.1.13)

where n denotes the dimension of M, and the functions F', exp on the left hand
side are defined on M and on the right hand side they are the analogous objects
defined on the base M. Hence

W ~(n—1)/2
UO((Ta ;U), (Tl7y)) = (%) UO(x>y>

sin (.

from which one can see that there is another factor coming from the base involving
the distance function p on M. The complexity that this term causes becomes ap-
parent when one one starts to take recursively the Laplacian in to determine
the next coefficients. For cases more general than the metric cone the independence
of the right hand side in from r, 7’ cannot be taken for granted and the
difficulty of the problem increases further. To get around this complication Lue
suggests an alternative Ansatz. Using the eigenvalues and eigenfunctions {(\;, ¢;)}

of the Laplacian on M he starts with the formal series

Hy(t, (r,z), (,y)) =

(Ffe) ™ =) Ait L
) A T

(3.1.14)
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where

Ui ((r,2), (', y)) = a;(r, 7', i) di(x) di(y)
and the functions a; are to be determined. This provides, for any Riemannian
manifold of the form (3.1.12)), an asymptotic expansion of the heat kernel on M
where the contributions of the warping function f and the contribution from the
factor M is made more explicit.

The goal here is to show that this approach does not depend on the absence of
additional warps. More concretely we show that it can be extended to Riemannian
manifolds that are of the form . In Section we lay out the formal series.
Starting with a generic format we show that (at least formally) the most natural
changes to Lue’s guess still work in the doubly warped case. The main
result, shown in Section [3.3] is that the resulting parametrix as well as the essential
features of the proof in [29] adapt to this case, and that the newly arising features
are due to the fact that the coefficients a; are now polynomials in more than one
eigenvalue requiring some care so as to maintain the necessary estimates. The
fact that we assume our metric to be doubly warped (instead of multiply
warped) is not important in the sense that the arguments below extend to multiply

warped scenarios I x M; X --- M, with metric dr? + fZ(r)g1 + -+ + f2(r)gn.

3.2 The formal solution

Before we derive the form of the parametrix we point out some preliminary ob-
servations to be used later. Let (M, g;) and (M2, g,) be compact Riemannian
manifolds of dimension d;, ds respectively and let I be an open interval. We shall

study the Heat operator 0; + A on the manifold M = I x M; x My with metric

dr* + f2(r)g1 + f2(r)ga . (3.2.1)

where f; for ¢ € {1,2} is a smooth positive function I — (0, 00). The scalar Laplace

- Beltrami operator A on a Riemannian Manifold is given in local coordinates
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1 0 0
AN=——0— — det g g¥ — 3.2.2
\/detgijz1 ox; ( 99 8xj> ’ ( )

here det g denotes the determinant of the matrix g representing the metric tensor lo-

cally, and (g" ! is the inverse, so that ¢"*g,; = &% with &} the Kronecker

) 1<ij<n — 9
delta.

Proposition 3.2.1. Let M be a smooth manifold, let I be an open interval. Given
a smooth family of metrics g, on M parametrised by r € I, the scalar Laplace -

Beltrami operator on I x M with metric dr? + g, is given by
1., 0
A=————tr(g, o)==+ 2, (3.2.3)
or
where A, denotes the Laplace - Beltrami operator on (M, g,) and §, := %gT.

Remark 3.2.2. The term g, !¢, is the shape operator of the hypersurface (M, g,) in
M; its trace is the mean curvature of the hypersurface. (The shape operator L, is
a symmetric linear transformation on the tangent space T, M of M at p defined by
L,.X =V xH where V denotes the Levi - Civita connection on M and H is the lift

of a unit vector field from I to M, i.e. normal to the factor M.)

Proof. The local matrix representing the warped metric § = dr? + g, is of the form

N 0 911(7“7 33) e gln(ra x) ~_1 0 gll(r’ $) T gln(r’ l‘)
g=1. . _ . 9 = . -
0 gn1 <T7 I) o gnn(Ta I’) 0 gnl <T7 ZL‘) e gnn(r7 l’)

from which we can see that \/det g = y/det g, so

0 0
N=——x= — det gg” —
\/detgi; ox; ( 99 c%vj)




1
=535 "5t g)a + A (3.2.4)

where A\, denotes the Laplace - Beltrami operator on (M, g,) and we used the
identity d% det T, = det T, tr (T *1Tr> to obtain the second term in the last equation.

[
Corollary 3.2.3. The scalar Laplace - Beltrami operator /N on the Riemannian

manifold defined by (3.1.11)) is given by

ik '
= —ﬁ — (dlé + d2_

fa, O 1 1
h fQ)E e P 7 Lo, (3.2.5)

with A, the scalar Laplace - Beltrami operator on (M,, g;), fori=1,2.

Proof. This is an immediate application of the above result to the case M = ./\/lcf1 X

ME with g, = f2(r)gr + f2(r)gn -

A further observation that we shall need concerns the decomposition of eigenfunc-

tions for the Laplacian on product manifolds.

Proposition 3.2.4. If ¢ is an eigenfunction with eigenvalue p for Ay on My and

if ¥ is an eigenfunction with eigenvalue T for A, on My then
P(x) = ¢(z1,22) := p(z1)P(22), == (T1,22) € My X M> (3.2.6)

is an eigenfunction for N, 4+ Ay on My X My with corresponding eigenvalue \ =

n+T.
Proof. Applying A, + A, to ¢ immediately verifies the claim. m

Let us now turn to the formal derivation of the parametrix. Based on the Ansatz

(3.1.14]) we start with a formal double series of the form
P(t,r,z, v y) =

— )2\ = — et —T7;ét
\Ij / (T r ) /"LZC 7 . AZ t /
(Ta r ) exp ( Lt ;:0 exp Fl (7”, 7",) exXp F2 (T, T,) ( T, T y)
(3.2.7)
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where F, F5, U are functions to be determined, k,c,¢ are constants to be deter-

mined, and

Ai(t,r,z, 1 y) Zaj ot s 7)o () i ()t 2 (3.2.8)

7=0

with 0 < po < pg < -+ 7 oo the eigenvalues of A} on (My,¢91) and 0 <79 <1 <
-+ /oo the eigenvalues of A, on (Mas, go), lastly ¢; is the function defined in line
B32.6).

Applying 9; + A, to (3.2.7) yields

r—r')? —p;ct —T;Cl
(O + AP Zexp ( ) exp ( F ) exp ( 2 > - F; (3.2.9)

where E; denotes the formal series

Eit,ray) = ei(rr!, pa, ) gi(x)da(y)t) 2 (3.2.10)
j=—2
whose coefficients e; are linear combinations in a;y9,...,a;—2 and their first and

second derivatives (we set aj := 0 whenever k < 0), concretely

k+4
€9 =— ; U(r —1")%ag, (3.2.11)
4
e 1= —k; U(r — r')2a1
4 k+4
+ 290 = )0ap + (BT + O0) (r — 1')ag — T2 Wag (3.2.12)
k k 2k
with © = (44 + ££), and for j > 0
4+ k
e; = — 2 \IJ(T — 7’/)2CL]‘+2
4 , , k.. 1 2 ,
+ [(7” — 1) W0raji1 + ((7“ R A VA S e Uk )ar"l’)ajﬂ]

- \Ifaf,aj —2 (@\If + 07«/\1’) 8r/aj
+ [(MZ + )\If OV — (134\11(7“—7") —2@&/\1!—83,\1!]%
i B2 k
+ 200,01 + 2009 + SU +260,0 ] a;
— ®*Va;_, (3.2.13)
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where & = <L + % and ® = 9,,® (for the arduous details of the derivation of the
e; we refer to Appendix [3.4.1). Now we set the e; equal to zero. For j = —2 the

equation is easily solved by setting
k=—4. (3.2.14)

Next, if we let

d

U(rr') = (AN AE) T (L) R0 T (3.2.15)

then the equation e_; = 0 is satisfied when

ap = constant . (3.2.16)
Let us also choose
Fi(r,7") = A A0)  and  Fy(r,r') = fo(r) fo(r'), (3.2.17)
as well as
c=c=1. (3.2.18)
As a result of this we find
ay(r, v, pi, ) = 2 r / u;i(s, pi, 7i) ds + ag® (3.2.19)
r—rJ,
where
u=0>+6+ (% + 12) , (3.2.20)
i 15
furthermore
r! 2 r!
as(r,r’ ‘T')IL / wi(s, i, i) ds |+ o <I>/ wi(s, i, 7;) ds
2\, T g, T 2(7’—7’/)2 . i\S, Wi, Tg (T—T/) g i\ S, Wiy Ty

- | o agp
—7’/)2 [ui(’r’7 My Tz’) + Ui(’r’/, i, 7-1)} + ?qﬂ

_ m/r wi(s, pi, ) ds — o=
(3.2.21)
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and for j > 3 we obtain

/

ajra(r, v’ i, i) = r—r
+2(r — )Y ®(r, 8)dsa;_1(r, s) + (r — 8)7®(r, s)a;_1(r,s) — (r — s)70%a;(r, s)
+ (r — s) [ui(s) — ®(r,s)]a;(r,s) + (r — sYHLD(r, s)a;(r, s)) ds.
(3.2.22)
Remark 3.2.5. The dependence of the terms on the l.h.s on the eigenvalues p;, 7;

has been suppressed since it is not relevant for the integration.

Remark 3.2.6. For brevity we have only stated the final expressions in ((3.2.19)) -
(3.2.22) (details of the derivation are given in Section [3.4.2)).

Let us finish this section by establishing two specific properties of the a; which are
needed later. The first concerns their smoothness and the second addresses their

polynomial degrees in u; and 7;.

Lemma 3.2.7. For each j > 0 and all i > 0 the coefficient function a;(-, -, i, 7;) is

C*®inr andr'.

Proof. We use the inductive argument presented in [29]. The statement is certainly
true for 7 = 0 since ag is a constant. Suppose ay(-, -, j4;, ;) is smooth for 0 < k < 5.

From (3.2.22)) we see that

/

1 " .
ajr(r, ', pi, i) = Crg / (r—s) F(r,s)ds

(r—r

where
F(r,s) = —@2(1”, s)a;_o(r,s) + 2<i>(7“, $)0saj_1(r,s) + <'I.>(r, s)aj_1(r,s)
— 9%a;(r,s) + [ul(s) — P(r, 3)}% (rys) + (r — s)(b(r, s)a;(r,s) .

This function is smooth in both arguments since it is the sum of products involving

the smooth functions ® (c.f. (3.4.25))), u (c.f. (3.4.28) and (3.4.26)) and their

derivatives, as well as a;, for 0 < k < j and derivatives thereof (these are smooth

72



by the inductive hypothesis). This establishes that a;4; is C* in r and 7" whenever

r # r’. For the case r = r’ we use the Taylor expansion of F' in the second variable

at s =,
aj1(r,r') = %{F(T,T) /TT (s —r) ds+—asF1(!T’r) /TT (s — 1)+ dst
“*ﬁ/r (33+BF)<T,TS>(S—r)ﬂ*wds}
G VA G PRI N A (D P
- (,,a_r/)j+1{ i1 (r' =) * +m(r —r)+ +

1 L e
”+(O‘Tﬁ)!/r (8S+’BF>(T,TS)(S—T)++6({S}

(=)=

/

_ Fr) OF(rr)
T+l 1(G+2)
1

o (Oé + ﬁ)'(rl — r)j+1 [r (83+BF) (7’, 7'3)(8 — r)jJraJrﬁ ds

(3.2.23)

where r < 7, < s. The only term that is not obviously smooth when r = 7’ is the

last, so let us look at

(r' —r

y+6 r! .
8r?8J(rr')5 ( : )j“/r (O F) (r, ) (s — )Tt dS) : (3.2.24)

When we apply the derivatives the result is going to be a sum where a generic term

is a linear combination of

constant v’ N "
(r' — r)iti+k / (88 +ﬁF) (r,7s)(s —r)7* 2 ds (3.2.25)
(with k < v+ 6) and
1 . ,
G(r,r")(r —r)Ttotot (3.2.26)

(r — r)iti+k

where k < k', and G(r,7’) is a derivative of ((9fi+6 F)(r, ) therefore smooth in

r,r’. Note that the number of derivatives applied in (3.2.26) to the polynomial
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factor in the numerator and denominator is obviously bounded by the total number
of derivatives, that is k + k' < v+ 6. Thus for both (3.2.25) and (3.2.26)) the
limit exists as ' — r since we may chose o + [ as large as needed. In fact since

K <~ 40—k it follows that
G+a+p—K)—(G+1+k)>a+B—-(y+0+1)

which is positive provided a 4+ f > v+ 0 + 1. Thus we see that (3.2.24]) exists at
r = r’ for any choice of 7, d, in other words the last term in the Taylor expansion

3.2.23|) is smooth as well. ]
(3.2.23

As mentioned before we need one further property of the a;, namely their degree as
polynomials in the eigenvalues p; and 7;. This plays a role in the proof of Lemma

3.3.2| where we study the continuity of the Parametrix near ¢t = 0.

Lemma 3.2.8. The degree, denoted by d(-), of a; and its derivatives at r' =r, seen

as polynomials in the eigenvalues y;, 7;, satisfies the following bounds:
1. d(aj(ra r, ,uiaTi)> < ’72‘7/3—‘ .

< [(27+k)/3 0<hk<j,
2‘d((8f'aj(7’a7"lam,na))r,:) <[(2j+k)/3] for0<k<j

r

<y fork>7j.

where [-] denotes the ceiling function.

Remark 3.2.9. This property departs from the analogue in [29] as we were not able

to establish the sharper bound d ((9Fa;(r,r’, ui,ﬂa))r,:r) < [(2j + k —1)/3] for

0 < k < j stated there.

Proof for Propery [l Proceeding by induction, for the base case we use (3.2.19)) to

compute
!

a1(7“,7“7m,7'i):lim< o // @2+®d8)
r—r'J,

r—r!
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: ap _ Ti Hi T
+lim (2 / 767 7 %) oGt )
(3.2.27)

The first term has zero degree since © does (c.f. the line below equation (3.2.12))

for ©). For the terms in the second line note that the function

no_ " 1% T
I(?“)—/T [ACE +f22(s) ds (3.2.28)
is differentiable and
i 1 " Hi Ti
}}Enw (r — r’[ fi(s)? * 12(s) ds)
A I 7
== lim —2—7" = —I'(r) = (fl(mQ + fg(r))‘ (3.2.29)

In other words, the last line cancels out so that a;(r,r, p;, A;) has degree zero and
the statement is true for j = 1. Assuming it holds for all j* < j we need to show it

is satisfied by

/

! _ 7 — (r — sY®%(r, s)a;_o(r, s
aj+1(7"7“7:ui’7—i)_( )j+1/r ( ( )QD (’ )]—2(7 )

r—r

+2(r — 8Y®(r, 5)Dsa;_1(r, s) + (r — s)?®(r, s)a;_,(r,s) — (r — s)70%a;(r, )
+ (r = s) [ui(s) — ®(r, s)]aj(r,s) + (r — sYHLD(r, s)a;(r, s)) ds . (3.2.30)
Here, the factor
S =y /(fL(r) [1(r") + 73/ (fo(r) fo (")) (3.2.31)
has degree 1 and so does u; since © has degree zero (c.f. equation for u;).

Now consider

(') i= (r — 'Y ay (r, 7 i, 1)

= /T —(r — s)jfi>2(r, s)aj_o(r,s) + 2(r — s)? ®(r,s)0sa;_1(r, s)
+ (r — s)7®(r, s)aj_1(r,s) — (r — s)?0%a;(r, s)
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+ (r — s) [ui(s) — ®(r,s)]a;(r,s) + (r — s D(r, s)a;(r,s)ds.  (3.2.32)

Since
G+1) () dj+1 / G410 | /
= d(?”)jﬂl(r) = (=10 + D0aja(r,r's s, )
1 i+ 1 4 .
+ Z <-] + > _+_:E—j_—'—k;>)<7n — r’)j+1fkai/+1*kaj+l<r7 70/’ 1, TZ') (3233)

we can see that at the point ' = r one has a;(r,7, u;, 7)) = cIUT(r) for some
constant c. In particular, the degree of a;;, is determined by the right hand side.

This in turn is simple to compute since

I'r'y=—(r — T’)j<i?2(r, rYaj—o(r, ") + 2(r — T’)ij(r, YO aj—1(r,r")
+ (r — ’/’/)j(.I.)(T, raj_1(r,r") — (r — r/)jaf/aj(r, ')

+ (r =) [wi(r') = @(r,r)] a;(r,v') + (r =2/ O (r, 7 )ay(r, 1) (3.2.34)

(here & = 9,,®). This vanishes as 7/ — 7 and so does =4 1(r') for each 1 < k < j.

d( )
For the (j + 1) derivative we find the following term-wise bounds on the degree
by using the inductive hypothesis and the basic identity [z] +n = [z + n] for any

integer n:

T+t (r) = _(_1)1']'! (g(p(r, r)fﬁ(yn’ r)aj,Q(T, Tz-l- Cb28r/aj72(7”, T) )

degree <[2(j+1)/3] degree <[2(j+1)/3]
+2(—1)75! < fﬁ(r, r)Opaj_1(r, )+ <i)(r, r) (83,%,1(7", r’))r/:T )
) degree SF(2J+1)/31 a degree gfg(jﬂ) /3]
+(=1)7! ( (1)1 (1) + B 7) (00 (1)) )
degree S(( +1)/3] degree gf(r2j+1) /3] ’

— (=171 (B ay(r, 1),

degree <[2(j+1)/3]

+ (—l)jj!< [&ui(r) - @(r, T)}aj(r, 7")/+ [uz(r) —®(r

[

(Opraj(r,r )) ,:T> )

[25/3]

degree <[25/3] degree <
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Remark 3.2.10. In addition to the inductive hypothesis and properties of the ceiling

function we also use the fact that the degree of ® is invariant under differentiation

with respect to v’ (c.f. (3.2.31))), whilst
d([Oyui(r) — d(r, r]) = d([wi(r) — ®(r,r)]) =0. (3.2.35)
This shows that property holds in the inductive step. O

Proof of Property[3 Here we use the identity

(r—r"opa;1 = (J + aji1 + (u; — ®a; + (r — T’)Cfaj — 83,%- + éaj_l
+ 2d>8rfaj_1 — Ci>2aj_2 (3236)

which arises in the construction of the coefficients a; (c.f. equation (3.4.31)) in
Section |3.4]). Taking one derivative in r" and evaluating at v = r it follows that

— (] -+ 2) (&/aj“(r? T/))r’:r = (Uz — (I))CL]' + ('LLZ — <I>)8T/aj — Cl;Daj

- Gf,aj + éa]’_l + Béarlaj_l + 2(1)83/6L]’_1 — 2<i>q5aj_2 — d)Qar/aj_z .

But then Property and the inductive hypothesis imply (at r = r’) the following

degree bounds:

2j + 1

d((ul - @)@/aj) S |_

|

w | &
-

(where we use line (3.2.35)) as well); further

A(ba;) < [2(j+31)+11, (D) < (2(j+31)+11
and
dfisar) < (20, a(sbosa) < (2D,
finally for the last three terms we get
d(200%a; ) < (2U+3¢1’ d(2dda, ) < (Q(J'?—)F IH



(j+1)+1

: 2
d(@°0pa;) < [=——1.

So in summary the degree of (&/ aj1(r, r’))r,:r as a polynomial in p;, 7; is < [(Z(j—i—
1) + 1)/3]; this is Property (2) for the case k = 1.
Now suppose that it holds for 1 < i < k where k£ < 7+ 1. Starting from ((3.2.30)

one has

1 /
(08 @j1)r=r = (—Eaf'((r —1")aj41) )=

1 . .
= _E(af' ((] + Va1 + wa; — ®a; + (r —1r')Pa; — 9%a;
+ <.I')aj,1 + 2&387«/6”,1 — CiDZaj,g) )7":7’ . (3237)

so that (at r =17)

k+ji+1
k

1 . . . .
- E@f,((uz — ®)a; + (r — r')®a; — 02a; + Paj_1 + 200 a;_ — Pa;j_s) (3.2.38)

k
ar/ CLj+1 =

and it remains to bound the degree of the terms on the right hand side. Always

evaluating at r = r’ we get:

k
(95/ ((uz — (I))ar/a,j) = Z (k> \8,3 (Uz - (I)> . 87’3*”1% (3239)

1
i=0 §+k—i+l
degree < I']f‘l

(note that d (8:,, (u; — <I>)) =0 for each 0 <7 < k so that factor does not contribute
to the degree of the summand). Thus the degree of the left hand side of (3.2.39) is
bounded by [ (2j 4+ 1+ k)/37. Also,

o ((r — r')@aj) = —

k—1
k—1 . .
( . ) a,:,/q) . af/_l_laj
; 7 ~——
=0

i ; :
degree <[ M 1

so the left hand side’s degree is bounded by [ (2(j 4+ 1) + k)/3]. Likewise we can
bound the degrees of the remaining terms in (3.2.3§|):

20+ 1) +k

(0% (920,) ) < [ 2 DEE,
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and

k .
d(@f,(@a] 1 —d(Z( )8Z+2q) 819/ Za] 1) < I'w-l’

=0 degree g[@1
similarly
k .
. , 1 )
d(a,]f/@(l)&/aj 1 —d(ZZ( )8H1(I) 8’“ i+, 0 1) - (%1
=0 degree S"M]

finally we have

N .

_ L . A 20+ 1)+ k

(0 (9%a;)) = d(Z (z) o0 ays ) = [%1'
i=0 2

degree <[ % 1

This shows that the left hand side of (3.2.38) has degree less than [ (2(j+1)+k)/3]

and the inductive step for the first branch of statement in the proposition is
established.

The last part of this proof is to verify the second branch of statement .
Here the base case is true since ag has degree zero; and the inductive step follows
immediately from the defining equation of a;;1 assuming that it holds for
0,1,...,7. O

3.3 Statement and proof of the main theorem

We now prove that the formal series obtained in the previous section gives rise to a
parametrix for the heat equation; this is Theorem here. Essentially the outline
of the argument is that of [29]; the newly arising features are due to the fact that
the coefficients a; are now polynomials in more than one variable and care has to

be taken so as to maintain uniform estimates nevertheless. For each £k =0,1,2, ...

set
P’“:(é‘yﬂ—w“p (‘%) ‘J’Xp(ﬁ(%( >> (f2< S >> Aok

(3.3.1)
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where V¥ is as defined in (3.2.15)):

k

A = Z a;(r,r', p;, Ti)@(ﬂ?)@(y)tj_lm (3.3.2)

=0
is the k' partial sum of the formal series given in ([3.2.8) and ¢: M x M — R is a
smooth function with compact support satisfying

1 ifd<R/2

o(p((r2). (")) ) = o
1 >

where R > 0 and p denotes the distance function on M.

Lemma 3.3.1. For each k =0,1,2,... we have

lim Py(t, (r,x), (+,")) = O(ra)-

t—0

Proof. Let g be a smooth function on M with compact support containing the
point (r,z) and contained in a coordinate neighbourhood (U, (r',y)) with U =
(a,b),» x V, where V is a coordinate neighbourhood for M; x Mj. Writing dyu for

the Riemannian measure on M one has

/MP'“<t’ (Tafv))ngI/UPk(ta (r,x), (', ) g (' y) f2 () 32 () dydr”

Here and occasionally in the remainder of the proof the notation P (t, (r, x)) refers
to the function (r',y) — Py (¢, (r,z), (r',y)). Upon substitution of (3.3.1), (3.2.17)
and (3.3.2)) this is equal to the long expression

_ ’ 1 (7” o 7“/)2
- /(a,w v Vint P T

k 00 . » / % | L%z
(5 [t sl s e (32) (42)7)

- 7
-~

(%)

(3.3.3)
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(we have used the compact support of g to split the integral into factors and ex-
change summation with integration). The presentation above shows we are applying
the one - dimensional heat kernel
1 (r —r')?
exp(— ——
=P (— )

to the compactly supported function (x). As t — 0 we may therefore use the

e(t,r,r') =

property
1ir% e(t,r,r') = o0.(r") (3.3.4)
to deduce
lim Pk( (r,x))gdp =
; fl(r) fg(r) ) ) - J
}133 (/ Y e e B0 gy(x )@(y)g(r,y)ag(m,um)dy)lt - (3.35)

The coefficients of the #/ are finite (note that the a; are polynomials in p; and 7; by
Lemma that is finite sums, so no divergence can arise there due to the series

in 7). Hence, as t — 0 we are left with

hm Pk( (r,x) gd,u—ao/z¢z )0i(y)g(r,y) dy

_aozqz ) [ 69(r) duls) = angr ). (33.6)

so the proof is complete once we normalise the coefficient ay. n

At this point it is clear that Py is smooth on (0,00) x M; X M. The next and
final Lemma shows that (0; + A) Py, extends continuously to a function on [0, 00) X

M1 X Mg.
Lemma 3.3.2. Let T' > 0 be fized. The following estimate holds:

(0 + AN Py| < C(f1, f)t* 28 forallt <T
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where «, f > 0 are certain constants, n = dim M; + dim My, and C(f1, f2) is a

smooth function that is independent of t and determined by the warping functions

fi, f2.

Proof. We already computed (9, + A)P (c.f. (3.2.9) and below), in particular we

can see from the formulae that

(r—1'")?

(0 + A(TW))P;? = Z exp ( — —) exp ( —pat )

_TZt ~

A eTAEIARRE
(3.3.7)

4t filr) A7)
where initially E’,k is a polynomial in ¢ of degree k + 3/2:

k—
Z ( j+Daj — (r—1)0waj +wa; — Pa; + (r —r')ba; — 02a;
=0

+ CI)CLj_l + 2<i>8rzaj_1 - <i>2aj_2>gbi(x)¢i(y)tj_l/2
+ W (uiak — bay + (r — r')@ak — 0Zay, + day_1 + 280, ap_1 — @2ak_2>¢i(:v)¢i(y)tk_1/2
+ qf(@(lk + 2(1)8 ! fe — (I) Q. 1)@51( )¢ ( )tk+1/2
- qf(iﬂak) ()i ()t +3/2 | (3.3.8)
But the summands vanish identically by Constructionﬂ except for those in the last
three lines. Now an intermediate step in the recursive solution procedure for the a;
is the equation
(r —1"owagy1 — (k+ Vagr1 = wiar, — Pag + (r — r’)cbak — D ay + day,_,
+ 2<i>8r/ak_1 — <i>2ak_2 (339)

(c.f. Section , in particular the step above is equation (3.4.31))). Substituting

this into the first of the last three lines we see that we are left with estimating the

expression
- B (r —r')? ox — it (N
;‘PQXP( At ) p(f1( ) f1(r! )) (fz( )fz( ))¢z( ) di(y)

I that is how the a; are determined.
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(((T = ") 0prsr — (k4 Dagar 172 4 (Sap + 200ay — DPay )¢+

. ciﬂakt’“?’/?) . (3.3.10)
First, let us observe that
_\2
(r—1")exp(— %) = 2V ke ™ = O(t"?) ast — 0, (3.3.11)

/

ith -
with y =
24/t

as t — 0, since yFe ¥ — 0 as y — oo, uniformly in (r, r’). Also, it is known

(k is any non-negative integer). This expression is indeed O (tk/ 2)

that the short time asymptotic behaviour of the heat kernel on the compact factor

My x My is
> exp (= (i +7)t)di(x)di(y) = Ot %) as t — 04
(see e.g. [30, Prop. 3.23]). Therefore

Ti

exp ( — o (x)pi(y) = /2 as n
S (~ iy * T P = 0 as 0

where the constant in the estimate may depend on fi, fo, whilst basic facts in
asymptotic analysis (see for example [26, Theorem 3.2]) then imply
i Ti l Hi Ti
+ exp ( — + t)x
D T G AT G A AC AR AGT Al
di(z)gi(y) = O(fn/%l) ast — 04,

for any non-negative integer [, with the bound in general depending on fi, fo. The

(3.3.12)

last estimate is important because the coefficients a; above are polynomials in p;, 7;,
so in view of it remains to show that their degree d(a;), can be controlled.
The simple bound d(a;) < j is not enough to show that negative powers in ¢ do
not occur. However by Taylor expanding the coefficients and then using

and Lemma B.2.8] we can see this is true. To illustrate this let us consider the

tk_l/Q

contribution coming from a1 in the -term in detail. Here

k+1

ai/ak: 1(ry s iy 7)) ;
g1 (7,7, i, 7) :Z ( i . >T—T (r' —r)
i=0 v (3.3.13)

+ a’k+1(r7 TI? i, Ti) (7’/ - T)kJrl
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with

/ 8§+1ak+1(rv S, i ;) - (8 — T)k ds

ak-i—l(ra TI)MiaTi)(r, - T)k—‘rl = (k’ I 1),

a polynomial in y; and 7; of degree k 4+ 1 (c.f. Lemma [3.2.§|[2)). Substituting the
above into ((3.3.10]) gives a sum with terms of the form

> (r—r')?
Z r—r) exp(—T)x

(8 g1 (r, v’ ,U,Z,TZ))
7!

I ox Hi Ti A k—1/2
A AT AT

for 0 < i < k, which is O (#9/2+k=n/2-1 255 1-1/2) “anq

r)ktL _ (r—1r")? (6ff+1ak+1(7", T, Wiy Ti))wzr
Z\D exp (=) (k+1)!

exp (— pit Ti ()12
(= o T R V@)

which is O( (k1) 24k —n/2—k—1- 1/2) = O(tk/2_"/2_1). But note that

+ apgr (1, T’a#i’Ti)> X

i n (k+1)+1 1 _ i n  2k+1)+i 1
R SR PN S A
2 + 2 [ 3 1 27 2 + 2 3 2
_2k+i—4_§_§ ﬁ_E_E
B 6 2 273 2 6
so overall
- (r—r")? —Hit k—1/2
Vexp(— ———)exp exp 0i(x)0i(y) a1t
> wesn (=) e (i) e (o o
—O(t57577). (3.3.14)
Similar arguments lead to an estimate for the other terms. O

Theorem 3.3.3. The function Py is a parametriz for 0, + /N for k large. This

means that
1. Py is a smooth function on (0,00) x M x M
2. (0r + D) Py extends to a continuous function on [0,00) x M x M
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3. limy—o Pi(t, (1,2), (+,*)) = (e s the Dirac - delta distribution based at (r,z) €

M.

Proof. This has now been established in view of Lemma -

3.4 Computations for the parametrix

3.4.1 Applying the heat operator to the formal series

The term 0, P

= —7')? — et —T1;¢t
8tP:Z\Ifexp (%) exp< 1/;0 ) exp( ;C )
1 2

1=0

(r—1")% i T
x (@AZ < et E R Al>.

With
/ - . 1 / ;) —
atAi(t,T,T ,x,y) = E (j - 5) aj(T,T Muﬂ)@@)@(fy)ﬂ 3/2

=0
We can collect common powers of ¢ in the second term and write

= r—r')? —p;ct —T7;Ct
o, P :Z\I/exp <%) exp ( ;1 ) exp ( 2 ) B;
i=0

where
Bi(t,r, 1, x,y) = i b;(r, v i, 1) i () i (y) 7~/
j=—2
with coefficients
by =— r _];/)2&0
by = — (%ao + (r _krl)zal)
and for j > 0,

1 (r —r')? wic  Te
b]:(]+§) aj+1—Taj+2— F1 +F2 a; .

[]

(3.4.1)

(3.4.2)

(3.4.3)

(3.4.4)

(3.4.5)

(3.4.6)



The term A, P

A(T’,y)P -
0 fi(r) f(")\ @ 1 1
— —|d d —+ A —— A P.
[ o < i) TR ) o g S g S
(3.4.7)
We have
0 = (r —r')? —pict —7;ct
—p — - C; 4.
57 Zz:; exp ( o ) exp < T exp 7 C; (3.4.8)
where
Ci(t,r, 1’ x,y) = Z ci(ryr’, i ) i () i (y)t? 2 (3.4.9)
j=—1
with coefficients
2 !
ey = —¥qf@0 (3.4.10)
2 !
Co = —¥\I}(l1 + CLQ@T/\IJ + \1187‘/010 (3411)
and for j > 1,
2(r — 1) O Fy O Fy
C; = —T\I/a]qu + ajarxllf + \I@T/aj + <MZCT12 + TZ‘CF—22> \IJaj_l . (3412)

From this we get
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(r")? P

> 2(r—1") + tar'Fl + ~7587"}7’2 (r—r')? —Hact —Tict
= ———— 4 pct——— + 7;C ex ex ex
i—0 kt a F? F P kt 0 P g

- (r — 7”)2> (—mct) (—nét)
+ exp | ———— | ex ex - 0. C;
; P ( Kt P\TR P\
— (r — r’)2) (—,uict) (—Tiét)
= exp | ——— | ex ex - D 3.4.13
; p < - (5 e (3.4.13)




where

Di(t,r, 7', x,y) Z 85 (ry 7" s, i) i) ()t 1/ (3.4.14)

j=—2

with coeflicients

2 !
5y = —%al (3.4.15)
2 !
5_1 = —%CO + 0,,/0_1 (3416)
and for j > 0,
2(’/“ —T/) &/Fl ~a,ﬂ/F’g
5]' = _ch+1 + 3,,/cj + (’uZCF—f —+ TZ‘CF—22 Cj—l . (3417)
Finally,
= (r —1")? —p;ct —T7;Ct
A P = n R - A; 3.4.18
My ZO 11V exp ( P exp | —p— Jexp { ( )
and

> r—r)? —pct —T1;Ct
Aypy P= ZTZ'\I’ exp (%) exp ( Fa > exp < 2 > CAi. (3.4.19)
i=0

1

Collecting the terms from (3.4.3)), (3.4.8), (3.4.13)), (3.4.18)) and (3.4.19) we get

r—r')? —pict —T;Ct
(O + D yy) Zexp ( ) exp ( I ) exp ( 2 ) -FE;  (3.4.20)

1

where
Ez(t7 r, Tla x, y) = Z 6]‘ (7", T,7 Hi, Tz)¢z($)¢z(y)t]_1/2 (3421)
j=—2
with coeflicients
€_9 = \Ilb,Q — 5,2 (3422)
e 1 =Wb_q —0_, — (di 2 h + d2f2) (3.4.23)
Ji Ja
and for j > 0,
i Ti f1 f2
e; =W b+< + )a) o, — | d +d ) 3.4.24
” ( 7)) Ut ) (34.24)
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3.4.2 Solving for the coefficients

e_2:O

_ 2 4 W \2 2 4
G kr)ao—u\llaoz—\lfa()(T ") (1+—):o.

Thus we see that k£ = —4.
€e_1 — O

—dy/2

—di/2
Setting U(r,r") = <f1(r)f1(r’)> (fg(?“)fg(?“’)) and ag = const gives

€_1 = \I’bfl — (571 - ( ;1 + dzﬁz)

2 .
:\I/((T 4T) CL1-%CLO> — (T 2TCQ+87~/C1> —< ;1 +d2§z) 1

_\2 1 o .
_ (“ 4” \Ifa1—§\lfa0) T 2T (T T\Ifal—i—aoa \I/—I—\Ilﬁrfa(])

_ T,(T_QT\I]CL())—( §1+d2§z>( 27“\1/a0)

—(r—r"agp (8 U+ (dl h —l—@é) \If> —(r—=r")Uouay=0.

2hH 2/

For later purposes we note that

ej=0for j>0
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We set Fy(r,r") = fi(r)fi(r") and Fy(r,r") = fo(r)fo(r'), and ¢ = ¢ = 1.
o (T ) - higf),
=t (o (F ) m) o <d1f1+d2f2>
:\I}|:(j+l)a.+1+wa,+2_( Hi + Ti )a
2) " 4 AMAE) - ) f01))

a o=
: (fl(r’) f2) } { 5 Gt O

) fl(fr’) _ fQ(T,) 5 ) fl f2
: (”Zfﬂr)f%(r') TR gw) ( h +d2f2)
7 7 (3.4.25)

AOAE) T RRE)

Write

o =

so that ' _
N (N (0
& =000 =~ (b s + e )

Proceeding with the above and simplifying,

:@<@+D%H_®%+(fk) h?))a)

+U(r—r") (tbaj - &/ajﬂ)
hht) b0 (R0 f)
+ U ((2 O fQ(r,)> j ;0 <2 RGRE f2(7")>

- af,aj + éaj_1> + W (2(1)(97,/&]'_1 - d)QQj_Q) .

To further clarify notation, write

() | ds o)
0= (2 G fz(?“’)) (3.4.26)

in the above and re - order the terms,

ej = ‘P((] + Va1 — (r —1")0pwaj1 + ua; — ®a; + (r — 1) da;

- 63/0/]' + (‘I.)ij_l + 2<i>c9rxaj_1 — <i>2aj_2> (3427)
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where a_s = a_; = 0 and

() = ©2 4 € Hi Ti
w; = ui(r', pi, 7)) = ©° + O + (fl(r,)Q +f2(7“’)2> : (3.4.28)

As in [29], we set (3.4.27) equal to zero and solve for the a;, j > 1 successively.

0=ua; — (r —r")oway + wag — Pag + (r — ') dag

0

— [(r — r)a1] = wiag — Pag + (r — r')dag

or’
=

/

= ,/ ui(sa,uinz’)_(I)<71737,Ui77'i>+(71_$)d)(7a757/%:7-i)d5

al(ra /r/’/'l/i77—i) = r—rp
! /

Qo "
- / O(r, s, i, 1) ds

a

= — ,/ w8, pri, 7i) ds —

r—r

r—r
’

: / (r = $)(r, 5, 15, ) ds

Qo

r—r

/ /

ig? % // U/i(SHuiJTi) ds — o // ¢<T’S’/'LZ"Ti) ds

r—r r—r
Qo ’ v
+ ,<(7”—7’)<D+/ q)ds)
r—r ,
Qo v’
= / wi(s, i 7i) ds + ao® . (3.4.30)

Similarly we determine

0 .

57 [(r - 7“/>2CL2} =(r—1r") (u, —®+ (r— r’)@) ay — (r —r")oka
+ &(r — 1")ag

which, upon substitution of (3.4.30)) for a; becomes

= ag (ul —®+(r— r’)fls) (/TT, wi(s, i, 1) ds + (r — r’)@)

— (r—1"0%a, + ®(r — ')ag .
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then substituting the derivative 9%ay, using again (3.4.30)), gives
= Goui/ ui(s, i, 7i) ds + ag(r — r')u;® — Go‘I’/ ui(s, i, i) ds

/

—ag(r —)®* + ag(r — r’)cﬁ/ wi (s, i, 1) ds + ag(r — 7“/)2<I>Ci>
— (r —1")0%a; + &D(r —1ag .

Finally we substitute for the starred expression below,

2
- %@f </ ui(s, pis ) d5> + g0y <(r — r')(I)/

Qg

990, ((r —)9)* ~(r = )Ry + aofr = )

(%)

/ /

w; (s, fli, T;) d5>

2 2 r/ ..
((*) = agdyu; + t SU; + %/ wi(s, i, 7;) ds + ao(r — r’)d))

r—r (r—r

2 ’
= %&/ (/ wi(s, pi, 1) ds) + a0, ((7" — r’)(I)/ wi(s, i, 7;) ds>

a 2a 2a v
+ anr/ ((r — r’)@)z — (ao&lui + —Olui + —0/)2 /T wi(S, pi, Ti) ds) )

r—r (r—r

Thus
(r—1')2ay =

/ r—s ( S, Wiy i) — P(r, 8, s, ) + (1 — S)(iJ(T, S, i 7})) ay(r, s, i, 7) ds

!

— / (r — 8)0%a1(r, s, pi, ;) ds + ao/ O(r, s, i) (r — s)ds
—

(r—1')az(r,7', pi, ) =
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/ /

2
Uz‘(S,HuTi)dS> +CL0(7“_7“/)(I)/ wi(s, i, 1) ds

ag /T
2 \J,
s PP [ - 90 ds

!

/

+ ao/ (r—s)®(r,s, p;, 7)ds

([

s PP [ 95 ds

2 ’
Ui(SaMi,Ti)CLS) +ao(7‘—7”,)‘1)/ wi(s, pi, ;) ds

/

/

+ a6 / (r — $)B(r, 5 i, 73) ds

i Go /
vl

+ %(r —1)20? — [(r — v )Opay + ar(r, 7', i, 1) — ay(r, 7, i, 7i)]

!

wi (S, pi, i) ds) + ag(r — r')@/ w; (s, pi, 1) ds

+ao (1= 1)®+ @7, iy 1) — D7 piy )|

-

/ /

/><I>/ w; (s, pi, 7i) ds

)

Qo

2
Ui(S, iy Ti) dS) +

2@0 " ap
C(r—r')3 / il o ) s = (r—r)? [wils, i i) + wi(r’, i, 70)]

and in general,

(r=r)0vaji1 — (j+ Dajp1 =
Uity — (I)Clj + (7’ - r/)Cbaj - (93/@3- + <.I.>aj_1 + 2(i)a,~/aj_1 - (i)2aj_2

—

9,
B

/)j+1

r—r Clj+1j| =

— (r =1y %, 5+ 2(r — 'Y @Dpaj .y + (r— 1Y da;
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= (r =Y 0%a; + (r —r') (u; — @)a; + (r — 1) P (3.4.32)
=

ajr(ry 7' i i) =
(T—r )it ( (r — s)7®%(r, 8)a;_o(r, s) + 2(r — 8) (1, 8)Dsa;_1 (7, 5)
+ (r— ) (r, s)a; - — (r— s)9a;(r, s)

+ (r = s) [ui(s) — ®(r, s)]a;(r,s) + (r — s (r, 5)a;(r, s)) ds (3.4.33)

(The dependence of the terms on the eigenvalues p;, 7; has been suppressed since it

is not relevant for the integration.)
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Chapter 4

Explicit formulae for resolvent

symbols and their application

4.1 Introduction

Let (M, g) be a closed Riemannian manifold of dimension n and denote by A the
corresponding Laplace Beltrami operator. It is well - known (see for example [36,
Prop. 3.23]) that there exists a short - time asymptotic expansion of the heat kernel

ka(t,z,y) on M along the diagonal,

tr(ka(t,z, 7)) w0, Y ()t (4.1.1)
J=0
The heat kernel was described in Chapter |3 as the fundamental solution to the heat

equation J;+2A, on M; but here we shall use the equivalent formulation of ka (¢, z,y)

as the Schwartz kernel of the heat operator e~ (the Schwartz kernel of a pseu-

dodifferential operator T refers to the family of distributions kr(x,-), parametrised
by x € M, that satisfies the identity T'f(z) = (k(x,-), f) for f € C*(M) where
f + (u, f) denotes the application of the distribution u to the function f). The

heat operator e™*# is defined as a Cauchy integral via the holomorphic functional
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calculus by

ettt / e (A — A1 d) (4.1.2)
Y

"o
where the contour 7 consists of two rays {re*™ | r > §} in the first and fourth
quadrant of the complex plane (§ > 0) respectively, which are connected via an open
arc {0e? | —o < 0 < o} that encircles the origin. In particular, v properly encloses
the positive real axis which contains the spectrum of /. Integrating the expansion
over the manifold gives rise to the short time asymptotic expansion of the
heat trace

Tr(e™) « Y gt t—oy (4.1.3)

Jj=0
where the coefficients ¢; = [, ¢;(x) dz yield geometric information about the un-

derlying manifold. For the coefficients with even index the formulas

Cop = /Mtr (cor(x)) dz, (4.1.4)

where

cop(z) = / / e Mg _op(x, &, ) dNdE (4.1.5)
nJy

are well known, here d\ = id\/2m and d§ = d&/(2m)" denotes rescaled Lebesgue
measure. Furthermore one can show that the coefficients with odd indices vanish
(c.f. [38], [I7], see also Section below for the first odd coefficient). Let us
explain in a little more detail the term 7_o_ox(z,&, A) in the integrand as it is
important in the sequel. These are called the resolvent symbols of the operator
under consideration (in our case A); they arise in the asymptotic expansion of the

local symbol of the resolvent operator (A — \)™1,

r(x,&,A) Zr_z_j(x,f,/\), (4.1.6)

J20

which is valid for |¢] 4+ [A]"* > 1 and X in a suitable sector A C C. Here, the left

hand side is an element of the class CS™2 of parameter dependent classical symbols
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as defined in [41l §9], while each summand 7_5_; on the right hand side belongs to

CS™2?77. The relation «~ means that for each N = 1,2, ... the difference

r(z,&,\) — roj(x,&N)

J

=

Il
o

lies in the symbol class CS™> (Symbols classes are introduced in more detail in
Chapter [5)). The asymptotic expansion (4.1.6) arises in the construction of the
parametrix for (A — A)~! where one obtains the following well - known recursive

formulae of the resolvent symbols:

T_9 = (CLQ — )\)_1 ;
1 .
o9 ;= —T_o Z —,(agaz—k)(Dif??%l) (j=1)
k=5 T
1<j

here the functions as, ay, ay constitute the homogeneous summands of the symbol

op of the operator A, that is

O’A($,£) = &2(3:75) + al(xaf) + ao(l"»f) with ak(x,af) = akak(x>€) ’

furthermore p denotes a multi-index and D,, = —id/0z;. In particular we see that
the functions r_,_; are determined by the local symbol of the Laplacian and a finite
number of their derivatives. In Section (4.2.2)) we shall provide explicit formulae
for the first terms in the asymptotic expansion (c.f. Theorem , to the best of
our knowledge these do not appear elsewhere in the literature. The reason we are
interested in these closed formulas is that they facilitate via a direct and
elementary calculation of the heat coefficients in the asymptotic expansion of the
heat trace; this is illustrated in Section [4.2.3| where we apply our result to recover
well - known geometric expressions for the first three heat coefficients.

A further application of resolvent symbols is that they are effective for deriving
index formulae. Let M be a smooth compact manifold without boundary of even

dimension n = 2k with vector bundles £* 5> M and consider a first - order elliptic
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differential operator

D: C®(M,EY) — C*(M,E7) (4.1.7)
acting on smooth sections, with corresponding Laplacians
AN =D*D: C®(M,ET) — C°(M,ET) (4.1.8)

A =DD*: C®(M,E™) — C®(M,E7). (4.1.9)

It was observed by H.P. McKean and I.M. Singer [24] that the index of D, defined
as

ind D := dimker D — dim coker D

satisfies the identity
ind D = Tr(e™*2) — Tr(e_tﬁ)

:/Mtr<ka(t,a:,x)> —tr(kg(t,x,x» |da]

where ka(t, z, ) is the Schwartz kernel of the heat operator e ™' described above

(4.1.10)

(and likewise for A) If M is a Riemannian spin manifold and D is of Dirac - type,

that is
D=DPI+IxV': C®MST®F)— C°(MS ®F)

where ST denotes the spinor bundle and F — M is some coefficient bundle with

connection V7, then the Atiyah-Singer index theorem states that

) 1 ~
where
~ R/2
A(M) = det'? "=~ 4.1.12
(M) " Sinh R/2 ( )
is the A - genus form with respect to Riemannian curvature R whilst
ch(F) = tre= V")’ (4.1.13)
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denotes the Chern character of the coefficient bundle F (here (V7)? is the curvature
of the connection V7).

One approach to establish the equality in (4.1.11) is via the McKean Singer formula
(4.1.10). Here one has to show that, pointwise, the limit

lim (tr(kA(t, v, 2)) — tr(kx (t, , x))) (4.1.14)

t—04

is finite and equal to the index density. As a starting point one establishes asymp-

totic expansions

tr(ka(t, o, z)) =0+ ch(‘r)t% and tr(kﬁ(tyfb,fﬂ)) =04 ZEJ(ZL‘)Z&%;
j=0 >0

(4.1.15)
then to get to the existence of the limit (4.1.14)) one has to establish that

cj(z) —¢;(z) =0 for j <n (4.1.16)

so that the negative powers in t vanish, allowing the limit to exist, which
one then has to compute.

One way to deduce that the required limit is finite is to estimate the heat
kernel by an application of the "Duhamel principle” [24]. This method requires
knowledge of the full heat kernel which is a global object (i.e. well defined on the
whole manifold). On the other hand the required limit is local since one
is concerned with short time evolution as ¢ — 0, so one might wonder whether
knowledge of the complete heat kernel is actually necessary to get to the finiteness
of the limit. Another approach was proposed by E. Getzler [I3]. Tt starts with
the observation that the heat kernel of the harmonic oscillator D? = —% + a?z?
coincides with A\(x) Then, by scaling the variables, the heat trace associated with
A is reduced to the heat trace associated with D? and via this identification one
proceeds to compute lim;_,, <tr(kA(t, z,x)) —tr(kx(t, z, a:))) = A(x).

In the second part of this chapter we shall study an alternative approach which in

some sense is simpler and more direct. The idea is to establish a correspondence
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between the generating function for the characteristic numbers and a generating
function built out of the terms in the asymptotic expansion of the local resolvent
symbols. Let us introduce the generating function for the characteristic numbers
by way of an example. Suppose M is a Kéahler manifold of complex dimension n
and let W — M be a holomorphic vector bundle of rank N. In this case the index
form is identified with a Todd class form and the Atiyah - Singer index theorem

specialises to the Hirzebruch - Riemann - Roch theorem

(M, W) = W /M Td(M)ch(W) . (4.1.17)
Here N
X(M,W) = " (=1)dim H' (M, Q(W)) (4.1.18)

=0
is the Euler characteristic, H*(M,Q(W)) denotes Dolbeaut cohomology. On the
right hand side,

Td(M) = Tdy + - - - + Td, (4.1.19)

is the Todd class defined by the Todd polynomials Td;. These are polynomials in

the Chern classes cy,...,c, of M and obtained from the generating function

2

t
i 1) =1+ Tdi(R)t+ Td2(R) TR (4.1.20)

clR

Td(M,tR) := det <

where R is the curvature of a hermitian connection on the tangent bundle T'M,
whilst a representative of each Chern class cx(R) is given as the coefficient of the

generating function
t2

det(1 +tR) = 1+01(R)t+02(R)§+... (4.1.21)

Lastly, the Chern character of W with connection V'V is the series

ch(W) = tre= V") = i tr((Vk#%) :

k=0

(4.1.22)

The generating function on the analytical side can be represented in three essentially

equivalent ways (for simplicity we state the results in terms of the operator A, but
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the statements hold of course true in like manner for ﬁ) First, there is the short
time asymptotic expansion of the heat trace already mentioned in (4.1.15)),
Te(e7) o, Dot T (4.1.23)
k>0

Secondly one may consider the resolvent (A — \)~! whose N power is trace class
whenever N > n /2. If we restrict A to suitable rays then there exists an asymptotic
expansion [16]

T(A-N) « Y N7 Ao oo (4.1.24)

k>0

We note that for any N,

/e_t’\(A —N)7ldy = (N + 1)!/6%@ —N)Nd\. (4.1.25)

.
This relates the coefficients ¢, in (#.1.23)) to the coefficients ¢ in ([4.1.24) (in fact,
one can show that they differ by a constant). Finally, one may consider the trace
of the power operator

-5 __ L —s - —1
A _QWLA (A —A)ldA (4.1.26)

This has a classical trace Tr(A™*) for Re(s) large enough. If we denote by ((A, s)
its meromorphic extension to C then the pole structure is commonly represented

by the relation

Cr, dim Ker A

F(S) C(A,S) - s+ an s

(4.1.27)

k>0
where «~ means that the left hand side is a meromorphic function on C whose poles
are indicated in the right hand side. Furthermore, the Gamma function I'(s) is the
meromorphic extension of the integral [ ¢*~'e~ d¢ (initially defined for Re(s)> 0)
to all of C, and Ker A denotes the Nullspace of /A. The Mellin transform relates
(4.1.23) to (4.1.27)),

C(A,s) = ﬁ /000 t Tr(e™"*) ds (4.1.28)
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and the coefficients ¢, in these expansions coincide (as suggested by the notation).
A precise account of the equivalence between these generating functions is given for

example in [3§], [I7]. Here we will be focusing on the asymptotic expansion of the

heat trace and the formulae (4.1.4)) - (4.1.5) which are inherent in the heat trace

expansion (as mentioned above the coefficients with odd indices vanish [3§], [17]).
It is here where the resolvent symbols make their appearance. Let us also mention

here an alternative well known formula for the nonzero coefficients,
1 n_j
b () = — / / log A2 71 o o, &, \)dNdsé . (4.1.29)
I§|=1/C1

It is extracted from the (-function formulation (4.1.27)), equivalent to (4.1.5)) yet

applicable to a more general class of operators. The inner integral is again over
the circle in C centered at 1 and not enclosing the origin, with d\ = id\/2m, and
the outer integral is over the unit - sphere in T, M, with rescaled sphere measure
dsé = dg&/(2m)".

Coming back to the the McKean - Singer formula and the problem of
computing the limit we note that the index (i.e. the left hand side in
(4.1.10)) is independent of ¢ whilst for small ¢ the right hand side is approximated
in terms of the formal difference

chtk;n — ng tkiTn

k>0 k>0

where ¢, ¢, are the coefficients in the heat trace expansions of A, A respectively.
By letting ¢ — 04 the claim is that, by the constancy of the right hand side for

arbitrarily small ¢ > 0, the limit exists and hence
indD =c¢, —¢,. (4.1.30)

Substituting the explicit formulae for the coefficients from the heat trace expansion

into (4.1.30]), we arrive at

ind D — / ( / / eA{mgQj(a:,g,A)—trmQj(m,g,A)}cmg) da .
M nJy
(4.1.31)
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The idea is then to derive the index formula

o T
D = s /M A(M) ch(F)

by relating the generating functions for the topological and analytical data described
above. This approach has the advantage that it computes the index directly from the
first n terms of the local symbols of the resolvent operator. These are polynomials
whose coefficients are determined by the local symbol of the Laplacians, together
with a finite number of its derivatives. Thus it reflects the local nature of the
index quite well. Furthermore, the simplicity of the method itself may be seen as
satisfactory, after all the index of an operator is an integer, so in some sense one
should be able to determine it via elementary computations.

In Section we shall study the technique using as a concrete example the
Riemann-Roch-Hirzebruch theorem. Section [4.3.1] sets out the context of the theo-
rem, then in Section we determine explicit formulae for the resolvent symbols
of Laplace operators defined over a Riemann surface, these are then applied to de-
rive the Riemann-Roch formula in Section [£.3.3] again by a direct and elementary
calculation. Similar to the previous case the explicit form of our formulae and the

method to derive the Riemann Roch theorem are new in the literature.

4.2 Resolvent symbols on closed Riemannian man-

ifolds and heat coeflicients

4.2.1 Preliminaries

Let us first recall the essential facts about the resolvent and the heat operator from
the viewpoint of pseudodifferential operator theory; for more details we refer to

[41]. Let (M, g) be a smooth compact Riemannian manifold of dimension n. The
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corresponding Laplace - Beltrami operator is locally given by

1
Ny =—= (d" V]9 ) (4.2.1)
! \/|9|%:

where 0y, = 6—?%, (g*) = g~ ! denotes the dual metric to g on the cotangent bundle
and |g| = detg = det(gr). We would like to consider operators of the form P =
A, + A where A denotes a smooth vector field on M (i.e. a smooth section of
the tangent bundle), so locally A = >~} a0 with a; smooth locally supported
functions. P is a differential operator of degree 2, certainly elliptic since A, is
elliptic and A (being or degree 1) does not change the principal symbol. We shall
restrict our choice of A such that the spectrum of P (Spec(P)) exhibits the same

nice properties as the spectrum of A,. In particular, we require it to be discrete

and non-negative, accumulating only at infinity

and the corresponding smooth eigenfunctions to form a complete orthonormal basis.
This is possible provided A is a conservative vector field, which means that it is the
gradient of a function; equivalently the differential 1 - form dual to A is exact (cf.

[24]). We can then define the heat operator e~*” for ¢ > 0 by

et = [ P —N)dr (4.2.3)

where v is a positively oriented contour, consisting of the rays {re’™* | ¢ < r}
and {re™/* | ¢ < r} (c € R is small and positive) together with an open arc

{ce® | m/4 < 0 < Tr/4} round the origin. In particular, v encloses the spectrum
of P (see the sketch below)

Im A

2

N
=Y
)
>
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The heat operator is smoothing, therefore trace class with

Tr(eP) = /M kp(t 2, 7) |da] (4.2.4)

where kp(t, z,y) denotes the Schwartz kernel of e~

, and |dx| locally identifies with
Lebesgue measure.

If A\ ¢ Spec(P) then (P — \) is elliptic, i.e. invertible. The resolvent (P — \)~!
is a pseudodifferential operator, hence it can be represented by its distributional

Schwartz kernel k. Locally the latter is given, modulo smoothing operators (i.e.

operators of arbitrarily low order) by an oscillatory integral

o) = [ Do, g N de (425)

where r(x,&, ) is the local symbol of the resolvent operator and d§ = (27) "d¢
denotes (rescaled) Lebesgue measure. The symbol r(x, &, A) admits an asymptotic

expansion

r(@, &) > ra@ N (JE+H NP >0) (4.2.6)

j=0
where each term 7_5_;(x,&, A) in (4.2.6)) is quasi - homogeneous in (£, A) of degree
—2 — j, meaning that r_o_;(z,t&,1?A) =t 2 Ir_o_j(x,&,\) for t > 0, |£] + |/\|1/2 >
1. This asymptotic expansion arises in the construction of the parametrix for
(P —X)71; in this process one determines local symbols r(z,y, A) such that the

operator B obtained by patching together the local operators Op[r] (the operator
whose Schwartz kernel is defined by the symbol r(z,y, \)) satisfies

(P-D)oB=I+R, and Bo(P—1I)=1+R,

where Ry, Ry are smoothing operators (i.e. operators of arbitrarily low order) and
the product o here is operator composition. Slightly more concretely, let op denote
the local symbol of P; then from the symbol calculus we know that the product

op-r (pointwise multiplication of functions or, more generally, matrices) is a classical
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parameter dependent symbol of order zero with asymptotic expansion
(op-1)(x,&,A) «~ 1. (4.2.7)

On the other hand, if we formally write down an asymptotic expansion r(z,£, \) «
> is0T—2-j(x, &, A) for the symbol of the resolvent and apply the composition for-
mula (c.f. [41l Theorem 3.4]) we obtain

(op-1)(x,&A) Z éﬁgap(x, E)Dor(x, &, N) (4.2.8)

where o« = (o, ..., a,) ranges over all possible multi - indices, Of = (9?11 . -(’3&"
with 9% = 0% /0u$* and D$ = (—i)l*19% with || = oy + - -+ 4 a,. By comparing
the terms of common homogeneity in these expansions one obtains the following

well - known definition of the resolvent symbols (see for example [14]):

r_o = ((12 - )\>_1 y (429)
1 .
T—o—j= —T_2 Z —'(agagfk)(D/;T,Q,l) (] > 1) (4210)
lul+k+i=4 "
I<j

where a; denotes the term in the local symbol op that is homogeneous of order
J and g denotes a multi-index. In particular we see that the functions r_,_; are
polynomials whose coefficients are determined by the local symbol of the operator
P together with a finite number of its derivatives. Our aim in the next section is to
turn these recursive formulae into concrete polynomial expressions for the resolvent

symbols.

4.2.2 Explicit formulae for the resolvent symbols

Expanding the operator P in local coordinates we obtain
P =Y "g"(—id)(—id) + > (Z(ngl)‘lg“(—iazlg\)
k,l k !
+ (—z‘@l gkl) + iCLk) (—z@k) .
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(We recall here that |g| = det g). If we replace (—idg) by & we obtain the local

symbol
= €2+ bi(x) & (4.2.11)
k
with
€2 => " " & (4.2.12)
k.l
and
1 )
bk = zl: §|g| lglexz|g| + D:I:l gkl + 1ag . (4213)
We shall also use the notation
op = ag(x,£)+a1(:t,§) +CL0<.§L’,£) (4214>

where the term a; is homogeneous of degree k in &; that is
— 2 — —
as(x,€) = [¢]7, ar(z,€) =Y bi(x) &, ao(z,€) =0.  (4.2.15)
k

We can now state and prove the main theorem of this section:

Theorem 4.2.1. The first three resolvent symbols as defined in (4.2.10) have the

following explicit representations as polynomials in &:

= (g -N" (4.2.16)
ros =2 ) 9" (Dag™) E6p6 — 7 QZbl@ (4.2.17)
l,5,0,q

and for the third resolvent symbol we ha,ve

T4 = 127’52 Z gthSl(Dmlgp )( :vkg )gzgjgsgpéqgt

1,1,7,8,0,q,k,t
=28y Y (D) (Day9™) EEE6 + 125 9™(D2, ™) €&
k.p,q,s,t k,s,t
—4rty Y gM(Dag")(Dag™) §68& + 20, gM(D2 L 0™ &
k,l,p,q,s,t k,l,s,t
k#£l k;él
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— 4> " g (Do g™ ) (D07 E580& — 415> g™ g™ (D2, L 0™) E6p6a

1,8,p,q,k,t 1,8,p,q,k,t
— 615> g™ (Dyg")6&68 + 2%, g™ (Dab)&E +12,)  bi(Dag™) £
1,3,7,k,t Ltk l,s,t
+1r3, Z brbi & (4.2.18)
kel

where

—_

—y L ( (Da ™) (Dilg) + 97 (D2, [a)

l

M

Lo Dol Dl + 22, ) + Dy (1219
Proof. First, the term r_, is immediate from (4.2.9). Next, from (4.2.10]) we get

1
r_3 = —T_9 Z —'Ggag_kDgr_g_l . (4220)
| +ki=1""
<1
The condition [ < 1 implies [ = 0 throughout, and the condition ||+ k +1 =1
forces pu! = 1 in all summands. This simplifies the above expression to
r_3 = —T_o Z 8ga2,kD‘x‘r,2. (4.2.21)

|l +k=1

We expand into two summands

r—3 = —T_9 < Z 8ga2D57“_2) —T_9 (aﬂ"_g)

=t —_——
lal=1,k=0 n=0k=1
—Tr_9o <Z 8§la2D$lr_2) —T_9 <Z blflr_2> . (4222)
! l
Jal=1,k=0 la|=0, =1

For the first term note that

Oe,az = O, (Z g" fsft) =2> g"¢ (using the symmetry g* = g" )
s,t s
(4.2.23)
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and for any positive integer m, we have

D™y = Dyy(ay — N = —=ma™5 ™Y " (Dy, ™) 6,6 (4.2.24)

s,t

Substitution of (4.2.23)) and (4.2.24)) into (4.2.22)) gives

—Tr_g <23@02Dz17‘—2) —T_9 (Z@ﬁﬂ”-z)
] I

l=1 k=0 Jal=0,=1
= —r 5 (Z (2293%5) (—7“222( g’ )€p€q> ) —r- (Z%M)
l S |u|=fk=op7q o |lu|=?,k=1
=— (— 2%, Y 9" (Dang? @fpsq) — (7‘-2 szfz)
) - pifko ’ u:cl),k=1
=2r?, ZZ g (D g") EEpEq — _2;%. (4.2.25)
Y

which is the right hand side in equation (4.2.17]).

The final formula to deduce is that for r_4; we start from (4.2.10]) with the expression

1
T4 = —T_9 Z TagagkagT‘,g,l . (4226)

|| +E+1=2
1<2

Here the condition [ < 2 implies [ = 0 or [ = 1. Thus we can break up the above

into

1 1
r_qg=—T_3 Z —OfarkDir—s —r_2 Z — 0 az—Dir_s (4.2.27)
lul+k=2"" lul+k=1""

~~ ~

=0 =1

J/

and repeat this process by letting £ = 0,1 or 2 in the first summand and £ = 0 or 1
in the second summand. We shall proceed consecutively for the the case [ = 0 and

=1.
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Term corresponding to [ = 0: Fully expanding this term gives

1
—T_9 Z —!agbGQ,kDgT’,Q

|l +k=2
1 1
= —T_9 Z magangT'_Q —T_9 Z —!anngr_g (4228)
I\ulz2 ) \\u\il .
k=0 k=1

where we use ag = 0, so the last term that comes from & = 2 vanishes. For
the first term we need to compute O¢ay as well as Dir 5 with |u| = 2, that is
Ofaz = O, (Ogaz) and likewise DEr_g = Dy, (D, 7-2). We already computed the
first derivative in (4.2.23]) and (4.2.24]); substituting these we get

afk (aELGQ) = aﬁk (2 ZgSl§s> =2 ZQSZ (6€k§s) = 29“ (4.2.29)

and

Dzz (ler—2> = Dzz <—T222( zkg )55&&)

st

= — (Dxﬂ“zg) Z( xkg gsgt - T -2 Z w29 §5€t

s,t
(%) ’
Then substitution of (4.2.24)) into the term (x) evaluates the above expression to

:_<—zriQZ<D@gm>5psq)Z< WTNEE Y (D20 6

p,q s,t s,t

=22, Y (Du ") (Dag™) &80l — 172 Z 2 &G (4.2.30)

D,q,8,t

Combining these results we see that the first summand in (4.2.28) expands into

=24, " (D ") (D2, g™) §6e6sle + 125> g (D2, 9™) €&

k,p,q,s,t k,s,t
— 4, > g (Da ) (D ™) 6806 + 2%, gM(D2, L, 9% &b
k,l,p,q,s,t kst
k#l ]

(4.2.31)
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Now for the second term in (4.2.28]), that is

1
—T_9 Z m@gang‘r,g = —T_9 Z 6’51a1Dml7;2
l

lul=1

(4.2.32)

we note that

aﬁlal = afz (Z bs gs) = bl (4233)

and (from (4.2.24)))

Dyroo = =123 (Dr,g™) && - (4.2.34)

s,t

Insertion of these two expressions into (4.2.32]) gives

— T 22 8“ 1D“7” 2 =T_ szl xlg gsgt-

lul= 1

(4.2.35)

l,s,t

Using the lines (4.2.31)) and (4.2.35]) we can now fully expand equation (4.2.28)) :

1
—T_9 Z —!agaszDgTLz

| +k=2

—2r% ) (D 0P (D g™) G666 + 175> g™(D2 ™) €&

k.p,q,s,t kst
o 47“ -2 Z aclg xkg ) fpfqgsft + 27“ —92 Z g xl xk t) gsft
k,l,p,q,s,t k,l,s,t
kAl )
+1753 bi(Dyg™) & (4.2.36)
l,s,t

which establishes an explicit version for the first term of (4.2.27)).

Term corresponding to [ = 1:

Here we need to determine the right hand side
of

1
—T_9 Z E@“ag ]gDMT 3 = —T_9 Zagkag kaT_g —T_Q(aﬂ” 3)

|| +hk=1 k

(4.2.37)
(%)
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We already computed O, as in (4.2.23)) and the resolvent symbol r_3 is also estab-

lished. Let us list these and the explicit form of a; here for convenience:

a = bé (4.2.38)
k
Dg a5 = 2 Zg“é’s (4.2.39)
ra =20 g (Dag") 6k — 2 ) bk (4.2.40)
ls,p,q l

The only part that remains to be looked at is (*x) in (4.2.37); which gives

Dl"kr—fi -'Ek (27‘ 2 Z g mlg gsgpgq T i) Z bl&l)

l,5,p,q

:—67{2 Z gSl(Dxlgpq)( -’Ekg )fzgjésgpgq

1,3,3,8,p,q
+ 2%, > (D g™) (D, g7) €680 + 2% Y g™ (D2, ,.0™) £:6:6,
1,8,p,q 1,8,p,q
+2r%, ) bi(Da g™l — 125D (Dayb) (4.2.41)

l,s,t l

Thus in summary we obtain the following for (4.2.37) :

1
—T_9 Z —!Ggag,kDgr,g

|pl+k=1
=127, % g" g (D0 ") (Da67) 66€60Ee&
1,1,7,5,0,q,k,t
N 4T4 QZ xkg Ilg ) fsgpgqft
1,8,p,q,k,t
4 Z gtkgSl xk :cl pq) fsgpqut
l,8,p,q,k,t
— 413 big (D 96666 + 205 Y g (Da b6
! Z ] k t 1 t k
=2ty Y e (D g™) E6pak + 105 Z bibi k&1 - (4.2.42)
k,,s,p,q
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Full expression Finally we concatenate (4.2.36) and (4.2.42)) in order to deter-

mine the complete expression for r_,. Rearranging and collecting like terms, we

obtain

1 1
4= —T_9 Z —'agagkagT,Q —T_9 Z —'8§a2,kD57;3

lul+k=2 " |ul+h=1
equatio;r equatio;r
= 127”52 Z gthSI(Dmlgpq)< a:kg ) fzgjgsfpfqgt
1,3,7,8,p,q,k,t
- QT -9 Z xkg ( :Ekg ) gpgqfsgt
k.p,q,s,t
+18)> g (D2 g &&= 41y D g (D g") (Dayg™) G608
k ,S t k’lvp q,5, t
kAl
+ 27/' -9 Z gkl xl Ik gsgt 4T QZ xkg 1[9 )gsfpqut
k]’gl;:lt 1,5,p,q,k,t
— 4ty R g (D2 07 E&pbabe — 6115 big™(Da, g7) &84
1,5,p,q,k,t l,i,7,k,t
2> 9" (Dab)&E + 125> bi(Dag™) &6+ 17, Z bibi £k
Ltk l,s,t
as required. O

4.2.3 The first three heat coefficients

Now that we have access to the closed formulas above let us use the resolvent
symbols to directly derive the first three heat coefficients Con, Contd and Cont2 in

the short time asymptotic expansion of the heat trace:

Tr (e_tP) D0, Z c%ﬂ-tin?ﬂ (4.2.43)

Jj=20
(we refer to [15], [14] or alternatively [36] for an account of the existence and deriva-

tion of the asymptotic expansion). Here n = dim(M) and
Cones = / e (2) | d2] (4.2.44)
2 M 2
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with ‘
¢ ()] da :/ (%/e—A rog (2, €0 d)\> d¢ dz . (4.2.45)

.
(the notation dz respectively d§ = (2m)~"™ d¢ denotes Lebesgue measure, the latter

rescaled). Finding these coefficients concretely is interesting from the geometric

point of view, in particular the following identities are well - known ([24]):

— L Vol (an) (4.2.46)

42

c

—nn
=5
and

1 1 1 1
w2 = —— (= [ Kdpg+ = [ div(A)dp,— =~ [ |A]Pd 4.24
o=ty (5 [ Kawg g [ vy~ [ 1apan)  a2an

where dp, denotes the volume form induced by the metric g, K is the scalar cur-

vature and div(A), |A|*> denote the (Riemannian) divergence, and length of A, re-
spectively. Whereas the common approach to their derivation uses global estimates
on the heat kernel (as shown in [24]) or abstract invariance theory (c.f.[14]), we
shall derive these now directly, that is using only the local data from the resolvent
symbols via the formulas in Theorem [4.2.1|

To start let us note some general properties of the involved integrals. First, by the

Cauchy Residue theorem we have

. . Y

{ Xk o e B 1 2

— A= A\ = ; 424
zw/f 2 @A 2wl<\s|z—x>k SRS 4248)

for any £ > 1. Secondly, for a real positive definite symmetric matrix A = (A4;;)

and a polynomial p(x) in z € R* we have the Gaussian Integral (cf [44])

1 < (27)= 1< _
/Rk p(x) exp <_§ %:Aij xixj) dx = \/mexp (5 Z(Aij) lawiazj) p(:l})

i?j

=0

(4.2.49)

As we shall see in a moment we need to determine integrals of the form

£% exp (— > gklfk&) d¢ (4.2.50)
k1l
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(here, @ = (a4, . . . ) is & multi-index, so that £ = £ ... £* denotes a monomial

in £ € R"). Substituting (4.2.49) into (4.2.50)) yields

n 1 n
£ exp (— Zg‘“fkfl) d¢ = / £ exp (—5229%@) dg
R k.l R k.l

(2m)% (1 - ) .
= T P | 5 nglag O | €
Vdet (2¢g71) 4 ¥ Y

£=0
n 1 -
=m2y/det g exp (4_1 Z%%%) &
k,l ¢=0
(4.2.51)

Note that any monomial £* of odd degree (that is with |a| = 2k +1 for some integer
k) evaluates to zero in (4.2.51]) because in this case the polynomial

1 n
exp (Z_l E gk18£k85l> fa (4252)
k1l

has no constant term. Hence, evaluation at £ = 0 equates it to zero.

For the final observation let us choose normal coordinates on our manifold M cen-
tered at the point p € M, say. Then the metric tensor g evaluates at p to the
identity, that is 3, ; §9&& = >, & = [€]* and we can evaluate (4.2.50) via Fu-

bini’s theorem as a simple product of Gaussian integrals over the real line:

& (—%}5%@) dé = /R e d&zH /R e tdg . (4.2.53)

Also, for a positive integer k and any real number 8 > 0 we have
Ik + 3
, % if k is even
/ a* e P dy = g (4.2.54)
. 0 if k is odd
where I'(z) denotes the Gamma function (the first case can be deduced using the
change of variable y = S2? and the latter case follows from repeated integration by

parts). Here the Gamma function is defined by

F@%:Awfle%ﬁ (Re(z) > 0), (4.2.55)
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we shall also need the fact that It satisfies the equations
[(z+1)=2T(z) and T(1/2)=+/. (4.2.56)
From (4.2.54)) it therefore follows that (4.2.57)) evaluates to

[T, T(i + 1) all o are even

(4.2.57)

3 ai =& J¢
[[/5 e de,

0 otherwise

We are now ready to deduce the heat coefficients.

The heat coefficient c_z  For this we evaluate the integral

. .
e-3(0) = Gy /R (%/FeArg(x,f,)\) d)\) de (4.2.58)
this is by equal to
- (271r)" / e
= #/ exp (—%Z@“&@) d¢ (4.2.59)
" k.l

Now (4.2.59)) is is an integral of the form (4.2.50) with |«| = 0; hence the above

expression reduces to

N3

—~

1
SENEND
(471),21 Vdet g (4.2.60)

and we therefore see from (4.2.44]) that

1
Contj = n / v det g |dzx| = Vol,(M) . (4.2.61)
2 (4m)2 Ju

The heat coefficient c_n+1 Here the expression under consideration becomes
2

o (1) = (Qi)n é n ( (;ﬂ) L e (@, €, \) d)\) e | (4.2.62)

115




but from (4.2.17) one can immediately deduce (using the remark below equation
(4.2.51))) that the above expression evaluates to zero since all the summands in r_3

are odd monomials in £. So

= oy |
Cont1 = C=nt1 dz|=0. 4.2.63
1 = e | o () da| = (42:63)

Remark 4.2.2. Let us note here that the odd coefficients vanish in general as one
can see by making a change of variable £ — —¢ in (4.2.45]) and using the quasi -

homogeneity of the resolvent symbol.

The heat coefficient Cont2 To proceed with the third coefficient we introduce
normal coordinates in a neighbourhood of a point p € M. Thus on a small patch
centered at p, the metric is approximated by

1
Gij = 5ij + § ; Rikjl TpXy + O(|3§"3) (4.2.64)

for x close enough to p, where R;;;; denotes the components of the Riemann curva-
ture tensor associated to g and ¢;; is the Kroenecker delta (c.f. [38, Section 3.5.3.3]).
Likewise for the inverse metric (for x close to the point p) we have

g7 =6 — % ; Ripj iz + O(|z]) . (4.2.65)
In particular, when evaluated at p (i.e. where x = 0), g is the identity and the first
partial derivatives vanish. In view of the first order part of P therefore

reduces at the point p to by = ta;, moreover
€ =1Er=>_¢. (4.2.66)
k

Also, one can see from (4.2.65|) that the second partial derivatives of the components
of g (evaluated at p) are expressions in terms of the Riemann curvature tensor.
Using the simplifications in this coordinate system the closed formula for r_4 reduces
to

ro =12, (D2 g™ & — 41,) (D207 Génbab

k,s,t 1,p,q,k
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(4.2.67)

+ 2%, ) (Dayb) G — %5 Y arar &
k)l
Now we substitute this into the integrand of the heat coefficient
(4.2.68)

o . o )

0771;2 (IL‘) = (27T)”
D2,g™) &6 — 4ty (D2, .07 Giplai
1,p,q,k

and obtain
< k,s,t
) dAd§ .

n27r

+2r2, Z D b) G — %5 Y arar &
ol

"2
Lk
Evaluating the contour integral by use of (4.2.48]) and (4.2.66)) simplifies the expres-

(4.2.69)

(4.2.70)

. / £,& e d&)
Rn

sion to
_ _lpzq:k nnd ( / b dg)
/" et dg) (4.2.71)
(4.2.72)

+ Y " (Da,by) ((QL)”

/ & el d€>
Rn

1 1
I
k,l
of &;, since those will integrate to zero. This means that term (4.2.69)) evaluates to

Note that, by equation (4.2.57) we can ignore any terms that contain odd powers

5 020 (o [ 66 )
k,s,t
1 (1.3 11
=3 D) (5:15)) 5,75

(4.2.73)




(4.2.74)

%Z (Da,bi) -
k

Likewise, we find that
D, b -1 4 _
2Pty (e [ 6 0¢) = o
For the summands above recall that by (the first - order term of P) is given by
1 .
b =Y =19l g™ (Daylgl) + (Day g*) + i (4.2.75)
!
2
D3, o l9l)
(4.2.76)

where |g| = det(g). Thus

1.
Dt = 3 gl (D)D) + 4
l
191" 6" (D lg) (Dalgl) + 2191(D2. . g )HDmak

(4.2.77)

and the right hand side reduces in normal coordinates to
_D2 gl + pr”l Kl +iD,, a

Proposition 4.2.3. With the notation above we have (in normal coordinates)
(4.2.78)

where
‘9 | = Z kagu

Proof. Indeed, the last equation is immediate from the expansion of the determinant

n

Z gil...inglil L gn%n)
(4.2.79)

2 2
11,82,...in=1
n
D2 (gui )
6Zl N2 Tk gl'll Tt gnzn

- >

11,89, in=1

on terms of the Levi-Civita symbol

s#l

where
D2, (91, - - Gnin) = Da, (Z(Dmkgm) Hg)
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- Z kaglu HgSZs + Z u’vkglzl Dl’k HgSZS)
=1

s#l s#l

J/

TV
=0 in norm. coordinates

- Z xkglll Hgszs - xkglh (4280)

s#l
the last equation following from the fact that g;; = d;; at the point where the normal

coordinates are centered , so [ ], 21 9si, = 0 whenever it contains terms that are not

on the diagonal. Substitution of (4.2.80f) into (4.2.79)) then gives (4.2.78|). O

Thus, coming back to the term (4.2.71]) we deduce that
5 Z Db

1
= 5 Z ( > lgl + Z D2 L g"+ z'kaak> (substitute (4.2.77)
K

w\§

11
- 3 3 ( Z D? gy + Z D? , g™+ iDmkak> (substitute (£.2.78))
k

1 1 .
= 1 Z ( gu+2D2 ,g"+ QZkaak> : (4.2.81)
1

Next we determine the Gaussian integrals in the term (4.2.70). We know that only

summands with even powers of the & contribute, hence

_ 2 1 g2
Z xk Y ((277.)11 /R” £l€P£Q§ke ¢ d£>

lqu

_ _‘Z ( = / ¢t ol dg)

D ( s gt dﬁ)
“#r
_z Z 2 2l 7") ( /Rn 532512) e lé? d§>
875p
2 . g2
s#p
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By symmetry of g we have ka 297 = ng ,9"° so the two middle terms can be

summed together. Splitting up the integrals into one - dimensional factors (using
Fubini’s theorem) we are left with

—§§<D§S ( / ge® df) L5 / e dg

B %;(D?prsgsp) (%/}R fg 6753 d§> ( / §2 eiﬁp d§>

[y, [ e

S#p lfsp
Sy (g [t (5 [ 900 I [

!
ok 75,

Finally from (4.2.57)), using well - known values for I'(z), this is equal to
2 1 3 1
_Z D2 ss il e il
32 (P59 (%ﬁ 4> ll;[ VT
4 1 v\’ 1
= D2 sp I i
LS a) (Qﬂ 2 >) y L

s?p
S#p
S —1§j<D2 “)—1}:@2 ¢ - =S D2gm). (1282)
T an)E 2 w973 g ) T 297) ) - -
S S,p s,p
S#Dp S#EPp

Lastly, by similar reasoning we deduce that
1

3w (g

ol Rn

(e [ et Ty ]« €
12 (@7 ) Mg

s#k

& e’ df)

=1 Xk: a2 (4.2.83)

We have now computed each term in the expression of c-n+2(x) and it remains to
2

substitute the results into lines (4.2.69)-(4.2.72). With D,, = —i0) where 0} := %

120



this yields
e @) = e (= 1 0 + 5 D@
2 (471')% 4 — Lk 2 - s
7 S#p
1 1 1
t3 (92.9") 1 > (22,9:) — 3 > (22, 9"
s,p k,s k,l
(4.2.84)

2
_apqgij 9

Z Or, i =
k
From the second - order Taylor series (4.2.64)) and (4.2.65)) of the metric in normal
(4.2.85)

1
(Riqu + Riqu) -

ij L
3

so we can write (4.2.84]) purely in terms of derivatives of the inverse metric and
ss 1 2 _ss 1 2 sp
) + 5 Z(axgg ) 3 Z(axp zs )
S#p
2
)

gather like terms:
1 1
( > (@29

1 2 _pp 1 2 _ss 1
ESCTTEEOSCAEEE) SCIERE) SOV

P k,s k,l

88 1 S
g ) - 6 Z( wp,as Y

SN
S7p S7p
SFEPp s#p
1)
k

Substituting (4.2.85)) into the above equation yields
g (_< - a4 Z Rspsp + = Z SSpp + Rspps ) Z axkak
8¢p

Cnt2(x) =
=n2 (2) (47)
Lastly, we make explicit the term /det g (which evaluates to 1 at the centered point

x in normal coordinates). Using the Bianchi identity 0 = Rspp + Ropps + Rspsp, the
spsp) Z 8xka'k’ Z i) \% detg

above then becomes

1 (_( _ _ZRspsp
VE

coordinates we have

Z Oy, Qf — Z ai) .
k

 (4m)?

n

= =g
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1 1 1 1
— i) (§< — ZRspsp> + 52&%% ~ 1 Zai) \/detg.
k

s<p k

Thus we conclude

C—n2+2:/ C=nt2 (1) |d]
M
! (1/ Kd +1/ div(A)d 1/ |AI*d ) (4.2.86)
= = | = = v - = 2.
(47‘(’)5 3 v Ng 2 o /J“g 4 I /J’g

where dj, denotes the volume form induced by the Riemannian metric (locally

given by du, = /det g dx) and

K=— Z Riji; the scalar curvature,

1<J

div(A4) = \/% Z 0; (M ai> the Riemannian divergence,

|A]? = Zgijaiaj the Riemannian length,
ij

evaluated in normal coordinates.
This finishes our application of resolvent symbol formulae to heat trace coeffi-
cients. Let us now turn to another application, namely the direct computation of

index formulae.

4.3 Resolvent symbols on Riemann surfaces and

the Riemann Roch formula

Here we shall be concerned with another application of resolvent symbols, namely
for proving topological identities via heat kernel coefficient calculations. As an
illustration we find closed formulas for the first three terms in the resolvent symbol
expansion corresponding to a Dirac - Laplacian on a Riemann Surface. These
are then applied to recover the well - known Riemann-Roch formula via a direct

computation, avoiding Duhamel’s principle as well as the Getzler rescaling.
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4.3.1 Preliminaries

Let us introduce the basic setting for the Riemann-Roch formula as described in
[22]. Let M be a compact boundaryless Riemann surface with smooth positive

definite metric. On a coordinate patch U C M the latter is given by
h(z,2)dz ® dz (4.3.1)
and the induced volume element is written as
dVol = %h(z, zZ)dz Ndz. (4.3.2)

Let V — M be a holomorphic vector bundle of rank n with typical fibre V. It is

determined by the transition functions
gij: U; N U — GL(n, C), (4.3.3)

defined over each non-empty intersection of local coordinate neighbourhoods. By
use of a partition of unity we define a Hermitian structure for V via a system
{E: U — GL(n,C)} of locally defined positive definite Hermitian matrix - valued

maps, varying smoothly over their domain, and satisfying
gl*j El gij = E]’ on Uj N Ul- (434)

This induces a Hermitian structure on the determinant bundle det £ — M (the

line bundle whose typical fibre is the top exterior power A™V'), with transition rule
det Ej |det g;;|> =det E; on U;NU,. (4.3.5)

The complexified cotangent bundle 7™M splits into a direct sum
T*M = AY°T*M @ A% T*M (4.3.6)

where for each point p € M, dz is a basis for AY*T*M and likewise dZ serves as

a basis for Ao’lT;M . By patching together the local data we can see that the de
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Rham operator d decomposes into d = 0 + 0 so that, for example if f is a smooth
function whose support is contained in a coordinate neighbourhood U we may write
df =0f +0f = L dz + % az.

The first Chern class of V is then represented by the differential form

ddlog(det E) € AV T*M

from which we deduce the Chern number

!
o

(V) /M 99 log(det E). (4.3.7)

Likewise, the differential form d0logh € A" T*M is the canonical representative

which is used to compute the Chern number,

(M) = %/Mé?alogh. (4.3.8)

Next we also need to consider analytical information about the manifold M. Define
the differential operator A: I'*(V) — I'*°(V) acting on the space of smooth sections

of V, by patching together the local formula

A = —(hETy4§2<ETé%). (4.3.9)

This operator is elliptic (meaning its leading symbol invertible) and of second order.
Furthermore, if we denote by L?*(V) the completion of (V) with respect to the
norm induced by the inner product (u,v) = [,,(F@)"vdVol then the following

properties of A are well known:

Proposition 4.3.1. [22] The operator A\ has non-negative discrete spectrum 0 <
po < pq -+ — 00. The corresponding eigensections are smooth and form a complete
orthogonal basis for L*(V). The eigenspaces Ea(ux) = {¢ € T®(V) | N = upo }

are of finite dimension, moreover
EA(0) = Ker (M) = H°(V) (4.3.10)

where the right - hand side denotes the space of holomorphic sections of the vector

bundle V.
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Further, let us denote by V= A T* M @V* the tensor product of the canonical line
bundle and the dual bundle. We define similarly an operator A: I (V) — I'(V)
by pasting together the local formula

A=—FE % ((hE) gz) (4.3.11)

The following theorem summarises the properties of the operator A as well as its

relationship to A:

Proposition 4.3.2. The operator A is elliptic with the same properties as listed
above for A\, substituting for (4.3.10) the equation

Ex(0) = Ker(A) = HO(V). (4.3.12)

Furthermore, the positive spectra ofﬁ and /\ correspond in the sense that u > 0 is

an eigenvalue of /\ if and only if it is an eigenvalue of A, and in this case we have
dim (Ea(p)) = dim (Ex (p)). (4.3.13)

We shall take these results as given since we don’t require techniques or concepts
from the proofs, more details however may be found in [22].
The relation between the analytical and the topological properties is described by

the famous Riemann - Roch formula

211

dim H°(V) — dim H°(V) = i/ 0dlog(det E) +n(1 — gu) (4.3.14)

where gj; denotes the genus of M (and we recall that n denotes the rank of V).

Furthermore, from the Gauss - Bonnet theorem we can recover that
2(1 —gum) / d0log h, (4.3.15)

substituting this into the right hand side of (4.3.14) and (4.3.10) respectively
(4.3.12)) into the left hand side we can see that(4.3.14) can be written in the form

dim Ea(0) — dim Ex(0) = / 00log(det E) + —/ 0dlogh.  (4.3.16)

2m
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Finally let us consider the heat operator e~** in this context. We described the heat
operator in Section , in fact all the properties needed there (such as ellipticity
and the discrete spectrum along the non-negative half of the real line) are fulfilled by
our present operators so we shall refer to the treatment there rather than repeating
it. For each ¢ > 0 the associated heat kernel ka (¢, ,y) is an element of I'(V & V*),
the space of smooth sections of the exterior tensor product of the bundles V and

V* and can be written in terms of the normalised eigenfunctions of A as

ka(t,zy) =Y e " on(x) @ (E )" (y) (4.3.17)

tA

As a pseudodifferential operator the order of e™*2 is arbitrarily low so it has a

classical trace given by

Tr(e—t4) = /M tr(ka(t, 2, 2)) |do| = 3 e (4.3.18)

k

where tr (ka(t,z,2)) = Y., e (E ¢;)T (7)¢r(r) and |dz| identifies locally with

tA

Lebesgue measure. Similarly, for e™*~ we have

Tr(e_tg) = /Mtr(kg(t,x,a:)) |dx| = Ze_tﬁ’“. (4.3.19)

Now since the positive spectra of A and A cancel out we can form the difference

of (4.3.18) and (4.3.19) and see that for t > 0
Tr(e %) — Tr(e*tﬁ) = Z etk — Z e~ = dim EA(0) — dim Fx(0)

pr>0 >0

(4.3.20)
where we note that the right hand side is independent of . On the other hand,
recall from Section that there exist short time asymptotic expansions

—k+j

Te(e™) iy ) coketm (4.3.21)

320

where P denotes one of the operators A,A and k is the real dimension of the

manifold and m denotes the order of the operator P, so in our case we have

k=m=2



so let us take on the concrete case from here. The heat coefficients c—2+; are given
2
by
C—2+j :/ tr (0—22+j (x)) |d:13| (4.3.22)
M

2

and the integrand is locally of the form

Co2s (7) = / ) / e M ry j(w, & N) dNdE (4.3.23)

withd\ = id\/(27) and d¢ = (2m) "d¢ (c.f. equations (4.2.44) and (4.2.45))). In the

next section we determine, as in the case before of the Laplace - Beltrami operator,

concrete formulae for the resolvent symbols in order to calculate the integrals.

4.3.2 Explicit formulae for the resolvent symbols

First we decompose the local symbol of the operator A into homogeneous parts,

on(z,§) = as(x,§) + ar(x, &) + ao(x, §) (4.3.24)

where ay(1,t€) = thay(x, €). In view of the identities

o 1,0 10 andgz

_—_(__|___) li_l
dz  2'0xy 10y 0z 2°0x; 1

0
8x2
we expand (4.3.9)) in terms of differentiation by real local coordinates xy,xq, this

yields

A =—g(02 +82,) — aliOy, — Op,) (4.3.25)

with 9,, = 5= for i € {1,2} and
h—l

9= (4.3.26)
1 OET
= - (hE") T ——. 1.3.27
« Qi( ) 0z ( )
Then replacing —i0,, with §; we obtain the corresponding symbol
on = glg]* + a6 +i&) (4.3.28)
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where [£]? = & + &. (More precisely, g|¢|* = g|¢|*I, where I,, denotes the n x n
identity matrix. We shall adopt the common abuse of notation kI, = k£ whenever

k is a scalar.) Thus in homogeneous terms, (4.3.28|) decomposes into
ay =gl a=alG +i&)  ap=0. (4.3.29)

In a similar manner we obtain the symbol for A:

ox = glEf* + a6 +i&) (4.3.30)
where ¢ is as above and
1 _OhE)™!
=5 E—— 4.3.31
21 0z (4.3.31)

The homogeneous components are therefore
ay = glé)* a=a(& +i&)  ao =0. (4.3.32)
We can now state and prove the main theorem in this section.

Theorem 4.3.3. With the notation above, let r(x,&, \) denote the local symbol
of the resolvent operator (/A —X\)"t. Then the first three resolvent symbols in the
asymptotic series r(x,&,\) « ijo r_o_j(x,&,\) are given by

roa = (glg)> = N7 (4.3.33)
ros=2r", > g(Drg) Gl — 1 pa( + i) (4.3.34)
l

and

rog=12r° 229 D.,.9)(Da,9) &&l€]* — 20 zzg Dy,9)* I€[*
_%; 9(D2,9)(Dyg) ExE11E7 — 41 229 remd) EEEL
— 6rt, iozg (Dayg)(€1 + i62)&xl€[?
+7’3QZQ |§|2+2r322 (Dyp)g(&r + &)

+ 725 a(Dy g) €7+ ird ya(Day g) |7 + 12502 (60 + i) (4.3.35)
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Proof. Recall from (4.2.9) and (4.2.10)) the recursive definition of the resolvent sym-
bols:

r_o = (CL2 — )\)71 (4336)
1
r—o—j= —T_2 Z —'(8ga2_k) : (D§T—2—Z) (4337)
Il k4= T
I<j

where in this case u = (ui, u2) denotes a multi - index, & = (£,&) € R? and
z = (z1,22) € R?, furthermore D¥ = (—id, )" with d,, = 0/0x; whilst 9% = o1 9K2.

Now the term r_5 This is given directly by (4.3.36)). Next for r_3 the calculation is
similar to the analogous term in the previous section: we see from (4.3.37)) that
1
r—3 = —T_9 Z —'agag_kDgT_g_l . (4338)
|| +k+i=1""
1<1
We have [ = 0 throughout; furthermore |u| + k + [ = 1 means that the factorial
term simplifies to ! = 1 in all summands. Thus
r_3g=—T_9 Z 85@2,kD§3‘r,2 (4339)
lul+k=1

which splits into the summands

—T_9 (Za&anglT’2> —T_9 (Clﬂ"g) . (4340)
l

(.

lul=1,k=0 Iu[=0.k=1

For the first term we note that 0 a2 = 2g§;; moreover
Dyry = —mr$ (Dy,g)I€] (4.3.41)
for any positive integer m. Substituting this as well as a; = a/(&; + &) gives

= =1 (3 208) (-2, (Duagle?) ) —r-s (ales + i)r-2)

l

(&

VvV g
|ul=1,k=0 Iul=0,k=1

=2, > 9(Dag) Gl — 12 0(& + i) (4.3.42)
l
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and the last expression is precisely the right hand side of (4.3.34)).

Let us then proceed to

1
T_y = —T_9 E 78502—kD570—271 . (4343)
|ul+hH=2
<2

With [ < 2 there are two terms corresponding to [ =0 or [ = 1:

1 1
T4 =—T_o Z —OfazDiir—y —r_s Z — 0 az—Dir_s (4.3.44)
k2 ke F

-~

=0

J/ J/

9

~

1
which in turn split into summands according to k = 0,1 or 2 in the first and £ =0

or 1 in the second expression. We now look more closely at these:

Term corresponding to [ =0 : We have

1
—T_9 Z —‘85(12_]@D5T_2

|ul+k=2 "
1 1
= —r_, Z m@é‘agD;‘r_g —7_g Z —!8§a1D57’_2 (4.3.45)
Jul=2 , lul=t y
k=0 k=1

(The last summand related to k = 2 vanishes because ay = 0). Note that

aﬁk (aSZGQ) - aﬁk (29&) = 2g Okl (4346)

where dy; is the Kronecker delta, and

Dﬂfl (DIkT—Q) = Dﬂ?l (_7%2 (Dzk9)|§|2)
=9, (Dg) (Do) |l — 125D, o) I (43.47)

Ty, Tk

Application of the above as well as (4.3.46|) shows that the first term of (4.3.45) is
given by

1 1
—7r_g Z m@g@Dgr_z = —7_y Z 5(29)D§k7"_2
|1|=2 k
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——mZg Dy 9) |§|4+T2Zg 9) €% (4.3.48)

For the second term in (4.3.45)) we note that

_ a ifl=1
g1 = O, (a(& + 252)) = (4.3.49)
o ifl=2
and
DIlT*Q = —7“32 (szg)lf‘Z 3 (4350)
therefore
—r2 Yy a“alD“T 2= —T- 22(951@11%7” 2
i
= 7’?12 a<D11g>‘€|2 +ir32a(Dw2g)‘§|2 (4351>
and we can now fully expand (4.3.45)) into
—2rt 229 Dy.9) e+ 229 213E
term (4352)
+ o a(Dag)le? + i sa(Dag €
term

Term corresponding to [ =1 : Repeating the procedure here we start with

1
—T_9 Z —!agCLQ,szT,::,

|l +k=1
1
lul= e lul=0""
k=0 k=1
= —T_9 Z ng a9 DwkT,3 — T,Q(CLl?”,g) . (4353)
k "

(*)

All the terms involved are known by now except for (x) which we determine below:

D,ry B2 D, (27*’:2 S 9(Dag) EIEP —rsalé + z&))
l
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and a direct computation shows this is

= —6r, Z 9(Dr,9)(Dr,9) &lE[* +2r% 5> (D 9)(Dayg) &1l€)
l

+2r3229 2 09) Gl +2r%y a(Dy,g) (& + i) €] — 124 (Dya) (&1 + i) .

In conclusion (4.3.53]) therefore expands into

- 2T—2 Zg( - 67“%2 Z g(DIkg)(DLBzg) fl’§|4 + QTEZ Z(D$k9)<D$lg> §l|§|2
k l l

202300 ) GIE + 25 0(Deg) & + i)

_rgg(kaoz)(&vLifg)){k—r_ga(§1+i§2) (27*’:229(%9) §ilel? —r%a(&ﬂ'&))
_ 127“5229 D 9)(Dayg) E6E[* — 47 QZg 29) (D g) ExG1EL°

g 229 2 9 EGIER — art, Zag 2.9) (&1 + &) €]

+2r2, Z(Dzka)g(& +i&)& — 2rty Y ag(Dag) (&1 +i&)GIEP + 17502 (6 + &)
k l

(4.3.54)

Finally we substitute (4.3.52) and (4.3.54]) into the recursive formula for r_,. Re-

arranging and collecting like terms, we obtain

1 1

|ul+k=2 " il +k=1

J/ (. J/

equatio;r equatio;’
= 1277 zzg Dy, 9)(Da,g) &&11€I" — 202 229 =9)7 €]

—4r‘iQZg(kag xlg>sksl\512—4ng 2 9) E&ll€l?
k,l
—6rt, Zag Da,9)(&1 + &) &l

+r32ZgD2 |§|2+2r322 Dy, a)g(&1 + i&3)6
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+ Ti2 a(D$1g)|§|2 + iri2a(D$2g>|§|2 + 7“3202(51 + i§2>2 ) (4355)
as required. O

Note that the homogeneous terms a;, and @, (listed in respectively (4.3.32))
differ only in the coefficients o and «, so replacing o by a in the above formulas
immediately gives the first three terms for the asymptotic series of the local resolvent
symbol corresponding to the operator (A —A)~L. This will be important in the next

section where we derive the Riemann-Roch formula.

Corollary 4.3.4. Let 7(z,£,\) denote the local symbol of the resolvent operator
(A —\)71, then the first three resolvent symbols in the asymptotic series 7(x, &, \)

> isoT—2-i(w,&,\) are given by

F o= (glef =N (4.3.56)
T =27 ) g(Dyg) GIEPP — FRa(& + i) (4.3.57)
!

and
Fa= 127 gzg Dy, 9)(Da,9) &&l€]" — Z?EQ;Q(Dzkg)Z €l
—4?1*2;51(0%9)(%9) &&ilél® - 229 2ennd) GGlEL
— 672, i&g (Day9) (€1 + i&2)rlé]”

+7, Zg 9) 1617 + 272, > (Dx,@)g(&1 + i62)&x
k

~3~

+ 72, Dy, 9) €7 +iT250( Dy g) [€° + 72,07 (&1 + i) (4.3.58)

4.3.3 The Riemann-Roch formula

We can now come back to our original motivation for computing the resolvent

symbols above, which is to derive the Riemann Roch formula written in the form
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(4.3.16). Recall (c.f. (4.3.20)) that the entry point for the resolvent symbols comes

from the short time heat trace expansion via the identity
Tr(e ') — Tr(e_tﬁ) = dim Fx(0) — dim Ex(0) (t>0).

For small ¢ > 0 we may replace the left hand side by the respective expansions

SccantTe =Y Gantr =dim Ea(0) - dim Ex(0),

j=0 J=0

and since the right hand side does not depend on t one can deduce that c-2+; —
2

'5% = 0 whenever j # 2 whilst
Co— Co = / tr (co — ¢o)(x) |dz| = dim EA(0) — dim Ex(0). (4.3.59)
M
Hence, if we can show that

/ tr (co — &) (x) |da| = — / 9 log(det E) + - / ddlogh  (4.3.60)
M 27TZ M 471_'& M

then we arrive at the Riemann Roch formula.
Before we start the calculations let us note some general properties that we
shall need. First we recall the identity (4.2.48]) here for convenience (adjusted to

the current setting):

%LG_A(glﬁ\Q — )R = ﬁe—glfg. (4.3.61)
We also require again, this time with a non-trivial positive parameter § > 0
(which already appeared in (4.2.54))). Since we are in the special case of dimension
2 let us recall the here only for that situation:

/ 5%711637&6—5‘&2 dé“ — F(nl + %) F<n2 + %)
R2

ﬁ(n1+%)+(n2+%)

(8> 0) (4.3.62)

where ny, ny denote positive integers. The powers in the polynomial term in (4.3.62))

are even; for the odd case we have

/ gmene e PEF ge = 0 (at least one of ny,ny odd). (4.3.63)
R2
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Finally we list some basic properties of the trace and determinant of finite - dimen-
sional matrices. For any invertible n x n matrices P, () depending on a parameter

t and for any scalar A one has

tr(P +AQ) = tr(P) + Atr(Q)
tr(P") = tr(P)
det(PT) = det(P)

tr(PQ) = tr(QP)
O logdet P = tr(P~'0,P)

(4.3.64)

tr (0, P) = Oytr(P) .

where 0, = 0/0t.
Using these observations let us next determine the heat coefficients (in fact for the

Riemann Roch formula we only need hy).

The heat coefficient ¢_; This calculation here is relatively short using the inte-

grals above, indeed from (4.3.23]) and (4.3.33) one has

o= [ (5 [ aler = 0) de

and the inner integral is evaluated by (4.3.61)) so that the right hand side is

_ / e~9I€P g (4.3.65)
R2
which in turn simplifies (by (4.3.62)) to
RN B | .
= (47%g)~" F(é)F(§) = (4mg)~". (4.3.66)

Now from (4.3.26) we see that (4g)™' = h. Also, under the identification z =

T1+ 129, Z = 11 — iT9 We have %dz A dzZ = dxydzo. Thus, locally

tr(c_i(x)) dridry = tr((4m g) 1) doidzy

I,
= tr( hzdz/\dz——d\/ol

™
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therefore

o= /M tr (c-a(2) x| = /M avol = " Vol (). (4.3.67)

The heat coefficient ¢ 1  The next heat coefficient ¢ 1 evaluates to zero since

N
N

all summands of
roy =20, ) " g(Dag) GIEP —r?ha(é + i)
l

involve odd powers of &;, so the evaluation

C_

1( / / (x, &, \)d\dE =0 (4.3.68)

2 R2

follows from (|4.3.63) and hence

= / tr (c_1(x)) |dz| =0. (4.3.69)
M 2

Cc

1
2

The heat coefficient ¢, This is the third heat coefficient (the constant term in

the expansion). We need to evaluate

_ / / e 1y €, \) dNE (4.3.70)
R2 J~

The full expression for r_4 is given in (4.3.35)), but for the computation we only
need to take into account the terms that contain no odd powers of £ (odd powers

integrate to zero by (4.3.63))). Thus substituting the relevant terms for r_, gives

:/RQ/G_A(HTEQ292(D$k9)2§13|£|4_ZTiQZQ(Da:kQ)Q |£|4
Y

‘4”29 nd)” ERlél - 47‘4229 9) Elel?
+r3229 9) lef?

- 67472 ag(Dmlg)gl |£‘2 - 62’7{2 ag<D$29>£§|€|2

+ 2r ) (D) g&5 + 2ir? 5 (Dyy ) g&5

+ 125 a(Da, g) € + ir? ya( Do,y 9) €7 + 72 0% (€7 — §§)>J>\d§-
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Using (4.3.61)) to evaluate the contour integral and obtain

00(96)2/ 95'2< Zg Da,9)” 1€ — Zg D, 9)° [€I*
—§Zg<Dmg>2£%z\£|2 Zg 2.9) &l
+ = Zg 9) l€®

—ag(Dy )& 1E* —iag(D,,q)&5 €|

+ (Dgy) g€t + i (Dygy0) g&3

45 a(Dag)leP + gia(Dayg)|EP + 50*(€ - 53))@5. (4.3.71)

Next we apply (4.3.62)) and (4.2.56) in order compute the Gaussian integrals and

collect like terms; this yields

o) = i( A (4 (Dag) - LDss (7 (Drag)

47 6 6
1 —1 ]- . —1
+ 5D, (97'a) + 5Dz (97'a) ). (4.3.72)
Under the identification z = xy + ixy, 2 = x1 — 172, we have D, = —i0,, =

—i(0/0, 4+ 0/05) =: —i(0, + 0;) and similarly D,, = 0, — 0;. Substituting these as
well as g = (4h) ™! and a = o (hET)"1(OE" /9z) and rearranging the result gives

1

co(x) = yym < - %82 (h~'0:h) — 4i0; (ha)) (4.3.73)

1 1 o OET

Finally, we take the trace and apply the properties listed in (4.3.64)) together with
the fact that 0,0: = 00, to simplify the result:

1 1 _,OET
tr(CO(]))) = —6—7Tt1" (ZL@; loghfn) - %tr <ag((ET) 1@))
1
= —ﬁaﬁg logh — —0.0;logdet E'. (4.3.75)
6T 2m
Hence, locally with dxdzs = %dz A dZz this gives

1
tr(co(x)) deydxy = Lﬁz@g loghdz ANdz + —0,0;logdet Edz A dz
1271 471
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and therefore

o = /M r (co(z)) [da| = 471m (4.3.76)

4.3.4 Derivation of the Riemann Roch formula

Of course the computations above can also be carried out for the heat coefficients

c-2+; that constitute the asymptotic expansion
2

( —tA) PP o (4.3.77)

j>0

however, instead of doing so one can make use of the fact that the local symbols
(4.3.28]) and (4.3.30]) for the operators A and A differ only in the first order coef-
ficient. This means that the polynomials r_s_;, 7_o_; are identical except in terms

involving «, a respectively. Thus we can for instance deduce immediately that
- n
¢_1 = —Vol(M) (4.3.78)
T

because r_5 = 7_5. The second heat coefficient associated wit A vanishes

C

—0, (4.3.79)

[NIES

indeed this follows from (4.3.63|) together with the observation that 7_3 consists
only of odd monomials in €. For the third heat coefficient ¢q (the constant term in
the heat trace expansion) we may simply replace o by @ in (4.3.73)) and proceed

from there. Thus, recalling that h is scalar and therefore commutes, we compute

Co(x) = ﬁ (—282 (hflﬁgh) — 4i0; (h&))
= —8 0z logh I, + 8 (a;jE ) . (4.3.80)

Again we take the trace and use the properties (4.3.64]) as well as the equation
0,05 = 0:0, to get

- 1
tr(co(x)) = 3%8285 log h + %8282 log det E (4.3.81)
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and with dz,dxre = %dz A dZz this then gives the local formula
~ 1
tr(co(x))|dx| = —L@Zag loghdz Ndz — —0z0;logdet Edz ANdz.  (4.3.82)
671 471
Thus

1 _ _
Co = / tr (co(z)) |dx| = —4—/ 00logdet E — i 00 logh . (4.3.83)
M T s 6

T s

The Riemann Roch formula Finally, recall from (4.3.60) that the Riemann

Roch Formula is equivalent to

/ tr (co — ¢o)(x) |dz| = L/ 00 log(det E) + i/ ddlog h . (4.3.84)
M 211 M 47 M

This equation now follows immediately from our computations for the heat coeffi-

cients, namely we calculated

n

1 ~ _
co—/Mtr(co(x)ﬂdx\—mAﬁﬁlogdetE—l—lZm/Maalogh

and

~ ~ 1 = n _
Co = /Mtr (¢o(x)) |dx| = —R/M@E)logdetE ~ 5 d0logh.

T s

By subtracting the second from the first equation we arrive at (4.3.84]).
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Chapter 5

On log-polyhomogeneous symbols
and the canonical trace over a

simple warped product

5.1 Introduction

In this final chapter we report on work in progress related to a current research
project. Let m: E — M be a smooth vector bundle over an n-dimensional compact
Riemannian manifold M without boundary and consider a classical pseudodiffer-
ential operator (do) A: C*(M; E) — C*(M; E) with symbol ¢. Provided A has
non-integer order, the canonical trace TR(A), first introduced by Kontsevich and

Vishik [25], is defined by the formula

TR(A) = / Tr,(A) do (5.1.1)
M
where dx identifies locally with Lebesgue measure and
TR, (A) ::][ tr, (o(z,&))d¢ (5.1.2)
T M

is a finite - part integral obtained from the local asymptotic expansion of o (the finite

part integral is defined as the (unique) constant term in an asymptotic expansion
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of a divergent integral). The canonical trace extends the classical trace, which is
well defined on smoothing operators, to pseudodifferential operators whose order is
not contained in Z N [— dim M, c0).

In this chapter we study an extension of this canonical trace to pseudodifferential
operators with suitable symbols defined over a simple warped product. The latter
is a product manifold M := [0, 00) x M, where M is a compact manifold without
boundary, endowed with a metric of the form dr? 4+ h?(r)g where g is a metric on
M and h: [0,00) — R is a smooth positive function. For the current study we
shall restrict our attention to those cases where h — oo as r — oo. Examples are
metrics where h(r) = r* (k a positive integer, the case k = 2 is the metric cone), or
hyperbolic space, where h(r) = cosh(r).

The symbols we shall admit are log - polyhomogeneous as defined by Lesch
in [27] and moreover exhibit the log - polyhomogeneous property in the ”radial”
space variable that parametrises the factor [0,00). Defining such symbol classes
and proving they are closed under the usual symbol product will be the topic of
Section [5.2] Once we have established a symbol calculus we can consider possible
extensions of the canonical trace. To this end in Section and we study finite
- part integrals (the standard technique used in the context of the canonical trace)

to give meaning to the expression

/M/*M o(p,0)dodrdx (5.1.3)

which is divergent in general due to the non-compact factor [0,00) in M. Here o is
an element of the symbol class we consider, Ty M denotes the cotangent space at a
point p in M, and dd = (27) " "'df is normalised Lebesgue measure. One way to
proceed here is to apply a further finite-part integral and set
/ / o(p,0)didrdx ::][ TR, (Op[o]) dr (5.1.4)
M ITEM [0,00)
where Op|o] is the pseudodifferential operator acting on a function u by Oplo](u) =

F Yo (0)i(h)] (here F~! denotes inverse Fourier transformation whilst f — f
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stands for Fourier transformation and variables not involved in this process are
omitted), and
TR, (A) :/ TR () (A) do (5.1.5)
M

is a parametrised family of canonical traces analogous to (5.1.1) and (5.1.2). In

fact, making this work is what motivates the assumption of an additional log-
polyhomogeneous expansion of our symbols in the radial direction. In Section [5.4.1
we find that defines a global density under certain circumstances that are
different but analogous to the corresponding situation on closed manifolds (as de-
scribed for example in [37, Proposition 1.10]), in particular the condition of non-
integer order remains sufficient whilst the condition of even - even symbols applies
to even - dimensional manifolds M whereas the condition of even - odd symbols is
sufficient for odd - dimension M (this is reversed in the standard setting). In such
cases one can express the right hand side of in terms of integrals over the
factors involving strongly polyhomogeneous symbols as defined by G. Grubb and
R. Seeley [16], this is shown in Theorem [5.4.5]

Finally in Section we turn our attention to the study of an example which is
of particular interest to us, namely the resolvent and complex powers of the Laplace
- Beltrami operator on a warped product. For the moment we concentrate here on

the symbol expansion; an analysis of the corresponding canonical trace will follow.

5.2 Symbols of log-polyhomogeneous growth on
0,00) x M

Let us first recall basic definitions and relevant properties of classical and log -
polyhomogeneous symbol classes on open subsets of Euclidean space, for a more
detailed exposition of the standard theory see [41} 27].

Let U C R™ be an open subset of R, let u € C, let V' be a finite dimen-

sional normed vector space. A smooth function a(z, &) € C*(U x R*,End(V)) =
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C>(T*U,End(V)) is an element of the symbol class S*(U, V) if for any compact
subset K C U and any multi - indices «, 3 there exists a constant C,gx so that for

all x € K and £ € R”

00 a(,€)] < Capr (1 + €)1 (5.2.1)

with respect to a choice of norm |-| on End(V). The parameter p € C is called the

order of a. We denote
SWU,V):=JS8"U, V) and S V):=[)S"(UV).
neC reR

A classical symbol of order p is a symbol a(z, &) € S#(U, V') for which there exists

an asymptotic expansion
a(z, §) o0 Z a/ﬁj(x’ £)
Jj=0
where each term a,_; is a symbol of order u — j and homogeneous in & for |[£] > 1

of order p — 7, that is a,—;(z,t&) = t#7(x,&) for t > 1 and [¢] > 1.

Remark 5.2.1. The meaning of «¢_, is that for £ large and any NV,

=

a(:v,f)—' a,_;j(z, &) € SNU,V).

J

I
o

Equivalently, given any positive integer N there exist functions a,_;(z, &) € S¥=9(U, V),
0 < j < N which are £ - homogeneous of degree u — j (as described above), and a
symbol ay € S#~N(U, V) such that

a(x,§) = . a,—j(x, &) +an(x,§). (5.2.2)

=

I
o

The set of classical symbols of order p is denoted by CS*(U, V'), furthermore we set

CS(U,V) = | Cs"(U, V).

neC
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We also need the larger class of log - polyhomogeneous symbols introduced by
Lesch [27]. For these we choose a C* function [-]: R" — (0,00) that agrees with
the usual Euclidean norm outside the unit ball, that is [y] = |y| for y ¢ B1(0) =
{y € R": |y|] < 1}. Keeping all the previous notation, fix in addition a non -
negative integer k. A log - polyhomogeneous symbol of order u € C and log degree
k is a function a(z,£) € C*>(T*U,End(V)) for which there exists an asymptotic

expansion

§) “emsoe Y tyumj(,€) (5.2.3)
=0
in the sense that for large £, any positive integer N and any ¢ > 0,

N-1
7,6 =Y auj(x,€)
=0
is an element of S¥~N*¢(U, V). Furthermore, each term in the expansion on the

right of (5.2.3)) is assumed to be representable in the form

a,—j(x,§) = Zau ji(z,€)log'[¢] (5.2.4)

with a,_;,;(x, £) homogeneous in ¢ of degree 1t — j as described above. Equivalently,

this means that for any positive integer N we can write a(z,€) in the form

N-1
au*j(‘%f) = a#*j('rvg) +aN(x:5) (5'2'5)
=0, C®(T*U,End(V))  in SH—N+e
any € > 0
N—-1 k
=3 i, 8) log'[€] + an(,€) - (5.2.6)
"0 =0 —_—— ——

&-homog. deg. in S,LL*N‘FE

w—j for [¢] =1 any € > 0

Provided a(z, ) satisfies the above condition we write
[e'e) oo k
2.6) Y (2.6 = au iz, log'le].
=0 j=0 i=0
We denote by LS**(U, V) the set of log - polyhomogeneous symbols of order x and
log - degree k and set

LS(U, V) := | J LS"*(U,V) where LS**(U,V):= [ JLS**(U,V)

keNg neC
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Remark 5.2.2. The class of log - polyhomogeneous symbols incorporates the class

of classical symbols since CS(U, V') = LS*°(U, V).

Let us now proceed to the class of symbols that is adapted to our case of interest. We
are dealing with a non - compact, cylindrical manifold and the non-compactness
introduces new problems as far as traces of pseudodifferential operators are con-
cerned, since their definition involves integration over the manifold. The idea is to
require that the local symbols and their derivatives grow log - polyhomogeneously in
the "radial” direction, a condition that is already present in the cotangent variable
&. Then one can adapt regularisation techniques used to deal with divergences of &
- integrals over 77U to regularise the integral along the radial direction.

First we set up a notion of ”"log-polyhomogeneous radial growth” similar to the
kind of growth exhibited by Lesch’s symbols in the cotangent variables. Fix a
smooth positive function f: [0,00) — R. For illustrative purposes we shall in later
sections describe a concrete example with f(r) = r for » > 1/2. It is important to
keep in mind that the function f fixed here is not necessarily related to the warping

function that appears in the metric of a warped product.

Definition 5.2.3. Let O = [0,00) x U with U an open subset in R". We denote
a point in O by (r,x) where x € U. A log - polyhomogeneous symbol of (double)
order (v, ;1) € C x C and log - degree (ky, ks) is a member of the class LS** (O, V)
such that for each function a,_;;(r, z,§) in the asymptotic expansion

oo ki

a(r,z,€) “eoo Z Z auji(r,x, &) log'[€] (5.2.7)

j=0 i=0
(here & refers to the components of a vector cotangent to [0,00) x U at the point

(r,x)) there exists an additional asymptotic expansion

au*j,i@"? Z, 5) r—oo Z al/fs,ufj,i(n x, 5) ) (5.2.8)

s>0

where, as before in the &-direction, the summands on the right hand side of ((5.2.8))

145



are assumed smooth and to have a representation of the form

Ay—sp—iji(r,2,&) = Zau slp—iil ),x,&)loglf(r) (5.2.9)
where in addition to the usual £&-homogeneity

anS,l,ufj,l(f(r): z, 0‘5) = auijaV*S,l,ufj,i(f(r% z, 5) for a > 1, ’5‘ >1

the coefficients exhibit homogeneity in f(r) of decreasing degree, concretely

Ay—sipu—ii(f(r),x,&) = f(r)" Pay_sypu—ji(l,x,&) forr>1. (5.2.10)

Provided a(r, z, §) satisfies the above condition we write
a(r,z,8) = > 3 3>ty i a(f(r), 2,€) log! f(r)log[¢] (5.2.11)
j=0 =0 s=0 1=0

and denote by LyS"**#2 (0, V) the set of log - polyhomogeneous symbols of order
(v, ) € C x C and log - degree (ky, ko). Finally, we also set

LSO, V)= | | LS™*(0,V) (5.2.12)
k1€Ng k2€Ng
where
LS™*F82(0,V) == | LaS"##1%2(0, V) . (5.2.13)
veC peC

With respect to composition and differentiation the following algebraic properties

are satisfied by this class:

Proposition 5.2.4. If a € LyS"***2(O V) and b € LgS”/’“/’kll’ké((’), V'), then for

any multi - index o = (g, oy, . . ., ) € N we have
1. 0% a € LySveomkke (O V) where t = f(r),
2. 0%a € LySH ekl (0 V)
3. a-b € LyS"Hmtitkitkihatiz (0 V)

146



Proof. For and we conduct the differentiation on an asymptotic expansion
and show that the resulting expansion has the desired properties. Split 8(” into

9;° and the remaining differentiation with respect to z, that is 0f, ,) = 0;° 0% where

9% =921 ... 9. Then

oo ki oo ko
Ot mya@ Z Z Z o;° (8§la,,,s,l,#,m(t, z,€) log! t)Jlogl €] (5.2.14)
j=0 i=0 s=0 (=0 ~~

(%) &-homogeneous of degree p — j

Furthermore the basic formula

ap
oo (g(t) log' t) - (z) 9 Pg(t) - 9 log' t (5.2.15)
p=0
with
-1
Ologt =t7P Z dyr logh t (5.2.16)

k=0
where the d, are constants (possibly = 0) implies that the homogeneity in ¢ is as

claimed, since for a function g(¢) that is homogeneous in ¢ of order v — s we then

have

-1 ap
0 (g(t)logt) = (Z o (O‘O) tPOrOP (t)) loght. (5.2.17)
p=0

k=0

J/

t-homog. degree v — s — ag
Thus the expression () in (5.2.14) is a polynomial in log¢ of degree I whose coeffi-
cients are t-homogeneous of degree v — s — ayy. After collecting terms corresponding
to the factor loglt for 0 <1 < ko we therefore obtain an asymptotic expansion for
8a7x)a of the required form.

Next we consider

8
g

o0 k’l

- ,OO Z fj (Z (%) 22amaasmsa )€ 0! 1) 05 o] ).

~~

B (#)

(5.2.18)
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As in the case above, the log - degree k; will not change. Furthermore (xx) is &-

homogeneous of order p — 7 — |S] for |£] > 1 whilst
9t log'le] = 9¢ 1o’ [¢ () for [¢] = 1)
i—1
= |¢|\AI=l Z dilog” €] (some constants dj,)
k=i—|a—p]

contributes a factor that is £&- homogeneous of order |3| — |a] for || > 1, so overall
the &-homogeneity of each summand above is u — j — |a|. After collecting terms
corresponding to the factor log’[¢] for 1 < i < k; we obtain an asymptotic expansion
for O¢a of the required form.

Finally, for the composition property we recall from [4Il Theorem 3.4] the

formula

(a-b)(r,z,&) “esoo Z 85 7,2, &) Dy b(r, 7, §) (5.2.19)

where Df, ) = (—i)'a@(‘;’x). Now if a is an element in LyS"***2(0 V') and b belongs
to LpSY H Fioks 2(0, V) then in particular a and b are log - polyhomogeneous symbols
in ¢ of order p and log - degree k; respectively u' and log - degree kj. For such
symbols we take from [27] that the product (a-b)(r,z, ) is a log - polyhomogeneous
symbol (in &) of order pu + p’ and log -degree k; + kj. This remains true here as
well since the log - polyhomogeneity in ¢ is independent from the additional log -
polyhomogeneity in f(r). So it only remains to show that the log - polyhomogeneity

in f(r) is satisfied. This can be seen from substituting the asymptotic expansions

Oa(r,z,©) <3 Uy—st—fal—gi (£ (), 2,€) log' f(r) log'¢]  (5.2.20)

respectively (again with ¢t = f(r))

Dlayr:2:8) = ZZZZ% sttt (£ () 2, €) ol £ () log €

j'=014'=0s=01'=
(5.2.21)
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into (5.2.19)). First we obtain

1
> 08alr, 2, ) Dfb(r, 2, €) -

k1 oo ko

Lo <Z > t—stp-lai=ja( £ (1), 2, ) log f(r) log’ [5])
| 2222 D vmag sy (), log” f(r)log[¢]

j'=0i'=0 s'=0 I'=0
Now if we expand partial sums and collect terms according to homogeneity and
log - degree this reduces to

ki+ky o ka+kj

DD YD DD D= ANPRREHIIGRN)

|a|-+j+j'=0 i+i'=0 o1 +s+5'=0 I+I'=0
X ’Uy/_al_sxyl/,u/_j/’i,(f(r)’ z,§) loglﬂ' £(r) logi-i-i/ €]

(5.2.22)

where

1
Jul/—s,l7u—|o¢|—j,i<f(r)v Z, g) X Ul/’—al—s’,l’,u’—j’,i’(f(r)a xz, 5) (5223)

is {-homogeneous of order p + ¢ — (Ja| + 7 + j') and f(r)-homogeneous of order
v+ — (a1 + s+ 5), i.e. the above is an asymptotic expansion of the required

form. O

Let us finish this section by pointing out that symbols of the class LyS"**:#2 (0, V)
are not invariant under a change of variable (7,y) = F(r,z). To see this we recall
the following result (which establishes the coordinate invariance of the leading term

associated with standard symbols):

Theorem 5.2.5 ([41], Theorem 4.2). Let U be an open subset of R and consider
the pseudodifferential operator A given by

Aute) = [ [ et uty) dyde
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with amplitude a(z,y,&) € SH(U x U, V) and symbol
1 (0% (03
O'(l’, 5) Eé—oo Z aag Dy CL(Q?, Y, 5)‘1/:90 .

If F: U — F(U) CR” is a diffeomorphism and A is the pseudodifferential operator
defined by
gf: (A(foF)) o F!

then the symbol o ofg has the asymptotic expansion
G 0)ly=ra) “emsoe Y éag‘a(a:, FT(x)n) - DeeCrGEm| _, (5.2.24)
where F, denotes the derivative of F' and
G(z)=F(z) — F(z) — Fi(z)(z — 2).

If we were to apply this result to a symbol from the class LgS”’“’kth(O, V) with
a diffeomorphism (7, z) — F(r, x) then, due to the derivative terms that are created
by D?/\’Z)eiGF A2\ = (r.a), the formula (5.2.24) produces an asymptotic expansion
that does not have the required form ((5.2.11]).

However the operators we associate to our symbols later on are parametrised
families of pseudodifferential operators over the factor M so we shall consider dif-
feomorphisms of the form x +— F'(x) where the parameter r is left unchanged. In
this case the additional logarithmic scaling in the asymptotic expansion is left intact

and the change of variable result in [27, Proposition 3.5] carries over to our setting.

5.3 Finite-part integrals of symbols

In view of traces for operators with symbols from the class LyS(O, V') there are two

divergence problems one has to address. Let a(r,z,&) € LyS"* % (O V). First,

locally for a fixed point (r,z) € O = [0,00) x U, with U C R", the integral

/ a(r, z,§)d¢ (5.3.1)
7,0
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is not necessarily convergent. This issue is of course already present when dealing
with log - polyhomogeneous symbols a(z,&) € LS**(U, V) over closed manifolds.
The usual approach to overcome the problem in this case is to regularise (5.3.1]) via
a finite - part integral
LS“*(U, V) 3 a(x,£) +— a(z,&)d¢ == K(x) (5.3.2)
T:U

where K (x) is the constant term in the asymptotic expansion
/ a(x,&)de YR K(x) 4 (terms that diverge as R — o). (5.3.3)
Bx(0,R)

The fact that the above expansion exists for such symbols was shown by Lesch
in [27] from which we shall recall the essential points of the derivation in the next
section. This regularisation procedure works likewise for the integral because
the symbol a(r, z,§) is log - polyhomogeneous with respect to .

Secondly, because of the non-compact factor [0, co0) there is a divergence question

when we integrate over the underlying manifold; that is we need to make sense of

de | dxdr .
o (e )

Since the growth behaviour of a(r,z,£) in the r-direction is similar to the growth

behaviour in the cotangent variable £ it is natural to adopt an approach analogous

to (5.3.2)) and take a finite-part integral.

5.3.1 Preliminaries

Suppose a(z,&) € LS"*(U,V) is a log - polyhomogeneous symbol defined on an
open subset U C R"™. The integral [,..,; a(x,&)d¢ diverges if Re(u) > —n, but one
way to extract a number nevertheless is to define a finite - part integral f, based

on the following Lemma.
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Lemma 5.3.1 (Asymptotic expansion for a &-integral of a log-polyhomogeneous

symbol [27]). For any

o k
ZQujxg Zzau JzQJflOg[f]

j=0 i=0

in LS"*(U, V) there is an asymptotic expansion as R — oo

o

/ a(z,§)d¢ ~ K(z)+ Y Fu_j(log R)R™" +T(a_,,log R) (5.3.4)
p—j#—n
where K(x) depends on x alone and the remaining terms are described as follows.
The coefficients of the sum are given by
k
Fu-j(log R) = 3 Pi(a-)(log )
=0

where each P; is a polynomial of degree i whose coefficients c,, depend on a,_;;

concretely Pi(a,_i;)(X) = L Cm(a,_i ;) X™). The final term n the expansion
( Y =3 m=0 =3

( / a_n,i(x,g)dsg) log™ R

s given by

k
H(a_n, log R) = Z

7,:0

where S;U is the unit sphere in T;U.

The constant term in ((5.3.4]) is defined to be the value of the finite - part integral
of a(x,§), that is

Definition 5.3.2. The finite - part integral at € U associates to a log-polyhomogeneous
symbol the constant term in the asymptotic expansion ,
LS**(U, V) 3 a(z,£) +— a(z, £)de == K(x). (5.3.5)
T:U

There is a formula for the finite part integral as described in the next lemma.

152



Lemma 5.3.3. For a(xz,€&) € LS**(U, V) and any N > Re(p) +n one has

7=0
N ok 1)t
T pji(@,§)dsE . 5.3.6
j;o ; j+nz+1/SUNJ7( 5)55 ( )
p—j#—n

Proof. See Section 5.6} the proof given there follows [37] (Let us point out here that
the integral fT*U an(x,&)d€ converges because ay € SRe(w)=N=1+e for any & > 0 and

hence from the definition of the symbol classes we see that ay is integrable over

T*U = R".) 0

An important property of the finite-part integral is that, in general, it is not in-
variant under a change of variable. The following Proposition is stated in [27] and
gives precise information as to when the finite part integral can be defined globally

on a manifold.

Proposition 5.3.4. Let a(z, &) € LS (U, V) be a log - polyhomogeneous symbol of
order v € C and log degree k. The following identity holds for any A € Gl (T;U) :

][*Ua(:v,Ag) |AldE = a(m,f)d‘f

TxU
k z-l—l
i+1 -1

where |A| denotes the determinant of A
Proof. See Section 5.7} the proof given there follows [27]. O

Corollary 5.3.5. The finite - part integral in € of a log - polyhomogeneous symbol
a(z,§) «~ 7, Zf:o iz, &) log'[€] can be associated with a global density on the
closed manifold M provided
1)i+1

z—l—l

sMw

/ (&) log™ [ATHE|dE = 0.
sU
for any A € Gl (T;U)

153



There are a number of examples in which this condition is satisfied (see also [37,

Def. 1.1 and Prop. 1.10]):

Proposition 5.3.6. Let a(z,§) «~ 3, S (2, &) € LSMF (U, V) and denote
by A = Opla] the corresponding operator. In each of the following cases

TR.(A) ::][ a(x,&)d¢ dx (5.3.8)
TiM
1s a globally defined density on the factor M :
1. the order p is not an integer > n (where n = dim M)

2. M is odd - dimensional, p is an integer and a is even - even, that is for each
J =0,
yji(, =€) = (=1)" Ta,—ji(x, £)
and this property also holds for all the derivatives of a, ;.
3. M s even - dimensional, pu is an integer and a is even - odd, that is for each
J =0,
ay—ji(x, —§) = (_1)#-1‘—1@[‘_].’1,(% 3
and this property also holds for all the derivatives of a,—;;.

These results are all we need for now to study analogous definitions in our non-

compact setting.

5.3.2 Finite-part integrals for simple warped products

First note that Lemma|5.3.1|carries over to address the divergence of fT< 0 a(r,z, £)dg,

let us state this here for later reference:
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Lemma 5.3.7. For a(r,z,&) € LyS"***2 (0 V) and any N > Re(u) +n + 1 one

has
N-1
][ CL(T,I, )d‘é- = / Qp—j T,.T,f) d-f + / au—N(T7I7£)d€
T(*r, )O =0 B(*r,z) 0,1) T<*T’I>O ( )
N kl 41 - 539
(—1)"*14!
=0 1=0 ra
u—ji—(nﬂ) "

We substitute this expression into

/[Om)xM ( ][T *m)g(r, z,€) cz‘g)dxdr (5.3.10)

(

which gives

_ / ( / 0y (s E)E + / Gy (2, )¢
[07OO)><M j:O B{r,z)(o’l) T(*'"vz)o
N k1 i+1 -
(—1)+1q! /
+ , , a _~7,~(r,x,§)d5§>dxdr
; ~ (=g +n+1)" Jg o MJ

(note that the additional dimension yields an additional unit in the denomina-
tor of the factors in the second line). Using the representation a,_;(r,z,§) =
Z;to au_ji(r, e, €)1og'l€] (0 < j < N) for the terms on the first line and rearrang-

ing the expression turns the above into

= / (/au_jji(r,a:,f) logi[f]%) dxdr (5.3.11)
‘o iZ0 Jl0eo)yxm N By (01)
k1
+Z/[ o (/aMON,i(r,x,f) log'[¢] d‘f’) dxdr (5.3.12)
i=0 v 10,00)% TG
N ki ; .
(_1)1—1—12! / /
+ , - a,—ji(r,x,&)ds€ ) drdr. (5.3.13)
7%% (h=J+n+1"" Jocyxm ( 510 )
p—j#—(n
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Finite part for the summands of line ([5.3.11|)

As in the proof for Lemma we expand a,_;,(r,z,£) into log - homogeneous
components using (5.2.8]) and substitute into the integral:

/U)ﬁw)xM </B (0.1) @y—a(r: 2, €) log'[¢ df) dxdr =

(r;@)

5-1
Z /[0 )x M / ©.1) Ay i (1, 7, §) log'[€] dE dadr
s=0 ,00) X * ,

(r@)

+/ / Qs u—ji(r, 2, €)) log'[€] d¢ dxdr (5.3.14)
[0,00)xM J By, (0,1)

We choose S so that a,_g,—;(r, z,€) is integrable in r, that is we need v —Re(5) <
—1. In this case the last term is finite as R — oo. The remaining terms are

understood via the second log - homogeneous expansion ([5.2.9)),

/ / ales,,ufj,i (Tv z, é) logl [é] df dxdr
[0,R]xM J B, (0,1)
) '
= / / (Z y—s1y—ji(f (1), 7€) log' f@«)) log'[€]d¢ dxdr . (5.3.15)
[0,R]xM J By, (0,1) * 755

Here the homogeneity property ([5.2.10)) allows us to split up and rewrite the integral

as

ko
= - l i
N /[O,l]xM /E‘T’z)(o;) <ZZ; ay—sip—ji(f(r),r,§)log f(r)) log'[§]d€ dxdr

ko
v—s,l,u—7,1 , X, 1 ! 1 i d: v—s dxd
+/(1,R]xM/Z«W(OJ) (;a tu—gi(f(1),%,§) log f(r)> ogi[e]de f7=%(r)dwdr
(5.3.16)

of which the first line is obviously finite. On the other hand, the second line contains
divergent terms depending on f and therefore requires the application of a finite -
part integral. The important point to note here is that the finite part will be com-
pletely determined by properties of the function f, in particular it is independent

of the symbol a(r, z,§).
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Thus in full generality we have the following formula for the finite part integral of

the first line in (5.3.11)):

Z Z dl' lOg df 1 dr aufs,l,ufj,i(f(r)a z, 6) logl f(?")
0

s=0 = Z(r z) (0,1)

log d‘ﬁ/ y—8,u—ji(1, T, §)) dr

(where S is chosen so that v — Re(S) < —1, this ensures that a,_g,—;(r,z,§) is
integrable in r; so these are standard integrals, and)

N—-1 ki

+zzzf

]OlOSOlOOXM

ko
/ | IOIGAED gl S 1)1 1) £
=0

(5.3.17)
which is a finite part integral.

Ezample 5.3.8. Suppose f(r) = r for r sufficiently large, (say r > 1/2). Then (c.f.

equations (5.6.5)) and (| -

1
=% log!r dr) =——1log™ R 5.3.18
( / = 6219

v—s=-—1
and for v — s # —1,

l

—1)P1V/ (1 — p)'logP —1)H
/ s lOgl rdr = Z ( ) /( p) 0og RRV—S+1 + ( )
[L.R)

(v — s+ 1)ptt (v—s+1)H1"

p=0

(5.3.19)

The equation ([5.3.18)) and all terms on the right hand side of (5.6.6)), except for the
last, diverge as R — oo. Thus the finite part of the integral (5.3.16|) in the case
where f(r)=r for r > 1/2is

)l+1l'

S /d:p/ sl dgzyﬂs—ﬂ)mamw(w@ (5.3.20)
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where 9, ,, denotes the Kronecker delta that evaluates to 1 if n = m and otherwise

to zero. We therefore obtain the following finite part for ([5.3.11}):

][ ( / sl 7, €) 0g'€] € dadr
[0,00) x M ey (O1)

Z/de/* 100% d‘f/ dr @y JZ(Txé.)log f(r)

7=0 =0 s=0 [=0 (r,x)
N-1 ki
+ Z/ da:/ log'[¢ df/ dray,_g,—ji(r,z,§)
j=0 i=0 VM (ray (01

(where S is chosen so that v — Re(S) < —1, this ensures that a,_g,—;(r,z,§) is
integrable in r; so these are standard integrals)

N—-1 k1 S-1

+ZZZ1—5(”1 /dm/* log JdE x

7=0 =0 s=0 (r, z)

l+1l|

Zm v—syu—ii(1, 2, §) - (5.3.21)

1=0
Finite part for the summands of line ([5.3.12))

Here the situation with respect to the integral over [0,00) x M is identical to that
above. Thus for a general warping function f(r) the formula for the finite part
integral is given by

k1

k151k2
_ d 1 d‘é L vsiu-n,i (f(r), 2, €)log' f(r)

+Z/ dm/ logi[f]df/ dra,_s,—ni(r,z,§)
=0 M T(*r,z)o 0
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(where S is chosen so that v — Re(S) < —1, this ensures that a,_g,_n(r, z,§) is

integrable; so these are standard integrals, plus the finite part integral below)

k1
+ZZ][ xM/*log dgzay ERNTES N’L >7$,€) loglf(r) fy_s(r) dxdr .

i=0 s=0 (r,@)
(5.3.22)

Ezample 5.3.8 (continued). For the case where f(r) =r for r > 1/2 the finite part

integral in (5.3.24) is equal to

l+1l|

— 8(ys1) /dx/ log dgz s Iy s vi(L,z,6), (5.3.23)

thus we obtain

K |
;]{oo@w </ . a7, €) 10g'[g] € ) dadr
ki S—1 ke
- d log'[€]de | dray_sipuni(f(r),z,€)log
;;;/ I/(*m) / e\ r),x r

+Z/ dx/*log cz‘g/ dr a,—s,,-n(r, 7,€))

(r)©
. k2 1
dx/*logl[ﬁ]d‘fz%au s,lpu— N’L(]' T 6)

k1 S-1
+ 1/ s,—1) /
22 () f e f Mgl 6 )
(5.3.24)

Finally,

The summands of line ([5.3.13))

Again the situation is similar. For a general warping function f(r) the formula for

the finite part integral of the third line is given by

N k1 z+IZ|
O, 2, €)ds€ ) dudr
2 X —]+n+1>z+11ﬁoow</@ga
p=j#—(n+1)
= dx/ log'[¢
H—l/
j=0 i=0 s=0 I= ('u ]+n+1
p—j#—(n+1)
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x/ dr ay gy i(f(r), 7, ) log! f(r)

Nk z+1
+ZA (/L—]—I—n—l— ZH/dm/ log d‘{/dral, Su—ji(rsz,§)

(the above are again standard integrals, and below we have the finite part contri-

bution)
N ki S—1 Z+1 |
7!
+ ][ / log
p—j#—(n+1

ko
Xty pmgi(f(1), 2,6) log! f(r) f*7*(r)dadr (5.3.25)
=0

Ezxample 5.3.8 (continued). Let us again look at the case where f(r) = r for r > 1/2.
Then we can compute each finite part integral in (5.3.27]), we get

l+ll|

(1= b—s-1) / da:/*log dfz —s1 1) g -sip—si(1,2,6) . (5.3.26)

(s :6)

thus

N k1 7,+1,L'
a _'72‘(7”71‘76)6?55) dxdr
jzo ZZ _] +n+ 1)Z+ ]ﬁ),m)xM </<*mc>(9 i
p—j#—(n+1)
da:/ log'[¢
]= i=0 s=0 1=0 _‘]+n+1 +1 Eﬁrz)
p—j#—(n+1)
1
X/dray s, lLu— ”(f()mf)loglf()
N ki z+1
+Z Zl/dm/log df/ drauS,u]zrxg)
i=0 _j+n+1 i (r)©
p= J# n+)
N k1 S—1 H—IZ‘ )
+ —51,_57_ /d:p/ log’[£] d€
Z:: lz: = _] +n+1)z+l ( 1)) v (*T@)O[ ]
p—j#—(n+1)

kg ( )l+1l|
;mau Syl pu— ]Z(l x f) (5327)
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5.4 The extended canonical trace

Let us turn to the algebra of operators associated with the symbols defined above,

and consider the extension of the canonical trace.

5.4.1 Existence of a trace density

The first question to address is the existence of a trace density, in particular we need
to check whether an analogue to Corollary holds true, and to what extend the
newly added dimension in each cotangent space changes the requirements for global
well - definedness. It turns out that the obstruction is of the same form, yet the
relevant term in the asymptotic expansion of a local symbol moves one index down.
Thus, having an additional dimension in the cotangent space changes the location
of the relevant data in the asymptotic expansion in a linear manner. To see this

one should compare the following result with Corollary [5.3.5}

Proposition 5.4.1. For a fized r € [0,00) the finite - part integral in & of a symbol
a(r,z,€) € LyS”"*F* (O V) can be associated with a global density on the closed
manifold (M, f*(r)g) if, for any A € GI(T7, ,,O) we have

k i
~ (=)™ , i1 | 4—1 _
E P an—1;(r,z,&)log ‘A 5‘ ¢ =0. (5.4.1)

Proof. We need to establish that the formula for the finite part integral given in
equation (5 is invariant under a change of coordinates if (5.4.1)) holds. First,

/ (r T AS) |Ald¢ = / (r x f) d& (5.4.2)
s (0,R) 1B (0.R)

Bl
where A7' Bt (0, R) = {€ € T}, ,,O: |A7'¢] < R}. Substitute into the right hand

side the presentation

N-1

a(r,x, &) = Zauj'rxf)—i-a#]v(rxf)
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so that

/ alr, 7, €)d¢
A-1B;  (O.R)

N—-1

>/

(r,z)

sy, E + [ Gz, 06 (5.43)

A-1B* _(0,R)

(O,R) (ra)

with N chosen large enough so that the last integral below is finite as R — oo. In

the limit, this integral is independent of A and equals

/ au—N(r> x, f)dé .
T O

(r,@)

As for the remaining terms we break up the computation as follows

/ ay—j(r,z,&)dE
A-1B*

(r,x) (O’R)
~ [ et | Qs (2, €0, (5.4.4)
B, ,,(0,1) ATYBE L (0,R\BY,  (0,1)
ﬁr‘li,te

this is valid for all R large enough so that B, (0,1) C A™'B

() (0, R). Now for
the second integral in (5.4.4)) let us denote

—_—

AilB*(va) (0? R) = A_lBEkT,a:) (07 R) \ BEkr,x) (07 1)

and use the polylogarithmic expansion of a,_;(r,z,-) given in (5.2.6) to obtain
k1

[ anrn0a=Y [ el e
AilB*(r,x) (O,R)

i=0 Y AT B (r,2)(0,R)

b Bf|A~t| |
= Z/ a,—ji(r,x,n) / r* It Jog" r drdn
=0 Zr,z)o 1

and substituting (5.6.5)) for each term in the sum we get , if v —j +n = —1,

law|
/ Gy, 2,1) / PHI gl drd
N @} 1

(r,@)

1
i+

/ au—ji(r,z,m) log™t (R/ |A™ | )dn
Sz*nx)(?
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1 < i+ 1
() ( /
(=)t 41 4—1
P ) Oa#_j,i(r,x,n) log ‘A 7]‘ dn . (5.4.5)
(rz)

au—j,i(T,x, 77) 1ng; }A—1n| dn) -logiﬂ_k R

+

Here only the last term remains finite as R — oo. On the other hand, If y—j+n #

—1 we see from ([5.6.6)) that

R/[At| .
/ ap—ji(r, @, 1) / I og! r drdn
S(*Tyz)O 1

| (.1 (546
= . . ayu—ji(r, 2z, m)dn 4.
_ i+1 . H=7,
(h=Jj+n+1) 5@

(=14 G =)
+Z (w—j+n+1)H1

=0
/ augi(ryz,n) (R | A7 )" log™™ (R/ | A | )y, (5.4.7)
57.2)©

again only the term in line (5.4.6) remains finite as R — oo, furthermore it is
already present in the formula ([5.3.6]) for the finite part integral. In summary, the

additional terms that are created by the change in variables arise by summing over

i the expression in (5.4.5)), as claimed. O

Next, the example cases that were found to satisfy the analogue to (5.4.1) in the
context of closed manifolds carry over to our setting. Note that the question of
global well - definedness is not concerned with the whole of M x [0, 00), instead by

"global” we mean in this context a fixed fibre M x {r}.

Proposition 5.4.2. Let a(r,z,&) « Y00 S a,uji(r,2,6) € LyS""M*(0,V)

and denote by A = Opla] the corresponding operator. In each of the following cases

TR (,2)(A) dz ::]{r* " a(r,x,&)d¢ dx (5.4.8)
(

r,x)

1s a globally defined density on the factor M :
1. the order p is not an integer > —n — 1 (where n = dim M)
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2. M is even - dimensional, u is an integer and a is even - even, that is for each
J =0,
a/,u_j/i (T; 1‘7 _5) = (_1)M_jau—j,i(r7 x; 5) (549)

and this property also holds for all the derivatives of a,—j;.

3. M 1is odd - dimensional, p is an integer and a is even - odd, that is for each
J =0,
auji(r,z, =€) = (=" 7 la, ji(r,x, ) (5.4.10)
and this property also holds for all the derivatives of a, ;.
Proof. In each of these cases the integrals in (5.4.1)) vanish. Indeed if the order u
is not an integer, or less than —n — 1 then the component a_,,_; in the asymptotic

expansion (which appears in the integrand) is zero by definition. In the other cases

the result follows from the symmetry of the integrand. m

Remark 5.4.3. Even though ((5.4.8) is similar to the usual trace density observed in
[37] it is not the same since the integration here takes place over T(*;’r)M instead of

T M, the former has an additional dimension that accounts for the radial direction.

Proposition [5.4.2] allows us to define a natural extension of the canonical trace as

follows:

Definition 5.4.4. Let a € LyS”***2(O V) satisfy any of the properties listed in
Proposition let A := Opla] denote the pseudodifferential operator defined by

a. The canonical trace is defined by setting

TR(A) := ][ TR(A) 0y dwdr (5.4.11)
[0,00)x M

5.4.2 A formula in terms of integrals of strongly polyhomo-

geneous symbols over the fibre

Let us find a formula for the integral above in terms of the local symbol of the

operator.
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Theorem 5.4.5. With the notation and assumptions of the previous definition the

extended canonical trace admits the following formula:

TR(A) =

S— 1i/bg f(r / (][ O&S,l(r)(x,)\,n)dnd)\)dx

(r,z)

+Z/ log' f(r / <][ &S,z(r)(x,)\,n)dnd)\)dx

(T)

+Sz:1f:][ log! f(r fl/—s(r)dr/ (][ Ods,l(l)(%)\aﬁ)dﬁd)\>d$

s=0 [=0 M T(T‘,ZE)

s=0

where pointwise in r the integrands as; for 0 < s < § and 0 <1 < ky admit an

asymptotic expansion

5@&7")(%,)\,77) o QM—J'(T)('%)‘»U) ()‘777) — 00

in which each term is of the form

Gu—i (r)(, A, ) = quz (, A, ) log[(A, )]

where the coefficients q,—;;(r)(x, \,n) are strongly polyhomogeneous in the sense of

Grubb and Seeley [16, Definition 1.1].

Proof. Most of the work has already been done in Section and what is left is
to put the pieces together. First, we expand the trace density by using the
formula in Lemma which can then be rearranged in the sum shown in ([5.3.11])
- ((5.3.13)):

N-1

TR(A) =

(]
NMS

]{owM </ g 0:6) log'[€]dg ) dadr

(r,x)

J=0

Tm)o
+ 4 , ][ (/ a _-,-(r,x,g)dﬁgg) drdr  (5.4.12)
=0 i=0 (N—J +n+ 1)“rl [0,00) x M s(*m_;tojZ
p—j#—(n+1)
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Next we take the computation for the outer finite part integrals from (5.3.17)),
(5.3.24) and (5.3.27)) (note that each of them refers to multiple lines). Rearranging

the result gives the following expression for the canonical trace:

TR(A) =

Y [1og 1e m(Nzi [ s

s=0 1=0 Y [O:)xM 0 i= (7‘3:)(0 1

/ €1dE ay-sipnil£(F), 2,€)
Z

1) 1! ,
— + nt 1) / log'[¢] d¢ au—s,z,u—j,i(f(r),x,f)) (5.4.13)
= (r,z)

)]df Qy— S,l,u— ]Z(f(r)’x7£)

=0
N
=0
,UJ (n

N-1 ki
+ d?"dl’( Z/ dgay S,pu— ]’L(T T g)

(@)

OOO xM 7=0 =0 ('rz)

k1 '
+3 / log[€]d€ a5 ns(r, 7, €)

- NG

<m>

N 2+1,L| )
+ / log'[€]d€ ay—s —ji(r, x, € 5.4.14

ZZ e Ry | Rl s (54.14)
p—j# (n+1)

S—1 ko N-1 ki
+ Z][ log! f(r) f*=5( da?d?’(ZZ/ log'[€]d€ ay—s1p—ji(f(1),2,€)

s=0 1=0 7 [1,00)xM =0 i=0 (0.1)

k1 ‘
> 0816 € 0ty (1))

N kl ’H‘l,ll .

: log’ esaneii(f(1), 2, 4.1

DIDW e /z;ff% € 0wy sifD),0.6))  (5.415)
p—i#—(n+1) ’

(we note that the change of summation and integration is allowable here since the

integrals ending in line ([5.4.13) and (5.4.14]) respectively are absolutely integrable

whilst the last integral is summed over powers in log f(r) therefore the summands

are linearly independent expressions and cannot cancel each other out.) The brack-

ets in the three expressions ending respectively in line (5.4.13)), (5.4.14)) and ([5.4.15))
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are finite part integrals of certain functions defined on T(’;_@)O that are polyloga-

rithmic in €. In fact, if we look at the local asymptotic expansion

r €)= 3D IS i), €) gt ) log'[€

and keep s, fixed we obtain, for a fixed r, the asymptotic expansion

oo ki

as,l( )($f 108; f Zzau ERNTES ]z )7x7£)10glf(r)logz[§]

j=0 i=0

so we see that a,; is a function that has a polylogarithmic expansion in {. However,
it is not exactly in the class of log - polyhomogeneous symbols in the sense of Lesch.
To see this, it is better to distinguish the frequency variable that corresponds to the
r - variable by splitting ¢ into £ = (A, n) where n € R" parametrises the cotangent
space that corresponds to the subspace T,U < T{, ;O (we recall that O = (a,b) xU

where U C M is an open subset). Then the above expansion is of the form

oo ki

C~Ls,l( )(1‘ A 77 1Og f Zzau ERNTES ]z )7177)\777) loglf(r) 1Ogl[(/\v77)]

j=0 i=0

(5.4.16)
where each function a,_s;,—;:(f(r), z, A\, n) is a strongly polyhomogeneous symbol
as defined by G. Grubb and R. Seeley in [I6]. There they establish (c.f. [16]
Theorem 1.16]) that classical polyhomogeneous symbols in n+1 cotangent variables
give strongly polyhomogeneous symbols in n cotangent variables - this is precisely

the case that we have here. Therefore we obtain

TR(A) =

S—1 ks

2.2 /1og f(r / (][(;,m)o as,l(r)(x,x,n)dndA)dx

+Z / log' f(r / ( ][(*mo s (r)(z, A,n)d‘nd‘)\) dx

+ jzéli:;]{l;c;glf(r) f”‘s(r)dr/M (fm)o as1(1)(z, A\, ) d‘nd‘/\) dx
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where the integrands have the desired properties. O

Remark 5.4.6. The formula derived above rests on the assumption that each of the
integrands in exhibits log - polyhomogeneous growth in the r - variable, a
fact that is build into the definition of the symbols under consideration. On the
other hand, it is not obvious that the sum on the right hand side (i.e. the sum of the
integrals) exhibits log - polyhomogeneous growth in the r - variable, that is whether
the right hand side defines a symbol corresponding to a family of pseudodifferential
operators over M, parametrised in the variable r. Related to this question is the
interchangeability of the integration in the x - variable and the r - variable, which
should be investigated regardless of the fact that the order done above (first in z
then in r) is perhaps more natural since we consider families of pseudodifferential
operators over the factor M. In this context a Fubini - type theorem similar to [28],
Theorem 1.3] needs to be established because the interchange involves a standard

integral (in the z - variable) as well as a finite part integral (in the r variable).

5.5 Example: The Laplace Beltrami Operator

5.5.1 Preliminary formulas
Symbol of A on multiply warped products

In general one can write down the scalar Laplace - Beltrami operator A on an

n-dimensional Riemannian manifold in local coordinates (z!,...,z") as

( detgg"jﬁ) (5.5.1)
j

where det g denotes the determinant of the matrix g representing the metric tensor

I 0
A —
\/detgijzzlaxi

1

locally, and (g") is the inverse, so that g"g; = 0% with 07 the Kro-

1<ijen = 9
necker delta. As we have seen in Proposition this formula simplifies in the

context of a product manifold I x M (I is assumed one - dimensional) with metric
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dr? + g, where g, is a smooth one - parameter family of metrics on M to
1 )
AN=————tr(g, g)=— + 24, (5.5.2)
r

where A, denotes the Laplace - Beltrami operator on (M, g,) and g, := 5 2.

For the moment we are interested only in the special case of a multiply warped
product M =1 x My x --- x M,, with I denoting an open interval where and the
metric is of the form

dr* + hi(r)gr + -+ h2,(r)gm - (5.5.3)

Here each h;: I — R is a smooth positive function, and (M‘fi, gi),i=1,...,m are

compact Riemannian manifolds (of dimension d; respectively).

Corollary 5.5.1. The scalar Laplace - Beltrami operator /\ on the Riemannian

manifold defined by (5.5.3) is given by

A= —ﬁ - (Zd ) o Z h2 (5.5.4)

with /\; the scalar Laplace - Beltrami operator on (M, g;).

Proof. This is immediate from (|5.5.2)) applied to the case , using the fact that
a scaling of the metric g — h?g leads to an inverse scaling of the Laplace Beltrami

operator so that (A;), = hi(r) A, O

2

Of course the above also gives us the symbol for the Laplace Beltrami operator. Let
n =dy +---+d,, denote the dimension of the factor M; x --- x M,,, in M, choose

local coordinates

((T7‘T)7(777£)) = (7171‘%7"'7:6;[[17"’7‘rgbm7777£il7"'755175%7"‘76%)

for the cotangent bundle where at a point (r,z) € M the variable n corresponds
to the direction tangent to the factor I, and the remaining variables are ordered
according to the factors, that is 2%, . . . , xﬁli are coordinates for M; for 1 < i < m and

likewise for the -variables. We shall sometimes use the shorthand & := (&i,...,& ),
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z; = (x,...,2%). Substituting n for —id, and & for —i0, in equation (5.5.4)
gives

Corollary 5.5.2. The symbol op = oa((r,z),(n,£)) of the scalar Laplace - Bel-
trami operator /A on the Riemannian manifold defined in line (5.5.3)) is given by

m

) i hk 1
OA :7]2—2 <deh—k> 77+ZFO'A]€ (5.5.5)
k=1 k=1 'k

where op, = op, (x, §) denotes the symbol of the Laplace Beltrami operator on the

factor M;, that is

d;
on, = &l — 1) b (5.5.6)
=1

d
, dgl 1 4,0 s
with kaH Zg 86 and by = Z (8?2 + §t1" (gkl—ai];i) gkl> .

s,l=1 s=1

In particular, the homogeneous terms in o are

2 =1 +Z< Z “555?) : (5.5.7)

sl 1
—i de@ —ZZ 22@@ (5.5.8)
o T

ap=0. (5.5.9)

In terms of the homogeneous components ao, ag; and ayg of the Laplacians A, one

has

=1
a9 = 7]2 + Z Fakg s (5510)
k=1 "k
N Iy, 1
a; = —1 de— U—ZZFCLM (5.5.11)
k=1 F k=1 'k
ao = 0. (5.5.12)

Remark 5.5.3. Looking back at Definition we notice that the terms above
require the fixed function to be f(r) = r. This shows in particular that one needs

to be able to set f independent from the warping function h.
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Formal Complex Power of /A on multiply warped products

Next we consider the formal aspects of the complex power
AN :/)\‘S(A—A)‘ldA (5.5.13)
r

of the Laplacian.

Remark 5.5.4. The theory of complex powers of elliptic operators on noncompact
manifolds was studied for example by B. Amman, R. Lauter, V. Nistor and A. Vasy
in [1], by E. Schrohe in [39] and also by U. Battisti and S. Coriasco [2]

Here I' is an infinite contour surrounding the spectrum of A, and d\ = %. If we
take a function f supported in a coordinate neighbourhood U C M with coordinates

(r,x) then this operator is understood to act by

A flra) = / A (B =N 2)dA
r
= / / / =l N (1, 3), (n,€), \) f (v, y) dndédvdydA
rJuJrg, U

with dndé = (2r)~ " Ddndé. So, formally, the Schwartz kernel of A™* is

k(). ) = [

Tl

illra) =) () ( / Ao ((r ), (n,g),x)cn> dnd
r

with a((r, z), (n,§), )\) the symbol of the resolvent operator (A —)\)_1. At least
formally, the local symbol a(s, (r,x), (n, f)) of the complex power operator A™° is
thus given by

a(s, (r,x), (77,5)) = /F/\_Sa((rw), (n,f),)\)d‘)\ (5.5.14)

where O'((?“, x), (n,§), )\) is the symbol of the resolvent (A —\)~!. We suppose there
is, analogously to the resolvent formalism on compact manifolds, a local asymptotic

expansion

Z q—2—j - Z Q—2—j((r7 x)v (7%5)’ >‘) fOl" (7775) — 0

J=0 j=0
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for the symbol of the resolvent where the terms in the formal series are recursively

constructed out of the homogeneous summands listed in ((5.5.7)) - (5.5.9)), explicitly:

-1

g2 = (a2 — \) (5.5.15)
1 .
q—2—j = —(q—2 Z Taéag)q_%l . qu,x)ag_k (j Z ].) . (5516)
lul+k+i=5 "
I<j

Before we move on to study the symbol of the complex power A™° let us make the

following observation.

Proposition 5.5.5. For each j > 0 the function q_o_; is a polynomial P(q,g) m
q_2 whose coefficients are independent of \. Moreover the coefficients are in turn
polynomials in & with coefficients that are determined by as,a; and their (r,x)-
derivatives:
qoo_j = Zakqlﬁ2 with oy, = 207(86,@)&2,8&;@)@1)57. (5.5.17)
finite finite
Proof. We show this by induction. The base case j = 0 is clear, taking the polyno-
mial P(z) = z. Now suppose that
q-2-1 = Zamq%. (5.5.18)
finite

for each 0 < < j where each «,, is independent of A. Substituting this into the
terms on the right hand side of ((5.5.16) we see that

1
yzi

=5
1<j
_ 1 Y qu—y vy p 1
=—q2 ), m(ZZ<7>a(n,s)%z'a<n,s)q—2 D zya2-k- (5:5.19)
\m—iik—lfl:j P YSp
<J

Now

[
S T 9

Oye)"2 = DodES - DEY (a2 =

)\)—pl
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a|7| a’)/n
~Opedg)t - 98! <3£n”

where, for the term inside the brackets, one may use Faa di Bruno’s formula [23),

(as — )\)pl> (5.5.20)

Theorem 1.3.2] to compute

o _ e ! _
W(% — A= Z(—l)kﬁqpl;k + B (06,02, 02 az, ..., 07" " ay) .
n =1 . ~ v

Bell polynomial, independent of A

(5.5.21)
Here the Bell polynomials on the right are independent of A (see Remark |5.5.6
below for additional information on the Bell polynomial). Thus in the first iteration
of taking derivatives in we produce a polynomial in g_s with coefficients
independent of A. Assuming the computation has been performed for all derivatives
with respect to {; for 7 > m the next differentiation yields again a polynomial in
g_o as one can see from the expansion

om & (Vm _
8£Vm D= ) <7t >a§m9i2 L0l o
m s t=0

S

Ym t
Yim s! s _ o
B ( t ) (Z(_1>k(s e Bm,k(agm@,agmag,...,agmm@)) g la.

s t=0 k=1

(5.5.22)

Thus the term 8(777 é)qg in ((5.5.19) is a polynomial in ¢_, with coefficients that are
independent of A\. Substitution of this into (5.5.19|) and rearranging, using the fact
that the terms involved are all scalar valued and therefore commute, yields the

desired property of g_o_;. O

Remark 5.5.6 (Bell polynomials). The (partial) Bell polynomial B, is defined as

Bn,k(xla Zo, ... 7xn—k+1) -
Y (06 ()
Jilgel - gpgaq! \ 1! 2! (n—k+1)!
where the sum ranges over all possible multi - indices (ji, j2, - - ., jn_k+1) such that

> Ji = k and ) ,ij; = n. These polynomials are related, for example, to the
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number of partitions of a set of size n as one can compute this as a sum over partial

Bell polynomials:

n
no. of partitions = Z B,r(1,1,...,1).
k=1

We are now ready to determine an asymptotic expansion for the local symbol of

AT®. Substitute the resolvent symbol expansion >0 q—2—j nto (5.5.14) to find

Proposition 5.5.7. The local symbol of A™° has an asymptotic expansion

o (s, (r,a “ > by (s, (rx), (1.6)  as (n,€) = o0 (5.5.23)

j=>0

where

boas(s, (r.2), (1,€)) = (n* + i ) (5.5.24)

and, for j > 1, o
bozsj (s, (1), (77, 6))

—Z s+p] >'s—|—1 ( Zm%)

where the outer sum is finite and ay,; is determined by the homogeneous components

s—pj—l-l

ay, ((r @), (,))  (5.5.25)

as, a1 and their derivatives as described in Proposition and the proof thereof,

in particular the oy, are independent of s.

Proof. The leading term in the expansion for the symbol of the complex power is

b_ss(s, (r,2), (n,€)) = /FAngd‘)\: /FAS(&2 —\)"lax (5.5.26)

and (5.5.24) now follows directly from ([5.5.10) and Cauchy’s Integral Theorem
applied pointwise to the integral

S>—>/ 2),(0,6)) = A)'dx.

For the remaining symbols we have
bfgs,j = / )\78(],2,]‘ a\ = Z (/ A° (CLQ — )\) _pjdA> Oépj (5527)
r o r
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where the second equality follows from Proposition But

. 1 opi~t —1
A az = A) Pad= ———— [ A ———(aa — A) d\ 5.2
/r (a2 =) (pj — 1)! /r ONPi—1 (a2 = A) (5.5.28)
and using integration by parts,
(—1)pi—t / orimt -1
= A8 —A) dA 5.5.29
(pj — 1)1 Jp OAPs 1 (a2 =) ( )
(note the boundary is at infinity where the integrated term vanishes). This simplifies
to
_9)... 1 _
LRI [,
(pj —1)! r
(5.5.30)

and from the Cauchy Integral Formula,

(s+p;—2)---(s+1)s —s—pj+1
- - (p _ ]_)l (aQ((T7 x)a(nag))) (5531)
) !
hence the result follows by ([5.5.10]) and by substituting this into the right hand side

of (5.5.27). O

5.5.2 The case of a simple warp

We are now ready to formally determine the terms in the asymptotic expansion of
/A™° on a simple product manifold I x M with warped metric g = dr? + h%(r)g. We
first focus on the leading symbol, of course the remaining terms in the expansion
have to be treated as well. In particular a more precise description of the functions
@y, in Proposition is required and the topic of current work. From we
see that
a = 1+ el

Since there is only one factor M involved let us drop the subscript g in [|€]|,.

Substituting this into (5.5.24)) gives
1 —s
by = (n* + 75€1°) (5.5.32)
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which is homogeneous in (7,£) of degree —2s. As we are interested in the large
scale behaviour we may assume that ||(n,£)|| > 0 (however we shall see that we
need to distinguish between the cases n = 0 and n # 0), the behaviour in r as
r — oo depends of course on properties of the function h. Let us find an expansion

for (5.5.32)) in terms of r: if 7 # 0 then we can rewrite the right hand side as

_s [N
boss = (n?) (1 + ﬁ> . (5.5.33)
with g := ||€]|?/n?. Then, provided f — oo as r — oo we may assume |h~2u| < 1

for r large enough and (&, n) fixed, this allows an application of the binomial series

(1+y)° = i (Z) % (5.5.34)

n=0
which is valid for |y| < 1 and any complex number c. Here,

<c> cle=1)---(c—n+1) I(c+1)

n

n! nll(c+1—n)
is a generalised binomial coefficient. On the other hand, if n = 0 then (5.5.32)) is

equal to

(€2) ™ = (1€l = (1el )

and we can apply the exponential series. For easier reference let us summarise the

considerations above in a proposition.

Proposition 5.5.8. Let h(r) be a smooth positive function on I = [0, 00) such that
h — o0 asr — oo. Then the (formal) leading symbol of A~ on the manifold I x M

with metric dr® + h2(r)g has the following series expansion as r — oo

(N~ TO—s) g/l o
nzgn!F(l—s—n) n%s i #0,
b_os (s, (h,z), (n, 5)) = (5.5.35)
((29)" N :
\ZO<H!H€H23>1H h ifn=0.
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Remark 5.5.9. We see that, in each case, the principal symbol of A™° admits an

asymptotic expansion as r — oo of the form

boas(s, (r,2), (0,€)) > ba(s, (h,2), (1,))

n>0

where

away from the hypersurface n = 0: the terms b, (s, (h,z), (n, 5)) decay poly-
nomially in A (and therefore decay in r) as well as n while they increase in [|£]|. In
particular the components are separately homogeneous in the cotangent directions

¢ and n:

b, (s, (h,z),(n,t&)) =t*" Bn(s, (h,z), (n,€)) (5.5.36)

whilst

ba (s, (hy2), (0, €)) = t 72 b, (s, (h,2), (0, €)) - (5.5.37)

Furthermore we have homogeneity in h of the form
by (s, (th,x), (n, f)) =t"2p, (s, (h,x), (n, f)) (5.5.38)

on the hypersurface = 0: the components b, (s, (h,),(0,€)) grow logarith-
mically in 4 and the behaviour in ||£]| is determined by the complex parameter s,

concretely we have homogeneity of degree —2s in the cotangent directions &:

by (s, (h,2),(0,t8) =t~ by, (s, (h,),(0,)) (5.5.39)

Note that a good choice of s regularises this series.
Let us list some examples of metrics that arise in applications.

Ezample 5.5.10 (Generalized metric cones). For the class of metrics
dr? +1r?g
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where h(r) = r* with k € Z\ {0} we see that the leading symbol of the complex

power A™* has an r-expansion of the form

i <_S) ||§/77||2n 72kn if n 7é 0’

n=0

boas(s, (h,x), (,€)) " =" (5.5.40)
Z(W'MHQS) " ifn=0.
=0

Here any choice of positive integer k falls into the class discussed in Proposition

b58

(

Ezample 5.5.11 (Funnel). Another interesting example is the metric
dr® + cosh?(r)d6?

associated with a Funnel, that is a certain type of cylindrical end which arises for
example in the spectral and scattering theory on infinite - area hyperbolic surfaces
(see for example [19, ?]). Since the expansion is applicable as r becomes large we
can use the approximation cosh(r) «~ 3e” and obtain

( (—s> |’5/2l|2n4n =2 Q)

o\ U

boau(s. (h2). (0.6)) < (5.5.41)
=/ (29" N, .
;%(—N!HfHZS)T itn=0.

(for the lower branch we also approximate r — In2 = r).

n=

Finally let us comment on an example that does not satisfy the conditions of Propo-

sition [£.5.8]

Example 5.5.12 (Cigar Soliton). The Cigar soliton is a steady gradient Ricci soliton
on R% A smooth Riemannian manifold (M, g) is called a Ricci soliton if there exists
a smooth vector field X such that the Ricci tensor Ric of the metric g satisfies the

equation Ric —i—%L xg = pg where Lxg is the Lie derivative of g in the direction of X
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and p is a constant. Such manifolds are generalisations of Einstein spaces and play
an important role in the study of the Ricci flow. If p = 0 then the Ricci soliton is
called steady, and if the vector field arises as the gradient of some smooth function
f (called the potential function of the Ricci soliton) then one speaks of a gradient
Ricci soliton. The Cigar soliton was the first example of a complete noncompact
steady soliton on R?, discovered by R. Hamilton [20], its metric can be written in

the form

dr?® + tanh?(r)d6? .

Of course the function h(r) = tanh(r) does not tend to 400 as r becomes large,
this was an important assumption in order to be able to apply the binomial series

(5.5.34). However, in the limit we know that tanh(r) ~ 1 and

bz (s, (o), (1.€) o (o +1El) (5.5.42)

(r>0)

In other words, one ”quickly” looses the warping effect.

5.6 Proof of Lemma [5.3.3

Expand a(z,€) into log-homogeneous components as in (5.2.5) and substitute into
the integral fB*(O Ry oz, §)dE,

B;(0,R)

N
o)de = (2, 6)d ode. (561
/ UL / o G [ axmod. 6oy

From the fact that ay € SReW-N=14¢ for any € > 0 we see that
[ lanolde < [ (el
B2(0,R) Bx(0,R)
and the right hand side is finite as R — oo provided we choose N > Re(u) + n. It
follows by comparison that the last term on the r.h.s of is finite, we denote
the limit by

/*U ay(x,&)d¢ = lim ay(x,&)de . (5.6.2)

R=o0 JBz(0,R)

x
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The remaining terms can be studied using the logarithmic expansion of the a,_;.
We have
[ aswate= [ oot [ Qs (5, €)E (5.6.3)
Bz(0,R) Bz(0,1)

B3 (0,R)\B3(0,1)

>

ﬁI;i,te
and from (5.2.6)), denoting B*(1, R) := B*(0, R) \ B(0,1),

k

— H=J
[t =3 [ ot e/l o el

=0
R . .
/ au—ji(x,m)dsn - (/ pHItn—l logl'r’d'r’) (5.6.4)
1

>

Now if u — j = —n then

/Rﬂjﬁln ‘rd ! /Rdl g — 1 logi I R (5.6.5)
r o' rdr = — 10 rar = O . .0.

) & ir 1), ar ® i+1 8

Otherwise, repeated integration by parts yieldsﬂ

i . R
lOg R Ru—j-‘rn _ 4 / ru—j-i—n—l logi—l rdr

R
/ rh=itn = ogt p dpr = —2—— ,
) p—j+n p—j+n

1(4WW#4W§HRmﬁM+ @p”m |
(b —J+n)i! (b —J+n)!

(5.6.6)

=0

Substituting this into (5.6.4]) gives

(2, €)0E = / . mdsn
A z -

if © —j = —n and this diverges as R — oo, otherwise

(=14l — D\Rr—3t
a,;(x,&)dE = E / ay—;i(x,m)dsn - E , log" " R
/BSZ(LR) nsl®8) i—0 Y S3U il @ s (b —j+mn)Ht

=0

log R (5.6.7)

IThis result deviates from the corresponding statement in [37], however only in aspects that

are irrelevant to the final formula.
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+ i /S ” i (%, ) dg1 - ((u (__;)j:)!m) (5.6.8)

and we see that the 1.h.s of the first line diverges as R — oo whereas the second line
remains finite. The asymptotic expansion for [, (O.R) a,—i(z,&)d¢ and the formula

for the constant term K (x) in (5.3.4) are now obtained by substituting ((5.6.7)
respectively (5.6.4)) for the summands in the first term on the r.h.s of (5.7.3)).

5.7 Proof of Proposition 5.3.4

First,

/ a(z, A€) |A|d‘§z/ a(z,&)d¢ (5.7.1)
B:(0,R) A=1B;(0,R)
where A™'B3(0,R) = {¢ € T;U: |A7'¢| < R}. Substitute

x 5) = Za#*j(%g) + &N(.Qi,f)

§=0
on the right hand side,
/ a(z, £)dE = Z/ a,;(x §)d§+/ ay(z,€)de (5.7.2)
A-1B2(0,R) A-1B2(0,R) A-1B2(0,R)
with NV chosen large enough so that the last integral below is finite as R — oo. In
the limit, this integral is independent of A and equals (5.6.2)). For the remaining

terms we have

A-1B%(0,R)\B%(0,1)

/ T e A o | 4y, €)E
A—1B%(0,R) 7 B;(0,1)

J/

ﬁ;ﬁe
(5.7.3)
valid for all R large enough so that B;(0,1) € A~'Bx(0, R). Denote A/—TE*I(O, R) :=
A7'Bx(0,R)\ B:(0,1). For the second term on the right hand side we use the poly-
logarithmic expansion of a,_;(x,-) given in ) to obtain

k

i d¢ = _ailx, ©) logh €| d
/A/_Tg*z(O,R) ay—j(, §)d§ Z — ay—ji(z, &) log" [§] A€

i—0 YA 1B*3(O,R)
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k |
= Z/ au_jﬂ-(:p,n)/ rt=Itn = ogt r drdn
=0 JszU 1

and substituting ([5.6.5)) for each term in the sum we get , if p —j = —

R/|AM| .
/ a,—ji(z, 77)/ rP=It = ogh v drdn

au—ji(,1m) 1ng+1 (R/‘A 77‘)

SzU
i 1 |
<Z+ ) ( / au—ji(w, ) log" |A™n] dn) log™ ' R
i+ 1 SzU
(= V“ 1| g1
+ N / au—ji(z,n)log™ A7 | dn. (5.7.4)
7 + U

Here only the last term remains finite as R — oco. If p—j # —n we see from (/5.6.5))
that

/[~ |
/ a,—ji(x,n) / rh=Itn =1 log" r drdn
U 1

(—1)i+1i!

- B - / Ap—ji (I, 77)5[7]
SxU

(n—J+n)™!

~ (—1)4l/ (i —1)! T B
*§(<u—)/+(n>z3l . s R 1A o (1 A7

(5.7.5)
again only the first term remains finite as R — oo, furthermore it is already a

term present in the formula (5.3.6) for the finite part integral. In summary, the

additional terms that arise due to the change in variable arise by summing over 7

the term in , as claimed.
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Chapter 6

Concluding remarks

This thesis revolves around the study of Riemannian manifolds, whose metric is
equipped with a high degree of symmetry, using tools from pseudodifferential op-
erator theory and more generally asymptotic analysis. A central theme is the heat
kernel on cohomogeneity one manifolds, two objects that individually appear in a
number of areas in mathematics and theoretical physics. The aim is to illuminate
their intersection and thereby seek out more explicit and refined results.

In Chapter [2 we analyse the sectional curvature asymptotics of a particular set of
cohomogeneity one metrics found by Andrew Dancer and McKenzie Wang in their
study of the Einstein equations via the Hamiltonian formalism. In Chapter 3| we
study a non-standard asymptotic expansion for the heat kernel on cohomogeneity
one manifolds. Even though it is known that the standard asymptotic expansion
for the heat kernel carries geometric information, it does not explicitly describe the
"warping effect” that is present in cohomogeneity one metrics, a property that is
more easily accessible in the non-standard approach. The asymptotic expansion
of the trace of the heat kernel is equivalent to the expansion of the trace of the
resolvent operator as well as the spectral zeta function. In this regard Chapter
is concerned with the coefficients for the standard heat trace expansion in the

context of compact Riemannian manifolds, we show that these can be calculated
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via the resolvent symbols in an elementary fashion. Finally Chapter [5| represents
an extension of the canonical trace to the setting of non-compact cohomogeneity
one manifolds and is work in progress.

Let us now outline concluding remarks for each Chapter.

In Chapter [2| we studied the new examples of non - compact cohomogeneity one
Ricci - flat Einstein manifolds of dimension 10 and 11 mentioned above. For the
construction of these metrics Dancer and Wang assume that the Lie group acts by
isometries on the manifold such that the principal orbit has codimension one (this
is the cohomogeneity one property), furthermore it is assumed that the Lie group is
a product (G1/K7) x (Gy/ K>) of distinct isotropy irreducible spaces. The solutions
found are associated to particular dimension pairs of these factors, namely (2,8),
(3,6), and (5,5), and the metric is diagonal of the form g = dt* + f2(t)g1 + [f2(t)>
where g; is a homogeneous background metric on the i** component of the principal
orbit. We establish more explicit forms for these metrics in order to study sectional
curvature asymptotics for large values of t. Let us refer to the transverse part as
the ’horizontal factor’ and to the two components constituting the fibre as ’first
vertical factor’ and ’second vertical factor’. In all cases we observe that sectional
curvature associated with a plane that is tangent to the horizontal and the second
vertical factor vanishes, i.e. with respect to the horizontal component and the
second vertical component the metric asymptotically approaches a product metric.
Sectional curvature associated with a plane that is tangent to the principal orbit
is given for large t by the sectional curvature associated with the product metric
gi = f2(t)g1+f2(t)go in the fibres. In particular, this means that sectional curvature
is non - positive (respectively non - negative) for large ¢ whenever both factors
have that property. On the other hand, if both factors have positive sectional
curvature (say) then their product has tangent planes whose sectional curvature is
zero, namely planes that arise as the span of a vector tangent to the first component

and a vector tangent to the second component (we thank J. Lotay for a helpful
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discussion that helped to clarify the geometric interpretation of the result). Finally,
sectional curvature associated with a plane that is tangent to the horizontal and
the first vertical factor vanishes in the case of the dimension pair (3,6) (so that the
metric approaches a product metric in this case with respect to the first vertical
factor as well) whilst it is unbounded in the other dimension pairs, from below for the
pair (2,8) and from above for the pair (5,5). The results presented in this Chapter
provide further information about the particular Einstein metrics and are therefore
not immediately suitable for further work. However, since there exists (up to now)
no complete list of conditions for the existence of Einstein metrics on manifolds
of dimension larger than four, well studied examples are useful as they contribute
to a better understanding of potential obstructions to existence and uniqueness of
Einstein metrics.

The work in Chapter |3| is concerned with the extension of a non - standard
parametrix construction from simple warps to multiply warped products, thereby
accommodating the metrics that are studied in Chapter 2, The main motivation for
this project originated in the idea that the special structure of (multiply) warped
products brings within reach an understanding of the heat trace coefficients, not
only in terms of the geometry of the underlying space as a whole, but in terms of the
underlying geometries of the factors as well as the warping functions. One reason
that this is an interesting research project to pursue is that it serves as an extension
of the refined knowledge present for plain product geometries. In this regard, having
a parametrix for the heat kernel that better accounts for the warped geometry is
essential and a first step in this direction. The goal of future work is to apply the
parametrix and study the corresponding short time asymptotic expansion of the
heat trace as this is where the heat coefficients arise. In particular the aim is to
calculate the first coefficients of concrete examples such as the Hamilton cigar and
the Bryant Soliton. These are warped metrics, we hope that we can also calculate

examples for doubly warped metrics such as the Einstein metrics found by Dancer
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and Wang that we studied in Chapter 2] In general, an explicit computation of
these coefficients is very complicated so we plan to invest a certain amount of
time in investigating computer software that is suitable for supporting symbolic
computation. We hope that, whilst computationally demanding, this will serve as
an avenue into a better understanding of the heat kernel on warped products and
are confident that this is attainable in particular on simple warped products.

In Chapter ] we establish explicit formulae for the first resolvent symbols of
certain Laplace operators and motivate the interest in these via concrete applica-
tions. To illustrate the elementary nature of the resolvent symbols the discussion
is restricted to simple yet important examples, and computations have been re-
stricted to those resolvent symbols that were essential for the particular application
presented here (i.e. terms that are known to reflect the underlying geometry, re-
spectively terms necessary to derive the index on a Riemann surface). The next
step is to generalise the discussion, , using a formal symbolic calculus along the lines
of [33], and establish similar expressions for a generic resolvent symbol associated
to a suitable pseudodifferential operator and investigate the geometric meaning of
these. In this regard an interesting class of pseudodifferential operators are classical
pseudodifferential operators whose components in the local symbol expansion are
homogeneous in the jets of the metric and the connection (the symbolic calculus
presented in [33] was brought to our attention by S. Paycha who also suggested the
class of operators mentioned here). One point of caution that should be kept in
mind is that the elementary nature of the calculation does not solve the difficulty
in interpreting the result, this will likely turn out challenging especially in higher
dimensions. A further interesting extension of the work is to study the applicability
of the resolvent symbols in the context of non - compact manifolds. This is partic-
ularly interesting in the context of the topics covered in Chapter [2] and [} We hope
that the restriction to warped products will be the right context to further explore

the use of the resolvent symbols presented here.
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Finally in Chapter |5 we propose an extension of the canonical trace to the
setting of non compact simple warped products. A suitable class of symbols is
defined which extends log - polyhomogeneous symbols and is assumed to also ex-
hibit log - polyhomogeneous growth in the non - compact spacial direction (the
‘radial’ direction). After showing that the class is closed under symbol composition
we investigate the existence of a family of trace densities associated with certain
pseudodifferential operators defined over the fibres. These operators are associated
with strongly homogeneous symbols. In particular cases, which are similar to those
present in the context of closed manifolds, it is possible to define a canonical trace
by applying a second cut off integral in order to deal with the divergence in the
radial variable. The work described here is still ongoing, in particular the results
are intermediary and subject to review and improvement. For instance, the for-
mula derived in Theorem [5.4.5| rests on the assumption that each of the integrands
in exhibits log - polyhomogeneous growth in the r - variable, a fact that
is build into the definition of the symbols under consideration. However, it is not
obvious that the sum on the right hand side (i.e. the sum of the integrals) exhibits
log - polyhomogeneous growth in the r - variable, that is whether the right hand
side defines a symbol corresponding to a family of pseudodifferential operators over
M, parametrised in the variable r. Related to this question is the interchange-
ability of the integration in the z - variable and the r - variable, which should be
investigated regardless of the fact that the order done here (first in x then in r)
is perhaps more natural since we consider families of pseudodifferential operators
over the factor M. In this context a Fubini - type theorem similar to [28, Theorem
1.3] needs to be established because the interchange involves a standard integral
(in the x - variable) as well as a finite part integral (in the r variable). Neverthe-
less these issues, the work reported in this chapter forms an integral part of the
thesis because it describes the first steps of future work that aims at studying the

methods of Chapter [d] in the context of warped products. The results so far greatly
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clarified many advantages that arise from the cohomogeneity one structure and we
are confident that it provides a realistic context in which to consider extensions
for traces. Going forward we also plan to investigate a slightly different approach
to the extension, based on the observation that cohomogeneity one metrics often
arise in quotient constructions. With respect to these one may wish to understand
the properties of geometric operators (such as the Laplace Beltrami operator) and
fundamental solutions to differential equations (such as the heat kernel). This idea
is classical — for example the Poisson summation formula and its generalisation,
the Selberg Trace formula, are typical instances where the quotient structure of the
underlying space is exploited to simplify the computation of the heat trace. To
this end we consider a calculus for pseudodifferential operators whose symbols are
invariant with respect to a particular group action. Using this invariance as the
defining property of a symbol class for pseudodifferential operators we consider the
extension of regularised traces in this context. The findings from the latter ap-
proach will then be compared to future results arising from the approach initiated

in Chapter
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Bibliography

1]

B. Ammann, R. Lautern, V. Nistor and A. Vasy, Complex powers and non-

compact manifolds, Comm. Part. Diff. Eq. 29 (2004), 671-705

U. Battisti and S. Coriasco, Wodzicki residue for operators on manifolds with

cylindrical ends, Ann. Glob. Anal. Geom. 40 (2011), 223-249

L. Bérard Bergery, Sur des nouvelles varietés Riemanniennes d’Einstein, Pub-

lications de I'Institut Elie Cartan 4 (1982), 1-60

A. Besse, Finstein Manifolds, Ergebnisse der Mathematik und Ihrer Grenzge-
biete, Berlin (1987)

A. Betancourt de la Parra, A. Dancer, M. Wang, A Hamiltonian approach to
the cohomogeneity one Ricci soliton equations, arXiv:1407.2551 [math.DG]

S. Bochner, Vector fields and Ricci curvature, Bull. Am. Math. Sc., 52 (1946),
776-779

J. Cheeger and D. Gromoll, The splitting theorem for manifolds of nonnegative
Ricci curvature, J. Differential Geom. 6, no.1 (1971), 119-128

189



8]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

M. Cvetic, G.W. Gibbons, H.Lu, C.N. Pope, Cohomogeneity one manifolds of
Spin(7) and Gy holonomy, Phys. Rev. D65 10 (2002)

A. Dancer and M. Wang, The cohomogeneity one Finstein equations from the

Hamiltonian viewpoint. J. fiir Reine und Angewandte Math. 524 (2000), 97-128

A. Dancer and M. Wang, Kahler - Finstein metrics of cohomogeneity one,

Math. Ann. 312 (1998), 503-526

A. Dancer and M. Wang, Integrable cases of the Einstein equations, Commu-

nications in Mathematical Physics 208 (1999), 225-243

F. Dobarro and B. Unal, Curvature of Multiply Warped Products,
arXiv:math /0406039 [math.DG]|

E. Getzler, A short proof of the local Atiyah-Singer index theorem, Topology
25 (1986), 111-117

P. Gilkey, Invariance Theory, the Heat Equation, and the Atiyah-Singer Index
Theorem, CRC Press, Boca Raton 1995

G. Grubb, Parametrized pseudodifferential operators and geometric invariants,
Microlocal Analysis and Spectral Theory, CIME Conference Paper 1996, Hol-
land: Kluwer Law International (1997), 115-164

G. Grubb and R. T. Seeley, Weakly parametric pseudodifferential operators and
Atiyah-Patodi-Singer boundary problems, Invent. Math. 121 (1995), 481-529

G Grubb and R. Seeley, Zeta and eta functions for Atiyah-Patodi-Singer oper-
ators, J. Geom. Anal. 6 (1996), 31-77

V. Guillemin, Residue traces for certain algebras of Fourier integral operators,

Journ. Funct. Anal. 115 (1993), 391-417

190



[19]

[20]

[21]

[22]

[23]

[20]

[27]

28]

[29]

L. Guillope and M. Zworski, The Wave Trace for Riemann Surfaces, GAFA 9
(1999) 1156-1168

R. Hamilton, The Ricci flow on Surfaces, Contemporary Mathematics 71
(1988) 237-261

M. Kontsevich, S. Vishik, Geometry of determinants of elliptic operators, Func.
Anal. on the Eve of the XXI. century, Vol I, Progress in Mathematics 131
(1994) 173-197

T. Kotake, An analytic proof of the classical Riemann-Roch theorem, PSPM
16, AMS, Providence RI, 1968

S.G. Krantz and H.R. Parks, A Primer of Real Analytic Functions (2" Ed.),
Birkhauser Advanced Texts, Boston 2002

H.P. McKean & I.M. Singer, Curvature and the eigenvalues of the Laplacian,
J. Differential Geom. 1, Number 1-2 (1967), 43-69

M. Kontsevich and S. Vishik, Geometry of determinants of elliptic operators,
Func. Anal. on the Eve of the XXXI century Vol I, Progress in Mathematics
131 (1994), 173-197

H. Lauwerier, Asymptotic Analysis, Mathematical Centre Tracts, Mathema-

tisch Centrum, Amsterdam 1974

M. Lesch, On the noncommutative residue for pseudodifferential operators with

log-polyhomogeneous symbols, Ann. Global Anal. Geom 17 (1999), 151-187

M. Lesch and B. Vertmann, emphRegularizing infinite sums of zeta determi-

nants, Math. Ann. 362 (2015), 835-862

P.C. Lue, The Asymptotic Expansion for the Trace of the Heat Kernel on a
Generalized Surface of Revolution, Trans. Amer. Math. Soc. 273 (1982), 93-
110

191



[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

S. Minakshisundaram, Figenfunctions on Riemannian manifolds, J. Indian

Math. Soc. 17 (1953), 159-165

S. Minakshisundaram and A. Pleijel, Some properties of the eigenfunctions
of the Laplace operator on Riemannian manifolds, Canad. J. Math. 1 (1949),
242-256

S.B. Myers, Riemannian manifolds with positive mean curvature, Duke Math.

J.8 (1941), 401-404

K. Okikiolu, The Campbell - Hausdorff theorem for elliptic operators and a
related trace formula, Duke Math. Journ. 79 (1995) 722-749

B. O’Neill, The fundamental equations of a submersion, Mich Math. J. 13
(1966), 459-469

D. Page, A compact rotating gravitational instanton, Phys. Lett. B79 (1978),
235-238

S. Rosenberg, The Laplacian on a Riemannian Manifold, London Mathemati-

cal Society Student Texts 31, Cambridge 1997

S. Paycha and S. Scott, A Laurent expansion for reqularized integrals of holo-

morphic symbols, GAFA, Geom. funct. anal. 17 (2007), 491-536
S. Scott, Traces and Determinants of Pseudodifferential Operators, Oxford 2010

E. Schrohe, Complex Powers on Noncompact Manifolds and Manifolds with
Singularities, Math. Ann. 281 (1988), 393-410

R.T. Seeley, Complex powers of an elliptic operator in Singular integrals, Proc.

Symp. Pure Math., Chicago, Amer. Math. Soc., Providence (1966), 288-307

M.A. Shubin, Pseudodifferential Operators and Spectral Theory, 2"d ed.,

Springer, Berlin 2001

192



[42] J. Wang, M. Wang, Einstein metrics on S?-bundles, Math. Ann. 310 (1998),
497-526

[43] M. Wodzicki, Non - commutative residue in Lecture Notes in Math. 1283,

Springer Verlag 1987

[44] A. Zee, Quantum Field Theory in a Nutshell, Princeton 2010

193



	Introduction
	Sectional curvature asymptotics for certain non-compact cohomogeneity one Einstein metrics
	Introduction
	Cohomogeneity one manifolds
	Definition and basic properties
	Formulae for sectional curvature

	Elementary function representation for the metrics found by Dancer and Wang
	Sectional curvature of the example metrics
	The dimension pair (2,8)
	The dimension pair (3,6)
	The dimension pair (5,5)


	A non-standard parametrix for the heat kernel on Riemannian manifolds with multiply warped metric
	Introduction
	The formal solution
	Statement and proof of the main theorem
	Computations for the parametrix
	Applying the heat operator to the formal series
	Solving for the coefficients


	Explicit formulae for resolvent symbols and their application
	Introduction
	Resolvent symbols on closed Riemannian manifolds and heat coefficients
	Preliminaries
	Explicit formulae for the resolvent symbols
	The first three heat coefficients

	Resolvent symbols on Riemann surfaces and the Riemann Roch formula
	Preliminaries
	Explicit formulae for the resolvent symbols
	The Riemann-Roch formula
	Derivation of the Riemann Roch formula


	On log-polyhomogeneous symbols and the canonical trace over a simple warped product
	Introduction
	Symbols of log-polyhomogeneous growth on [0,) M
	Finite-part integrals of symbols
	Preliminaries
	Finite-part integrals for simple warped products

	The extended canonical trace
	Existence of a trace density
	A formula in terms of integrals of strongly polyhomogeneous symbols over the fibre

	Example: The Laplace Beltrami Operator
	Preliminary formulas
	The case of a simple warp

	Proof of Lemma 5.3.3
	Proof of Proposition 5.3.4 

	Concluding remarks
	Bibliography

