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Abstract

We study problems related to the metric of a Riemannian manifold with a partic-

ular focus on certain cohomogeneity one metrics. In Chapter 2 we study a set of

cohomogeneity one Einstein metrics found by A. Dancer and M. Wang. We express

these in terms of elementary functions and find explicit sectional curvature formulae

which are then used to determine sectional curvature asymptotics of the metrics.

In Chapter 3 we construct a non-standard parametrix for the heat kernel on a

product manifold with multiply warped Riemannian metric. The special feature of

this parametrix is that it separates the contribution of the warping functions and

the heat data on the factors; this cannot be achieved via the standard approach.

In Chapter 4 we determine explicit formulae for the resolvent symbols associated

with the Laplace Beltrami operator over a closed Riemannian manifold and apply

these to motivate an alternative method for computing heat trace coefficients. This

method is entirely based on local computations and to illustrate this we recover

geometric formulae for the heat coefficients. Furthermore one can derive topolog-

ical identities via this approach; to demonstrate this application we find explicit

formulae for the resolvent symbols associated with Laplace operators on a Riemann

surface and recover the Riemann-Roch formula. In the final chapter we report on

an area of current research: we introduce a class of symbols for pseudodifferential

operators on simple warped products which is closed under composition. We then

extend the canonical trace to this setting, using a cut - off integral, and find an

explicit formula for the extension in terms of integrals over the factor.
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Chapter 1

Introduction

In this thesis we consider a variety of problems in Riemannian geometry, both on

non - compact as well as compact spaces. The aim in most cases is to obtain more

explicit formulae in order to conduct computations; frequently we shall assume

special symmetry to attain this goal. The main body of the thesis consists of four

chapters. We start off in Chapter 2 by conducting an asymptotic analysis for the

sectional curvature of a set of cohomogeneity one Einstein metrics constructed in

[11] by A. Dancer and M. Wang via the Hamiltonian formalism. In Chapter 3 we

construct a non-standard parametrix for the heat kernel on a Riemannian product

manifold with multiply warped metric, with the aim of isolating the effect of the

warping functions on the heat kernel. Chapter 4 is about resolvent symbols of

Laplace operators and their applicability, in particular to heat trace computations.

We find explicit formulae for these in the context of a closed Riemannian manifold of

arbitrary dimension and apply the result to compute heat trace coefficients; though

computationally involved this approach has the advantage that it uses only local

data. Resolvent symbols can also be used to derive index formulae; to demonstrate

this we determine explicit formulae for Laplace operators over a Riemann surface

and recover the Riemann Roch formula. Again this method is local and, moreover,

does not rely on the Getzler rescaling. Finally Chapter 5 turns the focus on a
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class of symbols for pseudodifferential operators on simple warped products; we

define symbols of what we call log - polyhomogeneous radial growth and show that

the class is closed under symbol composition. We then extend the canonical trace

to this setting, using a cut - off integral, and study its basic properties. We also

investigate in some detail the symbol expansion of an example which is of particular

interest to us, namely the resolvent and complex powers of the Laplace - Beltrami

operator on a warped product.

Let us now elaborate a little on each topic, a more detailed introduction is given at

the start of the individual chapters.

Chapter 2: Sectional curvature asymptotics for certain non-compact co-

homogeneity one Einstein metrics. One says that a Riemannian manifold

(M, g) is an Einstein manifold if its Ricci tensor Ric is proportional to the metric,

that is

Ric = λg

for some constant λ. The origin of this condition is to be found in Einstein’s field

equations describing general relativity, however the study of this structure is in-

teresting from the purely mathematical viewpoint as well. For instance, Einstein

metrics on compact manifolds provide critical points of the scalar curvature func-

tional. First examples of Einstein manifolds are Euclidean space Rn which is Ricci

- flat and hence an Einstein manifold with λ = 0, the unit sphere Sn with the

round metric is a compact Einstein manifold with λ = n − 1 > 0, whilst hyper-

bolic space Hn with the canonical metric provides an example of a non-compact

Einstein manifold with λ < 0. All these spaces are homogeneous in the sense that

one can identify for each case a Lie group that acts transitively by isometries. One

step higher up in complexity are cohomogeneity one manifolds where a compact Lie

group acts by isometries such that the principal orbits have codimension one. This

simplification is mathematically appealing as it reduces the Einstein equations to a
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non-linear system of ODEs in the coordinate transverse to the orbits. If we denote

this coordinate by t then the metric takes the form

εdt2 + gt

where gt denotes a metric on the principal orbit that varies in the parameter t

and ε = 1 in the case Riemannian manifolds whilst ε = −1 in case the underlying

manifold is Lorentzian. From the physical point of view the cohomogeneity one

assumption provides a fruitful testing ground since, away from special orbits, a

cohomogeneity one Einstein manifold yields a spatially homogeneous Lorentz Ein-

stein manifold, in fact the Schwarzschild metric and the Taub-NUT metric satisfy

the cohomogeneity one condition. The first case of a Riemannian (as opposed to

Lorentzian) cohomogeneity one Einstein manifold that is not homogeneous was con-

structed in [35] by D. Page on the non-trivial S2 - bundle over S2 with respect to

a U(2) - action, with principal orbit S3 ∼= U(2)/U(1); a result that motivated L.

Bérard Bergery to study the underlying mathematical structure of cohomogeneity

one Einstein manifolds in its own right and to find new examples, both of compact

as well as complete non - compact type [3].

In [9] and [11] A. Dancer and M. Wang investigate the relationship between no-

tions of integrability in Hamiltonian systems and solutions to the cohomogeneity one

Einstein equations. They find that under certain assumptions (such as the presence

of a strictly lower - dimensional special orbit or the isotropy representation of the

principal orbit decomposing into distinct subrepresentations) the latter equations

are equivalent to the Hamiltonian flow on the zero - energy surface of a Hamilto-

nian H whose kinetic energy term is an indefinite non - degenerate quadratic form.

Furthermore, in particular cases they find non-trivial functions F, φ that satisfy the

equation {F,H} = φH (where {, } denotes the Poisson bracket). As the phase space

in these cases is of low dimension this makes the system integrable on the zero set

of the Hamiltonian. In this way they find new cohomogeneity one Einstein metrics.

In this chapter we study the sectional curvature of some of these metrics as
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t → ∞. First we find a new representation for the solutions given in [11] using

only elementary functions. Then, to calculate the sectional curvature we make

use of the fact that cohomogeneity one metrics are Riemannian submersions, thus

the formulae of O’Neill apply. In the particular case at hand we are dealing with

doubly warped products; such metrics take the form dt2 + f 2
1 (t)g1 + f 2

2 (t)g2 with

f1, f2 smooth functions (called the warping functions or warping factors) depending

on the transverse variable only and g1, g2 fixed background metrics. This enables

us to find explicit and simple formulae for the sectional curvature in terms of the

warping functions which are then applied to the particular case at hand to directly

compute the long - time sectional curvature limit.

Chapter 3: A non-standard parametrix for the heat kernel on multiply

warped products. Here we generalise the construction of a parametrix for the

heat kernel on multiply warped products, first proposed by P.C. Lue [29] in the

context of simple warped products. The parametrix studied here differs from the

standard approach, let us briefly describe the latter: we recall that the heat kernel

is a fundamental solution to the heat equation on a Riemannian manifold (M, g);

that is a continuous function s(t, x, y) on (0,∞) × M × M that is continuously

differentiable in t, twice continuously differentiable in x, y, satisfies the heat equation

(∂t +4y)s = 0 (1.0.1)

(here 4y denotes the Laplace - Beltrami operator with respect to the variable y)

and finally has the property that limt→0 s(t, x, ·) = δx (the Dirac - delta distribution

based at x ∈ M). In some cases this function can be written down explicitly, such

as for Euclidean space Rn where

s(t, x, y) =
1

(4πt)n/2
exp{−‖x− y‖

2

4t
} . (1.0.2)

However generically one needs to revert to indirect methods to study this object,

and one way to do so is by constructing an approximation to the heat kernel (also

10



referred to as a parametrix). Such a parametrix is sufficient to study the short time

behaviour of the trace of the heat kernel which provides geometric information about

the underlying manifold. Formally it is a smooth function p(t, x, y) on (0,∞)×M×

M such that (∂t +4y)p extends to a continuous function on [0,∞)×M ×M and

such that limt→0 p(t, x, ·) = δx is the Dirac - delta distribution based at x ∈ M (it

is helpful to compare these conditions for p(t, x, y) with the defining properties of

the heat kernel s(t, x, y) to see the similarities of the two objects). The standard

approach to its construction was introduced by S. Minakshisundaram and A. Pleijel

for compact Riemannian manifolds without boundary in [31]: based on the premise

that the heat kernel on a Riemannian manifold ought to be a perturbation of the

Euclidean heat kernel (1.0.2) (at least for a small initial time period) the idea is to

start with an expression of the form

Hk(t, x, y) :=
1

(4πt)n/2
exp{−ρ

2(x, y)

4t
}︸ ︷︷ ︸

Euclidean form of the heat kernel

·
(
U0(x, y) + U1(x, y)t+ · · ·Uj(x, y)tk

)
(1.0.3)

where ρ denotes the Riemannian distance. These functions should approximate the

heat kernel, in particular they should ”almost” solve the heat equation. Formally

this is implemented by demanding that

(∂t +4y)Hk(·, x, ·) =
1

(4πt)n/2
exp{−ρ

2
x(y)

4t
}4y Uk(x, y)tk ,

i.e. all the terms vanish when the heat operator is applied except for the tk -

coefficient (i.e. the highest power in t). This condition gives rise to a recursive

system of differential equations in the coefficient functions Uj which can then be

solved (note from the right hand side of (1.0.3) inherently yields an expansion in

powers of t). Having constructed the series H∞(t, x, y) one can deduce a short time

expansion of the heat trace:∫
M

s(t, x, x) dµ(x) vt→0

∑
j≥0

1

(4π)
n
2

∫
M

Uj(x) dµ(x) t−
n
2

+j (1.0.4)
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and the geometric insight here is contained in the coefficients Uj, for example∫
M
U0(x)dµ(x) is equal to the Riemannian volume of M , and in the case where

M is a surface we have
∫
M
U1(x)dµ(x) = πχ(M)/3 with χ(M) the Euler character-

istic of M .

Now this method works well for compact manifolds and a generic metric g. Let us

then consider a product manifold

M = I ×M1 ×M2 with metric dr2 + f 2
1 (r)g1 + f 2

2 (r)g2 (1.0.5)

where (Mi, gi) for i = 1, 2 are compact Riemannian manifolds, I is an open interval

and the warping functions f1, f2 : I → (0,∞) are smooth positive functions. Natu-

rally one would like to know whether an expansion similar to (1.0.4), parametrised

in r, can be obtained and to what extend its coefficient functions Uj
(
(r, x), (r′, y)

)
can be factored into terms of the warping functions f1, f2 and the coefficients from

the expansion (3.1.6) onM1×M2. It turns out that the answer to the second part

of the question, if one uses the standard parametrix construction described above,

is“very limited” - already in the setting of simple warps. This was pointed out by

Ping-Charng Lue in [29] and motivated him to study an alternative construction

which provides a parametrix where the contributions of the warping function f and

the contribution from the fibre M are more explicit. In this chapter we generalise

this approach to multiply warped products. The main result, shown in Section

3.3, is that the resulting parametrix as well as the structural features of the proof

in [29] adapt to this case and that the newly arising features, compared to single

warps are due to the fact that the coefficients Uj are now polynomials in several

eigenvalues coming from distinct factors, requiring additional care so as to maintain

the essential estimates in the proofs.

Chapter 4: Explicit formulae for resolvent symbols and their application

In this chapter we step away from non-compact manifolds to compact manifolds

without boundary and motivate a new approach for deriving heat trace coefficients
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directly. The method is based on resolvent symbols, in particular it avoids the use of

global estimates on the heat kernel, the latter approach was taken by H.P. McKean

and I.M. Singer in [24]. Resolvent symbols also facilitate the derivation of index

formulae without the use of Getzler’s rescaling (i.e. the reduction of the proof to

the case of a generalised harmonic oscillator via a rescaling of both the space and

Clifford variables) and we shall demonstrate both applications in this chapter.

Concretely, let (M, g) be a compact Riemannian manifold without boundary of di-

mension n and denote by4 the corresponding Laplace Beltrami operator. The heat

kernel was described for the purposes of the previous chapter as the fundamental

solution s(t, x, y) to the heat equation ∂t +4y on M ; here we shall use the equiva-

lent formulation as the Schwartz kernel k4(t, x, y), of the heat operator e−t4. The

latter is defined as a Cauchy integral via the holomorphic functional calculus by

e−t4 :=
i

2π

∫
γ

e−tλ(4− λ)−1 dλ (1.0.6)

where the contour γ properly encloses the positive real axis which contains the

spectrum of 4. The connection between the operator and its Schwartz kernel is

that the latter is, in general, a family of distributions over M , parametrised in x

and t, satisfying the equation

(e−t4f)(x) = 〈k4(t, x, ·), f〉
(
f ∈ C∞(M)

)
(though for the heat operator the Schwartz kernel identifies with a smooth function).

Locally k4 is given by an oscillatory integral

k4(t, x, y) =
1

(2π)n

∫
Rn
ei(x−y)·ξσ(x, ξ) dξ

with local symbol

σ(x, ξ) =
i

2π

∫
γ

e−tλr(x, ξ, λ)dλ

where r(x, ξ, λ) in turn denotes the local symbol of the resolvent operator. The

latter admits an asymptotic expansion

r(x, ξ, λ) v
∑
j≥0

r−2−j(x, ξ, λ)

13



which is valid for |ξ|+ |λ|1/2 ≥ 1 and λ in a suitable sector Λ ⊂ C. This expansion

is of central importance to the chapter, the terms on the right hand side are the

resolvent symbols mentioned above and we shall study these in detail. In particular

we provide explicit formulae for the first terms in the asymptotic expansion, to the

best of our knowledge these do not appear elsewhere in the literature. These closed

formulas facilitate a direct and elementary calculation of the heat coefficients in the

short-time asymptotic expansion of the heat trace

Tr
(
e−t4

)
=

∫
M

tr
(
k4(t, x, x)

)
dx vt→0+

∑
j≥0

cj t
j−n

2 (1.0.7)

via well - known formulas for the coefficients cj (here tr refers to the usual trace de-

fined on matrices and dx locally identifies with Lebesgue measure). The coefficients

with odd index are known to vanish whilst those with an even index are given by

c2k =

∫
M

tr (c2k(x)) dx (1.0.8)

where

c2k(x) =

∫
Rn

∫
γ

e−λ r−2−2k(x, ξ, λ) d̄λd̄ξ (1.0.9)

(here d̄λ = idλ/2π and d̄ξ = dξ/(2π)n). We shall illustrate this by applying our

result to determine the first three of these integrals and thereby recover well -

known geometric identities for these coefficients.

A further application of resolvent symbols is that they are effective for deriving

index formulae. As a demonstration of this we determine explicit formulae for

the resolvent symbols of Laplace operators defined over a Riemann surface and

recover the Riemann-Roch formula, again by a direct and elementary calculation.

Let us briefly outline the approach: let M be a smooth compact manifold without

boundary of even dimension n = 2k with vector bundles E± over M and consider a

first - order elliptic differential operator

D : C∞(M, E+)→ C∞(M, E−) (1.0.10)
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acting on smooth sections. It was observed by H.P. McKean and I.M. Singer in

[24] that the index of D (i.e. the integer given by difference of the dimension of

the kernel and cokernel of D, denoted indD) identifies with the heat trace of the

Laplacians 4 = D∗D and 4̃ = DD∗:

indD = Tr(e−t4)− Tr(e−t4̃) =

∫
M

tr
(
k4(t, x, x)

)
− tr

(
k4̃(t, x, x)

)
|dx| .

(1.0.11)

On the other hand, if M is a Riemannian spin manifold and D is of Dirac - type,

that is

D = /D ⊗ I + I ⊗∇F : C∞(M,S+⊗F) −→ C∞(M,S−⊗F)

where S± denotes the spinor bundle and F → M is some coefficient bundle, then

the Atiyah-Singer index theorem states that

indD =
1

(2π)n/2

∫
M

Â(M) ch(F) (1.0.12)

where Â(M) is the Â - genus form with respect to Riemannian curvature R whilst

ch(F) denotes the Chern character of the coefficient bundle F . There are different

approaches to proving the identity (1.0.12). One is to use the McKean - Singer

formula (1.0.11) and the short time asymptotic expansion

tr(k4(t, x, x)) vt→0+

∑
j≥0

cj(x)t
j−n

2 (1.0.13)

of the heat kernel along the diagonal as follows. One first substitutes (1.0.13) into

the right hand side of (1.0.11) to get

indD =
∑
j≥0

∫
M

cj(x)− c̃j(x)dx t
j−n

2 (1.0.14)

for t small (here c̃j(x) refers to the coefficients of the asymptotic expansion of

Tr(e−t4̃).) Since the left hand side does not depend on t one can take t→ 0+ and

obtain a finite expression. The task is then to identify the expression

c0(x)− c̃0(x) dx
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coming to the constant coefficient in the expansion with the local index density on

the right hand side of (1.0.12).

The proof by McKean and Singer in [24] in conjunction with [31] uses global es-

timates of the heat kernel (see also [22] for the case of the Riemann Roch theorem).

Alternatively, a rescaling of variables can be applied, leading to a transformation

of the Laplacian operator into a generalized harmonic oscillator for which an iden-

tification of the corresponding heat kernel with the index density is known (this

method is referred to as Getzler rescaling as it was introduced by E. Getzler in

[13]). Instead we study an alternative, more elementary method. The key input are

the formulae (1.0.8)-(4.1.5) for the heat coefficients and an explicit knowledge of

the resolvent symbols r−2−2k which appear there. Substituting these into (1.0.14)

and take t→ 0+ yields

indD =

∫
M

(∫
Rn

∫
γ

e−λ{tr r−2−2j(x, ξ, λ)− tr r̃−2−2j(x, ξ, λ)} d̄λd̄ξ
)
dx . (1.0.15)

The task is then to derive the equality of densities by relating the integrand above

to the topological index density. Compared to existing methods, this approach has

the advantage that it computes the index directly from the first n terms of the local

symbols of the resolvent operator. These are polynomials whose coefficients are

determined by the local symbol of the Laplacians, together with a finite number of

its derivatives. Thus it reflects the local nature of the index quite well.

In Section 4.3 we shall study this technique using as a concrete example the

Riemann-Roch-Hirzebruch theorem. Section 4.3.1 sets out the context of the theo-

rem, then in Section 4.3.2 we determine explicit formulae for the resolvent symbols

of Laplace operators defined over a Riemann surface. These are then applied to

derive the Riemann-Roch formula in Section 4.3.3, again by a direct and elemen-

tary calculation. As in the case of heat trace coefficients for the Laplace Beltrami

operator in the first part of this chapter, the explicit form of our formulae and the

method to derive the Riemann Roch theorem are new in the literature.

16



Chapter 5: On log-polyhomogeneous symbols over simple warped prod-

ucts. In this chapter we establish an extension of the canonical trace on log -

polyhomogeneous pseudodifferential operators as considered by M. Lesch in [27]

to a suitable class of pseudodifferential operators over single warped Riemannian

product manifolds.

Let π : E → M be a smooth vector bundle over an n-dimensional closed Rie-

mannian manifold M and consider a classical pseudodifferential operator (ψdo)

A : C∞(M ;E) → C∞(M ;E) with local symbol σ. If A has non-integer order then

the canonical trace TR(A) is defined by the formula

TR(A) :=

∫
M

TRx(A) dx (1.0.16)

where dx locally identifies with Lebesgue measure and

TRx(A) := −
∫
T ∗xM

trx
(
σ(x, ξ)

)
d̄ξ (1.0.17)

is a finite - part integral (the finite part integral systematically ignores divergent

terms in the following way: one shows that there exists an asymptotic expansion

of the integral
∫
B∗x(R)

trx
(
σ(x, ξ)

)
d̄ξ where B∗x(R) denotes the ball in T ∗xM centered

at the origin of radius R (the expansion is in terms of R); and then the finite part

integral is defined to be the constant coefficient in this expansion. In this way one

discards the divergent terms of
∫
T ∗xM

trx
(
σ(x, ξ)

)
d̄ξ. This procedure is similar to the

Hadamard regularisation and is sometimes also referred to as a cut - off integral.)

Motivated by the appearance of log t - powers in the heat trace expansion of the

Laplacian in certain contexts, and by the search for a natural algebraic setting of

classical pseudodifferential operators with respect to commutator presentations, M.

Lesch introduces in [27] a slightly larger class of pseudodifferential operators with

log - polyhomogeneous symbols and studies extended notions of the canonical trace

(and the residue trace) in this context. The symbols that he considers admit an
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expansion of the form a vξ→∞
∑

j≥0 aµ−j where for a fixed k and each j

aµ−j(x, ξ) =
k∑
i=0

aµ−j,i(x, ξ) logi |ξ|

with each aµ−j,i homogeneous in ξ of degree µ − j. A similar pattern arises when

one considers the leading symbol of the resolvent of the Laplace Beltrami operator

over a warped product. In this case however, the log - polyhomogeneous expansion

arises not only in the ξ - variable but also in the non - compact space variable. This

led us to study a generalised class of log - polyhomogeneous symbols: we consider

log - polyhomogeneous symbols in the setting of a simple warped product M :=

[0,∞) ×M where (M, g) is a closed Riemannian manifold together with a metric

of the form dr2 + h2(r)g where f : [0,∞) → R is a smooth positive function that

diverges to +∞ as r →∞. For example metric cones are of this form with f(r) = rk

(k a positive integer), such as the polar coordinate representation dr2 + r2gSn−1 of

the Euclidean metric on (0,∞)× Sn−1 ∼= Rn \ {0}. Another example is hyperbolic

space, where the metric takes the form dr2 + sinh2(r)gSn−1 .

The symbols we study are log - polyhomogeneous in the ξ-variable, as defined

by Lesch, and moreover exhibit the log - polyhomogeneous property in the ”radial”

space variable that parametrises the factor [0,∞). We show that this class is closed

under symbol multiplication and therefore provides a calculus. To study the canon-

ical trace in this setting we consider families of operators over M , parametrised

in r ∈ [0,∞) and locally defined by our symbols. The canonical trace then arises

via a repeated finite - part integral, first with respect to the ξ variable and then

with respect to the parameter r. The obstruction to global well - definedness of

this parametrised trace on the factor M needs to be taken into account, however

there are certain types of operators (analogues to the compact case) in which the

obstruction vanishes and for those we identify a formula for the canonical trace in

terms of certain finite part integrals over the factor M that resemble the standard

canonical trace, except for the presence of an additional dimension in the cotan-
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gent space at each point corresponding to the non-compact space variable. With

respect to the asymptotic expansion of the leading symbol of the resolvent of the

Laplace Beltrami operator mentioned above, this additional dimension defines the

hypersurface where the terms in the asymptotic expansion diverge, away from this

hypersurface the terms in the expansion decay at least polynomially in r. To il-

lustrate this phenomenon we describe the case of the Laplace Beltrami operator in

detail.
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Chapter 2

Sectional curvature asymptotics

for certain non-compact

cohomogeneity one Einstein

metrics

2.1 Introduction

An Einstein manifold is a Riemannian manifold (M, g) where the Ricci tensor sat-

isfies the equation Ric = λg for some constant λ. As mentioned above, the concept

originated in Physics from Einstein’s theory of general relativity (in the context of

Lorentzian manifolds). However, studying Einstein spaces is of interest also from

a mathematical point of view. For example on a given compact manifold M , an

Einstein metric provides a critical point of the total scalar curvature functional

S[g] =
∫
M
sg(x)dµg(x) on the space of unit volume metrics. Furthermore, the Ein-

stein condition also provides a good way to distinguish certain metrics as “optimal”

similar to the way this is achieved on surfaces by asking for metrics of constant scalar

curvature. On Riemannian manifolds of dimension 2 scalar curvature is the only no-
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tion of curvature whereas for higher dimensional Riemannian manifolds there is the

Riemann curvature tensor (respectively the sectional curvature function), the Ricci

curvature tensor and the scalar curvature function. Generalising constant scalar

curvature condition to higher dimensions yields a large class of metrics satisfying

this constraint; for example on any compact manifold of dimension ≥ 3 the family

of Riemannian metrics with constant scalar curvature is infinite - dimensional. On

the other hand, if one generalises the constant curvature condition by requiring

constant sectional curvature then the resulting class of metrics is very small; in fact

for each sign of the constant sectional curvature there is exactly one complete, sim-

ply connected Riemannian manifold (up to isometry), namely the sphere Sn with

the round metric for sectional curvature +1, Rn for zero sectional curvature and

hyperbolic space Hn with the canonical metric for the case where sectional curva-

ture equals −1. Hence for dimension n ≥ 3 many manifolds do not admit a metric

of constant sectional curvature (more details may be found in [4]). Thus constant

scalar curvature is too weak a condition whereas constant sectional curvature is

too strong; and one is left with constant Ricci curvature. But Ricci curvature as a

function on the unit tangent bundle UM of M is constant precisely when Ric = λg

for some λ ∈ R; this is the Einstein condition.

Now without simplification the Einstein equations Ric g = λg are hard to study

so it is natural to start by imposing simplifying assumptions on the metric g, such

as possessing large isometry groups. In fact, if one assumes that the metric is ho-

mogeneous (i.e. there is an isometric and transitive Lie group action) then the

Einstein condition becomes algebraic. Slightly less restrictive is the assumption of

cohomogeneity one where the metric g is required to be invariant under the action

of a Lie group G that acts properly on the manifold M with principal orbits of

codimension one. In this case the Einstein equations reduce to a nonlinear sys-

tem of ODEs, examples of such metrics were pointed out in Physics by Page [35],

which motivated the mathematical generalisation by Bérard-Bergery [3]. But also
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the Schwarzschild metric, the Eguchi - Hanson metric, the Taub-NUT metric or the

cohomogeneity one manifolds of [8] in Physics as well as examples found in Mathe-

matics [10, 42] and more recently [5], just to name a few, illustrate the pervasiveness

of cohomogeneity one metrics.

In this chapter we shall study metrics that arise from the consideration of the

cohomogeneity one Ricci - flat Einstein equations Ric g = 0 as a Hamiltonian

system with an additional constraint, an approach taken by Andrew Dancer and

McKenzie Wang in [9, 11] to construct new examples of cohomogeneity one Ein-

stein manifolds. The treatment in [11] assumes that the principal orbit is a product

(G1/K1) × (G2/K2) of distinct isotropy irreducible spaces which means that the

metric is diagonal of the form

dt2 + f 2
1 (t)ḡ1 + f 2

2 (t)ḡ2 (2.1.1)

where ḡi is a homogeneous background metric on the ith component of the principal

orbit. For the dimension pairs (d1, d2) = (2, 8), (3, 6) and (5, 5), Dancer and Wang

find that

f
2
d1+1
d1−1

2 = K coth

(
R

2

)∫
tanh

(
R
2

)
(coshR− 1)

d1+1
d1−1

sinhR
dR (2.1.2)

and

f
(d1−1)
1 f 2

2 =
C

2A1

(coshR− 1) (2.1.3)

solve the above system. Here R =
√

(d1−1)A1

d1
r + const. depends on t via r′ := 1/f1

and C,K are non-zero constants. In this chapter we pick up from the representation

above and find a description for f1 and f2 in terms of elementary functions. These

are then used to study sectional curvature asymptotics directly. Let us briefly

outline the organisation of the sections: we shall start by recalling the basic notions

of cohomogeneity one manifolds in Section 2.2 followed by Section 2.3 where we

determine the elementary function representation for f1 and f2. We then turn
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to the study of sectional curvature in section 2.2.2. Since we are dealing with

Riemannian submersions, O’Neill’s formulae turn out to be particularly helpful to

find expressions for the sectional curvature of our cohomogeneity one manifolds in

terms of sectional curvature in the principal orbits. Finally, Section 2.4 is concerned

with the sectional curvature asymptotics as t → ∞ for the metrics from Section

2.3.

2.2 Cohomogeneity one manifolds

In this section we outline the properties of cohomogeneity one manifolds as intro-

duced by B. Bergery in [3], focusing on those aspects that are important to the

study in this thesis.

2.2.1 Definition and basic properties

A connected Riemannian manifold (M, g) is said to be of cohomogeneity one (or

a cohomogeneity one manifold) with respect to a group G if the latter acts by

isometries on M such that the codimension of its principal orbits in M is one.

The systematic study of cohomogeneity one Riemannian manifolds was initiated by

a construction of an Einstein metric on the non-trivial sphere bundle over S2 by

D. Page [35], the group of isometries of that metric is of dimension four and its

principal orbit had codimension one. In [3] Berard Bergery generalised this metric

by putting the cohomogeneity one property into focus and introduced a theory

for such objects in the context of Riemannnian geometry in n dimensions. As

suggested by this line of development, cohomogeneity one manifolds are interesting

for example for the study of Einstein manifolds, i.e. Riemannian manifolds whose

metric g satisfies Ric(g) = λg for some constant λ. Seen as a partial differential

equation, the latter condition on the metric is a rather complicated non - linear

system, however in the case of a cohomogeneity one manifold it reduces to a system
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of ordinary differential equations where the independent variable is a coordinate

transverse to the orbits. Also, the problem of finding curvature formulae simplifies

in the setting of cohomogeneity one Riemannian manifolds. Generally, for a non-

homogeneous Riemannian manifold M , (i.e. with non - transitive isometry group)

the curvature formulae at a point in a principal orbit (which is a homogeneous

space) involve the curvature of the orbit, the curvature of the coset space M/G

and cross - terms. However, in the cohomogeneity one case the coset space is one -

dimensional and therefore has no curvature, hence the curvature formulae for such

spaces simplify.

The coset space M/G is a connected differentiable manifold, and since G acts by

isometries it inherits a Riemannian metric as a quotient space relative to which the

quotient map π : M → M/G is a Riemannian submersion. The principal orbits lie

over the interior of M/G whereas the orbits over boundary points (if any) are not

principal. Essentially, that is up to isometry, there are only a finite number of forms

that M/G can take on: if M is compact then M/G either has no boundary and is

isometric to a circle of length `, or it has two boundary points and is isometric to

the interval [0, a]. On the other hand, if M is not compact then the same is true

for M/G (if G is compact). In this case the latter may have no boundary - the

possible isometry types for M/G then are the real line R, the ray (0,∞), or the

finite - length interval (0, a). Otherwise M/G has a boundary point and is isometric

to the ray [0,∞) or [0, a). We summarise the possible space forms and associated

basic properties below:
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M/G ∼= Non-principal orbits M compact M com-

plete

(S1, `) None Yes Yes

[0, a] Two Yes Yes

R None No Yes

[0,∞) One No Yes

(0,∞) None No No

(0, a) None No No

[0, a) One No No

In all cases above the model manifolds in the left-most column are understood to

carry their respective canonical metric.

Next we briefly discuss a parametrisation for M with reference to M/G and a

fixed principal orbit O. Given a point p ∈ O one can choose a geodesic γ : I → M

(with I ⊂ R) passing through p and perpendicular to O. It then is orthogonal to

all orbits that it crosses. Indeed, let X be a Killing field with respect to G, this is

a vector field whose flow generates an isometry induced by G, in particular the Lie

derivative with respect to X of the metric vanishes, that is LXg = 0. Let D denote

the Levi-Civita connection. Starting from the identity

γ̇〈γ̇, X〉 = 〈Dγ̇ γ̇, X〉+ 〈γ̇, Dγ̇X〉 (2.2.1)

we know that the first term on the right hand side vanishes since Dγ̇ γ̇ = 0. Fur-

thermore, the second term also vanishes since X is Killing. To see this we start

with the definition of the Lie derivative

LXg(Y, Z) = (LXg)(Y, Z) + g(LXY, Z) + g(Y,LXZ) ,

the first term on the right is zero because X is Killing. By definition the Lie

Derivative LX acts on functions via LXf := Xf , furthermore on a vector field Y

one has the identity LXY = [X, Y ], so the equation above is equal to

Xg(Y, Z) = g([X, Y ], Z) + g(Y, [X,Z])
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which can be rewritten as

g(DXY, Z) + g(Y,DXZ) = g(DXY −DYX,Z) + g(Y,DXZ −DZX) .

Subtracting common terms from both sides and rearranging yields the identity

g(Y,DZX) = −g(DYX,Z) ,

in particular with Y = Z = γ̇ this tells us that the second term in (2.2.1) van-

ishes. So we see that 〈γ̇, X〉 is constant along c. As it is zero at the point p the

assertion follows. In this way we obtain an isometry π ◦ γ : I → M/G (where I is

equipped with its canonical metric and if necessary we may restrict I or translate

the parameter, or identify endpoints to obtain the circle). We set

φ : I ×G/K →M , φ(t, gK) = g · γ(t) (2.2.2)

where K denotes the isotropy subgroup of p in G (it is equal to the isotropy sub-

groups Kγ(t) whenever γ(t) lies in a principal orbit, so φ is well defined). This map

induces a diffeomorphism İ × G/K → M̄ := φ
(
İ × G/K

)
, the image M̄ being an

open dense subset of M (here İ denotes the interior of I). Moreover if we let G act

on I × G/K by g ·
(
t, αK

)
:=
(
t, gαK

)
then φ turns into an G-equivariant map,

hence in the third, fifth and sixth case of the table above φ is a global diffeomor-

phism. In the first case where M/G is a circle, all the orbits of G are principal orbits

and the mapping π : M →M/G is a fibration that is locally trivialised with base a

circle and fibre G/K. In all the remaining cases the dense open subset φ
(
İ×G/K

)
of M is exactly the union of the principal orbits of M , the question that remains

is what happens when we pass to the special orbits. Now if p = c(0) correspond

to a boundary point in M/G then the isotropy group H of p contains the principal

isotropy group K and the coset space H/K identifies with the unit sphere in the

subspace of TpM normal to the orbit of p.

With this parametrisation in place one uses φ to pull back the metric on M̄ to a

metric dt2 + gt on İ ×G/K in order to conduct curvature computations and study

their limit as we approach potential edges of I.
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2.2.2 Formulae for sectional curvature

The metrics we study here are Riemannian submersions, enabling us to compute

the curvature of the total space in terms of the curvature of the base and the fibre

using O’Neill’s T -tensor. These concepts are shortly explained here, following the

exposition in [4]. Afterwards we apply the formalism in the particular cohomogene-

ity one setting of multiply warped products and write down sectional curvature

formulae.

Preliminary material on Riemannian submersions

Let (M, g) and (B, g̃) be Riemannian manifolds and let S : M → B be a submersion

(i.e. at each point p ∈ M the differential S∗,p : TpM → TS(p)B is surjective). The

kernel of S∗,p is the tangent space to the fibre Fb := S−1(p) (here b := S(p)). It is

called the vertical subspace at p and denoted by Vp and the orthogonal complement

is called the horizontal subspace at p, denoted Hp. The latter is identified with TbB

via the isomorphism of linear spaces

Hp
ι

↪−→ TpM
S∗,p−−−→ TbB . (2.2.3)

We say that S is a Riemannian submersion if (at each point p ∈M) we have

S∗(ḡ) = g|H ,

i.e. relative to the restriction g|H of g to the horizontal subspace this map is an

isometry.

A class of examples of Riemannian submersions arises as follows: take a Rie-

mannian manifold (I, g̃), a smooth manifold N together with a family of metrics

{gt}t∈I on N parametrised by I, and consider the product manifold I × N with

metric g = proj∗1(g̃) + proj∗2(gt) where proj∗1, proj∗2 denotes the pullback with respect

to the canonical projection maps of the product I×N . Then proj1 is a Riemannian

submersion.
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Example: Cohomogeneity one metrics Of course the case where I is one -

dimensional covers all those metrics on I ×N of the form dt2 + gt so, in particular,

cohomogeneity one metrics fall into this class. Let us just point out the simplest

cases below, the last example is the situation that we shall be concentrating on

later.

◦ Simple product : if the family of metrics on N is independent of the parameter, so

that gt = ḡ is constant in t, then we recover the usual product of two Riemannian

manifolds (I ×N, g̃ + ḡ) (in this case proj2 is also a Riemannian submersion).

◦ Warped product : here the family of metrics on N is given by gt = f 2(t)ḡ where f

is a smooth real valued function on I and ḡ a fixed background metric on N .

◦ Multiply warped product : slightly more general is the case where N itself is a

product, say N = N1× · · · ×Nr, and the fixed background metric on N arises as

a sum ḡ = ḡ1 + · · ·+ ḡr of fixed metrics on the factors, and the family is given by

gt = f 2
1 (t)ḡ1 + · · · f 2

r (t)ḡr.

Suppose now that S : M → B is a Riemannian submersion and let T (M) denote the

space of smooth vector fields on M . We shall decompose a vector field X ∈ T (M)

into its vertical and horizontal component relative to the submersion by writing

X = H(X) + V(X) where, pointwise for p ∈M , the maps H and V are simply the

orthogonal projections of TpM onto Hp respectively Vp. We say that X ∈ T (M)

is vertical (respectively horizontal) if H(X) = 0 (respectively V(X) = 0). Further,

let ∇ be the Levi - Civita connection of the metric g on M . For each b ∈ B we

denote by gb the metric on the fibre Fb obtained by restricting g and ∇b denotes the

associated Levi - Civita connection. We would like to decompose the curvature of

the space M in terms of the curvature of the spaces Fb and B. To this end Barrett

O’Neill [34] introduced the so - called T -tensor T : T (M)×T (M)→ T (M) defined

by

TXY := H
(
∇V(X)V(Y )

)
+ V

(
∇V(X)H(Y )

)
. (2.2.4)
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This map is simply the second fundamental form of each fibre as one can see by

applying it to vertical vector fields. There is an additional tensor (the A-tensor) that

is needed to analyse the curvature of Riemannian submersions in general - however

for cases where the base manifold B is one -dimensional this tensor vanishes so we

shall not need it. We list and some of the properties of the T -tensor below:

Proposition 2.2.1. Given vertical vector fields X, Y and a horizontal vector field

H we have

THX = 0 and THH = 0 (2.2.5)

TXY = H(∇XY ) is horizontal (2.2.6)

TXH = V(∇XH) is vertical (2.2.7)

TXY = TYX (2.2.8)

g
(
TXY,H

)
= −g

(
TXH, Y

)
(2.2.9)

Proof. The first three lines are immediate. For the fourth we recall that the second

fundamental form is symmetric in its arguments. To see the final statement, note

that

TXY = ∇XY − V(∇XY ) and TXH = ∇XH −H(∇XH) ,

whilst the Levi - Civita connection satisfies the identity

X = g
(
∇XY,H

)
+ g
(
Y,∇XH

)
. (2.2.10)

The left hand side in (2.2.10) vanishes since H and Y are orthogonal, hence

g
(
TXY,H

)
= g
(
∇XY,H

)
− g
(
V(∇XY ), H

)︸ ︷︷ ︸
=0

(2.2.10)
= −g

(
Y,∇XH

)
= −g

(
TXH,Y

)
− g
(
H(∇XH), Y

)︸ ︷︷ ︸
=0

.

Equipped with the T -tensor and the A - tensor O’Neill then writes down curva-

ture formulae (sometimes called O’Neill’s curvature formulae) that decompose the
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Riemann curvature tensor

R(U, V )W = ∇[U,V ]W −∇U∇VW +∇V∇UW for U, V,W ∈ TM .

on M . For our purposes the following special case is important:

Proposition 2.2.2 ([34], Theorem 1 and 3). Let S : M → B be a Riemannian

submersion of a Riemannian manifold (M, g) where B is one - dimensional. Let

X, Y , Z, V be vertical vector fields and H, F horizontal vector fields as described

above, further, let Rb denote the Riemannian curvature tensor of the metric gb

obtained by restricting the metric g to the fibre S−1(b). Then

g
(
R(X, Y )Z, V

)
= g
(
Rb(X, Y )Z, V

)
− g
(
TXZ, TY V

)
+ g
(
TYZ, TXV

)
g
(
R(X, Y )Z,H

)
= g
(
(∇Y T )XZ,H

)
− g
(
(∇XT )YZ,H

)
g
(
R(H,X)F, Y

)
= g
(
(∇HT )XY, F

)
− g
(
TXH,TY F

)
.

(2.2.11)

This is all the material needed from the basic theory of Riemannian submersions.

Before we move on to sectional curvature formulae for special cohomogeneity one

manifolds let us mention that, instead of approaching curvature studies from the

point of view of sectional curvature, one can of course also focus on the relationship

of the Ricci curvature Ric and scalar curvature u of g to the Ricci curvature Rict

respectively scalar curvature ut of gt. A proof for the next result can be found in

[3, Proposition 3.11], it is essentially another application of the formulae given in

Proposition 2.2.2 and holds for arbitrary cohomogeneity one metrics.

Proposition 2.2.3 ([3]). Let (Xi)
n−1
i=1 be a local orthonormal basis for the space

tangent to the factor M0 in (2.2.19). If X and Y are vertical then

Ric
(
X, Y

)
= Rict

(
X, Y

)
− g
(
N, TXY

)
+ g
(
(∇HT )XY,H

)
(2.2.12)

Ric
(
X,H

)
= g
(
δtT (X), H

)
(2.2.13)

Ric
(
H,H

)
= Hg

(
N,H

)
− ‖T‖2 (2.2.14)

u = ut − ‖N‖2 = ‖T‖2 + 2Hg
(
N,H

)
. (2.2.15)
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where N :=
∑

i TXiXi is the mean curvature vector, ‖T‖2 =
∑

i ‖TXiH‖2 is the

norm of T and δtT (X) = −
∑

i(∇XiT )XiX if X is vertical (all the expressions are

independent of the chosen basis).

The formulae above are useful for the study of complete cohomogeneity one Einstein

manifolds. If we assume g to be Einstein, so that Ric = λg for some constant λ,

then the first three equations in Proposition 2.2.3 read

Rict
(
X, Y

)
− g
(
N, TXY

)
+ g
(
(∇HT )XY,H

)
= λg

(
X, Y

)
(2.2.16)

g
(
δtT (X), H

)
= 0 (2.2.17)

Hg
(
N,H

)
− ‖T‖2 = λ (2.2.18)

Locally these equations always have a solution, hence G/K × (a, b) always admits

G-invariant Einstein metrics where (a, b) is an interval. It is not, however, always

possible to find such a metric that is also complete (i.e. the geodesics γ(t) are defined

for all t ∈ R): in [3] L. Berard Bergery shows that a compact space G/K which

admits an isotropy irreducible linear representation gives rise to an example where

G/K ×R does not admit a complete G-invariant Einstein metric. (A homogeneous

space M = G/K is called isotropy irreducible if the action Ψ: K → Gl(TpM),

Ψ(h)X = h∗,p(X) for X ∈ TpM is irreducible (here h∗,p is the differential map

induced by left translation by h). Irreducible in this context means that there is

no proper invariant subspace, an invariant subspace is a linear subspace W of TpM

satisfying Ψ(h)W ⊂ W for all h ∈ K.)

On the other hand, if one assumes completeness of an Einstein manifold then

general results about Ricci curvature reduce the list of possible spaces. More con-

cretely, if λ > 0 then Myers’s theorem [32] implies that M is compact and has finite

fundamental group, which means that the one - dimensional factor M/G cannot

be the circle. For λ ≤ 0 there is a result due to Bochner [6] which says that if

M is a compact Riemannian manifold with non-positive Ricci curvature then all

Killing fields X are parallel (A Killing field is a vector field whose integral flow
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induces diffeomorphisms that are isometries, that is the Lie Derivative LXg van-

ishes. On the other hand, a vector field Y is said to be parallel if ∇Y = 0.) In the

cohomogeneity one setting this implies that the Riemann curvature tensor vanishes

identically. Thus, if M is a compact Einstein manifold of cohomogeneity one then

either its scalar curvature is strictly positive or sectional curvature of M vanishes

everywhere. Finally, let us also mention that the splitting theorem by J. Cheeger

and D. Gromoll [7] implies complete Ricci flat metrics that are irreducible must be

either compact or the quotient space M/G must be isometric to [0,∞); in particular

this tells us that there is a special orbit present in the space.

Sectional curvature formulae for multiply warped products

Let us now restrict considerations to multiply warped products as this is sufficient

to study the sectional curvature of the concrete metrics considered in the following

sections. In the case of multiply warped products the sectional curvature simpli-

fies quite elegantly into separate terms that depend on the warping functions. So

consider the total space

M = I ×M0 = I × (M1 × · · · ×Mr) (2.2.19)

where (Mi, ḡi) is a Riemannian manifold of dimension di for each i = 1, . . . , r. We

endow M with a family of metrics

g = dt2 + gt where gt = f 2
1 (t)ḡ1 + · · ·+ f 2

r (t)ḡr (2.2.20)

with fi > 0 a given smooth function for each i. In this case the projection map

I ×M0 → I is a Riemannian submersion as described above.

Let us determine the T -tensor in terms of a local orthonormal frame of (M, g).

Let H = ∂/∂t =: ∂t. For each i = 1, . . . , r let {Y ij : 1 ≤ j ≤ di} be an orthonormal

frame for (Mi, ḡi), then

{H, Yij = (1/fi)Y ij | 1 ≤ i ≤ r , 1 ≤ j ≤ di} (2.2.21)
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is an orthonormal frame for (M, g). As suggested in [3, §3.7] we choose the base

Y ij so that it commutes with H. In this case we have the following

Lemma 2.2.4. If X, Y are vertical vector fields and H a horizontal vector field that

commutes with X and Y then

g
(
TXY,H

)
= −1

2
Hg
(
Y,X

)
(2.2.22)

Remark 2.2.5. This identity is valid not only for multiply warped metrics but for

cohomogeneity one metrics in general. It is also stated in [3, § 3.7].

Proof. We shall need the basic formula

g(∇XY,H) =
1

2

[
Xg(Y,H) + Y g(H,X)−Hg(X, Y ) + g([X, Y ], H)

− g([Y,H], X)− g([X,H], Y )
]
. (2.2.23)

Now, using the Levi-Civita connection ∇̂ on the fibre we write

g
(
TXY,H

)
= g
(
(∇XY − ∇̂XY ), H

)
= g
(
∇XY,H

)
where the last equality uses the orthogonality of ∇̂XY to H. But this is then equal

to

− 1

2
Hg
(
X, Y

)
(2.2.24)

where we have used the identity (2.2.23) together with the assumption that X and

Y are chosen so as to commute with H ([X,H] = [Y,H] = 0), and finally that

[X, Y ] is again a vertical vector field. To see the latter, choose local coordinates

(t, x1, . . . , xn) and write

X =
∑
i

ai∂xi , Y =
∑
j

bj∂xj , [X, Y ] = c0∂t +
n∑
l=1

cl∂xl .

Applying the bracket to the coordinate function t gives

c0 = [X, Y ](t) =
n∑
i=1

(ai
∂t

∂xi
− bi ∂t

∂xi
) = 0 .
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From here we get the following identities:

Theorem 2.2.6 (Formulae for the T-tensor). Using the notation introduced in this

section, we have

THH = THY ij = 0 (2.2.25)

whilst

TY ijY kl =

−(fif
′
i)H if i = k and j = l ,

0 otherwise.

(2.2.26)

Finally,

TY ijH =
1

fi
g
(
TY ijH, Y ij

)
Yij =

f ′i
fi
Y ij . (2.2.27)

Proof. From (2.2.6) we see that

TY ijY kl = g
(
TY ijY kl, H

)
H

is horizontal whereas (2.2.7) shows that

TY ijH =
r∑

k=1

dk∑
l=1

g
(
TY ijH, Ykl

)
Ykl (2.2.28)

is vertical. Now from the identity in Lemma 2.2.4,

g
(
TY ijY kl, H

)
= −1

2
Hg
(
Y ij, Y kl

)
=

−f
′
ifi if i = k and j = l ,

0 otherwise .

On the other hand, using (2.2.9) we see that

g
(
TY ijH,Y kl

)
= −g

(
TY ijY kl, H

)
and another application of Lemma 2.2.4 shows that this is equal to

=
1

2
Hg
(
Y ij, Y kl

)
=

f
′
ifi if i = k and j = l

0 otherwise .

Combining these results gives the identities (2.2.26) and (2.2.27) in the list of expres-

sions for the T -tensor (the other follow immediately from Proposition 2.2.1).
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Now that we have computed the T - tensor we can turn to sectional curvature.

Sectional curvature of a Riemannian manifold M is a pointwise measure of cur-

vature, denoted Kp(X, Y ) for p ∈ M and (linearly independent) tangent vectors

X, Y ∈ TpM . The tangent vectors span a plane Π in TpM , and sectional curvature

is the Gaussian curvature of the surface obtained via the exponential map at p

restricted to Π. In fact, this means that Kp(X, Y ) depends on X, Y only up to the

plane that they span.

We shall use the following formula for sectional curvature in terms of the Rie-

mann curvature tensor:

K(X, Y ) =
g
(
R(X, Y )X, Y

)
g
(
X,X

)
g
(
Y, Y

)
− g
(
X, Y

) , (2.2.29)

if we choose X and Y to be orthogonal unit vectors then

K(X, Y ) = g
(
R(X, Y )X, Y

)
. (2.2.30)

Of course the sectional curvature may be computed once we know it on our basis

vectors, that is K(Yij, Ykl) respectively K(Yij, H). The goal is to find formulae for

these in terms of the sectional curvature Kt of the metrics gt in the fibres, and it

is here where the T -tensor becomes important, as can be seen from the following

identities which are valid not only for multiply warped product metrics but more

generally for cohomogeneity one metrics.

Proposition 2.2.7 ([4], Cor 9.29(a)). Let (M, g) be the Riemannian manifold de-

scribed in (2.2.19), let K respectively Kt denote the sectional curvatures of the

metrics g respectively gt. Let H be a horizontal vector field and X, Y be vertical

vector fields with g(H,H) = g(X,X) = g(Y, Y ) = 1 and g(X, Y ) = 0. Then

K(X, Y ) = Kt(X, Y ) + g
(
TXY, TXY

)
− g
(
TXX,TY Y

)
(2.2.31)

K(H,X) = g
(
(∇HT )XX,H

)
− g
(
TXH,TXH

)
. (2.2.32)

35



Proof. The basic ingredient for the proof are O’Neill’s Curvature formulae stated

in Proposition 2.2.2. From the first line we see that with Z = X and V = Y ,

K(X, Y ) = g
(
R(X, Y )X, Y

)
= g
(
Rt(X, Y )X, Y

)
− g
(
TXX,TY Y

)
+ g
(
TYX,TXY

)
= Kt(X, Y )− g

(
TXY, TXY

)
+ g
(
TY Y, TXX

)
where we used the symmetry (2.2.8) to obtain the last equality. Likewise, substi-

tuting F = H and Y = X into the third formula of (2.2.11) gives

K(H,X) = −g
(
R(H,X)H,X

)
= g
(
(∇HT )XX,H

)
− g
(
TXH,TXH

)
as required.

We are now ready to find the terms on the left hand side of (2.2.31) and (2.2.32)

for our basis. Such formulae are stated for example in [12], we derive them here for

our particular case.

Theorem 2.2.8 (Sectional curvature formulae). Given a multiply warped metric

(2.2.20) and an orthonormal frame (2.2.21), let Yij, Ykl be any choice of distinct

members. Then

K(Yij, Ykl) = Kt(Ȳij, Ȳkl)−
f ′if
′
k

fifk
. (2.2.33)

whilst for any Yij,

K(H,Yij) = −f
′′
i

fi
. (2.2.34)

Proof. Equation (2.2.31) tells us that

K(Yij, Yij′) = Kt(Yij, Yij′) + g
(
TYijYij′ , TYijYij′

)
− g
(
TYijYij, TYij′Yij′

)
= Kt(Ȳij, Ȳij′) + f−4

i

(
g
(
TȲij Ȳij′ , TȲij Ȳij′

)
− g
(
TȲij Ȳij, TȲij′ Ȳij′

))
and the second term vanishes by if j = j′. If j 6= j′ then substituting (2.2.26) into

the above gives

K(Yij, Yij′) = Kt(Ȳij, Ȳij′)− f−4
i

(
g
(
− (fif

′
i)H,−(fif

′
i)H

))
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= Kt(Ȳij, Ȳij′)−
(
f ′i
fi

)2

On the other hand, if i 6= k then

K(Yij, Ykl) = Kt(Yij, Ykl) + g
(
TYijYkl, TYijYkl

)
− g
(
TYijYij, TYklYkl

)
= Kt(Ȳij, Ȳkl) + (fifk)

−2
(
g
(
TȲij Ȳkl, TȲij Ȳkl

)
− g
(
TȲij Ȳij, TȲklȲkl

))
(2.2.26)

= Kt(Ȳij, Ȳkl) + (fifk)
−2
(
− g
(
− (fif

′
i)H, (−fkf ′k)H

))
= Kt(Ȳij, Ȳkl)−

f ′if
′
k

fifk
.

For the sectional curvature K(H,Yij), equation (2.2.32) tells us that

K(H,Yij) = f−2
i

(
g
(
(∇HT )Ȳij Ȳij, H

)
− g
(
TȲijH,TȲijH

))
(2.2.35)

whilst from the definition of ∇ on tensors we have

g
(
(∇HT )Ȳij Ȳij, H

)
= Hg

(
TȲij Ȳij, H

)
− g
(
T∇H Ȳij Ȳij, H

)
− g
(
TȲij∇H Ȳij, H

)
− g(TȲij Ȳij,∇HH

)
.

Note that∇HH = 0. Also∇H Ȳij is vertical, hence equation (2.2.8) says T∇H Ȳij Ȳij =

TȲij∇H Ȳij. This simplifies the above expression to

g
(
(∇HT )Ȳij Ȳij, H

)
= Hg

(
TȲij Ȳij, H

)
− 2g

(
TȲij∇H Ȳij, H

)
and (2.2.9) then gives

g
(
(∇HT )Ȳij Ȳij, H

)
= Hg

(
TȲij Ȳij, H

)
+ 2g

(
TȲijH,∇H Ȳij

)
. (2.2.36)

We recall that H and Ȳij commute, so ∇H Ȳij = ∇ȲijH. Finally, TȲijH is vertical,

therefore

g
(
TȲijH,∇ȲijH

)
= g
(
TȲijH,V

(
∇ȲijH

))
= g
(
TȲijH,TȲijH

)
.

Applying the last two statements to (2.2.36) yields

g
(
(∇HT )Ȳij Ȳij, H

)
= Hg

(
TȲij Ȳij, H

)
+ 2g

(
TȲijH,TȲijH

)
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and the formulae for the T -tensor in Theorem 2.2.6 imply that

g
(
(∇HT )Ȳij Ȳij, H

)
= H(−f ′ifi) + 2g

(f ′i
fi
Ȳij,

f ′i
fi
Ȳij
)

= −f ′′i fi − (f ′i)
2 + 2(f ′i)

2 = (f ′i)
2 − f ′′i fi . (2.2.37)

Substituting this into (2.2.35) we obtain

K(H,Yij) = f−2
i

(
g
(
(∇HT )Ȳij Ȳij, H

)
− g
(
TȲijH,TȲijH

))
= f−2

i

(
(f ′i)

2 − f ′′i fi − (f ′i)
2
)

= −f
′′
i

fi
. (2.2.38)

We should also note that the product structure of g simplifies the situation due to

the following Lemma, it will be the main ingredient to prove Proposition 2.2.10.

Lemma 2.2.9. Let (Mi, g
i) for i = 1, 2 be Riemannian manifolds, with vector fields

Xi respectively. We can view the Xi as vector fields on the product manifold M1×M2

with product metric g1⊕ g2 (that is g1 and g2 are orthogonal). Then ∇XiXj = 0 for

i 6= j, where ∇ denotes the Levi - Civita connection of the product metric.

Proof. Let dimMi = mi. Relative to local coordinates (x1, . . . , xm1) for M1 and

(xm1+1, . . . , xm1+m2) for M2 the metric tensor is represented by the components

gij =


g1
ij if 1 ≤ i, j ≤ m1

g2
(i−m1)(j−m1) if m1 < i, j ≤ m1 +m2

0 otherwise .

(2.2.39)

Since X1 is tangent to M1 we can represent it in the form X1 =
∑m1

i=1 a1,i∂xi with

a1,i independent of xj for m1 < j ≤ m1 + m2 and similarly X2 =
∑m1+m2

i=m1+1 a2,i∂xi

with a2,i independent of xj for 1 ≤ j ≤ m1. Now

∇X1X2 =

m1∑
i=1

m1+m2∑
j=m1+1

a1,i(∂ia2,j)∂j +

m1∑
i=1

m1+m2∑
j=m1+1

a1,ia2,j∇∂i∂j . (2.2.40)
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The first term in (2.2.40) vanishes since ∂ia2,j = 0 in each summand. The second

term vanishes because ∇∂i∂j = 0 in each summand. To see this, recall that

∇∂i∂j =

m1+m2∑
k=1

Γkij∂k (2.2.41)

where

Γkij =
1

2

m1+m2∑
s=0

gks
(
∂jgsi︸︷︷︸

(A)

+ ∂igsj︸︷︷︸
(B)

− ∂sgij︸︷︷︸
(C)

)
. (2.2.42)

The terms (A)− (C) vanish identically. Indeed, from (2.2.39) we see that gsi = g1
si

if 1 ≤ s ≤ m1. The left hand side is independent of xj whenever m1 < j ≤ m1 +m2

and so ∂jgsi = 0 in that case. Otherwise, for m1 < s ≤ m1 + m2 we have gsi = 0

hence ∂jgsi = 0 and thus the terms labelled by (A) all vanish. The terms labelled

by (B) vanish by a similar argument, finally the terms labelled with (C) vanish

since gij = 0 whenever 1 ≤ i ≤ m1 and m1 < j ≤ m1 +m2.

This shows that the Christoffel symbols Γkij in (2.2.41) are all zero and therefore

the claim holds.

Proposition 2.2.10.

R(Yij, Yij′)Ykl = 0 if i 6= k . (2.2.43)

Proof. By definition,

R
(
Yij, Yij′

)
Ykl = ∇Yij∇Yij′

Ykl −∇Yij′
∇YijYkl −∇[Yij ,Yij′ ]

Ykl

Now Yij, Yij′ are tangent to the factor Mi, and so is [Yij, Yij′ ] (see the proof of

Lemma 2.2.4). On the other hand, Ykl is tangent to the factor Mk and i 6= k, so

the result follows from Lemma 2.2.9.

The context above will suffice to conduct our study of sectional curvature asymp-

totics in Section 2.4.
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2.3 Elementary function representation for the

metrics found by Dancer and Wang

In this Section we establish elementary function representations for the metrics

constructed by Dancer and Wang in [11]. They study the system of ODEs given by

the cohomogeneity one Ricci - flat Einstein equation Ric g = 0 as the Hamiltonian

flow on the zero level set of a suitable Hamiltonian H and look for a function F such

that

{F,H} = φH (2.3.1)

for some function φ. In this case F is a conserved quantity on the zero level set

of the Hamiltonian (as we have {F,H} = 0) and, due to the low dimensionality of

the phase space under consideration, this is enough to render the system integrable

when restricted to the zero level set. For a large class of orbit types no non-trivial

solutions exist, however in particular instances one can find functions F, φ that do

not vanish identically, thereby making the system integrable on the zero level set of

the Hamiltonian. From these cases Dancer and Wang construct new cohomogeneity

one Einstein metrics. In the cohomogeneity one context, the treatment in [11]

assumes that the principal orbit is a product (G1/K1)×(G2/K2) of distinct isotropy

irreducible spaces which means that the metric is diagonal of the form

dt2 + f 2
1 (t)ḡ1 + f 2

2 (t)ḡ2 (2.3.2)

where ḡi is a homogeneous background metric on the ith component of the principal

orbit. Setting Ric g = 0, the equations (2.2.12)-(2.2.14) in Proposition 2.2.3 then

reduce to the following system of non - linear ODEs:

f ′′1
f1

+ (d1 − 1)

(
f ′1
f1

)2

+ d2
f ′1f

′
2

f1f2

− A1

d1f 2
1

= 0 (2.3.3)

f ′′2
f2

+ (d2 − 1)

(
f ′2
f2

)2

+ d1
f ′1f

′
2

f1f2

− A2

d2f 2
2

= 0 (2.3.4)

d1
f ′′1
f1

+ d2
f ′′2
f2

= 0 (2.3.5)
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where A1, A2 are non-zero constants, di denotes the dimension of the ith component

of the principal orbit, and we use a prime to denote differentiation with respect to

t. In fact, the equations above may be derived in the presence of the metric from

(2.3.2) alone when there may be no group action, with background metrics ḡi that

need not be homogeneous in general (though still Einstein).

Using the first two equations one can see that the third constraint is equivalent to

d1(d1 − 1)

(
f ′1
f1

)2

+ 2d1d2
f ′1f

′
2

f1f2

+ d2(d2 − 1)

(
f ′2
f2

)2

− A1

f 2
1

− A2

f 2
2

= 0 , (2.3.6)

this provides the additional constraint H = 0 to the Hamiltonian system (we refer to

[9, 11] for details). For the dimension pairs (d1, d2) = (2, 8), (3, 6) and (5, 5), Dancer

and Wang find that there exists a non-trivial solution to (2.3.1) which yields the

Hamiltonian system integrable when restricted to the zero energy surface. The

resulting cohomogeneity one Einstein metrics are defined by

f
2
d1+1
d1−1

2 = K coth

(
R

2

)∫
tanh

(
R
2

)
(coshR− 1)

d1+1
d1−1

sinhR
dR (2.3.7)

and

f
(d1−1)
1 f 2

2 =
C

2A1

(coshR− 1) (2.3.8)

where R =
√

(d1−1)A1

d1
r + const. depends on t via r′ := 1/f1 and C,K are non-zero

constants.

Proposition 2.3.1. For each of the stated dimension pair the following formulae

for f1 and f2 satisfy (2.3.8)-(2.3.7).

For (d1, d2) = (2, 8):

f 6
2 =

K

4

30R− 16 sinhR + sinh(2R)− 32 tanh (R/2) + 4E

tanh (R/2)
(2.3.9)

f 3
1 =

B(coshR− 1)3 tanh(R/2)

30R− 16 sinhR + sinh(2R)− 32 tanh(R/2) + 4E
(2.3.10)
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where B = C3

2A3
1K

, and E is a constant of integration.

For (d1, d2) = (3, 6):

f 4
2 = K

sinhR + 4 tanh(R/2)− 3R + E

tanh(R/2)
(2.3.11)

f 4
1 = B

(coshR− 1)2 tanh(R/2)

sinhR + 4 tanh(R/2)− 3R + E
. (2.3.12)

where B = C2

4A2
1K

and E is a constant of integration.

For (d1, d2) = (5, 5):

f 3
2 = K

(√
2 csch(R/2)

(
coshR + 3

)
+ E coth(R/2)

)
(2.3.13)

f 12
1 = B

(coshR− 1)3(√
2 csch(R/2)

(
coshR + 3

)
+ E coth(R/2)

)2 (2.3.14)

where B = C3

8K2A3
1

and E is a constant of integration.

Proof. We treat the dimension pair separately and start with (d1, d2) = (3, 6). In

this case equation (2.3.7) simplifies to

f 4
2 = K coth (R/2)

∫
tanh (R/2) (coshR− 1)2

sinhR
dR .

We have
tanh

(
R
2

)
(coshR− 1)2

sinhR
= coshR +

4

coshR + 1
− 3 . (2.3.15)

Indeed, since

coshR +
4

coshR + 1
− 3 =

(coshR− 1)2

coshR + 1

we only need to show that

tanh(R/2) cschR = (coshR + 1)−1 . (2.3.16)

But this follows at once by expanding out the left hand using the identities cosh(2x)+

1 = 2 cosh2 x and sinh(2x) = 2 sinhx coshx.
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Thus∫
tanh

(
R
2

)
(coshR− 1)2

sinhR
dR = sinhR + 4 tanh (R/2)− 3R + Const

so that equation (2.3.11) is now clear. On the other hand, equation (2.3.8) simplifies

to

f 2
1 f

2
2 =

C

2A1

(coshR− 1) ,

hence f 4
1 = C2

4A2
1
(coshR− 1)2f−4

2 , as required for equation (2.3.12).

Next we prove the claim associated to (d1, d2) = (5, 5). In this case we have

f 4
1 f

2
2 =

C

2A1

(coshR− 1) (2.3.17)

and

f 3
2 = K coth (R/2)

∫
tanh (R/2) (coshR− 1)

3
2

sinhR
dR . (2.3.18)

We rewrite

tanh (R/2) (coshR− 1)
3
2

sinhR
=

√
coshR− 1(coshR− 1)

coshR + 1
=

sinhR(coshR− 1)

(coshR + 1)3/2

(2.3.19)

Changing variables to u = coshR + 1 this integrates to∫
sinhR(coshR− 1)

(coshR + 1)3/2
dR = 2(coshR + 1)1/2 + 4(coshR + 1)−1/2 + Const

=
√

2
(coshR + 3)

cosh(R/2)
+ Const (2.3.20)

and multiplying this with K coth(R/2) gives (2.3.13) from which (2.3.14) is also

clear.

Finally we deal with the case (d1, d2) = (2, 8). Here equation (2.3.7) reduces to

f 6
2 = K coth(R/2)

∫
tanh(R/2) (coshR− 1)3

sinhR
dR . (2.3.21)
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Using again (2.3.15) we see that∫
tanh(R/2) (coshR− 1)3

sinhR
dR =

∫ (
coshR +

4

coshR + 1
− 3

)
(coshR− 1) dR

=

∫
cosh2R + 4

coshR− 1

coshR + 1
− 4 coshR + 3 dR (2.3.22)

and the latter expression has elementary anti - derivatives. Indeed, with∫
cosh2RdR =

1

2

(
R + sinh(R) cosh(R)

)
+ constant

and ∫
coshR− 1

coshR + 1
dR = R− 2 tanh(R/2) + constant

the integral in (2.3.22) is

=
1

2

(
R + sinh(R) cosh(R)

)
+ 4
(
R− 2 tanh(R/2)

)
− 4 sinhR + 3R + C

=
1

2
sinh(R) cosh(R)− 8 tanh(R/2)− 4 sinhR +

15

2
R + C

=
1

4
(sinh(2R)− 32 tanh(R/2)− 16 sinhR + 30R) + C .

Substituting this into (2.3.21) yields (2.3.9). On the other hand, equation (2.3.7)

reduces to

f1f
2
2 =

C

2A1

(coshR− 1) ,

hence f 3
1 = C3

8A3
1

(coshR− 1)3 f−6
2 which is equation (2.3.10).

2.4 Sectional curvature of the example metrics

The explicit solutions in Section 2.3 for f1, f2 are now studied in the context of the

results from section 2.2.2. We take on the dimension pairs in turn.

2.4.1 The dimension pair (2, 8)

Starting with (d1, d2) = (2, 8), we compute

d

dt
f 3

1 = 3f 2
1 f
′
1 = 3f 2

1

(
df1

dR

dR

dt

)
= 3f 2

1

df1

dR

√
A1/2

f1

=
df 3

1

dR

√
A1/2

f1

(2.4.1)
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so that

f ′1 =
df 3

1

dR

√
A1/18

f 3
1

=
df 3

1

dR

√
A1

18

30R− 16 sinhR + sinh(2R)− 32 tanh(R/2) + 4E

B(coshR− 1)3 tanh(R/2)

(2.4.2)

where B = C2

4A2
1K

and E is a constant of integration. From the r.h.s. of (2.3.10) we

see that

df 3
1

dR
=

4B sinh4(R/2) tanh2(R/2)(3 coshR + 4)

30R− 16 sinhR + sinh(2R)− 32 tanh(R/2) + 4E

− 64B tanh(R/2) sinh8(R/2) csch2R

(30R− 16 sinhR + sinh(2R)− 32 tanh(R/2) + 4E)2
(2.4.3)

which asymptotically as R→∞ behaves like

4Be2R(3eR + 4)

30R− 16eR + e2R − 32 + 4E
− 64Be4Re−2R

(30R− 16eR + e2R − 32 + 4E)2
v O(12BeR) .

(2.4.4)

On the other hand, the third factor in (2.4.2), which is just f−3
1 , behaves for R large

like

30R− 16eR + e2R − 32 + 4E

Be3R
v O(

1

BeR
) (2.4.5)

and, recalling the fact that t→∞ as R→∞ it follows that

Proposition 2.4.1. For the dimension pair (d1, d2) = (2, 8)

f ′1 v O(1) as t→∞ . (2.4.6)

We can also see from (2.4.5) that f1 v O(eR/3), thus

Proposition 2.4.2. For the dimension pair (d1, d2) = (2, 8),

f ′1
f1

→ 0 as t→∞ . (2.4.7)

Next we turn to f2 and its derivative. We have

d

dt
f 6

2 = 6f 5
2 f
′
2 = 6f 5

2

(
df2

dR

dR

dt

)
= 6f 5

2

df2

dR

√
A1/2

f1

=
df 6

2

dR

√
A1/2

f1

. (2.4.8)
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The r.h.s. of (2.3.9) yields f 6
2 v O(e2R) as R→∞, and we can also compute from

it that

df 6
2

dR
=
K

4

64 sinh8(R/2) csch2R

tanh (R/2)
− K

8

30R− 16 sinhR + sinh(2R)− 32 tanh (R/2) + 4E

sinh2 (R/2)

(2.4.9)

(here K and E are constants). As R→∞ this behaves like

K

4

64e4Re−2R

1
− K

8

30R− 16eR + e2R − 32 + 4E

eR
v O(e2R) . (2.4.10)

Using these asymptotics as well as f1 v O(eR/3) as R → ∞, and the fact that

t→∞ if R→∞ we deduce

Proposition 2.4.3.

f ′2
f2

(2.4.8)
=

√
A1

2

df 6
2

dR

1

6f 6
2 f1

→ 0 as t→∞ (2.4.11)

This gives the asymptotics for sectional curvature K(Yij, Ykl) determined by two

vertical vectors in our base to be that of the fibre, we summarise this in a theorem.

Theorem 2.4.4. For the dimension pair (d1, d2) = (2, 8) sectional curvature of the

plane spanned by pairs of basis vectors of the form {Yij, Ykl} is asymptotically given

by the sectional curvature in the fibre, that is

K
(
Yij, Ykl

)
→ Kt

(
Ȳij, Ȳkl

)
as t→∞ . (2.4.12)

Proof. From equation (2.2.33),

K(Yij, Ykl) = Kt(Ȳij, Ȳkl)−
f ′if
′
k

fifk

so the result follows directly from Proposition 2.4.2 and 2.4.3.

In order to determine the sectional curvature K(H, Yij) related to a plane spanned

by a vertical vector H and the horizontal basis vector we need to determine second

derivatives, for which we use the r.h.s. of (2.4.2) in the case of f1. We have
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d

dt
f ′1 =

dR

dt

d

dR

(
df 3

1

dR

√
A1

18

30R− 16 sinhR + sinh(2R)− 32 tanh(R/2) + 4E

B(coshR− 1)3 tanh(R/2)

)

=
A1

6f1

(
d2f 3

1

dR2

30R− 16 sinhR + sinh(2R)− 32 tanh(R/2) + 4E

B(coshR− 1)3 tanh(R/2)

+
df 3

1

dR

d

dR

{
30R− 16 sinhR + sinh(2R)− 32 tanh(R/2) + 4E

B(coshR− 1)3 tanh(R/2)

})
(2.4.13)

Looking at the term inside the brackets we already know that the second factor in

the first summand is O(e−R) and the first factor in the second summand is O(eR).

For the remaining terms we compute

d2f 3
1

dR2
=

4∑
i=1

Fi(R) (2.4.14)

where

F1(R) =
sinh2(R/2) tanh3(R/2)

(
40 coshR + 9 cosh(2R) + 35

)
4
(
30R− 16 sinhR + sinh(2R)− 32 tanh(R/2) + 4E

)
vR→∞

eR
(
40eR + 9e2R + 35

)
4
(
30R− 16eR + e2R − 32 + 4E

) = O(eR) (2.4.15)

F2(R) = − 256B sinh12(R/2) tanh2(R/2)(3 coshR + 4) csch2R

(30R− 16 sinhR + sinh(2R)− 32 tanh(R/2) + 4E)2

vR→∞ −
256Be6R(3eR + 4)e−2R

(30R− 16eR + e2R − 32 + 4E)2
= O(−eR) (2.4.16)

F3(R) = −
128B sinh10(R/2)

(
2 coshR + 5

)
csch4R

(30R− 16 sinhR + sinh(2R)− 32 tanh(R/2) + 4E)2

vR→∞ −
128Be5R

(
2eR + 5

)
e−4R

(30R− 16eR + e2R − 32 + 4E)2
= O(1) (2.4.17)

F4(R) =
8192B tanh(R/2) sinh16(R/2) csch4R

(30R− 16 sinhR + sinh(2R)− 32 tanh(R/2) + 4E)3

vR→∞
8192Be8Re−4R

(30R− 16eR + e2R − 32 + 4E)3
= O(e−2R) (2.4.18)

Hence

Proposition 2.4.5. As R→∞,

d2f 3
1

dR2

30R− 16 sinhR + sinh(2R)− 32 tanh(R/2) + 4E

B(coshR− 1)3 tanh(R/2)
= O(1) . (2.4.19)
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For the second summand in (2.4.13) we still need to find the asymptotics of the

second factor:

d

dR

{
30R− 16 sinhR + sinh(2R)− 32 tanh(R/2) + 4E

B(coshR− 1)3 tanh(R/2)

}
=

64 sinh8(R/2) csch2(R)

B(coshR− 1)3 tanh(R/2)

− 30R− 16 sinhR + sinh(2R)− 32 tanh(R/2) + 4E(
B(coshR− 1)3 tanh(R/2)

)2 ×

(
4B sinh4(R/2)

(
3 coshR + 4

)
tanh2(R/2)

)
vR→∞ −

30R− 16eR + e2R − 32 + 4E

Be3R

(
4Be2R

(
3eR
))

= O
(
− e2R

)
. (2.4.20)

and we see that

Proposition 2.4.6. As R→∞

df 3
1

dR

d

dR

{
30R− 16 sinhR + sinh(2R)− 32 tanh(R/2) + 4E

B(coshR− 1)3 tanh(R/2)

}
= O

(
− e3R)

)
(2.4.21)

Finally we need the asymptotics of f1 which we know is O
(
eR/3

)
. Using Proposition

2.4.5 and 2.4.6 we now find the asymptotic behaviour for (2.4.13) to be

f ′′1 = O
(
− e8R/3

)
as R→∞ . (2.4.22)

so that, since t→∞ if R→∞,

Proposition 2.4.7.

f ′′1
f1

= O
(
− e7R/3

)
−→∞ as t→∞ . (2.4.23)

This gives the first result for sectional curvature determined by planes spanned

partially by the vector H:

Theorem 2.4.8. For the dimension pair (d1, d2) = (2, 8) sectional curvature of the

plane spanned by the pair {H,Y1j} for 1 ≤ j ≤ d1 asymptotically tends towards

infinity, that is

K
(
H, Y1j

)
→∞ as t→∞ . (2.4.24)
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Now for the analysis of f ′′2 we start by reading from equation (2.4.8) that f ′2 =

df 6
2

dR

√
A1/2

6f 5
2 f1

and compute

f ′′2 =
d

dt
f ′2 =

dR

dt

d

dR

(
df 6

2

dR

√
A1/2

6f 5
2 f1

)
=

A1

12f1

3∑
i=1

Fi(R) (2.4.25)

where

F1(R) =
d2f 6

2

dR2

1

f1f 5
2

= O
(
e2Re−R/3e−5R/3

)
= O

(
1
)

as R→∞ (2.4.26)

since f1 = O
(
eR/3

)
, f 6

2 = O
(
e2R
)

and, from (2.4.9),

d2f 6
2

dR2
=

4∑
j=1

Gj(R) (2.4.27)

with

G1(R) =
K
(
16 sinh2(R/2)

(
cosh(R) + 2

)
tanh3(R/2)

)
4 tanh(R/2)

vR→∞ O
(
e2R
)
,

G2(R) = −8K sinh8(R/2) csch2(R)

sinh2(R/2)
vR→∞ O

(
− eR

)
,

G3(R) = −K64 sinh8(R/2) csch2(R)

8 sinh2(R/2)
vR→∞ O

(
− eR

)
,

G4(R) =
K (30R− 16 sinh(R) + sinh(2R)− 32 tanh(R/2) + 4E) sinh(R)

2 sinh4(R/2)

vR→∞
K
(
30R− 16eR + e2R − 32 + 4E

)
eR

2e2R
= O

(
eR
)
.

Further, from (2.4.1) we see that df1/dR =
1

3f 2
1

df 3
1

dR
, and (2.4.4) tells that df 3

1 /dR =

O
(
eR
)

whilst df 6
2 /dR = O

(
e2R
)

from (2.4.10). Hence

F2(R) = −df
6
2

dR

df1/dR

f 5
2 f

2
1

= −df
6
2

dR

df 3
1 /dR

3f 5
2 f

4
1

= O
(
− e2R eR

e5R/3e4R/3

)
= O(1) . (2.4.28)

Finally the last summand in the second factor of (2.4.25) is

F3(R) = −5
df 6

2

dR

df2/dR

f 6
2 f1

= −5

6

(
df 6

2

dR

)2
1

f 11
2 f1

= O
(
e4R 1

e11R/3eR/3
)

= O(1) (2.4.29)

where we have used (2.4.8) to find df2/dR =
1

6f 5
2

df 6
2

dR
. We conclude that
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Proposition 2.4.9.

f ′′2 → 0 as t→∞ . (2.4.30)

Proof. Substituting the asymptotics (2.4.26), (2.4.28) and (2.4.29) into the r.h.s

of equation (2.4.25) shows that the second factor asymptotically behaves like a

constant as R → ∞. Since f−1
1 = O(e−R/3) for R large and t → ∞ if R → ∞ the

result follows.

Theorem 2.4.10. For the dimension pair (d1, d2) = (2, 8) sectional curvature of

the plane spanned by the pair {H, Y2j} for 1 ≤ j ≤ d2 asymptotically tends towards

zero, that is

K
(
H, Y2j

)
→ 0 as t→∞ . (2.4.31)

Proof. From (2.2.34),

K(H, Y2j) = −f
′′
2

f2

.

The result is thus an immediate consequence of Proposition 2.4.9 since f2 = O(eR/3).

2.4.2 The dimension pair (3, 6)

From (2.3.12) we obtain

d

dt
f 4

1 = 4f 3
1 f
′
1 = 4f 3

1

df1

dR

dR

dt
=
df 4

1

dR

√
2A1

3

1

f1

(2.4.32)

and the r.h.s of (2.3.12) shows that

df 4
1

dR
=

8B sinh6(R/2)(2 coshR + 3) csch2R

sinhR + 4 tanh(R/2)− 3R + E

−
B(coshR− 1)2 tanh(R/2)

(
coshR + 2 sech2(R/2)− 3

)(
sinhR + 4 tanh(R/2)− 3R + E

)2 (2.4.33)

which asymptotically as R→∞ behaves like

8B
(
e3R/64

)
eR4e−2R

eR/2
−
B
(
e2R/4

)(
eR/2

)(
e2R/4

) = O
(
eR
)
. (2.4.34)

50



Also, looking at (2.3.12) we see that f 4
1 = O

(
eR
)
. Hence

f ′1 =

√
2A1

3

df 4
1

dR

1

4f 4
1

= O
(
1
)

(2.4.35)

and we conclude

Proposition 2.4.11.
f ′1
f1

−→ 0 as t→∞ . (2.4.36)

Proof. Follows immediately from the asymptotics (2.4.35), f1 = O
(
eR/4

)
, and the

fact that t→∞ if R→∞.

Next we analyse f ′2. From (2.3.11) we obtain

d

dt
f 4

2 = 4f 3
2 f
′
2 = 4f 3

2

df2

dR

dR

dt
=
df 4

2

dR

√
2A1

3

1

f1

(2.4.37)

whilst from the r.h.s. of the same equation one has

df 4
2

dR
=
K
(

coshR + 2 sech2(R/2)− 3
)

tanh(R/2)

−
K
(

sinhR + 4 tanh(R/2)− 3R + E
)

sech2(R/2)

2 tanh2(R/2)
(2.4.38)

which, as R→∞, behaves like

K
(1

2
eR + 8e−R − 3

)
− K

2

(1

2
eR + 4− 3R + E

)
4e−R = O

(
eR
)

(2.4.39)

so that

Proposition 2.4.12.
f ′2
f2

−→ 0 as t→∞ . (2.4.40)

Proof. Equation (2.4.37) gives

f ′2
f2

=

√
A1

24

df 4
2

dR

1

f1f 4
2

,

hence f ′2/f2 = O
(
e−R/4

)
from (2.4.39) and the asymptotics f1 = O

(
eR/4

)
, f 4

2 =

O
(
eR
)
, hence the result follows since t→∞ if R→∞.
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Propositions 2.4.11 and 2.4.12 suffice to determine that sectional curvature of g

induced by planes inside the fibres is asymptotically given by sectional curvature of

the metric in the fibres, that is

Theorem 2.4.13. For the dimension pair (d1, d2) = (3, 6) sectional curvature of

the plane spanned by pairs of basis vectors of the form {Yij, Ykl} is asymptotically

given by the sectional curvature in the fibre:

K(Yij, Ykl)→ Kt(Ȳij, Ȳkl) as t→∞ . (2.4.41)

Next we determine f ′′i for i = 1, 2. Starting with (2.4.32) it follows that

f ′′1 =

√
A1

24

d

dt

(
df 4

1

dR

1

f 4
1

)
=

√
A1

24

1

f1

d

dR

(
df 4

1

dR

1

f 4
1

)
=

√
A1

24

1

f1

3∑
i=1

Hi(R)

(2.4.42)

where

H1(R) =
1

f 4
1

B tanh3(R/2)
(
9 coshR + 2 cosh(2R) + 9

)
sinhR + 4 tanh(R/2)− 3R + E

− 1

f 4
1

8B sinh6(R/2)(2 coshR + 3) csch2R
(

coshR + 2 sech2(R/2)− 3
)(

sinhR + 4 tanh(R/2)− 3R + E
)2

which comes from the first term in (2.4.33). Since f 4
1 = O

(
eR
)
, we see that the

asymptotics of this term are

1

eR

(
B
(

9
2
eR + e2R + 9

)
eR/2 + 4− 3R + E

−
8Be3R/64(eR + 3)4e−2R

(
eR/2 + 8e−R − 3

)(
eR/2 + 4− 3R + E

)2

)
= O

(
1
)
,

(2.4.43)

next from the second term in (2.4.33) we obtain

H2(R) = − 1

f 4
1

192B sinh12(R/2)
(

coshR + 2
)

csch4R(
sinhR + 4 tanh(R/2)− 3R + E

)2

+
1

f 4
1

2B(coshR− 1)2 tanh(R/2)
(

coshR + 2 sech2(R/2)− 3
)2(

sinhR + 4 tanh(R/2)− 3R + E
)3
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vR→∞
1

eR

(
−

192Be6R/4096
(
eR/2 + 2

)
16e−4R(

eR/2 + 4− 3R + E
)2 +

2B(eR/2− 1)2
(
eR/2 + 8e−R − 3

)2(
eR/2 + 4− 3R + E

)3

)
= O

(
1
)
, (2.4.44)

and finally

H3(R) =
df 4

1

dR

d

dR

(
1

f 4
1

)
,

here we can use the r.h.s. of (2.3.12) and compute

d

dR

(
1

f 4
1

)
=

d

dR

(
sinhR + 4 tanh(R/2)− 3R + E

B(coshR− 1)2 tanh(R/2)

)
=

coshR + 2 sech2(R/2)− 3

B(coshR− 1)2 tanh(R/2)

−
(

sinhR + 4 tanh(R/2)− 3R + E
)
8 sinh6(R/2)

(
2 coshR + 3

)
csch2(R)

B2(coshR− 1)4 tanh2(R/2)

and as R→∞, this behaves like

eR/2 + 8e−R − 3

Be2R/4
−
(
eR/2 + 4− 3R + E

)
8e3R/64eR4e−2R

B2e4R/16
= O

(
e−R

)
.

(2.4.45)

Therefore

H3(R) = O
(
1
)

(2.4.46)

here we have also used (2.4.34) which tells us that
df 4

1

dR
= O

(
eR
)
. We can now draw

the conclusion that sectional curvature of planes spanned by base pairs of the form

{H,Y1j}:

Theorem 2.4.14. For the dimension pair (d1, d2) = (3, 6) sectional curvature of

the plane spanned by the pair {H, Y1j} for 1 ≤ j ≤ d1 asymptotically tends towards

zero, that is

K
(
H,Y1j

)
→ 0 as t→∞ . (2.4.47)

Proof. Recall from (2.2.34) that K(H,Y1j) = −f
′′
1

f1

. Substituting (2.4.43), (2.4.44)

and (2.4.46) into (2.4.42) and using the asymptotic behaviour f1 = O
(
eR/4

)
we see
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that
f ′′1
f1

→ 0 as R→∞

hence the result follows from the fact that t→∞ if R→∞.

Now for f ′′2 . We start with (2.4.37) from which we see that f ′2 =

√
2A1

3

df 4
2

dR

1

4f 3
2 f1

,

hence

f ′′2 =
dR

dt

d

dR
f ′2 =

2A1

3

1

4f1

d

dR

(
df 4

2

dR

1

f 3
2 f1

)
=

2A1

3

1

4f1

3∑
i=1

Ai(R) (2.4.48)

with

A1(R) =
1

f 3
2 f1

d

dR

df 4
2

dR
=

1

f 3
2 f1

4∑
j=1

Fj(R)

where (from the r.h.s. of (2.4.38)) we have

F1(R) =
K
(

sinhR− 2 sech2(R/2) tanh(R/2)
)

tanh(R/2)
=R→∞ O

(
eR
)
,

F2(R) = −
K
(

coshR + 2 sech2(R/2)− 3
)

sech2(R/2)

2 tanh2(R/2)
=R→∞ O

(
1
)
,

F3(R) =
−K

(
coshR + 2 sech2(R/2)− 3

)
sech2(R/2)

2 tanh2(R/2)

+
K
(

sinhR + 4 tanh(R/2)− 3R + E
)

tanh(R/2) sech2(R/2)

2 tanh2(R/2)
=R→∞ O

(
Re−R

)
,

F4(R) =
K
(

sinhR + 4 tanh(R/2)− 3R + E
)

sech4(R/2)

2 tanh3(R/2)
=R→∞ O

(
e−R

)
.

(2.4.49)

Thus the term A1 is asymptotically constant for R large, since f 3
2 f1 = O

(
eR
)
:

A1(R) =R→∞ O
(
1
)
. (2.4.50)

Further,

A2(R) =
df 4

2

dR

1

f1

d

dR

1

f 3
2

= −3
df 4

2

dR

1

f1f 4
2

df2

dR
= −3

4

(
df 4

2

dR

)2
1

f1f 7
2

(2.4.51)
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where we have used the identity
df 4

2

dR
= 4f 3

2

df2

dR
to obtain the last equality. Now

from (2.4.39) we know that
df 4

2

dR
= O

(
eR
)
, also f1 = O

(
eR/4

)
= f2, hence

A2(R) =R→∞ O
(
1
)
. (2.4.52)

Similarly,

A3(R) =
df 4

2

dR

1

f 3
2

d

dR

1

f1

= −df
4
2

dR

1

f 2
1 f

3
2

df1

dR
= −df

4
2

dR

df 4
1

dR

1

4f 5
1 f

3
2

=R→∞ O
(
1
)

(2.4.53)

since
df 4

1

dR
= O

(
eR
)

(see (2.4.35)). We are now ready to state the sectional curvature

asymptotics determined by planes spanned by the horizontal basis vector and basis

vectors of the second component to be zero:

Theorem 2.4.15. For the dimension pair (d1, d2) = (3, 6) sectional curvature of

the plane spanned by the pair {H,Y2j} asymptotically vanishes, that is

K
(
H,Y2j

)
→ 0 as t→∞ . (2.4.54)

Proof. Recall from theorem 2.2.8 that the sectional curvature formula for this case is

K
(
H, Y2j

)
= −f

′′
2

f2

. Using the asymptotics (2.4.50), (2.4.52) and (2.4.53) to analyse

f ′′2 for large t we see that f ′′2 → 0 as t→∞ (recall we use the property that t→∞

if R→∞). Since 1/f2 = O
(
e−R/4

)
the result follows.

2.4.3 The dimension pair (5, 5)

For the last case (d1, d2) = (5, 5), using (2.3.14) one has

d

dt
f 12

1 = 12f 11
1 f ′1 = 12f 11

1

(
df1

dR

dR

dt

)
= 12f 11

1

df1

dR

√
4A1/5

f1

= 2
df 12

1

dR

√
A1/5

f1

,

(2.4.55)

hence

f ′1 =
df 12

1

dR

√
A1/5

6f 12
1

=
df 12

1

dR

√
A1

180

(√
2 csch(R/2)(coshR + 3) + E coth(R/2)

)2

B(coshR− 1)3

(2.4.56)
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where B = C3

8A3
1K

2 and E is a constant of integration. Further, from the r.h.s. of

(2.3.14) we calculate

df 12
1

dR
=

3 sinhR(coshR− 1)2(√
2(coshR + 3) csch(R/2) + E coth(R/2)

)2

+
4 sinh7(R/2)

(
9
√

2 cosh(R/2)−
√

2 cosh(3R/2) + 2E)(
E cosh(R/2) +

√
2(coshR + 3)

)3 (2.4.57)

which asymptotically as R→∞ behaves as(
3(1

4
− e−R + e−2R)

2
(
2
√

2(1
2

+ 3e−R) + Ee−R/2
)2 e

2R

+

(
9
2

√
2e−R −

√
2

2
+ 2Ee−3R/2)

32
(
E
2
e−R/2 +

√
2(1

2
+ 3e−R)

)3 e
2R

)
v O(

1

8
e2R) (2.4.58)

On the other hand, the third factor in (2.4.56) (which is f−12
1 ) behaves for large R

like (√
2eR/2 + E

)2

B(eR/2)3
v O(e−2R) (2.4.59)

and, recalling the fact that t→∞ as R→∞ it follows that

Proposition 2.4.16. For the dimension pair (d1, d2) = (5, 5)

f ′1 v O(−1) as t→∞ . (2.4.60)

Moreover, (2.4.59) also tells us that 1/f1 v O(e−R/6), thus

Proposition 2.4.17. For the dimension pair (d1, d2) = (5, 5),

f ′1
f1

→ 0 as t→∞ . (2.4.61)

Next we consider f2 and its derivative. We have

d

dt
f 3

2 = 3f 2
2 f
′
2 = 3f 2

2

(
df2

dR

dR

dt

)
= 3f 2

2

df2

dR

√
4A1/5

f1

=
df 3

2

dR

√
4A1

5

1

f1

. (2.4.62)

The r.h.s. of (2.3.13) shows that f 3
2 v O(

√
2eR/2) as R → ∞, and from it we can

also compute

df 3
2

dR
= K

(
2
√

2 cosh(R/2)−
√

2

2
coth(R/2) csch(R/2)

(
coshR + 3

)
− E

2
csch2(R/2)

)
(2.4.63)
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(here K and E are constants). As R→∞ this behaves like

K
(√

2e−R/2eR −
√

2

2
e−R/2eR − E

2
4e−R

)
v O

(
K

√
2

2
eR/2

)
(2.4.64)

Using these asymptotics as well as 1/f1 v O(B
2
e−R/6) as R→∞, and the fact that

t→∞ if R→∞, we deduce

Proposition 2.4.18.

f ′2
f2

(2.4.62)
=

df 3
2

dR

√
4A1

5

1

3f 3
2 f1

v (KeR/2)

√
A1

5
(
B

3
e−R/2e−R/6)→ 0 as t→∞ .

(2.4.65)

This tells us that the asymptotics for sectional curvature K(Yij, Ykl) determined by

two vertical vectors in our base to be that of the fibre. We summarise this in a

theorem:

Theorem 2.4.19. For the dimension pair (d1, d2) = (5, 5) sectional curvature of

the plane spanned by pairs of basis vectors of the form {Yij, Ykl} is asymptotically

given by the sectional curvature in the fibre, that is

K
(
Yij, Ykl

)
→ Kt

(
Ȳij, Ȳkl

)
as t→∞ . (2.4.66)

Proof. From equation (2.2.33),

K(Yij, Ykl) = Kt(Ȳij, Ȳkl)−
f ′if
′
k

fifk

so the result follows directly from Proposition 2.4.17 and 2.4.18.

In order to determine the sectional curvature K(H, Yij) related to a plane spanned

by a vertical vector H and the horizontal basis vector we need to determine second

derivatives; for this we use the r.h.s. of (2.4.56) in the case of f1:

d

dt
f ′1 =

dR

dt

d

dR

(
df 12

1

dR

√
A1

180

(√
2 csch(R/2)(coshR + 3) + E coth(R/2)

)2

B(coshR− 1)3

)
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=
A1

15

1

f1

(
d2f 12

1

dR2

(√
2 csch(R/2)(coshR + 3) + E coth(R/2)

)2

B(coshR− 1)3

+
df 12

1

dR

d

dR

{(√2 csch(R/2)(coshR + 3) + E coth(R/2)
)2

B(coshR− 1)3

})
(2.4.67)

Regarding the expression in brackets we already know from (2.4.59) that the second

factor in the first summand is O(e−2R) whilst from (2.4.58) we see that the first

factor in the second summand is O(e2R). For the remaining terms we compute

d2f 12
1

dR2
=

4∑
i=1

Fi(R) (2.4.68)

where taking derivatives of the first summand in (2.4.57) results in the terms

F1(R) =
12 sinh4(R/2)(3 coshR + 2)(√

2(coshR + 3) csch(R/2) + E coth(R/2)
)2

vR→∞

3
4
e2R(3

2
+ 2e−R)(

2
√

2(1
2

+ 3e−R) + Ee−R/2
)2 = O(

9

16
e2R) (2.4.69)

F2(R) = − 3 sinhR(coshR− 1)2 csch(R/2)(√
2(coshR + 3) csch(R/2) + E coth(R/2)

)3×(
2
√

2 sinhR−
√

2(coshR + 3) coth(R/2)− E csch(R/2)
)

vR→∞ −
3e2R(1

2
− e−R)2

(√
2−
√

2(1
2

+ 3e−R)− 2Ee−3R/2
)

(
2
√

2(1
2

+ 3e−R) + Ee−R/2
)3

= O
(
− 3

16
e2R
)

(2.4.70)

whilst taking derivatives of the second summand in (2.4.57) yields

F3(R) =
2 sinh6(R/2)(14E cosh(R/2) +

√
2(34 coshR− 5 cosh(2R) + 27))(

E cosh(R/2) +
√

2(coshR + 3)
)3

vR→∞

1
32
e5R(7Ee−3R/2 +

√
2(17e−R − 5

2
+ 27e−2R))

e3R
(
E
2
e−R/2 +

√
2(1

2
+ 3e−R)

)3 = O(− 5

16
e2R) (2.4.71)

and

F4(R) = −
3(1

2
E sinh(R/2) +

√
2 sinhR)(

E cosh(R/2) +
√

2(coshR + 3)
)4×
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(
4 sinh7(R/2)

(
9
√

2 cosh(R/2)−
√

2 cosh(3R/2) + 2E)
)

vR→∞ −
3
32
e6R(1

4
Ee−R/2 +

√
2

2
)(9

2

√
2e−R −

√
2

2
+ 2Ee−3R/2)

e4R
(
E
2
e−R/2 +

√
2(1

2
+ 3e−R)

)4 = O(
3

16
e2R)

(2.4.72)

Hence

Proposition 2.4.20. As R→∞,

df 12
1

dR

√
A1

180

(√
2 csch(R/2)(coshR + 3) + E coth(R/2)

)2

B(coshR− 1)3
= O(1) . (2.4.73)

For the second summand in (2.4.13) we also need to find the asymptotics of the

second factor:

d

dR

{(√2 csch(R/2)(coshR + 3) + E coth(R/2)
)2

B(coshR− 1)3

}
=

√
2
(
E coth(R/2) +

√
2(coshR + 3) csch(R/2)

)
B(coshR− 1)3

×(
4 cosh(R/2)− 1√

2
E csch2(R/2)− (coshR + 3) coth(R/2) csch(R/2)

)
−

3 sinhR
(√

2 csch(R/2)(coshR + 3) + E coth(R/2)
)2

B(coshR− 1)4

vR→∞
2
√

2
(
Ee−R/2 +

√
2(1

2
+ 3e−R)

)
Be2R(1

2
− e−R)3

×
(
2− 2

√
2Ee−3R/2 − 2(

1

2
+ 3e−R)

)
−

3
2

(
2
√

2(1
2

+ 3e−R) + Ee−R/2
)2

Be2R(1
2
− e−R)4

= O
(
− 32

B
e−2R) . (2.4.74)

Thus we see that

Proposition 2.4.21. As R→∞

df 12
1

dR

d

dR

{(√2 csch(R/2)(coshR + 3) + E coth(R/2)
)2

B(coshR− 1)3

}
= O

(
1
)

(2.4.75)

Using Proposition 2.4.20 and 2.4.21 and the asymptotic behaviour of 1/f1 (which

we know is O
(
e−R/6

)
) we now find the asymptotic behaviour for (2.4.67) to be

f ′′1 = O
(
e−R/6

)
as R→∞ . (2.4.76)
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so that, since t→∞ if R→∞,

Proposition 2.4.22.

f ′′1
f1

= O
(
eR/3

)
−→∞ as t→∞ . (2.4.77)

which gives the first result for sectional curvature determined by planes containing

the vector H:

Theorem 2.4.23. For the dimension pair (d1, d2) = (5, 5) sectional curvature of

the plane spanned by the pair {H, Y1j} for 1 ≤ j ≤ d1 asymptotically tends towards

infinity, that is

K
(
H, Y1j

)
→∞ as t→∞ . (2.4.78)

Now for the analysis of f ′′2 we start with equation (2.4.62),

f ′2 =
df 3

2

dR

√
4A1

5

1

2f 2
2 f1

and compute

f ′′2 =
d

dt
f ′2 =

dR

dt

d

dR

(
df 3

2

dR

√
4A1

5

1

2f 2
2 f1

)
=

√
A1

5

1

f1

3∑
i=1

Fi(R) (2.4.79)

where

F1(R) =
d2f 3

2

dR2

1

f 2
2 f1

= O
(
1
)

as R→∞ (2.4.80)

since 1/f1 = O
(
e−R/6

)
, 1/f 2

2 = O
(
e−R/3

)
and from (2.4.63),

d2f 3
2

dR2
=
K

16

(
8E cosh(R/2) +

√
2(4 coshR + cosh(2R) + 27)

)
csch3(R/2) (2.4.81)

which for R large behaves like

vR→∞
K

16

(
4Ee−3R/2 +

√
2(2e−R +

1

2
+ 27e−2R)

)
8eR/2 = O

(√2K

4
eR/2

)
.
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Further, from (2.4.55) we see that
df1

dR
=
df 12

1

dR

1

6f 11
1

, hence (2.4.64) and (2.4.58) show

that

F2(R) = −df
3
2

dR

1

f 2
2 f

2
1

df1

dR
= −1

6

df 3
2

dR

1

f 2
2 f

13
1

df 12
1

dR
= O

(
− eR/2 1

eR/3e13R/6
e2R
)

= O(1) .

(2.4.82)

Finally the last summand in the second factor of (2.4.79) is

F3(R) = −2
df 3

2

dR

1

f 3
2 f1

df2

dR
= −2

3

(
df 3

2

dR

)2
1

f 5
2 f1

= O
(
eR

1

e5R/6eR/6
)

= O(1) (2.4.83)

where we have used (2.4.62) to find
df2

dR
=
df 3

2

dR

1

3f 2
2

. We conclude that

Proposition 2.4.24.

f ′′2 → 0 as t→∞ . (2.4.84)

Proof. Substituting the asymptotics (2.4.80), (2.4.82) and (2.4.83) into the r.h.s

of equation (2.4.79) shows that the second factor asymptotically behaves like a

constant as R →∞. Since 1/f1 = O(e−R/6) for R large and t→∞ if R →∞ the

result follows.

Theorem 2.4.25. For the dimension pair (d1, d2) = (5, 5) sectional curvature of

the plane spanned by the pair {H, Y2j} for 1 ≤ j ≤ d2 asymptotically tends towards

zero, that is

K
(
H, Y2j

)
→ 0 as t→∞ . (2.4.85)

Proof. From (2.2.34),

K(H, Y2j) = −f
′′
2

f2

.

The result is thus an immediate consequence of Proposition 2.4.80 since 1/f2 =

O(e−R/6).

61



Chapter 3

A non-standard parametrix for

the heat kernel on Riemannian

manifolds with multiply warped

metric

Given smooth compact Riemannian manifolds (M1, g1) and (M2, g2) we generalise

the results of P.C. Lue in [29] and construct a parametrix for the fundamental

solution to the heat equation on I ×M1 ×M2 with doubly warped metric dr2 +

f 2
1 (r)g1 + f 2

2 (r)g2. This gives rise to an asymptotic expansion for the heat trace in

terms of the warping functions.

3.1 Introduction

Let M be a Riemannian manifold of dimension n. A continuous function

s : (0,∞)×M×M→ C , (t, x, y) 7→ s(t, x, y)
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that is continuously differentiable in t and twice continuously differentiable in x and

y such that

(∂t +4y)s = 0 (3.1.1)

and with limt→0 s(t, x, ·) = δx (the Dirac - delta distribution based at x ∈ M) is

called a fundamental solution of the heat equation on M, it is often referred to

as a heat kernel. Here 4y denotes the Laplace - Beltrami operator with respect

to the variable y, and the convergence means that for any smooth function φ with

compact support on M the function u(t, x) =
∫
M
s(t, x, y)φ(y)dµ(y) is continuous

and u(t, x)→ φ(x) as t→ 0+ where dµ denotes the Riemannian volume element on

M, locally given by
√
|g| dx where |g| denotes the determinant of the metric tensor

and dx is Lebesgue measure in Rn. A heat kernel exists and is unique, for example,

on compact Riemannian manifolds without boundary. It is known explicitly for

some manifolds, for example in the case whereM = Rn is Euclidean space endowed

with the standard metric, we have 4 =
∑n

i=1
∂2

∂x2
i

in Cartesian coordinates, and

s(t, x, y) =
1

(4πt)n/2
exp{−‖x− y‖

2

4t
} . (3.1.2)

If M is compact of dimension n then there exists an asymptotic expansion [30] for

s along the diagonal y = x,

s(t, x, x) vt→0
1

(4π)
n
2

∑
j≥0

aj(x)t−
n
2

+j . (3.1.3)

The coefficients aj(x) depend on the curvature tensorR and its covariant derivatives,

when integrated over the manifoldM the resulting data can be interpreted in terms

of the geometry of M, for example
∫
M a0(x)dx is equal to the Riemannian volume

ofM, and in the case whereM is a surface
∫
M a1(x)dx = πχ(M)/3 with χ(M) the

Euler characteristic of M . To obtain the asymptotic expansion (3.1.3) if suffices to

construct an approximation to the heat kernel, also called a parametrix. Concretely

one looks for a smooth function

p : (0,∞)×M×M→ C , (t, x, y) 7→ p(t, x, y) (3.1.4)
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such that (∂t +4)p extends to a continuous function on [0,∞)×M×M and such

that limt→0 p(t, x, ·) = δx is the Dirac - delta distribution based at x ∈ M (a com-

parison of the defining conditions for p(t, x, y) and s(t, x, y) helps to appreciate the

similarities of these two objects). There is standard procedure for this construction

which was introduced (for the operator 4−∂t) by S. Minakshisundaram and A.

Pleijel in [31], let us briefly recall the key steps (see for example [36, Chapter 3.2.1]

for a more detailed exposition). One introduces Riemannian normal coordinates in

a neighbourhood of a point x ∈ M , these are coordinates induced at a point x by

the diffeomorphism expx : Bx(0, ε)→ Ux := expx
(
Bx(0, ε)

)
⊂ M , v 7→ γv(1) where

γv : (−δ, δ) → M is a geodesic that passes through x (i.e. γv(0) = x) and satisfies

γ′v(0) = v. (The freedom in the choice of ε for the size of the ball Bx(0, ε) ensures

that δ can be chosen > 1.) Let ρx = ρ : Ux → R, y 7→ ρx(y) = ρ(x, y) denote the

length of the radial geodesic from x to y. To simplify the notation let us also denote

Fx(v) = F (v) := det
(

expx
)
∗,v for v ∈ Bx(0, ε). (3.1.5)

Now, based on the Euclidean solution (3.1.2) one may argue that locally (i.e. in

Ux or smaller if necessary) the heat kernel on M ought to be a perturbation of the

function (4πt)−n/2 exp{−ρ2/(4t)}, so consider the sum

Hk(t, x, y) :=
1

(4πt)n/2
exp{−ρ

2
x(y)

4t
}

k∑
j=0

Uj(x, y)tj . (3.1.6)

If we then construct the functions Uj(x, y) on the right hand side recursively as

solutions to the differential equations U−1 = 0,

ρ
∂U0

∂ρ
+
ρ

2

∂F/∂ρ

F
U0 = 0 (3.1.7)

and

ρ
∂Uj
∂ρ

+

(
ρ

2

∂F/∂ρ

F
+ i

)
Uj +4y Uj−1 = 0 for j = 1, . . . , k , (3.1.8)

it follows that (3.1.6) satisfies the equation

(∂t +4y)Hk(·, x, ·) =
1

(4πt)n/2
exp{−ρ

2
x(y)

4t
}4y Uk(x, y)tk .
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That is, even though (3.1.6) is not an exact solution to the equation (3.1.1), the

expression vanishes up to the highest power of t (i.e. up to the tk term). Furthermore

if one requires the Ui to be finite at x = y and that U0(x, x) = 1 (the normalising

condition) then there are unique solutions

U0(x, y) =
1√

F (exp−1
x (y)

(3.1.9)

and for j ≥ 1:

Uj(x, y) =
1

ρjx(y)U0(x, y)

∫ ρ

0

√
F (v(s))4y uj−1

(
v(s), y

)
sj−1 ds . (3.1.10)

Finally we extend Hk toM×M by choosing a bump function ψ with ψ(s) ≡ 1 for

s ≤ R/2 and ψ(s) ≡ 0 for s > R where the constant R > 0 is small enough so that

the geodesic ball BR(x) of radius R centered at x is contained in Ux for each x ∈M

(such an R exists uniformly in x in view of the assumption thatM is compact and

boundaryless). One can then prove that pk(t, x, y) := ψ
(
r(x, y)

)
Hk(t, x, y) yields

a parametrix whenever k > n/2. Furthermore, one can see from the definition

of the partial sums Hk in (3.1.6) that the result inherently yields an (asymptotic)

expansion in t. This is the standard construction on compact manifolds without

boundary.

Now let us consider a product manifold

M = I ×M1 ×M2 with metric dr2 + f 2
1 (r)g1 + f 2

2 (r)g2 (3.1.11)

where (Mi, gi) for i = 1, 2 are compact Riemannian manifolds, I is an open in-

terval and the warping factors f1, f2 : I → (0,∞) are smooth positive functions.

Naturally one would like to know whether an expansion similar to (3.1.6) can be

obtained (in case the heat kernel exists), and to what extend its coefficient func-

tions Uj
(
(r, x), (r′, y)

)
are determined in terms of the warping functions f1, f2 and

the coefficients from the expansion (3.1.6) onM1×M2. This question was studied

by P.C. Lue [29] for a generalised surface of revolution or warped product, that is
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a product manifold

M = I ×M with warped metric dr2 + f 2(r)g . (3.1.12)

He remarks that this turns out to be very complicated if one uses the Ansatz (3.1.6)

by making the following example calculation with f(r) = r (in this this case (3.1.12)

is sometimes called a metric cone): from (3.1.9) one sees that the first coefficient is

the reciprocal of the square root of the determinant of the exponential map. Now

for the metric cone one has

F(r,x)

(
exp−1

(r,x)(r
′, y)
)

=

(
ρx(y)

sin
(
ρx(y)

))n−1

Fx
(

exp−1
x (y)

)
(3.1.13)

where n denotes the dimension of M, and the functions F , exp on the left hand

side are defined on M and on the right hand side they are the analogous objects

defined on the base M. Hence

U0

(
(r, x), (r′, y)

)
=

(
ρx(y)

sin
(
ρx(y)

))−(n−1)/2

U0(x, y)

from which one can see that there is another factor coming from the base involving

the distance function ρ on M. The complexity that this term causes becomes ap-

parent when one one starts to take recursively the Laplacian in (3.1.8) to determine

the next coefficients. For cases more general than the metric cone the independence

of the right hand side in (3.1.13) from r, r′ cannot be taken for granted and the

difficulty of the problem increases further. To get around this complication Lue

suggests an alternative Ansatz. Using the eigenvalues and eigenfunctions {(λi, φi)}

of the Laplacian on M he starts with the formal series

Hk

(
t, (r, x), (r′, y)

)
=(

f(r)f(r′)
)−n/2

(4πt)1/2
exp{−(r − r′)2

4t
}
∑
i≥0

exp{− λit

f(r)f(r′)
}

k∑
j=0

Uij
(
(r, x), (r′, y)

)
tj

(3.1.14)

66



where

Uij
(
(r, x), (r′, y)

)
= aj(r, r

′, λi)φi(x)φi(y)

and the functions aj are to be determined. This provides, for any Riemannian

manifold of the form (3.1.12), an asymptotic expansion of the heat kernel on M

where the contributions of the warping function f and the contribution from the

factor M is made more explicit.

The goal here is to show that this approach does not depend on the absence of

additional warps. More concretely we show that it can be extended to Riemannian

manifolds that are of the form (3.1.11). In Section 3.2 we lay out the formal series.

Starting with a generic format we show that (at least formally) the most natural

changes to Lue’s guess (3.1.14) still work in the doubly warped case. The main

result, shown in Section 3.3, is that the resulting parametrix as well as the essential

features of the proof in [29] adapt to this case, and that the newly arising features

are due to the fact that the coefficients aj are now polynomials in more than one

eigenvalue requiring some care so as to maintain the necessary estimates. The

fact that we assume our metric (3.1.11) to be doubly warped (instead of multiply

warped) is not important in the sense that the arguments below extend to multiply

warped scenarios I ×M1 × · · ·Mk with metric dr2 + f 2
1 (r)g1 + · · ·+ f 2

k (r)gk.

3.2 The formal solution

Before we derive the form of the parametrix we point out some preliminary ob-

servations to be used later. Let (Md1
1 , g1) and (Md2

2 , g2) be compact Riemannian

manifolds of dimension d1, d2 respectively and let I be an open interval. We shall

study the Heat operator ∂t +4 on the manifold M = I ×M1 ×M2 with metric

dr2 + f 2
1 (r)g1 + f 2

2 (r)g2 . (3.2.1)

where fi for i ∈ {1, 2} is a smooth positive function I → (0,∞). The scalar Laplace

- Beltrami operator 4 on a Riemannian Manifold is given in local coordinates
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(x1, . . . , xn) by

4 = − 1√
det g

n∑
i,j=1

∂

∂xi

(√
det g gij

∂

∂xj

)
, (3.2.2)

here det g denotes the determinant of the matrix g representing the metric tensor lo-

cally, and
(
gij
)

1≤i,j≤n = g−1 is the inverse, so that gikgkj = δij with δij the Kronecker

delta.

Proposition 3.2.1. Let M be a smooth manifold, let I be an open interval. Given

a smooth family of metrics gr on M parametrised by r ∈ I, the scalar Laplace -

Beltrami operator on I ×M with metric dr2 + gr is given by

4 = − ∂2

∂r2
− 1

2
tr(g−1

r ġr)
∂

∂r
+4r (3.2.3)

where 4r denotes the Laplace - Beltrami operator on (M, gr) and ġr := ∂
∂r
gr.

Remark 3.2.2. The term g−1
r ġr is the shape operator of the hypersurface (M, gr) in

M ; its trace is the mean curvature of the hypersurface. (The shape operator Lr is

a symmetric linear transformation on the tangent space TpM ofM at p defined by

LrX = ∇XH where ∇ denotes the Levi - Civita connection on M and H is the lift

of a unit vector field from I to M , i.e. normal to the factor M.)

Proof. The local matrix representing the warped metric g̃ = dr2 + gr is of the form

g̃ =


1 0 · · · 0

0 g11(r, x) · · · g1n(r, x)
...

...
. . .

...

0 gn1(r, x) · · · gnn(r, x)

 g̃−1 =


1 0 · · · 0

0 g11(r, x) · · · g1n(r, x)
...

...
. . .

...

0 gn1(r, x) · · · gnn(r, x)

 .

from which we can see that
√

det g̃ =
√

det gr, so

4 = − 1√
det g̃

m∑
i,j=0

∂

∂xi

(√
det g̃g̃ij

∂

∂xj

)

= − 1√
det gr

∂

∂r

(√
det gr

∂

∂r

)
− 1√

det gr

m∑
i=1

m∑
j=1

∂

∂xi

(√
det grg

ij
r

∂

∂xj

)
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= − ∂2

∂r2
− 1

2
tr(g−1

r ġr)
∂

∂r
+4r (3.2.4)

where 4r denotes the Laplace - Beltrami operator on (M, gr) and we used the

identity d
dr

detTr = detTr tr
(
T−1Ṫr

)
to obtain the second term in the last equation.

Corollary 3.2.3. The scalar Laplace - Beltrami operator 4 on the Riemannian

manifold defined by (3.1.11) is given by

4 = − ∂2

∂r2
− (d1

ḟ1

f1

+ d2
ḟ2

f2

)
∂

∂r
+

1

f 2
1

4M1
+

1

f 2
2

4M2
(3.2.5)

with 4i the scalar Laplace - Beltrami operator on (Mi, gi), for i = 1, 2.

Proof. This is an immediate application of the above result to the case M =Md1
1 ×

Md2
2 with gr = f 2

1 (r)g1 + f 2
2 (r)g2.

A further observation that we shall need concerns the decomposition of eigenfunc-

tions for the Laplacian on product manifolds.

Proposition 3.2.4. If ϕ is an eigenfunction with eigenvalue µ for 41 on M1 and

if ψ is an eigenfunction with eigenvalue τ for 42 on M2 then

φ(x) = φ(x1, x2) := ϕ(x1)ψ(x2) , x = (x1, x2) ∈M1 ×M2 (3.2.6)

is an eigenfunction for 41 +42 on M1 ×M2 with corresponding eigenvalue λ =

µ+ τ .

Proof. Applying 41 +42 to φ immediately verifies the claim.

Let us now turn to the formal derivation of the parametrix. Based on the Ansatz

(3.1.14) we start with a formal double series of the form

P (t, r, x, r′, y) =

Ψ(r, r′) exp

(
(r − r′)2

kt

) ∞∑
i=0

exp

(
−µict
F1(r, r′)

)
exp

(
−τic̃t
F2(r, r′)

)
· Ai(t, r, x, r′, y)

(3.2.7)
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where F1, F2,Ψ are functions to be determined, k, c, c̃ are constants to be deter-

mined, and

Ai(t, r, x, r
′, y) =

∞∑
j=0

aj(r, r
′, µi, τi)φi(x)φi(y)tj−1/2 (3.2.8)

with 0 ≤ µ0 ≤ µ1 ≤ · · · ↗ ∞ the eigenvalues of 41 on (M1, g1) and 0 ≤ τ0 ≤ τ1 ≤

· · · ↗ ∞ the eigenvalues of 42 on (M2, g2), lastly φi is the function defined in line

(3.2.6).

Applying ∂t +4(r′,y) to (3.2.7) yields

(∂t +4)P =
∞∑
i=0

exp

(
(r − r′)2

kt

)
exp

(
−µict
F1

)
exp

(
−τic̃t
F2

)
· Ei (3.2.9)

where Ei denotes the formal series

Ei(t, r, x, r
′, y) =

∞∑
j=−2

ej(r, r
′, µi, τi)φi(x)φi(y)tj−1/2 (3.2.10)

whose coefficients ej are linear combinations in aj+2, . . . , aj−2 and their first and

second derivatives (we set ak := 0 whenever k ≤ 0), concretely

e−2 = −k + 4

k2
Ψ(r − r′)2a0 , (3.2.11)

e−1 = −k + 4

k2
Ψ(r − r′)2a1

+
4

k
Ψ(r − r′)∂r′a0 +

4

k
(∂r′Ψ + ΘΨ) (r − r′)a0 −

k + 4

2k
Ψa0 (3.2.12)

with Θ =
(
d1

2
ḟ1

f1
+ d2

2
ḟ2

f2

)
, and for j ≥ 0

ej = −4 + k

k2
Ψ(r − r′)2aj+2

+
4

k

[
(r − r′)Ψ∂r′aj+1 +

(
(r − r′)ΘΨ +

k

4
(j +

1

2
− 2

k
)Ψ + (r − r′)∂r′Ψ

)
aj+1

]
−Ψ∂2

r′aj − 2 (ΘΨ + ∂r′Ψ) ∂r′aj

+
[
(
µi
f 2

1

+
τi
f 2

2

)Ψ− ΦΨ− Φ̇
4

k
Ψ(r − r′)− 2Θ∂r′Ψ− ∂2

r′Ψ
]
aj

+ 2Φ̇Ψ∂r′aj−1 +
[
2Φ̇ΘΨ + Φ̈Ψ + 2Φ̇∂r′Ψ

]
aj−1

− Φ̇2Ψaj−2 (3.2.13)
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where Φ = cµi
F1

+ c̃τi
F2

and Φ̇ = ∂r′Φ (for the arduous details of the derivation of the

ej we refer to Appendix 3.4.1). Now we set the ej equal to zero. For j = −2 the

equation is easily solved by setting

k = −4 . (3.2.14)

Next, if we let

Ψ(r, r′) = (f1(r)f1(r′))
− d1

2 · (f2(r)f2(r′))
− d2

2 (3.2.15)

then the equation e−1 = 0 is satisfied when

a0 = constant . (3.2.16)

Let us also choose

F1(r, r′) = f1(r)f1(r′) and F2(r, r′) = f2(r)f2(r′) , (3.2.17)

as well as

c = c̃ = 1 . (3.2.18)

As a result of this we find

a1(r, r′, µi, τi) =
a0

r − r′

∫ r′

r

ui(s, µi, τi) ds+ a0Φ (3.2.19)

where

ui = Θ2 + Θ̇ +

(
µi
f 2

1

+
τi
f 2

2

)
, (3.2.20)

furthermore

a2(r, r′, µi, τi) =
a0

2(r − r′)2

(∫ r′

r

ui(s, µi, τi) ds

)2

+
a0

(r − r′)
Φ

∫ r′

r

ui(s, µi, τi) ds

− 2a0

(r − r′)3

∫ r′

r

ui(s, µi, τi) ds−
a0

(r − r′)2

[
ui(r, µi, τi) + ui(r

′, µi, τi)
]

+
a0

2
Φ2

(3.2.21)
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and for j ≥ 3 we obtain

aj+1(r, r′, µi, τi) =
1

(r − r′)j+1

∫ r′

r

(
− (r − s)jΦ̇2(r, s)aj−2(r, s)

+ 2(r − s)jΦ̇(r, s)∂saj−1(r, s) + (r − s)jΦ̈(r, s)aj−1(r, s)− (r − s)j∂2
saj(r, s)

+ (r − s)j
[
ui(s)− Φ(r, s)

]
aj(r, s) + (r − s)j+1Φ̇(r, s)aj(r, s)

)
ds .

(3.2.22)

Remark 3.2.5. The dependence of the terms on the l.h.s on the eigenvalues µi, τi

has been suppressed since it is not relevant for the integration.

Remark 3.2.6. For brevity we have only stated the final expressions in (3.2.19) -

(3.2.22) (details of the derivation are given in Section 3.4.2).

Let us finish this section by establishing two specific properties of the aj which are

needed later. The first concerns their smoothness and the second addresses their

polynomial degrees in µi and τi.

Lemma 3.2.7. For each j ≥ 0 and all i ≥ 0 the coefficient function aj(·, ·, µi, τi) is

C∞ in r and r′.

Proof. We use the inductive argument presented in [29]. The statement is certainly

true for j = 0 since a0 is a constant. Suppose ak(·, ·, µi, τi) is smooth for 0 ≤ k ≤ j.

From (3.2.22) we see that

aj+1(r, r′, µi, τi) =
1

(r − r′)j+1

∫ r′

r

(r − s)jF (r, s) ds

where

F (r, s) = −Φ̇2(r, s)aj−2(r, s) + 2Φ̇(r, s)∂saj−1(r, s) + Φ̈(r, s)aj−1(r, s)

− ∂2
saj(r, s) +

[
ui(s)− Φ(r, s)

]
aj(r, s) + (r − s)Φ̇(r, s)aj(r, s) .

This function is smooth in both arguments since it is the sum of products involving

the smooth functions Φ (c.f. (3.4.25)), u (c.f. (3.4.28) and (3.4.26)) and their

derivatives, as well as ak for 0 ≤ k ≤ j and derivatives thereof (these are smooth
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by the inductive hypothesis). This establishes that aj+1 is C∞ in r and r′ whenever

r 6= r′. For the case r = r′ we use the Taylor expansion of F in the second variable

at s = r,

aj+1(r, r′) =
(−1)j

(r − r′)j+1

{
F (r, r)

∫ r′

r

(s− r)j ds+
∂sF (r, r)

1!

∫ r′

r

(s− r)j+1 ds+

· · ·+ 1

(α + β)!

∫ r′

r

(
∂α+β
s F

)
(r, τs)(s− r)j+α+β ds

}

=
(−1)j

(r − r′)j+1

{
F (r, r)

j + 1
(r′ − r)j+1 +

∂sF (r, r)

1!(j + 2)
(r′ − r)j+2+

· · ·+ 1

(α + β)!

∫ r′

r

(
∂α+β
s F

)
(r, τs)(s− r)j+α+β ds

}

= −F (r, r)

j + 1
− ∂sF (r, r)

1!(j + 2)
(r′ − r)−

· · · − 1

(α + β)!(r′ − r)j+1

∫ r′

r

(
∂α+β
s F

)
(r, τs)(s− r)j+α+β ds

(3.2.23)

where r < τs < s. The only term that is not obviously smooth when r = r′ is the

last, so let us look at

∂γ+δ

∂rγ∂(r′)δ

(
1

(r′ − r)j+1

∫ r′

r

(
∂α+β
s F

)
(r, τs)(s− r)j+α+β ds

)
. (3.2.24)

When we apply the derivatives the result is going to be a sum where a generic term

is a linear combination of

constant

(r′ − r)j+1+k

∫ r′

r

(
∂α+β
s F

)
(r, τs)(s− r)j+α+β ds (3.2.25)

(with k < γ + δ) and

1

(r′ − r)j+1+k
G(r, r′)(r′ − r)j+α+β−k′ (3.2.26)

where k < k′, and G(r, r′) is a derivative of
(
∂α+β
r′ F

)
(r, τr′) therefore smooth in

r, r′. Note that the number of derivatives applied in (3.2.26) to the polynomial
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factor in the numerator and denominator is obviously bounded by the total number

of derivatives, that is k + k′ ≤ γ + δ. Thus for both (3.2.25) and (3.2.26) the

limit exists as r′ → r since we may chose α + β as large as needed. In fact since

k′ ≤ γ + δ − k it follows that

(j + α + β − k′)− (j + 1 + k) ≥ α + β − (γ + δ + 1)

which is positive provided α + β > γ + δ + 1. Thus we see that (3.2.24) exists at

r = r′ for any choice of γ, δ, in other words the last term in the Taylor expansion

(3.2.23) is smooth as well.

As mentioned before we need one further property of the aj, namely their degree as

polynomials in the eigenvalues µi and τi. This plays a role in the proof of Lemma

3.3.2 where we study the continuity of the Parametrix near t = 0.

Lemma 3.2.8. The degree, denoted by d(·), of aj and its derivatives at r′ = r, seen

as polynomials in the eigenvalues µi, τi, satisfies the following bounds:

1. d
(
aj(r, r, µi, τi)

)
≤ d2j/3e .

2. d
((
∂kr′aj(r, r

′, µi, τia)
)
r′=r

)≤ d(2j + k)/3e for 0 < k ≤ j ,

≤ j for k ≥ j .

where d·e denotes the ceiling function.

Remark 3.2.9. This property departs from the analogue in [29] as we were not able

to establish the sharper bound d
((
∂kr′aj(r, r

′, µi, τia)
)
r′=r

)
≤ d(2j + k − 1)/3e for

0 < k ≤ j stated there.

Proof for Propery 1. Proceeding by induction, for the base case we use (3.2.19) to

compute

a1(r, r, µi, τi) = lim
r→r′

( a0

r − r′

∫ r′

r

Θ2 + Θ̇ ds
)
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+ lim
r′→r

( a0

r − r′

∫ r′

r

µi
f1(s)2

+
τi

f 2
2 (s)

ds
)

+ a0

( µi
f1(r)2

+
τi

f2(r)2

)
(3.2.27)

The first term has zero degree since Θ does (c.f. the line below equation (3.2.12)

for Θ). For the terms in the second line note that the function

I(r′) =

∫ r′

r

µi
f1(s)2

+
τi

f 2
2 (s)

ds (3.2.28)

is differentiable and

lim
r′→r

( 1

r − r′

∫ r′

r

µi
f1(s)2

+
τi

f 2
2 (s)

ds
)

= − lim
r′→r

I(r′)− I(r)

r′ − r
= −I ′(r) = −

( µi
f1(r)2

+
τi

f 2
2 (r)

)
. (3.2.29)

In other words, the last line cancels out so that a1(r, r, µi, λi) has degree zero and

the statement is true for j = 1. Assuming it holds for all j′ ≤ j we need to show it

is satisfied by

aj+1(r, r′, µi, τi) =
1

(r − r′)j+1

∫ r′

r

(
− (r − s)jΦ̇2(r, s)aj−2(r, s)

+ 2(r − s)jΦ̇(r, s)∂saj−1(r, s) + (r − s)jΦ̈(r, s)aj−1(r, s)− (r − s)j∂2
saj(r, s)

+ (r − s)j
[
ui(s)− Φ(r, s)

]
aj(r, s) + (r − s)j+1Φ̇(r, s)aj(r, s)

)
ds . (3.2.30)

Here, the factor

Φ = µi
/(
f1(r)f1(r′)

)
+ τi

/(
f2(r)f2(r′)

)
(3.2.31)

has degree 1 and so does ui since Θ has degree zero (c.f. equation (3.2.20) for ui).

Now consider

I(r′) := (r − r′)j+1aj+1(r, r′, µi, τi)

=

∫ r′

r

−(r − s)jΦ̇2(r, s)aj−2(r, s) + 2(r − s)jΦ̇(r, s)∂saj−1(r, s)

+ (r − s)jΦ̈(r, s)aj−1(r, s)− (r − s)j∂2
saj(r, s)
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+ (r − s)j
[
ui(s)− Φ(r, s)

]
aj(r, s) + (r − s)j+1Φ̇(r, s)aj(r, s) ds . (3.2.32)

Since

I(j+1)(r′) :=
dj+1

d(r′)j+1
I(r′) = (−1)j+1(j + 1)!aj+1(r, r′, µi, τi)

+

j∑
k=0

(
j + 1

k

)
(−1)k(j + 1)!

(j + 1− k)!
(r − r′)j+1−k∂j+1−k

r′ aj+1(r, r′, µi, τi) (3.2.33)

we can see that at the point r′ = r one has aj(r, r, µi, τi) = cI(j+1)(r) for some

constant c. In particular, the degree of aj+1 is determined by the right hand side.

This in turn is simple to compute since

I ′(r′) = −(r − r′)jΦ̇2(r, r′)aj−2(r, r′) + 2(r − r′)jΦ̇(r, r′)∂r′aj−1(r, r′)

+ (r − r′)jΦ̈(r, r′)aj−1(r, r′)− (r − r′)j∂2
r′aj(r, r

′)

+ (r − r′)j
[
ui(r

′)− Φ(r, r′)
]
aj(r, r

′) + (r − r′)j+1Φ̇(r, r′)aj(r, r
′) (3.2.34)

(here Φ̇ = ∂r′Φ). This vanishes as r′ → r and so does dk

d(r′)k
I(r′) for each 1 ≤ k ≤ j.

For the (j + 1)th derivative we find the following term-wise bounds on the degree

by using the inductive hypothesis and the basic identity dxe+ n = dx+ ne for any

integer n:

I(j+1(r) = −(−1)jj!
(

2Φ̇(r, r)Φ̈(r, r)aj−2(r, r)︸ ︷︷ ︸
degree ≤d2(j+1)/3e

+ Φ̇2∂r′aj−2(r, r)︸ ︷︷ ︸
degree ≤d2(j+1)/3e

)
+ 2(−1)jj!

(
Φ̈(r, r)∂r′aj−1(r, r)︸ ︷︷ ︸

degree ≤d(2j+1)/3e

+ Φ̇(r, r)
(
∂2
r′aj−1(r, r′)

)
r′=r︸ ︷︷ ︸

degree ≤d2(j+1)/3e

)

+ (−1)jj!
( ...

Φ(r, r)aj−1(r, r)︸ ︷︷ ︸
degree ≤d(2j+1)/3e

+ Φ̈(r, r)
(
∂r′aj−1(r, r′)

)
r′=r︸ ︷︷ ︸

degree ≤d(2j+1)/3e

)

− (−1)jj!
(
∂3
r′aj(r, r

′)
)
r′=r︸ ︷︷ ︸

degree ≤d2(j+1)/3e

+ (−1)jj!
( [
∂rui(r)− Φ̇(r, r)

]
aj(r, r)︸ ︷︷ ︸

degree ≤d2j/3e

+
[
ui(r)− Φ(r, r)

]
(∂r′aj(r, r

′)
)
r′=r︸ ︷︷ ︸

degree ≤d2j/3e

)
.
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Remark 3.2.10. In addition to the inductive hypothesis and properties of the ceiling

function we also use the fact that the degree of Φ is invariant under differentiation

with respect to r′ (c.f. (3.2.31)), whilst

d
([
∂rui(r)− Φ̇(r, r)

])
= d
([
ui(r)− Φ(r, r)

])
= 0 . (3.2.35)

This shows that property (1) holds in the inductive step.

Proof of Property 2. Here we use the identity

(r − r′)∂r′aj+1 = (j + 1)aj+1 + (ui − Φ)aj + (r − r′)Φ̇aj − ∂2
r′aj + Φ̈aj−1

+ 2Φ̇∂r′aj−1 − Φ̇2aj−2 (3.2.36)

which arises in the construction of the coefficients ak (c.f. equation (3.4.31) in

Section 3.4). Taking one derivative in r′ and evaluating at r′ = r it follows that

− (j + 2)
(
∂r′aj+1(r, r′)

)
r′=r

= (u̇i − Φ̇)aj + (ui − Φ)∂r′aj − Φ̇aj

− ∂3
r′aj +

...
Φaj−1 + 3Φ̈∂r′aj−1 + 2Φ̇∂2

r′aj−1 − 2Φ̇Φ̈aj−2 − Φ̇2∂r′aj−2 .

But then Property (1) and the inductive hypothesis imply (at r = r′) the following

degree bounds:

d
(
(u̇i − Φ̇)aj

)
≤ d 2j

3
e; d

(
(ui − Φ)∂r′aj

)
≤ d 2j + 1

3
e

(where we use line (3.2.35) as well); further

d
(
Φ̇aj

)
≤ d 2(j + 1) + 1

3
e, d

(
∂3
r′aj
)
≤ d 2(j + 1) + 1

3
e

and

d
(...
Φaj−1

)
≤ d 2j + 1

3
e, d

(
3Φ̈∂r′aj−1

)
≤ d 2(j + 1)

3
e ,

finally for the last three terms we get

d
(
2Φ̇∂2

r′aj−1

)
≤ d 2(j + 1) + 1

3
e, d

(
2Φ̇Φ̈aj−2

)
≤ d 2(j + 1)

3
e
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d
(
Φ̇2∂r′aj−2

)
≤ d 2(j + 1) + 1

3
e .

So in summary the degree of
(
∂r′aj+1(r, r′)

)
r′=r

as a polynomial in µi, τi is ≤ d
(
2(j+

1) + 1
)
/3e; this is Property (2) for the case k = 1.

Now suppose that it holds for 1 ≤ i < k where k ≤ j+ 1. Starting from (3.2.36)

one has

(∂kr′aj+1)r′=r = (−1

k
∂kr′
(
(r − r′)aj+1

)
)r′=r

= −1

k
(∂kr′
(

(j + 1)aj+1 + uiaj − Φaj + (r − r′)Φ̇aj − ∂2
r′aj

+ Φ̈aj−1 + 2Φ̇∂r′aj−1 − Φ̇2aj−2

)
)r′=r . (3.2.37)

so that (at r = r′)

k + j + 1

k
∂kr′aj+1 =

− 1

k
∂kr′
(
(ui − Φ)aj + (r − r′)Φ̇aj − ∂2

r′aj + Φ̈aj−1 + 2Φ̇∂r′aj−1 − Φ̇2aj−2

)
(3.2.38)

and it remains to bound the degree of the terms on the right hand side. Always

evaluating at r = r′ we get:

∂kr′ ((ui − Φ)∂r′aj) =
k∑
i=0

(
k

i

)
∂ir′(ui − Φ) · ∂k−i+1

r′ aj︸ ︷︷ ︸
degree ≤d 2j+k−i+1

3 e

(3.2.39)

(note that d
(
∂ir′(ui − Φ)

)
= 0 for each 0 ≤ i ≤ k so that factor does not contribute

to the degree of the summand). Thus the degree of the left hand side of (3.2.39) is

bounded by d
(
2j + 1 + k

)
/3 e. Also,

∂kr′
(
(r − r′)Φ̇aj

)
= −

k−1∑
i=0

(
k − 1

i

)
∂ir′Φ̇ · ∂k−1−i

r′ aj︸ ︷︷ ︸
degree ≤d 2(j+1)+k−i

3
e

so the left hand side’s degree is bounded by d
(
2(j + 1) + k

)
/3 e. Likewise we can

bound the degrees of the remaining terms in (3.2.38):

d
(
∂kr′
(
∂2
r′aj
) )
≤ d 2(j + 1) + k

3
e
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and

d
(
∂kr′(Φ̈aj−1)

)
= d
( k∑
i=0

(
k

i

)
∂i+2
r′ Φ · ∂k−ir′ aj−1︸ ︷︷ ︸

degree ≤d 2j+1+k−i
3

e

)
≤ d 2j + 1 + k

3
e ,

similarly

d
(
∂kr′(2Φ̇∂r′aj−1)

)
= d
(

2
k∑
i=0

(
k

i

)
∂i+1
r′ Φ · ∂k−i+1

r′ aj−1︸ ︷︷ ︸
degree ≤d 2(j+1)+k−i

3
e

)
≤ d 2(j + 1) + k

3
e

finally we have

d
(
∂kr′(Φ̇

2aj−2)
)

= d
( k∑
i=0

(
k

i

)
∂ir′Φ̇

2 · ∂k−ir′ aj−2︸ ︷︷ ︸
degree ≤d 2(j+1)+k−i

3
e

)
≤ d 2(j + 1) + k

3
e .

This shows that the left hand side of (3.2.38) has degree less than d
(
2(j+1)+k

)
/3 e

and the inductive step for the first branch of statement (2) in the proposition is

established.

The last part of this proof is to verify the second branch of statement (2).

Here the base case is true since a0 has degree zero; and the inductive step follows

immediately from the defining equation (3.2.30) of aj+1 assuming that it holds for

0, 1, . . . , j.

3.3 Statement and proof of the main theorem

We now prove that the formal series obtained in the previous section gives rise to a

parametrix for the heat equation; this is Theorem 3.3.3 here. Essentially the outline

of the argument is that of [29]; the newly arising features are due to the fact that

the coefficients aj are now polynomials in more than one variable and care has to

be taken so as to maintain uniform estimates nevertheless. For each k = 0, 1, 2, . . .

set

Pk = φ
∞∑
i=0

Ψ
1√
4π

exp

(
−(r − r′)2

4t

)
exp

(
−µit

f1(r)f1(r′)

)
exp

(
−τit

f2(r)f2(r′)

)
· Ai,k

(3.3.1)
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where Ψ is as defined in (3.2.15):

Ai,k =
k∑
j=0

aj(r, r
′, µi, τi)φi(x)φi(y)tj−1/2 (3.3.2)

is the kth partial sum of the formal series given in (3.2.8) and φ : M ×M → R is a

smooth function with compact support satisfying

φ
(
ρ
(
(r, x), (r′, y)

))
=

1 if d ≤ R/2

0 if d > R

where R > 0 and ρ denotes the distance function on M .

Lemma 3.3.1. For each k = 0, 1, 2, . . . we have

lim
t→0

Pk(t, (r, x), (·, ·)) = δ(r,x).

Proof. Let g be a smooth function on M with compact support containing the

point (r, x) and contained in a coordinate neighbourhood
(
U, (r′, y)

)
with U =

(a, b)r′ × Vy where V is a coordinate neighbourhood for M1 ×M2. Writing dµ for

the Riemannian measure on M one has∫
M

Pk
(
t, (r, x)

)
g dµ =

∫
U

Pk
(
t, (r, x), (r′, y)

)
g(r′, y) fd1

1 (r′)fd2
2 (r′)dydr′ .

Here and occasionally in the remainder of the proof the notation Pk
(
t, (r, x)

)
refers

to the function (r′, y) 7→ Pk
(
t, (r, x), (r′, y)

)
. Upon substitution of (3.3.1), (3.2.15)

and (3.3.2) this is equal to the long expression

=

∫
(a,b)

dr′
1√
4πt

exp
(
− (r − r′)2

4t

)
×(

k∑
j=0

∫
V

∞∑
i=0

e

(
− µit

f1(r)f1(r′)−
τit

f2(r)f2(r′)

)
φi(x)φi(y)g(r′, y)aj(r, r

′, µi, τi)t
j dy

(
f1(r′)

f1(r)

) d1
2
(
f2(r′)

f2(r)

) d2
2

)
︸ ︷︷ ︸

(∗)

(3.3.3)
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(we have used the compact support of g to split the integral into factors and ex-

change summation with integration). The presentation above shows we are applying

the one - dimensional heat kernel

e(t, r, r′) =
1√
2πt

exp
(
− (r − r′)2

4t

)
to the compactly supported function (∗). As t → 0 we may therefore use the

property

lim
t→0

e(t, r, r′) = δr(r
′) (3.3.4)

to deduce

lim
t→0

∫
M

Pk
(
t, (r, x)

)
g dµ =

lim
t→0

k∑
j=0

(∫
V

∞∑
i=0

e
− µit

f2
1 (r) e

− τit

f2
2 (r)φi(x)φi(y)g(r, y)aj(r, r, µi, τi) dy

)
tj . (3.3.5)

The coefficients of the tj are finite (note that the aj are polynomials in µi and τi by

Lemma 3.2.8, that is finite sums, so no divergence can arise there due to the series

in i). Hence, as t→ 0 we are left with

lim
t→0

∫
M

Pk
(
t, (r, x)

)
g dµ = a0

∫
V

∞∑
i=0

φi(x)φi(y)g(r, y) dy

= a0

∞∑
i=0

φi(x)

∫
M

φi(y)g(r, y) dµ(y) = a0g(r, x) , (3.3.6)

so the proof is complete once we normalise the coefficient a0.

At this point it is clear that Pk is smooth on (0,∞) ×M1 ×M2. The next and

final Lemma shows that (∂t +4)Pk extends continuously to a function on [0,∞)×

M1 ×M2.

Lemma 3.3.2. Let T > 0 be fixed. The following estimate holds:

|(∂t +4)Pk| ≤ C(f1, f2)tαk−n/2−β for all t < T
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where α, β > 0 are certain constants, n = dimM1 + dimM2, and C(f1, f2) is a

smooth function that is independent of t and determined by the warping functions

f1, f2.

Proof. We already computed (∂t +4)P (c.f. (3.2.9) and below), in particular we

can see from the formulae that

(∂t +4(r′,y))Pk =
∞∑
i=0

exp
(
− (r − r′)2

4t

)
exp

( −µit
f1(r)f1(r′)

)
exp

( −τit
f2(r)f2(r′)

)
· Ẽi,k

(3.3.7)

where initially Ẽi,k is a polynomial in t of degree k + 3/2:

Ẽi,k =
k−1∑
j=0

Ψ
(

(j + 1)aj+1 − (r − r′)∂r′aj+1 + uiaj − Φaj + (r − r′)Φ̇aj − ∂2
r′aj

+ Φ̈aj−1 + 2Φ̇∂r′aj−1 − Φ̇2aj−2

)
φi(x)φi(y)tj−1/2

+ Ψ
(
uiak − Φak + (r − r′)Φ̇ak − ∂2

r′ak + Φ̈ak−1 + 2Φ̇∂r′ak−1 − Φ̇2ak−2

)
φi(x)φi(y)tk−1/2

+ Ψ
(

Φ̈ak + 2Φ̇∂r′ak − Φ̇2ak−1

)
φi(x)φi(y)tk+1/2

−Ψ
(

Φ̇2ak

)
φi(x)φi(y)tk+3/2 . (3.3.8)

But the summands vanish identically by construction1 except for those in the last

three lines. Now an intermediate step in the recursive solution procedure for the aj

is the equation

(r − r′)∂r′ak+1 − (k + 1)ak+1 = uiak − Φak + (r − r′)Φ̇ak − ∂2
r′ak + Φ̈ak−1

+ 2Φ̇∂r′ak−1 − Φ̇2ak−2 (3.3.9)

(c.f. Section 3.4, in particular the step above is equation (3.4.31)). Substituting

this into the first of the last three lines we see that we are left with estimating the

expression

∞∑
i=0

Ψ exp
(
− (r − r′)2

4t

)
exp

( −µit
f1(r)f1(r′)

)
exp

( −τit
f2(r)f2(r′)

)
φi(x)φi(y)×

1 that is how the aj are determined.
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((
(r − r′)∂r′ak+1 − (k + 1)ak+1

)
tk−1/2 +

(
Φ̈ak + 2Φ̇∂r′ak − Φ̇2ak−1

)
tk+1/2

− Φ̇2akt
k+3/2

)
. (3.3.10)

First, let us observe that

(r − r′)k exp
(
− (r − r′)2

4t

)
= (2
√
t)kyke−y

2

= O
(
tk/2
)

as t→ 0+ (3.3.11)

with y =
r − r′

2
√
t

(k is any non-negative integer). This expression is indeed O
(
tk/2
)

as t → 0+ since yke−y
2 → 0 as y → ∞, uniformly in (r, r′). Also, it is known

that the short time asymptotic behaviour of the heat kernel on the compact factor

M1 ×M2 is ∑
i

exp
(
− (µi + τi)t

)
φi(x)φi(y) = O(t−n/2) as t→ 0+

(see e.g. [36, Prop. 3.23]). Therefore∑
i

exp
(
− (

µi
f1(r)f1(r′)

+
τi

f2(r)f2(r′)
)t
)
φi(x)φi(y) = O(t−n/2) as t→ 0+

where the constant in the estimate may depend on f1, f2, whilst basic facts in

asymptotic analysis (see for example [26, Theorem 3.2]) then imply∑
i

( µi
f1(r)f1(r′)

+
τi

f2(r)f2(r′)

)l
exp

(
− (

µi
f1(r)f1(r′)

+
τi

f2(r)f2(r′)
)t
)
×

φi(x)φi(y) = O(t−n/2−l) as t→ 0+ ,

(3.3.12)

for any non-negative integer l, with the bound in general depending on f1, f2. The

last estimate is important because the coefficients aj above are polynomials in µi, τi,

so in view of (3.3.12) it remains to show that their degree d(aj), can be controlled.

The simple bound d(aj) ≤ j is not enough to show that negative powers in t do

not occur. However by Taylor expanding the coefficients and then using (3.3.11)

and Lemma 3.2.8 we can see this is true. To illustrate this let us consider the

contribution coming from ak+1 in the tk−1/2-term in detail. Here

ak+1(r, r′, µi, τi) =
k+1∑
i=0

(
∂ir′ak+1(r, r′, µi, τi)

)
r′=r

i!
(r′ − r)i

+ ãk+1(r, r′, µi, τi)(r
′ − r)k+1

(3.3.13)
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with

ãk+1(r, r′, µi, τi)(r
′ − r)k+1 =

1

(k + 1)!

∫ r′

r

∂k+1
s ak+1(r, s, µi, τi) · (s− r)k ds

a polynomial in µi and τi of degree k + 1 (c.f. Lemma 3.2.8(2)). Substituting the

above into (3.3.10) gives a sum with terms of the form

∞∑
i=0

Ψ(r′ − r)i exp
(
− (r − r′)2

4t

)
×(

∂ir′ak+1(r, r′, µi, τi)
)
r′=r

i!
exp

(
− (

µi
f1(r)f1(r′)

+
τi

f2(r)f2(r′)
)t
)
φi(x)φi(y)tk−1/2

for 0 ≤ i ≤ k, which is O
(
ti/2+k−n/2−d 2(k+1)+i

3
e−1/2

)
, and

∞∑
i=0

Ψ(r′ − r)k+1 exp
(
− (r − r′)2

4t

)((∂k+1
r′ ak+1(r, r′, µi, τi)

)
r′=r

(k + 1)!
+ ãk+1(r, r′, µi, τi)

)
×

exp
(
− (

µit

f1(r)f1(r′)
+

τi
f2(r)f2(r′)

)t
)
φi(x)φi(y)tk−1/2

which is O
(
t(k+1)/2+k−n/2−k−1−1/2

)
= O

(
tk/2−n/2−1

)
. But note that

i

2
+ k − n

2
− d 2(k + 1) + i

3
e − 1

2
≥ i

2
+ k − n

2
− 2(k + 1) + i

3
− 1− 1

2

=
2k + i− 4

6
− n

2
− 3

2
≥ k

3
− n

2
− 13

6

so overall

∞∑
i=0

Ψ exp
(
− (r − r′)2

4t

)
exp

( −µit
f1(r)f1(r′)

)
exp

( −τit
f2(r)f2(r′)

)
φi(x)φi(y)ak+1t

k−1/2

= O
(
t
k
3
−n

2
− 13

6

)
. (3.3.14)

Similar arguments lead to an estimate for the other terms.

Theorem 3.3.3. The function Pk is a parametrix for ∂t + 4 for k large. This

means that

1. Pk is a smooth function on (0,∞)×M ×M

2. (∂t +4)Pk extends to a continuous function on [0,∞)×M ×M
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3. limt→0 Pk(t, (r, x), (·, ·)) = δ(r,x) is the Dirac - delta distribution based at (r, x) ∈

M .

Proof. This has now been established in view of Lemma 3.2.7 - 3.3.2.

3.4 Computations for the parametrix

3.4.1 Applying the heat operator to the formal series

The term ∂tP

∂tP =
∞∑
i=0

Ψ exp

(
(r − r′)2

kt

)
exp

(
−µict
F1

)
exp

(
−τic̃t
F2

)
×
(
∂tAi −

(
(r − r′)2

kt2
+
µic

F1

+
τic̃

F2

)
Ai

)
. (3.4.1)

With

∂tAi(t, r, r
′, x, y) =

∞∑
j=0

(
j − 1

2

)
aj(r, r

′, µi, τi)φi(x)φi(y)tj−3/2

We can collect common powers of t in the second term and write

∂tP =
∞∑
i=0

Ψ exp

(
(r − r′)2

kt

)
exp

(
−µict
F1

)
exp

(
−τic̃t
F2

)
Bi

(3.4.2)

where

Bi(t, r, r
′, x, y) =

∞∑
j=−2

bj(r, r
′, µi, τi)φi(x)φi(y)tj−1/2 (3.4.3)

with coefficients

b−2 = −(r − r′)2

k
a0 (3.4.4)

b−1 = −
(

1

2
a0 +

(r − r′)2

k
a1

)
(3.4.5)

and for j ≥ 0,

bj =

(
j +

1

2

)
aj+1 −

(r − r′)2

k
aj+2 −

(
µic

F1

+
τic̃

F2

)
aj . (3.4.6)
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The term 4(r′,y) P

4(r′,y) P =[
− ∂2

∂(r′)2
−

(
d1
ḟ1(r′)

f1(r′)
+ d2

ḟ2(r′)

f2(r′)

)
∂

∂r′
+

1

f 2
1 (r′)

4M1,y +
1

f 2
2 (r′)

4M2,y)

]
P .

(3.4.7)

We have

∂

∂r′
P =

∞∑
i=0

exp

(
(r − r′)2

kt

)
exp

(
−µict
F1

)
exp

(
−τic̃t
F2

)
· Ci (3.4.8)

where

Ci(t, r, r
′, x, y) =

∞∑
j=−1

cj(r, r
′, µi, τi)φi(x)φi(y)tj−1/2 (3.4.9)

with coefficients

c−1 = −2(r − r′)
k

Ψa0 (3.4.10)

c0 = −2(r − r′)
k

Ψa1 + a0∂r′Ψ + Ψ∂r′a0 (3.4.11)

and for j ≥ 1,

cj = −2(r − r′)
k

Ψaj+1 + aj∂r′Ψ + Ψ∂r′aj +
(
µic

∂r′F1

F 2
1

+ τic̃
∂r′F2

F 2
2

)
Ψaj−1 . (3.4.12)

From this we get

∂2

∂(r′)2
P

=
∞∑
i=0

(
−2(r − r′)

kt
+ µict

∂r′F1

F 2
1

+ τic̃t
∂r′F2

F 2
2

)
exp

(
(r − r′)2

kt

)
exp

(
−µict
F1

)
exp

(
−τic̃t
F2

)
· Ci

+
∞∑
i=0

exp

(
(r − r′)2

kt

)
exp

(
−µict
F1

)
exp

(
−τic̃t
F2

)
· ∂r′Ci

=
∞∑
i=0

exp

(
(r − r′)2

kt

)
exp

(
−µict
F1

)
exp

(
−τic̃t
F2

)
·Di (3.4.13)
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where

Di(t, r, r
′, x, y) =

∞∑
j=−2

δj(r, r
′, µi, τi)φi(x)φi(y)tj−1/2 (3.4.14)

with coefficients

δ−2 = −2(r − r′)
k

c−1 (3.4.15)

δ−1 = −2(r − r′)
k

c0 + ∂r′c−1 (3.4.16)

and for j ≥ 0,

δj = −2(r − r′)
k

cj+1 + ∂r′cj +

(
µic

∂r′F1

F 2
1

+ τic̃
∂r′F2

F 2
2

)
cj−1 . (3.4.17)

Finally,

4M1,y P =
∞∑
i=0

µiΨ exp

(
(r − r′)2

kt

)
exp

(
−µict
F1

)
exp

(
−τic̃t
F2

)
· Ai (3.4.18)

and

4M2,y P =
∞∑
i=0

τiΨ exp

(
(r − r′)2

kt

)
exp

(
−µict
F1

)
exp

(
−τic̃t
F2

)
· Ai . (3.4.19)

Collecting the terms from (3.4.3), (3.4.8), (3.4.13), (3.4.18) and (3.4.19) we get

(∂t +4(r′,y))P =
∞∑
i=0

exp

(
(r − r′)2

kt

)
exp

(
−µict
F1

)
exp

(
−τic̃t
F2

)
· Ei (3.4.20)

where

Ei(t, r, r
′, x, y) =

∞∑
j=−2

ej(r, r
′, µi, τi)φi(x)φi(y)tj−1/2 (3.4.21)

with coefficients

e−2 = Ψb−2 − δ−2 (3.4.22)

e−1 = Ψb−1 − δ−1 − (d1
ḟ1

f1

+ d2
ḟ2

f2

)c−1 (3.4.23)

and for j ≥ 0,

ej = Ψ

(
bj +

(
µi
f 2

1

+
τi
f 2

2

)
aj

)
− δj −

(
d1
ḟ1

f1

+ d2
ḟ2

f2

)
cj . (3.4.24)
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3.4.2 Solving for the coefficients

e−2 = 0

e−2 = Ψb−2 − δ−2 = −Ψ
(r − r′)2

k
a0 +

2(r − r′)
k

c−1

= −Ψ
(r − r′)2

k
a0 −

4(r − r′)2

k2
Ψa0 = −Ψa0

(r − r′)2

k

(
1 +

4

k

)
= 0 .

Thus we see that k = −4.

e−1 = 0

Setting Ψ(r, r′) =
(
f1(r)f1(r′)

)−d1/2(
f2(r)f2(r′)

)−d2/2

and a0 = const gives

e−1 = Ψb−1 − δ−1 −

(
d1
ḟ1

f1

+ d2
ḟ2

f2

)
c−1

= Ψ

(
(r − r′)2

4
a1 −

1

2
a0

)
−
(
r − r′

2
c0 + ∂r′c−1

)
−

(
d1
ḟ1

f1

+ d2
ḟ2

f2

)
c−1

=

(
(r − r′)2

4
Ψa1 −

1

2
Ψa0

)
− r − r′

2

(
r − r′

2
Ψa1 + a0∂r′Ψ + Ψ∂r′a0

)
− ∂r′

(
r − r′

2
Ψa0

)
−

(
d1
ḟ1

f1

+ d2
ḟ2

f2

)(
r − r′

2
Ψa0

)

= −(r − r′)a0

(
∂r′Ψ +

(
d1

2

ḟ1

f1

+
d2

2

ḟ2

f2

)
Ψ

)
− (r − r′)Ψ∂r′a0 = 0 .

For later purposes we note that

Ψ̇ = ∂r′Ψ = −

(
d1

2

ḟ1(r′)

f1(r′)
+
d2

2

ḟ2(r′)

f2(r′)

)
Ψ

ej = 0 for j ≥ 0
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We set F1(r, r′) = f1(r)f1(r′) and F2(r, r′) = f2(r)f2(r′), and c = c̃ = 1.

ej = Ψ

(
bj +

(
µi
f 2

1

+
τi
f 2

2

)
aj

)
− δj −

(
d1
ḟ1

f1

+ d2
ḟ2

f2

)
cj

= Ψ

[(
j +

1

2

)
aj+1 +

(r − r′)2

4
aj+2 −

(
µi

f1(r)f1(r′)
+

τi
f2(r)f2(r′)

)
aj

+

(
µi

f1(r′)2
+
τi
f 2

2

)
aj

]
−
[

(r − r′)
2

cj+1 + ∂r′cj

+

(
µi

ḟ1(r′)

f1(r)f 2
1 (r′)

+ τi
ḟ2(r′)

f2(r)f 2
2 (r′)

)
cj−1

]
−

(
d1
ḟ1

f1

+ d2
ḟ2

f2

)
cj .

Write

Φ =
µi

f1(r)f1(r′)
+

τi
f2(r)f2(r′)

(3.4.25)

so that

Φ̇ = ∂r′Φ = −
(
µi

ḟ1(r′)

f1(r)f 2
1 (r′)

+ τi
ḟ2(r′)

f2(r)f 2
2 (r′)

)
.

Proceeding with the above and simplifying,

= Ψ

(
(j + 1) aj+1 − Φaj +

(
µi

f1(r′)2
+

τi
f2(r′)2

)
aj

)
+ Ψ(r − r′)

(
Φ̇aj − ∂r′aj+1

)
+ Ψ

(d1

2

ḟ1(r′)

f1(r′)
+
d2

2

ḟ2(r′)

f2(r′)

)2

aj + aj∂r′

(
d1

2

ḟ1(r′)

f1(r′)
+
d2

2

ḟ2(r′)

f2(r′)

)

− ∂2
r′aj + Φ̈aj−1

)
+ Ψ

(
2Φ̇∂r′aj−1 − Φ̇2aj−2

)
.

To further clarify notation, write

Θ =

(
d1

2

ḟ1(r′)

f1(r′)
+
d2

2

ḟ2(r′)

f2(r′)

)
(3.4.26)

in the above and re - order the terms,

ej = Ψ
(

(j + 1)aj+1 − (r − r′)∂r′aj+1 + uiaj − Φaj + (r − r′)Φ̇aj

− ∂2
r′aj + Φ̈aj−1 + 2Φ̇∂r′aj−1 − Φ̇2aj−2

)
(3.4.27)
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where a−2 = a−1 = 0 and

ui = ui(r
′, µi, τi) = Θ2 + Θ̇ +

(
µi

f1(r′)2
+

τi
f2(r′)2

)
. (3.4.28)

As in [29], we set (3.4.27) equal to zero and solve for the aj, j ≥ 1 successively.

0 = a1 − (r − r′)∂r′a1 + uia0 − Φa0 + (r − r′)Φ̇a0

=⇒ (3.4.29)

∂

∂r′
[(r − r′)a1] = uia0 − Φa0 + (r − r′)Φ̇a0

=⇒

a1(r, r′, µi, τi) =
a0

r − r′

∫ r′

r

ui(s, µi, τi)− Φ(r, s, µi, τi) + (r − s)Φ̇(r, s, µi, τi) ds

=
a0

r − r′

∫ r′

r

ui(s, µi, τi) ds−
a0

r − r′

∫ r′

r

Φ(r, s, µi, τi) ds

+
a0

r − r′

∫ r′

r

(r − s)Φ̇(r, s, µi, τi) ds

ibp
=

a0

r − r′

∫ r′

r

ui(s, µi, τi) ds−
a0

r − r′

∫ r′

r

Φ(r, s, µi, τi) ds

+
a0

r − r′

(
(r − r′)Φ +

∫ r′

r

Φ ds

)

=
a0

r − r′

∫ r′

r

ui(s, µi, τi) ds+ a0Φ . (3.4.30)

Similarly we determine

∂

∂r′
[
(r − r′)2a2

]
= (r − r′)

(
ui − Φ + (r − r′)Φ̇

)
a1 − (r − r′)∂2

r′a1

+ Φ̈(r − r′)a0

which, upon substitution of (3.4.30) for a1 becomes

= a0

(
ui − Φ + (r − r′)Φ̇

)(∫ r′

r

ui(s, µi, τi) ds+ (r − r′)Φ

)
− (r − r′)∂2

r′a1 + Φ̈(r − r′)a0 .

90



then substituting the derivative ∂2
r′a1, using again (3.4.30), gives

= a0ui

∫ r′

r

ui(s, µi, τi) ds+ a0(r − r′)uiΦ− a0Φ

∫ r′

r

ui(s, µi, τi) ds

− a0(r − r′)Φ2 + a0(r − r′)Φ̇
∫ r′

r

ui(s, µi, τi) ds+ a0(r − r′)2ΦΦ̇

− (r − r′)∂2
r′a1 + Φ̈(r − r′)a0 .

Finally we substitute for the starred expression below,

=
a0

2
∂r′

(∫ r′

r

ui(s, µi, τi) ds

)2

+ a0∂r′

(
(r − r′)Φ

∫ r′

r

ui(s, µi, τi) ds

)
+
a0

2
∂r′
(
(r − r′)Φ

)2−(r − r′)∂2
r′a1 + a0(r − r′)Φ̈︸ ︷︷ ︸

(∗)(
(∗) = a0∂r′ui +

2a0

r − r′
ui +

2a0

(r − r′)2

∫ r′

r

ui(s, µi, τi) ds+ a0(r − r′)Φ̈

)

to get

=
a0

2
∂r′

(∫ r′

r

ui(s, µi, τi) ds

)2

+ a0∂r′

(
(r − r′)Φ

∫ r′

r

ui(s, µi, τi) ds

)

+
a0

2
∂r′
(
(r − r′)Φ

)2 −

(
a0∂r′ui +

2a0

r − r′
ui +

2a0

(r − r′)2

∫ r′

r

ui(s, µi, τi) ds

)
.

Thus

(r − r′)2a2 =∫ r′

r

(r − s)
(
ui(s, µi, τi)− Φ(r, s, µi, τi) + (r − s)Φ̇(r, s, µi, τi)

)
a1(r, s, µi, τi) ds

−
∫ r′

r

(r − s)∂2
sa1(r, s, µi, τi) ds+ a0

∫ r′

r

Φ̈(r, s, µiτi)(r − s) ds

=⇒

(r − r′)2a2(r, r′, µi, τi) =
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a0

2

(∫ r′

r

ui(s, µi, τi) ds

)2

+ a0(r − r′)Φ
∫ r′

r

ui(s, µi, τi) ds

+
a0

2
(r − r′)2Φ2 −

∫ r′

r

(r − s)∂2
sa1(r, s, µi, τi) ds

+ a0

∫ r′

r

(r − s)Φ̈(r, s, µi, τi) ds

=
a0

2

(∫ r′

r

ui(s, µi, τi) ds

)2

+ a0(r − r′)Φ
∫ r′

r

ui(s, µi, τi) ds

+
a0

2
(r − r′)2Φ2 −

∫ r′

r

(r − s)∂2
sa1(r, s, µi, τi) ds

+ a0

∫ r′

r

(r − s)Φ̈(r, s, µi, τi) ds

ibp
=
a0

2

(∫ r′

r

ui(s, µi, τi) ds

)2

+ a0(r − r′)Φ
∫ r′

r

ui(s, µi, τi) ds

+
a0

2
(r − r′)2Φ2 − [(r − r′)∂r′a1 + a1(r, r′, µi, τi)− a1(r, r, µi, τi)]

+ a0

[
(r − r′)Φ̇ + Φ(r, r′, µi, τi)− Φ(r, r, µi, τi)

]
=⇒

a2 =
a0

2(r − r′)2

(∫ r′

r

ui(s, µi, τi) ds

)2

+
a0

(r − r′)
Φ

∫ r′

r

ui(s, µi, τi) ds

− 2a0

(r − r′)3

∫ r′

r

ui(s, µi, τi) ds−
a0

(r − r′)2

[
ui(s, µi, τi) + ui(r

′, µi, τi)
]

+
a0

2
Φ2

and in general,

(r − r′)∂r′aj+1 − (j + 1)aj+1 =

uiaj − Φaj + (r − r′)Φ̇aj − ∂2
r′aj + Φ̈aj−1 + 2Φ̇∂r′aj−1 − Φ̇2aj−2 (3.4.31)

=⇒
∂

∂r′
[
(r − r′)j+1aj+1

]
=

− (r − r′)jΦ̇2aj−2 + 2(r − r′)jΦ̇∂r′aj−1 + (r − r′)jΦ̈aj−1
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− (r − r′)j∂2
r′aj + (r − r′)j

(
ui − Φ

)
aj + (r − r′)j+1Φ̇aj (3.4.32)

=⇒

aj+1(r, r′, µi, τi) =

1

(r − r′)j+1

∫ r′

r

(
− (r − s)jΦ̇2(r, s)aj−2(r, s) + 2(r − s)jΦ̇(r, s)∂saj−1(r, s)

+ (r − s)jΦ̈(r, s)aj−1(r, s)− (r − s)j∂2
saj(r, s)

+ (r − s)j
[
ui(s)− Φ(r, s)

]
aj(r, s) + (r − s)j+1Φ̇(r, s)aj(r, s)

)
ds (3.4.33)

(The dependence of the terms on the eigenvalues µi, τi has been suppressed since it

is not relevant for the integration.)
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Chapter 4

Explicit formulae for resolvent

symbols and their application

4.1 Introduction

Let (M, g) be a closed Riemannian manifold of dimension n and denote by 4 the

corresponding Laplace Beltrami operator. It is well - known (see for example [36,

Prop. 3.23]) that there exists a short - time asymptotic expansion of the heat kernel

k4(t, x, y) on M along the diagonal,

tr(k4(t, x, x)) vt→0+

∑
j≥0

cj(x)t
j−n

2 . (4.1.1)

The heat kernel was described in Chapter 3 as the fundamental solution to the heat

equation ∂t+4y on M; but here we shall use the equivalent formulation of k4(t, x, y)

as the Schwartz kernel of the heat operator e−t4 (the Schwartz kernel of a pseu-

dodifferential operator T refers to the family of distributions kT (x, ·), parametrised

by x ∈ M , that satisfies the identity Tf(x) = 〈k(x, ·), f〉 for f ∈ C∞(M) where

f 7→ 〈u, f〉 denotes the application of the distribution u to the function f). The

heat operator e−t4 is defined as a Cauchy integral via the holomorphic functional
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calculus by

e−t4 :=
i

2π

∫
γ

e−tλ(4− λ)−1 dλ (4.1.2)

where the contour γ consists of two rays { re±iσ | r ≥ δ } in the first and fourth

quadrant of the complex plane (δ > 0) respectively, which are connected via an open

arc {δeiθ | −σ ≤ θ ≤ σ} that encircles the origin. In particular, γ properly encloses

the positive real axis which contains the spectrum of 4. Integrating the expansion

(4.1.1) over the manifold gives rise to the short time asymptotic expansion of the

heat trace

Tr
(
e−t4

)
v

∑
j≥0

cj t
j−n

2 t→ 0+ (4.1.3)

where the coefficients cj =
∫
M
cj(x) dx yield geometric information about the un-

derlying manifold. For the coefficients with even index the formulas

c2k =

∫
M

tr (c2k(x)) dx , (4.1.4)

where

c2k(x) =

∫
Rn

∫
γ

e−λ r−2−2k(x, ξ, λ) d̄λd̄ξ (4.1.5)

are well known, here d̄λ = idλ/2π and d̄ξ = dξ/(2π)n denotes rescaled Lebesgue

measure. Furthermore one can show that the coefficients with odd indices vanish

(c.f. [38], [17], see also Section 4.2.3 below for the first odd coefficient). Let us

explain in a little more detail the term r−2−2k(x, ξ, λ) in the integrand as it is

important in the sequel. These are called the resolvent symbols of the operator

under consideration (in our case 4); they arise in the asymptotic expansion of the

local symbol of the resolvent operator (4− λ)−1,

r(x, ξ, λ) v
∑
j≥0

r−2−j(x, ξ, λ) , (4.1.6)

which is valid for |ξ| + |λ|1/2 ≥ 1 and λ in a suitable sector Λ ⊂ C. Here, the left

hand side is an element of the class CS−2 of parameter dependent classical symbols
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as defined in [41, §9], while each summand r−2−j on the right hand side belongs to

CS−2−j. The relation v means that for each N = 1, 2, . . . the difference

r(x, ξ, λ) −
N−1∑
j=0

r−2−j(x, ξ, λ)

lies in the symbol class CS−2−N (Symbols classes are introduced in more detail in

Chapter 5). The asymptotic expansion (4.1.6) arises in the construction of the

parametrix for (4 − λ)−1 where one obtains the following well - known recursive

formulae of the resolvent symbols:

r−2 = (a2 − λ)−1 ,

r−2−j = −r−2

∑
|µ|+k+l=j

l<j

1

µ!
(∂µξ a2−k)(D

µ
xr−2−l) (j ≥ 1)

here the functions a2, a1, a0 constitute the homogeneous summands of the symbol

σ4 of the operator 4, that is

σ4(x, ξ) = a2(x, ξ) + a1(x, ξ) + a0(x, ξ) with ak(x, αξ) = αkak(x, ξ) ,

furthermore µ denotes a multi-index and Dxi = −i∂/∂xi. In particular we see that

the functions r−2−j are determined by the local symbol of the Laplacian and a finite

number of their derivatives. In Section (4.2.2) we shall provide explicit formulae

for the first terms in the asymptotic expansion (c.f.Theorem 4.2.1), to the best of

our knowledge these do not appear elsewhere in the literature. The reason we are

interested in these closed formulas is that they facilitate via (4.1.5) a direct and

elementary calculation of the heat coefficients in the asymptotic expansion of the

heat trace; this is illustrated in Section 4.2.3 where we apply our result to recover

well - known geometric expressions for the first three heat coefficients.

A further application of resolvent symbols is that they are effective for deriving

index formulae. Let M be a smooth compact manifold without boundary of even

dimension n = 2k with vector bundles E± π−→M and consider a first - order elliptic
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differential operator

D : C∞(M, E+)→ C∞(M, E−) (4.1.7)

acting on smooth sections, with corresponding Laplacians

4 = D∗D : C∞(M, E+)→ C∞(M, E+) (4.1.8)

4̃ = DD∗ : C∞(M, E−)→ C∞(M, E−) . (4.1.9)

It was observed by H.P. McKean and I.M. Singer [24] that the index of D, defined

as

indD := dim kerD − dim cokerD

satisfies the identity

indD = Tr(e−t4)− Tr(e−t4̃)

=

∫
M

tr
(
k4(t, x, x)

)
− tr

(
k4̃(t, x, x)

)
|dx|

(4.1.10)

where k4(t, x, x) is the Schwartz kernel of the heat operator e−t4 described above

(and likewise for 4̃). If M is a Riemannian spin manifold and D is of Dirac - type,

that is

D = /D ⊗ I + I ⊗∇F : C∞(M,S+⊗F) −→ C∞(M,S−⊗F)

where S± denotes the spinor bundle and F → M is some coefficient bundle with

connection ∇F , then the Atiyah-Singer index theorem states that

indD =
1

(2π)n/2

∫
M

Â(M) ch(F) (4.1.11)

where

Â(M) = det1/2 R/2

sinhR/2
(4.1.12)

is the Â - genus form with respect to Riemannian curvature R whilst

ch(F) = tr e−(∇F )2

(4.1.13)
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denotes the Chern character of the coefficient bundle F (here (∇F)2 is the curvature

of the connection ∇F).

One approach to establish the equality in (4.1.11) is via the McKean Singer formula

(4.1.10). Here one has to show that, pointwise, the limit

lim
t→0+

(
tr(k4(t, x, x))− tr(k4̃(t, x, x))

)
(4.1.14)

is finite and equal to the index density. As a starting point one establishes asymp-

totic expansions

tr(k4(t, x, x)) vt→0+

∑
j≥0

cj(x)t
j−n

2 and tr(k4̃(t, x, x)) vt→0+

∑
j≥0

c̃j(x)t
j−n

2 ,

(4.1.15)

then to get to the existence of the limit (4.1.14) one has to establish that

cj(x)− c̃j(x) = 0 for j < n (4.1.16)

so that the negative powers in t vanish, allowing the limit (4.1.14) to exist, which

one then has to compute.

One way to deduce that the required limit is finite is to estimate the heat

kernel by an application of the ”Duhamel principle” [24]. This method requires

knowledge of the full heat kernel which is a global object (i.e. well defined on the

whole manifold). On the other hand the required limit (4.1.14) is local since one

is concerned with short time evolution as t → 0+, so one might wonder whether

knowledge of the complete heat kernel is actually necessary to get to the finiteness

of the limit. Another approach was proposed by E. Getzler [13]. It starts with

the observation that the heat kernel of the harmonic oscillator D2 = − d2

dx2 + a2x2

coincides with Â(x). Then, by scaling the variables, the heat trace associated with

4 is reduced to the heat trace associated with D2 and via this identification one

proceeds to compute limt→0+

(
tr(k4(t, x, x))− tr(k4̃(t, x, x))

)
= Â(x).

In the second part of this chapter we shall study an alternative approach which in

some sense is simpler and more direct. The idea is to establish a correspondence
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between the generating function for the characteristic numbers and a generating

function built out of the terms in the asymptotic expansion of the local resolvent

symbols. Let us introduce the generating function for the characteristic numbers

by way of an example. Suppose M is a Kähler manifold of complex dimension n

and let W →M be a holomorphic vector bundle of rank N . In this case the index

form is identified with a Todd class form and the Atiyah - Singer index theorem

specialises to the Hirzebruch - Riemann - Roch theorem

χ(M,W) =
1

(2πi)n/2

∫
M

Td(M)ch(W) . (4.1.17)

Here

χ(M,W) :=
n∑
j=0

(−1)jdimHj(M,Ω(W)) (4.1.18)

is the Euler characteristic, H∗(M,Ω(W)) denotes Dolbeaut cohomology. On the

right hand side,

Td(M) = Td1 + · · ·+ Tdn (4.1.19)

is the Todd class defined by the Todd polynomials Tdi. These are polynomials in

the Chern classes c1, . . . , cn of M and obtained from the generating function

Td(M, tR) := det

(
tR

etR − 1

)
= 1 + Td1(R) t+ Td2(R)

t2

2!
+ . . . (4.1.20)

where R is the curvature of a hermitian connection on the tangent bundle TM ,

whilst a representative of each Chern class ck(R) is given as the coefficient of the

generating function

det(1 + tR) = 1 + c1(R)t+ c2(R)
t2

2!
+ . . . (4.1.21)

Lastly, the Chern character of W with connection ∇W is the series

ch(W) = tr e−(∇W )2

=
∞∑
k=0

tr
(
(∇W)2k

)
k!

. (4.1.22)

The generating function on the analytical side can be represented in three essentially

equivalent ways (for simplicity we state the results in terms of the operator 4, but

99



the statements hold of course true in like manner for 4̃). First, there is the short

time asymptotic expansion of the heat trace already mentioned in (4.1.15),

Tr
(
e−t4

)
vt→0+

∑
k≥0

ck t
k−n

2 . (4.1.23)

Secondly one may consider the resolvent (4− λ)−1, whose N th power is trace class

whenever N > n/2. If we restrict λ to suitable rays then there exists an asymptotic

expansion [16]

Tr
(
(4− λ)−N

)
v

∑
k≥0

cNk (−λ)
n−k

2
−N λ→∞ . (4.1.24)

We note that for any N ,∫
γ

e−tλ(4− λ)−1 dλ = (N + 1)!

∫
γ

e−tλ(4− λ)−N dλ . (4.1.25)

This relates the coefficients ck in (4.1.23) to the coefficients cNk in (4.1.24) (in fact,

one can show that they differ by a constant). Finally, one may consider the trace

of the power operator

4−s =
i

2π

∫
γ

λ−s(4− λ)−1dλ (4.1.26)

This has a classical trace Tr(4−s) for Re(s) large enough. If we denote by ζ(4, s)

its meromorphic extension to C then the pole structure is commonly represented

by the relation

Γ(s) ζ(4, s) v
∑
k≥0

ck

s+ k−n
2

− dim Ker4
s

(4.1.27)

where v means that the left hand side is a meromorphic function on C whose poles

are indicated in the right hand side. Furthermore, the Gamma function Γ(s) is the

meromorphic extension of the integral
∫∞

0
ts−1e−t dt (initially defined for Re(s)> 0)

to all of C, and Ker4 denotes the Nullspace of 4. The Mellin transform relates

(4.1.23) to (4.1.27),

ζ(4, s) =
1

Γ(s)

∫ ∞
0

t1−s Tr(e−t4) ds (4.1.28)
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and the coefficients ck in these expansions coincide (as suggested by the notation).

A precise account of the equivalence between these generating functions is given for

example in [38], [17]. Here we will be focusing on the asymptotic expansion of the

heat trace and the formulae (4.1.4) - (4.1.5) which are inherent in the heat trace

expansion (as mentioned above the coefficients with odd indices vanish [38], [17]).

It is here where the resolvent symbols make their appearance. Let us also mention

here an alternative well known formula for the nonzero coefficients,

k2k(x) = −1

2

∫
|ξ|=1

∫
C1

log λ ∂
n
2
−j

λ r−2−2k(x, ξ, λ) d̄λ d̄Sξ . (4.1.29)

It is extracted from the ζ-function formulation (4.1.27), equivalent to (4.1.5) yet

applicable to a more general class of operators. The inner integral is again over

the circle in C centered at 1 and not enclosing the origin, with d̄λ = idλ/2π, and

the outer integral is over the unit - sphere in TxM , with rescaled sphere measure

d̄Sξ = dSξ/(2π)n.

Coming back to the the McKean - Singer formula (4.1.10) and the problem of

computing the limit (4.1.14) we note that the index (i.e. the left hand side in

(4.1.10)) is independent of t whilst for small t the right hand side is approximated

in terms of the formal difference∑
k≥0

ck t
k−n

2 −
∑
k≥0

c̃k t
k−n

2

where ck, c̃k are the coefficients in the heat trace expansions of 4, 4̃ respectively.

By letting t → 0+ the claim is that, by the constancy of the right hand side for

arbitrarily small t > 0, the limit exists and hence

indD = cn − c̃n . (4.1.30)

Substituting the explicit formulae for the coefficients from the heat trace expansion

into (4.1.30), we arrive at

indD =

∫
M

(∫
Rn

∫
γ

e−λ{tr r−2−2j(x, ξ, λ)− tr r̃−2−2j(x, ξ, λ)} d̄λd̄ξ
)
|dx| .

(4.1.31)
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The idea is then to derive the index formula

indD =
1

(2π)n/2

∫
M

Â(M) ch(F)

by relating the generating functions for the topological and analytical data described

above. This approach has the advantage that it computes the index directly from the

first n terms of the local symbols of the resolvent operator. These are polynomials

whose coefficients are determined by the local symbol of the Laplacians, together

with a finite number of its derivatives. Thus it reflects the local nature of the

index quite well. Furthermore, the simplicity of the method itself may be seen as

satisfactory, after all the index of an operator is an integer, so in some sense one

should be able to determine it via elementary computations.

In Section 4.3 we shall study the technique using as a concrete example the

Riemann-Roch-Hirzebruch theorem. Section 4.3.1 sets out the context of the theo-

rem, then in Section 4.3.2 we determine explicit formulae for the resolvent symbols

of Laplace operators defined over a Riemann surface, these are then applied to de-

rive the Riemann-Roch formula in Section 4.3.3, again by a direct and elementary

calculation. Similar to the previous case the explicit form of our formulae and the

method to derive the Riemann Roch theorem are new in the literature.

4.2 Resolvent symbols on closed Riemannian man-

ifolds and heat coefficients

4.2.1 Preliminaries

Let us first recall the essential facts about the resolvent and the heat operator from

the viewpoint of pseudodifferential operator theory; for more details we refer to

[41]. Let (M, g) be a smooth compact Riemannian manifold of dimension n. The
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corresponding Laplace - Beltrami operator is locally given by

4g = − 1√
|g|

∑
k,l

∂k(g
kl
√
|g| ∂l) (4.2.1)

where ∂k = ∂
∂xk

, (gkl) = g−1 denotes the dual metric to g on the cotangent bundle

and |g| = det g = det(gkl). We would like to consider operators of the form P =

4g + A where A denotes a smooth vector field on M (i.e. a smooth section of

the tangent bundle), so locally A =
∑n

k=0 ak∂k with ak smooth locally supported

functions. P is a differential operator of degree 2, certainly elliptic since 4g is

elliptic and A (being or degree 1) does not change the principal symbol. We shall

restrict our choice of A such that the spectrum of P (Spec(P )) exhibits the same

nice properties as the spectrum of 4g. In particular, we require it to be discrete

and non-negative, accumulating only at infinity

0 ≤ λ0 ≤ λ1 ≤ λ2 . . . →∞ (4.2.2)

and the corresponding smooth eigenfunctions to form a complete orthonormal basis.

This is possible provided A is a conservative vector field, which means that it is the

gradient of a function; equivalently the differential 1 - form dual to A is exact (cf.

[24]). We can then define the heat operator e−tP for t > 0 by

e−tP :=
i

2π

∫
γ

e−tλ(P − λ)−1 dλ (4.2.3)

where γ is a positively oriented contour, consisting of the rays { reiπ/4 | c ≤ r }

and { re−iπ/4 | c ≤ r } (c ∈ R is small and positive) together with an open arc

{ ceiθ | π/4 ≤ θ ≤ 7π/4 } round the origin. In particular, γ encloses the spectrum

of P (see the sketch below)

Reλ

Imλ

γ
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The heat operator is smoothing, therefore trace class with

Tr(e−tP ) =

∫
M

kP (t, x, x) |dx| (4.2.4)

where kP (t, x, y) denotes the Schwartz kernel of e−tP , and |dx| locally identifies with

Lebesgue measure.

If λ /∈ Spec(P ) then (P − λ) is elliptic, i.e. invertible. The resolvent (P − λ)−1

is a pseudodifferential operator, hence it can be represented by its distributional

Schwartz kernel kλ. Locally the latter is given, modulo smoothing operators (i.e.

operators of arbitrarily low order) by an oscillatory integral

kλ(x, y) =

∫
Rn

ei(x−y)·ξ r(x, ξ, λ) d̄ξ (4.2.5)

where r(x, ξ, λ) is the local symbol of the resolvent operator and d̄ξ = (2π)−ndξ

denotes (rescaled) Lebesgue measure. The symbol r(x, ξ, λ) admits an asymptotic

expansion

r(x, ξ, λ) v
∑
j≥0

r−2−j(x, ξ, λ)
(
|ξ|+ |λ|1/2 ≥ 1

)
(4.2.6)

where each term r−2−j(x, ξ, λ) in (4.2.6) is quasi - homogeneous in (ξ, λ) of degree

−2− j, meaning that r−2−j(x, tξ, t
2λ) = t−2−jr−2−j(x, ξ, λ) for t > 0, |ξ|+ |λ|1/2 ≥

1. This asymptotic expansion arises in the construction of the parametrix for

(P − λ)−1; in this process one determines local symbols r(x, y, λ) such that the

operator B obtained by patching together the local operators Op[r] (the operator

whose Schwartz kernel is defined by the symbol r(x, y, λ)) satisfies

(P − I) ◦B = I +R1 and B ◦ (P − I) = I +R2

where R1, R2 are smoothing operators (i.e. operators of arbitrarily low order) and

the product ◦ here is operator composition. Slightly more concretely, let σP denote

the local symbol of P ; then from the symbol calculus we know that the product

σP ·r (pointwise multiplication of functions or, more generally, matrices) is a classical
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parameter dependent symbol of order zero with asymptotic expansion

(σP · r)(x, ξ, λ) v 1 . (4.2.7)

On the other hand, if we formally write down an asymptotic expansion r(x, ξ, λ) v∑
j≥0 r−2−j(x, ξ, λ) for the symbol of the resolvent and apply the composition for-

mula (c.f. [41, Theorem 3.4]) we obtain

(σP · r)(x, ξ, λ) v
∑
α

1

α!
∂αξ σP (x, ξ)Dα

xr(x, ξ, λ) (4.2.8)

where α = (α1, . . . , αn) ranges over all possible multi - indices, ∂αξ = ∂α1
ξ1
· · · ∂αnξn

with ∂αiui = ∂αi/∂uαii and Dα
x = (−i)|α|∂αix with |α| = α1 + · · · + αn. By comparing

the terms of common homogeneity in these expansions one obtains the following

well - known definition of the resolvent symbols (see for example [14]):

r−2 = (a2 − λ)−1 , (4.2.9)

r−2−j = −r−2

∑
|µ|+k+l=j

l<j

1

µ!
(∂µξ a2−k)(D

µ
xr−2−l) (j ≥ 1) (4.2.10)

where aj denotes the term in the local symbol σP that is homogeneous of order

j and µ denotes a multi-index. In particular we see that the functions r−2−j are

polynomials whose coefficients are determined by the local symbol of the operator

P together with a finite number of its derivatives. Our aim in the next section is to

turn these recursive formulae into concrete polynomial expressions for the resolvent

symbols.

4.2.2 Explicit formulae for the resolvent symbols

Expanding the operator P in local coordinates we obtain

P =
∑
k,l

gkl(−i∂k)(−i∂l) +
∑
k

(∑
l

(2|g|)−1gkl(−i∂l|g|)

+ (−i∂l gkl) + iak

)
(−i∂k) .
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(We recall here that |g| = det g). If we replace (−i∂k) by ξk we obtain the local

symbol

σP (x, ξ) = |ξ|2g +
∑
k

bk(x) ξk (4.2.11)

with

|ξ|2g =
∑
k,l

gkl ξkξl (4.2.12)

and

bk =
∑
l

1

2
|g|−1gklDxl |g|+Dxl g

kl + iak . (4.2.13)

We shall also use the notation

σP = a2(x, ξ) + a1(x, ξ) + a0(x, ξ) (4.2.14)

where the term ak is homogeneous of degree k in ξ; that is

a2(x, ξ) = |ξ|2g, a1(x, ξ) =
∑
k

bk(x) ξk, a0(x, ξ) = 0. (4.2.15)

We can now state and prove the main theorem of this section:

Theorem 4.2.1. The first three resolvent symbols as defined in (4.2.10) have the

following explicit representations as polynomials in ξ:

r−2 = (|ξ|2g − λ)−1 (4.2.16)

r−3 = 2r3
−2

∑
l,s,p,q

gsl(Dxlg
pq) ξsξpξq − r2

−2

∑
l

blξl (4.2.17)

and for the third resolvent symbol we have

r−4 = 12r5
−2

∑
l,i,j,s,p,q,k,t

gtkgsl(Dxlg
pq)(Dxkg

ij) ξiξjξsξpξqξt

− 2r4
−2

∑
k,p,q,s,t

gkk(Dxkg
pq)(Dxkg

st) ξpξqξsξt + r3
−2

∑
k,s,t

gkk(D2
xk
gst) ξsξt

− 4r4
−2

∑
k,l,p,q,s,t
k 6=l

gkl(Dxlg
pq)(Dxkg

st) ξpξqξsξt + 2r3
−2

∑
k,l,s,t
k 6=l

gkl(D2
xl,xk

gst) ξsξt
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− 4r4
−2

∑
l,s,p,q,k,t

gtk(Dxkg
sl)(Dxlg

pq) ξsξpξqξt − 4r4
−2

∑
l,s,p,q,k,t

gtkgsl(D2
xk,xl

gpq) ξsξpξqξt

− 6r4
−2

∑
l,i,j,k,t

bl g
tk(Dxkg

ij)ξiξjξlξt + 2r3
−2

∑
l,t,k

gtk(Dxkbl)ξlξt + r3
−2

∑
l,s,t

bl(Dxlg
st) ξsξt

+ r3
−2

∑
k,l

bkbl ξkξl (4.2.18)

where

Dxkbj =
∑
l

1

2
|g|−1

(
(Dxkg

jl)(Dxl|g|) + gjl(D2
xk,xl
|g|)

− |g|−1gjl(Dxk |g|)(Dxl |g|) + 2|g|D2
xk,xl

gjl
)

+ iDxkaj . (4.2.19)

Proof. First, the term r−2 is immediate from (4.2.9). Next, from (4.2.10) we get

r−3 = −r−2

∑
|µ|+k+l=1

l<1

1

µ!
∂µξ a2−kD

µ
xr−2−l . (4.2.20)

The condition l < 1 implies l = 0 throughout, and the condition |µ| + k + l = 1

forces µ! = 1 in all summands. This simplifies the above expression to

r−3 = −r−2

∑
|µ|+k=1

∂µξ a2−kD
µ
xr−2 . (4.2.21)

We expand into two summands

r−3 = −r−2

(∑
|µ|=1

∂µξ a2D
µ
xr−2

)
︸ ︷︷ ︸

|µ|=1,k=0

−r−2

(
a1r−2

)
︸ ︷︷ ︸
|µ|=0,k=1

= −r−2

(∑
l

∂ξla2Dxlr−2

)
︸ ︷︷ ︸

|µ|=1,k=0

−r−2

(∑
l

blξlr−2

)
︸ ︷︷ ︸
|µ|=0,k=1

. (4.2.22)

For the first term note that

∂ξla2 = ∂ξl

(∑
s,t

gst ξsξt

)
= 2

∑
s

gslξs (using the symmetry gsl = gls )

(4.2.23)
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and for any positive integer m, we have

Dxlr
m
−2 = Dxl(a2 − λ)−m = −mrm+1

−2

∑
s,t

(Dxlg
st) ξsξt . (4.2.24)

Substitution of (4.2.23) and (4.2.24) into (4.2.22) gives

r−3 = −r−2

(∑
l

∂ξla2Dxlr−2

)
︸ ︷︷ ︸

|µ|=1,k=0

−r−2

(∑
l

blξlr−2

)
︸ ︷︷ ︸
|µ|=0,k=1

= −r−2

(∑
l

(
2
∑
s

gslξs

)(
−r2
−2

∑
p,q

(Dxlg
pq) ξpξq

))
︸ ︷︷ ︸

|µ|=1,k=0

−r−2

(∑
l

blξlr−2

)
︸ ︷︷ ︸
|µ|=0,k=1

= −r−2

(
− 2r2

−2

∑
l,s,p,q

gsl(Dxlg
pq) ξsξpξq

)
︸ ︷︷ ︸

|µ|=1,k=0

−r−2

(
r−2

∑
l

blξl

)
︸ ︷︷ ︸
|µ|=0,k=1

= 2r3
−2

∑
l,s,p,q

gsl(Dxlg
pq) ξsξpξq − r2

−2

∑
l

blξl . (4.2.25)

which is the right hand side in equation (4.2.17).

The final formula to deduce is that for r−4; we start from (4.2.10) with the expression

r−4 = −r−2

∑
|µ|+k+l=2

l<2

1

µ!
∂µξ a2−kD

µ
xr−2−l . (4.2.26)

Here the condition l < 2 implies l = 0 or l = 1. Thus we can break up the above

into

r−4 = −r−2

∑
|µ|+k=2

1

µ!
∂µξ a2−kD

µ
xr−2︸ ︷︷ ︸

l=0

−r−2

∑
|µ|+k=1

1

µ!
∂µξ a2−kD

µ
xr−3︸ ︷︷ ︸

l=1

(4.2.27)

and repeat this process by letting k = 0, 1 or 2 in the first summand and k = 0 or 1

in the second summand. We shall proceed consecutively for the the case l = 0 and

l = 1.
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Term corresponding to l = 0: Fully expanding this term gives

− r−2

∑
|µ|+k=2

1

µ!
∂µξ a2−kD

µ
xr−2

= −r−2

∑
|µ|=2

1

µ!
∂µξ a2D

µ
xr−2︸ ︷︷ ︸

k=0

−r−2

∑
|µ|=1

1

µ!
∂µξ a1D

µ
xr−2︸ ︷︷ ︸

k=1

(4.2.28)

where we use a0 = 0, so the last term that comes from k = 2 vanishes. For

the first term we need to compute ∂µξ a2 as well as Dµ
xr−2 with |µ| = 2, that is

∂µξ a2 = ∂ξk (∂ξla2) and likewise Dµ
xr−2 = Dxl (Dxkr−2). We already computed the

first derivative in (4.2.23) and (4.2.24); substituting these we get

∂ξk (∂ξla2) = ∂ξk

(
2
∑
s

gslξs

)
= 2

∑
s

gsl (∂ξkξs) = 2gkl (4.2.29)

and

Dxl (Dxkr−2) = Dxl

(
−r2
−2

∑
s,t

(Dxkg
st) ξsξt

)

= − (Dxlr
2
−2)︸ ︷︷ ︸

(∗)

∑
s,t

(Dxkg
st) ξsξt − r2

−2

∑
s,t

(D2
xl,xk

gst) ξsξt .

Then substitution of (4.2.24) into the term (∗) evaluates the above expression to

= −
(
− 2r3

−2

∑
p,q

(Dxlg
pq) ξpξq

)∑
s,t

(Dxkg
st) ξsξt − r2

−2

∑
s,t

(D2
xl,xk

gst) ξsξt

= 2r3
−2

∑
p,q,s,t

(Dxlg
pq)(Dxkg

st) ξpξqξsξt − r2
−2

∑
s,t

(D2
xl,xk

gst) ξsξt . (4.2.30)

Combining these results we see that the first summand in (4.2.28) expands into

− 2r4
−2

∑
k,p,q,s,t

gkk(Dxkg
pq)(Dxkg

st) ξpξqξsξt + r3
−2

∑
k,s,t

gkk(D2
xk
gst) ξsξt

− 4r4
−2

∑
k,l,p,q,s,t
k 6=l

gkl(Dxlg
pq)(Dxkg

st) ξpξqξsξt + 2r3
−2

∑
k,l,s,t
k 6=l

gkl(D2
xl,xk

gst) ξsξt .

(4.2.31)
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Now for the second term in (4.2.28), that is

− r−2

∑
|µ|=1

1

µ!
∂µξ a1D

µ
xr−2 = −r−2

∑
l

∂ξla1Dxlr−2 (4.2.32)

we note that

∂ξla1 = ∂ξl

(∑
s

bs ξs

)
= bl (4.2.33)

and (from (4.2.24))

Dxlr−2 = −r2
−2

∑
s,t

(Dxlg
st) ξsξt . (4.2.34)

Insertion of these two expressions into (4.2.32) gives

− r−2

∑
|µ|=1

1

µ!
∂µξ a1D

µ
xr−2 = r3

−2

∑
l,s,t

bl(Dxlg
st) ξsξt . (4.2.35)

Using the lines (4.2.31) and (4.2.35) we can now fully expand equation (4.2.28) :

− r−2

∑
|µ|+k=2

1

µ!
∂µξ a2−kD

µ
xr−2

= −2r4
−2

∑
k,p,q,s,t

gkk(Dxkg
pq)(Dxkg

st) ξpξqξsξt + r3
−2

∑
k,s,t

gkk(D2
xk
gst) ξsξt

− 4r4
−2

∑
k,l,p,q,s,t
k 6=l

gkl(Dxlg
pq)(Dxkg

st) ξpξqξsξt + 2r3
−2

∑
k,l,s,t
k 6=l

gkl(D2
xl,xk

gst) ξsξt

+ r3
−2

∑
l,s,t

bl(Dxlg
st) ξsξt (4.2.36)

which establishes an explicit version for the first term of (4.2.27).

Term corresponding to l = 1: Here we need to determine the right hand side

of

− r−2

∑
|µ|+k=1

1

µ!
∂µξ a2−kD

µ
xr−3 = −r−2

∑
k

∂ξka2Dxkr−3︸ ︷︷ ︸
(∗∗)

−r−2(a1r−3) . (4.2.37)
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We already computed ∂ξka2 in (4.2.23) and the resolvent symbol r−3 is also estab-

lished. Let us list these and the explicit form of a1 here for convenience:

a1 =
∑
k

bk ξk (4.2.38)

∂ξla2 = 2
∑
s

gslξs (4.2.39)

r−3 = 2r3
−2

∑
l,s,p,q

gsl(Dxlg
pq) ξsξpξq − r2

−2

∑
l

blξl . (4.2.40)

The only part that remains to be looked at is (∗∗) in (4.2.37); which gives

Dxkr−3 = Dxk

(
2r3
−2

∑
l,s,p,q

gsl(Dxlg
pq) ξsξpξq − r2

−2

∑
l

blξl

)
= −6r4

−2

∑
l,i,j,s,p,q

gsl(Dxlg
pq)(Dxkg

ij) ξiξjξsξpξq

+ 2r3
−2

∑
l,s,p,q

(Dxkg
sl)(Dxlg

pq) ξsξpξq + 2r3
−2

∑
l,s,p,q

gsl(D2
xk,xl

gpq) ξsξpξq

+ 2r3
−2

∑
l,s,t

bl(Dxkg
st)ξsξtξl − r2

−2

∑
l

(Dxkbl)ξl . (4.2.41)

Thus in summary we obtain the following for (4.2.37) :

− r−2

∑
|µ|+k=1

1

µ!
∂µξ a2−kD

µ
xr−3

= 12r5
−2

∑
l,i,j,s,p,q,k,t

gtkgsl(Dxlg
pq)(Dxkg

ij) ξiξjξsξpξqξt

− 4r4
−2

∑
l,s,p,q,k,t

gtk(Dxkg
sl)(Dxlg

pq) ξsξpξqξt

− 4r4
−2

∑
l,s,p,q,k,t

gtkgsl(D2
xk,xl

gpq) ξsξpξqξt

− 4r4
−2

∑
l,i,j,k,t

bl g
tk(Dxkg

ij)ξiξjξlξt + 2r3
−2

∑
l,t,k

gtk(Dxkbl)ξlξt

− 2r4
−2

∑
k,l,s,p,q

bk g
sl(Dxlg

pq) ξsξpξqξk + r3
−2

∑
k,l

bkbl ξkξl . (4.2.42)
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Full expression Finally we concatenate (4.2.36) and (4.2.42) in order to deter-

mine the complete expression for r−4. Rearranging and collecting like terms, we

obtain

r−4 = −r−2

∑
|µ|+k=2

1

µ!
∂µξ a2−kD

µ
xr−2︸ ︷︷ ︸

equation (4.2.36)

−r−2

∑
|µ|+k=1

1

µ!
∂µξ a2−kD

µ
xr−3︸ ︷︷ ︸

equation (4.2.42)

= 12r5
−2

∑
l,i,j,s,p,q,k,t

gtkgsl(Dxlg
pq)(Dxkg

ij) ξiξjξsξpξqξt

− 2r4
−2

∑
k,p,q,s,t

gkk(Dxkg
pq)(Dxkg

st) ξpξqξsξt

+ r3
−2

∑
k,s,t

gkk(D2
xk
gst) ξsξt − 4r4

−2

∑
k,l,p,q,s,t
k 6=l

gkl(Dxlg
pq)(Dxkg

st) ξpξqξsξt

+ 2r3
−2

∑
k,l,s,t
k 6=l

gkl(D2
xl,xk

gst) ξsξt − 4r4
−2

∑
l,s,p,q,k,t

gtk(Dxkg
sl)(Dxlg

pq) ξsξpξqξt

− 4r4
−2

∑
l,s,p,q,k,t

gtkgsl(D2
xk,xl

gpq) ξsξpξqξt − 6r4
−2

∑
l,i,j,k,t

bl g
tk(Dxkg

ij)ξiξjξlξt

+ 2r3
−2

∑
l,t,k

gtk(Dxkbl)ξlξt + r3
−2

∑
l,s,t

bl(Dxlg
st) ξsξt + r3

−2

∑
k,l

bkbl ξkξl

as required.

4.2.3 The first three heat coefficients

Now that we have access to the closed formulas above let us use the resolvent

symbols to directly derive the first three heat coefficients c−n
2
, c−n+1

2
and c−n+2

2
in

the short time asymptotic expansion of the heat trace:

Tr
(
e−tP

)
vt→0+

∑
j≥0

c−n+j
2
t
−n+j

2 (4.2.43)

(we refer to [15], [14] or alternatively [36] for an account of the existence and deriva-

tion of the asymptotic expansion). Here n = dim(M) and

c−n+j
2

=

∫
M

c−n+j
2

(x) |dx| (4.2.44)
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with

c−n+j
2

(x)|dx| =
∫
Rn

(
i

2π

∫
γ

e−λ r−2−j(x, ξ, λ) dλ

)
d̄ξ dx . (4.2.45)

(the notation dx respectively d̄ξ = (2π)−n dξ denotes Lebesgue measure, the latter

rescaled). Finding these coefficients concretely is interesting from the geometric

point of view, in particular the following identities are well - known ([24]):

c−n
2

=
1

4π
n
2

Volg(M) (4.2.46)

and

c−n+2
2

=
1

(4π)
n
2

(
1

3

∫
M

K dµg +
1

2

∫
M

div(A) dµg −
1

4

∫
M

|A|2 dµg
)

(4.2.47)

where dµg denotes the volume form induced by the metric g, K is the scalar cur-

vature and div(A), |A|2 denote the (Riemannian) divergence, and length of A, re-

spectively. Whereas the common approach to their derivation uses global estimates

on the heat kernel (as shown in [24]) or abstract invariance theory (c.f.[14]), we

shall derive these now directly, that is using only the local data from the resolvent

symbols via the formulas in Theorem 4.2.1.

To start let us note some general properties of the involved integrals. First, by the

Cauchy Residue theorem we have

i

2π

∫
γ

e−λ rk−2 dλ =
i

2π

∫
γ

e−λ

(|ξ|2g − λ)k
dλ =

1

(k − 1)!
e−|ξ|

2
g (4.2.48)

for any k ≥ 1. Secondly, for a real positive definite symmetric matrix A = (Aij)

and a polynomial p(x) in x ∈ Rk we have the Gaussian Integral (cf [44])∫
Rk
p(x) exp

(
−1

2

n∑
i,j

Aij xixj

)
dx =

(2π)
n
2

√
detA

exp

(
1

2

n∑
i,j

(Aij)
−1∂xi∂xj

)
p(x)

∣∣∣∣
x=0

.

(4.2.49)

As we shall see in a moment we need to determine integrals of the form∫
Rn

ξα exp

(
−

n∑
k,l

gklξkξl

)
dξ (4.2.50)
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(here, α = (α1, . . . αn) is a multi-index, so that ξα = ξα1
1 . . . ξαn denotes a monomial

in ξ ∈ Rn). Substituting (4.2.49) into (4.2.50) yields∫
Rn

ξα exp

(
−

n∑
k,l

gklξkξl

)
dξ =

∫
Rn

ξα exp

(
−1

2

n∑
k,l

2gklξkξl

)
dξ

=
(2π)

n
2√

det (2g−1)
exp

(
1

4

n∑
k,l

gkl∂ξk∂ξl

)
ξα
∣∣∣∣
ξ=0

= π
n
2

√
det g exp

(
1

4

n∑
k,l

gkl∂ξk∂ξl

)
ξα
∣∣∣∣
ξ=0

.

(4.2.51)

Note that any monomial ξα of odd degree (that is with |α| = 2k+1 for some integer

k) evaluates to zero in (4.2.51) because in this case the polynomial

exp

(
1

4

n∑
k,l

gkl∂ξk∂ξl

)
ξα (4.2.52)

has no constant term. Hence, evaluation at ξ = 0 equates it to zero.

For the final observation let us choose normal coordinates on our manifold M cen-

tered at the point p ∈ M , say. Then the metric tensor g evaluates at p to the

identity, that is
∑

i,j g
ijξiξj =

∑
k ξ

2
k = |ξ|2 and we can evaluate (4.2.50) via Fu-

bini’s theorem as a simple product of Gaussian integrals over the real line:∫
Rn

ξα exp

(
−

n∑
k,l

δklξkξl

)
dξ =

∫
Rn

ξα e−|ξ|
2

dξ =
n∏
i=1

∫
R
ξαii e−ξ

2
i dξi . (4.2.53)

Also, for a positive integer k and any real number β > 0 we have

∫
R
xk e−βx

2

dx =


Γ(k + 1

2
)

βk+ 1
2

if k is even

0 if k is odd

(4.2.54)

where Γ(z) denotes the Gamma function (the first case can be deduced using the

change of variable y = βx2 and the latter case follows from repeated integration by

parts). Here the Gamma function is defined by

Γ(z) =

∫ ∞
0

tz−1e−t dt (Re(z) > 0), (4.2.55)
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we shall also need the fact that It satisfies the equations

Γ(z + 1) = z Γ(z) and Γ(1/2) =
√
π. (4.2.56)

From (4.2.54) it therefore follows that (4.2.57) evaluates to

n∏
i=1

∫
R
ξαii e−ξ

2
i dξi =


∏n

i=1 Γ(αi + 1
2
) all αi are even

0 otherwise

. (4.2.57)

We are now ready to deduce the heat coefficients.

The heat coefficient c−n
2

For this we evaluate the integral

c−n
2
(x) =

1

(2π)n

∫
Rn

(
i

2π

∫
Γ

e−λ r−2(x, ξ, λ) dλ

)
dξ , (4.2.58)

this is by (4.2.48) equal to

=
1

(2π)n

∫
Rn
e−|ξ|

2
g dξ

=
1

(2π)n

∫
Rn

exp

(
−1

2

n∑
k,l

2gklξkξl

)
dξ (4.2.59)

Now (4.2.59) is is an integral of the form (4.2.50) with |α| = 0; hence the above

expression reduces to

=
1

(2π)n

(
π
n
2

√
det g

)
=

1

(4π)
n
2

√
det g (4.2.60)

and we therefore see from (4.2.44) that

c−n+j
2

=
1

(4π)
n
2

∫
M

√
det g |dx| = Volg(M) . (4.2.61)

The heat coefficient c−n+1
2

Here the expression under consideration becomes

c−n+1
2

(x) =
1

(2π)n

∫
Rn

(
i

(2π)

∫
γ

e−λ r−3(x, ξ, λ) dλ

)
dξ , (4.2.62)
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but from (4.2.17) one can immediately deduce (using the remark below equation

(4.2.51)) that the above expression evaluates to zero since all the summands in r−3

are odd monomials in ξ. So

c−n+1
2

=
1

(2π)n

∫
M

c−n+1
2

(x) |dx| = 0 . (4.2.63)

Remark 4.2.2. Let us note here that the odd coefficients vanish in general as one

can see by making a change of variable ξ 7→ −ξ in (4.2.45) and using the quasi -

homogeneity of the resolvent symbol.

The heat coefficient c−n+2
2

To proceed with the third coefficient we introduce

normal coordinates in a neighbourhood of a point p ∈ M . Thus on a small patch

centered at p, the metric is approximated by

gij = δij +
1

3

∑
k,l

Rikjl xkxl +O(|x|3) (4.2.64)

for x close enough to p, where Rikjl denotes the components of the Riemann curva-

ture tensor associated to g and δij is the Kroenecker delta (c.f. [38, Section 3.5.3.3]).

Likewise for the inverse metric (for x close to the point p) we have

gij = δij −
1

3

∑
k,l

Rikjl xkxl +O(|x|3) . (4.2.65)

In particular, when evaluated at p (i.e. where x = 0), g is the identity and the first

partial derivatives vanish. In view of (4.2.13) the first order part of P therefore

reduces at the point p to bk = iak, moreover

|ξ|2g = |ξ|2 =
∑
k

ξ2 . (4.2.66)

Also, one can see from (4.2.65) that the second partial derivatives of the components

of g (evaluated at p) are expressions in terms of the Riemann curvature tensor.

Using the simplifications in this coordinate system the closed formula for r−4 reduces

to

r−4 = r3
−2

∑
k,s,t

(D2
xk
gst) ξsξt − 4r4

−2

∑
l,p,q,k

(D2
xk,xl

gpq) ξlξpξqξk
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+ 2r3
−2

∑
l,k

(Dxkbl) ξlξk − r3
−2

∑
k,l

akal ξkξl . (4.2.67)

Now we substitute this into the integrand of the heat coefficient:

c−n+2
2

(x) =
1

(2π)n

∫
Rn

(
i

2π

∫
γ

e−λ r−4(x, ξ, λ) dλ

)
dξ (4.2.68)

and obtain

=
1

(2π)n

∫
Rn

i

2π

∫
γ

e−λ
(
r3
−2

∑
k,s,t

(D2
xk
gst) ξsξt − 4r4

−2

∑
l,p,q,k

(D2
xk,xl

gpq) ξlξpξqξk

+ 2r3
−2

∑
l,k

(Dxkbl) ξlξk − r3
−2

∑
k,l

akal ξkξl

)
dλ dξ .

Evaluating the contour integral by use of (4.2.48) and (4.2.66) simplifies the expres-

sion to

=
1

2

∑
k,s,t

(D2
xk
gst)

(
1

(2π)n

∫
Rn
ξsξt e

−|ξ|2 dξ

)
(4.2.69)

− 2

3

∑
l,p,q,k

(D2
xk,xl

gpq)

(
1

(2π)n

∫
Rn

ξlξpξqξk e
−|ξ|2 dξ

)
(4.2.70)

+
∑
l,k

(Dxkbl)

(
1

(2π)n

∫
Rn

ξlξk e
−|ξ|2 dξ

)
(4.2.71)

− 1

2

∑
k,l

akal

(
1

(2π)n

∫
Rn

ξkξl e
−|ξ|2 dξ

)
(4.2.72)

Note that, by equation (4.2.57) we can ignore any terms that contain odd powers

of ξi, since those will integrate to zero. This means that term (4.2.69) evaluates to

1

2

∑
k,s,t

(D2
xk
gst)

(
1

(2π)n

∫
Rn
ξsξt e

−|ξ|2 dξ

)
=

1

2

∑
k,s

(D2
xk
gss)

(
1

2π
Γ(

3

2
)

)∏
k 6=s

1

2π
Γ(

1

2
)

using also (4.2.54), which finally reduces to

=
1

(4π)
n
2

· 1

4

∑
k,s

(D2
xk
gss) . (4.2.73)
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Likewise, we find that∑
l,k

(Dxkbl)

(
1

(2π)n

∫
Rn

ξlξk e
−|ξ|2 dξ

)
=

1

(4π)
n
2

· 1

2

∑
k

(Dxkbk) . (4.2.74)

For the summands above recall that bk (the first - order term of P ) is given by

bk =
∑
l

1

2
|g|−1gkl(Dxl |g|) + (Dxl g

kl) + iak (4.2.75)

where |g| = det(g). Thus

Dxkbk =
∑
l

1

2
|g|−1

(
(Dxkg

kl)(Dxl |g|) + gkl(D2
xk,xl
|g|)

− |g|−1gkl(Dxk |g|)(Dxl |g|) + 2|g|(D2
xk,xl

)gkl
)

+ iDxkak (4.2.76)

and the right hand side reduces in normal coordinates to

1

2
D2
xk
|g|+

∑
l

D2
xk,xl

gkl + iDxkak (4.2.77)

where

Proposition 4.2.3. With the notation above we have (in normal coordinates)

1

2
D2
xk
|g| = 1

2

∑
l

D2
xk
gll . (4.2.78)

Proof. Indeed, the last equation is immediate from the expansion of the determinant

on terms of the Levi-Civita symbol:

D2
xk
|g| = D2

xk

(
n∑

i1,i2,...in=1

εi1...ing1i1 . . . gnin

)

=
n∑

i1,i2,...in=1

εi1...inD
2
xk

(g1i1 . . . gnin) (4.2.79)

where

D2
xk

(g1i1 . . . gnin) = Dxk

(
n∑
l=1

(Dxkglil)
∏
s 6=l

gsis

)
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=
n∑
l=1

(D2
xk
glil)

∏
s 6=l

gsis +
n∑
l=1

(Dxkglil)(Dxk

∏
s 6=l

gsis)︸ ︷︷ ︸
=0 in norm. coordinates

=
n∑
l=1

(D2
xk
glil)

∏
s 6=l

gsis = D2
xk
gll , (4.2.80)

the last equation following from the fact that gij = δij at the point where the normal

coordinates are centered , so
∏

s 6=l gsis = 0 whenever it contains terms that are not

on the diagonal. Substitution of (4.2.80) into (4.2.79) then gives (4.2.78).

Thus, coming back to the term (4.2.71) we deduce that

1

(4π)
n
2

· 1

2

∑
k

(Dxkbk)

=
1

(4π)
n
2

· 1

2

∑
k

(
1

2
D2
xk
|g|+

∑
l

D2
xk,xl

gkl + iDxkak

)
(substitute (4.2.77))

=
1

(4π)
n
2

· 1

2

∑
k

(
1

2

∑
l

D2
xk
gll +

∑
l

D2
xk,xl

gkl + iDxkak

)
(substitute (4.2.78))

=
1

(4π)
n
2

· 1

4

∑
k,l

(
D2
xk
gll + 2D2

xk,xl
gkl + 2iDxkak

)
. (4.2.81)

Next we determine the Gaussian integrals in the term (4.2.70). We know that only

summands with even powers of the ξi contribute, hence

− 2

3

∑
l,p,q,k

(D2
xk,xl

gpq)

(
1

(2π)n

∫
Rn

ξlξpξqξk e
−|ξ|2 dξ

)
= −2

3

∑
s

(D2
xsg

ss)

(
1

(2π)n

∫
Rn

ξ4
s e
−|ξ|2 dξ

)
− 2

3

∑
s,p
s 6=p

(D2
xp,xsg

sp)

(
1

(2π)n

∫
Rn

ξ2
sξ

2
p e
−|ξ|2 dξ

)

− 2

3

∑
s,p
s 6=p

(D2
xp,xsg

ps)

(
1

(2π)n

∫
Rn

ξ2
sξ

2
p e
−|ξ|2 dξ

)

− 2

3

∑
s,p
s 6=p

(D2
xsg

pp)

(
1

(2π)n

∫
Rn

ξ2
sξ

2
p e
−|ξ|2 dξ

)
.
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By symmetry of g we have D2
xk,xl

gsp = D2
xk,xl

gps so the two middle terms can be

summed together. Splitting up the integrals into one - dimensional factors (using

Fubini’s theorem) we are left with

− 2

3

∑
s

(D2
xsg

ss)

(
1

2π

∫
R
ξ4
s e
−ξ2

s dξ

)∏
l 6=s

1

2π

∫
R
e−ξ

2
l dξ

− 4

3

∑
s,p
s 6=p

(D2
xp,xsg

sp)

(
1

2π

∫
R
ξ2
s e
−ξ2

s dξ

)(
1

2π

∫
R
ξ2
p e
−ξ2

p dξ

) ∏
l 6=s,p

1

2π

∫
R
e−ξ

2
l dξ

− 2

3

∑
s,p
s 6=p

(D2
xsg

pp)

(
1

2π

∫
R
ξ2
s e
−ξ2

s dξ

)(
1

2π

∫
R
ξ2
p e
−ξ2

p dξ

) ∏
l 6=s,p

1

2π

∫
R
e−ξ

2
l dξ .

Finally from (4.2.57), using well - known values for Γ(z), this is equal to

− 2

3

∑
s

(D2
xsg

ss)

(
1

2π

√
π · 3

4

)∏
l 6=s

1

2π

√
π

− 4

3

∑
s,p
s 6=p

(D2
xp,xsg

sp)

(
1

2π

√
π

2
)

)2 ∏
l 6=s,p

1

2π

√
π

− 2

3

∑
s,p
s 6=p

(D2
xsg

pp)

(
1

2π

√
π

2
)

)2 ∏
l 6=s,p

1

2π

√
π

=
1

(4π)
n
2

(
− 1

2

∑
s

(D2
xsg

ss)− 1

3

∑
s,p
s 6=p

(D2
xp,xsg

sp)− 1

6

∑
s,p
s 6=p

(D2
xsg

pp)

)
. (4.2.82)

Lastly, by similar reasoning we deduce that

− 1

2

∑
k,l

akal

(
1

(2π)n

∫
Rn

ξkξl e
−|ξ|2 dξ

)
= −1

2

∑
k

a2
k

(
1

(2π)

∫
R
ξ2
k e
−ξ2

k dξ

)∏
s 6=k

1

(2π)

∫
R
e−ξ

2
s dξ

= −1

2

∑
k

a2
k

(
1

(2π)

√
π

2

)∏
s 6=k

1

(2π)

√
π

= − 1

(4π)
n
2

· 1

4

∑
k

a2
k . (4.2.83)

We have now computed each term in the expression of c−n+2
2

(x) and it remains to

substitute the results into lines (4.2.69)-(4.2.72). With Dxk = −i∂k where ∂k := ∂
∂xk

120



this yields

c−n+2
2

(x) =
1

(4π)
n
2

(
− 1

4

∑
k,s

(∂2
xk
gss) +

1

2

∑
s

(∂2
xsg

ss) +
1

3

∑
s,p
s 6=p

(∂2
xp,xsg

sp)

+
1

6

∑
s,p
s 6=p

(∂2
xsg

pp)− 1

4

∑
k,s

(∂2
xk
gss)−

1

2

∑
k,l

(∂2
xk,xl

gkl)

+
1

2

∑
k

∂xkak −
1

4

∑
k

a2
k

)
. (4.2.84)

From the second - order Taylor series (4.2.64) and (4.2.65) of the metric in normal

coordinates we have

∂2
pq g

ij = −1

3
(Riqjp +Ripjq) = −∂2

pqgij , (4.2.85)

so we can write (4.2.84) purely in terms of derivatives of the inverse metric and

gather like terms:

c−n+2
2

(x) =
1

(4π)
n
2

(
− 1

4

∑
k,s

(∂2
xk
gss) +

1

2

∑
s

(∂2
xsg

ss) +
1

3

∑
s,p
s 6=p

(∂2
xp,xsg

sp)

+
1

6

∑
s,p
s 6=p

(∂2
xsg

pp) +
1

4

∑
k,s

(∂2
xk
gss)− 1

2

∑
k,l

(∂2
xk,xl

gkl) +
1

2

∑
k

∂xkak −
1

4

∑
k

a2
k

)

=
1

(4π)
n
2

(
1

6

∑
s,p
s 6=p

(∂2
xpg

ss)− 1

6

∑
s,p
s 6=p

(∂2
xp,xsg

sp) +
1

2

∑
k

∂xkak −
1

4

∑
k

a2
k

)
.

Substituting (4.2.85) into the above equation yields

c−n+2
2

(x) =
1

(4π)
n
2

(
1

3

(
− 2

6

∑
s,p
s 6=p

Rspsp +
1

6

∑
s,p
s 6=p

(Rsspp +Rspps)
)

+
1

2

∑
k

∂xkak −
1

4

∑
k

a2
k

)
.

Lastly, we make explicit the term
√

det g (which evaluates to 1 at the centered point

x in normal coordinates). Using the Bianchi identity 0 = Rsspp +Rspps +Rspsp, the

above then becomes

=
1

(4π)
n
2

(
1

3

(
− 1

3

∑
s,p
s 6=p

Rspsp −
1

6

∑
s,p
s 6=p

Rspsp

)
+

1

2

∑
k

∂xkak −
1

4

∑
k

a2
k

)√
det g
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=
1

(4π)
n
2

(
1

3

(
−
∑
s<p

Rspsp

)
+

1

2

∑
k

∂xkak −
1

4

∑
k

a2
k

)√
det g .

Thus we conclude

c−n+2
2

=

∫
M

c−n+2
2

(x) |dx|

=
1

(4π)
n
2

(
1

3

∫
M

K dµg +
1

2

∫
M

div(A) dµg −
1

4

∫
M

|A|2 dµg
)

(4.2.86)

where dµg denotes the volume form induced by the Riemannian metric (locally

given by dµg =
√

det g dx) and

K = −
∑
i<j

Rijij the scalar curvature,

div(A) =
1√
|g|

∑
i

∂i

(√
|g| ai

)
the Riemannian divergence,

|A|2 =
∑
ij

gijaiaj the Riemannian length,

evaluated in normal coordinates.

This finishes our application of resolvent symbol formulae to heat trace coeffi-

cients. Let us now turn to another application, namely the direct computation of

index formulae.

4.3 Resolvent symbols on Riemann surfaces and

the Riemann Roch formula

Here we shall be concerned with another application of resolvent symbols, namely

for proving topological identities via heat kernel coefficient calculations. As an

illustration we find closed formulas for the first three terms in the resolvent symbol

expansion corresponding to a Dirac - Laplacian on a Riemann Surface. These

are then applied to recover the well - known Riemann-Roch formula via a direct

computation, avoiding Duhamel’s principle as well as the Getzler rescaling.
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4.3.1 Preliminaries

Let us introduce the basic setting for the Riemann-Roch formula as described in

[22]. Let M be a compact boundaryless Riemann surface with smooth positive

definite metric. On a coordinate patch U ⊂M the latter is given by

h(z, z̄) dz ⊗ dz̄ (4.3.1)

and the induced volume element is written as

dVol =
i

2
h(z, z̄) dz ∧ dz̄. (4.3.2)

Let V → M be a holomorphic vector bundle of rank n with typical fibre V . It is

determined by the transition functions

glj : Uj ∩ Ul → GL(n,C), (4.3.3)

defined over each non-empty intersection of local coordinate neighbourhoods. By

use of a partition of unity we define a Hermitian structure for V via a system

{E : U → GL(n,C)} of locally defined positive definite Hermitian matrix - valued

maps, varying smoothly over their domain, and satisfying

g∗lj El glj = Ej on Uj ∩ Ul. (4.3.4)

This induces a Hermitian structure on the determinant bundle det E → M (the

line bundle whose typical fibre is the top exterior power ΛnV ), with transition rule

det El |det glj|2 = det Ej on Uj ∩ Ul. (4.3.5)

The complexified cotangent bundle T ∗M splits into a direct sum

T ∗M ∼= Λ1,0T ∗M ⊕ Λ0,1T ∗M (4.3.6)

where for each point p ∈ M , dz is a basis for Λ1,0T ∗pM and likewise dz̄ serves as

a basis for Λ0,1T ∗pM . By patching together the local data we can see that the de
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Rham operator d decomposes into d = ∂ + ∂̄ so that, for example if f is a smooth

function whose support is contained in a coordinate neighbourhood U we may write

df = ∂f + ∂̄f = ∂f
∂z
dz + ∂f

∂z̄
dz̄.

The first Chern class of V is then represented by the differential form

∂∂̄ log(det E) ∈ Λ1,1 T ∗M

from which we deduce the Chern number

c1(V) =
1

2πi

∫
M

∂∂̄ log(det E). (4.3.7)

Likewise, the differential form ∂∂̄ log h ∈ Λ1,1 T ∗M is the canonical representative

which is used to compute the Chern number,

c1(M) =
1

2πi

∫
M

∂∂̄ log h . (4.3.8)

Next we also need to consider analytical information about the manifold M . Define

the differential operator4 : Γ∞(V)→ Γ∞(V) acting on the space of smooth sections

of V , by patching together the local formula

4 = − (hET )−1 ∂

∂z

(
ET ∂

∂z̄

)
. (4.3.9)

This operator is elliptic (meaning its leading symbol invertible) and of second order.

Furthermore, if we denote by L2(V) the completion of Γ∞(V) with respect to the

norm induced by the inner product (u, v) =
∫
M

(Eū)Tv dVol then the following

properties of 4 are well known:

Proposition 4.3.1. [22] The operator 4 has non-negative discrete spectrum 0 ≤

µ0 ≤ µ1 · · · → ∞. The corresponding eigensections are smooth and form a complete

orthogonal basis for L2(V). The eigenspaces E4(µk) = {φ ∈ Γ∞(V) | 4φ = µkφ }

are of finite dimension, moreover

E4(0) = Ker (4) = H0(V) (4.3.10)

where the right - hand side denotes the space of holomorphic sections of the vector

bundle V.
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Further, let us denote by Ṽ := Λ1,0 T ∗M⊗V∗ the tensor product of the canonical line

bundle and the dual bundle. We define similarly an operator 4̃ : Γ∞(Ṽ)→ Γ∞(Ṽ)

by pasting together the local formula

4̃ = −E ∂

∂z

(
(hE)−1 ∂

∂z̄

)
. (4.3.11)

The following theorem summarises the properties of the operator 4̃ as well as its

relationship to 4:

Proposition 4.3.2. The operator 4̃ is elliptic with the same properties as listed

above for 4, substituting for (4.3.10) the equation

E4̃(0) = Ker (4̃) = H0(Ṽ) . (4.3.12)

Furthermore, the positive spectra of 4̃ and 4 correspond in the sense that µ > 0 is

an eigenvalue of 4 if and only if it is an eigenvalue of 4̃, and in this case we have

dim (E4(µ)) = dim (E4̃(µ)). (4.3.13)

We shall take these results as given since we don’t require techniques or concepts

from the proofs, more details however may be found in [22].

The relation between the analytical and the topological properties is described by

the famous Riemann - Roch formula

dim H0(V)− dim H0(Ṽ) =
1

2πi

∫
M

∂∂̄ log(det E) + n(1− gM) (4.3.14)

where gM denotes the genus of M (and we recall that n denotes the rank of V).

Furthermore, from the Gauss - Bonnet theorem we can recover that

2(1− gM) =
1

2πi

∫
M

∂∂̄ log h, (4.3.15)

substituting this into the right hand side of (4.3.14) and (4.3.10) respectively

(4.3.12) into the left hand side we can see that(4.3.14) can be written in the form

dim E4(0)− dim E4̃(0) =
1

2πi

∫
M

∂∂̄ log(det E) +
n

4πi

∫
M

∂∂̄ log h . (4.3.16)
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Finally let us consider the heat operator e−t4 in this context. We described the heat

operator in Section 4.2.1, in fact all the properties needed there (such as ellipticity

and the discrete spectrum along the non-negative half of the real line) are fulfilled by

our present operators so we shall refer to the treatment there rather than repeating

it. For each t > 0 the associated heat kernel k4(t, x, y) is an element of Γ(V ⊗̂V∗),

the space of smooth sections of the exterior tensor product of the bundles V and

V∗ and can be written in terms of the normalised eigenfunctions of 4 as

k4(t, x, y) =
∑
k

e−tµkφk(x)⊗ (E φk)
T (y) (4.3.17)

As a pseudodifferential operator the order of e−t4 is arbitrarily low so it has a

classical trace given by

Tr(e−t4) =

∫
M

tr
(
k4(t, x, x)

)
|dx| =

∑
k

e−tµk (4.3.18)

where tr (k4(t, x, x)) =
∑

k e
−tµk(E φk)

T (x)φk(x) and |dx| identifies locally with

Lebesgue measure. Similarly, for e−t4̃ we have

Tr(e−t4̃) =

∫
M

tr
(
k4̃(t, x, x)

)
|dx| =

∑
k

e−tµ̃k . (4.3.19)

Now since the positive spectra of 4 and 4̃ cancel out we can form the difference

of (4.3.18) and (4.3.19) and see that for t > 0

Tr(e−t4)− Tr(e−t4̃) =
∑
µk≥0

e−tµk −
∑
µ̃k≥0

e−tµ̃k = dim E4(0)− dim E4̃(0)

(4.3.20)

where we note that the right hand side is independent of t. On the other hand,

recall from Section 4.2.3 that there exist short time asymptotic expansions

Tr(e−tP ) vt→0+

∑
j≥0

c−k+j
m

t
−k+j
m (4.3.21)

where P denotes one of the operators 4, 4̃ and k is the real dimension of the

manifold and m denotes the order of the operator P , so in our case we have

k = m = 2

126



so let us take on the concrete case from here. The heat coefficients c−2+j
2

are given

by

c−2+j
2

=

∫
M

tr (c−2+j
2

(x)) |dx| (4.3.22)

and the integrand is locally of the form

c−2+j
2

(x) =

∫
Rn

∫
γ

e−λ r−2−j(x, ξ, λ) d̄λd̄ξ (4.3.23)

with d̄λ = idλ/(2π) and d̄ξ = (2π)−ndξ (c.f. equations (4.2.44) and (4.2.45)). In the

next section we determine, as in the case before of the Laplace - Beltrami operator,

concrete formulae for the resolvent symbols in order to calculate the integrals.

4.3.2 Explicit formulae for the resolvent symbols

First we decompose the local symbol of the operator 4 into homogeneous parts,

σ4(x, ξ) = a2(x, ξ) + a1(x, ξ) + a0(x, ξ) (4.3.24)

where ak(x, tξ) = tkak(x, ξ). In view of the identities

∂

∂z
=

1

2
(
∂

∂x1

+
1

i

∂

∂x2

) and
∂

∂z̄
=

1

2
(
∂

∂x1

− 1

i

∂

∂x2

)

we expand (4.3.9) in terms of differentiation by real local coordinates x1, x2, this

yields

4 = −g(∂2
x1

+ ∂2
x2

)− α(i∂x1 − ∂x2) (4.3.25)

with ∂xi = ∂
∂xi

for i ∈ {1, 2} and

g =
h−1

4
, (4.3.26)

α =
1

2i
(hET )−1∂E

T

∂z
. (4.3.27)

Then replacing −i∂xi with ξi we obtain the corresponding symbol

σ4 = g|ξ|2 + α(ξ1 + iξ2) (4.3.28)
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where |ξ|2 = ξ2
1 + ξ2

2 . (More precisely, g|ξ|2 = g|ξ|2In where In denotes the n × n

identity matrix. We shall adopt the common abuse of notation kIn = k whenever

k is a scalar.) Thus in homogeneous terms, (4.3.28) decomposes into

a2 = g|ξ|2 a1 = α(ξ1 + iξ2) a0 = 0 . (4.3.29)

In a similar manner we obtain the symbol for 4̃:

σ4̃ = g|ξ|2 + α̃(ξ1 + iξ2) (4.3.30)

where g is as above and

α̃ =
1

2i
E
∂(hE)−1

∂z
. (4.3.31)

The homogeneous components are therefore

ã2 = g|ξ|2 ã1 = α̃(ξ1 + iξ2) ã0 = 0. (4.3.32)

We can now state and prove the main theorem in this section.

Theorem 4.3.3. With the notation above, let r(x, ξ, λ) denote the local symbol

of the resolvent operator (4−λ)−1. Then the first three resolvent symbols in the

asymptotic series r(x, ξ, λ) v
∑

j≥0 r−2−j(x, ξ, λ) are given by

r−2 = (g|ξ|2 − λ)−1 (4.3.33)

r−3 = 2r3
−2

∑
l

g(Dxlg) ξl|ξ|2 − r2
−2α(ξ1 + iξ2) (4.3.34)

and

r−4 = 12r5
−2

∑
k,l

g2(Dxkg)(Dxlg) ξkξl|ξ|4 − 2r4
−2

∑
k

g (Dxkg)2 |ξ|4

− 4r4
−2

∑
k,l

g(Dxkg)(Dxlg) ξkξl|ξ|2 − 4r4
−2

∑
k,l

g2(D2
xk,xl

g) ξkξl|ξ|2

− 6r4
−2

∑
k

α g(Dxkg)(ξ1 + iξ2)ξk|ξ|2

+ r3
−2

∑
k

g(D2
xk
g) |ξ|2 + 2r3

−2

∑
k

(Dxkα)g(ξ1 + iξ2)ξk

+ r3
−2 α(Dx1g)|ξ|2 + ir3

−2α(Dx2g)|ξ|2 + r3
−2α

2(ξ1 + iξ2)2 . (4.3.35)
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Proof. Recall from (4.2.9) and (4.2.10) the recursive definition of the resolvent sym-

bols:

r−2 = (a2 − λ)−1 (4.3.36)

r−2−j = −r−2

∑
|µ|+k+l=j

l<j

1

µ!
(∂µξ a2−k) · (Dµ

xr−2−l) (4.3.37)

where in this case µ = (µ1, µ2) denotes a multi - index, ξ = (ξ1, ξ2) ∈ R2 and

x = (x1, x2) ∈ R2, furthermore Dµ
x = (−i∂x)µ with ∂xi = ∂/∂xi whilst ∂µx = ∂µ1

x1
∂µ2
x2

.

Now the term r−2 This is given directly by (4.3.36). Next for r−3 the calculation is

similar to the analogous term in the previous section: we see from (4.3.37) that

r−3 = −r−2

∑
|µ|+k+l=1

l<1

1

µ!
∂µξ a2−kD

µ
xr−2−l . (4.3.38)

We have l = 0 throughout; furthermore |µ| + k + l = 1 means that the factorial

term simplifies to µ! = 1 in all summands. Thus

r−3 = −r−2

∑
|µ|+k=1

∂µξ a2−kD
µ
xr−2 (4.3.39)

which splits into the summands

−r−2

(∑
l

∂ξla2Dxlr−2

)
︸ ︷︷ ︸

|µ|=1,k=0

−r−2

(
a1r−2

)
︸ ︷︷ ︸
|µ|=0,k=1

. (4.3.40)

For the first term we note that ∂ξla2 = 2g ξl; moreover

Dxlr
m
−2 = −mrm+1

−2 (Dxlg)|ξ|2 (4.3.41)

for any positive integer m. Substituting this as well as a1 = α(ξ1 + iξ2) gives

r−3 = −r−2

(∑
l

(2gξl)
(
−r2
−2 (Dxlg)|ξ|2

))
︸ ︷︷ ︸

|µ|=1,k=0

−r−2

(
α(ξ1 + iξ2)r−2

)
︸ ︷︷ ︸

|µ|=0,k=1

= 2r3
−2

∑
l

g(Dxlg) ξl|ξ|2 − r2
−2α(ξ1 + iξ2) (4.3.42)
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and the last expression is precisely the right hand side of (4.3.34).

Let us then proceed to

r−4 = −r−2

∑
|µ|+k+l=2

l<2

1

µ!
∂µξ a2−kD

µ
xr−2−l . (4.3.43)

With l < 2 there are two terms corresponding to l = 0 or l = 1:

r−4 = −r−2

∑
|µ|+k=2

1

µ!
∂µξ a2−kD

µ
xr−2︸ ︷︷ ︸

l=0

−r−2

∑
|µ|+k=1

1

µ!
∂µξ a2−kD

µ
xr−3︸ ︷︷ ︸

l=1

(4.3.44)

which in turn split into summands according to k = 0, 1 or 2 in the first and k = 0

or 1 in the second expression. We now look more closely at these:

Term corresponding to l = 0 : We have

− r−2

∑
|µ|+k=2

1

µ!
∂µξ a2−kD

µ
xr−2

= −r−2

∑
|µ|=2

1

µ!
∂µξ a2D

µ
xr−2︸ ︷︷ ︸

k=0

−r−2

∑
|µ|=1

1

µ!
∂µξ a1D

µ
xr−2︸ ︷︷ ︸

k=1

(4.3.45)

(The last summand related to k = 2 vanishes because a0 = 0). Note that

∂ξk (∂ξla2) = ∂ξk (2gξl) = 2g δkl (4.3.46)

where δkl is the Kronecker delta, and

Dxl (Dxkr−2) = Dxl

(
−r2
−2 (Dxkg)|ξ|2

)
= 2r3

−2 (Dxlg)(Dxkg) |ξ|4 − r2
−2(D2

xl,xk
g) |ξ|2 . (4.3.47)

Application of the above as well as (4.3.46) shows that the first term of (4.3.45) is

given by

−r−2

∑
|µ|=2

1

µ!
∂µξ a2D

µ
xr−2 = −r−2

∑
k

1

2
(2g)D2

xk
r−2
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= −2r4
−2

∑
k

g (Dxkg)2 |ξ|4 + r3
−2

∑
k

g(D2
xk
g) |ξ|2. (4.3.48)

For the second term in (4.3.45) we note that

∂ξla1 = ∂ξl

(
α(ξ1 + iξ2)

)
=

α if l = 1

iα if l = 2

(4.3.49)

and

Dxlr−2 = −r2
−2 (Dxlg)|ξ|2 , (4.3.50)

therefore

−r−2

∑
|µ|=1

1

µ!
∂µξ a1D

µ
xr−2 = −r−2

∑
l

∂ξla1Dxlr−2

= r3
−2 α(Dx1g)|ξ|2 + ir3

−2α(Dx2g)|ξ|2 (4.3.51)

and we can now fully expand (4.3.45) into

−2r4
−2

∑
k

g (Dxkg)2 |ξ|4 + r3
−2

∑
k

g(D2
xk
g) |ξ|2︸ ︷︷ ︸

term (4.3.48)

+ r3
−2 α(Dx1g)|ξ|2 + ir3

−2α(Dx2g)|ξ|2︸ ︷︷ ︸
term (4.3.51)

.

(4.3.52)

Term corresponding to l = 1 : Repeating the procedure here we start with

− r−2

∑
|µ|+k=1

1

µ!
∂µξ a2−kD

µ
xr−3

= −r−2

∑
|µ|=1

1

µ!
∂µξ a2D

µ
xr−3︸ ︷︷ ︸

k=0

− r−2

∑
|µ|=0

1

µ!
∂µξ a1D

µ
xr−3︸ ︷︷ ︸

k=1

= −r−2

∑
k

∂ξka2Dxkr−3︸ ︷︷ ︸
(∗)

− r−2(a1r−3) . (4.3.53)

All the terms involved are known by now except for (∗) which we determine below:

Dxkr−3
(4.3.42)

= Dxk

(
2r3
−2

∑
l

g(Dxlg) ξl|ξ|2 − r2
−2α(ξ1 + iξ2)

)
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and a direct computation shows this is

= −6r4
−2

∑
l

g(Dxkg)(Dxlg) ξl|ξ|4 + 2r3
−2

∑
l

(Dxkg)(Dxlg) ξl|ξ|2

+ 2r3
−2

∑
l

g(D2
xk,xl

g) ξl|ξ|2 + 2r3
−2 α(Dxkg)(ξ1 + iξ2)|ξ|2 − r2

−2(Dxkα)(ξ1 + iξ2) .

In conclusion (4.3.53) therefore expands into

− 2r−2

∑
k

g

(
− 6r4

−2

∑
l

g(Dxkg)(Dxlg) ξl|ξ|4 + 2r3
−2

∑
l

(Dxkg)(Dxlg) ξl|ξ|2

+ 2r3
−2

∑
l

g(D2
xk,xl

g) ξl|ξ|2 + 2r3
−2 α(Dxkg)(ξ1 + iξ2)|ξ|2

− r2
−2(Dxkα)(ξ1 + iξ2)

)
ξk − r−2 α(ξ1 + iξ2)

(
2r3
−2

∑
l

g(Dxlg) ξl|ξ|2 − r2
−2α(ξ1 + iξ2)

)
= 12r5

−2

∑
k,l

g2(Dxkg)(Dxlg) ξkξl|ξ|4 − 4r4
−2

∑
k,l

g(Dxkg)(Dxlg) ξkξl|ξ|2

− 4r4
−2

∑
k,l

g2(D2
xk,xl

g) ξkξl|ξ|2 − 4r4
−2

∑
k

α g(Dxkg)(ξ1 + iξ2)ξk|ξ|2

+ 2r3
−2

∑
k

(Dxkα)g(ξ1 + iξ2)ξk − 2r4
−2

∑
l

α g(Dxlg) (ξ1 + iξ2)ξl|ξ|2 + r3
−2α

2(ξ1 + iξ2)2 .

(4.3.54)

Finally we substitute (4.3.52) and (4.3.54) into the recursive formula for r−4. Re-

arranging and collecting like terms, we obtain

r−4 = −r−2

∑
|µ|+k=2

1

µ!
∂µξ a2−kD

µ
xr−2︸ ︷︷ ︸

equation (4.3.52)

−r−2

∑
|µ|+k=1

1

µ!
∂µξ a2−kD

µ
xr−3︸ ︷︷ ︸

equation (4.3.54)

= 12r5
−2

∑
k,l

g2(Dxkg)(Dxlg) ξkξl|ξ|4 − 2r4
−2

∑
k

g (Dxkg)2 |ξ|4

− 4r4
−2

∑
k,l

g(Dxkg)(Dxlg) ξkξl|ξ|2 − 4r4
−2

∑
k,l

g2(D2
xk,xl

g) ξkξl|ξ|2

− 6r4
−2

∑
k

α g(Dxkg)(ξ1 + iξ2)ξk|ξ|2

+ r3
−2

∑
k

g(D2
xk
g) |ξ|2 + 2r3

−2

∑
k

(Dxkα)g(ξ1 + iξ2)ξk
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+ r3
−2 α(Dx1g)|ξ|2 + ir3

−2α(Dx2g)|ξ|2 + r3
−2α

2(ξ1 + iξ2)2 , (4.3.55)

as required.

Note that the homogeneous terms ak and ãk (listed in (4.3.29) respectively (4.3.32))

differ only in the coefficients α and α̃, so replacing α by α̃ in the above formulas

immediately gives the first three terms for the asymptotic series of the local resolvent

symbol corresponding to the operator (4̃−λ)−1. This will be important in the next

section where we derive the Riemann-Roch formula.

Corollary 4.3.4. Let r̃(x, ξ, λ) denote the local symbol of the resolvent operator

(4̃−λ)−1, then the first three resolvent symbols in the asymptotic series r̃(x, ξ, λ) v∑
j≥0 r̃−2−j(x, ξ, λ) are given by

r̃−2 = (g|ξ|2 − λ)−1 (4.3.56)

r̃−3 = 2r̃ 3
−2

∑
l

g(Dxlg) ξl|ξ|2 − r̃ 2
−2α̃(ξ1 + iξ2) (4.3.57)

and

r̃−4 = 12r̃ 5
−2

∑
k,l

g2(Dxkg)(Dxlg) ξkξl|ξ|4 − 2r̃ 4
−2

∑
k

g (Dxkg)2 |ξ|4

− 4r̃ 4
−2

∑
k,l

g(Dxkg)(Dxlg) ξkξl|ξ|2 − 4r̃ 4
−2

∑
k,l

g2(D2
xk,xl

g) ξkξl|ξ|2

− 6r̃ 4
−2

∑
k

α̃ g(Dxkg)(ξ1 + iξ2)ξk|ξ|2

+ r̃ 3
−2

∑
k

g(D2
xk
g) |ξ|2 + 2r̃ 3

−2

∑
k

(Dxk α̃)g(ξ1 + iξ2)ξk

+ r̃ 3
−2 α̃(Dx1g)|ξ|2 + ir̃ 3

−2α̃(Dx2g)|ξ|2 + r̃ 3
−2α̃

2(ξ1 + iξ2)2. (4.3.58)

4.3.3 The Riemann-Roch formula

We can now come back to our original motivation for computing the resolvent

symbols above, which is to derive the Riemann Roch formula written in the form
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(4.3.16). Recall (c.f. (4.3.20)) that the entry point for the resolvent symbols comes

from the short time heat trace expansion via the identity

Tr(e−t4)− Tr(e−t4̃) = dim E4(0)− dim E4̃(0) (t > 0) .

For small t > 0 we may replace the left hand side by the respective expansions∑
j≥0

c−2+j
2
t
−2+j

2 −
∑
j≥0

c̃−2+j
2
t
−2+j

2 = dim E4(0)− dim E4̃(0) ,

and since the right hand side does not depend on t one can deduce that c−2+j
2
−

c̃−2+j
2

= 0 whenever j 6= 2 whilst

c0 − c̃0 =

∫
M

tr (c0 − c̃0)(x) |dx| = dim E4(0)− dim E4̃(0) . (4.3.59)

Hence, if we can show that∫
M

tr (c0 − c̃0)(x) |dx| = 1

2πi

∫
M

∂∂̄ log(det E) +
n

4πi

∫
M

∂∂̄ log h (4.3.60)

then we arrive at the Riemann Roch formula.

Before we start the calculations let us note some general properties that we

shall need. First we recall the identity (4.2.48) here for convenience (adjusted to

the current setting):

i

2π

∫
γ

e−λ(g|ξ|2 − λ)−kdλ =
1

(k − 1)!
e−g|ξ|

2

. (4.3.61)

We also require (4.2.57) again, this time with a non-trivial positive parameter β > 0

(which already appeared in (4.2.54)). Since we are in the special case of dimension

2 let us recall the here only for that situation:∫
R2

ξ2n1
1 ξ2n2

2 e−β|ξ|
2

dξ =
Γ(n1 + 1

2
) Γ(n2 + 1

2
)

β(n1+ 1
2

)+(n2+ 1
2

)
(β > 0) (4.3.62)

where n1, n2 denote positive integers. The powers in the polynomial term in (4.3.62)

are even; for the odd case we have∫
R2

ξn1
1 ξn2

2 e−β|ξ|
2

dξ = 0 (at least one of n1, n2 odd). (4.3.63)
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Finally we list some basic properties of the trace and determinant of finite - dimen-

sional matrices. For any invertible n × n matrices P,Q depending on a parameter

t and for any scalar λ one has

tr(P + λQ) = tr(P ) + λtr(Q)

tr(P T ) = tr(P )

det(P T ) = det(P )

tr(PQ) = tr(QP )

∂t log detP = tr(P−1∂tP )

tr (∂tP ) = ∂ttr(P ) .

(4.3.64)

where ∂t = ∂/∂t.

Using these observations let us next determine the heat coefficients (in fact for the

Riemann Roch formula we only need h0).

The heat coefficient c−1 This calculation here is relatively short using the inte-

grals above, indeed from (4.3.23) and (4.3.33) one has

c−1(x) =

∫
R2

(
i

2π

∫
γ

e−λ(g|ξ|2 − λ)−1 dλ

)
d̄ξ

and the inner integral is evaluated by (4.3.61) so that the right hand side is

=

∫
R2

e−g|ξ|
2

d̄ξ (4.3.65)

which in turn simplifies (by (4.3.62)) to

= (4π2g)−1 Γ(
1

2
)Γ(

1

2
) = (4π g)−1 . (4.3.66)

Now from (4.3.26) we see that (4g)−1 = h. Also, under the identification z =

x1 + ix2, z̄ = x1 − ix2 we have i
2
dz ∧ dz̄ = dx1dx2. Thus, locally

tr(c−1(x)) dx1dx2 = tr((4π g)−1In) dx1dx2

=
tr(In)

π
h
i

2
dz ∧ dz̄ =

n

π
dVol,
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therefore

c−1 =

∫
M

tr (c−1(x)) |dx| = n

π

∫
M

dVol =
n

π
Vol(M). (4.3.67)

The heat coefficient c− 1
2

The next heat coefficient c− 1
2

evaluates to zero since

all summands of

r−3 = 2r3
−2

∑
l

g(Dxlg) ξl|ξ|2 − r2
−2α(ξ1 + iξ2)

involve odd powers of ξi, so the evaluation

c− 1
2
(x) =

∫
R2

∫
γ

e−λ r−3(x, ξ, λ) d̄λd̄ξ = 0 (4.3.68)

follows from (4.3.63) and hence

c− 1
2

=

∫
M

tr
(
c− 1

2
(x)
)
|dx| = 0 . (4.3.69)

The heat coefficient c0 This is the third heat coefficient (the constant term in

the expansion). We need to evaluate

c0(x) =

∫
R2

∫
γ

e−λ r−4(x, ξ, λ) d̄λd̄ξ . (4.3.70)

The full expression for r−4 is given in (4.3.35), but for the computation we only

need to take into account the terms that contain no odd powers of ξ (odd powers

integrate to zero by (4.3.63)). Thus substituting the relevant terms for r−4 gives

c0(x) =

∫
R2

∫
γ

e−λ
(

12r5
−2

∑
k

g2(Dxkg)2 ξ2
k|ξ|4 − 2r4

−2

∑
k

g (Dxkg)2 |ξ|4

− 4r4
−2

∑
k

g(Dxkg)2 ξ2
k|ξ|2 − 4r4

−2

∑
k

g2(D2
xk
g) ξ2

k|ξ|2

+ r3
−2

∑
k

g(D2
xk
g) |ξ|2

− 6r4
−2 α g(Dx1g)ξ2

1 |ξ|2 − 6ir4
−2 α g(Dx2g)ξ2

2 |ξ|2

+ 2r3
−2(Dx1α)gξ2

1 + 2ir3
−2(Dx2α)gξ2

2

+ r3
−2 α(Dx1g)|ξ|2 + ir3

−2α(Dx2g)|ξ|2 + r3
−2α

2(ξ2
1 − ξ2

2)

)
d̄λd̄ξ .
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Using (4.3.61) to evaluate the contour integral and obtain

c0(x) =

∫
R2

e−g|ξ|
2

(
1

2

∑
k

g2(Dxkg)2 ξ2
k|ξ|4 −

1

3

∑
k

g (Dxkg)2 |ξ|4

− 2

3

∑
k

g(Dxkg)2 ξ2
k|ξ|2 −

2

3

∑
k

g2(D2
xk
g) ξ2

k|ξ|2

+
1

2

∑
k

g(D2
xk
g) |ξ|2

− α g(Dx1g)ξ2
1 |ξ|2 − i α g(Dx2g)ξ2

2 |ξ|2

+ (Dx1α)gξ2
1 + i (Dx2α)gξ2

2

+
1

2
α(Dx1g)|ξ|2 +

1

2
iα(Dx2g)|ξ|2 +

1

2
α2(ξ2

1 − ξ2
2)

)
d̄ξ . (4.3.71)

Next we apply (4.3.62) and (4.2.56) in order compute the Gaussian integrals and

collect like terms; this yields

c0(x) =
1

4π

(
− 1

6
Dx1

(
g−1(Dx1g)

)
− 1

6
Dx2

(
g−1(Dx2g)

)
+

1

2
Dx1

(
g−1α

)
+

1

2
iDx2

(
g−1α

))
. (4.3.72)

Under the identification z = x1 + ix2, z̄ = x1 − ix2, we have Dx1 = −i∂x1 =

−i(∂/∂z + ∂/∂z̄) =: −i(∂z + ∂z̄) and similarly Dx2 = ∂z − ∂z̄. Substituting these as

well as g = (4h)−1 and α = 1
2i

(hET )−1(∂ET/∂z) and rearranging the result gives

c0(x) =
1

4π

(
− 2

3
∂z
(
h−1∂z̄h

)
− 4i∂z̄ (hα)

)
(4.3.73)

= − 1

6π
∂z∂z̄ log h In −

1

2π
∂z̄

(
(ET )−1∂E

T

∂z

)
. (4.3.74)

Finally, we take the trace and apply the properties listed in (4.3.64) together with

the fact that ∂z∂z̄ = ∂z̄∂z to simplify the result:

tr(c0(x)) = − 1

6π
tr (∂z∂z̄ log h In)− 1

2π
tr

(
∂z̄
(
(ET )−1∂E

T

∂z

))
= − n

6π
∂z∂z̄ log h− 1

2π
∂z∂z̄ log detE . (4.3.75)

Hence, locally with dx1dx2 = i
2
dz ∧ dz̄ this gives

tr(c0(x)) dx1dx2 =
n

12πi
∂z∂z̄ log h dz ∧ dz̄ +

1

4πi
∂z∂z̄ log detE dz ∧ dz̄
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and therefore

c0 =

∫
M

tr (c0(x)) |dx| =
1

4πi

∫
M

∂∂̄ log detE +
n

12πi

∫
M

∂∂̄ log h . (4.3.76)

4.3.4 Derivation of the Riemann Roch formula

Of course the computations above can also be carried out for the heat coefficients

c̃−2+j
2

that constitute the asymptotic expansion

Tr
(
e−t4̃

)
v
∑
j≥0

c̃−2+j
2
t
−2+j

2 , (4.3.77)

however, instead of doing so one can make use of the fact that the local symbols

(4.3.28) and (4.3.30) for the operators 4 and 4̃ differ only in the first order coef-

ficient. This means that the polynomials r−2−j, r̃−2−j are identical except in terms

involving α, α̃ respectively. Thus we can for instance deduce immediately that

c̃−1 =
n

π
Vol(M) (4.3.78)

because r−2 = r̃−2. The second heat coefficient associated wit 4̃ vanishes

c̃− 1
2

= 0 , (4.3.79)

indeed this follows from (4.3.63) together with the observation that r̃−3 consists

only of odd monomials in ξ. For the third heat coefficient c̃0 (the constant term in

the heat trace expansion) we may simply replace α by α̃ in (4.3.73) and proceed

from there. Thus, recalling that h is scalar and therefore commutes, we compute

c̃0(x) =
1

4π

(
−2

3
∂z
(
h−1∂z̄h

)
− 4i∂z̄ (hα̃)

)
=

1

3π
∂z∂z̄ log h In +

1

2π
∂z̄

(
∂E

∂z
E−1

)
. (4.3.80)

Again we take the trace and use the properties (4.3.64) as well as the equation

∂z∂z̄ = ∂z̄∂z to get

tr(c̃0(x)) =
n

3π
∂z∂z̄ log h+

1

2π
∂z∂z̄ log detE (4.3.81)
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and with dx1dx2 = i
2
dz ∧ dz̄ this then gives the local formula

tr(c̃0(x))|dx| = − n

6πi
∂z∂z̄ log h dz ∧ dz̄ − 1

4πi
∂z∂z̄ log detE dz ∧ dz̄ . (4.3.82)

Thus

c̃0 =

∫
M

tr (c̃0(x)) |dx| = − 1

4πi

∫
M

∂∂̄ log detE − n

6πi

∫
M

∂∂̄ log h . (4.3.83)

The Riemann Roch formula Finally, recall from (4.3.60) that the Riemann

Roch Formula is equivalent to∫
M

tr (c0 − c̃0)(x) |dx| = 1

2πi

∫
M

∂∂̄ log(det E) +
n

4πi

∫
M

∂∂̄ log h . (4.3.84)

This equation now follows immediately from our computations for the heat coeffi-

cients, namely we calculated

c0 =

∫
M

tr (c0(x)) |dx| = 1

4πi

∫
M

∂∂̄ log detE +
n

12πi

∫
M

∂∂̄ log h

and

c̃0 =

∫
M

tr (c̃0(x)) |dx| = − 1

4πi

∫
M

∂∂̄ log detE − n

6πi

∫
M

∂∂̄ log h .

By subtracting the second from the first equation we arrive at (4.3.84).
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Chapter 5

On log-polyhomogeneous symbols

and the canonical trace over a

simple warped product

5.1 Introduction

In this final chapter we report on work in progress related to a current research

project. Let π : E →M be a smooth vector bundle over an n-dimensional compact

Riemannian manifold M without boundary and consider a classical pseudodiffer-

ential operator (ψdo) A : C∞(M ;E)→ C∞(M ;E) with symbol σ. Provided A has

non-integer order, the canonical trace TR(A), first introduced by Kontsevich and

Vishik [25], is defined by the formula

TR(A) :=

∫
M

Trx(A) dx (5.1.1)

where dx identifies locally with Lebesgue measure and

TRx(A) := −
∫
T ∗xM

trx
(
σ(x, ξ)

)
d̄ξ (5.1.2)

is a finite - part integral obtained from the local asymptotic expansion of σ (the finite

part integral is defined as the (unique) constant term in an asymptotic expansion
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of a divergent integral). The canonical trace extends the classical trace, which is

well defined on smoothing operators, to pseudodifferential operators whose order is

not contained in Z ∩ [− dimM,∞).

In this chapter we study an extension of this canonical trace to pseudodifferential

operators with suitable symbols defined over a simple warped product. The latter

is a product manifold M := [0,∞) ×M , where M is a compact manifold without

boundary, endowed with a metric of the form dr2 + h2(r)g where g is a metric on

M and h : [0,∞) → R is a smooth positive function. For the current study we

shall restrict our attention to those cases where h → ∞ as r → ∞. Examples are

metrics where h(r) = rk (k a positive integer, the case k = 2 is the metric cone), or

hyperbolic space, where h(r) = cosh(r).

The symbols we shall admit are log - polyhomogeneous as defined by Lesch

in [27] and moreover exhibit the log - polyhomogeneous property in the ”radial”

space variable that parametrises the factor [0,∞). Defining such symbol classes

and proving they are closed under the usual symbol product will be the topic of

Section 5.2. Once we have established a symbol calculus we can consider possible

extensions of the canonical trace. To this end in Section 5.3 and 5.4 we study finite

- part integrals (the standard technique used in the context of the canonical trace)

to give meaning to the expression∫
M

∫
T ∗pM

σ(p, θ) d̄θdrdx (5.1.3)

which is divergent in general due to the non-compact factor [0,∞) inM. Here σ is

an element of the symbol class we consider, T ∗pM denotes the cotangent space at a

point p in M, and d̄θ = (2π)−n−1dθ is normalised Lebesgue measure. One way to

proceed here is to apply a further finite-part integral and set∫
M

∫
T ∗pM

σ(p, θ) d̄θdrdx := −
∫

[0,∞)

TRr(Op[σ]) dr (5.1.4)

where Op[σ] is the pseudodifferential operator acting on a function u by Op[σ](u) =

F−1[σ(θ)û(θ)] (here F−1 denotes inverse Fourier transformation whilst f 7→ f̂
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stands for Fourier transformation and variables not involved in this process are

omitted), and

TRr(A) =

∫
M

TR(r,x)(A) dx (5.1.5)

is a parametrised family of canonical traces analogous to (5.1.1) and (5.1.2). In

fact, making this work is what motivates the assumption of an additional log-

polyhomogeneous expansion of our symbols in the radial direction. In Section 5.4.1

we find that (5.1.5) defines a global density under certain circumstances that are

different but analogous to the corresponding situation on closed manifolds (as de-

scribed for example in [37, Proposition 1.10]), in particular the condition of non-

integer order remains sufficient whilst the condition of even - even symbols applies

to even - dimensional manifolds M whereas the condition of even - odd symbols is

sufficient for odd - dimension M (this is reversed in the standard setting). In such

cases one can express the right hand side of (5.1.4) in terms of integrals over the

factors involving strongly polyhomogeneous symbols as defined by G. Grubb and

R. Seeley [16], this is shown in Theorem 5.4.5.

Finally in Section 5.5 we turn our attention to the study of an example which is

of particular interest to us, namely the resolvent and complex powers of the Laplace

- Beltrami operator on a warped product. For the moment we concentrate here on

the symbol expansion; an analysis of the corresponding canonical trace will follow.

5.2 Symbols of log-polyhomogeneous growth on

[0,∞)×M

Let us first recall basic definitions and relevant properties of classical and log -

polyhomogeneous symbol classes on open subsets of Euclidean space, for a more

detailed exposition of the standard theory see [41, 27].

Let U ⊂ Rn be an open subset of Rn, let µ ∈ C, let V be a finite dimen-

sional normed vector space. A smooth function a(x, ξ) ∈ C∞
(
U × Rn,End(V )

) ∼=
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C∞
(
T ∗U,End(V )

)
is an element of the symbol class Sµ(U, V ) if for any compact

subset K ⊂ U and any multi - indices α, β there exists a constant CαβK so that for

all x ∈ K and ξ ∈ Rn

∣∣∣∂αx∂βξ a(x, ξ)
∣∣∣ ≤ CαβK(1 + |ξ|)Re(µ)−|β| (5.2.1)

with respect to a choice of norm |·| on End(V ). The parameter µ ∈ C is called the

order of a. We denote

S(U, V ) :=
⋃
µ∈C

S µ(U, V ) and S−∞(U, V ) :=
⋂
r∈R

S r(U, V ) .

A classical symbol of order µ is a symbol a(x, ξ) ∈ Sµ(U, V ) for which there exists

an asymptotic expansion

a(x, ξ) vξ→∞
∑
j≥0

aµ−j(x, ξ)

where each term aµ−j is a symbol of order µ− j and homogeneous in ξ for |ξ| ≥ 1

of order µ− j, that is aµ−j(x, tξ) = tµ−j(x, ξ) for t ≥ 1 and |ξ| ≥ 1.

Remark 5.2.1. The meaning of vξ→∞ is that for ξ large and any N ,

a(x, ξ)−
N−1∑
j=0

aµ−j(x, ξ) ∈ Sµ−N(U, V ) .

Equivalently, given any positive integerN there exist functions aµ−j(x, ξ) ∈ Sµ−j(U, V ),

0 ≤ j ≤ N which are ξ - homogeneous of degree µ− j (as described above), and a

symbol aN ∈ Sµ−N(U, V ) such that

a(x, ξ) =
N−1∑
j=0

aµ−j(x, ξ) + aN(x, ξ) . (5.2.2)

The set of classical symbols of order µ is denoted by CSµ(U, V ), furthermore we set

CS(U, V ) :=
⋃
µ∈C

CSµ(U, V ) .
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We also need the larger class of log - polyhomogeneous symbols introduced by

Lesch [27]. For these we choose a C∞ function [·] : Rn → (0,∞) that agrees with

the usual Euclidean norm outside the unit ball, that is [y] = |y| for y /∈ B1(0) =

{y ∈ Rn : |y| ≤ 1}. Keeping all the previous notation, fix in addition a non -

negative integer k. A log - polyhomogeneous symbol of order µ ∈ C and log degree

k is a function a(x, ξ) ∈ C∞
(
T ∗U,End(V )

)
for which there exists an asymptotic

expansion

a(x, ξ) vξ→∞
∑
j≥0

aµ−j(x, ξ) (5.2.3)

in the sense that for large ξ, any positive integer N and any ε > 0,

a(x, ξ)−
N−1∑
j=0

aµ−j(x, ξ)

is an element of Sµ−N+ε(U, V ). Furthermore, each term in the expansion on the

right of (5.2.3) is assumed to be representable in the form

aµ−j(x, ξ) =
k∑
i=0

aµ−j,i(x, ξ) logi[ξ] (5.2.4)

with aµ−j,i(x, ξ) homogeneous in ξ of degree µ− j as described above. Equivalently,

this means that for any positive integer N we can write a(x, ξ) in the form

aµ−j(x, ξ) =
N−1∑
j=0

aµ−j(x, ξ)︸ ︷︷ ︸
in C∞

(
T∗U,End(V )

)
+ aN(x, ξ)︸ ︷︷ ︸

in Sµ−N+ε

any ε > 0

(5.2.5)

=
N−1∑
j=0

k∑
i=0

aµ−j,i(x, ξ)︸ ︷︷ ︸
ξ-homog. deg.
µ− j for |ξ| ≥ 1

logi[ξ] + aN(x, ξ)︸ ︷︷ ︸
in Sµ−N+ε

any ε > 0

. (5.2.6)

Provided a(x, ξ) satisfies the above condition we write

a(x, ξ) v
∞∑
j=0

aµ−j(x, ξ) =
∞∑
j=0

k∑
i=0

aµ−j,i(x, ξ) logi[ξ] .

We denote by LSµ,k(U, V ) the set of log - polyhomogeneous symbols of order µ and

log - degree k and set

LS(U, V ) :=
⋃
k∈N0

LS∗,k(U, V ) where LS∗,k(U, V ) :=
⋃
µ∈C

LSµ,k(U, V )
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Remark 5.2.2. The class of log - polyhomogeneous symbols incorporates the class

of classical symbols since CS(U, V ) = LS ∗,0(U, V ).

Let us now proceed to the class of symbols that is adapted to our case of interest. We

are dealing with a non - compact, cylindrical manifold and the non-compactness

introduces new problems as far as traces of pseudodifferential operators are con-

cerned, since their definition involves integration over the manifold. The idea is to

require that the local symbols and their derivatives grow log - polyhomogeneously in

the ”radial” direction, a condition that is already present in the cotangent variable

ξ. Then one can adapt regularisation techniques used to deal with divergences of ξ

- integrals over T ∗xU to regularise the integral along the radial direction.

First we set up a notion of ”log-polyhomogeneous radial growth” similar to the

kind of growth exhibited by Lesch’s symbols in the cotangent variables. Fix a

smooth positive function f : [0,∞)→ R. For illustrative purposes we shall in later

sections describe a concrete example with f(r) = r for r ≥ 1/2. It is important to

keep in mind that the function f fixed here is not necessarily related to the warping

function that appears in the metric of a warped product.

Definition 5.2.3. Let O = [0,∞) × U with U an open subset in Rn. We denote

a point in O by (r, x) where x ∈ U . A log - polyhomogeneous symbol of (double)

order (ν, µ) ∈ C×C and log - degree (k1, k2) is a member of the class LSµ,k1(O, V )

such that for each function aµ−j,i(r, x, ξ) in the asymptotic expansion

a(r, x, ξ) vξ→∞

∞∑
j=0

k1∑
i=0

aµ−j,i(r, x, ξ) logi[ξ] (5.2.7)

(here ξ refers to the components of a vector cotangent to [0,∞) × U at the point

(r, x)) there exists an additional asymptotic expansion

aµ−j,i(r, x, ξ) vr→∞
∑
s≥0

aν−s,µ−j,i(r, x, ξ) , (5.2.8)

where, as before in the ξ-direction, the summands on the right hand side of (5.2.8)
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are assumed smooth and to have a representation of the form

aν−s,µ−j,i(r, x, ξ) =

k2∑
l=0

aν−s,l,µ−j,i(f(r), x, ξ) logl f(r) (5.2.9)

where in addition to the usual ξ-homogeneity

aν−s,l,µ−j,i(f(r), x, αξ) = αµ−jaν−s,l,µ−j,i(f(r), x, ξ) for α ≥ 1, |ξ| ≥ 1

the coefficients exhibit homogeneity in f(r) of decreasing degree, concretely

aν−s,l,µ−j,i(f(r), x, ξ) = f(r)ν−saν−s,l,µ−j,i(1, x, ξ) for r ≥ 1 . (5.2.10)

Provided a(r, x, ξ) satisfies the above condition we write

a(r, x, ξ) v
∞∑
j=0

k1∑
i=0

∞∑
s=0

k2∑
l=0

aν−s,l,µ−j,i(f(r), x, ξ) logl f(r) logi[ξ] (5.2.11)

and denote by L2Sν,µ,k1,k2(O, V ) the set of log - polyhomogeneous symbols of order

(ν, µ) ∈ C× C and log - degree (k1, k2). Finally, we also set

L2S(O, V ) :=
⋃
k1∈N0

⋃
k2∈N0

L2S∗,∗,k1,k2(O, V ) (5.2.12)

where

L2S∗,∗,k1,k2(O, V ) :=
⋃
ν∈C

⋃
µ∈C

L2S ν,µ,k1,k2(O, V ) . (5.2.13)

With respect to composition and differentiation the following algebraic properties

are satisfied by this class:

Proposition 5.2.4. If a ∈ L2Sν,µ,k1,k2(O, V ) and b ∈ L2Sν
′,µ′,k′1,k

′
2(O, V ), then for

any multi - index α = (α0, α1, . . . , αn) ∈ Nn+1 we have

1. ∂ α(t,x)a ∈ L2Sν−α0,µ,k1,k2(O, V ) where t = f(r),

2. ∂αξ a ∈ L2Sν,µ−|α|,k1,k2(O, V )

3. a · b ∈ L2Sν+ν′,µ+µ′,k1+k′1,k2+k′2(O, V ) .
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Proof. For (1) and (2) we conduct the differentiation on an asymptotic expansion

and show that the resulting expansion has the desired properties. Split ∂α(t,x) into

∂α0
t and the remaining differentiation with respect to x, that is ∂α(t,x) = ∂α0

t ∂
α′
x where

∂α
′

x = ∂α1
x1
· · · ∂αnxn . Then

∂α(t,x)a v
∞∑
j=0

k1∑
i=0

∞∑
s=0

k2∑
l=0

∂α0
t

(
∂α
′

x aν−s,l,µ−j,i(t, x, ξ) logl t
)︸ ︷︷ ︸

(∗) ξ-homogeneous of degree µ− j

logi[ξ] . (5.2.14)

Furthermore the basic formula

∂α0
t

(
g(t) logl t

)
=

α0∑
p=0

(
α

p

)
∂α0−p
t g(t) · ∂pt logl t (5.2.15)

with

∂pt logl t = t−p
l−1∑
k=0

dpk logk t (5.2.16)

where the dpk are constants (possibly = 0) implies that the homogeneity in t is as

claimed, since for a function g(t) that is homogeneous in t of order ν − s we then

have

∂α0
t

(
g(t) logl t

)
=

l−1∑
k=0

(
α0∑
p=0

dpk

(
α0

p

)
t−p∂α0−p

t g(t)

)
︸ ︷︷ ︸

t-homog. degree ν − s− α0

logk t . (5.2.17)

Thus the expression (∗) in (5.2.14) is a polynomial in log t of degree l whose coeffi-

cients are t-homogeneous of degree ν− s−α0. After collecting terms corresponding

to the factor logl t for 0 ≤ l ≤ k2 we therefore obtain an asymptotic expansion for

∂α(t,x)a of the required form.

Next we consider

∂αξ a(r, x, ξ) v
∞∑
j=0

k1∑
i=0

∞∑
s=0

k2∑
l=0

∂αξ

(
aν−s,l,µ−j,i(f(r), x, ξ) logl f(r) logi[ξ]

)
=
∞∑
j=0

k1∑
l=0

∞∑
s=0

k2∑
i=0

(∑
β≤α

(
α

β

)
∂βξ aν−s,l,µ−j,i(f(r), x, ξ)︸ ︷︷ ︸

(∗∗)

logl f(r) ∂α−βξ logi[ξ]
)
.

(5.2.18)
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As in the case above, the log - degree k1 will not change. Furthermore (∗∗) is ξ-

homogeneous of order µ− j − |β| for |ξ| ≥ 1 whilst

∂α−βξ logi[ξ]
(∗)
= ∂α−βξ logi |ξ| ((∗) for |ξ| ≥ 1)

= |ξ||β|−|α|
i−1∑

k=i−|α−β|

dk logk |ξ| (some constants dk)

contributes a factor that is ξ- homogeneous of order |β| − |α| for |ξ| ≥ 1, so overall

the ξ-homogeneity of each summand above is µ − j − |α|. After collecting terms

corresponding to the factor logi[ξ] for 1 ≤ i ≤ k1 we obtain an asymptotic expansion

for ∂αξ a of the required form.

Finally, for the composition property (3) we recall from [41, Theorem 3.4] the

formula

(a · b)(r, x, ξ) vξ→∞
∑
α

1

α!
∂αξ a(r, x, ξ)Dα

(r,x)b(r, x, ξ) (5.2.19)

where Dα
(r,x) = (−i)|α|∂α(r,x). Now if a is an element in L2Sν,µ,k1,k2(O, V ) and b belongs

to L2Sν
′,µ′,k′1,k

′
2(O, V ) then in particular a and b are log - polyhomogeneous symbols

in ξ of order µ and log - degree k1 respectively µ′ and log - degree k′1. For such

symbols we take from [27] that the product (a ·b)(r, x, ξ) is a log - polyhomogeneous

symbol (in ξ) of order µ + µ′ and log -degree k1 + k′1. This remains true here as

well since the log - polyhomogeneity in ξ is independent from the additional log -

polyhomogeneity in f(r). So it only remains to show that the log - polyhomogeneity

in f(r) is satisfied. This can be seen from substituting the asymptotic expansions

∂αξ a(r, x, ξ) v
∞∑
j=0

k1∑
i=0

∞∑
s=0

k2∑
l=0

uν−s,l,µ−|α|−j,i(f(r), x, ξ) logl f(r) logi[ξ] (5.2.20)

respectively (again with t = f(r))

Dα
(t,x)b(r, x, ξ) v

∞∑
j′=0

k′1∑
i′=0

∞∑
s′=0

k′2∑
l′=0

vν′−α0−s′,l′,µ′−j′,i′(f(r), x, ξ) logl
′
f(r) logi

′
[ξ]

(5.2.21)
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into (5.2.19). First we obtain∑
α

1

α!
∂αξ a(r, x, ξ)Dα

(r,x)b(r, x, ξ) v

∑
α

1

α!

(
∞∑
j=0

k1∑
i=0

∞∑
s=0

k2∑
l=0

uν−s,l,µ−|α|−j,i(f(r), x, ξ) logl f(r) logi[ξ]

)

×

 ∞∑
j′=0

k′1∑
i′=0

∞∑
s′=0

k′2∑
l′=0

vν′−α0−s′,l′,µ′−j′,i′(f(r), x, ξ) logl
′
f(r) logi

′
[ξ]


Now if we expand partial sums and collect terms according to homogeneity and

log - degree this reduces to

=
∞∑

|α|+j+j′=0

k1+k′1∑
i+i′=0

∞∑
α1+s+s′=0

k2+k′2∑
l+l′=0

1

α!
uν−s,l,µ−|α|−j,i(f(r), x, ξ)

× vν′−α1−s′,l′,µ′−j′,i′(f(r), x, ξ) logl+l
′
f(r) logi+i

′
[ξ]

(5.2.22)

where

1

α!
uν−s,l,µ−|α|−j,i(f(r), x, ξ)× vν′−α1−s′,l′,µ′−j′,i′(f(r), x, ξ) (5.2.23)

is ξ-homogeneous of order µ + µ′ − (|α| + j + j′) and f(r)-homogeneous of order

ν + ν ′ − (α1 + s + s′), i.e. the above is an asymptotic expansion of the required

form.

Let us finish this section by pointing out that symbols of the class L2Sν,µ,k1,k2(O, V )

are not invariant under a change of variable (τ, y) = F (r, x). To see this we recall

the following result (which establishes the coordinate invariance of the leading term

associated with standard symbols):

Theorem 5.2.5 ([41], Theorem 4.2). Let U be an open subset of Rn and consider

the pseudodifferential operator A given by

Au(x) =

∫
U

∫
Rn
e(x−y)·ξa(x, y, ξ)u(y) dyd̄ξ
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with amplitude a(x, y, ξ) ∈ Sµ(U × U, V ) and symbol

σ(x, ξ) vξ→∞
∑
α

1

α!
∂αξD

α
y a(x, y, ξ)|y=x .

If F : U → F (U) ⊂ Rn is a diffeomorphism and Ã is the pseudodifferential operator

defined by

Ãf =
(
A(f ◦ F )

)
◦ F−1

then the symbol σ̃ of Ã has the asymptotic expansion

σ̃(y, η)|y=F (x) vξ→∞
∑
α

1

α!
∂αξ σ(x, F T

∗ (x)η) ·Dα
z e

iGF (z)·η|z=x (5.2.24)

where F∗ denotes the derivative of F and

G(z) = F (z)− F (x)− F∗(x)(z − x) .

If we were to apply this result to a symbol from the class L2Sν,µ,k1,k2(O, V ) with

a diffeomorphism (r, x) 7→ F (r, x) then, due to the derivative terms that are created

by Dα
(λ,z)e

iGF (λ,z)·η|(λ,z)=(r,x), the formula (5.2.24) produces an asymptotic expansion

that does not have the required form (5.2.11).

However the operators we associate to our symbols later on are parametrised

families of pseudodifferential operators over the factor M so we shall consider dif-

feomorphisms of the form x 7→ F (x) where the parameter r is left unchanged. In

this case the additional logarithmic scaling in the asymptotic expansion is left intact

and the change of variable result in [27, Proposition 3.5] carries over to our setting.

5.3 Finite-part integrals of symbols

In view of traces for operators with symbols from the class L2S(O, V ) there are two

divergence problems one has to address. Let a(r, x, ξ) ∈ L2Sν,µ,k1,k2(O, V ). First,

locally for a fixed point (r, x) ∈ O = [0,∞)× U , with U ⊂ Rn, the integral∫
T ∗

(r,x)
O
a(r, x, ξ)d̄ξ (5.3.1)
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is not necessarily convergent. This issue is of course already present when dealing

with log - polyhomogeneous symbols a(x, ξ) ∈ LSµ,k(U, V ) over closed manifolds.

The usual approach to overcome the problem in this case is to regularise (5.3.1) via

a finite - part integral

LSµ,k(U, V ) 3 a(x, ξ) 7−→ −
∫
T ∗xU

a(x, ξ) d̄ξ := K(x) (5.3.2)

where K(x) is the constant term in the asymptotic expansion∫
B∗x(0,R)

a(x, ξ) d̄ξ vR→∞ K(x) + (terms that diverge as R→∞) . (5.3.3)

The fact that the above expansion exists for such symbols was shown by Lesch

in [27] from which we shall recall the essential points of the derivation in the next

section. This regularisation procedure works likewise for the integral (5.3.1) because

the symbol a(r, x, ξ) is log - polyhomogeneous with respect to ξ.

Secondly, because of the non-compact factor [0,∞) there is a divergence question

when we integrate over the underlying manifold; that is we need to make sense of∫
[0,∞)×M

(
−
∫
T ∗xU

a(r, x, ξ)d̄ξ

)
dxdr .

Since the growth behaviour of a(r, x, ξ) in the r-direction is similar to the growth

behaviour in the cotangent variable ξ it is natural to adopt an approach analogous

to (5.3.2) and take a finite-part integral.

5.3.1 Preliminaries

Suppose a(x, ξ) ∈ LSµ,k(U, V ) is a log - polyhomogeneous symbol defined on an

open subset U ⊂ Rn. The integral
∫
T ∗xU

a(x, ξ)d̄ξ diverges if Re(µ) ≥ −n, but one

way to extract a number nevertheless is to define a finite - part integral −
∫

, based

on the following Lemma.
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Lemma 5.3.1 (Asymptotic expansion for a ξ-integral of a log-polyhomogeneous

symbol [27]). For any

a(x, ξ) v
∞∑
j=0

aµ−j(x, ξ) =
∞∑
j=0

k∑
i=0

aµ−j,i(x, ξ) logi[ξ]

in LSµ,k(U, V ) there is an asymptotic expansion as R→∞∫
B∗x(0,R)

a(x, ξ)d̄ξ v K(x) +
∞∑
j=0

µ−j 6=−n

Fµ−j
(

logR
)
Rn+µ−j + Π

(
a−n, logR) (5.3.4)

where K(x) depends on x alone and the remaining terms are described as follows.

The coefficients of the sum are given by

Fµ−j
(

logR
)

=
k∑
i=0

Pi(aµ−j,i)(logR)

where each Pi is a polynomial of degree i whose coefficients cm depend on aµ−j,i

(concretely Pi(aµ−j,i)(X) =
∑i

m=0 cm(aµ−j,i)X
m). The final term in the expansion

is given by

Π
(
a−n, logR) =

k∑
i=0

1

i+ 1

(∫
S∗xU

a−n,i(x, ξ)d̄Sξ

)
log i+1R

where S∗xU is the unit sphere in T ∗xU .

The constant term in (5.3.4) is defined to be the value of the finite - part integral

of a(x, ξ), that is

Definition 5.3.2. The finite - part integral at x ∈ U associates to a log-polyhomogeneous

symbol the constant term in the asymptotic expansion (5.3.4),

LSµ,k(U, V ) 3 a(x, ξ) 7−→ −
∫
T ∗xU

a(x, ξ)d̄ξ := K(x) . (5.3.5)

There is a formula for the finite part integral as described in the next lemma.

152



Lemma 5.3.3. For a(x, ξ) ∈ LSµ,k(U, V ) and any N > Re(µ) + n one has

−
∫
T ∗xU

a(x, ξ)d̄ξ =
N∑
j=0

∫
B∗x(0,1)

aµ−j(x, ξ)d̄ξ +

∫
T ∗xU

aN(x, ξ)d̄ξ

+
N∑
j=0

µ−j 6=−n

k∑
i=0

(−1)i+1i!

(µ− j + n)i+1

∫
S∗xU

aµ−j,i(x, ξ)d̄Sξ . (5.3.6)

Proof. See Section 5.6, the proof given there follows [37] (Let us point out here that

the integral
∫
T ∗xU

aN(x, ξ)d̄ξ converges because aN ∈ SRe(µ)−N−1+ε for any ε > 0 and

hence from the definition of the symbol classes we see that aN is integrable over

T ∗xU
∼= Rn.)

An important property of the finite-part integral is that, in general, it is not in-

variant under a change of variable. The following Proposition is stated in [27] and

gives precise information as to when the finite part integral can be defined globally

on a manifold.

Proposition 5.3.4. Let a(x, ξ) ∈ LSν,k(U, V ) be a log - polyhomogeneous symbol of

order ν ∈ C and log degree k. The following identity holds for any A ∈ Gl
(
T ∗xU

)
:

−
∫
T ∗xU

a
(
x,Aξ

)
|A|d̄ξ = −

∫
T ∗xU

a
(
x, ξ
)
d̄ξ

+
k∑
i=0

(−1)i+1

i+ 1

∫
S∗xU

a−n,i(x, ξ) logi+1
∣∣A−1ξ

∣∣ d̄ξ (5.3.7)

where |A| denotes the determinant of A

Proof. See Section 5.7, the proof given there follows [27].

Corollary 5.3.5. The finite - part integral in ξ of a log - polyhomogeneous symbol

a(x, ξ) v
∑∞

j=0

∑k
i=0 aµ−j,i(x, ξ) logi[ξ] can be associated with a global density on the

closed manifold M provided

k∑
i=0

(−1)i+1

i+ 1

∫
S∗xU

a−n,i(x, ξ) logi+1
∣∣A−1ξ

∣∣ d̄ξ = 0 .

for any A ∈ Gl
(
T ∗xU

)
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There are a number of examples in which this condition is satisfied (see also [37,

Def. 1.1 and Prop. 1.10]):

Proposition 5.3.6. Let a(x, ξ) v
∑

j≥0

∑k1

i=0 aµ−j,i(x, ξ) ∈ LSµ,k1(U, V ) and denote

by A = Op[a] the corresponding operator. In each of the following cases

TRx(A) := −
∫
T ∗xM

a(x, ξ)d̄ξ dx (5.3.8)

is a globally defined density on the factor M :

1. the order µ is not an integer ≥ n (where n = dimM)

2. M is odd - dimensional, µ is an integer and a is even - even, that is for each

j ≥ 0,

aµ−j,i(x,−ξ) = (−1)µ−jaµ−j,i(x, ξ)

and this property also holds for all the derivatives of aµ−j,i.

3. M is even - dimensional, µ is an integer and a is even - odd, that is for each

j ≥ 0,

aµ−j,i(x,−ξ) = (−1)µ−j−1aµ−j,i(x, ξ)

and this property also holds for all the derivatives of aµ−j,i.

These results are all we need for now to study analogous definitions in our non-

compact setting.

5.3.2 Finite-part integrals for simple warped products

First note that Lemma 5.3.1 carries over to address the divergence of
∫
T(r,x)O

a(r, x, ξ)d̄ξ,

let us state this here for later reference:
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Lemma 5.3.7. For a(r, x, ξ) ∈ L2Sν,µ,k1,k2(O, V ) and any N > Re(µ) + n + 1 one

has

−
∫
T ∗

(r,x)
O

a(r, x, ξ)d̄ξ =
N−1∑
j=0

∫
B∗

(r,x)
(0,1)

aµ−j(r, x, ξ) d̄ξ +

∫
T ∗

(r,x)
O

aµ−N(r, x, ξ)d̄ξ

+
N∑
j=0

µ−j 6=−(n+1)

k1∑
i=0

(−1)i+1i!

(µ− j + n+ 1)i+1

∫
S∗

(r,x)
O

aµ−j,i(r, x, ξ) d̄Sξ .

(5.3.9)

We substitute this expression into∫
[0,∞)×M

(
−
∫
T ∗

(r,x)
O
a(r, x, ξ) d̄ξ

)
dxdr (5.3.10)

which gives

=

∫
[0,∞)×M

(N−1∑
j=0

∫
B∗

(r,x)
(0,1)

aµ−j(r, x, ξ)d̄ξ +

∫
T ∗

(r,x)
O
aµ−N(r, x, ξ)d̄ξ

+
N∑
j=0

µ−j 6=−(n+1)

k1∑
i=0

(−1)i+1i!

(µ− j + n+ 1)i+1

∫
S∗

(r,x)
O
aµ−j,i(r, x, ξ)d̄Sξ

)
dxdr

(note that the additional dimension yields an additional unit in the denomina-

tor of the factors in the second line). Using the representation aµ−j(r, x, ξ) =∑k1

i=0 aµ−j,i(r, x, ξ) logi[ξ] (0 ≤ j ≤ N) for the terms on the first line and rearrang-

ing the expression turns the above into

=
N−1∑
j=0

k1∑
i=0

∫
[0,∞)×M

(∫
B∗

(r,x)
(0,1)

aµ−j,i(r, x, ξ) logi[ξ] d̄ξ
)
dxdr (5.3.11)

+

k1∑
i=0

∫
[0,∞)×M

(∫
T ∗

(r,x)
O

aµ−N,i(r, x, ξ) logi[ξ] d̄ξ
)
dxdr (5.3.12)

+
N∑
j=0

µ−j 6=−(n+1)

k1∑
i=0

(−1)i+1i!

(µ− j + n+ 1)i+1

∫
[0,∞)×M

(∫
S∗

(r,x)
O

aµ−j,i(r, x, ξ)d̄Sξ
)
dxdr . (5.3.13)
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Finite part for the summands of line (5.3.11)

As in the proof for Lemma 5.3.3 we expand aµ−j,i(r, x, ξ) into log - homogeneous

components using (5.2.8) and substitute into the integral:∫
[0,∞)×M

(∫
B∗

(r,x)
(0,1)

aµ−j,i(r, x, ξ) logi[ξ] d̄ξ
)
dxdr =

S−1∑
s=0

∫
[0,∞)×M

∫
B∗

(r,x)
(0,1)

aν−s,µ−j,i(r, x, ξ) logi[ξ] d̄ξ dxdr

+

∫
[0,∞)×M

∫
B∗

(r,x)
(0,1)

aν−S,µ−j,i(r, x, ξ)) logi[ξ] d̄ξ dxdr (5.3.14)

We choose S so that aν−S,µ−j,i(r, x, ξ) is integrable in r, that is we need ν−Re(S) <

−1. In this case the last term is finite as R → ∞. The remaining terms are

understood via the second log - homogeneous expansion (5.2.9),∫
[0,R]×M

∫
B∗

(r,x)
(0,1)

aν−s,µ−j,i(r, x, ξ) logi[ξ] d̄ξ dxdr

=

∫
[0,R]×M

∫
B∗

(r,x)
(0,1)

( k2∑
l=0

aν−s,l,µ−j,i(f(r), x, ξ) logl f(r)
)

logi[ξ] d̄ξ dxdr . (5.3.15)

Here the homogeneity property (5.2.10) allows us to split up and rewrite the integral

as

=

∫
[0,1]×M

∫
B∗

(r,x)
(0,1)

( k2∑
l=0

aν−s,l,µ−j,i(f(r), x, ξ) logl f(r)
)

logi[ξ] d̄ξ dxdr

+

∫
(1,R]×M

∫
B∗

(r,x)
(0,1)

( k2∑
l=0

aν−s,l,µ−j,i(f(1), x, ξ) logl f(r)
)

logi[ξ] d̄ξ f ν−s(r)dxdr

(5.3.16)

of which the first line is obviously finite. On the other hand, the second line contains

divergent terms depending on f and therefore requires the application of a finite -

part integral. The important point to note here is that the finite part will be com-

pletely determined by properties of the function f , in particular it is independent

of the symbol a(r, x, ξ).
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Thus in full generality we have the following formula for the finite part integral of

the first line in (5.3.11):

N−1∑
j=0

k1∑
i=0

−
∫

[0,∞)×M

(∫
B∗

(r,x)
(0,1)

aµ−j,i(r, x, ξ) logi[ξ] d̄ξ
)
dxdr

=
N−1∑
j=0

k1∑
i=0

S−1∑
s=0

k2∑
l=0

∫
M

dx

∫
B∗

(r,x)
(0,1)

logi[ξ] d̄ξ

∫ 1

0

dr aν−s,l,µ−j,i(f(r), x, ξ) logl f(r)

+
N−1∑
j=0

k1∑
i=0

∫
M

dx

∫
B∗

(r,x)
(0,1)

logi[ξ] d̄ξ

∫ ∞
0

aν−S,µ−j,i(r, x, ξ)) dr

(where S is chosen so that ν − Re(S) < −1, this ensures that aν−S,µ−j,i(r, x, ξ) is

integrable in r; so these are standard integrals, and)

+
N−1∑
j=0

k1∑
i=0

S−1∑
s=0

−
∫

(1,∞)×M

∫
B∗

(r,x)
(0,1)

logi[ξ] d̄ξ

k2∑
l=0

aν−s,l,µ−j,i(f(1), x, ξ) logl f(r) f ν−s(r)dxdr

(5.3.17)

which is a finite part integral.

Example 5.3.8. Suppose f(r) = r for r sufficiently large, (say r ≥ 1/2). Then (c.f.

equations (5.6.5) and (5.6.6))(∫
[1,R)

rν−s logl r dr

)
ν−s=−1

=
1

l + 1
logl+1R (5.3.18)

and for ν − s 6= −1,∫
[1,R)

rν−s logl r dr =
l∑

p=0

(−1)pl!/(l − p)! logl−pR

(ν − s+ 1)p+1
Rν−s+1 +

(−1)l+1l!

(ν − s+ 1)l+1
.

(5.3.19)

The equation (5.3.18) and all terms on the right hand side of (5.6.6), except for the

last, diverge as R → ∞. Thus the finite part of the integral (5.3.16) in the case

where f(r) = r for r ≥ 1/2 is

(
1− δ(ν−s,−1)

) ∫
M

dx

∫
B∗

(r,x)
(0,1)

logi[ξ] d̄ξ

k2∑
l=0

(−1)l+1l!

(ν − s+ 1)l+1
aν−s,l,µ−j,i(1, x, ξ) (5.3.20)
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where δn,m denotes the Kronecker delta that evaluates to 1 if n = m and otherwise

to zero. We therefore obtain the following finite part for (5.3.11):

N−1∑
j=0

k1∑
i=0

−
∫

[0,∞)×M

(∫
B∗

(r,x)
(0,1)

aµ−j,i(r, x, ξ) logi[ξ] d̄ξ
)
dxdr

=
N−1∑
j=0

k1∑
i=0

S−1∑
s=0

k2∑
l=0

∫
M

dx

∫
B∗

(r,x)
(0,1)

logi[ξ] d̄ξ

∫ 1

0

dr aν−s,l,µ−j,i(r, x, ξ) logl f(r)

+
N−1∑
j=0

k1∑
i=0

∫
M

dx

∫
B∗

(r,x)
(0,1)

logi[ξ] d̄ξ

∫ ∞
0

dr aν−S,µ−j,i(r, x, ξ)

(where S is chosen so that ν − Re(S) < −1, this ensures that aν−S,µ−j,i(r, x, ξ) is

integrable in r; so these are standard integrals)

+
N−1∑
j=0

k1∑
i=0

S−1∑
s=0

(
1− δ(ν−s,−1)

) ∫
M

dx

∫
B∗

(r,x)
(0,1)

logi[ξ] d̄ξ ×

k2∑
l=0

(−1)l+1l!

(ν − s+ 1)l+1
aν−s,l,µ−j,i(1, x, ξ) . (5.3.21)

Finite part for the summands of line (5.3.12)

Here the situation with respect to the integral over [0,∞)×M is identical to that

above. Thus for a general warping function f(r) the formula for the finite part

integral is given by

k1∑
i=0

−
∫

[0,∞)×M

(∫
T ∗

(r,x)
O
aµ−N,i(r, x, ξ) logi[ξ] d̄ξ

)
dxdr

=

k1∑
i=0

S−1∑
s=0

k2∑
l=0

∫
M

dx

∫
T ∗

(r,x)
O

logi[ξ] d̄ξ

∫ 1

0

dr aν−s,l,µ−N,i(f(r), x, ξ) logl f(r)

+

k1∑
i=0

∫
M

dx

∫
T ∗

(r,x)
O

logi[ξ] d̄ξ

∫ ∞
0

dr aν−S,µ−N,i(r, x, ξ)
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(where S is chosen so that ν − Re(S) < −1, this ensures that aν−S,µ−N,i(r, x, ξ) is

integrable; so these are standard integrals, plus the finite part integral below)

+

k1∑
i=0

S−1∑
s=0

−
∫

(1,∞)×M

∫
T ∗

(r,x)
O

logi[ξ] d̄ξ

k2∑
l=0

aν−s,l,µ−N,i(f(1), x, ξ) logl f(r) f ν−s(r) dxdr .

(5.3.22)

Example 5.3.8 (continued). For the case where f(r) = r for r ≥ 1/2 the finite part

integral in (5.3.24) is equal to

(
1− δ(ν−s,−1)

) ∫
M

dx

∫
T ∗

(r,x)
O

logi[ξ] d̄ξ

k2∑
l=0

(−1)l+1l!

(ν − s+ 1)l+1
aν−s,l,µ−N,i(1, x, ξ) , (5.3.23)

thus we obtain

k1∑
i=0

−
∫

[0,∞)×M

(∫
T ∗

(r,x)
O
aµ−N,i(r, x, ξ) logi[ξ] d̄ξ

)
dxdr

=

k1∑
i=0

S−1∑
s=0

k2∑
l=0

∫
M

dx

∫
T ∗

(r,x)
O

logi[ξ] d̄ξ

∫ 1

0

dr aν−s,l,µ−N,i(f(r), x, ξ) logl r

+

k1∑
i=0

∫
M

dx

∫
T ∗

(r,x)
O

logi[ξ] d̄ξ

∫ ∞
0

dr aν−S,µ−N,i(r, x, ξ))

+

k1∑
i=0

S−1∑
s=0

(
1− δ(ν−s,−1)

) ∫
M

dx

∫
T ∗

(r,x)
O

logi[ξ] d̄ξ

k2∑
l=0

(−1)l+1l!

(ν − s+ 1)l+1
aν−s,l,µ−N,i(1, x, ξ) .

(5.3.24)

Finally,

The summands of line (5.3.13)

Again the situation is similar. For a general warping function f(r) the formula for

the finite part integral of the third line is given by

N∑
j=0

µ−j 6=−(n+1)

k1∑
i=0

(−1)i+1i!

(µ− j + n+ 1)i+1
−
∫

[0,∞)×M

(∫
S∗

(r,x)
O

aµ−j,i(r, x, ξ)d̄Sξ
)
dxdr

=
N∑
j=0

µ−j 6=−(n+1)

k1∑
i=0

S−1∑
s=0

k2∑
l=0

(−1)i+1i!

(µ− j + n+ 1)i+1

∫
M

dx

∫
S∗

(r,x)
O

logi[ξ] d̄ξ
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×
∫ 1

0

dr aν−s,l,µ−j,i(f(r), x, ξ) logl f(r)

+
N∑
j=0

µ−j 6=−(n+1)

k1∑
i=0

(−1)i+1i!

(µ− j + n+ 1)i+1

∫
M

dx

∫
S∗

(r,x)
O

logi[ξ] d̄ξ

∫ ∞
0

dr aν−S,µ−j,i(r, x, ξ)

(the above are again standard integrals, and below we have the finite part contri-

bution)

+
N∑
j=0

µ−j 6=−(n+1)

k1∑
i=0

S−1∑
s=0

(−1)i+1i!

(µ− j + n+ 1)i+1
−
∫

(1,∞)×M

∫
S∗

(r,x)
O

logi[ξ] d̄ξ

×
k2∑
l=0

aν−s,l,µ−j,i(f(1), x, ξ) logl f(r) f ν−s(r)dxdr (5.3.25)

Example 5.3.8 (continued). Let us again look at the case where f(r) = r for r ≥ 1/2.

Then we can compute each finite part integral in (5.3.27), we get

(
1− δ(ν−s,−1)

) ∫
M

dx

∫
S∗

(r,x)
O

logi[ξ] d̄ξ

k2∑
l=0

(−1)l+1l!

(ν − s+ 1)l+1
aν−s,l,µ−j,i(1, x, ξ) , (5.3.26)

thus

N∑
j=0

µ−j 6=−(n+1)

k1∑
i=0

(−1)i+1i!

(µ− j + n+ 1)i+1
−
∫

[0,∞)×M

(∫
S∗

(r,x)
O
aµ−j,i(r, x, ξ)d̄Sξ

)
dxdr

=
N∑
j=0

µ−j 6=−(n+1)

k1∑
i=0

S−1∑
s=0

k2∑
l=0

(−1)i+1i!

(µ− j + n+ 1)i+1

∫
M

dx

∫
S∗

(r,x)
O

logi[ξ] d̄ξ

×
∫ 1

0

dr aν−s,l,µ−j,i(f(r), x, ξ) logl f(r)

+
N∑
j=0

µ−j 6=−(n+1)

k1∑
i=0

(−1)i+1i!

(µ− j + n+ 1)i+1

∫
M

dx

∫
S∗

(r,x)
O

logi[ξ] d̄ξ

∫ ∞
0

dr aν−S,µ−j,i(r, x, ξ)

+
N∑
j=0

µ−j 6=−(n+1)

k1∑
i=0

S−1∑
s=0

(−1)i+1i!

(µ− j + n+ 1)i+1

(
1− δ(ν−s,−1)

) ∫
M

dx

∫
S∗

(r,x)
O

logi[ξ] d̄ξ

k2∑
l=0

(−1)l+1l!

(ν − s+ 1)l+1
aν−s,l,µ−j,i(1, x, ξ) (5.3.27)
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5.4 The extended canonical trace

Let us turn to the algebra of operators associated with the symbols defined above,

and consider the extension of the canonical trace.

5.4.1 Existence of a trace density

The first question to address is the existence of a trace density, in particular we need

to check whether an analogue to Corollary 5.3.5 holds true, and to what extend the

newly added dimension in each cotangent space changes the requirements for global

well - definedness. It turns out that the obstruction is of the same form, yet the

relevant term in the asymptotic expansion of a local symbol moves one index down.

Thus, having an additional dimension in the cotangent space changes the location

of the relevant data in the asymptotic expansion in a linear manner. To see this

one should compare the following result with Corollary 5.3.5:

Proposition 5.4.1. For a fixed r ∈ [0,∞) the finite - part integral in ξ of a symbol

a(r, x, ξ) ∈ L2Sν,µ,k1,k2(O, V ) can be associated with a global density on the closed

manifold (M, f 2(r)g) if, for any A ∈ Gl(T ∗(r,x)O) we have

k1∑
i=0

(−1)i+1

i+ 1

∫
S∗

(r,x)
O
a−n−1,i(r, x, ξ) logi+1

∣∣A−1ξ
∣∣ d̄ξ = 0 . (5.4.1)

Proof. We need to establish that the formula for the finite part integral given in

equation (5.3.9) is invariant under a change of coordinates if (5.4.1) holds. First,∫
B∗

(r,x)
(0,R)

a
(
r, x, Aξ

)
|A|d̄ξ =

∫
A−1B∗

(r,x)
(0,R)

a
(
r, x, ξ

)
d̄ξ (5.4.2)

where A−1B∗(r,x)

(
0, R

)
= {ξ ∈ T ∗(r,x)O : |A−1ξ| ≤ R}. Substitute into the right hand

side the presentation

a(r, x, ξ) =
N−1∑
j=0

aµ−j(r, x, ξ) + aµ−N(r, x, ξ)
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so that∫
A−1B∗

(r,x)
(0,R)

a(r, x, ξ)d̄ξ

=
N−1∑
j=0

∫
A−1B∗

(r,x)
(0,R)

aµ−j(r, x, ξ)d̄ξ +

∫
A−1B∗

(r,x)
(0,R)

aµ−N(r, x, ξ)d̄ξ (5.4.3)

with N chosen large enough so that the last integral below is finite as R →∞. In

the limit, this integral is independent of A and equals∫
T ∗

(r,x)
O
aµ−N(r, x, ξ)d̄ξ .

As for the remaining terms we break up the computation as follows∫
A−1B∗

(r,x)
(0,R)

aµ−j(r, x, ξ)d̄ξ

=

∫
B∗

(r,x)
(0,1)

aµ−j(r, x, ξ)d̄ξ︸ ︷︷ ︸
finite

+

∫
A−1B∗

(r,x)
(0,R)\B∗

(r,x)
(0,1)

aµ−j(r, x, ξ)d̄ξ , (5.4.4)

this is valid for all R large enough so that B∗(r,x)(0, 1) ⊂ A−1B∗(r,x)(0, R). Now for

the second integral in (5.4.4) let us denote

Ã−1B∗(r,x)(0, R) := A−1B∗(r,x)(0, R) \B∗(r,x)(0, 1)

and use the polylogarithmic expansion of aµ−j(r, x, ·) given in (5.2.6) to obtain∫
Ã−1B∗(r,x)(0,R)

aµ−j(r, x, ξ)d̄ξ =

k1∑
i=0

∫
Ã−1B∗(r,x)(0,R)

aµ−j,i(r, x, ξ) logi |ξ| d̄ξ

=

k1∑
i=0

∫
S∗

(r,x)
O
aµ−j,i(r, x, η)

∫ R/|A−1η|

1

rµ−j+n logi r drd̄η

and substituting (5.6.5) for each term in the sum we get , if ν − j + n = −1,∫
S∗

(r,x)
O
aµ−j,i(r, x, η)

∫ R/|A−1η|

1

rµ−j+n logi r drd̄η

=
1

i+ 1

∫
S∗

(r,x)
O
aµ−j,i(r, x, η) logi+1

(
R/
∣∣A−1η

∣∣ )d̄η
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=
1

i+ 1

i∑
k=0

(−1)k
(
i+ 1

k

)(∫
S∗

(r,x)
O
aµ−j,i(r, x, η) logk

∣∣A−1η
∣∣ d̄η) · logi+1−k R

+
(−1)i+1

i+ 1

∫
S∗

(r,x)
O
aµ−j,i(r, x, η) logi+1

∣∣A−1η
∣∣ d̄η . (5.4.5)

Here only the last term remains finite as R→∞. On the other hand, If µ− j+n 6=

−1 we see from (5.6.6) that∫
S∗

(r,x)
O
aµ−j,i(r, x, η)

∫ R/|A−1η|

1

rµ−j+n logi r drd̄η

=
(−1)i+1i!

(µ− j + n+ 1)i+1

∫
S∗

(r,x)
O
aµ−j,i(r, x, η)d̄η (5.4.6)

+
i∑
l=0

(−1)li!/(i− l)!
(µ− j + n+ 1)l+1

×∫
S∗

(r,x)
O
aµ−j,i(r, x, η)

(
R/
∣∣A−1η

∣∣ )µ−j+n+1
logi−l

(
R/
∣∣A−1η

∣∣ )d̄η , (5.4.7)

again only the term in line (5.4.6) remains finite as R → ∞, furthermore it is

already present in the formula (5.3.6) for the finite part integral. In summary, the

additional terms that are created by the change in variables arise by summing over

i the expression in (5.4.5), as claimed.

Next, the example cases that were found to satisfy the analogue to (5.4.1) in the

context of closed manifolds carry over to our setting. Note that the question of

global well - definedness is not concerned with the whole of M × [0,∞), instead by

”global” we mean in this context a fixed fibre M × {r}.

Proposition 5.4.2. Let a(r, x, ξ) v
∑

j≥0

∑k1

i=0 aµ−j,i(r, x, ξ) ∈ L2Sν,µ,k1,k2(O, V )

and denote by A = Op[a] the corresponding operator. In each of the following cases

TR(r,x)(A) dx := −
∫
T ∗

(r,x)
M
a(r, x, ξ)d̄ξ dx (5.4.8)

is a globally defined density on the factor M :

1. the order µ is not an integer ≥ −n− 1 (where n = dimM)
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2. M is even - dimensional, µ is an integer and a is even - even, that is for each

j ≥ 0,

aµ−j,i(r, x,−ξ) = (−1)µ−jaµ−j,i(r, x, ξ) (5.4.9)

and this property also holds for all the derivatives of aµ−j,i.

3. M is odd - dimensional, µ is an integer and a is even - odd, that is for each

j ≥ 0,

aµ−j,i(r, x,−ξ) = (−1)µ−j−1aµ−j,i(r, x, ξ) (5.4.10)

and this property also holds for all the derivatives of aµ−j,i.

Proof. In each of these cases the integrals in (5.4.1) vanish. Indeed if the order µ

is not an integer, or less than −n− 1 then the component a−n−1 in the asymptotic

expansion (which appears in the integrand) is zero by definition. In the other cases

the result follows from the symmetry of the integrand.

Remark 5.4.3. Even though (5.4.8) is similar to the usual trace density observed in

[37] it is not the same since the integration here takes place over T ∗(r,x)M̃ instead of

T ∗xM , the former has an additional dimension that accounts for the radial direction.

Proposition 5.4.2 allows us to define a natural extension of the canonical trace as

follows:

Definition 5.4.4. Let a ∈ L2Sν,µ,k1,k2(O, V ) satisfy any of the properties listed in

Proposition 5.4.2, let A := Op[a] denote the pseudodifferential operator defined by

a. The canonical trace is defined by setting

TR(A) := −
∫

[0,∞)×M
TR(A)(r,x) dxdr (5.4.11)

5.4.2 A formula in terms of integrals of strongly polyhomo-

geneous symbols over the fibre

Let us find a formula for the integral above in terms of the local symbol of the

operator.
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Theorem 5.4.5. With the notation and assumptions of the previous definition the

extended canonical trace admits the following formula:

TR(A) =

S−1∑
s=0

k2∑
l=0

∫
[0,1)

logl f(r) dr

∫
M

(
−
∫
T ∗

(r,x)
O
ãs,l(r)(x, λ, η) d̄η d̄λ

)
dx

+

k2∑
l=0

∫
[0,∞)

logl f(r)dr

∫
M

(
−
∫
T ∗

(r,x)
O
ãS,l(r)(x, λ, η) d̄η d̄λ

)
dx

+
S−1∑
s=0

k2∑
l=0

−
∫

[1,∞)

logl f(r) f ν−s(r)dr

∫
M

(
−
∫
T ∗

(r,x)
O
ãs,l(1)(x, λ, η) d̄η d̄λ

)
dx

where pointwise in r the integrands ãs,l for 0 ≤ s ≤ S and 0 ≤ l ≤ k2 admit an

asymptotic expansion

ãs,l(r)(x, λ, η) v qµ−j(r)(x, λ, η) (λ, η)→∞

in which each term is of the form

qµ−j(r)(x, λ, η) =

k1∑
i=0

qµ−j,i(r)(x, λ, η) logi[(λ, η)]

where the coefficients qµ−j,i(r)(x, λ, η) are strongly polyhomogeneous in the sense of

Grubb and Seeley [16, Definition 1.1].

Proof. Most of the work has already been done in Section 5.3.2 and what is left is

to put the pieces together. First, we expand the trace density (5.4.8) by using the

formula in Lemma 5.3.7; which can then be rearranged in the sum shown in (5.3.11)

- (5.3.13):

TR(A) =
N−1∑
j=0

k1∑
i=0

−
∫

[0,∞)×M

(∫
B∗

(r,x)
(0,1)

aµ−j,i(r, x, ξ) logi[ξ] d̄ξ
)
dxdr

+

k1∑
i=0

−
∫

[0,∞)×M

(∫
T ∗

(r,x)
O

aµ−N,i(r, x, ξ) logi[ξ] d̄ξ
)
dxdr

+
N∑
j=0

µ−j 6=−(n+1)

k1∑
i=0

(−1)i+1i!

(µ− j + n+ 1)i+1
−
∫

[0,∞)×M

(∫
S∗

(r,x)
O

aµ−j,i(r, x, ξ)d̄Sξ
)
dxdr (5.4.12)
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Next we take the computation for the outer finite part integrals from (5.3.17),

(5.3.24) and (5.3.27) (note that each of them refers to multiple lines). Rearranging

the result gives the following expression for the canonical trace:

TR(A) =

S−1∑
s=0

k2∑
l=0

∫
[0,1)×M

logl f(r) drdx

(
N−1∑
j=0

k1∑
i=0

∫
B∗

(r,x)
(0,1)

logi[ξ] d̄ξ aν−s,l,µ−j,i(f(r), x, ξ)

+

k1∑
i=0

∫
T ∗

(r,x)
O

logi[ξ] d̄ξ aν−s,l,µ−N,i(f(r), x, ξ)

+
N∑
j=0

µ−j 6=−(n+1)

k1∑
i=0

(−1)i+1i!

(µ− j + n+ 1)i+1

∫
S∗

(r,x)
O

logi[ξ] d̄ξ aν−s,l,µ−j,i(f(r), x, ξ)

)
(5.4.13)

+

∫
[0,∞)×M
drdx

(
N−1∑
j=0

k1∑
i=0

∫
B∗

(r,x)
(0,1)

logi[ξ] d̄ξ aν−S,µ−j,i(r, x, ξ)

+

k1∑
i=0

∫
T ∗

(r,x)
O

logi[ξ] d̄ξ aν−S,µ−N,i(r, x, ξ)

+
N∑
j=0

µ−j 6=−(n+1)

k1∑
i=0

(−1)i+1i!

(µ− j + n+ 1)i+1

∫
S∗

(r,x)
O

logi[ξ] d̄ξ aν−S,µ−j,i(r, x, ξ)

)
(5.4.14)

+
S−1∑
s=0

k2∑
l=0

−
∫

[1,∞)×M
logl f(r) f ν−s(r)dxdr

(
N−1∑
j=0

k1∑
i=0

∫
B∗

(r,x)
(0,1)

logi[ξ] d̄ξ aν−s,l,µ−j,i(f(1), x, ξ)

+

k1∑
i=0

∫
T ∗

(r,x)
O

logi[ξ] d̄ξ aν−s,l,µ−N,i(f(1), x, ξ)

+
N∑
j=0

µ−j 6=−(n+1)

k1∑
i=0

(−1)i+1i!

(µ− j + n+ 1)i+1

∫
S∗

(r,x)
O

logi[ξ] d̄ξ aν−s,l,µ−j,i(f(1), x, ξ)

)
(5.4.15)

(we note that the change of summation and integration is allowable here since the

integrals ending in line (5.4.13) and (5.4.14) respectively are absolutely integrable

whilst the last integral is summed over powers in log f(r) therefore the summands

are linearly independent expressions and cannot cancel each other out.) The brack-

ets in the three expressions ending respectively in line (5.4.13), (5.4.14) and (5.4.15)

166



are finite part integrals of certain functions defined on T ∗(r,x)O that are polyloga-

rithmic in ξ. In fact, if we look at the local asymptotic expansion

a(r, x, ξ) v
∞∑
j=0

k1∑
i=0

∞∑
s=0

k2∑
l=0

aν−s,l,µ−j,i(f(r), x, ξ) logl f(r) logi[ξ]

and keep s, l fixed we obtain, for a fixed r, the asymptotic expansion

as,l(r)(x, ξ) logl f(r) v
∞∑
j=0

k1∑
i=0

aν−s,l,µ−j,i(f(r), x, ξ) logl f(r) logi[ξ]

so we see that as,l is a function that has a polylogarithmic expansion in ξ. However,

it is not exactly in the class of log - polyhomogeneous symbols in the sense of Lesch.

To see this, it is better to distinguish the frequency variable that corresponds to the

r - variable by splitting ξ into ξ = (λ, η) where η ∈ Rn parametrises the cotangent

space that corresponds to the subspace TxU ↪→ T(r,x)O (we recall that O = (a, b)×U

where U ⊂M is an open subset). Then the above expansion is of the form

ãs,l(r)(x, λ, η) logl f(r) v
∞∑
j=0

k1∑
i=0

aν−s,l,µ−j,i(f(r), x, λ, η) logl f(r) logi[(λ, η)] .

(5.4.16)

where each function aν−s,l,µ−j,i(f(r), x, λ, η) is a strongly polyhomogeneous symbol

as defined by G. Grubb and R. Seeley in [16]. There they establish (c.f. [16,

Theorem 1.16]) that classical polyhomogeneous symbols in n+1 cotangent variables

give strongly polyhomogeneous symbols in n cotangent variables - this is precisely

the case that we have here. Therefore we obtain

TR(A) =

S−1∑
s=0

k2∑
l=0

∫
[0,1)

logl f(r) dr

∫
M

(
−
∫
T ∗

(r,x)
O
ãs,l(r)(x, λ, η) d̄η d̄λ

)
dx

+

k2∑
l=0

∫
[0,∞)

logl f(r)dr

∫
M

(
−
∫
T ∗

(r,x)
O
ãS,l(r)(x, λ, η) d̄η d̄λ

)
dx

+
S−1∑
s=0

k2∑
l=0

−
∫

[1,∞)

logl f(r) f ν−s(r)dr

∫
M

(
−
∫
T ∗

(r,x)
O
ãs,l(1)(x, λ, η) d̄η d̄λ

)
dx
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where the integrands have the desired properties.

Remark 5.4.6. The formula derived above rests on the assumption that each of the

integrands in (5.4.12) exhibits log - polyhomogeneous growth in the r - variable, a

fact that is build into the definition of the symbols under consideration. On the

other hand, it is not obvious that the sum on the right hand side (i.e. the sum of the

integrals) exhibits log - polyhomogeneous growth in the r - variable, that is whether

the right hand side defines a symbol corresponding to a family of pseudodifferential

operators over M , parametrised in the variable r. Related to this question is the

interchangeability of the integration in the x - variable and the r - variable, which

should be investigated regardless of the fact that the order done above (first in x

then in r) is perhaps more natural since we consider families of pseudodifferential

operators over the factor M . In this context a Fubini - type theorem similar to [28,

Theorem 1.3] needs to be established because the interchange involves a standard

integral (in the x - variable) as well as a finite part integral (in the r variable).

5.5 Example: The Laplace Beltrami Operator

5.5.1 Preliminary formulas

Symbol of 4 on multiply warped products

In general one can write down the scalar Laplace - Beltrami operator 4 on an

n-dimensional Riemannian manifold in local coordinates (x1, . . . , xn) as

4 = − 1√
det g

n∑
i,j=1

∂

∂xi

(√
det g gij

∂

∂xj

)
(5.5.1)

where det g denotes the determinant of the matrix g representing the metric tensor

locally, and
(
gij
)

1≤i,j≤n = g−1 is the inverse, so that gijgjk = δij with δij the Kro-

necker delta. As we have seen in Proposition 3.2.1 this formula simplifies in the

context of a product manifold I ×M (I is assumed one - dimensional) with metric
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dr2 + gr where gr is a smooth one - parameter family of metrics on M to

4 = − ∂2

∂r2
− 1

2
tr(g−1

r ġr)
∂

∂r
+4r (5.5.2)

where 4r denotes the Laplace - Beltrami operator on (M, gr) and ġr := ∂
∂r
gr.

For the moment we are interested only in the special case of a multiply warped

product M = I ×M1 × · · · ×Mm with I denoting an open interval where and the

metric is of the form

dr2 + h2
1(r)g1 + · · ·+ h2

m(r)gm . (5.5.3)

Here each hi : I → R is a smooth positive function, and (Mdi
1 , gi), i = 1, . . . ,m are

compact Riemannian manifolds (of dimension di respectively).

Corollary 5.5.1. The scalar Laplace - Beltrami operator 4 on the Riemannian

manifold defined by (5.5.3) is given by

4 = − ∂2

∂r2
−

(
m∑
i=1

di
ḣi
hi

)
∂

∂r
+

m∑
i=1

1

h2
i

4i (5.5.4)

with 4i the scalar Laplace - Beltrami operator on (Mi, gi).

Proof. This is immediate from (5.5.2) applied to the case (5.5.3), using the fact that

a scaling of the metric g 7→ h2
i g leads to an inverse scaling of the Laplace Beltrami

operator so that (4i)r = h−2
i (r)4i.

Of course the above also gives us the symbol for the Laplace Beltrami operator. Let

n = d1 + · · ·+ dm denote the dimension of the factorM1× · · · ×Mm in M , choose

local coordinates

(
(r, x), (η, ξ)

)
= (r, x1

1, . . . , x
1
d1
, . . . , xmdm , η, ξ

1
1 , . . . , ξ

1
d1
, ξ2

1 , . . . , ξ
m
dm)

for the cotangent bundle where at a point (r, x) ∈ M the variable η corresponds

to the direction tangent to the factor I, and the remaining variables are ordered

according to the factors, that is xi1, . . . , x
i
di

are coordinates forMi for 1 ≤ i ≤ m and

likewise for the ξ-variables. We shall sometimes use the shorthand ξi :=
(
ξi1, . . . , ξ

i
di

)
,
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xi :=
(
xi1, . . . , x

i
di

)
. Substituting η for −i∂r and ξkl for −i∂xkl in equation (5.5.4)

gives

Corollary 5.5.2. The symbol σ4 = σ4
(
(r, x), (η, ξ)

)
of the scalar Laplace - Bel-

trami operator 4 on the Riemannian manifold defined in line (5.5.3) is given by

σ4 = η2 − i

(
m∑
k=1

dk
ḣk
hk

)
η +

m∑
k=1

1

h2
k

σ4k (5.5.5)

where σ4k = σ4k
(
x, ξ
)

denotes the symbol of the Laplace Beltrami operator on the

factor Mi, that is

σ4k = ‖ξk‖2
gk
− i

di∑
l=1

bkl ξ
k
l (5.5.6)

with ‖ξk‖2
gk

=

dk∑
s,l=1

gslk ξ
k
s ξ

k
l and bkl =

dk∑
s=1

(
∂gslk
∂xks

+
1

2
tr

(
g−1
k

∂gk
∂xks

)
gslk

)
.

In particular, the homogeneous terms in σ4 are

a2 = η2 +
m∑
k=1

(
1

h2
k

dk∑
s,l=1

gslk ξ
k
s ξ

k
l

)
, (5.5.7)

a1 = −i

(
m∑
k=1

dk
ḣk
hk

)
η − i

m∑
k=1

1

h2
k

dk∑
l=1

bkl ξ
k
l (5.5.8)

a0 = 0 . (5.5.9)

In terms of the homogeneous components ak2, ak1 and ak0 of the Laplacians 4k one

has

a2 = η2 +
m∑
k=1

1

h2
k

ak2 , (5.5.10)

a1 = −i

(
m∑
k=1

dk
ḣk
hk

)
η − i

m∑
k=1

1

h2
k

ak1 (5.5.11)

a0 = 0 . (5.5.12)

Remark 5.5.3. Looking back at Definition 5.2.3 we notice that the terms above

require the fixed function to be f(r) = r. This shows in particular that one needs

to be able to set f independent from the warping function h.
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Formal Complex Power of 4 on multiply warped products

Next we consider the formal aspects of the complex power

4−s =

∫
Γ

λ−s
(
4−λ)−1d̄λ (5.5.13)

of the Laplacian.

Remark 5.5.4. The theory of complex powers of elliptic operators on noncompact

manifolds was studied for example by B. Amman, R. Lauter, V. Nistor and A. Vasy

in [1], by E. Schrohe in [39] and also by U. Battisti and S. Coriasco [2]

Here Γ is an infinite contour surrounding the spectrum of 4, and d̄λ = idλ
2π

. If we

take a function f supported in a coordinate neighbourhood U ⊂M with coordinates

(r, x) then this operator is understood to act by

4−s f(r, x) =

∫
Γ

λ−s
(
4−λ)−1f(r, x)d̄λ

=

∫
Γ

∫
U

∫
T ∗

(r,x)
U

ei[(r,x)−(v,y)]·(η,ξ)λ−sσ
(
(r, x), (η, ξ), λ

)
f(v, y) d̄ηd̄ξdvdyd̄λ

with d̄ηd̄ξ = (2π)−(n+1)dηdξ. So, formally, the Schwartz kernel of 4−s is

ks
(
(r, x), (v, y)

)
=

∫
T ∗

(r,x)
U

ei[(r,x)−(v,y)]·(η,ξ)
(∫

Γ

λ−sσ
(
(r, x), (η, ξ), λ

)
d̄λ

)
d̄ηd̄ξ

with σ
(
(r, x), (η, ξ), λ

)
the symbol of the resolvent operator

(
4−λ

)−1
. At least

formally, the local symbol σ
(
s, (r, x), (η, ξ)

)
of the complex power operator 4−s is

thus given by

σ
(
s, (r, x), (η, ξ)

)
=

∫
Γ

λ−sσ
(
(r, x), (η, ξ), λ

)
d̄λ (5.5.14)

where σ
(
(r, x), (η, ξ), λ

)
is the symbol of the resolvent (4−λ)−1. We suppose there

is, analogously to the resolvent formalism on compact manifolds, a local asymptotic

expansion ∑
j≥0

q−2−j =
∑
j≥0

q−2−j
(
(r, x), (η, ξ), λ

)
for (η, ξ)→∞
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for the symbol of the resolvent where the terms in the formal series are recursively

constructed out of the homogeneous summands listed in (5.5.7) - (5.5.9), explicitly:

q−2 =
(
a2 − λ

)−1
(5.5.15)

q−2−j = −q−2

∑
|µ|+k+l=j

l<j

1

µ!
∂µ(η,ξ)q−2−l ·Dµ

(r,x)a2−k (j ≥ 1) . (5.5.16)

Before we move on to study the symbol of the complex power 4−s let us make the

following observation.

Proposition 5.5.5. For each j ≥ 0 the function q−2−j is a polynomial P
(
q−2

)
in

q−2 whose coefficients are independent of λ. Moreover the coefficients are in turn

polynomials in ξ with coefficients that are determined by a2, a1 and their (r, x)-

derivatives:

q−2−j =
∑
finite

αkq
k
−2 with αk =

∑
finite

cτ (∂
β
(r,x)a2, ∂

ν
(r,x)a1)ξτ . (5.5.17)

Proof. We show this by induction. The base case j = 0 is clear, taking the polyno-

mial P (x) = x. Now suppose that

q−2−l =
∑
finite

αplq
pl
−2 . (5.5.18)

for each 0 ≤ l < j where each αpl is independent of λ. Substituting this into the

terms on the right hand side of (5.5.16) we see that

q−2−j = −q−2

∑
|µ|+k+l=j

l<j

1

µ!
∂µ(η,ξ)

(∑
pl

αplq
pl
−2

)
Dµ

(r,x)a2−k

= −q−2

∑
|µ|+k+l=j

l<j

1

µ!

(∑
pl

∑
γ≤µ

(
µ

γ

)
∂µ−γ(η,ξ)αpl · ∂

γ
(η,ξ)q

pl
−2

)
Dµ

(r,x)a2−k . (5.5.19)

Now

∂γ(η,ξ)r
pl
−2 =

∂|γ|

∂ηγ0∂ξγ1

1 · · · ∂ξ
γn
n

(a2 − λ)−pl
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=
∂|γ|

∂ηγ0∂ξγ1

1 · · · ∂ξ
γn−1

n−1

(
∂γn

∂ξγnn
(a2 − λ)−pl

)
(5.5.20)

where, for the term inside the brackets, one may use Faà di Bruno’s formula [23,

Theorem 1.3.2] to compute

∂γn

∂ξγnn
(a2 − λ)−pl =

γn∑
k=1

(−1)k
pl!

(pl − k)!
qpl+k−2 ·Bn,k

(
∂ξna2, ∂

2
ξna2, . . . , ∂

γn−k+1
ξn

a2

)︸ ︷︷ ︸
Bell polynomial, independent of λ

.

(5.5.21)

Here the Bell polynomials on the right are independent of λ (see Remark 5.5.6

below for additional information on the Bell polynomial). Thus in the first iteration

of taking derivatives in (5.5.20) we produce a polynomial in q−2 with coefficients

independent of λ. Assuming the computation has been performed for all derivatives

with respect to ξj for j > m the next differentiation yields again a polynomial in

q−2 as one can see from the expansion

∂γm

∂ξγmm

∑
s

qs−2αs =
∑
s

γm∑
t=0

(
γm
t

)
∂tξmq

s
−2 · ∂

γm−t
ξm

αs

=
∑
s

γm∑
t=0

(
γm
t

)( t∑
k=1

(−1)k
s!

(s− k)!
qs+k−2 ·Bm,k

(
∂ξma2, ∂

2
ξma2, . . . , ∂

t−k+1
ξm

a2

))
· ∂γm−tξm

αs .

(5.5.22)

Thus the term ∂γ(η,ξ)q
pl
−2 in (5.5.19) is a polynomial in q−2 with coefficients that are

independent of λ. Substitution of this into (5.5.19) and rearranging, using the fact

that the terms involved are all scalar valued and therefore commute, yields the

desired property of q−2−j.

Remark 5.5.6 (Bell polynomials). The (partial) Bell polynomial Bn,k is defined as

Bn,k(x1, x2, . . . , xn−k+1) =∑ n!

j1!j2! · · · jn−k+1!

(x1

1!

)j1 (x2

2!

)j2
· · ·
(

xn−k+1

(n− k + 1)!

)jn−k+1

where the sum ranges over all possible multi - indices (j1, j2, . . . , jn−k+1) such that∑
i ji = k and

∑
i iji = n. These polynomials are related, for example, to the
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number of partitions of a set of size n as one can compute this as a sum over partial

Bell polynomials:

no. of partitions =
n∑
k=1

Bn,k(1, 1, . . . , 1) .

We are now ready to determine an asymptotic expansion for the local symbol of

4−s. Substitute the resolvent symbol expansion
∑

j≥0 q−2−j into (5.5.14) to find

Proposition 5.5.7. The local symbol of 4−s has an asymptotic expansion

σ
(
s, (r, x), (η, ξ)

)
v
∑
j≥0

b−2−j(s, (r, x), (η, ξ)) as (η, ξ)→∞ (5.5.23)

where

b−2s

(
s, (r, x), (η, ξ)

)
=
(
η2 +

m∑
i=1

1

h2
i

ai2

)−s
(5.5.24)

and, for j ≥ 1,

b−2s−j
(
s, (r, x), (η, ξ)

)
=
∑
pj

(s+ pj − 2) · · · (s+ 1)s

(pj − 1)!

(
η2 +

m∑
i=1

1

h2
i

ai2

)−s−pj+1

αpj
(
(r, x), (η, ξ)

)
(5.5.25)

where the outer sum is finite and αpj is determined by the homogeneous components

a2, a1 and their derivatives as described in Proposition 5.5.5 and the proof thereof,

in particular the αpj are independent of s.

Proof. The leading term in the expansion for the symbol of the complex power is

b−2s

(
s, (r, x), (η, ξ)

)
=

∫
Γ

λ−sq−2 d̄λ =

∫
Γ

λ−s
(
a2 − λ

)−1
d̄λ (5.5.26)

and (5.5.24) now follows directly from (5.5.10) and Cauchy’s Integral Theorem

applied pointwise to the integral

s 7→
∫

Γ

λ−s
(
a2

(
(r, x), (η, ξ)

)
− λ
)−1

d̄λ .

For the remaining symbols we have

b−2s−j =

∫
Γ

λ−sq−2−j d̄λ =
∑
pj

(∫
Γ

λ−s
(
a2 − λ

)−pj d̄λ)αpj (5.5.27)
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where the second equality follows from Proposition 5.5.5. But∫
Γ

λ−s
(
a2 − λ

)−pj d̄λ =
1

(pj − 1)!

∫
Γ

λ−s
∂pj−1

∂λpj−1

(
a2 − λ

)−1
d̄λ (5.5.28)

and using integration by parts,

=
(−1)pj−1

(pj − 1)!

∫
Γ

∂pj−1

∂λpj−1
λ−s ·

(
a2 − λ

)−1
d̄λ (5.5.29)

(note the boundary is at infinity where the integrated term vanishes). This simplifies

to

=
(s+ pj − 2) · · · (s+ 1)s

(pj − 1)!

∫
Γ

λ−s−pj+1 ·
(
a2 − λ

)−1
d̄λ

(5.5.30)

and from the Cauchy Integral Formula,

=
(s+ pj − 2) · · · (s+ 1)s

(pj − 1)!

(
a2

(
(r, x), (η, ξ)

))−s−pj+1

(5.5.31)

hence the result follows by (5.5.10) and by substituting this into the right hand side

of (5.5.27).

5.5.2 The case of a simple warp

We are now ready to formally determine the terms in the asymptotic expansion of

4−s on a simple product manifold I×M with warped metric g = dr2 +h2(r)g. We

first focus on the leading symbol, of course the remaining terms in the expansion

have to be treated as well. In particular a more precise description of the functions

αpj in Proposition 5.5.7 is required and the topic of current work. From (5.5.7) we

see that

a2 = η2 +
1

h2
‖ξ‖2

g .

Since there is only one factor M involved let us drop the subscript g in ‖ξ‖g.

Substituting this into (5.5.24) gives

b−2s =
(
η2 +

1

h2
‖ξ‖2

)−s
(5.5.32)
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which is homogeneous in (η, ξ) of degree −2s. As we are interested in the large

scale behaviour we may assume that ‖(η, ξ)‖ � 0 (however we shall see that we

need to distinguish between the cases η = 0 and η 6= 0), the behaviour in r as

r →∞ depends of course on properties of the function h. Let us find an expansion

for (5.5.32) in terms of r: if η 6= 0 then we can rewrite the right hand side as

b−2s = (η2)−s
(

1 +
µ

h2

)−s
. (5.5.33)

with µ := ‖ξ‖2/η2. Then, provided f → ∞ as r → ∞ we may assume |h−2µ| < 1

for r large enough and (ξ, η) fixed, this allows an application of the binomial series

(1 + y)c =
∞∑
n=0

(
c

n

)
yn (5.5.34)

which is valid for |y| < 1 and any complex number c. Here,(
c

n

)
=
c(c− 1) · · · (c− n+ 1)

n!
=

Γ(c+ 1)

n!Γ(c+ 1− n)

is a generalised binomial coefficient. On the other hand, if η = 0 then (5.5.32) is

equal to ( 1

h2
‖ξ‖2

)−s
=
(
‖ξ‖−2s

)
h2s =

(
‖ξ‖−2s

)
e2s lnh

and we can apply the exponential series. For easier reference let us summarise the

considerations above in a proposition.

Proposition 5.5.8. Let h(r) be a smooth positive function on I = [0,∞) such that

h→∞ as r →∞. Then the (formal) leading symbol of 4−s on the manifold I×M

with metric dr2 + h2(r)g has the following series expansion as r →∞

b−2s

(
s, (h, x), (η, ξ)

)
=



∞∑
n=0

Γ(1− s)
n!Γ(1− s− n)

‖ξ/η‖2n

η2s
h−2n if η 6= 0 ,

∞∑
n=0

( (2s)n

n!‖ξ‖2s

)
lnn h if η = 0 .

(5.5.35)
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Remark 5.5.9. We see that, in each case, the principal symbol of 4−s admits an

asymptotic expansion as r →∞ of the form

b−2s

(
s, (r, x), (η, ξ)

)
v
∑
n≥0

b̃n
(
s, (h, x), (η, ξ)

)
where

away from the hypersurface η = 0: the terms b̃n
(
s, (h, x), (η, ξ)

)
decay poly-

nomially in h (and therefore decay in r) as well as η while they increase in ‖ξ‖. In

particular the components are separately homogeneous in the cotangent directions

ξ and η:

b̃n
(
s, (h, x), (η, t ξ)

)
= t2n b̃n

(
s, (h, x), (η, ξ)

)
(5.5.36)

whilst

b̃n
(
s, (h, x), (tη, ξ)

)
= t−2(n+s) b̃n

(
s, (h, x), (η, ξ)

)
. (5.5.37)

Furthermore we have homogeneity in h of the form

b̃n
(
s, (th, x), (η, ξ)

)
= t−2n b̃n

(
s, (h, x), (η, ξ)

)
(5.5.38)

on the hypersurface η = 0: the components b̃n
(
s, (h, x), (0, ξ)

)
grow logarith-

mically in h and the behaviour in ‖ξ‖ is determined by the complex parameter s,

concretely we have homogeneity of degree −2s in the cotangent directions ξ:

b̃n
(
s, (h, x), (0, t ξ)

)
= t−2s b̃n

(
s, (h, x), (0, ξ)

)
(5.5.39)

Note that a good choice of s regularises this series.

Let us list some examples of metrics that arise in applications.

Example 5.5.10 (Generalized metric cones). For the class of metrics

dr2 + r2kg
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where h(r) = rk with k ∈ Z \ {0} we see that the leading symbol of the complex

power 4−s has an r-expansion of the form

b−2s

(
s, (h, x), (η, ξ)

) (r � 0)
=



∞∑
n=0

(
−s
n

)
‖ξ/η‖2n

η2s
r−2kn if η 6= 0 ,

∞∑
n=0

( (2s)nk

n!‖ξ‖2s

)
lnn r if η = 0 .

(5.5.40)

Here any choice of positive integer k falls into the class discussed in Proposition

5.5.8.

Example 5.5.11 (Funnel). Another interesting example is the metric

dr2 + cosh2(r)dθ2

associated with a Funnel, that is a certain type of cylindrical end which arises for

example in the spectral and scattering theory on infinite - area hyperbolic surfaces

(see for example [19, ?]). Since the expansion is applicable as r becomes large we

can use the approximation cosh(r) v 1
2
er and obtain

b−2s

(
s, (h, x), (η, ξ)

)
v

(r � 0)



∞∑
n=0

(
−s
n

)
‖ξ/η‖2n

η2s
4ne−2rn if η 6= 0 ,

∞∑
n=0

( (2s)n

n!‖ξ‖2s

)
rn if η = 0 .

(5.5.41)

(for the lower branch we also approximate r − ln 2 ≈ r).

Finally let us comment on an example that does not satisfy the conditions of Propo-

sition 5.5.8.

Example 5.5.12 (Cigar Soliton). The Cigar soliton is a steady gradient Ricci soliton

on R2. A smooth Riemannian manifold (M, g) is called a Ricci soliton if there exists

a smooth vector field X such that the Ricci tensor Ric of the metric g satisfies the

equation Ric +1
2
LXg = ρg where LXg is the Lie derivative of g in the direction of X
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and ρ is a constant. Such manifolds are generalisations of Einstein spaces and play

an important role in the study of the Ricci flow. If ρ = 0 then the Ricci soliton is

called steady, and if the vector field arises as the gradient of some smooth function

f (called the potential function of the Ricci soliton) then one speaks of a gradient

Ricci soliton. The Cigar soliton was the first example of a complete noncompact

steady soliton on R2, discovered by R. Hamilton [20], its metric can be written in

the form

dr2 + tanh2(r)dθ2 .

Of course the function h(r) = tanh(r) does not tend to +∞ as r becomes large,

this was an important assumption in order to be able to apply the binomial series

(5.5.34). However, in the limit we know that tanh(r) ≈ 1 and

b−2s

(
s, (h, x), (η, ξ)

)
v

(r � 0)

(
η2 + ‖ξ‖2

)−s
, (5.5.42)

In other words, one ”quickly” looses the warping effect.

5.6 Proof of Lemma 5.3.3

Expand a(x, ξ) into log-homogeneous components as in (5.2.5) and substitute into

the integral
∫
B∗x(0,R)

a(x, ξ)d̄ξ,∫
B∗x(0,R)

a(x, ξ)d̄ξ =
N∑
j=0

∫
B∗x(0,R)

aµ−j(x, ξ)d̄ξ +

∫
B∗x(0,R)

aN(x, ξ)d̄ξ . (5.6.1)

From the fact that aN ∈ SRe(µ)−N−1+ε for any ε > 0 we see that∫
B∗x(0,R)

|aN(x, ξ)| d̄ξ ≤ Cx

∫
B∗x(0,R)

(1 + |ξ|)Re(µ)−N−1+εd̄ξ

and the right hand side is finite as R→∞ provided we choose N > Re(µ) + n. It

follows by comparison that the last term on the r.h.s of (5.6.1) is finite, we denote

the limit by ∫
T ∗xU

aN(x, ξ)d̄ξ := lim
R→∞

∫
B∗x(0,R)

aN(x, ξ)d̄ξ . (5.6.2)
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The remaining terms can be studied using the logarithmic expansion of the aµ−j.

We have∫
B∗x(0,R)

aµ−j(x, ξ)d̄ξ =

∫
B∗x(0,1)

aµ−j(x, ξ)d̄ξ︸ ︷︷ ︸
finite

+

∫
B∗x(0,R)\B∗x(0,1)

aµ−j(x, ξ)d̄ξ (5.6.3)

and from (5.2.6), denoting B̃∗x(1, R) := B∗x(0, R) \B∗x(0, 1),∫
B̃∗x(1,R)

aµ−j(x, ξ)d̄ξ =
k∑
i=0

∫
B̃∗x(1,R)

aµ−j,i(x, ξ/ |ξ|) |ξ|µ−j logi |ξ| d̄ξ

=
k∑
i=0

∫
S∗xU

aµ−j,i(x, η)d̄Sη ·
(∫ R

1

rµ−j+n−1 logi r dr

)
(5.6.4)

Now if µ− j = −n then∫ R

1

rµ−j+n−1 logi r dr =
1

i+ 1

∫ R

1

d

dr
logi+1 r dr =

1

i+ 1
logi+1 R . (5.6.5)

Otherwise, repeated integration by parts yields 1∫ R

1

rµ−j+n−1 logi r dr =
logiR

µ− j + n
Rµ−j+n − i

µ− j + n

∫ R

1

rµ−j+n−1 logi−1 r dr

...

=
i∑
l=0

(−1)li!/(i− l)! logi−lR

(µ− j + n)l+1
Rµ−j+n +

(−1)i+1i!

(µ− j + n)i+1
.

(5.6.6)

Substituting this into (5.6.4) gives∫
B̃∗x(1,R)

aµ−j(x, ξ)d̄ξ =
k∑
i=0

∫
S∗xU

aµ−j,i(x, η)d̄Sη ·
1

i+ 1
logiR (5.6.7)

if µ− j = −n and this diverges as R→∞, otherwise∫
B̃∗x(1,R)

aµ−j(x, ξ)d̄ξ =
k∑
i=0

∫
S∗xU

aµ−j,i(x, η)d̄Sη ·

(
i∑
l=0

(−1)li!/(i− l)!Rµ−j+n

(µ− j + n)l+1
logi−lR

)
1This result deviates from the corresponding statement in [37], however only in aspects that

are irrelevant to the final formula.
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+
k∑
i=0

∫
S∗xU

aµ−j,i(x, η)d̄Sη ·
(

(−1)i+1i!

(µ− j + n)i+1

)
(5.6.8)

and we see that the l.h.s of the first line diverges as R→∞ whereas the second line

remains finite. The asymptotic expansion for
∫
B∗x(0,R)

aµ−j(x, ξ)d̄ξ and the formula

for the constant term K(x) in (5.3.4) are now obtained by substituting (5.6.7)

respectively (5.6.4) for the summands in the first term on the r.h.s of (5.7.3).

5.7 Proof of Proposition 5.3.4

First, ∫
B∗x(0,R)

a
(
x,Aξ

)
|A|d̄ξ =

∫
A−1B∗x(0,R)

a
(
x, ξ
)
d̄ξ (5.7.1)

where A−1B∗x
(
0, R

)
= {ξ ∈ T ∗xU : |A−1ξ| ≤ R}. Substitute

a(x, ξ) =
N∑
j=0

aµ−j(x, ξ) + aN(x, ξ)

on the right hand side,∫
A−1B∗x(0,R)

a(x, ξ)d̄ξ =
N∑
j=0

∫
A−1B∗x(0,R)

aµ−j(x, ξ)d̄ξ +

∫
A−1B∗x(0,R)

aN(x, ξ)d̄ξ (5.7.2)

with N chosen large enough so that the last integral below is finite as R →∞. In

the limit, this integral is independent of A and equals (5.6.2). For the remaining

terms we have∫
A−1B∗x(0,R)

aµ−j(x, ξ)d̄ξ =

∫
B∗x(0,1)

aµ−j(x, ξ)d̄ξ︸ ︷︷ ︸
finite

+

∫
A−1B∗x(0,R)\B∗x(0,1)

aµ−j(x, ξ)d̄ξ ,

(5.7.3)

valid for allR large enough so thatB∗x(0, 1) ⊂ A−1B∗x(0, R). Denote Ã−1B∗x(0, R) :=

A−1B∗x(0, R)\B∗x(0, 1). For the second term on the right hand side we use the poly-

logarithmic expansion of aµ−j(x, ·) given in (5.2.6) to obtain∫
Ã−1B∗x(0,R)

aµ−j(x, ξ)d̄ξ =
k∑
i=0

∫
Ã−1B∗x(0,R)

aµ−j,i(x, ξ) logi |ξ| d̄ξ
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=
k∑
i=0

∫
S∗xU

aµ−j,i(x, η)

∫ R/|A−1η|

1

rµ−j+n−1 logi r drd̄η

and substituting (5.6.5) for each term in the sum we get , if µ− j = −n,∫
S∗xU

aµ−j,i(x, η)

∫ R/|A−1η|

1

rµ−j+n−1 logi r drd̄η

=
1

i+ 1

∫
S∗xU

aµ−j,i(x, η) logi+1
(
R/
∣∣A−1η

∣∣ )d̄η
=

1

i+ 1

i∑
k=0

(−1)k
(
i+ 1

k

)(∫
S∗xU

aµ−j,i(x, η) logk
∣∣A−1η

∣∣ d̄η) · logi+1−k R

+
(−1)i+1

i+ 1

∫
S∗xU

aµ−j,i(x, η) logi+1
∣∣A−1η

∣∣ d̄η . (5.7.4)

Here only the last term remains finite as R→∞. If µ− j 6= −n we see from (5.6.5)

that∫
S∗xU

aµ−j,i(x, η)

∫ R/|A−1η|

1

rµ−j+n−1 logi r drd̄η

=
(−1)i+1i!

(µ− j + n)i+1

∫
S∗xU

aµ−j,i(x, η)d̄η

+
i∑
l=0

(−1)li!/(i− l)!
(µ− j + n)l+1

∫
S∗xU

aµ−j,i(x, η)
(
R/
∣∣A−1η

∣∣ )µ−j+n logi−l
(
R/
∣∣A−1η

∣∣ )d̄η ,
(5.7.5)

again only the first term remains finite as R → ∞, furthermore it is already a

term present in the formula (5.3.6) for the finite part integral. In summary, the

additional terms that arise due to the change in variable arise by summing over i

the term in (5.7.4), as claimed.
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Chapter 6

Concluding remarks

This thesis revolves around the study of Riemannian manifolds, whose metric is

equipped with a high degree of symmetry, using tools from pseudodifferential op-

erator theory and more generally asymptotic analysis. A central theme is the heat

kernel on cohomogeneity one manifolds, two objects that individually appear in a

number of areas in mathematics and theoretical physics. The aim is to illuminate

their intersection and thereby seek out more explicit and refined results.

In Chapter 2 we analyse the sectional curvature asymptotics of a particular set of

cohomogeneity one metrics found by Andrew Dancer and McKenzie Wang in their

study of the Einstein equations via the Hamiltonian formalism. In Chapter 3 we

study a non-standard asymptotic expansion for the heat kernel on cohomogeneity

one manifolds. Even though it is known that the standard asymptotic expansion

for the heat kernel carries geometric information, it does not explicitly describe the

”warping effect” that is present in cohomogeneity one metrics, a property that is

more easily accessible in the non-standard approach. The asymptotic expansion

of the trace of the heat kernel is equivalent to the expansion of the trace of the

resolvent operator as well as the spectral zeta function. In this regard Chapter

4 is concerned with the coefficients for the standard heat trace expansion in the

context of compact Riemannian manifolds, we show that these can be calculated
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via the resolvent symbols in an elementary fashion. Finally Chapter 5 represents

an extension of the canonical trace to the setting of non-compact cohomogeneity

one manifolds and is work in progress.

Let us now outline concluding remarks for each Chapter.

In Chapter 2 we studied the new examples of non - compact cohomogeneity one

Ricci - flat Einstein manifolds of dimension 10 and 11 mentioned above. For the

construction of these metrics Dancer and Wang assume that the Lie group acts by

isometries on the manifold such that the principal orbit has codimension one (this

is the cohomogeneity one property), furthermore it is assumed that the Lie group is

a product (G1/K1)× (G2/K2) of distinct isotropy irreducible spaces. The solutions

found are associated to particular dimension pairs of these factors, namely (2, 8),

(3, 6), and (5, 5), and the metric is diagonal of the form g = dt2 + f 2
1 (t)ḡ1 + f 2

2 (t)ḡ2

where ḡi is a homogeneous background metric on the ith component of the principal

orbit. We establish more explicit forms for these metrics in order to study sectional

curvature asymptotics for large values of t. Let us refer to the transverse part as

the ’horizontal factor’ and to the two components constituting the fibre as ’first

vertical factor’ and ’second vertical factor’. In all cases we observe that sectional

curvature associated with a plane that is tangent to the horizontal and the second

vertical factor vanishes, i.e. with respect to the horizontal component and the

second vertical component the metric asymptotically approaches a product metric.

Sectional curvature associated with a plane that is tangent to the principal orbit

is given for large t by the sectional curvature associated with the product metric

gt = f 2
1 (t)ḡ1+f 2

2 (t)ḡ2 in the fibres. In particular, this means that sectional curvature

is non - positive (respectively non - negative) for large t whenever both factors

have that property. On the other hand, if both factors have positive sectional

curvature (say) then their product has tangent planes whose sectional curvature is

zero, namely planes that arise as the span of a vector tangent to the first component

and a vector tangent to the second component (we thank J. Lotay for a helpful

184



discussion that helped to clarify the geometric interpretation of the result). Finally,

sectional curvature associated with a plane that is tangent to the horizontal and

the first vertical factor vanishes in the case of the dimension pair (3, 6) (so that the

metric approaches a product metric in this case with respect to the first vertical

factor as well) whilst it is unbounded in the other dimension pairs, from below for the

pair (2, 8) and from above for the pair (5, 5). The results presented in this Chapter

provide further information about the particular Einstein metrics and are therefore

not immediately suitable for further work. However, since there exists (up to now)

no complete list of conditions for the existence of Einstein metrics on manifolds

of dimension larger than four, well studied examples are useful as they contribute

to a better understanding of potential obstructions to existence and uniqueness of

Einstein metrics.

The work in Chapter 3 is concerned with the extension of a non - standard

parametrix construction from simple warps to multiply warped products, thereby

accommodating the metrics that are studied in Chapter 2. The main motivation for

this project originated in the idea that the special structure of (multiply) warped

products brings within reach an understanding of the heat trace coefficients, not

only in terms of the geometry of the underlying space as a whole, but in terms of the

underlying geometries of the factors as well as the warping functions. One reason

that this is an interesting research project to pursue is that it serves as an extension

of the refined knowledge present for plain product geometries. In this regard, having

a parametrix for the heat kernel that better accounts for the warped geometry is

essential and a first step in this direction. The goal of future work is to apply the

parametrix and study the corresponding short time asymptotic expansion of the

heat trace as this is where the heat coefficients arise. In particular the aim is to

calculate the first coefficients of concrete examples such as the Hamilton cigar and

the Bryant Soliton. These are warped metrics, we hope that we can also calculate

examples for doubly warped metrics such as the Einstein metrics found by Dancer
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and Wang that we studied in Chapter 2. In general, an explicit computation of

these coefficients is very complicated so we plan to invest a certain amount of

time in investigating computer software that is suitable for supporting symbolic

computation. We hope that, whilst computationally demanding, this will serve as

an avenue into a better understanding of the heat kernel on warped products and

are confident that this is attainable in particular on simple warped products.

In Chapter 4 we establish explicit formulae for the first resolvent symbols of

certain Laplace operators and motivate the interest in these via concrete applica-

tions. To illustrate the elementary nature of the resolvent symbols the discussion

is restricted to simple yet important examples, and computations have been re-

stricted to those resolvent symbols that were essential for the particular application

presented here (i.e. terms that are known to reflect the underlying geometry, re-

spectively terms necessary to derive the index on a Riemann surface). The next

step is to generalise the discussion, , using a formal symbolic calculus along the lines

of [33], and establish similar expressions for a generic resolvent symbol associated

to a suitable pseudodifferential operator and investigate the geometric meaning of

these. In this regard an interesting class of pseudodifferential operators are classical

pseudodifferential operators whose components in the local symbol expansion are

homogeneous in the jets of the metric and the connection (the symbolic calculus

presented in [33] was brought to our attention by S. Paycha who also suggested the

class of operators mentioned here). One point of caution that should be kept in

mind is that the elementary nature of the calculation does not solve the difficulty

in interpreting the result, this will likely turn out challenging especially in higher

dimensions. A further interesting extension of the work is to study the applicability

of the resolvent symbols in the context of non - compact manifolds. This is partic-

ularly interesting in the context of the topics covered in Chapter 2 and 5. We hope

that the restriction to warped products will be the right context to further explore

the use of the resolvent symbols presented here.
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Finally in Chapter 5 we propose an extension of the canonical trace to the

setting of non compact simple warped products. A suitable class of symbols is

defined which extends log - polyhomogeneous symbols and is assumed to also ex-

hibit log - polyhomogeneous growth in the non - compact spacial direction (the

’radial’ direction). After showing that the class is closed under symbol composition

we investigate the existence of a family of trace densities associated with certain

pseudodifferential operators defined over the fibres. These operators are associated

with strongly homogeneous symbols. In particular cases, which are similar to those

present in the context of closed manifolds, it is possible to define a canonical trace

by applying a second cut off integral in order to deal with the divergence in the

radial variable. The work described here is still ongoing, in particular the results

are intermediary and subject to review and improvement. For instance, the for-

mula derived in Theorem 5.4.5 rests on the assumption that each of the integrands

in (5.4.12) exhibits log - polyhomogeneous growth in the r - variable, a fact that

is build into the definition of the symbols under consideration. However, it is not

obvious that the sum on the right hand side (i.e. the sum of the integrals) exhibits

log - polyhomogeneous growth in the r - variable, that is whether the right hand

side defines a symbol corresponding to a family of pseudodifferential operators over

M , parametrised in the variable r. Related to this question is the interchange-

ability of the integration in the x - variable and the r - variable, which should be

investigated regardless of the fact that the order done here (first in x then in r)

is perhaps more natural since we consider families of pseudodifferential operators

over the factor M . In this context a Fubini - type theorem similar to [28, Theorem

1.3] needs to be established because the interchange involves a standard integral

(in the x - variable) as well as a finite part integral (in the r variable). Neverthe-

less these issues, the work reported in this chapter forms an integral part of the

thesis because it describes the first steps of future work that aims at studying the

methods of Chapter 4 in the context of warped products. The results so far greatly
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clarified many advantages that arise from the cohomogeneity one structure and we

are confident that it provides a realistic context in which to consider extensions

for traces. Going forward we also plan to investigate a slightly different approach

to the extension, based on the observation that cohomogeneity one metrics often

arise in quotient constructions. With respect to these one may wish to understand

the properties of geometric operators (such as the Laplace Beltrami operator) and

fundamental solutions to differential equations (such as the heat kernel). This idea

is classical – for example the Poisson summation formula and its generalisation,

the Selberg Trace formula, are typical instances where the quotient structure of the

underlying space is exploited to simplify the computation of the heat trace. To

this end we consider a calculus for pseudodifferential operators whose symbols are

invariant with respect to a particular group action. Using this invariance as the

defining property of a symbol class for pseudodifferential operators we consider the

extension of regularised traces in this context. The findings from the latter ap-

proach will then be compared to future results arising from the approach initiated

in Chapter 5.
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