
This electronic thesis or dissertation has been 

downloaded from the King’s Research Portal at 

https://kclpure.kcl.ac.uk/portal/  

Take down policy 

If you believe that this document breaches copyright please contact librarypure@kcl.ac.uk providing 

details, and we will remove access to the work immediately and investigate your claim. 

END USER LICENCE AGREEMENT 

Unless another licence is stated on the immediately following page this work is licensed 

under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International 

licence. https://creativecommons.org/licenses/by-nc-nd/4.0/ 

You are free to copy, distribute and transmit the work

Under the following conditions: 

 Attribution: You must attribute the work in the manner specified by the author (but not in any
way that suggests that they endorse you or your use of the work).

 Non Commercial: You may not use this work for commercial purposes.

 No Derivative Works - You may not alter, transform, or build upon this work.

Any of these conditions can be waived if you receive permission from the author. Your fair dealings and 

other rights are in no way affected by the above. 

The copyright of this thesis rests with the author and no quotation from it or information derived from it 

may be published without proper acknowledgement. 

Investigating the mechanisms underlying Alzheimer’s disease using a novel organotypic brain
slice culture model

Croft, Cara Louise

Awarding institution:
King's College London

Download date: 15. Jan. 2025



 
1 

 

Investigating the mechanisms underlying 

Alzheimer’s disease using a novel organotypic 

brain slice culture model 

 

Cara Louise Croft 

 

Thesis submitted in fulfilment of the degree of Doctor of 

Philosophy 

 

 

Department of Basic and Clinical Neuroscience 

Institute of Psychiatry, Psychology and Neuroscience 

King’s College London 

 

March 2016 



 
2 

 

Declaration 
 
 
I hereby declare that all of the work presented in this thesis is my own.  

 
 
 
Cara Louise Croft 

March 2016 

  



 
3 

 

Acknowledgements 
 

 
I would first like to thank Dr. Wendy Noble, my primary supervisor, for her outstanding 

support and encouragement over the course of my PhD project. Wendy was always 

there to provide guidance and positive advice throughout the project but also allowed 

me to drive the project independently, and for that I am truly grateful. I would also like 

to extend thanks to Dr. Diane Hanger, my secondary supervisor, for her excellent 

additional support, guidance and input to the project. I would also like to thank the 

National Centre for the Replacement, Refinement and Reduction of Animals in Research 

(NC3Rs) for funding this work. I am also thankful to members of team tau for their 

positivity, energy and warmth in the laboratory, office (and in the pub!). I am eternally 

grateful to my parents and family for their constant support of my career and life goals 

and their loving and caring nature. I am also thankful to have such fabulous friends 

whose support and encouragement enables me to work hard but play hard too. 

 

Lastly, this thesis is dedicated in loving memory of Miss Dorothy Knowles, one of the 

strongest, most independent women to have played a part in my life. 

  



 
4 

 

Abstract 
 
 
Alzheimer's disease is a devastating progressive neurodegenerative disorder 

characterised by deposits of amyloid-β in extracellular plaques, intracellular 

neurofibrillary tangles comprising highly phosphorylated and aggregated tau species, 

synaptic dysfunction and neuronal death. Although several transgenic mouse models of 

Alzheimer's disease have been developed, in vivo studies using transgenic mice are time- 

and cost- consuming, and it is imperative that more ethically sustainable alternatives, 

which allow faster translation to the clinic, are developed. This thesis aims to determine 

if organotypic brain slice cultures from 3xTg-AD mice recapitulate key features of in vivo 

brain and can be used in mechanistic and pre-clinical Alzheimer's disease studies. 

 

Organotypic brain slice cultures prepared from 3xTg-AD mouse pups and maintained in 

culture for several weeks developed highly phosphorylated and high molecular weight 

tau species, increased amounts of β-amyloid and showed increased activation of cyclin-

dependent kinase 5 over time. These biochemical changes closely recapitulate the 

molecular changes observed in in vivo models and post-mortem Alzheimer's disease 

brain. In addition, brain slices from wild-type and 3xTg-AD mice showed altered tau 

release characteristics, indicating a distinction in the mechanisms underlying 

physiological and pathological tau release. These data support the notion that brain slice 

cultures can be used to understand the mechanisms and pathways underlying the 

development and progression of Alzheimer's disease. 
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Furthermore, the utility of brain slice cultures for pre-clinical drug discovery was 

demonstrated following the application of tau-based therapies that rescued key disease 

features in brain slice cultures in a similar manner to that previously reported in vivo. In 

addition, treatment of 3xTg-AD organotypic slice cultures with the amyloid-binding 

agent, BTA-EG4, revealed novel effects of this compound on tau that were associated 

with the inhibition of glycogen synthase kinase-3.  

 

The findings of this thesis therefore support the use of organotypic brain slice culture 

models as an alternative to, at least some, in vivo research for investigations into the 

molecular mechanisms underpinning Alzheimer's disease and related neurodegenerative 

tauopathies, as well as their use as a platform for pre-clinical drug screening and 

development for these disorders. 
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Chapter 1 : Introduction 

1.1 Alzheimer’s disease 

1.1.1 Background 

History 

Alzheimer’s disease (AD) is a devastating progressive neurodegenerative disorder, first 

reported in 1906 by Alois Alzheimer following post-mortem analysis of the brain of a 51 

year old woman presenting with cognitive, memory and mood problems (Alzheimer, 

1906). Brain atrophy was reported as well as the presence of ‘abnormal clumps’ and 

‘tangled bundles of fibres’ in the cortex (Alzheimer, 1906). These features are what we 

now identify as extracellular beta-amyloid (Aβ) plaques and intracellular neurofibrillary 

tau tangles, respectively. Over 100 years has passed since this initial report of AD,  yet it 

still remains incompletely understood, untreatable and the only available therapeutics 

treat the symptoms of AD only. At present, several clinical trials targeting different 

aspects of the development and pathogenesis of AD are underway (Broadstock et al., 

2014). Decades of research into this disease has shed light on some of the underlying 

mechanisms, as well as molecular pathways, which may be suitable therapeutic targets; 

however, work into this debilitating condition must continue to allow the development 

of new therapeutic strategies, particularly since the prevalence of AD continues to rise.  

 

Symptoms and diagnosis 

Biochemical and physiological changes occur in the brain well before the onset of the 

symptoms of AD. This can begin up to 20 years before receiving an official diagnosis of 

AD. AD patients suffer symptoms of progressive loss of cognition and memory decline, 
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often concurrent with changes in mood and problems with communication and daily 

living (Yates and McLoughlin, 2008). These clinical features appear to correlate with the 

areas of the brain affected by pathology in Alzheimer's disease (Terry and Davies, 1980, 

Yates and McLoughlin, 2008). A diagnosis of mild cognitive impairment (MCI) is usually 

the first point in which decline in cognition and memory are detected, and this condition 

often precedes AD dementia, but is not itself classed as dementia and does not 

guarantee AD onset in all cases (Gagnon and Belleville, 2011). 

 

Diagnosis of AD requires neurological and psychiatric examinations in addition to 

neuropsychological testing. Definitive diagnosis of AD occurs only upon post-mortem 

examination of the brain to detect both Aβ and tau lesions. Although misdiagnosis is 

common, research into faster recognition and detection of AD is ongoing, with progress 

in cerebrospinal fluid (CSF) and blood-based markers of AD being made, with 

introduction of novel PET biomarkers and other imaging techniques that show promise 

of more rapid diagnosis (Schaffer et al., 2015). 

  

Statistics on the prevalence and economic burden of AD 

AD is the most common cause of dementia. Current figures report that 800,000 men and 

women are living in the UK with dementia, with projections suggesting that this will rise 

to over 1 million people by 2025. At present, one in three people over 65 will die with 

dementia (Alzheimer's Society, 2015). Worldwide, this stretches to an estimated 35.6 

million people living with dementia, with these numbers set to increase to 115.4 million 

in 2050. As lifespan increases due to advancements in other areas of medical research, 



 
28 

 

the prevalence of AD is expected to continue rising. In contrast, recent evidence 

suggests that the prevalence of AD may actually be in decline as the incidence of AD has 

actually declined over the past three decades (Satizabal et al., 2016). However, finding 

novel therapeutics to treat or prevent AD still remains a very important goal.  

 

As the number of individuals being diagnosed with AD continues to rise, the associated 

costs will also increase. AD causes a strain on worldwide economies due to increasing 

demand in unpaid and paid care, days of work lost and rising healthcare costs. It is 

estimated that AD currently costs the UK economy £26 billion every year, of which £4.3 

billion is in costs to the National Health Service, £10.3 billion is spent on social care and 

£11.6 billion is contributed by the work of unpaid carers (Prince et al., 2014). These 

statistics highlight the socioeconomic burden of this disease, and the urgent need to 

work towards rapidly understanding and treating AD.  

 

1.1.2 Neuropathology of AD 

Plaques 

Neuritic or senile plaques composed of proteolytic fragments of amyloid precursor 

protein (APP) and other associated protein and cell fragments can accumulate in the 

extracellular space in affected AD brain regions (Yates and McLoughlin, 2008). 

Senescence in normal individuals can also cause the accumulation of these plaques 

composed of Aβ (Villemagne et al., 2011); however observed alongside neurofibrillary 

tangles (NFTs), neuritic Aβ plaques are hallmark pathologies of AD brain. The formation 

of these extracellular plaques in brain regions follows a somewhat unpredictable 
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spatiotemporal development in the brain. In general, Aβ plaques tend to occupy the 

association areas of the neocortex in AD before developing in the entorhinal cortex, 

hippocampus and then to a lesser extent in the primary sensory, motor and visual 

neocortex. Despite this unpredictable development of pathology, Braak and Braak 

distinguished three stages for the spread of neuritic plaques in AD (Braak and Braak, 

1991). At stage A, Aβ plaques are found mainly found in the frontal, temporal, and 

occipital neocortex. At Stage B, all association areas of the neocortex contain Aβ plaques 

whilst the hippocampus becomes mildly affected. By the final stage, stage C, the primary 

sensory, motor and visual neocortex are likely to be positive for Aβ plaques, and plaques 

can also be present in the cerebellum, striatum, hypothalamus, thalamus and 

subthalamic nuclei (Braak and Braak, 1991).  An example of human AD brain stained for 

Aβ plaques is shown in Figure 1.1. 

 

Tangles 

Conclusive diagnosis of AD also requires the post-mortem detection of NFTs. 

Intracellular NFTs are typically composed of aggregated tau species arranged in the form 

of paired helical filaments (PHFs) or straight filaments (Grundke-Iqbal et al., 1986). It is 

speculated that highly phosphorylated tau  or truncated tau species drive tau 

aggregation and subsequent tangle formation (Hanger et al., 2009). Tangle pathology in 

Alzheimer's disease spreads through the brain in a predetermined spatiotemporal 

pattern along anatomically connected pathways, and the regions which are affected by 

NFTs in Alzheimer's disease are characterised by Braak staging (Braak and Braak, 1995). 

Braak stage I is characterised by the presence of NFTs in the transentorhinal cortex; this 
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pathology then spreads to the entorhinal cortex and CA1 region of the hippocampus in 

stage II during the asymptomatic, preclinical AD phase (potentially up to 20 years before 

diagnosis). By Braak stage III, AD is usually diagnosed as mild to moderate over a period 

of 2 to 10 years, and at this stage NFTs are found in the limbic system including the rest 

of the hippocampal formation, the amygdala, claustrum and thalamus (stage IV). Braak 

stages V and VI represent severe or advanced AD, and typically occur over 1 to 5 years. 

Most of the association areas of the neocortex are occupied by NFTs and show 

considerable atrophy (stage V), and severe atrophy of the primary sensory, motor and 

visual areas of the neocortex (stage VI), concurrent with the presence of tangles in these 

regions. Regions of the brain including the basal ganglia and cerebellum do not 

accumulate neurofibrillary tangles and remain relatively unaffected by tau pathology in 

AD (Braak and Braak, 1991, Braak and Braak, 1995). Human AD brain stained for NFTs is 

shown in Figure 1.1. 
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Figure 1.1: Bielschowski-stained Aβ plaques and a neurofibrillary tangle in AD human 
post-mortem brain. 
The presence of both extracellular Aβ-containing plaques (black arrows) and intracellular 
NFTs (red arrow) stained with a modified Bielschowski stain and imaged at 100x in post-
mortem human AD brain. Taken from (Perl, 2010). 
 
 
1.1.3 Genetics of Alzheimer’s disease 

Two defined forms of AD exist; the first generally presents later in life (over 65 years) 

occurring sporadically, and is known as late onset AD (LOAD). The second presents 

earlier in life, usually in the late 40s or early 50s, has a genetic (familial) link and is 

known as early onset AD (EOAD) (Tanzi, 2012). 

 

Early onset AD 

A genetic link to AD was first reported in 1952 when familial clustering of AD was 

identified (Sjogren et al., 1952). Familial AD, or EOAD, accounts for only approximately 1-

5% of all AD cases. Familial AD is typically caused by rare, highly penetrant mutations in 



 
32 

 

three genes encoding proteins involved in APP processing and Aβ generation. In 1991, 

the first mutation in the APP gene, V717I, on chromosome 21 was reported and was 

found to increase the production of a 42 amino acid Aβ species - Aβ-42 (Goate et al., 

1991). At present there are 52 known mutations in APP (Cruts et al., 2012). Most of 

these mutations are positioned in the region of the β-secretase and γ-secretase cleavage 

sites and they affect normal APP proteolytic processing to increase Aβ production, the 

ratio of Aβ-42 to Aβ-40, and/or the aggregatory properties of the Aβ that is generated 

(Tanzi, 2012). Not all mutations in APP promote AD, indeed the Icelandic mutation 

(A673T) protects against cognitive decline and AD, and in vitro reduces the production of 

Aβ (Jonsson et al., 2012). The other mutations that cause EOAD are in the presenilin 1 

and 2 genes – PSEN1 (chromosome 14) and PSEN2 (chromosome 1), which encode 

presenilin (PS)1 and PS2 proteins, respectively. The first mutations in PSEN1 and PSEN2 

were identified in 1995 (Sherrington et al., 1995, Levy-Lahad et al., 1995). At present 

there are 205 known mutations in PSEN1 and 14 known mutations in PSEN2 (Cruts et al., 

2012, Tanzi, 2012). Together with nicastrin, anterior pharynx-defective 1 (APH-1) and 

presenilin enhancer 2 (PEN-2), the presenilins comprise the integral units of the γ-

secretase complex, and mutations in PS1 and PS2 are believed to act predominantly by 

increasing the ratio of pro-aggregatory Aβ-42 production relative to Aβ-40 (Tanzi, 2012).  

 

Late onset Alzheimer’s disease 

LOAD or sporadic AD accounts for greater than 95% of AD cases. The cause of LOAD is 

likely due to a combination of genetic, lifestyle and environmental risk factors. 

Possession of one or two copies of the Apolipoprotein E Ɛ4 (ApoEƐ4) allele is the biggest 
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genetic risk factor for AD, increasing the risk of sporadic AD by 4-fold and 12-fold, 

respectively (Corder et al., 1993). In contrast, possession of the ApoEƐ2 allele is 

protective against AD (Corder et al., 1994). The physiological roles of ApoE include 

lipoprotein metabolism and transport. In the pathogenesis of AD, ApoE is believed to 

play a role in Aβ clearance, as deposits of Aβ are more abundant in post mortem brains 

of those possessing one or two copies of the APOEƐ4 allele (Schmechel et al., 1993). 

Over 20 other genetic risk factors for AD have been identified in recent large genome-

wide association studies, most notably, bridging integrator 1 (BIN-1) (Lambert et al., 

2013), phosphatidylinositol binding clathrin assembly protein (PICALM), clusterin (CLU) 

(Seshadri S. et al., 2010) and triggering receptor expressed on myeloid cells 2 (TREM2) 

(Guerreiro et al., 2012). Mutations in TREM2 disrupt microglial clearance of Aβ and 

inflammatory responses (Guerreiro and Hardy, 2014, Rivest, 2015). Mutations in PICALM 

and BIN-1 are associated with the disruption of endocytosis, and mutations in CLU affect 

the immune response and lipid metabolism (Guerreiro and Hardy, 2014).  

 

1.2 APP and Aβ 

1.2.1 Background 

APP was identified as the precursor of Aβ-40 and Aβ-42 in the 1980s (Kang et al. 1987). 

APP is a large single-pass transmembrane protein with a large extracellular domain 

which can undergo proteolytic cleavage to form the major component of neuritic 

plaques - Aβ (Glenner and Wong, 1984). Alternate splicing of the APP gene generates 8 

isoforms, 3 of which are more common than the others. A 695 amino acid isoform of 

APP is expressed mainly throughout the central nervous system, with the 751 and 770 
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amino acid isoforms found ubiquitously (Bayer et al., 1999). The precise physiological 

function of APP still remains unclear, but a role for APP has emerged in the modulation 

of cell growth, motility, neurite outgrowth, and cell survival (Dawkins and Small, 2014). 

In addition, full length APP holds a clear physiological role at the synapse in promoting 

proper spine formation and development, as well as promoting surface expression of N-

methyl-D-aspartate (NMDA) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid 

(AMPA) receptors – important for long-term potentiation (LTP) and memory  (Lee et al., 

2010, Hoe et al., 2012). 

 

1.2.2 APP processing  

Large amounts of APP are produced in neurons and this is usually metabolised very 

rapidly (Lee et al., 2008). Two main pathways of APP proteolysis exist and can either 

cause the generation of Aβ peptides or preclude their formation. APP is normally sorted 

in the endoplasmic reticulum and the trans golgi network, before being trafficked along 

axons, and to synapses (Koo et al., 1990). Most APP processing is believed to occur at 

the cell surface or in the trans-golgi network (Choy et al., 2012); however, pathogenic 

intracellular pools of Aβ have also been reported, suggesting processing of APP may also 

occur in intracellular compartments (LaFerla et al., 2007). 

 

On the cell surface, APP is sequentially proteolytically cleaved by α-secretases and then 

γ-secretases, the former of which cleave APP through the Aβ sequence, thereby 

precluding the formation of Aβ.  This pathway is therefore termed as non-

amyloidogenic, cleavage of APP by the aforementioned secretases produces a soluble 
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APP ectodomain – sAPPα - an α C-terminal fragment (CTF) - C83 - and subsequently, p83 

and an intracellular C-terminal fragment (AICD) (Sheng et al., 2012). The ADAM (a 

disintegrin and metalloproteinase) family of proteases act as α-secretases, 

predominantly act at the cell surface but also show some activity in the trans-golgi 

network (Zhang et al., 2011b). γ-secretases exist as multiprotein complexes containing 

PS1 or PS2 as described above. 

 

Alternatively, APP can be proteolytically cleaved by β-secretases and then γ-secretases 

in the amyloidogenic pathway. This is thought to occur in endosomes as a result of APP 

not being cleaved at the cell surface by α-secretases and instead being internalised in 

clathrin-coated pits. Cleavage by β-secretases produces the soluble APP ectodomain - 

sAPPβ - and a β-CTF -C99. Subsequent cleavage of the β-CTF by γ-secretase results in 

the generation of Aβ peptides ranging from 38 to 44 amino acids in length (1–40 and 1–

42 being most common) and an AICD (Zhang et al., 2011b). BACE1, a transmembrane 

aspartic protease, is the predominant β-secretase which cleaves APP to produce Aβ 

(Vassar et al., 1999). A schematic diagram describing amyloidogenic and non-

amyloidogenic processing of APP is shown in Figure 1.2. 
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Figure 1.2: APP processing and the formation of Aβ peptide.  
The full-length human amyloid precursor protein (APP) is a single transmembrane 
protein with an intracellular carboxyl terminus which is sequentially cleaved in 
amyloidogenic and non-amyloidogenic pathways. In the amyloidogenic pathway, 
cleavage of APP by β-secretase produces the carboxy-terminal fragment of APP (β-CTF 
[C99]) and releases the soluble extracellular domain of APP (sAPPβ), before cleavage by 
γ-secretase produces the Aβ peptide, and the intracellular carboxy-terminal domain of 
APP (AICD). In the non-amyloidogenic pathway, cleavage by α-secretase precludes 
formation of Aβ, and instead results in the production of the soluble extracellular 
domain of APP sAPPα and α -CTF [C83] before cleavage by γ-secretase produces the 
AICD and p3 peptide. Figure adapted from (Sheng et al., 2012). 
 

More recently, other forms of APP processing have been identified and implicated in AD. 

Specifically asparagine endopeptidase, termed δ-secretase has been shown to cleave 

APP prior to cleavage by β-secretase (Zhang et al., 2015b). In addition, another novel 

secretase, deemed η-secretase cleaves APP to form η-CTFs and long and short Aη 

peptides. These long and short Aη peptides created by η-secretase cleavage are 

synaptotoxic in vivo and in vitro (Willem et al., 2015).  
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Aβ-40 and Aβ-42 are the main components of neuritic plaques and are generated via 

cleavage of APP along the amyloidogenic pathway (Glenner and Wong, 1984). However, 

increased levels of Aβ-40 and Aβ-42 and neuritic plaques can be found in healthy aged 

brains (Villemagne et al., 2011) as well as pathologically in AD, and Aβ is physiologically 

important for synaptic physiology (Abramov et al., 2009). It is not known for certain 

which form of Aβ is the most toxic in AD; however mutations in PS1 and PS2 promote 

the production of Aβ-42 relative to Aβ-40 (Fernandez et al., 2014), Aβ-42 aggregates 

much more readily than shorter species and in vitro studies reveal a higher toxicity of 

Aβ-42 relative to Aβ-40 to neurons (Klein et al., 1999, Ahmed et al., 2010). Aβ 

oligomerizes via an unknown mechanism, adopting several higher order conformations 

such as soluble dimers, trimers, dodecamers, higher order oligomers, protofibrils, and 

fibrils (Walsh et al., 2000). Extracellular neuritic plaques are shown to contain Aβ in the 

form of soluble Aβ-40 and Aβ-42 monomers (Butterfield et al., 2002) oligomeric or 

dimeric Aβ (Shankar et al., 2008), multimeric pore-like complexes of Aβ monomers and 

truncated, insoluble species of Aβ (Yankner and Lu, 2009). All of these Aβ species show 

neurotoxic properties in various cell and animal models of AD, and identifying the 

“toxic” species of Aβ remains a controversial and much debated topic in the field (Mucke 

and Selkoe, 2012). In addition, whether intracellular Aβ or extracellular Aβ is more toxic 

is also not clear. This is due, at least in part, to a debate about the specificity of 

antibodies to detect intracellular Aβ rather than APP; nevertheless, intracellular Aβ is 

thought to accumulate in the early stages of disease in transgenic AD models, as 

mentioned above (LaFerla et al., 2007). 
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1.2.3 Mechanisms of Aβ toxicity 

As described earlier, there are several species of Aβ which exert synaptotoxic and 

neurotoxic effects in models of AD, and ongoing research is designed to determine 

which of these species are the most critical in AD. Several deleterious effects of Aβ 

relevant to AD have been described including: 

 Neurotoxicity and synaptotoxicity. Application of soluble Aβ1-42 oligomers 

causes neurotoxicity in vitro (Atherton et al., 2014, Garwood et al., 2011) and 

application or accumulation of Aβ-42 in rodents leads to neuronal loss and 

cognitive dysfunction (Walsh et al., 2002, Bayer and Wirths, 2008). Aβ also 

causes detrimental effects at the synapse (Selkoe, 2002). These synaptotoxic 

effects of Aβ are further described in section 1.5.1. 

 Neuroinflammation. Inflammation is likely a crucial driver in the pathogenesis of 

AD (Sastre et al., 2011, Phillips et al., 2014). Aβ can trigger a number of 

inflammatory events (Butterfield et al., 2002) and also promote astrocytic (Hu et 

al., 1998) and microglial (Meda et al., 1995, Maezawa et al., 2011) activation. 

 Caspase activation. The activity of caspases is known to be upregulated in AD 

and caspase cleavage of tau is an early event in AD (Rissman et al., 2004). Aβ has 

been shown to upregulate the activity of caspases (Mattson et al., 1998). 

 Kinase activation. Aβ can increase the activation of cdk5 (Lee et al., 2000) and 

GSK-3 (Townsend et al., 2007, Magdesian et al., 2008), which are both 

implicated in increased tau phosphorylation in AD (Hanger et al., 2009). 
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 Oxidative damage. Aβ can drive increases in oxidative DNA damage and stress 

both in vitro and in vivo which is an important feature in AD (Smith et al., 1998, 

Yatin et al., 1999, Butterfield, 2002). 

 Calcium dysregulation. Aβ disrupts calcium homeostasis (Mattson et al., 1993, 

Mark et al., 1995) and upregulates calcium-sensitive calpains (Lee et al., 2000), 

which are shown to play a key role in AD (Atherton et al., 2014, Egorova et al., 

2015). 

 

1.3 Tau 

1.3.1 Background 

The best recognised function of tau as a promoter of microtubule assembly and stability 

was first determined when it was isolated in association with tubulin in the 1970s and 

identified as a microtubule-associated protein (MAP), essential for dimers of α- and β-

tubulin to polymerise and form microtubules (Weingarten et al., 1975). Tau is the most 

common MAP and accounts for approximately 80% of total MAPs (Wang et al., 2014). 

Tau is abundantly expressed throughout the central nervous system and is found 

primarily in a soluble state in the axonal compartment of neurons, with small amounts 

also expressed in astrocytes (Papasozomenos and Binder, 1987) and oligodendrocytes 

(Lopresti et al., 1995).  

 

Human tau is encoded by the MAPT gene on chromosome 17q.21.31 and consists of 16 

exons. Mutations in MAPT do not cause AD, but are causative for frontotemporal 

dementia (FTD), demonstrating the importance of tau for neurodegeneration (Hanger et 



 
40 

 

al., 2009, Hutton et al., 1998). Alternative splicing of exons 2, 3 and 10 gives rise to six 

different tau isoforms. Exclusion or inclusion of exon 10 results in tau containing either 

three or four microtubule repeat domains (3R or 4R tau, respectively) towards the C-

terminus (Himmler et al., 1989). The number of microtubule repeat domains determines 

the affinity of tau for microtubules, with 4R tau having greater binding capacity.  

Exclusion, or inclusion of exon 2 and 3 gives rise to tau isoforms containing 0, 1 or 2 N-

terminal inserts (0N, 1N or 2N, respectively) (Goedert et al., 1989, Himmler, 1989). 0N3R 

tau is only found in the foetal brain (Takuma et al., 2003). A diagram showing the six 

different tau isoforms is shown in Figure 1.3.  

 

In the mature CNS, human tau is composed of 352 to 441 amino acid residues (Himmler 

et al., 1989) and is natively unfolded, lacking a defined 3D structure (Schweers et al., 

1994). Tau protein contains four main regions which drive certain functions of tau: an N-

terminal projection region, a proline-rich domain (PRD), a microtubule-binding domain 

(MTBD) and a C-terminal region (Figure 1.3). The N-terminus of tau can associate with 

the cell membrane and may also control other cytoskeletal dynamics (Brandt et al., 

1995). Phosphorylation of tau at the N-terminus can control its dynamic association with 

plasma membranes (Pooler et al., 2012). The PRD contains many phosphorylation sites 

which are the targets of the proline-directed and non-proline directed 

serine(ser)/threonine(thr) kinases, including glycogen synthase kinase 3 (GSK-3) and 

cyclin dependent kinase 5 (cdk5) (Hanger et al., 2009). The PRD can also bind to Src 

homology 3 domains of other proteins including the tyrosine (tyr) kinase, Fyn (Lee et al., 

1998). The MTBD of tau together with the immediate flanking regions determines the 
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binding affinity of tau for microtubules, and the number of domains (3R or 4R) may also 

affect the speed of kinesin-driven axonal transport, with 3R tau allowing faster 

microtubule gliding (Peck et al., 2011). Phosphorylation in the MTBD decreases the 

affinity of tau for microtubules, enabling their detachment (Wang et al., 1995). 

Phosphorylation of tau in the C-terminal region may promote the self-aggregation of tau 

(Hanger and Wray, 2010), whilst dephosphorylation in this region may encourage 

caspase cleavage of tau and subsequent degradation by calpain to form C-terminal 

fragments of around 17-20 kDa which show greater propensity for aggregation (Gamblin 

et al., 2003).  

 

Figure 1.3: The six different tau isoforms in the adult human CNS and their main 
features 
Alternative splicing leads to six different isoforms of tau in the adult human CNS. All 
isoforms contain a central proline rich domain (PRD) and vary in terms of their inclusion 
or exclusion of inserts resulting from the inclusion or exclusion of exon 2 and exon 3 at 
the N-terminus (E2 and E3); exon 3 is never included in the absence of exon 2,  and 
either contain 3 or 4 microtubule-binding domains (M1-4). Numbers on the right refer to 
protein length in amino acids. From (Hanger et al., 2009). 
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1.3.2 Tau functions 

A major function of tau is its ability to bind, assemble and stabilise microtubules, thus 

affecting cytoskeletal dynamics and neuronal stability (Noble et al., 2013). Interaction of 

the MTBDs of tau with tubulin enables the polymerisation of α- and β-tubulin dimers to 

assemble microtubules (Weingarten et al., 1975). Microtubules exist in a state of 

dynamic instability, constantly growing and shrinking depending on the needs of the cell 

and tau acts to regulate the stability of microtubules (Mitchison and Kirschner, 1984). 

Phosphorylation of tau reduces the affinity of tau for microtubules, allowing a dynamic 

regulation of microtubule stability (Wang et al., 1995). This dynamic instability supports 

and regulates cellular processes such as trafficking along the axon (Brandt and Lee, 

1994), and tau is recognised to play a critical role in axonal transport of various proteins 

and cargoes (Dixit et al., 2008, Vossel et al., 2015). Tau can modulate anterograde and 

retrograde transport of vesicles and organelles to and from the synapse and cell body 

(Mandelkow et al., 2003). Perturbation from normal levels and species of tau causes it to 

compete with the motor proteins kinesin and dynein, affecting their ability to transport 

tau and other cargoes along the axon (Cuchillo-Ibanez et al., 2008). The normal 

functioning and localisation of tau is also important for the trafficking of mitochondria 

which is also affected in AD (Kopeikina et al., 2011). 

 

Tau is also physiologically involved in maintaining neuronal polarity and promoting 

neurite outgrowth, which is particularly important during developmental processes. The 

dynamic nature of microtubules is differentially regulated in different parts of the 

neuron. Tau is normally found in the axon toward the distal end of the neuron, 
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particularly in the growth cone of developing neurons (Mandell and Banker, 1995, Liu et 

al., 1999).  

 

The emerging role of tau in neuronal signalling is also important. The ability of tau to 

bind the SH3 domain of Src family tyr kinases including Fyn and to be targeted to the 

plasma membrane, is likely involved in membrane-associated signal transduction 

processes (Lee et al., 1998). The effects of tyr phosphorylation of tau on its localisation 

also suggests a role for tau in intracellular signalling, distinct from its role in microtubule 

assembly and stabilisation. Tyrosine phosphorylation of tau regulates its association with 

SH2 domain-containing proteins such as Fyn, to alter tau localisation with membrane 

microdomains such as lipid rafts (Usardi et al., 2011). In addition, tau interactions with 

Fyn are important for the dendritic localisation of tau and the resulting regulation of 

postsynaptic NMDAR-mediated signalling, as well as, NMDAR-Erk1/2 signalling (Ittner et 

al., 2010, Mondragón-Rodríguez et al., 2012).  

 

1.3.3 Tau phosphorylation 

Tau protein can undergo several post-translational modifications including glycosylation, 

phosphorylation, nitration, and acetylation. The phosphorylation of tau has been 

researched extensively and highlighted as particularly important in the pathology of AD 

and other tauopathies. Specifically, aberrant phosphorylation disrupts the microtubule 

network, hinders axonal transport and synaptic function (Buée et al., 2000) and can also 

drive neurotoxicity (Fath et al., 2002). In addition, highly phosphorylated tau species 

redistribute from the axon (where only low levels of physiologically phosphorylated tau 
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are found) to somatodendritic compartments (Zempel et al., 2010).  In contrast, tau 

phosphorylation is physiologically important during embryonic development where it is 

thought to play an important role in allowing neurite outgrowth and restructuring. 

Phosphorylation is reduced in early postnatal stages and remains relatively low in 

normal adult brain, but aberrant phosphorylation is also a feature of tauopathy brain 

(Biernat and Mandelkow, 1999).  

 

Tau exists in a dynamic balance between phosphorylated and dephosphorylated forms, 

largely regulated by kinase and phosphatase activity (Stoothoff and Johnson, 2005). Tau 

can be phosphorylated by a variety of protein kinases, namely proline-directed, non-

proline directed and tyr kinases. Major tau kinases include the proline-directed ser/thr 

kinases, GSK-3 and cdk5 (Hanger et al., 1992, Lund et al., 2001). GSK-3 exists as two 

isoforms, α and β, that are encoded by different genes (Force and Woodgett, 2009). 

GSK-3 is constitutively active in the mammalian CNS (Beurel et al., 2015) where its 

activity is regulated via several pathways. Phosphorylation of ser 21 and 9 on GSK-3 α 

and β, respectively, inactivates GSK-3 by altering its conformation to reduce binding site 

availability (Sutherland et al., 1993), whilst phosphorylation of tyr 216 and 279 on GSK-3 

increases the activity of GSK-3 and are thought to be responsible for its constitutive 

activity (Wang et al., 1994). GSK-3 activity is also highly dependent on intracellular 

concentrations of magnesium (Ryves and Harwood, 2001). Conditional overexpression of 

GSK-3 in mice results in progressive tau hyperphosphorylation, aggregation and 

neurodegeneration (Lucas et al., 2001) whereas inhibition of GSK-3β in vivo reduces tau 

phosphorylation, neurofibrillary tangle formation and associated axonal degeneration 
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(Noble et al., 2005). The activity of cdk5 is driven by its neuron-specific activators p39 

and p35 (Lew et al., 1994, Tang et al., 1995). Calpain cleavage of p39 and p35 can form 

the proteolytic fragments of p29 and p25, respectively (Kusakawa et al., 2000, Patzke 

and Tsai, 2002) which also activate cdk5, but are not degraded as rapidly as their 

precursors (Patrick et al., 1999), resulting in prolonged pathogenic cdk5 activity. In 

particular, p25 is implicated in driving aberrant tau phosphorylation in AD, and is 

considered a more pathological activator of cdk5, in comparison to “physiological” p35-

mediated activation of cdk5 (Patrick et al., 1999, Tsai et al., 2004). Constitutive or 

regulatable over-expression of p25 in mice leads to elevated tau phosphorylation, tangle 

formation and neurodegeneration (Noble et al., 2003, Cruz et al., 2003) and specific 

inhibition of p25/cdk5 with cdk5 inhibitory peptides reduces neurodegeneration in vivo 

(Sundaram et al., 2013). Furthermore, a growing body of evidence suggests a reciprocal 

regulation between cdk5 and GSK-3, particularly in ageing, and the importance of this 

relationship for tau phosphorylation in AD must not be ruled out (Engmann and Giese, 

2009). 

 

Phosphorylation of tau is also regulated by the activity of several protein phosphatases; 

the most dominant of these is protein phosphatase 2A (PP2A) (Wang et al., 2015). PP2A 

is responsible for approximately 71% of all tau phosphatase activity in the human brain, 

and its activity is severely reduced in AD brain where increased tau phosphorylation is 

observed (Gong et al., 1995). Inhibition of PP2A increases tau phosphorylation in vivo, 

and PP2A has also been deemed as the most effective phosphatase to dephosphorylate 

highly phosphorylated tau species isolated from AD brains (Wang et al., 1995). A 
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summary of major pathways of tau phosphorylation and dephosphorylation can be seen 

in Figure 1.4. 

 

 

Figure 1.4: Schematic diagram showing the major pathways of tau phosphorylation 
and dephosphorylation. 
Phosphorylation of tau can be driven by several kinases; the major tau kinases are 
known to be cdk5 and GSK-3. Cdk5 is activated by its activators p35 and p25. p25 is 
formed through the cleavage of p35 by calpain, and has a longer half-life than p35 
causing it to drive prolonged cdk5 activity compared to p35. GSK-3 can be inactivated by 
several means, however phosphorylation of ser21/9 is a predominant pathway of its 
inactivation. Phosphorylated tau can be dephosphorylated by PP2A which is the major 
phosphatase known to reduce levels of tau phosphorylation. 
 

In full-length 2N4R human tau approximately 80 residues can be phosphorylated 

(Stoothoff and Johnson, 2005). Phosphorylation of at least thirty of these known 

residues have been shown to alter tau physiological function (Hanger et al., 2009). In 

addition, normal, regulated phosphorylation of tau enables it to perform its 

physiological roles in the cell including neurite outgrowth and axonal transport (Biernat 

and Mandelkow, 1999). Under physiological conditions, 1 mole of tau should be 
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accompanied by 2-3 moles of phosphate (Kopke et al., 1993), and this ratio increases to 

4-10 moles of phosphate per 1 mole of tau in disease (Alonso et al., 2004). 

 

Abnormal phosphorylation of tau is implicated in the pathology of Alzheimer's disease 

and other tauopathies (Hanger et al., 2007). Indeed, tau found in PHFs and in NFTs can 

be abnormally phosphorylated at approximately 45 different residues (Grundke-Iqbal et 

al., 1986, Hanger et al., 2007) (see Figure 1.5), in comparison to phosphorylation at only 

approximately 8-10 sites in healthy brain (Hanger et al., 2007, Hanger et al., 2009). All six 

alternatively-spliced isoforms of tau can be aberrantly phosphorylated and incorporated 

into NFTs (Goedert et al., 1989). The increased phosphorylation of tau is in part driven 

by imbalances in kinase and phosphatase activity. Indeed, human AD brain shows signs 

of increased cdk5 and GSK-3 activity (Tseng et al., 2002, Leroy et al., 2007), and reduced 

PP2A activity (Gong et al., 1995). It remains unclear if phosphorylation at specific 

residues is critical for tau-associated neurodegeneration, although some residues are 

particularly important for normal tau function such as the association of tau with 

microtubules (Noble et al., 2013). 
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Figure 1.5: Known phosphorylation residues of tau in AD brain.  
Tau is abnormally phosphorylated on at least 40 residues in AD brain, predominantly in 
the proline-rich domain and in the C-terminal region, with fewer residues found in the 
microtubule-binding domains or in the N-terminal region. Site numbering is based on 
the full length, 441 amino acid, human 2N4R tau. Sites in black were identified by mass 
spectrometry, and those in red by antibody labelling. Taken from (Hanger et al., 2009). 
 

1.3.4 Tau cleavage 

Truncation is another post-translational modification of tau, which, is implicated in AD. 

Tau cleaved at both the N- and C-termini is found in AD brain (Garcia-Sierra et al., 2008). 

The truncation of tau is catalysed predominantly by caspases, calpains and asparagine 

endopeptidases (Yang and Ksiezak-Reding, 1995, Rissman et al., 2004, Zhang et al., 2014) 

with the resulting cleavage products often showing properties that promote tau 

aggregation (Gamblin et al., 2003, Lee and Shea, 2012). Caspases can cleave tau at 

aspartate (asp)  22–25, asp 345–348 and asp 418–421 (Gamblin et al., 2003), with 

preferential cleavage occurring at asp 421 (Chung et al., 2001). In addition, N-terminal 

cleavage of tau by caspase-6 can occur at asp 13 (Horowitz et al., 2004). The calcium-

activated cysteine proteases - calpain 1 and 2 - can also cleave tau in vitro (Johnson et 

al., 1989) and calpain-cleaved tau retains its N-terminus (Yang and Ksiezak-Reding, 
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1995). Furthermore, calpain activity is upregulated in AD brain, (Saito et al., 1993) whilst 

its endogenous inhibitor - calpastatin (CAST) is downregulated in AD brain (Rao et al., 

2008). The elevated presence of a 17 kDa calpain-cleaved tau species has been reported 

in AD brain relative to controls (Ferreira and Bigio, 2011) although the pathogenicity of 

these tau fragments, especially in relation to Aβ, is somewhat controversial (Garg et al., 

2011) as 35 and 45 kDa calpain- and caspase-cleaved tau has since been reported. The 

exact relationship of cleaved tau to tau phosphorylation remains poorly understood 

(Flores-Rodríguez et al., 2015) and likely varies according to truncation event. However, 

both phosphorylated and truncated tau species induce conformational changes in tau 

which are likely involved in tau aggregation and the pathogenesis of AD.  

  

1.3.5 Tau aggregation 

Tau is usually highly soluble in the brain; however, in AD and other tauopathies, tau 

becomes characteristically insoluble and aggregated, likely through changes in its 

secondary structure altering its conformation (Schweers et al., 1994). For aggregation to 

occur, tau must be dissociated from microtubules (Golde, 2006). Several post-

translational modifications of tau are associated with tau aggregation and disassembly 

from the microtubules, including nitration, phosphorylation and truncation (Grundke-

Iqbal et al., 1986, Hanger and Wray, 2010, Wang et al., 2014) and these can drive 

alterations in conformation (Binder et al., 2005). These conformational changes are 

proposed to trigger the formation of tau dimers, and the process of nucleation-

elongation begins whereby further tau dimers are recruited and tau oligomers are 

generated (Friedhoff et al., 1998). Tau oligomers then form protomers which adopt the 
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β-sheet formation typical of amyloid aggregates before forming PHFs and NFTs (Meraz-

Ríos et al., 2010, Cárdenas-Aguayo et al., 2014). It is unclear which of these species of 

tau are the most toxic in AD (Cárdenas-Aguayo et al., 2014, Flores-Rodríguez et al., 

2015). 

 

1.3.6 Extracellular tau and tau propagation 

Traditionally, tau has been viewed as an intracellular protein. However, recent evidence 

has demonstrated that tau is found in extracellular spaces, and thought to be associated 

with the mechanisms involved in the spread of tau pathology across tauopathy brain.  

 

Until recently, the presence of tau in extracellular spaces was thought to be the result of 

its release from dying neurons, since levels of both total and phosphorylated tau are 

elevated in the CSF of individuals with AD relative to controls (Blennow et al., 1995). 

However, tau was recently detected in the CSF of normal individuals (Hampel et al., 

2010) as well as in the CSF of healthy mice (Barten et al., 2011, Yamada et al., 2011) 

suggesting that extracellular tau does not result solely from neurodegeneration. Tau has 

also been detected in the interstitial fluid (ISF) of mice, and its abundance is increased 

when neuronal activity is stimulated, indicating a possible physiological role of tau 

secretion or extracellular tau (Yamada et al., 2014). Indeed, the secretion of tau has also 

been demonstrated from primary cortical neurons and human induced pluripotent stem 

cells (iPSCs) at low but detectable steady state levels (Chai et al., 2012, Pooler et al., 

2013). This release of endogenous tau has been shown to be a calcium-dependent 
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physiological process likely mediated by pre-synaptic mechanisms and neuronal activity 

(Pooler et al., 2013).  

 

The importance of extracellular tau for disease is not well understood, however, several 

studies have shown that tau pathology can be seeded and transmitted across brain 

regions through anatomical connections or from cell to cell demonstrating a "prion-like" 

mechanism for the transmission and propagation of tau (Sanders et al., 2014). “Prion-

like” in this sense, describes the self-propagation of tau across cells and tissues but does 

not imply that tau as a protein is infectious.  

 

In vivo studies in mice, have shown that human FTD-causing mutant (P301L) tau 

expressed only in the entorhinal cortex under the control of the neuropsin promoter, 

leads to the progressive development of tangles in the entorhinal cortex, that 

progressively spreads, trans-synaptically, to regions downstream of the entorhinal 

cortex in a spatiotemporal manner (de Calignon et al., 2012). In addition, in vivo seeding 

experiments in mice, demonstrate that tau can be seeded and propagate through areas 

of the brain affected in AD. Injection of brain extracts from mice expressing FTD mutant 

human P301S mutant tau into brains of transgenic mice expressing wild-type (WT) tau 

caused tau pathology to develop at the site of injection and then spread to adjacent 

brain regions (Clavaguera et al., 2009). Furthermore, the pathological tau which can 

propagate in vivo retains characteristics of its tau seed (Clavaguera et al., 2013, Sanders 

et al., 2014), and this is thought to be a result of particular conformational properties of 

tau that are found in different conditions (Falcon et al., 2015). 
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The relationship between the extracellular spread of pathological tau and Aβ also needs 

to be considered. In mice where mutant P301L tau propagates through anatomically 

connected regions, the presence of Aβ dramatically increases the speed and distance of 

tau propagation and increases tau-induced neurotoxicity (Pooler et al., 2015). Aβ also 

increase tau release and affects which species of tau are released in vitro (Kanmert et 

al., 2015), suggesting an important relationship between the two. 

 

The mechanisms underlying tau release from cells, tau propagation and tau uptake are 

incompletely understood. It is also not clear if “physiological” tau, that is tau in non-

diseased brain, is released into extracellular spaces using the same mechanisms used for 

pathological tau propagation. It is also not clear if tau release and spread is 

phosphorylation-dependent, dependent on tau solubility, tau being truncated or full-

length, misfolded beyond what is already known about tau conformation for the 

characteristic lesions that develop (Falcon et al., 2015), and/or its aggregation state.  

 

Most evidence that exists shows that endogenous extracellular tau species are 

predominantly dephosphorylated compared to tau found intracellularly (Plouffe et al., 

2012, Pooler et al., 2013) with exception to phosphorylation at thr 181 (Chai et al., 

2012). Extracellular tau has also been demonstrated to contain both full-length and 

truncated tau species (Plouffe et al., 2012, Chai et al., 2012, Kanmert et al., 2015). It also 

seems that tau which propagates is soluble and oligomeric as PHFs will not propagate 

(Lasagna-Reeves et al., 2012, Iba et al., 2013). However, some studies have identified 
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propagation of small tau aggregates (Wu et al., 2013) and a highly phosphorylated high 

molecular weight tau species (Takeda et al., 2015). 

 

How tau is released from and enters cells also needs further research. Evidence suggests 

that endogenously expressed tau is not contained within vesicles when it is released 

(Chai et al., 2012) whilst it is suggested that pathological forms of tau, particularly when 

exogenously expressed, is secreted within or in association with exosomes (Saman et al., 

2012) and ectosomes (Dujardin et al., 2014). Exosomes are small membranous vesicles 

(40–100 nm) produced by the endocytosis of molecules which can be recycled to the 

plasma membrane or trafficked to multivesicular bodies which upon fusion with the 

plasma membrane are again released as exosomes. Ectosomes are larger extracellular 

vesicles (50–1000 nm) that are directly released from cells by plasma membrane 

budding (Dujardin et al., 2014). The physiological release of tau is thought to occur via a 

non-classical secretion pathway (Chai et al., 2012), that is stimulated by neuronal activity 

and is blocked when pre-synaptic vesicle release is inhibited (Pooler et al., 2013). Fewer 

data is available to explain tau uptake by neurons. Misfolded tau species have been 

shown to be taken up by neurons via endocytosis and subsequently transported along 

axons (Wu et al., 2013) but extracellular tau may also enter cells via other mechanisms. 

Additionally, a role for the microglial uptake of tau by phagocytosis and subsequent 

exosomal release of tau in AD has been demonstrated (Asai et al., 2015). 

  

There remains a lot to be discovered about which tau species spread, the mechanisms 

involved, and differences between the release and spread of physiological and 
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pathological tau species. Elucidating the pathways involved are likely to be particularly 

important for the development of new therapies for AD since targeting extracellular tau 

and preventing its propagation will slow or halt disease progression.  

 

1.4 The relationship between Aβ and tau pathologies in AD 

The most widely accepted hypothesis describing the relationship between amyloid and 

tau and subsequent neurodegeneration in AD is known as the amyloid cascade 

hypothesis (Hardy and Higgins, 1992) as a result of the discoveries that mutations which 

cause FAD occur in PS1, PS2 and APP and alter the normal processing of APP resulting in 

the increased production of Aβ species (Goate et al., 1991, Sherrington et al., 1995, 

Levy-Lahad et al., 1995). The amyloid cascade hypothesis states that increased 

production and/or accumulation of Aβ influences the development of NFTs. Aβ triggers 

alterations in neuronal tau, alongside synaptic and neuronal dysfunction, thereby 

resulting in widespread neuronal death and inflammation which lead to the clinical 

symptoms of AD. As more and more evidence has emerged that the pathway from Aβ 

plaque deposition to the development of neurofibrillary tangles is not a linear process, 

the hypothesis has been revised (Hardy, 2009). 

 

A multitude of evidence exists in support of the amyloid cascade hypothesis, including 

that from analysis of transgenic AD mouse models such as the 3xTg-AD line which 

expresses mutations in human APP, PS1 and MAPT and progressively develop Aβ 

pathology prior to the development of tau alterations and the development of NFTs 

(Oddo et al., 2003a). Furthermore, reducing the amounts of Aβ genetically or via 
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immunotherapy in 3xTg-AD mice was found to reduce the development of tau 

pathologies, and when treatment was stopped Aβ pathology re-appeared prior to the 

appearance of new tau pathology (Oddo et al., 2008). Crossing transgenic mice that 

overexpress mutant human APP (Tg2576 line) with mice overexpressing the human tau 

harbouring the FTD-causing P301L mutation (JNPL3 line) also triggered accelerated tau 

pathology relative to single tau transgenics (Lewis et al., 2001). Similarly, injection of 

fibrillar Aβ species (Götz et al., 2001) or brain extracts from Aβ-producing mice (Bolmont 

et al., 2007) into tau transgenic mice enhances tau pathology. Interestingly, removal of 

endogenous tau in mice expressing mutant human APP that accumulate Aβ and develop 

plaques in the absence of tau pathology ameliorates synaptic dysfunctions, cognitive 

decline and excitotoxicity (Roberson et al., 2007, Ittner et al., 2010, Roberson et al., 

2011), demonstrating the importance of tau for Aβ-mediated neurodegeneration. 

 

The mechanisms by which Aβ affects tau to cause neurodegeneration has been an area 

of intensive research. Several studies have demonstrated that various Aβ species can 

drive both the phosphorylation, and cleavage of tau, which likely drive the 

oligomerisation or aggregation of tau to generate damaging tau species (Davis et al., 

1995, Garg et al., 2011). As described earlier, the phosphorylation of tau is regulated by 

the activity of several kinases, predominantly GSK3β and cdk5. Both of these major tau 

kinases can be activated by Aβ (Lee et al., 2000, Hernández and Avila, 2008). 

Furthermore, tau is cleaved at several epitopes by caspases and calpains, which are also 

activated by Aβ through abnormal increases of intraneuronal calcium – another key 

pathogenic event in AD (O’Brien and Wong, 2011). 
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However, in recent years the amyloid cascade hypothesis has been challenged from 

several angles. Perhaps of most importance, many therapeutics aimed at altering the 

production or accumulation of Aβ have been largely unsuccessful in clinical trials as they 

did not alter cognition or amyloid burden. These treatments either directly targeted Aβ 

by active or passive immunisation or aimed to preclude the production of Aβ by the 

inhibition of β-secretases and γ-secretases (Morris et al., 2014). There are many reasons 

that these therapies may have shown limited, if any, success. However, in one of the 

first immunotherapy trials, immunotherapy with AN1792 effectively cleared Aβ from the 

brain, but did not substantially affect tau pathology and did not reduce cognitive 

deficits, suggesting that removing Aβ alone is not sufficient to treat AD. Reasons for the 

failure of amyloid therapies could also include insufficient stratification of patient 

groups, and the relatively late stage of disease in patients (Hardy, 2009).  

 

It is evident that in human AD, Aβ and tau pathologies have a close relationship, but this 

relationship is not as linear and simplistic as the amyloid cascade hypothesis once 

proposed.  An incomplete picture of the mechanisms underlying the mass loss of 

neurons and brain function that accompanies AD still remains and the interplay between 

Aβ and tau in AD needs to be further explored. 

 

1.5 Synaptic changes in AD 

Synaptic dysfunction and synaptic loss are major early features of AD, which precedes 

neuron loss. Synaptic dysfunction is evident in humans with MCI, well before the onset 
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of plaque or tangle pathologies (Scheff et al., 2007). Of most interest, synaptic loss 

correlates more robustly with cognitive dysfunction in AD than the build-up of Aβ 

plaques or neurofibrillary tangles containing tau (Terry et al., 1991, Masliah et al., 2001) 

implicating synaptic dysfunction and synaptic loss as a crucial early stage of disease. 

Since synapses are relatively plastic and recover well from damage, strategies to prevent 

synapse damage/loss in AD are likely to be very effective. 

 

1.5.1 Effects of Aβ at the synapse 

Physiological roles of Aβ at synapses have been described, including the demonstration 

that increasing concentrations of endogenous extracellular Aβ by inhibiting its 

degradation enhances activity-dependent synaptic vesicle release probability, boosting 

ongoing activity in the hippocampal network (Abramov et al., 2009). In AD, the 

synaptotoxic effects of Aβ are well recognised (Selkoe, 2002), but as with tau it remains 

unclear which species of Aβ is/are primarily responsible.  

 

Several studies have shown both in vitro and in vivo that Aβ oligomers impair excitatory 

synaptic transmission, inhibit LTP, cause dendritic spine loss and impair spatial memory 

(Selkoe, 2002, Haass and Selkoe, 2007, Crews and Masliah, 2010). This disruption of 

synaptic function by Aβ, is likely in part through Aβ promoting the internalisation of 

postsynaptic glutamate receptors and associated dendritic spine loss, thus impairing 

glutamatergic synaptic transmission (Hsieh et al., 2006). Furthermore, it has been shown 

that soluble oligomeric Aβ associates with the post-synapse and contributes to the loss 
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of synapses and dendritic spines observed around Aβ plaques in human AD and in 

transgenic AD mice (Koffie et al., 2009). 

The toxic effects of Aβ at the synapse is a complex mechanism, due to Aβ being able to 

trigger several synaptotoxic processes. Predominantly, Aβ can drive neurotoxic calcium 

dyshomeostasis, the activation of caspases and calcineurin, oxidative damage, alteration 

of synaptic receptor trafficking and anchoring, and other molecular events that 

culminate in synaptotoxicity and disrupted synaptic function (Lacor et al., 2007, Koffie et 

al., 2011). 

 

It is clear that synaptic dysfunction and loss are critical early pathological features of AD 

that underlie disrupted neuron function and the clinical phenotypes of AD. It is also 

evident that Aβ can drive synaptotoxicity, but it is also important to recognise that loss 

of intact APP, which holds physiological roles at the synapse (Abramov et al., 2009), may 

also be critical to dysfunction in AD. In addition, the evidence that tau allows Aβ to exert 

its toxicity at synapses (Roberson et al., 2011) also needs further consideration. 

 

1.5.2 Effects of tau at the synapse 

Tau likely holds both physiological and pathological roles at the synapse dependent on 

its conformation, solubility, phosphorylation-state and whether it is the full length or 

truncated.  

 

Tau has been found both pre- and post- synaptically in the human brain, albeit in much 

lower levels than it is present in the axon (Tai et al., 2012, Henkins et al., 2012) Amounts 
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of tau at the synapse have been shown to be similar in both control and AD patients. 

However, tau phosphorylated at ser 396/404 is only found in synapses in AD brain and 

tau phosphorylated at these sites was found in a greater number of postsynaptic than 

presynaptic sites (Tai et al., 2012). In synaptosomes prepared from human AD brains, 

phosphorylated tau species are found co-localised with Aβ (Fein et al., 2008, Henkins et 

al., 2012), and phosphorylated tau in synaptoneurosome preparations form human AD 

brain correlate strongly with dementia (Perez-Nievas et al., 2013). In addition, C-

terminal truncated tau is released pre-synaptically from synaptosomes prepared from 

human AD brain (Sokolow et al., 2015).  In mice expressing the mutant human P301L 

tau, tau phosphorylated at ser 396/404 was found to accumulate in the presynapse 

(Harris et al., 2012). However, an alternative study in P301L mice found that 

phosphorylated species of tau accumulated in dendritic spines at the post-synapse, 

unlike non-phosphorylated tau (Hoover et al., 2010) 

 

Mutated tau and phosphorylated tau species drive impaired trafficking or anchoring of 

AMPARs and NMDARs in the post-synapse which precedes spine loss (Hoover et al., 

2010, Kopeikina et al., 2013), and pre-synaptic injection of human tau in the giant squid 

axon completely abolishes synaptic transmission (Moreno et al., 2011). Tau also acts to 

traffic fyn to the synapse. Interaction between fyn and tau stabilise the NMDA receptor 

2B (NR2B) and the post-synaptic density protein 95 (PSD-95) complex at the post-

synapse (Ittner et al., 2010). Tau also plays a role in the trafficking of mitochondria along 

the axon to the synapse, which is essential for synaptic function (Kopeikina et al., 2011). 

In AD, it could be that the accumulation of pathological tau and the somatodendritic 
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accumulation of tau impairs its normal function to reduce this transport of mitochondria 

to the synapse, resulting in a local energy deficiency (Reddy, 2011). Together, these 

findings suggests that tau may exert toxicity both pre- and post-synaptically by 

interfering with normal synaptic function.  

 

It is likely that Aβ or APP and tau interplay to drive synaptic dysfunction and synaptic 

loss in AD. In vitro, oligomeric Aβ can cause the translocation of tau from the axonal 

compartment to dendrites whilst concurrently increasing the phosphorylation of tau 

(Zempel et al., 2010). Similarly, other studies have shown that tau mislocalisation and 

the phosphorylation of tau at may be required to mediate Aβ-induced synaptotoxicity 

(Mairet-Coello et al., 2013, Miller et al., 2014). In APP transgenic mice, tau reduction as 

well as truncated tau, protect against Aβ-mediated toxicity to rescue premature death 

and memory deficits (Ittner et al., 2010). Similarly, tau reduction prevented cognitive 

decline, synaptic transmission deficits and plasticity deficits in APP transgenic mice 

(Roberson et al., 2011). Tau reduction also protects against excitotoxicity in both WT and 

transgenic APP mice (Roberson et al., 2007). This suggests a clear pathological function 

for tau mediating both Aβ-induced excitotoxicity and synaptic dysfunction. 

 

Further work is required to determine which species or post-translational modification 

of tau is responsible for its toxicity at the synapse in AD. Additionally, the interplay 

between tau and Aβ or APP at the synapse in AD also requires further study to 

determine the best way in which to intervene therapeutically to reverse or slow 

neuronal loss and cognitive decline. 
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Taken together, the evidence described above indicates that interactions between 

specific forms of A and tau, including their presence at (and downstream effects on) 

synapses play a critical role in mediating loss of synaptic function and 

neurodegeneration in AD. These events are summarised in Figure 1.6. 

 

 

Figure 1.6: Effects of Aβ and tau at the synapse in AD 
Schematic diagram summarising major effects of Aβ and tau at the synapse in AD. Aβ 
oligomers are implicated in causing synaptic dysfunction and loss in several models of 
AD. Aβ can bind to postsynaptic receptors initiating a cascade of events including 
increases in calcium, the activation of calcineurin and caspase 3, and the internalisation 
of the post-synaptic glutamate receptors - NMDA and AMPA. Tau at the synapse, 
including phosphorylated tau species can be mislocalised to dendritic spines driving 
increases in calcium and calcineurin activity, receptor internalisation and consequently 
disrupts neurotransmission. Tau has also been demonstrated to be transported trans-
synaptically and the role of this in health and disease is unclear. Figure taken from 
(Spires-Jones and Hyman, 2014). 
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1.6 Animal models of AD 

The use of animal models is necessary for us to understand the progressive 

neurodegeneration seen in AD since they share approximately 98% of their working DNA 

with humans (Waterston et al., 2002), are amenable to genetic modification, cognitive 

and behavioural testing, and their life-span allows tracking of progressive disease 

phenotypes with age. Furthermore, animal models are imperative for preclinical 

investigation of new potential therapies before human clinical trials can commence.  

 

1.6.1 Mouse models of AD 

Currently, none of the existing transgenic mouse models of AD fully recapitulate the 

wide spectrum of changes seen in human AD. Regardless, these “incomplete” animal 

models display some critical aspects of disease, thereby allowing us to identify 

mechanisms and pathways underling the development and progression of AD. 

 

The majority of transgenic animal models of AD can be classified as follows: 

 Mice expressing human APP and/or PS1/PS2: These mice generally show 

substantial Aβ pathology, synaptic dysfunction, behavioural changes, but no 

substantial neurodegeneration (Hsiao et al., 1996, Chapman et al., 1999). 

Additionally, these APP and/or PS mice show only some subtle increases in tau 

phosphorylation without any tangles or aggregates forming (Sturchler-Pierrat et 

al., 1997). The presence of mutations in APP and PS1/2 usually drives the 

acceleration of disease progression compared to the expression of one transgene 

alone (Holcomb et al., 1998). 
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 Mice expressing human MAPT: Mice which express mutations in MAPT are 

typically used to understand changes in tau in tauopathies but are also useful to 

understand the development of AD-related changes in tau. For example, the 

P301S line shows the progressive development of hyperphosphorylated tau and 

the formation of intracellular NFTs similar to those in human AD and other 

tauopathies (Allen et al., 2002). Interestingly, mice which express non-mutant 

human tau also develop age-related changes in synaptic function and cognition 

associated with an increase in phosphorylated and aggregated tau (Andorfer et 

al., 2003, Polydoro et al., 2009). 

 Mice expressing human APP or APP+PS1/2 and MAPT: These mice which express 

multiple transgenes generally show the progressive development of changes in 

Aβ and the deposition of plaques, followed by changes in tau including increased 

phosphorylation and the development of NFTs. In addition, these mice show 

synaptic deficits and cognitive dysfunction and can show some neuronal loss 

(Oddo et al., 2003b, Oddo et al., 2003a, Saul et al., 2013). Again, increasing the 

number of transgenes present (e.g. in the 5XFADxPS19 model) also accelerates 

the disease phenotype (Saul et al., 2013). 

 

We have been able to use these transgenic mouse models to gain insights into human 

AD, but it is important that more clinically relevant in vivo and in vitro models of AD are 

developed in order to uncover the mechanisms behind AD and allow better translation 

of therapeutic agents into the clinic. 
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1.6.2 The 3xTg-AD transgenic mouse model of AD 

Mouse models which progressively develop human AD-like plaque and tangle pathology 

are multigenic. One of the best characterised and most successfully used lines is the 

3xTg-AD mouse model, which co-expresses mutant human PS1 (M146V), APP (Swe, 

K670N, M671L) and tau (P301L). 3xTg-AD mice (Oddo et al., 2003b) were generated by 

co-microinjection of two independent transgenes encoding human APPSwe and human 

P301L tau (4R0N) (both under control of the mouse Thy1.2 regulatory element) into 

single-cell embryos harvested from homozygous mutant (M146V) PS1 knock-in (PS1-KI) 

mice (Guo et al., 1999). The presence of mutations in tau, APP and PS1 enables these 

mice to progressively accumulate Aβ plaques and intracellular NFTs with age.  

 

At 3 months of age, 3xTg-AD mice accumulate intracellular Aβ in the cortex, but show no 

pathological alterations in tau. Levels of the astrocytic marker, glial fibrillary acidic 

protein (GFAP), are also comparable with WT controls at this age (Oddo et al., 2003a, 

Oddo et al., 2003b). By 4 months of age, 3xTg-AD mice display elevated levels of 

insoluble Aβ-42 in the cortex, but soluble levels of Aβ-40 and Aβ-42 are unchanged. This 

is further exacerbated at 6 months of age, a time when intracellular Aβ is reported to 

accumulate in the amygdala and hippocampus, and extracellular Aβ and small plaques 

are first detectable in the cortex (Billings et al., 2005, Oddo et al., 2003b). A reduction in 

the volume and surface area of astrocytes is also observed in the hippocampus of 6 

month old 3xTg-AD mice (Olabarria et al., 2010). By 12 months of age, extracellular Aβ 

and plaques have developed in the hippocampus, in association with reactive astrocytes 

(Oddo et al., 2003b). Astrocytes distal to plaques show a reduced volume and surface 
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area indicative of atrophy at this age (Olabarria et al., 2010, Yeh et al., 2013). The first 

obvious tau changes are also observed in 12 month old mice, with increased 

phosphorylation of tau at thr 231 and ser 202/thr 205 detected in the cortex, amygdala 

and hippocampus alongside disease-associated conformational changes in tau. By 15 

months of age, accumulations of tau with tangle-bearing features in the 3xTg-AD cortex, 

amygdala and hippocampus are detectable following histological staining (Oddo et al., 

2003a, Oddo et al., 2003b). By 18 months of age tau phosphorylation at ser 396/404 is 

increased relative to WTs and reactive astrocytes colocalise with tau-reactive dystrophic 

neurites. Total levels of GFAP are also elevated at this age in 3xTg-AD mice, particularly 

in the cortex (Oddo et al., 2003a, Oddo et al., 2003b).  

 

In line with the amyloid cascade hypothesis, these mice progressively develop synaptic 

dysfunction and neuronal death alongside tau and Aβ pathologies. Synaptic dysfunction 

as indicated by impaired LTP is reported at 6 months of age,  and this is notably 

concomitant with the first detectable presence of intracellular Aβ in the hippocampus 

(Oddo et al., 2003b). Furthermore, spine density progressively reduces with age in the 

3xTg-AD mice, indicating an age-dependent neurodegenerative phenotype similar to 

that of human AD (Bittner et al., 2010). 3xTg-AD mice also progressively develop other 

pathological features of human AD including upregulated microglial activity 

(Mastrangelo and Bowers, 2008), aberrant kinase activity (Sy et al., 2011), and 

substantial loss of noradrenergic (Manaye et al., 2013) and cholinergic (Girão da Cruz et 

al., 2012) neurons. 
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As well as developing several pathological and physiological features of AD, 3xTg-AD 

mice develop a range of cognitive and behavioural symptoms with age that are 

comparable to that seen in human AD. 3xTg-AD mice develop progressive cognitive 

impairments from a relatively young age; deficits in associative learning are first 

detected between 3 and 5 months of age, and deficits in spatial working memory 

(Morris water maze), associative learning/memory (contextual fear conditioning), and 

reference/working memory (Y-maze alternation) are apparent at 6 months of age. 

Recognition memory starts is impaired between 9 and 11 months of age, and reference 

memory, as measured in the Barnes maze, becomes notable impaired at 12 months of 

age (Webster et al., 2014). 3xTg-AD mice also develop other clinically relevant symptoms 

of human AD including circadian disturbances (Sterniczuk et al., 2010b), anxiety and 

restlessness (Sterniczuk et al., 2010a). 

 

1.6.3 Pharmacological approaches to novel AD treatments using 3xTg-AD mice 

Due to the molecular and behavioural AD-relevant phenotype of 3xTg-AD mice, many 

potential therapeutics targeted at alleviating the symptoms and pathology in AD have 

been investigated in vivo in this transgenic line. The main studies relevant for this project 

are briefly described below: 

 

Lithium Chloride (LiCl) 

Lithium is a widely prescribed drug for bipolar disorder. The exact mechanism of lithium 

in the brain is still speculated, but in terms of AD, the ability of lithium to deactivate 

GSK-3β may be important as GSK-3 is one of the most common kinases involved in tau 
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phosphorylation (Hanger et al., 1992). GSK-3α/β are inactivated when the inhibitory 

phosphorylation sites ser 21/9 are phosphorylated thereby activating GSK-3 and 

allowing this kinase to phosphorylate tau (Sutherland et al., 1993). The deactivation of 

GSK-3β results in decreased tau phosphorylation in primary neuronal cultures and in vivo 

(Muñoz-Montaño et al., 1997, Noble et al., 2005) and reduced production and 

deposition of APP (Phiel et al., 2003). In 3xTg-AD mice, lithium treatment reduced tau 

phosphorylation at thr 181, ser 202/thr 205, thr 231, and thr 212/ser 214 (all targets of 

GSK-3) to levels similar to those found in WT controls. Working memory, as determined 

by T maze assays, was not improved by lithium treatment and no reductions in the 

numbers of Aβ-positive plaques, insoluble and soluble Aβ-40 or Aβ-42 were resulted 

from lithium treatment (Caccamo et al., 2007). 

 

NAPVSIPQ 

NAPVSIPQ, also known as davunetide, is an octapeptide derived from activity-dependent 

neurotrophic factor (ADNF) which has broad neuroprotective properties in in vitro and in 

vivo neurodegenerative models. NAPVSIPQ protects against Aβ-induced neurotoxicity 

(Zemlyak et al., 2000), inhibits Aβ aggregation (Ashur-Fabian et al., 2003), and prevents 

disruption of microtubules and reduces tau phosphorylation in vitro (Gozes and Divinski, 

2004). NAPVSIPQ treatment for 3 months in 9 month old 3xTg-AD mice lowered levels of 

Aβ–40 and Aβ–42 as well as reducing tau phosphorylation at ser 202/thr 205 and thr 

231, but not ser 202 (Matsuoka et al., 2007). NAPVSIPQ treatment in older (12 month 

old) 3xTg-AD mice also yielded similar effects on AD-relevant phenotypes, namely 

reductions in levels of phosphorylated tau and insoluble tau, as well as improved 
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performance in spatial memory (Morris water maze) and non-associative memory 

(olfactory habituation/dishabituation test) (Matsuoka et al., 2008). 

 

BTA-EG4 

BTA-EG4 is an oligo (ethylene glycol) derivative of 6-methylbenzothiazole aniline which 

holds amyloid-binding properties to prevent interactions of amyloid fibrils with other 

amyloid-binding proteins (Inbar et al., 2006). Treatment with BTA-EG4 is neuroprotective 

in cultures treated with Aβ preparations that lead to subsequent hydrogen peroxide 

release (Habib et al., 2010).  

 

BTA-EG4 treatment reduces the production of Aβ both in vivo in WT mice and in vitro in 

primary cortical neurons, as demonstrated in WT mice by an increased production of 

sAPPα and a reduced production of sAPPβ. This activity is likely due to the fact that BTA-

EG4 increases surface expression of APP, thereby enhancing preferential cleavage by α-

secretase to preclude Aβ formation. Furthermore, BTA-EG4 increases spine density, the 

number of functional synapses and overall synaptic function as measured by an 

increased frequency of mEPSCs in the cortex and hippocampus in WT mice. These 

synaptic improvements are also accompanied by improved cognitive performance 

(Megill et al., 2013). 

 

 In 6 to 10 month old 3xTg-AD mice which show mild synapse loss, 2-week treatment 

with BTA-EG4 was found to increase spine density and spine size in the cortex and 

hippocampus, effects found to be mediated via upregulated Ras cell signalling activity 



 
69 

 

and increased GluA2 expression.  In 13 to 16 month old 3xTg-AD mice, which show 

moderate synapse loss, treatment for 2-weeks with BTA-EG4 increased spine density in 

the cortex but not in the hippocampus, and had no effect on spine size. Cognitive 

performance, as measured by the Morris water maze was improved in 2 to 3 month old 

BTA-EG4 treated 3xTg-AD mice, which show no synaptic impairment, and to an extent in 

6 to 10 month old 3xTg-AD mice, concurrent with increased markers of functional 

synapses. No improvement in cognition was seen in 13 to 16 month old 3xTg-AD mice 

(Song et al., 2014). No effects of BTA-EG4 on tau have yet been reported. 

 

1.7 Organotypic brain slice cultures 

1.7.1 History 

Culture of ex vivo organotypic brain slice cultures was first reported in the 1940s, but it 

was in 1981 when a roller-tube method of culturing ex vivo organotypic brain slices was 

fully established as a technique to model in vivo physiology and development in the 

brain (Gähwiler, 1981). The roller-tube culture method provided a more developed 

system compared to other in vitro methods available at the time, and was widely 

adopted. However, organotypic brain slices produced by this were found to dramatically 

thin once in culture, resulting in a monolayer of cells. Therefore, this method did not 

allow preservation of the cytoarchitecture of the tissues from which the cultures were 

prepared.  

 

The most commonly used method to prepare organotypic brain slice cultures is the 

interface-slice culture method, which, was established by Stoppini and colleagues in 
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1991. This relatively simple method involves a tissue explant from neonatal mice/rats 

being cultured on a porous membrane interface between the humidified atmosphere 

and culture medium. The tissue explants are able to receive adequate nutrition through 

the membrane from the slice culture medium via capillary action (Stoppini et al., 1991). 

Organotypic brain slice cultures made by the interface-slice culture method only will be 

discussed from herein. 

 

1.7.2 Advantages of ex vivo organotypic brain slice cultures 

Organotypic brain slice cultures are a well-established model in which the three-

dimensional organisation and architecture of the tissue is preserved, lending their 

application to developmental studies as well as electrophysiology, morphology and 

biochemical analyses (Gähwiler et al., 1997). 

 

Since their establishment as a useful tool in neuroscience research, many uses and 

advantages of organotypic brain slice cultures have emerged. In particular, these long-

term slice cultures provide a means to replace, refine and reduce some aspects of in vivo 

research (Humpel, 2015a). Slice cultures are generally produced from mice or rats at 

young ages – normally postnatal day 0 to postnatal day 12. Brain slices produced from 

these pups display high levels of plasticity, therefore show resistance to the mechanical 

trauma incurred during the slice culture procedure (Gähwiler et al., 1997). This allows 

viable healthy cultures to be maintained for several weeks/months in culture after 

explant (De Simoni and My Yu, 2006). Furthermore, neurodevelopment continues ex 

vivo; only immature synapses have been made in pups prior to culture preparation, but 
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these develop ex vivo as they do in vivo, maturing after 2-3 weeks in culture (De Simoni 

et al., 2003). 

 

Several studies have shown that the development of brain slices ex vivo mimics the in 

vivo situation. Neurons in slice cultures grow to the same length and develop the same 

number of primary branches, show the same apical dendrite outgrowth and same spine 

density as they would in vivo as acute preparations (De Simoni et al., 2003). They also 

retain synaptic connectivity and function, show active synaptic vesicles and a similar 

capacity for LTP as intact brain (De Simoni et al., 2003). Furthermore, glia develop 

normally in organotypic cultures, in approximately the same proportions as observed in 

vivo (Hailer et al., 1996), and gene regulation and protein expression matches in vivo 

adult brain. 

 

From a pharmaceutical or industrial perspective, slices can be utilised for medium 

throughput pre-clinical screening of compounds, and are a more readily tractable and 

considerably cheaper alternative to in vivo animal studies. In comparison to high-content 

screening, slice culture models enable a more robust selection of lead compounds to 

take forward to in vivo testing as slices are more biologically relevant than dissociated 

primary cells or cell lines, and if prepared from transgenic animals do not require any 

modification such as transfection of proteins of interest, to investigate mechanisms or 

targets, unlike more conventional methods of drug discovery (Sundstrom et al., 2005). In 

summary, organotypic slice culture models should be able to replicate human diseases 
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more robustly and effectively than other in vitro systems, which is likely to be 

advantageous to basic science as well as drug discovery and development.  

 

1.7.3 Modelling disease in ex vivo organotypic brain slice cultures 

The use of ex vivo organotypic brain slices has been widely exploited in order to model 

aspects of various diseases and disorders of the central nervous system for mechanistic 

and therapeutic investigations. Examples of a select few of such studies are listed below 

to demonstrate the breadth and variety of brain slice culture model systems.   

 

 Ischaemia has been successfully modelled in rat hippocampal slice cultures 

(Pringle et al., 1997).  

 Neurodegeneration characteristic of amyotrophic lateral sclerosis (ALS) has been 

modelled in spinal cord cultures from rats (Corse et al., 1999).  

 The demyelination and remyelination typical of multiple sclerosis has been 

modelled in cerebellar, brainstem and spinal cord cultures from mice (Zhang et 

al., 2011a). 

 

Organotypic brain slice cultures of AD have also been developed previously. Organotypic 

hippocampal cultures prepared from WT animals and maintained in culture for one 

week (immature – p14 equivalent) or for four weeks (mature – p35 equivalent) show 

significant cell death when treated with Aβ; mature cultures demonstrated more 

marked neurotoxicity modelling the susceptibility of aged brain to Aβ (Bruce et al., 

1996). In addition, applying Aβ to acute hippocampal slices was found to prevent the 
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induction of LTP (Wang et al., 2004). Impaired LTP has also been reported in acute 

hippocampal slices prepared from several transgenic AD mouse lines including 3xTg-AD 

mice (Oddo et al., 2003b), and long-term organotypic brain slice cultures produced from 

mice expressing mutant human tau transgenes develop phosphorylated tau species and 

insoluble tau aggregates, and long-term cultures produced from mutant human APP 

transgenic mice develop small Aβ-containing plaque-like structures (Duff et al., 2002, 

Humpel, 2015b). Furthermore, the degeneration of cholinergic neurons in AD has also 

been recapitulated in organotypic cultures prepared from rats which are cultured 

without nerve growth factor (Humpel and Weis, 2002). However, no organotypic brain 

slice culture models that develop both tau and Aβ pathology have, to the best of our 

knowledge, yet been developed. Since, as outlined above, interactions between tau and 

Aβ are likely to be critical for neurodegeneration in AD, there is a considerable need to 

develop such a model since it will have widespread utility for investigations into the 

mechanisms underlying disease, and as a drug screening and/or development platform.  

 

1.8 Aims and objectives of this thesis                                    

This study was designed to develop a novel organotypic brain slice culture model of 

Alzheimer's disease that will progressively develop the main features of human AD 

including the progressive development of pathological tau and Aβ, and associated 

neurodegenerative pathways, and to use this model to elucidate mechanisms of disease 

and as a platform for small-scale discovery and testing of potential AD therapeutics. This 

project had the following specific aims: 
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1. Establish a novel organotypic brain slice culture model of AD from 3xTg-AD 

mice. 

 

2. Fully assess the biochemical and physiological features of disease progression 

in 3xTg-AD brain slice cultures in comparison to WT cultures, in vivo 3xTg-AD 

brain and previously published work using post-mortem human AD brain. 

 

3. Use slice cultures to investigate the molecular mechanisms underlying the 

development of Alzheimer’s disease, with a particular focus on the release of 

tau from neurons and mechanisms of tau propagation and spread in AD. 

 

4. Validate the utility of 3xTg-AD brain slice cultures as a sensitive model in 

which to investigate the effects of AD-relevant therapies by comparing the 

effects of treatments in slices to those previously published following in vivo 

treatment of 3xTg-AD mice.  

 

5. Determine possible novel modes of action of previously tested therapeutic 

agents in 3xTg-AD brain slice cultures.  

  



 
75 

 

Chapter 2 : Materials and Methods 

 

2.1 Materials 

Unless otherwise stated, all molecular biology and cell culture reagents were purchased 

from Invitrogen Ltd., UK and all other chemicals were purchased from Sigma-Aldrich 

Company Ltd., UK. Stock solutions and buffers were prepared using ultrapure H2O from 

an Elga® Maxima Purification System (Veolia Water Ltd., UK). When required, solutions 

were sterilised by autoclaving for 20 minutes at 15 lb/inch2. 

 

2.1.1 Cell culture materials 

Primary neuron cultures 

Poly-D-lysine      10 µg/mL Poly-D-lysine 

 

Supplemented Neurobasal medium  Neurobasal™ medium without phenol red 

      1 % (v/v) B27 supplement  

      2 mM L-glutamine (PAA Laboratories GmbH, 

      Austria) 

      60 units/mL penicillin (PAA Laboratories  

      GmbH, Austria) 

      100 units/mL streptomycin (PAA   

      Laboratories GmbH, Austria) 
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HBSS Hank’s balanced salt solution (HBSS), with 

Ca2+ and Mg2+ 

 

HBSS without Ca2+ and Mg2+ Hank’s balanced salt solution without Ca2+ 

and Mg2+ 

 

Trypsinising solution    0.05 % (w/v) trypsin 

      0.53 mM ethylenediaminetetraacetic acid  

      (EDTA) 

      in HBSS 

 

DNase solution Deoxyribonuclease (DNase) 1 (2000 kunitz 

units) 

      in 0.9 % NaCl 

 

Neutralising solution    Neurobasal™ medium without phenol red 

      10 % (v/v) Fetal calf serum (FCS) 

      0.1 % (v/v) DNase solution 

 

Trypan blue     0.4 % (w/v) Trypan blue solution (Thermo  

      Scientific Ltd., UK) in 50 mM    

      phosphate-buffered saline (PBS) 
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Cell culture treatments 

Lithium chloride    1, 5, 10, 20, 40 mM LiCl in ultrapure H2O 

 

Sodium chloride (NaCl)   20 mM NaCl in ultrapure H2O 

 

NAPVSIPQ 1 x 10-15, 10-13, 10-11, 10-9, 10-7 M NAPVSIPQ 

(Alpha Diagnostic International, USA) in 

ultrapure H2O 

 

Nocodazole 5 mg/ mL nocodazole in dimethyl sulfoxide 

(DMSO) 

 

BTA-EG4     20, 40, 60 µM BTA-EG4 in DMSO 

 

  

2.1.2 Slice culture materials 

Slice culture preparation and culture 

Dissection buffer    1.25 mM KH2PO4, pH 7.4 

124 mM NaCl 

3 mM KCl 

8.19 mM MgSO4 

2.65 mM CaCl2 

3.5 mM NaHCO3 
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10 mM glucose 

2 mM ascorbic acid 

39.4 µM ATP 

 in ultrapure H2O, sterile filtered (0.2 µm) 

 

 

Slice culture medium     Basal medium eagle (BME) 

26.6 mM HEPES, pH 7.1 

19.3 mM NaCl 

5 mM NaHCO3 

511 µM ascorbic acid 

40 mM glucose 

2.7 mM CaCl2 

2.5 mM MgSO4 

1 % (v/v) GlutaMAX  

0.033 % (v/v) insulin 

0.5 % (v/v) penicillin/streptomycin 

25 % (v/v) heat inactivated horse serum 

       in ultrapure H2O, sterile filtered (0.2 µm) 

 

Slice culture treatments 

Lithium chloride (LiCl)    20 mM LiCl in ultrapure H2O 
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Sodium chloride    20 mM NaCl in ultrapure H2O 

 

NAPVSIPQ 1 x 10-15, 10-13, 10-11, 10-9, 10-7 M NAPVSIPQ 

(Alpha Diagnostic International, USA) in 

ultrapure H2O 

 

Nocodazole     5 mg/mL nocadazole in DMSO 

 

BTA-EG4     40, 60 µM BTA-EG4 in DMSO 

 

KCl      50 mM in ultrapure H2O 

 

Tetrodotoxin citrate    2 µM tetrodotoxin citrate (Abcam Plc., UK)  

      in ultrapure H2O 

 

    

2.1.3 Materials for biochemical assays 

Lactate dehydrogenase (LDH) assays 

Cytotox 96® non-radioactive cytotoxicity assay (Promega, UK) 

All reagents supplied complete by 

manufacturer. 
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LIVE/DEAD® assay 

LIVE/DEAD® far red fixable dead cell stain kit (Invitrogen Ltd., UK) 

All reagents supplied complete by 

manufacturer. 

 

General buffer solutions 

50 mM PBS     4.3 mM Na2HPO4 

      1.47 mM KH2PO4 

      137 mM NaCl 

      2.7 mM KCl, pH 7.4 

      in ultrapure H2O 

 

50 mM Tris-buffered saline (TBS)  50 mM Tris-HCl, pH 7.6 

      150 mM NaCl 

      in ultrapure H2O 

 

Bicinchoninic acid (BCA) protein assay 

BCA® protein assay (Pierce™, USA) 

All reagents supplied complete by 

manufacturer. 

 

Bovine serum albumin (BSA)   2 mg/mL BSA 
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Sample preparation 

Extra strong lysis buffer   10 mM Tris-HCl, pH 7.5 

75 mM NaCl 

0.5 % (w/v) sodium dodecyl sulphate (SDS) 

20 mM sodium deoxycholate 

1 % (v/v) Triton X-100 

2 mM sodium orthovanadate 

1.25 mM NaF 

1 mM sodium pyrophosphate 

10 mM EDTA 

in ultrapure H2O 

 

1x Mini protease inhibitor cocktail tablet (Roche Diagnostics, UK) was added to 10 mL 

buffer prior to use to inhibit the action of serine, cysteine and metallo-proteases. 

 

Synaptosome lysis buffer   10 mM Tris HCl, pH 7.4  

0.32 M Sucrose 

2 mM EGTA 

2 mM EDTA 

in ultrapure H2O 

 

1x Mini protease inhibitor cocktail tablet (Roche Diagnostics, UK) was added to each 10 

mL buffer prior to use. 
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Microtubule-stabilising buffer 80 mM piperazine-N,N′-bis (2-ethane-

sulfonic acid) (PIPES), pH 6.8 

1 mM GTP 

1 mM MgCl2 

1 mM EGTA 

0.5 % (v/v) Triton X-100 

30 % (v/v) glycerol 

10 μM Taxol 

0.5 μM okadaic acid (Santa Cruz 

Biotechnology, USA) 

      in ultrapure H2O 

 

1x Mini protease inhibitor cocktail tablet (Roche Diagnostics, UK) was added to each 10 

mL buffer prior to use. 

 

Hypotonic buffer for membrane fractionation     

      10 mM NaHCO3, pH 7.5 

      25 μg/mL DNAse I 

      1 mM sodium orthovanadate 

      in ultrapure H2O 

1x Mini protease inhibitor cocktail tablet (Roche Diagnostics, UK) was added to each 10 

mL hypotonic buffer prior to use. 

Sarkosyl homogenisation buffer 50 mM TBS, pH 7.4 
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2 mM EGTA 

10 mM NaF 

1 mM sodium orthovanadate 

      in ultrapure H2O 

 

1x Mini protease inhibitor cocktail tablet (Roche Diagnostics, UK) was added to each 10 

mL buffer prior to use. 

 

2x Sample buffer     125 mM Tris-HCl, pH 6.8 

4 % (w/v) SDS 

100 mM dithiothreitol 

20 % (v/v) glycerol 

0.01 % (w/v) bromophenol blue 

     in ultrapure H2O 

 

Sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) 

Gels for SDS-PAGE were prepared using stock solutions purchased from National 

Diagnostics, UK. Final gel compositions were: 

 

12.5 % resolving gel, pH 8.8    12.5 % (v/v) acrylamide 

      25 % (v/v) resolving buffer 

0.01 % (w/v) ammonium persulphate (APS) 
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0.1 % (v/v) N,N,N’,N’, 

tetramethylethylenediamine (TEMED) 

in ultrapure H2O 

 

10 % resolving gel, pH 8.8   10 % (v/v) acrylamide 

      25 % (v/v) resolving buffer 

      0.01 % (w/v) APS 

0.1 % (v/v) TEMED 

in ultrapure H2O 

 

7.5 % resolving gel, pH 8.8   7.5 % (v/v) acrylamide 

      25 % (v/v) resolving buffer 

      0.01 % (w/v) APS 

0.1 % (v/v) TEMED 

in ultrapure H2O 

 

4 % stacking gel, pH 8.8   4 % (v/v) acrylamide 

      25 % (v/v) resolving buffer 

      0.075 % (w/v) APS 

0.1 % (v/v) TEMED 

in ultrapure H2O 
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Running buffer Tris-glycine-SDS-PAGE buffer 10x (National 

Diagnostics, UK) diluted in ultrapure H2O 

 

Western blotting and immunodetection reagents 

Immunoblotting transfer buffer Tris-glycine buffer 10x (National Diagnostics, 

UK) diluted in ultrapure H2O 

      20% (v/v) methanol 

 

Washing buffer    50 mM TBS 

 

Blocking solutions 5 % (w/v) skimmed milk powder in 50 mM 

TBS 

  

or 5 % (w/v) BSA in 50 mM TBS with 0.05 % 

(v/v) Tween-20 

 

or Odyssey blocking solution (LI-COR  

Biosciences, UK)  

 

Protein molecular weight marker 

Precision Plus Protein™ All-Blue Standard (Bio-Rad Laboratories Inc., USA) consisting of 

10 pre-stained bands with sizes 10 kDa, 15 kDa, 20 kDa, 25 kDa, 37 kDa, 50 kDa, 75 kDa, 

100 kDa, 150 kDa, and 250 kDa when used with tris-glycine-SDS-PAGE running buffer. 
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Enzyme-Linked Immunosorbent Assay (ELISA) reagents for detection of Human Amyloid-β 

40 and 42  

Human Aβ-40 ELISA kit (Invitrogen Ltd., UK) 

All reagents supplied complete by 

manufacturer. 

 

Human Aβ-42 ELISA kit (Invitrogen Ltd., UK) 

All reagents supplied complete by 

manufacturer. 

 

Standard reconstitution buffer  55 mM NaHCO3, pH 9.0 

 

Standard diluent buffer   50 mM TBS 

      0.13 mM Tris-HCl, pH 7.5 

      1 mM NaCl 

      0.006 % (w/v) SDS 

      0.26 mM sodium deoxycholate 

0.013 % (v/v) Triton X-100 

26 μM sodium orthovanadate 

17 μM NaF 

13 μM sodium pyrophosphate 

0.13 mM EDTA 

in ultrapure H2O 
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1x Mini protease inhibitor cocktail tablet (Roche Diagnostics, UK) was added to each 10 

mL buffer prior to use. 

   

ELISA reagents for detection of extracellular tau 

ELISA coating buffer, pH 7.2   15.6 mM K2HPO4
  

      25.6 mM KH2PO4  

      136.9 mM NaCl 

      1.3 mM EDTA  

7.7 mM NaN3 

in ultrapure H2O 

 

Washing buffer    50 mM TBS 

0.05 % (v/v) Tween-20 

 

Blocking solutions     

Starting block solution   50% (v/v) StartingBlock™ blocking buffer  

      (Thermo Scientific Ltd., UK) 

      in 50 mM TBS 

 

Primary antibody blocking solution 20% (v/v) SuperBlock™ blocking buffer 

(Thermo Scientific Ltd., UK) 

      in 50mM TBS 
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Secondary antibody blocking solution 5 % (w/v) skimmed milk powder 

      in 50 mM TBS 

 

Stabilised chromogen substrate solution Tetramethylbenzidine (TMB)-ultra reagent 

(Thermo Scientific Ltd., UK) 

 

Stop solution      1M HCl 

 

Immunocytochemistry 

4 % paraformaldehyde (PFA)   4 % (w/v) PFA in 50 mM PBS 

 

Permeabilisation solution   0.1 % (v/v) Triton X-100 in 50 mM PBS 

 

Blocking solution    5 % (w/v) BSA in 50 mM PBS 

      0.05 % (v/v) Tween-20 

 

Washing solution    50 mM PBS 

0.05 % (v/v) Tween-20 

 

Hoechst 33258 2 µg/mL bis-Benzimide H33258 

pentahydrate (Invitrogen Ltd., UK) in 50 mM 

PBS 
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Immunohistochemistry reagents for labelling of organotypic brain slice cultures 

4 % paraformaldehyde (PFA)   4 % (w/v) PFA in 50 mM PBS 

 

Permeabilisation solution   0.1 % (v/v) Triton X-100 in 50 mM PBS 

 

Blocking solution    20 % (w/v) BSA in 50 mM PBS 

 

Antibody solution    5 % (w/v) BSA in 50 mM PBS 

 

Washing solution    50 mM PBS 

 

Hoechst 33258 2 µg/mL bis-Benzimide H33258 

pentahydrate in 50 mM PBS 

 

Immunohistochemistry reagents for labelling of mouse brains 

50 mM TBS     50 mM Tris, pH 7.6 

      150 mM NaCl 

      in ultrapure H2O 

 

Cryoprotectant solution   30 % (w/v) sucrose in 50 mM TBS 

 

TBS-anti freeze (TBS-AF)   30 % (v/v) ethylene glycol 

      15 % (w/v) sucrose 
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      0.05 % (w/v) sodium azide in 50 mM TBS 

 

Peroxidase blocking solution    1 % (v/v) Hydrogen peroxide (H2O2)  

in 50 mM TBS 

 

Blocking solution 15 % (v/v) normal goat serum (Vector 

Laboratories Ltd., UK) in 50 mM TBS-T 

 

or 15 % (v/v) normal rabbit serum (Vector 

Laboratories Ltd., UK) in 50 mM TBS-T 

 

IHC antibody incubation solution 10 % (v/v) normal goat serum (Vector 

Laboratories Ltd., UK) in 50 mM TBS-T 

 

or 10 % (v/v) normal rabbit serum (Vector 

Laboratories Ltd., UK) in 50 mM TBS-T 

 

Avidin-biotin peroxidase complex Vectastain Elite ABC Kit (Vector Laboratories 

Ltd., UK) in 50mM TBS 

 

DAB solution 0.05 % (w/v) 3.3’-diaminobenzidine 

tetrahydrochloride (DAB) 

      0.001 % H2O2 in 50 mM TBS 
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2.1.4 Antibodies 

Antibody Specificity Species Source/Primary 

reference 

Dilution 

DAKO tau Total tau 
(phosphorylated and 
non-phosphorylated) 

Rabbit 
polyclonal 

DAKO Ltd., UK 1/10000 

Tg5 Amino acids 220-240 
of tau. Total tau 
(phosphorylated and 
non-phosphorylated) 

Mouse 
monoclonal 

Kind gift from P. 
Davies (Duff et 
al., 2000) 

1/500 

CP27 Amino acids 130-150 
of human tau 
(phosphorylated and 
non-phosphorylated) 

Mouse 
monoclonal 

Kind gift from P. 
Davies (Duff et 
al., 2000). 

1/400 

β-actin N-terminal end of the 
β-isoform of actin, 
clone AC-74 

Mouse 
monoclonal 

Sigma-Aldrich 
Company Ltd., UK 

1/10000 

β-actin N-terminal end of the 
β-isoform of actin 

Rabbit 
polyclonal 

Abcam Plc., UK 1/5000 

Tau-1 Tau dephosphorylated 
at ser 195, 198, 199, 
202 and thr205 

Mouse 
monoclonal 

Merck Millipore 
Ltd., UK 

1/5000 

PHF-1 Tau phosphorylated at 
ser 396 and 404 

Mouse 
monoclonal 

Kind gift from P. 
Davies (Wolozin 
et al., 1986). 

1/400 

CP13 Tau phosphorylated at 
ser 202 

Mouse 
monoclonal 

Kind gift from P. 
Davies 

1/200 

Tg3 Abnormal 
conformation around 
tau phosphorylated at 
thr 231.  

Mouse 
monoclonal 

Kind gift from P. 
Davies (Dickson 
et al., 1995). 

1/10 

TP007 Amino acids 1-16 of 
tau (N-terminus) 

Rabbit 
polyclonal 

(Davis et al., 
1995) 

1/2000 

TP70 Amino acids 428-441  
of tau (C-terminus) 

Rabbit 
polyclonal 

(Brion et al., 
1993) 

1/2000 

GFAP Glial fibrillary acidic 
protein (GFAP) 

Rabbit 
polyclonal 

DAKO Ltd., UK 1/1000 

GSK-3α/β Glycogen synthase 
kinase 3 (GSK-3) 
(phosphorylated and 
non-phosphorylated) 

Mouse 
monoclonal 

Enzo Life Sciences 
Ltd., UK 

1/1000 
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GSK-3α/β 
pser21/9 

Glycogen synthase 
kinase 3 
phosphorylated at ser 
21/9 

Rabbit 
polyclonal 

Cell Signaling, 
USA 

1/1000 

cdk5 Clone J-3 to amino 
acids 1-291 of cdk5 

Mouse 
monoclonal 

Santa Cruz 
Biotechnologies 
Inc., USA 

1/25 

p35 Clone C-19 to C-
terminus of p35 

Rabbit 
polyclonal 

Santa Cruz 
Biotechnologies 
Inc. USA 

1/25 

APP A4 Amino acids 66-81 of 
Amyloid precursor 
protein (APP) (N-
terminus) 

Mouse 
monoclonal 

Merck Millipore 
Ltd., UK 

1/1000 

APP 6E10 Amino acids 1-16 of β-
amyloid (C-terminus 
APP) 

Mouse 
monoclonal 

Covance Inc., USA 1/1000 

Synaptophysin Synaptophysin Mouse 
monoclonal 

Enzo Life Sciences 
Ltd., UK 

1/1000 

PSD-95 Total post-synaptic 
density protein 95 
(PSD-95) 

Rabbit 
Monoclonal 

Cell Signaling, 
USA 

1/1000 

α-Tubulin  Clone DM1A α-Tubulin Mouse 
Monoclonal 

Sigma-Aldrich 
Company Ltd., UK 

1/5000 

acetylated α-
Tubulin  

Clone 6-11B-1 
Acetylated α-Tubulin  

Rabbit 
Polyclonal 

Abcam Plc., UK 1/5000 

 
Table 2.1: Primary antibodies used for Western blotting in this study.  
Antibody name, specificity, species, dilution, and source/reference are shown. For tau 
antibodies, epitopes are numbered according to the longest isoform of CNS human tau, 
2N4R. 
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Antibody Species Source Dilution 

Alexa Fluor® 680 goat anti-
mouse IgG 

Goat Molecular 
Probes, 
Invitrogen 
Ltd., UK 

1/10000 

IRDyeTM 800 conjugated goat 
anti-rabbit IgG 

Goat Rockland Inc., 
USA 

1/10000 

Horseradish peroxidase (HRP)-
linked goat anti-mouse IgG 

Goat GE 
Healthcare 
UK Ltd., UK 

1/1000   

HRP-linked goat anti-rabbit IgG Goat GE 
Healthcare 
UK Ltd., UK 

1/1000   

 
Table 2.2: Secondary antibodies used for Western blotting in this study.  
Antibody reactivity, species, dilution and source are shown. Antibodies were compatible 
with the Li-Cor Odyssey Infrared Imaging system or enhanced chemiluminescence. 
 

 

Antibody Specificity Species Source Dilution 

DAKO tau Tau (phosphorylated 
and non-
phosphorylated) 

Rabbit 
Polyclonal 

DAKO Ltd., 
UK 

1/1000 

GFAP Glial fibrillary acidic 
protein (GFAP) 

Rabbit 
Polyclonal 

DAKO Ltd., 
UK 

1/1000 

 
Table 2.3: Primary antibodies used for immunocytochemistry.  
Antibody name, specificity, species, dilution, and source are shown. 
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Antibody Species Source Dilution 

Alexa Fluor® 568 goat anti-
mouse IgG 

Goat Molecular 
Probes, 
Invitrogen 
Ltd., UK 

1/500 

Alexa Fluor® 488 goat anti-
rabbit IgG 

Goat Molecular 
Probes, 
Invitrogen 
Ltd., UK 

1/500 

 
Table 2.4: Secondary antibodies used for immunocytochemistry.  
Antibody reactivity, species, dilution, and company are shown. 
 

 

Antibody Specificity Species 
Source/Primary 

reference 
Dilution 

DAKO tau Tau (phosphorylated 
and non-
phosphorylated) 

Rabbit 
Polyclonal 

DAKO Ltd., UK 1/1000 

CP13 Tau phosphorylated 
at ser 202 

Mouse 
Monoclonal 

Kind gift from 
P. Davies 

1/200 

GFAP Glial fibrillary acidic 
protein (GFAP) 

Mouse 
Monoclonal 

Vector 
Laboratories 
Ltd., UK 

1/1000 

PHF-1 Tau phosphorylated 
at ser 396 and 404 

Mouse 
Monoclonal 

Kind gift from 
P. Davies 
(Wolozin et al., 
1986) 

1/200 

 
Table 2.5: Primary antibodies used for organotypic brain slice culture 
immunohistochemistry.  
Antibody name, specificity, species, dilution, and source/reference are shown.  
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Antibody Species Source Dilution 

Alexa Fluor® 568 goat anti-
mouse IgG 

Goat Molecular 
Probes, 
Invitrogen 
Ltd., UK 

1/500 

Alexa Fluor® 488 goat anti-
rabbit IgG 

Goat Molecular 
Probes, 
Invitrogen 
Ltd., UK  

1/500 

 
Table 2.6: Secondary antibodies used for organotypic brain slice culture 
immunohistochemistry.  
Antibody reactivity, species, dilution, and company are shown. 
 
 

Antibody Specificity Species 
Source/Primary 

reference 
Dilution 

DAKO tau Tau (phosphorylated 
and non-
phosphorylated) 

Rabbit 
Polyclonal 

DAKO Ltd., UK 1/10000 

MC1 Conformational 
change around 
residues 5-15 and 
312-322 of tau 

Mouse 
Monoclonal 

Kind gift from P. 
Davies (Jicha et 
al., 1997) 

1/100 

PHF-1 Tau phosphorylated 
at ser 396 and 404 

Mouse 
Monoclonal 

Kind gift from P. 
Davies (Wolozin 
et al., 1986) 

1/100 

 
Table 2.5: Primary antibodies used in free-floating immunohistochemistry of mouse 
brains.  
Antibody reactivity, species, dilution, and company are shown.  
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Antibody Species Source Dilution 

Biotinylated anti-rat IgG 
(H+L) 

Rabbit Vector 
Laboratories 
Ltd., UK 

1/1000 

Biotinylated anti-rabbit IgG 
(H+L) 

Goat Vector 
Laboratories 
Ltd., UK 

1/1000 

Biotinylated anti-mouse IgG 
(H+L) 

Rabbit Vector 
Laboratories 
Ltd., UK 

1/1000 

 
Table 2.6: Secondary antibodies used for free-floating immunohistochemistry for 
mouse brains.  
Antibody reactivity, species, dilution, and source are shown. 
 

2.1.5 3xTg-AD mice 

3xTg-AD mice were obtained under a material transfer agreement from Professor Frank 

LaFerla (University of California Irvine, USA). A colony of breeding mice was established 

at the Institute. 3xTg-AD mice express mutant human PS1 (M146V), APP (Swe, K670N, 

M671L) and tau (P301L) transgenes. 3xTg-AD mice (Oddo et al., 2003b) were generated 

by co-microinjection of two independent transgenes encoding human APPSwe and 

human tauP301L (4R0N) (both under control of the mouse Thy1.2 regulatory element) into 

single-cell embryos harvested from homozygous mutant PS1M146V knock-in (PS1-KI) mice 

(Guo et al., 1999). Wild-type (WT) mice of an identical background strain (F2 hybrid: 

C57BL/6J and 129S1/SvImJ) were maintained as background controls. In this study, pups 

of both WT and 3xTg-AD were taken from breeding pairs to produce organotypic brain 

slice cultures at postnatal day 8 or 9. All procedures carried out were in accordance with 

the UK Animals in Scientific Procedures Act (1986). 
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2.1.6 3xTg-AD genotyping materials 

REDExtract-N-Amp™ Tissue PCR Kit 

All reagents supplied complete by 

manufacturer (Sigma-Aldrich Company Ltd., 

UK.) 

 

Primer Pairs (Eurofins Genomics, Germany) 

PS1      5’-CACACGCAACTCTGACATGCACAGGC-3’ 

      5’-AGGCAGGAAGATCACGTGTTCAAGTAC-3’ 

 

MAPT      5’-GAGGTATTAGTCATGTGCT-3’ 

      5’-TTCAAAGTTCACCTGATAGT-3’ 

 

APP      5’-GCTTGCACCAGTTCTGGATGG-3’ 

      5’-GAGGTATTCAGTCATGTGCT-3’ 

 

PCR (polymerase chain reaction) reaction mixture 

      20 % (v/v) extracted template DNA  

10 μM forward primer 

10 μM reverse primer 

10 μL REDExtract-N-Amp™ PCR Reaction 

Mix (containing buffer, salts, dNTPs, Taq 
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polymerase, REDTaq dye, and JumpStart 

Taq antibody) 

20 % (v/v) nuclease-free H2O (Thermo 

Scientific Ltd., UK) 

  

PS1 Digestion 5 % (v/v) BstEII-HF® (New England Biolabs, 

USA)  

      50 % (v/v) extracted DNA 

10 % (v/v) CutSmart™ Buffer (New England 

Biolabs, USA) 

      0.1 mg/ml BSA 

30 % (v/v) nuclease-free H2O (Thermo 

Scientific Ltd., UK) 

 

1.5% Agarose Gel    1.5% (w/v) agarose 

      40 mM Tris 

20 mM acetic acid 

1 mM EDTA 

in ultrapure H2O 

 

TAE Running Buffer    40 mM Tris 

20 mM acetic acid 

1 mM EDTA in ultrapure H2O 
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DNA molecular weight marker 

Quick-Load® 100 bp DNA Ladder (New England Biolabs, USA) consisting of 12 pre-stained 

bands with sizes 100 bp, 200 bp, 300 bp, 400 bp, 500/517 bp, 600 bp, 700 bp, 800 bp, 

900 bp, 1000 bp, 1200 bp, 1500/1517 bp  when visualised with ethidium bromide on 

1.5% agarose gels. 

 

2.2 Methods 

2.2.1 Cell culture 

Primary culture of rat cortical neurons 

Cortical neurons were prepared from embryonic day 18 Sprague Dawley rat embryos 

(Charles River Laboratories, UK) as previously described (Ackerley et al., 2000). In brief, 

the rat was sacrificed by cervical dislocation, the abdominal wall was cut through and 

the foetuses (on average, 9-12 per rat) were removed and dissected individually in HBSS 

without Ca2+ or Mg2+. Brains were removed from the skull; the brainstem and 

cerebellum were removed under a dissecting microscope, as well as the meninges to 

prevent contamination of the cultures with fibroblasts. The cortex was dissected and 

processed separately. 

 

Isolated cortices were washed with HBSS without Ca2+ or Mg2+, and were dissociated by 

incubation in trypsinising solution for 30 minutes at 37 oC. Trypsinisation was stopped by 

removal of the trypsinising solution and three washes with neutralising solution. The 

final resuspension in 5 mL neutralisation solution produced a single cell suspension that 

was passed through a 70 µm cell strainer prior to centrifugation at 1000 g(av) for 2 
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minutes. Pelleted cells were resuspended in Complete Neurobasal medium and a sample 

was removed, stained with Trypan blue and cell density determined using a 

haemocytometer. 

 

Where cells were to be harvested for SDS-PAGE, cells were plated at 1x106 cells/well of a 

poly-D-lysine coated 6-well plate (Nunclon, Thermo Scientific Ltd., UK). For 

immunocytochemistry, cells were cultured on poly-D-lysine coated glass coverslips at a 

density of 2.5 x 105 cells/well of a 12-well plate. For microtubule binding assays, cells 

were cultured in poly-D-lysine coated 10 cm dishes at a density of 4 x 106 cells/plate. 

Neurons were maintained in supplemented Neurobasal medium at 37 oC in a humidified 

atmosphere of 95% air/5% CO2. 

 

Treatment protocol for primary cortical neurons 

For LiCl treatments, 10 days in vitro (div) primary cortical neurons were treated for 4 

hours with 1, 5, 10, 20, 40 mM LiCl before harvesting for immunoblot and 

immunocytochemical analysis. 20 mM NaCl was used as vehicle. Cell viability was 

measured 4 hours after treatment by live/dead assay. 

 

For NAPVSIPQ treatments, 7 div primary cortical neurons were treated for 24 hours with 

1 x 10-15, 10-13, 10-11, 10-9, 10-7 M NAPVSIPQ or vehicle (ultrapure H2O) before harvesting 

for immunoblot or immunocytochemical analysis. Cell viability was measured 24 hours 

after treatment by live/dead assay. 
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For microtubule binding assays, 7 div primary cortical neurons were pre-treated for 21 

hours with vehicle (ultrapure H2O) or 1 x 10-7 M NAPVSIPQ before treatment for a 

further 3 hours with the microtubule destabilising agent, nocodazole (5mg/mL diluted in 

DMSO) or with vehicle (DMSO). Cell viability in both instances was measured 24 hours 

after treatment by live/dead assay. 

 

For BTA-EG4 treatments, 7 div or 14 div primary cortical neurons were treated for 24 

hours with 20, 40, 60 µM BTA-EG4 or vehicle (DMSO) before harvesting for preparation 

of synaptosomes, immunoblot or immunocytochemical analysis. Cell viability was 

measured 24 hours after treatment by live/dead assay. 

 

Preparation of cell lysates for immunoblotting 

Cell culture medium was aspirated from primary neurons; cells were then washed once 

in ice-cold PBS and collected via vigorous scraping into ice-cold PBS. Cells were pelleted 

by centrifugation at 7,000 g(av) for 30 seconds at ambient temperature. The supernatant 

was discarded and the pelleted cells were then lysed in 100 μL ice-cold extra strong lysis 

buffer. The cell suspension was then sonicated briefly (10 seconds) using a Vibra-Cell™ 

(Sonics and Materials Inc., USA) probe sonicator to improve sample handling. Cell lysates 

were centrifuged at 23,000 g(av) for 20 minutes at 4 oC and the supernatant collected. 

The protein content of cell lysates was determined by a BCA assay (section 2.2.4) and 

protein concentrations standardised prior to immunoblotting. Cell lysates were mixed 

with an equal volume of 2x sample buffer before immunoblotting. 
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Preparation of cell lysates for synaptosomes 

Cell culture medium was aspirated from primary neurons; cells were then washed once 

in ice-cold PBS and collected via vigorous scraping into ice-cold PBS. Cells were pelleted 

by centrifugation at 7,000 g(av) for 30 seconds at ambient temperature. Cells were then 

homogenised by hand in synaptosome lysis buffer at a concentration of 200 mg lysates 

per mL of synaptosomes lysis buffer before differential centrifugation for preparation of 

synaptosomes (section 2.2.4). 

 

Preparation of cell lysates for microtubule binding assay 

Cell culture medium was aspirated from primary neurons in 10 cm dishes; cells were 

then washed once in pre-warmed PBS and collected via vigorous scraping into 600 μL 

pre-warmed microtubule-stabilising buffer before differential centrifugation to separate 

microtubule-bound and unbound proteins (section 2.2.4). 

 

2.2.2 Slice Culture 

Preparation of organotypic brain slice cultures 

Organotypic brain slice cultures were prepared from WT and 3xTg-AD pups. Postnatal 

day 8 and 9 pups were culled by decapitation in accordance with the UK Animals in 

Scientific Procedures Act (1986). Brains from pups were bisected into hemi-brains by a 

single cut along the midline. The cerebellum, thalamus and brainstem were removed 

and discarded to leave the cortex, hippocampus and connecting areas. These were kept 

in ice-cold dissection buffer with constant oxygenation throughout the preparation 

procedure. 350 µm coronal slices were cut using a McIlwain Tissue Chopper (Stoelting 
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Co., USA). Eighteen slices from each hemi-brain were collected and 3 consecutive slices 

per well were positioned on interface-style Millicell culture inserts (Merck Millipore Ltd., 

UK) in 6 well culture plates (Nunclon, Thermo Scientific Ltd., UK) containing 1 mL of 

sterile slice culture medium. Three hours after plating, the culture medium was removed 

by aspiration and replaced with 1 mL of pre-warmed fresh sterile culture medium. Brain 

slices were incubated at 37 oC and the culture medium was changed from the bottom of 

each well every 2 to 3 days. Cultured slices initially appear white in colour, but within 2 

weeks they become translucent, which indicates that they are healthy, viable slices. 

After this time any colour change to white signifies tissue death, and slices which 

showed significant regions of white were not analysed in this work. Organotypic brain 

slices were maintained in culture for up to 1 month. The process of making slice cultures 

can be visualised in Figure 2.1. 
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Figure 2.1: Preparation of Organotypic Brain Slice Cultures 
(A) After dissection from the skull; brains are bisected along the midline. (B) The 
thalamus, cerebellum and brain stem are removed leaving the cortex, hippocampus and 
connected brain regions. (C) Two hemi-brains are kept in oxygenated dissection buffer 
throughout the procedure; one hemi-brain is stored whilst the other is processed. (D) 
Hemi-brains are placed on filter paper dampened with dissection buffer on the cutting 
surface of a McIlwain tissue chopper (E-F) 350 µm coronal slices are cut by an 
automated razor. (G-J) Sliced hemi-brains are sequentially separated under a dissection 
microscope. (K) Three consecutive slices are plated per well on Millipore membrane 
inserts. Slices are plated in order, with frontal slices in the first well etc. Initially slices are 
white in colour but after 1-2 weeks in culture they become translucent. Any white tissue 
at this time or after signifies tissue death. 
 

Treatment protocol for slice cultures 

For LiCl treatments, 28 div slice cultures were treated for 4 hours with 20 mM LiCl or 

NaCl (as control) before harvesting for immunoblot and immunohistochemical analysis. 

Slice viability was measured 4 hours after treatment by LDH assay. 
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For NAPVSIPQ treatments, 28 div slice cultures were treated for 24 hours with 1 x 10-7 M 

NAPVSIPQ or vehicle (ultrapure H2O) before harvesting for immunoblot analysis. For 

microtubule binding assays, 28 days in vitro slice cultures were pre-treated with 1 x 10-7 

M NAPVSIPQ or vehicle (ultrapure H2O) before treatment for a further 3 hours with the 

microtubule destabilising agent nocodazole (5 mg/mL diluted in DMSO) or with vehicle 

(DMSO). Slice viability was measured 24 hours after application of NAPVSIPQ by LDH 

assay. 

 

For BTA-EG4 treatments, 28 div slice cultures were treated for 48 hours with 40 or 60 µM 

BTA-EG4 or vehicle (ultrapure H2O), before harvesting for preparation of synaptosomes, 

immunoblot or immunohistochemical analysis. Slice viability was measured 48 hours 

after treatment by LDH assay. 

 

For extracellular tau release/neuronal stimulation experiments, slice cultures were 

treated after 28 days in vitro. The serum-containing slice culture medium was removed 

and replaced with 600 μL of HBSS containing Ca2+ and Mg2+.  Slice cultures were 

stimulated with 50 mM KCl or vehicle (ultrapure H2O) for 30 minutes before harvesting 

for preparation of membrane and cytosol fractions and immunoblot analysis. Some slice 

cultures were pre-treated for 1 hour with 2 μM tetrodotoxin or equivalent volume of 

vehicle (ultrapure H2O) and then stimulated with 50 mM KCl or vehicle (ultrapure H2O) 

for 30 minutes before harvesting for immunoblot analysis. HBSS from treated slice 

cultures was kept and stored at -80 oC and used to measure extracellular amounts of 

tau. Slice viability was measured after treatment by LDH assay. 



 
106 

 

Preparation of slice lysates for immunoblotting and A ELISA 

Slice culture medium was aspirated from slice cultures. Slices were then washed once in 

ice-cold PBS and collected via vigorous scraping into ice-cold PBS. Tissue was pelleted by 

centrifugation at 7,000 g(av) for 30 seconds at ambient temperature. The supernatant 

was discarded and the pelleted slices were then lysed in 100 μL ice-cold extra strong 

lysis buffer. The suspension was then sonicated briefly (10 seconds) using a Vibra-Cell™ 

probe sonicator to improve sample handling. Slice lysates were centrifuged at 23,000 

g(av) for 20 minutes at 4 oC and the supernatant collected. The protein content of the 

slice lysates was determined by a BCA assay (section 2.2.4) and standardised before 

immunoblotting or measurement of human Aβ-40 or Aβ-42 content by ELISA. Slice 

lysates were mixed with an equal volume of 2x sample buffer before immunoblotting. 

 

Preparation of slice lysates for synaptosomes 

Slice culture medium was aspirated from slice cultures. Slices were then washed once in 

ice-cold PBS and collected via vigorous scraping into ice-cold PBS. Tissue was pelleted by 

centrifugation at 7,000 g(av) for 30 seconds at RT. Slices were homogenised by hand at 

200 mg tissue /mL synaptosome lysis buffer before differential centrifugation for 

preparation of synaptosomes (section 2.2.4). 

 

Preparation of slice lysates for microtubule binding assay 

Slice culture medium was aspirated from organotypic brain slice cultures. Slices were 

then washed once in pre-warmed PBS and collected via vigorous scraping into pre-

warmed microtubule-stabilising buffer (300 μL microtubule-stabilising buffer/well). Two 
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wells of slices were pooled. Tissue was homogenised in microtubule stabilising buffer by 

hand before differential centrifugation for preparation of unbound and bound fractions 

of microtubules (section 2.2.4). 

 

Preparation of slice lysates for membrane fractionation 

HBSS was harvested from slice cultures. Slices were then washed once in ice-cold PBS 

and collected via vigorous scraping into ice-cold PBS. Tissue was pelleted by 

centrifugation at 7,000 g(av) for 30 seconds at ambient temperature. The supernatant 

was discarded and the pelleted slices were then lysed in 100 μL hypotonic buffer. The 

suspension was then sonicated briefly (10 seconds) using a Vibra-Cell™ probe sonicator 

to improve sample handling. Slice lysates were centrifuged at 800 g(av) for 10 minutes at 

4 oC to remove cell nuclei and cell debris and the supernatant collected prior to further 

subcellular fractionation (section 2.2.4). 

 

2.2.3 Analysis of Protein from Mouse Brains 

Dissection and removal of brains 

WT and 3xTg-AD male and female mice at 1, 2, 4, 9 and 12 months of age (n=3 per 

group) were culled by cervical dislocation in accordance with the UK Animals in Scientific 

Procedures Act (1986). Brains were rapidly removed and bisected into hemi-brains. 

Hemi brains were crudely dissected into a region containing the frontal cortex, 

hippocampus and associated cortex, and an amygdala-containing region. These regions 

are all affected in AD where both Aβ-containing plaques and neurofibrillary tau tangles 
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are found as the disease progresses (Braak and Braak, 1991, Braak and Braak, 1995). 

Tissue was frozen at -80 oC until required. 

 

Preparation of mouse brains for immunoblotting and Aβ-40 and Aβ-42 ELISAs 

The frontal cortex region was homogenised in extra strong lysis buffer at a concentration 

of 100 mg brain/mL extra strong lysis buffer using a Tissue Master-125 mechanical 

homogeniser (Omni International, USA) for approximately 20 seconds until a 

homogenous solution was obtained. The protein concentration of the samples was 

determined using a BCA assay and the protein concentration of samples standardised 

before ELISA and immunoblotting. Tissue samples were mixed with an equal volume of 

2x sample buffer prior to immunoblotting. 

 

Preparation of crude synaptosomes from mouse brains  

The hippocampus-containing region was homogenised in synaptosome lysis buffer at a 

concentration of 200 mg tissue/mL synaptosome lysis buffer with a mechanical 

homogeniser for approximately 20 seconds until a homogenous solution was obtained. 

The homogenate was then processed by differential centrifugation to prepare crude 

synaptosomes (section 2.2.4). 

 

Preparation of mouse brains for sarkosyl extraction of insoluble tau 

The amygdala-containing region was homogenised in sarkosyl homogenisation buffer at 

a concentration of 100 mg tissue/ml sarkosyl homogenisation buffer with a mechanical 

homogeniser for approximately 20 seconds until a homogenous solution was obtained. 
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The tissue was then processed to isolate sarkosyl-insoluble (aggregated) tau (section 

2.2.4). 

 

Perfusion of mice and tissue sectioning 

Two 4-month-old and two 12-month-old 3xTg-AD mice were sacrificed by terminal 

anaesthesia and transcardial perfusion with PBS followed by 4% (w/v) PFA in PBS. Hemi-

brains were dissected from which the cerebellum was removed and discarded and the 

remaining tissues post-fixed in 4% (w/v) PFA overnight before washing in PBS for 24 

hours at 4 oC. The tissue samples were then cryoprotected for 24 hours in 30 % (w/v) 

sucrose in PBS to prevent fracturing of the tissue during sectioning. Tissue was washed 

with PBS prior to being frozen for 30 seconds in isopentane chilled to -90°C with dry ice. 

Frozen tissue was stored at -80°C until required. 

 

Hemi-brains were sectioned using a Leica CM1860 cryostat (Leica Microsystems, 

Germany). Samples were mounted onto a specimen disk using OCT mounting medium 

and sectioned coronally at 30 µm. Sections were collected and stored free floating in 

TBS-AF in a 96-well plate at 4 °C prior to histological processing (section 2.2.9). 

 

2.2.4 Biochemical Analysis 

Determination of protein concentration 

Protein concentrations of cell, slice or mouse brain lysates were determined using a BCA 

protein assay according to the manufacturer’s instructions (Pierce™, USA). This method 

combines the biuret reaction (reduction of Cu2+ to Cu by protein in an alkaline medium) 
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with the sensitive and selective colorimetric detection of the cuprous cation (Cu) using a 

BCA-containing reagent. The purple reaction product is formed by chelation of two 

molecules of BCA to Cu and this water soluble complex exhibits a strong absorbance at 

562 nm. A set of BSA standards in extra strong lysis buffer were freshly prepared at 

concentrations ranging from 0-2 mg/mL for each assay. 

 

Absorbance was measured at 562 nm using a Wallac 1420 Victor3™ plate reader 

(PerkinElmer, USA), and values were compared to a standard curve to determine protein 

concentration in µg/ml. Samples were then diluted with the appropriate volume of extra 

strong lysis buffer to ensure equal protein concentrations in all samples. For 

immunoblotting, 5-10 µg of protein were loaded per well. 

 

Preparation of synaptosomes 

Cell, slice and mouse brain lysates homogenised in synaptosome lysis buffer as 

described above were centrifuged at 1,000 g(av) for 10 minutes at 4oC to remove cell 

nuclei and debris, and an aliquot of supernatant was kept as the total fraction. The 

remaining supernatant was then centrifuged at 10,000 g(av) for 20 minutes at 4 oC to 

obtain a crude synaptosomal pellet. The supernatant resulting from this centrifugation 

was retained as the non-synaptosomal fraction and the pellet which contains a high 

concentration of synaptic proteins is referred to as the synaptosomal pellet. The pellet 

was washed briefly in synaptosome lysis buffer to remove traces of non-synaptosome 

proteins. Equal volumes of total, non-synaptosome and synaptosome fractions were 

mixed with 2x sample buffer and proteins of interest detected by immunoblotting 
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Microtubule binding assay 

Cell and slice lysates scraped into pre-warmed microtubule-stabilising buffer were 

centrifuged at 5,000 g(av) for 10 minutes at RT to remove cell nuclei and debris. An 

aliquot of supernatant (1/12th of the starting volume) was taken as the total fraction 

and the remaining supernatant was centrifuged at 100,000 g(av) for 1 hour at RT. The 

supernatant was kept as the unbound protein fraction. The pellet of microtubule-bound 

proteins was washed twice by the addition of microtubule-stabilising buffer and further 

centrifugation at 100,000 g(av) for 10 minutes at RT, and was then resuspended in a 

microtubule-stabilising buffer. All fractions were mixed with an equal volume of 2x 

sample buffer and immunoblotted with an antibody for total tau. 

 

Sarkosyl extraction of insoluble tau 

Sarkosyl insoluble tau was extracted from mouse brain using a method adapted from 

(Greenberg and Davies, 1990) as described in (Kelleher et al., 2007). Mouse brain 

homogenates in sarkosyl homogenisation buffer were centrifuged at 14,000 g(av) for 20 

minutes at 4 C to remove cell nuclei and debris. An aliquot of the resulting low speed 

supernatant was kept as the total fraction and this was mixed with 2x sample buffer for 

immunoblotting. The remaining supernatant was incubated with 1% sarkosyl for 30 

minutes at RT and then centrifuged at 100,000 g(av) for 1 hour at RT. The high speed 

supernatant resulting from this centrifugation contains sarkosyl soluble tau and was 

mixed with an equal volume of 2x sample buffer for immunoblotting. The pellet contains 

sarkosyl insoluble (aggregated tau) and was washed by the addition of 1 % sarkosyl in 
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sarkosyl homogenisation buffer and centrifuged at 100,000 g(av) for 10 minutes. The 

pellet was then resuspended in 2x sample buffer.  

 

Membrane fractionation 

An aliquot of supernatant from slice lysates homogenised in hypotonic buffer and 

centrifuged at 800 g(av) for 10 minutes at 4 oC to remove unbroken cells and cell debris 

was kept as the total protein fraction prior to further subcellular fractionation. The 

remaining supernatant was centrifuged at 100,000 g(av) for 1 hour at 4 oC and the 

supernatant was kept as the cytosolic fraction and the pellet containing the membrane 

fraction was resuspended in 2x sample buffer. Total and cytosolic fractions were mixed 

with equal volumes of 2x sample buffer before immunoblotting. 

  

SDS-polyacrylamide gel electrophoresis (SDS-PAGE) 

Prior to electrophoresis, cell, slice and mouse brain lysates prepared for immunoblotting 

or through differential fractionation were mixed with an equal volume of 2x sample 

buffer. Samples were heated at 95 oC for 5 minutes before centrifugation at 10,000 g(av) 

for 20 seconds. Molecular weight protein standards and proteins were loaded onto the 

first lane of 7.5%, 10%, or 12.5% (w/v) polyacrylamide gels, prepared as detailed in 

section 2.1.3 and cast in Invitrogen Ltd., UK, 1.0mm plastic cassettes. If samples were 

run across more than one gel, one reference sample was loaded onto each gel to allow 

standardisation of the data when taking into account inter-gel variability. Gels were 

inserted into the Invitrogen XCell SureLock™ Mini-Cell electrophoresis system and were 
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electrophoresed at 150 V in running buffer with a Bio-Rad PowerPac™ 300, until the dye 

front reached the bottom of the gel. 

 

Immunoblotting 

Gels were placed onto Protran® 0.45 µm pore size nitrocellulose membranes (Whatman 

Ltd., UK), sandwiched between Grade 1A filter papers (Whatman Ltd., UK) and sponges 

in an XCell II Blot Module (Invitrogen Ltd., UK), immersed in transfer buffer. Proteins 

were transferred onto membranes at 40 V for 120 minutes and kept at approximately 4 

oC using ice. Non-specific binding of primary antibodies was blocked by incubating 

membranes in appropriate blocking solution for 1 hour at ambient temperature. 

Membranes were then incubated overnight at 4 oC with appropriate primary antibodies 

in blocking solution. 

 

After incubation with primary antibodies, membranes were washed three times in TBS 

for 5 minutes with rocking prior to the addition of species-specific fluorophore- or HRP-

conjugated secondary antibodies diluted in blocking solution for 1 hour at ambient 

temperature. Proteins were detected by scanning at 700 nm and 800 nm using the 

Odyssey® infra-red detection system (LI-COR Biosciences, UK), which allows 

simultaneous detection of two target antigens, and thus two proteins of interest. If 

necessary, scanning intensity was adjusted according to signal strength following the 

initial scan at the default intensity (5.0). Densitometric analysis was performed for semi-

quantitative analysis of each detected immunogen. Bands were manually selected and 
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background readings for each lane were subtracted automatically using proprietary 

Odyssey® software.  

 

Alternatively, immunogens were detected using enhanced chemiluminescence (ECL) 

detection reagents (Pierce™, USA). The HRP-conjugate causes catalysis of luminol in 

alkaline conditions. This results in the excitation of luminol which decays in a 

chemiluminescent reaction. The two ECL detection reagents were mixed together 1:1 

and applied to the membrane for 3 minutes before transfer of the membrane to an 

autoradiography cassette containing Amersham ECL film (GE Healthcare Ltd., UK) and 

automatic development of the film in a Konica Minolta SRX-101A film processor (Konica 

Minolta UK Ltd., UK). Films were scanned using an Epson V700 scanner and 

densitometric analysis was performed by manually selecting bands for each lane for 

semi-quantitative analysis of each detected immunogen using ImageJ and manually 

subtracting an average background reading. 

 

Enzyme-linked immunosorbent assay for detection of human Amyloid-Beta 40 and 42 

Slice lysates and mouse brain homogenates of crude cortical sections were prepared as 

described earlier. The human Aβ-40 and Aβ-42 ELISAs were run in parallel according to 

the manufacturer’s protocol (Invitrogen Ltd, UK) albeit with samples and standards 

prepared in extra strong lysis buffer and TBS rather than the provided standard diluent 

buffer. Samples were diluted to a concentration of 5 mg tissue/mL buffer. The human 

Aβ-40 and Aβ-42 standards were reconstituted in 55 mM sodium bicarbonate, pH 9.0. 

The reconstituted standards were then diluted to provide standards for the assay 
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containing 0, 15.63, 31.25, 62.5, 125, 250, 500 and 1000 pg/mL of human Aβ-40 and Aβ-

42. 50 µL of standards and samples were loaded in duplicate onto the provided ELISA 

plates pre-coated with a primary antibody either to the N-terminus of Aβ-40 or Aβ-42. 

50 µL of rabbit primary antibody to the C terminus of Aβ-40 or Aβ-42 was added and 

incubated for 3 hours at ambient temperature. Wells were washed 4 times with the 

provided wash solution to remove unbound primary antibody. 100 µL of an HRP-linked 

secondary anti-rabbit IgG antibody was added to each well for 30 minutes at ambient 

temperature to detect the bound rabbit antibody. Wells were washed again 4 times, to 

remove any unbound secondary antibody before the addition of the stabilised 

chromogen substrate solution for 30 minutes which reacted with the HRP-tagged bound 

secondary antibody to produce a blue colour. The reaction was then stopped using the 

provided stop solution, which resulted in a yellow sample colour and absorbance was 

detected at 450 nm with a Wallac 1420 Victor3™ plate reader (PerkinElmer, USA). The 

absorbance values of Aβ-40 or Aβ-42 of known concentration were used to generate a 

standard curve from which the A concentration of samples could be calculated in 

pg/ml. Average absorbance values for blank wells containing diluted extra strong lysis 

buffer were subtracted from the absorbance values obtained for treated samples. 

 

Enzyme-linked immunosorbent assay for detection of extracellular tau 

A sandwich ELISA for detection of low concentrations of extracellular total tau amounts 

was developed in-house (unpublished). 
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The coating antibody (BT2, Thermo Scientific Ltd., UK) raised against the tau epitope 

194-198 was diluted at a concentration of 2 µg/mL in ELISA coating buffer. 100 µL of the 

diluted coating antibody solution was added to the required number of wells of 96-well 

Nunc Maxi-Sorp plate (Thermo Scientific Ltd., UK), the plate sealed and the antibody 

allowed to adsorb to the plastic for 8 days at 4oC on a shaker. The plates were washed 

three times with ELISA washing buffer to remove any unadsorbed coating antibody and 

200 µL of the starting block solution was added per well for 4 hours at ambient 

temperature with the plate sealed on a shaker to block non-specific binding. After 4 

hours, the starting block solution was removed and the plate was washed 3 times with 

washing buffer, as before. Samples of HBSS from treated slice cultures were centrifuged 

for 5 minutes at 7,200 g at 4 oC to remove any cell debris. 50µL of undiluted HBSS from 

treated slice cultures was added in triplicate to the plate, and the samples incubated 

overnight at 37 oC, sealed, without rocking.  

 

The HBSS was removed and the plate washed 3 times with washing buffer. The capture 

antibody, which also detects total tau (DAKO tau) raised against residues 243 to 441 

towards the C-terminus of tau, was diluted in primary antibody blocking solution. 50 µL 

of the diluted antibody was added per well and the sealed plate was incubated, 

overnight, at ambient temperature on a shaker. The antibody was removed and the 

plate was washed 3 times with washing buffer, to remove any excess capture antibody. 

The HRP-tagged anti-rabbit IgG secondary antibody was diluted in secondary antibody 

blocking solution and 50 µL was added to each well of the plate and incubated, sealed, 

for 1 hour at ambient temperature on a shaker. Unbound antibody was removed by 
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washing 5 times with washing buffer. 100 µL per well of stabilised chromogen substrate 

solution (TMB) was added to each well of the plate and allowed to react with the bound 

HRP-tagged secondary antibody. When left at ambient temperature this develops a 

characteristic blue colour. The reaction was stopped by the addition of 100 µL per well 

of stop solution and absorbance was detected at 450 nm with a Wallac 1420 Victor3™ 

plate reader (PerkinElmer, USA). Average absorbance values for blank wells containing 

HBSS were subtracted from the absorbance values obtained for HBSS from treated 

samples.  

 

2.2.5 Cell Death Assays 

LIVE/DEAD® cell assay 

The viability of primary neurons was assessed using a LIVE/DEAD® far red fixable dead 

cell assay stain kit (Invitrogen Ltd., UK) according to the manufacturer’s protocol. The 

amine-reactive stain in the kit reacts with free amines in the cell interior and cell surface 

in cells with compromised membranes yielding a signal detectable at 700 nm. In brief, 

one vial of stain was dissolved in 50 µL DMSO prior to use. The medium was removed 

from the neurons and cells were washed in pre-warmed PBS (37 oC). The stock solution 

of far red stain was diluted 500-fold in PBS before incubation with the cells for 30 

minutes at 37 oC in a humidified atmosphere of 95 % air/5 % CO2. The stain was 

removed and cells were washed with pre-warmed PBS. The fluorescent signal produced 

from the far red stain incorporated into cells with compromised membranes was 

detected at 700 nm using the Odyssey® infra-red detection system. The difference in 

fluorescent intensity in treated cells was then calculated as a proportion of fluorescence 
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in control wells using Odyssey® software. Coverslips were then fixed in 4 % (w/v) PFA in 

PBS for 5 minutes at 37 oC, and washed 3 times in PBS prior to immunocytochemistry. 

 

Lactate dehydrogenase assays 

Cell death was measured from slice cultures by measuring LDH release into the slice 

culture medium. LDH was measured according to the manufacturer’s protocol (Promega, 

UK). In brief, one vial of substrate mix was reconstituted in 12 mL of assay buffer. 50 μL 

of slice culture medium or HBSS from treated slices, or slice lysates in extra strong lysis 

buffer or hypotonic buffer, diluted in untreated slice culture medium or HBSS, were 

loaded in triplicate on a 96 well plate. 50 μL of reconstituted substrate mix was added to 

each well and incubated for 30 minutes at ambient temperature, protected from light. 

The reaction was stopped with stop solution and absorbance at 490 nm, a direct 

measure of LDH, was measured immediately using a Wallac 1420 Victor3™ plate reader 

(PerkinElmer, USA). The percentage of LDH in the medium was calculated as a 

proportion of the total amount of LDH (LDH in the lysates plus LDH in the medium). 

 

2.2.6 3xTg-AD Genotyping 

DNA extraction 

Genomic DNA was extracted from mice ear clips digested in 125 μL extraction and tissue 

preparation solution mixture provided with the REDExtract-N-Amp™ Tissue PCR Kit for 

30 minutes at ambient temperature. Samples were then heated to 95 oC for 3 minutes 

and then 125 μL provided neutralisation B solution was added for 10 minutes. Samples 

were stored at 4 oC until PCR. 
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Polymerase chain reaction 

PCR was used to amplify genomic DNA. PCR amplification was carried out in reaction 

volumes of 20 μL of PCR mixture containing 4μl of template DNA, final concentrations of 

10μM of each of the forward and reverse primers, 10 μL of the REDExtract-N-Amp™ PCR 

Reaction Mix containing buffer, salts, dNTPs, Taq polymerase, REDTaq dye, and 

JumpStart Taq antibody and 4 μL of nuclease-free H2O (Thermo Scientific Ltd., UK). PCR 

was performed using a G-Storm GS1 thermal cycler (G-Storm, UK). Reaction conditions 

were as follows: 

 

 PS1: initially denatured at 94 °C for 2.5 minutes and then subjected to 35 cycles 

of 94 °C for 40 seconds (denaturation), 62 °C for 40 seconds (annealing) and 72 °C 

for 1 minute (extension), with a final extension step of 3 minutes at 72 °C. 

 

 APP: initially denatured at 94 °C for 5 minutes and then subjected to 20 cycles of 

94 °C for 30 seconds (denaturation), 53 °C for 30 seconds (annealing) and 72 °C 

for 1 minute (extension), with a final extension step of 3 minutes at 72 °C. 

 

 MAPT: initially denatured at 94 °C for 5 minutes and then subjected to 25 cycles 

of 94 °C for 30 seconds (denaturation), 52 °C for 30 seconds (annealing) and 72 °C 

for 1 minute (extension), with a final extension step of 3 minutes at 72 °C. 
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Digestion of PS1 Products 

PS1 PCR products were digested in a BstEII restriction mixture as detailed in section 

2.1.6. This was performed as the primers used amplify the endogenous PS1 gene. The 

products were incubated in the reaction mixture at 37 oC for approximately 90 minutes 

before electrophoresis. 

 

Electrophoresis of PCR products 

PCR fragments and restriction digests were resolved on 1.5 % agarose gels microwaved 

for ~ 90 seconds until the agarose was fully melted. The gel mixture was allowed to cool 

down and 0.7 mg/ml of ethidium bromide was added to the gel mixture to enable 

visualisation of DNA bands.  The gel mixture was poured into the gel tray, combs added 

and left to set for ~30 minutes before being placed in the electrophoresis tank filled with 

TAE running buffer. Gels were run for 45 minutes at 120 V before DNA was visualised 

under UV illumination and images captured. 

 

Expected product sizes 

A 100 bp ladder molecular marker was electrophoresed next to the amplified/digested 

samples. APP was detected at 450 bp, MAPT at 400 bp, PS1 at 300 bp and 250 bp, and 

endogenous PS1 at 550 bp. 
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2.2.7 Immunocytochemistry 

Immunocytochemical staining 

Cells were washed once with PBS pre-warmed to 37 oC followed by fixation in 4 % (w/v) 

PFA in PBS for 5 minutes at 37 oC. Following fixation, cells were washed three times in 

ice-cold PBS and then permeabilised in permeabilisation solution for 3 minutes. Non-

specific binding was blocked for 1 hour with ICC blocking solution prior to incubation 

with the relevant primary antibody diluted in ICC blocking solution for 2 hours at 

ambient temperature. Coverslips were washed three times with PBS and then incubated 

with the appropriate secondary antibodies diluted in ICC blocking solution for 1 hour, 

followed by a further three PBS washes. Nuclei were stained with Hoechst 33258 (2 

µg/mL bis-Benzimide H33258 pentahydrate in PBS), before mounting coverslips on to 

slides using fluorescent mounting medium (Dako Ltd., UK).  

 

Imaging of immunocytochemical staining 

All images were captured on a CTR5000 camera (Leica Microsystems, Germany) using 

AIF lite software (Leica Microsystems, Germany) from a Leica DM5000B fluorescence 

microscope (Leica Microsystems, Germany) using the appropriate filter sets and 10X, 20X 

and 40X objective lenses and were stored as JPEG files. All parameters including lamp 

intensity, video camera setup and calibration were constant through image capturing. 
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2.2.8 Slice immunohistochemistry 

Tissue preparation 

Slice culture medium was aspirated from slice cultures of 350 μm thickness; slices were 

then washed once in ice-cold PBS and were fixed with 4 % PFA for 1 hour at ambient 

temperature whilst still attached to the membrane inserts. PFA was removed by washing 

twice in PBS and then for long term storage before staining, slices were kept in PBS 

containing 0.01 % sodium azide. Individual slices were cut out, whilst still attached to the 

membrane, from the insert prior to staining. 

 

Immunohistochemical staining 

Slices cultured for 1 month old were immunohistochemically stained for phosphorylated 

tau and total tau, as well as neuron- and astrocyte- specific markers. Slices were stained 

using a protocol adapted from (Gogolla et al., 2006). In brief, slices were permeabilised 

with permeabilisation solution for approximately 18 hours at 4 oC. Slices were then 

blocked in a 20 % BSA blocking solution overnight at 4 oC prior to incubation with 

primary antibodies overnight on a shaker at 4 oC. Slices were washed 3 times in 5 % BSA 

to remove traces of unbound primary antibodies prior to incubation with the 

appropriate fluorescently-tagged secondary antibodies for 4 hours at ambient 

temperature. Slices were then washed a further 3 times in PBS before counterstaining 

cell nuclei with Hoechst 33258 (2 µg/mL bis-Benzimide H33258 pentahydrate in PBS), 

and mounting under glass coverslips in fluorescent mounting medium (Dako Ltd., UK). 
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Spinning disk confocal microscopy 

Slices were examined using an Eclipse Ti-E Inverted (Nikon Instruments, UK) microscope 

and images were collected via a CSU-X1 Spinning Disk Confocal and Andor Ixon3 EM-CCD 

camera imaging system setup using a 60 Plan Apo VC N2 objective lens (Nikon 

Instruments, UK) and were stored as TIFF files. All parameters including laser settings, 

video camera setup and calibration were constant through image capturing. 488/562 nm 

lasers were used for excitation and emitted fluorescence detected at 520/562 nm. 12 

image ‘Z’ stacks using a 1x confocal zoom, a closed pinhole and a 560 MHz frame rate 

were acquired. The stack covered a total Z depth of 12 µm and images were recorded at 

1024 x 1024 pixels. A maximum intensity projection was produced from collapsing the Z 

stacks in NIS-Elements AR software (Nikon Instruments, UK). 

 

2.2.9 Mouse Brain Immunohistochemistry 

Immunohistochemical staining 

A one in six series of sections from young and aged 3xTg-AD mice was 

immunohistochemically stained for phosphorylated tau, abnormal conformations of tau 

and total tau. The 30 µm sections were washed twice in TBS before quenching of 

endogenous peroxidase activity with methanol containing 0.5 % H2O2. Sections were 

washed twice in TBS prior to incubation in TBS containing 2 % normal goat serum for 30 

minutes to block non-specific antibody binding. Sections were then incubated with 

primary antibody overnight with shaking at 4 oC. Unbound primary antibody was 

removed by washing 3 times for 15 minutes with TBS. Sections were then incubated 

with appropriate secondary antibody in TBS containing 1 % normal goat serum for 1 
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hour. Unbound secondary antibody was removed by 3 washes in TBS for 15 minutes. 

Sections were then incubated for 60 minutes in the avidin-biotin peroxidase complex 

(Vectastain Elite ABC Kit, Vector Laboratories Ltd., UK). Sections were washed 3 times in 

TBS for 15 minutes and then incubated in DAB reagent made up according to the 

manufacturer’s instructions (Vector Laboratories Ltd., UK). DAB was applied for 2-10 

minutes until a strong purple colour developed. To stop the reaction, sections were 

washed in TBS twice for 5 minutes and then mounted onto gelatin-chrome alum coated 

Superfrost microscope slides, air dried overnight, cleared in 98/99 % (v/v) industrial 

methylated spirit and xylene and then coverslipped with DPX mountant. 

 

Imaging of immunohistochemical staining 

All images were captured via a live video camera (JVC, 3CCD, KY-FFB), mounted onto a 

Zeiss Axioplan (Carl Zeiss, Inc.) microscope using 10, 20 and 40X objective lenses and 

were stored as JPEG files. All parameters including lamp intensity, video camera setup 

and calibration were constant through image capturing. 

 

2.3 Statistical Analysis 

All data were statistically analysed using Graphpad Prism 6.0 software (La Jolla, USA). 

Data from immunoblots, ELISAs, cell death and LDH assays were analysed for 

homogeneous variances in each sample group using a Brown-Forsythe test. 

 

Data were then analysed using Student’s unpaired t-test when comparing two unrelated 

groups, by ordinary one-way analysis of variance (ANOVA) with Dunnett’s post-hoc 
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analysis when comparing three or more groups defined by one factor or by using a two-

way ANOVA with Sidak’s post-hoc analysis when comparing three or more groups 

defined by two factors. Differences were considered statistically significant when 

p<0.05. 
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Chapter 3 : Organotypic brain slice cultures from AD mice 

faithfully recapitulate some hallmark features of AD 

 

3.1 Introduction 

The main neuropathological features of AD are extracellular deposits of Aβ in senile 

plaques (Braak and Braak, 1991), which result from aberrant processing of APP to 

generate aggregation-prone Aβ (O’Brien and Wong, 2011), as well as the presence of 

NFTs mainly composed of hyperphosphorylated tau aggregates (Braak and Braak, 1995). 

Alongside this, there is a notable increase in kinase activation, calcium dyshomeostasis, 

microglial and astrocytic activation and neuroinflammation, synaptic loss and 

dysfunction - all of which converge to culminate in mass neuronal loss, associated 

cognitive decline and the progression of other dementia-related symptoms (Selkoe, 

2002, Hardy, 2009). 

 

The 3xTg-AD model of AD harbours mutations in human APP, PS1 and MAPT and 

progressively develops several prominent features of human AD, including Aβ plaques, 

phosphorylated tau, NFTs, increased neuroinflammation, microglial activation, increased 

kinase activity, noradrenergic and cholinergic dysfunction, synaptic loss and dysfunction, 

and associated cognitive and memory decline (Oddo et al., 2003a, Oddo et al., 2003b, 

Mastrangelo and Bowers, 2008, Sy et al., 2011, Girão da Cruz et al., 2012, Manaye et al., 

2013). These mice also show other behavioural symptoms of human AD including 

anxiety, circadian dysfunction and sleep disruption (Sterniczuk et al., 2010b, Sterniczuk 
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et al., 2010a). The concomitant and progressive development of multiple features of 

human AD makes this model of considerable interest for studying the mechanisms 

underlying AD and for pre-clinical development of novel therapeutics. 

 

A principle aim of this thesis was to establish a novel organotypic brain slice culture 

model of AD, using 3xTg-AD mice, which could be used as a sensitive and human 

disease-relevant alternative to in vivo AD research. Organotypic brain slice cultures are 

considered an excellent alternative to in vivo research (Gähwiler et al., 1997, Humpel, 

2015a) since they are readily tractable, and can be used as medium to high throughput 

platforms for rapid pre-clinical screening of compounds in a much more biologically 

relevant system than would be achieved using dissociated primary neural cell cultures or 

cell lines. It is also possible to study more than one time point or parameter in brain 

slices produced from the same mouse pup, reducing experimental variation. 

Organotypic brain slice cultures are also easily applied to other techniques which can be 

more technically difficult to execute in vivo such as transfection, live imaging, and 

electrophysiology (Sundstrom et al., 2005). 

  

Perhaps more importantly, gene regulation and protein expression in long-term slice 

cultures matches that observed in in vivo adult brain (Gähwiler et al., 1997, Humpel, 

2015a), demonstrating the biological relevance of slice culture models. Additionally, of 

particular interest to this project, long-term organotypic brain slice cultures produced 

from transgenic mice expressing human mutant (P301L) tau and APP (Swedish 

K670N/M671L, Dutch E693Q, and Iowa D694N mutations) progressively develop 
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phosphorylated tau and insoluble tau aggregates, and Aβ-containing plaques, 

respectively (Duff et al., 2002, Humpel, 2015b), thereby suggesting that in vivo AD-

relevant neurodegenerative mechanisms are retained ex vivo. However, to date, no 

brain slice culture models of AD have been developed which display both AD-relevant 

changes in tau and the development of Aβ, as would be expected in slice cultures 

prepared from 3xTg-AD mice. This is a particularly important goal since interactions 

between Aβ and tau are believed to underlie many neurodegenerative processes in AD 

(Ittner et al., 2010, Crimins et al., 2013, Pooler et al., 2015, Nisbet et al., 2015). 

 

3.2 Aims and objectives 

The primary objective of the studies presented in this chapter was to fully 

characterise the progressive development of AD-relevant features in organotypic 

brain slice cultures prepared from 3xTg-AD mice in comparison to WT slice 

cultures and aged 3xTg-AD mice. The specific aims of this chapter were to: 

 

 Use biochemical and histological techniques to examine the progressive 

development of AD-relevant features in the brain of 3xTg-AD mice with respect 

to WT controls.  

 

 Optimise methods that allow long-term culture of brain slices from 3xTg-AD and 

WT mice. 
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 Characterise the progressive development of AD-relevant biochemical and 

histological changes in cultured 3xTg-AD brain slices with respect to WT slice 

cultures. 

 

 Compare the development of AD-relevant phenotypes in vivo to those observed 

in long-term slice cultures from 3xTg-AD mice.  

 

The results of this work will provide key information regarding the suitability of 3xTg-AD 

slices as a model which faithfully recapitulates hallmark features of human AD that can 

be used for further study into the identification of candidate AD drugs (Chapter 4) and 

the mechanisms underlying AD development (Chapter 5).  

 

3.3 Methods 

The methods used for this work are described in detail in Chapter 2. In brief, brains were 

collected from WT and 3xTg-AD mice at 1, 2, 4, 9 and 12 months of age. One hemi-brain 

was processed for immunohistochemistry. Cortical-, hippocampal- and amygdala- 

containing brain regions were dissected from the other hemi-brain for assessment of 

biochemical and histological changes relevant to AD. The cortex was used to prepare a 

total homogenate for analysis of disease-related biochemical protein changes, the 

amygdala was used to isolate sarkosyl insoluble tau, and the hippocampus to prepare 

synaptosomes. Organotypic brain slice cultures were prepared from postnatal day 8/9 

WT and 3xTg-AD mice and cultured for up to 28 days. Slice cultures were harvested at 

14, 21, and 28 days in vitro for assessment. 
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3.4 Results 

3.4.1 3xTg-AD mice express human mutant APP, PS1 and tau 

Human mutant APP, PS1 and MAPT are expressed in 3xTg-AD mice (Oddo et al., 2003a). 

To confirm the presence of the mutant transgenes in our colony, DNA was extracted, 

amplified by PCR and visualised on agarose gels. As expected, mutant human PS1, APP 

and tau were detected in 3xTg-AD mice, but not WT controls (Figure 3.1). 

 

Figure 3.1: 3xTg-AD mice express human mutant PS1, APP and tau 
DNA from WT and 3xTg-AD was extracted, amplified by PCR and the transcripts detected 
on agarose gels. Human PS1 (at 300 bp and at 250 bp), APP (450 bp) and tau (400 bp) 
were detected in 3xTg-AD, but not WT. Endogenous mouse PS1 (550 bp) was detected in 
WTs.  
 

3.4.2 Tau protein is overexpressed in 3xTg-AD cortex 

Recent unpublished communications from other laboratories have reported an absence 

of protein overexpression of APP, tau and human tau in the 3xTg-AD mice despite the 

detection and presence of mutant transgenes in their colonies. It was therefore 

important to examine our colony for these features. Levels of total tau (phosphorylated 

and non-phosphorylated) were detected in cortical homogenates from 1, 2, 4, 9, and 12 

month old WT and 3xTg-AD mice by immunoblotting with a DAKO pan-tau antibody 
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which detects both mouse and human tau. Bands of approximately 50-64 kDa were 

detected, corresponding to the expected molecular weight of tau. The higher molecular 

weight bands (approximately 64 kDa) were more prominent in 3xTg-AD cortical 

homogenates than in WT controls. At all ages examined, the amount of tau detected in  

3xTg-AD mice was increased by approximately two-fold when compared to age-matched 

WT mice; however, these differences in total tau amounts between genotypes were not 

statistically significant at any of the ages examined (Figure 3.2). In addition, an increase 

in amounts of total tau over time for 3xTg-AD mice can be observed, and when 

comparing to 1 month old mice, total tau levels are significantly higher in 4 month old 

mice (Figure 3.2, p<0.05). It is apparent that total tau amounts are increasing with age 

from this graph and the blots, and these increases are likely due to an accumulation of 

both endogenous tau and human tau. 
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Figure 3.2: Total tau amounts are increased in 3xTg-AD cortex. 
(A) Representative western blots of total (phosphorylated and non-phosphorylated) tau 
(50-64 kDa) in cortical homogenates of WT and 3xTg-AD mouse brain taken at 1, 2, 4, 9 
and 12 months of age. An antibody against β-actin was used as a loading control (42 
kDa). Bar charts show amounts of total tau following normalisation to β-actin amounts 
in each sample. (B) Data are shown as fold change from WT at each time point. (C) Data 
are shown as fold change from 1 month old for 3xTg-AD mice only. Data is mean ± SEM, 
(n=3 mice per group, p<0.05). 
 

Amounts of human tau were next detected by immunoblotting with an antibody specific 

to human tau (CP27), which does not cross-react with endogenous mouse tau (Duff et 

al., 2000). Immunoblots identified the presence of human tau protein only in cortical 

homogenates from 3xTg-AD mice (Figure 3.3A). Moreover, the amounts of human tau in 
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3xTg-AD mice appeared to increase in an age-dependent manner, although these 

increases were found not to be statistically significant (Figure 3.3B). 

 

 

Figure 3.3: 3xTg-AD mice express human tau protein. 
(A) Representative western blots of total human tau (CP27) (50-64 kDa) in cortical 
homogenates of WT and 3xTg-AD mouse brain taken at 1, 2, 4, 9 and 12 months of age. 
An antibody against β-actin was used as a loading control (42 kDa). (B) Bar chart shows 
amounts of human tau following normalisation to β-actin amounts in each sample. Data 
are shown as fold change from 1 month of age. Data is mean ± SEM, (n=3 mice per 
group). 
 
 

3.4.3 APP amounts are increased in the cortex of 3xTg-AD mice 

APP protein amounts were assessed in 3xTg-AD cortex by immunoblotting with an 

antibody specific to the N-terminus of APP. APP of 90-120 kDa was detected, 

corresponding to the expected sizes of immature and mature mammalian APP. Total 

APP holoprotein amounts in the cortex of 3xTg-AD mice were unchanged from WT at 1, 
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2, 4 and 9 months of age, but were significantly increased at 12 months of age (Figure 

3.4, p<0.01).  

 

Figure 3.4: Total amounts of APP are increased in the cortex of 12 month old 3xTg-AD 
mice 
(A) Representative western blots of APP (90-120 kDa) in cortical homogenates of WT and 
3xTg-AD mouse brain taken at 1, 2, 4, 9 and 12 months of age. An antibody against β-
actin was used as a loading control (42 kDa). (B) Bar chart shows amounts of APP 
following normalisation to β-actin amounts in each sample. Data are shown as fold 
change from WT at each time point. Data is mean ± SEM, (n=3 mice per group, 
**p<0.01). 
 

3.4.4 Aβ-42 amounts increase with age in 3xTg-AD cortex 

Progressive increases in levels of Aβ-40 and Aβ-42, as well as in the ratio of Aβ-42 to Aβ-

40 are widely reported in 3xTg-AD mice and human AD brain (Oddo et al., 2003a, 

O’Brien and Wong, 2011). Cortex homogenates from 4 and 12 month old WT and 3xTg-

AD mice from our colony were therefore assessed for levels of human Aβ-40 and Aβ-42 

by ELISA (Section 2.2.4). 12 month old 3xTg-AD mice exhibited significantly higher levels 

of Aβ-42 compared to 12 month old WT mice (Figure 3.5, p<0.05), and also showed a 
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non-significant increase in this measure when compared to 4 month old 3xTg-AD mice. 

The amounts of Aβ-42 detected in the cortex did not differ between 4 month old WT 

and 3xTg-AD mice. Levels of Aβ-40 showed a trend towards increase in the 3xTg-AD 

cortex at both 4 and 12 months relative to WTs, but these differences did not reach 

significance. The ratio of Aβ-42 to Aβ-40 is thought to be important in AD pathogenesis 

since many APP and PS1/PS2 mutations do not increase Aβ amounts, but alter this ration 

(Fernandez et al., 2014), therefore the Aβ-42 to Aβ-40 ratio was also determined. 

However, although there was a trend towards a switch in the Aβ-42 to Aβ-40 ratio in 12 

month old 3xTg-AD mice relative to age-matched WTs and 4 month old 3xTg-AD mice, 

these differences were not significant (Figure 3.5). 
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Figure 3.5: Levels of Aβ-42 are significantly increased in the cortex of 12 month old 
3xTg-AD mice. 
Amounts of Aβ-40 and Aβ-42 were measured in cortical homogenates from 4 and 12 
month old WT and 3xTg-AD mice containing equivalent amounts of total protein by Aβ-
40 and Aβ-42 ELISAs. Bar charts show (A) amounts of Aβ-42 and (B) Aβ-40 in pg/mL, and 
(C) Aβ-42 to Aβ-40 ratio in the cortex of both WT and 3xTg-AD mice at 4 and 12 months 
of age. Data are shown as fold change from WT at each time point. Data is mean ± SEM 
(n=3 mice per group, *p<0.05). 
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3.4.5 No changes in tau phosphorylation or conformation are observed in 3xTg-AD 

cortex 

Progressive increases in tau phosphorylation have previously been reported in 3xTg-AD 

mice relative to WT controls (Oddo et al., 2003a), which are similar to the altered 

pattern of tau phosphorylation observed in post-mortem human AD brain (Iqbal et al., 

2005, Hanger et al., 2009). Therefore, phosphorylation-specific antibodies to AD-

relevant tau epitopes were used in western blotting to examine changes in tau 

phosphorylation in the cortex of 3xTg-AD and WT mice. The antibodies used were 

specific to tau phosphorylated at ser 202 (CP13), and ser 396/404 (PHF-1), and tau 

dephosphorylated at ser 199/202/thr 205 (Tau-1). In all cases, the levels of 

phosphorylated tau were normalised to levels of total tau in each sample prior to 

statistical analysis. The results of this work revealed no changes in the phosphorylation 

of tau at any of the epitopes studied with aging of 3xTg-AD mice or in comparison to 

age-matched controls, although a non-significant increase in phosphorylation of tau at 

ser 202 could be observed in 12 month old 3xTg-AD mice (Figure 3.6). The tau bands 

detected were typically 50-55 kDa, and an approximately 64 kDa tau band, which 

appeared to be preferentially labelled with the ser 202 antibody, was observed in 12 

month old 3xTg-AD mice. Tau bands of 64 kDa have been previously reported in other 

tau transgenic lines as hyperphosphorylated tau species (Lewis et al., 2000, Lewis et al., 

2001, Noble et al., 2003). 
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Figure 3.6: Phosphorylation of tau at several AD-relevant sites is unchanged in the 
cortex of 3xTg-AD mice. 
(A) Representative western blots of total tau (phosphorylated and dephosphorylated), 
tau phosphorylated at ser 202, ser 396/404, and tau dephosphorylated at ser 199/202 
and thr 205 (all ~50-64 kDa) in cortical homogenates of WT and 3xTg-AD mouse brain 
taken at 1, 2, 4, 9 and 12 months of age. An antibody against β-actin was used as a 
loading control (42 kDa). Bar charts show amounts of (B) tau dephosphorylated at ser 
199/202 and thr 205 (C) tau phosphorylated at ser 202 and (D) tau phosphorylated at ser 
396/404, all normalised to amounts of total tau in each sample. Data are shown as fold 
change from WT at each time point. Data is mean ± SEM, (n=3 mice per group). 
 

To further investigate tau phosphorylation, sections of 3xTg-AD cortex from 4 and 12 

month old mice were fixed and then immunohistochemically stained for tau 

phosphorylated at ser 396/404 (PHF-1). In addition, the presence of abnormal 
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conformations of tau were investigated using a conformation-specific antibody,  MC1, 

which recognises a discontinuous tau epitope (residues 5-15 and 312-322 of 2N4R tau), 

reported to be one of the earliest pathological changes to tau in AD brain (Jicha et al., 

1997) and in tau transgenic mice (Terwel et al., 2005) (Figure 3.7). These analyses 

showed increased background labelling of 3xTg-AD tissues, but there were no clearly 

defined neuronal accumulations of phosphorylated or abnormal conformations of tau. 

Therefore, these data further confirm the absence of any changes in tau 

phosphorylation, at least at ser 396/404, in aged 3xTg-AD cortex and also suggest that 

no conformational changes in tau have occurred at this age. 

 

Figure 3.7: Tau phosphorylation and conformation is unaltered in the cortex of 4 and 
12 month old 3xTg-AD mice. 
30 µm sections of 4 and 12 month old 3xTg-AD cortex were immunostained with 
antibodies against tau phosphorylated at ser 396/404 (PHF-1) and abnormal 
conformations of tau (MC1). Sections were counterstained with haematoxylin. 
Representative images are shown. Scale bar 100 µm, inset scale bar 25 µm. 
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3.4.6 Tau undergoes changes in phosphorylation and conformation by 12 months of 

age in 3xTg-AD hippocampus 

Tau pathology spreads from the entorhinal cortex to the hippocampus and connected 

regions before being detectable in association areas of the neocortex in human AD brain 

(Braak and Braak, 1995). Therefore, changes in tau phosphorylation at ser 396/404 and 

abnormal (MC1) tau conformation were examined in the hippocampi of 3xTg-AD mice 

using immunohistochemistry, as described above. The results of this experiment showed 

the presence of discrete populations of neurons containing tau phosphorylated at ser 

396/404 (PHF-1) in the CA3 region of the hippocampus and dentate gyrus, as well as 

abnormal (MC1) conformations of tau in the CA1 region of the hippocampus by 12 

months (Figure 3.8). Prominent cell body staining was apparent with both PHF-1 and 

MC1 antibodies, whilst MC1 also labelled tau in the axons of CA1 neurons. This staining 

was absent in the hippocampus of 4 month old 3xTg-AD mice, and both ages of WT 

mice. These findings demonstrate that localised alterations in tau phosphorylation and 

conformation, similar to those observed in human AD brain, have occurred in 12 month 

old 3xTg-AD mice, at least in the hippocampus. Unfortunately, it was not possible to 

examine hippocampal tissue biochemically since the hippocampus from these mice was 

processed separately to prepare synaptosomes (section 3.4.8). 
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Figure 3.8: Tau phosphorylation and conformation are altered in the hippocampus of 
12 month old 3xTg-AD mice. 
30 µm sections of 4 and 12 month old 3xTg-AD hippocampus were immunostained for 
tau phosphorylated at ser 396/404 (PHF-1) and abnormal conformations of tau (MC1). 
Sections were counterstained with haematoxylin. Representative images are shown. 
Scale bar 100 µm, inset scale bar 25 µm. 
 
 
3.4.7 Amounts of insoluble tau are increased in the amygdala of 3xTg-AD mice 

3xTg-AD mice progressively develop neurofibrillary tangles containing aggregates of tau, 

a prominent feature of human AD (Oddo et al., 2003a). To determine if 3xTg-AD mice 

progressively accumulate aggregated, tangle-like tau, sarkosyl-insoluble tau was isolated 

from the amygdala of 4 and 12 month old WT and 3xTg-AD mice. Sarkosyl-insoluble tau 

is synonymous with the tau filaments that accumulate in NFTs (Noble et al., 2003). The 

method used generates three fractions: a low-speed supernatant (LSS), which contains 

both sarkosyl-soluble and sarkosyl-insoluble tau, a high speed supernatant containing 

sarkosyl-soluble tau, and a high speed pellet containing sarkosyl-insoluble, aggregated, 
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tau. In both the LSS and sarkosyl-insoluble tau fraction, tau was detected at 

approximately 50-64 kDa, with the 64 kDa tau species again found to be prominent in 

3xTg-AD samples. Levels of sarkosyl-insoluble tau were clearly increased in the amygdala 

of 3xTg-AD mice at 12 months compared to WT mice at the same age and 4 month old 

3xTg-AD mice (Figure 3.9A), however, following normalisation to tau amounts in the LSS, 

this difference was not significant (Figure 3.9B, p=0.08 and p=0.07, respectively). Levels 

of sarkosyl-insoluble tau did not differ between genotypes at 4 months of age (Figure 

3.9). These results suggest that aggregated tau is beginning to accumulate in 12 month 

old 3xTg-AD brain. 

 

Figure 3.9: Sarkosyl insoluble tau is increased in 3xTg-AD amygdala 
(A) Representative western blots of low speed supernatant and the sarkosyl-insoluble 
fraction prepared from the amygdala of 4 and 12 month old WT and 3xTg-AD mice 
immunoblotted for total tau (phosphorylated and non-phosphorylated, 50-64 kDa).  An 
antibody against β-actin was used as a loading control (42 kDa). (B) Bar chart shows 
amounts of aggregated, insoluble tau following normalisation to amounts of total tau in 
the LSS in the same sample. Data are shown as fold change from WT at each time point. 
Data is mean ± SEM, (n=3 mice per group). 
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3.4.8 Pre- and post-synaptic markers are unchanged in the hippocampus of 3xTg-AD 

mice 

Synaptic dysfunction and degeneration are a major feature of human AD (Selkoe, 2002), 

and synapse loss is believed to be the most clinically relevant biological correlate of 

cognitive decline in AD (Terry et al., 1991, Masliah et al., 2001). Synaptic dysfunction and 

loss has also been reported in the 3xTg-AD mice (Oddo et al., 2003b, Bittner et al., 2010). 

Levels of the pre- and post-synaptic markers, synaptophysin and PSD-95, respectively, 

have been reported to closely correlate with the numbers of functional synapses and a 

loss of these markers can be indicative of early AD (Masliah et al., 2001).  To begin to 

understand if synapse health is affected in our colony of 3xTg-AD mice, synaptosomal 

fractions, enriched in synaptic proteins, were prepared from the hippocampus of WT 

and 3xTg-AD mice at 1, 2, 4, 9, and 12 months of age (section 2.2.4). These fractions 

were immunoblotted with antibodies against the pre-synaptic marker synaptophysin 

and the post-synaptic marker, PSD-95. Quantification of band densities showed that the 

amounts of synaptophysin did not differ between genotypes at any of the ages studied 

(Figure 3.10), although a non-significant loss of synaptophysin was apparent in 12 month 

old 3xTg-AD hippocampus relative to WT controls. Similarly, there were no significant 

changes in PSD-95 between 3xTg-AD and WT mice, or with increasing age (Figure 3.10). 

These data suggest that synapses remain functional in 12 month old 3xTg-AD mice.  
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Figure 3.10: Levels of pre- and post- synaptic markers are unaltered in hippocampi of 
3xTg-AD mice. 
(A) Representative Western blots of synaptosomal fractions prepared from the 
hippocampus and associated cortex of WT and 3xTg-AD mice at 1, 2, 4, 9, and 12 months 
of age, and immunoblotted with antibodies against synaptophysin (38 kDa) and PSD-95 
(95 kDa). An antibody against β-actin was used as a loading control (42 kDa). Bar charts 
show amounts of (B) synaptophysin and (C) PSD-95, both standardised to amounts of β-
actin in the same sample. Data are shown as fold change from WT at each time point. 
Data is mean ± SEM, (n=3 mice per group). 
 

3.4.9 3xTg-AD mice show changes in synaptic APP and tau amounts 

The hippocampal synaptosome preparations were next used to examine total amounts 

of APP and tau at the synapse. The physiological and pathological role of APP and tau at 

the synapse still remains unclear but it is likely that both exert physiological and 
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pathological effects which may be relevant to the progression of AD (Spires-Jones and 

Hyman, 2014). Synaptosomal fractions were immunoblotted for amounts of total APP, 

total tau and actin, as described above. Synaptosomes from the hippocampus of 3xTg-

AD mice showed significantly increased amounts of tau at both 1 and 2 months of age 

compared to synaptosomes prepared from age-matched WT hippocampus (Figure 3.11, 

p<0.01 and p<0.001, respectively). There were no differences in tau amounts in the 

synaptosomal fraction prepared from older animals. In addition, significantly higher 

levels of APP were detected in synaptosomes of 1, 2 and 9 month old 3xTg-AD mice 

compared to WT controls (Figure 3.11, p<0.01).  These results appear to suggest a 

relocalisation of tau and APP from synaptosomes of 3xTg-AD mice, which might reflect a 

loss of their function in synapses as disease progresses. 
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Figure 3.11: Tau and APP are increased at the synapse in the hippocampus of young 
3xTg-AD mice. 
(A) Representative Western blots of synaptosomal fractions prepared from 
hippocampus of WT and 3xTg-AD mice at 1, 2, 4, 9, and 12 months of age, and 
immunoblotted with antibodies specific to total tau (phosphorylated and non-
phosphorylated, ~50-64 kDa) and APP (~90-120 kDa). An antibody against β-actin was 
used as a loading control (42 kDa). Bar charts show amounts of (B) total tau and (C) total 
APP both standardised to amounts of β-actin in the same sample. Data are shown as fold 
change from WT at each time point. Data is mean ± SEM, (n=3 mice per group, **p<0.01, 
***p<0.01). 
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3.4.10 Slice cultures from WT and 3xTg-AD mice can be prepared and maintained for 

at least 28 days in culture 

Methods to establish and maintain organotypic brain slice cultures using the membrane- 

cell interface method are well established in neuroscience research (Stoppini et al., 

1991, Gähwiler et al., 1997). In particular, conditions have been described where long-

term cultures from mice expressing human mutant APP or MAPT transgenes can be 

maintained for up to 6 months in culture which allows slices to develop pathologies 

similar to those found in vivo (Duff et al., 2002). These conditions were used as a starting 

point for producing organotypic brain slice cultures from WT and 3xTg-AD mice. The 

dissection and production of cortical and hippocampal containing brain slice cultures can 

be technically challenging, but it was found that dissecting brains for culturing in the 

same manner as previously described (Duff et al., 2002) was possible, although when 

prepared from postnatal day 11 to 12 mouse pups, as suggested by this group, slices 

showed poor survival rates (Figure 3.12). By 14 div healthy slice cultures are transparent, 

whereas unhealthy or dead cultures have a cloudy white appearance. These visual 

assessments were used to gain an initial impression of culture health when slices were 

prepared from postnatal day 8-12 pups and the results of this assessment are shown in 

Figure 3.12. Due to the better survival of slice cultures prepared from postnatal day 8 

and 9 pups, slice cultures were prepared from this age for the rest of the work described 

in this thesis. All other parameters including slice media composition, incubator 

conditions, and media change frequency were as described in (Duff et al., 2002) and in 

section 2.2.2. Following these methods, slices from WT and 3xTg-AD brain survived for 

at least 28 div. 
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Figure 3.12: Organotypic brain slices cultured from postnatal day 8 or 9 pups are most 
viable. 
Bar chart shows the percentage of cultures that survive when prepared from mouse 
pups of postnatal day 8-12. (n=36 wells from three independent experiments). 
 

3.4.11 Organotypic brain slice cultures from 3xTg-AD mice contain increased amounts 

of tau protein 

Organotypic brain slice cultures from WT and 3xTg-AD mouse pups were cultured in 

order to characterise development of AD-relevant features over time. Slice cultures 

were harvested at 14, 21 and 28 div in order to understand whether the overexpression 

of the P301L mutation in the MAPT gene would cause translation and the 

overproduction of total mouse and human tau protein in the culture model as seen in 

vivo in our colony as described in section 3.4.2, and in other 3xTg-AD colonies (Oddo et 

al., 2003a).  

 

Slice culture lysates from both WT and 3xTg-AD were first immunoblotted with an 

antibody against total tau (phosphorylated and non-phosphorylated, mouse and 
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human). Similar to findings in homogenates from WT and 3xTg-AD mice, tau was 

detected at 50-64 kDa, with the 64 kDa tau band being particularly prominent in aged 

slices from 3xTg-AD mice. At 21 and 28 div 3xTg-AD slice cultures showed significantly 

higher total tau protein amounts than WT slice cultures of the same div (Figure 3.13, 

p<0.01, p<0.05). No significant changes were found in total tau amounts when 21 and 28 

div 3xTg-AD slice cultures were compared to those at 14 div. In contrast, in WT slice 

cultures, amounts of tau protein were significantly reduced by 28 div compared to 14 div 

(Figure 3.13). This might suggest an upregulation of tau in newly prepared WT slices that 

normalises after extended periods of time in culture. 
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Figure 3.13: Organotypic brain slice cultures from 3xTg-AD mice show overexpression 
of total tau protein at 21 and 28 div  
(A) Representative western blots of total (phosphorylated and non-phosphorylated) tau 
(~50-64 kDa) in lysates prepared from WT and 3xTg-AD slice cultures harvested at 14, 21 
and 28 div. An antibody against β-actin was used as a loading control (42 kDa). Bar charts 
show (B) amounts of total tau normalised to β-actin content in each sample, presented 
as fold change from WT at each time point, and (C) amounts of total tau normalised to 
β-actin content in each sample, presented as fold change from 14 div for each genotype. 
Data is mean ± SEM, (n=12 wells from two independent experiments, *p<0.05, 
**p<0.01). 
 
 

Immunoblots were also probed with CP27, an antibody specific to only human forms of 

tau (phosphorylated and non-phosphorylated). 3xTg-AD slice cultures expressed human 

tau protein as detected by CP27, whereas slice cultures from WT mice did not express 

any human tau protein (Figure 3.14). Over time in culture, 3xTg-AD slice cultures at 21 

and 28 div did not express significantly higher amounts of human tau compared to 

cultures at 14 div, however there was an observed elevation in human tau in 28 div 

3xTg-AD slices relative to those at 14 and 21 div (Figure 3.14). 
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Figure 3.14: Human tau is expressed in 3xTg-AD organotypic brain slice cultures  
(A) Representative western blots of total human tau (phosphorylated and non-
phosphorylated) (CP27) (~50-64 kDa) in lysates prepared from WT and 3xTg-AD slice 
cultures harvested at 14, 21 and 28 div. An antibody against β-actin was used as a 
loading control (42 kDa). (B) Bar chart shows amounts of total human tau normalised to 
β-actin content in each sample, presented as fold change from 14 div for 3xTg-AD slice 
cultures only. Data is mean ± SEM, (n=12 wells from two independent experiments). 
 

Tau protein was also examined in 28 div WT and 3xTg-AD slices by immunohistochemical 

staining using an antibody against total tau. An antibody specific to GFAP was also used 

to show activated astrocytes.  An increased abundance of  total tau  was observed in 28 

div 3xTg-AD slice cultures in comparison to slice cultures from 28 div-matched WT slice 

cultures (Figure 3.15), confirming the results of immunoblotting. Tau in slice cultures 

was restricted mainly to neurons, although some colocalisation between tau and GFAP 

can be observed; small amounts of tau have been identified by others in astrocytes, 

previously (Papasozomenos and Binder, 1987). Neuronal staining of tau was mainly 

somatic although some staining of axons and dendrites could also be observed. 
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Figure 3.15: Total tau amounts are increased in 3xTg-AD slice cultures  
Organotypic brain slice cultures prepared from WT and 3xTg-AD mice and cultured for 
28 div were fixed and immunolabelled with antibodies against tau (green) and GFAP, an 
astrocytic marker (red). Representative images are shown. Scale bar is 20 μm.  
 

3.4.12 3xTg-AD organotypic brain slice cultures develop increased amounts of higher 

molecular weight tau 

There is much speculation as to which forms of tau are the most detrimental in AD. It is 

well established that higher molecular weight tau, and in particular, phosphorylated 

forms of tau, show an increased propensity to aggregate and form paired helical 

filaments which accumulate in NFTs. However, whether it is the NFTs or pre-fibrillar 

forms of tau that are responsible for neuron and synapse loss remains a matter of 
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debate (Iqbal et al., 2005, Wang et al., 2014). High molecular weight tau that is detected 

on immunoblots at 64 kDa, is believed to be an intermediate tau species of highly 

phosphorylated tau that is, or will become insoluble, and that contributes to disruption 

of microtubules in neurons (Barghorn et al., 2000, Lewis et al., 2000). 

 

Since high molecular weight tau is considered an important pathological tau species, and 

it is shown here that this form of tau is detected in 12 month old 3xTg-AD mice (section 

3.4.2), it was important to determine if 64 kDa tau is also present in brain slice cultures 

from 3xTg-AD mice. Therefore, slice culture lysates from WT and 3xTg-AD slices were 

immunoblotted with antibodies specific to total (phosphorylated and non-

phosphorylated) tau, and high molecular weight tau detected at ~64 kDa was quantified 

as a proportion of total tau. In 3xTg-AD slices cultured for 21 and 28 div, a significantly 

higher proportion of the tau detected was the 64 kDa species when compared to tau in  

matched WT slice cultures (p<0.05, Figure 3.16B). Although not reaching statistical 

significance, 21 and 28 div cultures also showed higher amounts of 64 kDa tau than 14 

div 3xTg-AD cultures, suggesting that this potential pathogenic tau species may 

progressively accumulate over time (Figure 3.16C). These results showing a classical shift 

of tau towards higher molecular weight species is typical of models in which 

hyperphosphorylated aggregated tau species accumulate (Lewis et al., 2000, Lewis et al., 

2001, Kelleher et al., 2007) and therefore suggests that cultured 3xTg-AD brain slices are 

developing characteristic tau pathology ex vivo. 
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Figure 3.16: Organotypic brain slice cultures from 3xTg-AD mice develop higher 
molecular weight tau protein at 21 and 28 div  
(A) Representative western blots of total (phosphorylated and non-phosphorylated) tau 
(~50-64 kDa) in lysates prepared from WT and 3xTg-AD slice cultures harvested at 14, 21 
and 28 div. An antibody against β-actin was used as a loading control (42 kDa). Bar charts 
show amounts of high molecular weight tau (64 kDa) normalised to total tau amounts in 
each sample, presented as (B) fold change from WT at each time point, and (C) fold 
change from 14 div for each genotype. Data is mean ± SEM, (n=12 wells from two 
independent experiments, *p<0.05). 
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3.4.13 Tau in 3xTg-AD organotypic brain slice cultures rapidly becomes phosphorylated 

at several AD-relevant sites. 

The accumulation of phosphorylated tau was characterised in WT and 3xTg-AD 

organotypic brain slice cultures. The progressive accumulation of hyperphosphorylated 

tau is a major feature of Alzheimer’s disease and other tauopathy brain (Iqbal et al., 

2005). In addition, there is some evidence that tau phosphorylation at specific sites 

corresponds with Braak staging. For example, phosphorylation of tau at ser 396/404 is 

characteristic of late stage AD (Wolozin et al., 1986), whilst phosphorylation of tau at ser 

202 is more representative of early stage AD (Su et al., 1994). Similar findings have been 

reported in transgenic mouse models of tauopathy (Lewis et al., 2000, Noble et al., 

2005). In our 3xTg-AD mouse colony, no increases in tau phosphorylation at ser 202, ser 

396/404 or ser 199/202 and thr205 were found in the cortex of 3xTg-AD mice compared 

to WT mice (section 3.4.5), however increased phosphorylation of tau at ser 396/404 

and abnormal conformations of tau were detected in the hippocampus of 3xTg-AD mice 

at 12 months of age (section 3.4.6). Increases in the amounts of tau phosphorylated at 

ser 202 and other AD-relevant tau phosphorylation sites has previously been reported in 

12 month old 3xTg-AD mice in other colonies (Oddo et al., 2003a).  

 

Immunoblotting with an antibody specific to tau phosphorylated at ser 202 (CP13) 

revealed significantly increased amounts of tau phosphorylated at this site in 21 div 

3xTg-AD slice cultures compared to WT slice cultures (Figure 3.17B, p<0.001).  Tau 

phosphorylated at ser 202 was also clearly increased at 28 div in 3xTg-AD slices relative 

to those from div-matched WTs, but this did not reach significance. Tau at 64 kDa is 
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clearly labelled with CP13 (Figure 3.17A), characteristic of previous reports of an 

intermediate tau species of highly phosphorylated tau that is, or will become insoluble 

leading to the dysfunction of tau (Barghorn et al., 2000, Lewis et al., 2000). There were 

no significant increases in the levels of CP13 reactive tau with increasing div in either WT 

or 3xTg-AD slice cultures (Figure 3.17C). 

 

Tau phosphorylated at ser 396/404 was also examined in brain slice cultures from WT 

and 3xTg-AD mice. Tau phosphorylated at ser 396/404 is characteristic of late-stage AD, 

and is typically found in mature NFTs (Wolozin et al., 1986). Immunoblots were probed 

with an antibody specific to tau phosphorylated at ser 396/404 (PHF-1) and the amount 

of PHF-1-positive tau was normalised to total tau amounts in each sample. At 14, 21 and 

28 div 3xTg-AD slice cultures showed significantly higher amounts of PHF-1-positive tau 

when compared to age-matched WT slice cultures (Figure 3.17B, p<0.01, p<0.001, 

p<0.01, respectively). There were no significant increases in the levels of PHF-1 reactive 

tau with increasing div in either WT or 3xTg-AD slices (Figure 3.17C). 

 

Levels of tau dephosphorylated at ser 199/202/thr 205 were also examined in both WT 

and 3xTg-AD slice cultures which had been cultured for 14, 21 and 28 div. An antibody 

specific to tau dephosphorylated at the above sites was used (Tau-1) and amounts of 

Tau-1-positive tau were normalised to total amounts of tau in each sample. Slice 

cultures from both WT and 3xTg-AD slice cultures showed similar levels of Tau-1 

immunoreactivity at 14, 21 and 28 div (Figure 3.17B). In addition, there were no changes 

in amounts of Tau-1-positive tau over time in culture in either genotype (Figure 3.17C). 
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Figure 3.17: Slice cultures from 3xTg-AD mice show increased amounts of 
phosphorylated tau compared to WT slice cultures.  
(A) Representative western blots of lysates from 14, 21 and 28 div WT and 3xTg-AD slice 
cultures showing total tau, tau phosphorylated at ser 202 (CP13), ser 396/404 (PHF-1) 
and dephosphorylated at ser 199/202 and thr 205 (Tau-1), all at ~50-64 kDa. An antibody 
against β-actin was used as a loading control (42 kDa). Bar charts show amounts of tau 
dephosphorylated at ser 199/202 and thr 205, tau phosphorylated at ser 202, and tau 
phosphorylated at ser 396/404, all normalised to total tau amounts in the same sample. 
(B) Data is shown as fold change from WT at each time point. (C) Data is shown as fold 
change from 14 div for each genotype. Data is mean ± SEM, (n=12 wells from two 
independent experiments, *p<0.05, **p<0.01, ***p<0.001). 
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Phosphorylation of tau at ser 202 and ser 396/404 was also detected in slice cultures 

that were fixed at 28 div and immunohistochemically stained with the CP13 (Figure 3.18) 

and PHF-1 (Figure 3.19) antibodies, respectively. Increased CP13- and PHF-1- 

immunoreactive tau is clearly apparent in cell soma of 3xTg-AD slice cultures when 

compared to slice cultures prepared from WT mice (Figure 3.18, Figure 3.19). Taken 

together, these findings further indicate that slice cultures prepared from 3xTg-AD mice 

show accelerated development of human tauopathy-like tau abnormalities over time. 

 

 

Figure 3.18: Organotypic brain slice cultures from 3xTg-AD mice show increased 
amounts of tau phosphorylated at ser 202. 
Organotypic brain slice cultures prepared from WT and 3xTg-AD mice and cultured for 
28 div were fixed, and immunolabelled with antibodies against total tau (green) and tau 
phosphorylated at ser 202 (red). Scale bar is 20 μm.  
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Figure 3.19: Organotypic brain slice cultures from 3xTg-AD mice show increased 
amounts of tau phosphorylated at ser 396 and 404 
Organotypic brain slice cultures prepared from WT and 3xTg-AD mice and cultured for 
28 div were fixed, and immunolabelled with antibodies against total tau (green) and tau 
phosphorylated at ser 396/404 (red). Scale bar is 20 μm.  
 

3.4.14 Organotypic brain slice cultures from 3xTg-AD mice produce increased amounts 

of APP 

Significant increases in the amounts of APP holoprotein and Aβ-42 were detected in the 

cortex of 12 month old 3xTg-AD mice compared to their WT counterparts (Figure 3.4, 

Figure 3.5).  
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To determine if cultured slices from these mice recapitulate these features, slice culture 

lysates from WT and 3xTg-AD mice cultured for 14, 21, and 28 div were immunoblotted 

with  antibodies that detect total levels of APP (one N-terminal, one C-terminal) and the 

total amounts of APP detected were then standardised to β-actin levels in each sample. 

3xTg-AD slice cultures at 14 div were found to have significantly higher amounts of APP 

with an intact N-terminus when compared to WT slice cultures at this time point (Figure 

3.20, p<0.01). There were no significant differences in amounts of N-terminal APP at 21 

or 28 div between genotypes. Using an antibody which recognises C-terminal APP, 

amounts of APP with an intact C-terminus were significantly higher at 28 div in 3xTg-AD 

slice cultures than their WT counterparts (Figure 3.20, p<0.05), and no differences in 

amounts of C-terminal APP were found at 14 or 21 div between genotypes. 

 

3xTg-AD slice cultures did not show any increases in the amounts of N-terminal or C-

terminal APP with increasing time in culture. However, in WT slices there were 

significantly higher amounts of N-terminal APP (Figure 3.20, p<0.001) and significantly 

decreased amounts of C-terminal APP (Figure 3.20, p<0.05) at 28 div than at 14 div, 

suggesting an altered regulation of APP processing with increasing time in culture in WT 

slices, a feature not apparent in slices from 3xTg-AD mice. 
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Figure 3.20: Organotypic Brain slice cultures from 3xTg-AD mice have higher levels of 
APP 
(A) Representative western blots of lysates from 14, 21 and 28 div WT and 3xTg-AD slice 
cultures showing total APP (N-terminal) and total APP (C-terminal), both ~90-120 kDa. 
An antibody against β-actin was used as a loading control (42 kDa). Bar charts shows 
amounts of (B) total APP (N-terminal) and (C) total APP (C-terminal) normalised to β-
actin amounts in the same sample, presented as fold change from WT at each time point 
and (D) total APP (N-terminal) and (E) total APP (C-terminal) normalised to β-actin 
amounts in the same sample, presented as fold change from 14 div for each genotype. 
Data is mean ± SEM, (n=12 wells from two independent experiments, *p<0.05, 
***p<0.001). 
 
 
3.4.15 Significantly increased levels of Aβ-42 are detected in organotypic brain slice 

cultures from 3xTg-AD mice 

The amounts of Aβ-40 and Aβ-42 in lysates containing equal amounts of protein from 

WT and 3xTg-AD slices cultured for 14, 21 and 28 div were detected using commercial 
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human specific Aβ-40 and Aβ-42 ELISA kits, as described above. 3xTg-AD slices cultured 

for 14, 21, and 28 div showed significantly increased amounts of Aβ-42 compared to div-

matched WT slice cultures (Figure 3.21, p<0.001, p<0.05, p<0.05, respectively). No 

significant differences between genotypes were found in amounts of Aβ-40 at any time 

point (Figure 3.21). Finally, the ratio of Aβ-42 to Aβ-40 was significantly increased at 14 

div in 3xTg-AD slice cultures (Figure 3.21, p<0.05), and although increases in this ratio 

were apparent when 3xTg-AD slices were cultured for longer periods of time, these later 

changes were not significant when compared to matched WT slice cultures.  
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Figure 3.21: Amounts of Aβ-42 are increased in slice cultures from 3xTg-AD mice. 
Amounts of Aβ-40 and Aβ-42 were measured in slice culture lysates prepared from WT 
and 3xTg-AD mice harvested at 14, 21, and 28 div. Bar charts show (A) amounts of Aβ-42 
and (B) Aβ-40 in cortical lysates from 14, 21 and 28 div WT and 3xTg-AD slice cultures. 
Data are shown in pg/mL. (C) Bar chart shows amounts of Aβ-42 relative to Aβ-40. Data 
are shown as fold WT at each time point. Data is mean ± SEM (n=9 wells from three 
independent experiments, *p<0.05, ***p<0.001). 
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3.4.16 GSK-3 activity is not altered in 3xTg-AD organotypic brain slice cultures 

GSK-3 is a ser/thr proline-directed kinase which is implicated in tau phosphorylation at 

numerous AD-relevant sites and is recognised as a major tau kinase (Hanger et al., 

1992). Increased GSK-3 activity is found in post-mortem brain from AD patients, as well 

as in several animal models of AD (Noble et al., 2005, Leroy et al., 2007). Activity of GSK-

3 is regulated in several ways, predominantly through phosphorylation of the inhibitory 

site ser 9 in GSK-3β or ser 21 in GSK-3α, which significantly decreases active site 

availability thereby reducing kinase activity (Sutherland et al., 1993). 

 

Lysates from WT and 3xTg-AD slice cultures harvested at 14, 21 and 28 div were 

immunoblotted with an antibody which detects total amounts of GSK-3α and GSK-3β, 

and the amount of protein detected was standardised to β-actin amounts in the same 

sample. Levels of total GSK-3 were unchanged at 14, 21 and 28 div in both WT and 3xTg-

AD slice cultures (Figure 3.22). 

 

Levels of inactive GSK-3 were next quantified by probing immunoblots with an antibody 

which detects GSK-3α phosphorylated at ser 21 and GSK-3β phosphorylated at ser 9 

(pser21/9). The amounts of phosphorylated GSK-3 detected were normalised to total 

amounts of GSK-3 in the same sample. No significant changes in the amounts of 

phosphorylated GSK-3 were detected with increasing time in culture in either WT or 

3xTg-AD slice cultures (Figure 3.22). 
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Figure 3.22: GSK-3 activity is not altered with increasing time in culture in WT and 
3xTg-AD organotypic brain slice cultures. 
(A) Representative western blots of total GSK-3α/β (47, 52 kDa), and pser21/9 GSK-3 in 
lysates prepared from WT and 3xTg-AD slice cultures harvested at 14, 21 and 28 div. An 
antibody against β-actin was used as a loading control (42 kDa). (B) Bar charts show 
amounts of total GSK-3α/β standardised to β-actin amounts in each sample, and 
amounts of pser21/9 GSK-3 normalised to total GSK-3α/β in each sample. Data are 
shown as fold change from 14 div for each genotype. Data is mean ± SEM, (n=12 wells 
from two independent experiments). 
 

3.4.17 Increased p25/cdk5 is apparent with increasing time in culture in 3xTg-AD brain 

slice cultures 

Cdk5 is another proline-directed tau kinase which, when activated by the neuron-

specific activators p35, p39, p29 and p25 can drive pathological tau phosphorylation 

prior to, or independently of, tau aggregation (Tsai et al., 2004). Cdk5 is normally 

activated by p35, and this activation is often to be seen as more physiological due to its 

necessity for important roles in neuron outgrowth, development, stability and neuronal 
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transport (Tang et al., 1995). The calcium-activated cysteine protease calpain can cleave 

p35 to create the more stable proteolytic p25 fragment, which drives higher levels of 

cdk5 activity and increased amounts of p25 are found in pathological and neurotoxic 

conditions (Patrick et al., 1999, Lee et al., 2000). In addition, increased amounts of p25 

are significantly increased in post-mortem AD brain and in transgenic animal models of 

AD, thereby resulting in upregulated cdk5 activity and tau phosphorylation (Tseng et al., 

2002, Noble et al., 2003, Sy et al., 2011), although this is somewhat controversial in 

human brain studies (Tandon et al., 2003). It was important to examine cdk5 activation 

in WT and 3xTg-AD slice cultures to determine if cdk5 is important for the increased tau 

phosphorylation found in 3xTg-AD slice cultures (section 3.4.13). 

 

Lysates of WT and 3xTg-AD slice cultures harvested at 14, 21 and 28 div were 

immunoblotted with an antibody against cdk5. Following normalisation to β-actin in the 

same sample, cdk5 levels were found to be unchanged with increasing time in culture in 

both WT and 3xTg-AD organotypic brain slice cultures (Figure 3.23). 

 

The amounts of p35 and p25 were quantified by immunoblotting slice culture lysates 

from WT and 3xTg-AD mice with an antibody which recognises p35 and its proteolytic 

cleavage product, p25. The p35 and p25 bands detected were normalised to cdk5 

amounts in each sample. There were no changes in p35/cdk5 or p25/cdk5 amounts with 

increasing time in culture in WT slices, and although not significant there was a trend 

towards increased p35/cdk5 in 3xTg-AD organotypic brain slice cultures at 21 and 28 div 

in 14 div cultures (Figure 3.23). In contrast, significant increases in p25/cdk5 were 
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apparent in 28 div 3xTg-AD slices in comparison to those at 14 div (Figure 3.23, p<0.01). 

An increase in p25/cdk5 was also noted in 21 div relative to 14 div 3xTg-AD slice cultures 

but this did not reach significance. These findings suggest that cdk5 activity may be, at 

least in part, responsible for the increased tau phosphorylation observed in 3xTg-AD 

brain slice cultures. 
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Figure 3.23: Increased p25/cdk5 is apparent with increasing time in culture in 3xTg-AD 
brain slice cultures.  
(A) Representative western blots of total cdk5 (33 kDa), and p35/p25 (35 and 25kDa) in 
lysates prepared from WT and 3xTg-AD slice cultures harvested at 14, 21 and 28 div. An 
antibody against β-actin was used as a loading control (42 kDa). (B) Bar charts shows 
amounts of total cdk5 normalised to β-actin amounts in each sample, amounts of p35 
relative to cdk5 in each sample, and amounts of p25 relative to cdk5 in each sample. 
Data are shown as fold change from 14 div for each genotype. Data is mean ± SEM, 
(n=12 wells from two independent experiments, **p<0.01).  
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3.4.18 Slice cultures from 3xTg-AD mice show no alterations in synaptic markers 

In our colony of 3xTg-AD mice, amounts of the pre- and post-synaptic markers 

synaptophysin and PSD-95 were unaltered in the hippocampus compared to WT mice 

(section 3.4.8), despite previous reports of synaptic dysfunction and loss in this AD 

mouse model (Oddo et al., 2003b, Bittner et al., 2010).  

 

To determine if there were any changes in synaptic markers in slice cultures, 

synaptosomes, enriched in synaptic proteins, were isolated from homogenised WT and 

3xTg-AD slice cultures that were harvested at 14, 21, and 28 div. Levels of the pre-

synaptic marker synaptophysin and the post-synaptic marker PSD-95 in the 

synaptosomes were detected by immunoblotting. This is thought to be an indicator of 

the number of functional synapses (Masliah et al., 2001).  

 

Following normalisation to β-actin, the amounts of synaptophysin and PSD-95 did not 

significantly differ between WT and 3xTg-AD slice cultures at 14, 21 or 28 div (Figure 

3.24). In addition, no significant changes in amounts of synaptophysin or PSD-95 were 

seen in WT slices with increasing time in culture. A slight trend towards increased 

amounts of synaptophysin and PSD-95 was found in 3xTg-AD slices maintained for 21 

and 28 div but these changes were not significant (Figure 3.24). This finding indicates 

that there is no loss of functional synapses in 3xTg-AD slices maintained for up to 28 div. 

 

  



 
170 

 

 

Figure 3.24: Levels of pre- and post- synaptic markers are unaltered in WT and 3xTg-AD 
slice cultures.  
(A) Representative western blots of synaptosome fractions prepared from 14, 21, and 28 
div WT and 3xTg-AD slice cultures, probed with antibodies against synaptophysin (38 
kDa) and PSD-95 (95 kDa). An antibody against β-actin was used as a loading control (42 
kDa). (B) Bar charts show amounts of PSD-95 and synaptophysin following normalisation 
to β-actin in each sample. Data on the left are shown as fold change from WT slices at 
each time point. Data on the right are shown as fold change from 14 div for each 
genotype.  Data is mean ± SEM, (n=9 wells from three independent experiments). 
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3.4.19  Tau, but not APP, is increased at the synapse in 3xTg-AD slice cultures 

In our 3xTg-AD colony, we found early increases in amounts of tau and APP in enriched 

synaptosomes prepared from hippocampal-containing brain regions of 3xTg-AD mice 

relative to WTs (Figure 3.11). To examine these features in slice cultures, synaptosomes 

prepared from 14, 21 and 28 div WT and 3xTg-AD slice cultures were immunoblotted for 

total (phosphorylated and non-phosphorylated) tau, and total APP (N-terminal).  

 

Following normalisation to β-actin, synaptosomes from 3xTg-AD slice cultures were 

found to contain significantly higher amounts of tau at 14 div compared to WT slice 

cultures (Figure 3.25, p<0.01), and non-significant increases in synaptic tau were also 

apparent at 21 and 28 div. There were no significant changes in the amounts of APP in 

synaptosomes between WT and 3xTg-AD slices at any age. Neither were there any 

changes in synaptic tau or APP amounts with increasing time in culture in WT or 3xTg-AD 

slices (Figure 3.25). 

  



 
172 

 

 

Figure 3.25: Tau is increased at the synapse in 3xTg-AD slice cultures  
(A) Representative western blots of synaptosome fractions prepared from 14, 21, and 28 
div WT and 3xTg-AD slice cultures blotted with antibodies against total APP (90-120 kDa) 
and total tau (50-64 kDa). An antibody against β-actin was used as a loading control (42 
kDa). (B) Bar charts show amounts of total APP and total tau, both normalised to β-actin 
amounts in each sample. Data on the left are shown as fold change from WT slice 
cultures at each time point. Data on the right are shown as fold change from 14 div for 
each genotype.  Data is mean ± SEM, (n=9 wells from three independent experiments, 
**p<0.01). 
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3.5 Summary 

The main findings presented in this chapter are that 3xTg-AD organotypic brain slice 

cultures maintained for up to 28 div display some key features of human AD that are 

also observed in 3xTg-AD mice in vivo (Table 3.1). Particularly, it was apparent that the 

development of some disease features, most notably pathological changes in tau, are 

accelerated ex vivo.  

 

Table 3.1: Summary of AD-like features that develop in 3xTg-AD slice cultures, in 
comparison to those observed in vivo and in human AD brain.  
 

Pathology Human AD 3xTg-AD In Vivo 3xTg-AD Ex Vivo 

Total tau Increased total tau 
protein in human AD 
(Khatoon et al., 1994, 
Sjogren et al., 2001). 

Tau is transgenically 
over-expressed - section 
3.4.2 and (Oddo et al., 
2003a).  

Tau over-expression is 
apparent in slices 
cultured for 21 and 28 
div (Section 3.4.11). 

Phosphorylated 
tau 

Tau phosphorylation is 
increased at several 
epitopes in human AD 
brain, including ser 202 
and ser 396/404 
(Wolozin et al., 1986, Su 
et al., 1994, Iqbal et al., 
2005). 

Tau phosphorylation was 
previously reported to be 
increased in 12 to 15 
month old mice (Oddo et 
al., 2003a). In the colony 
examined here, increased 
tau phosphorylation at 
ser 396/404 was 
observed in the 
hippocampus, but not 
the cortex, of 12 month 
old mice (sections 3.4.5 
and 3.4.6). 

Tau phosphorylation 
at ser 202 and ser 
396/404 is significantly 
increased (section 
3.4.13). 

High molecular 
weight tau/ tau 
aggregates 

Characteristic high 
molecular weight tau, 
tau aggregates and 
NFTs in human AD 
(Grundke-Iqbal et al., 
1986). 

High molecular weight 
tau and sarkosyl-
insoluble aggregated tau  
detected in 12 month old 
mice here (section 3.4.7), 
and, together with tau 
aggregates and NFTs, in  
18 month old mice (Oddo 
et al., 2003a). 

High molecular weight 
tau (64 kDa) is found 
at 21 and 28 div 
(section 3.4.12). 
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APP Total amounts of APP 
are unaltered 
(Nordstedt et al., 1991), 
however, altered APP 
processing is apparent 
(O’Brien and Wong, 
2011). 

APP is transgenically 
over-expressed - section 
3.4.3 and (Oddo et al., 
2003a). 

APP is transgenically 
over-expressed 
(section 3.4.14). 

Aβ-40 and Aβ-
42 

Increased amounts of 
Aβ-40 and Aβ-42 are 
deposited in senile 
plaques (Glenner and 
Wong, 1984, O’Brien 
and Wong, 2011). 

Significantly increased 
levels of Aβ-42 at 12 
months of age in our 
colony (section 3.4.4.), 
and increased Aβ and 
plaque deposition 
reported from 6 months 
of age by others (Oddo et 
al., 2003a, Oddo et al., 
2003b). 

Significantly increased 
levels of Aβ-42 by 14 
div (section 3.4.15). 

GSK-3 activity Disparities in the 
literature. Increased 
GSK-3 activity detected 
by some (Leroy et al., 
2007) but not others 
(Pei et al., 1997). 

Not examined here. 
Others report that GSK-3 
activity is increased by 15 
months of age (Sy et al., 
2011, Kazim et al., 2014). 

No change in GSK-3 
activity (section 
3.4.16). 

Cdk5 activity Increased cdk5 activity 
(Tseng et al., 2002). 
Increased p25 amounts 
(Patrick et al., 1999), 
but this is controversial 
(Tandon et al., 2003). 

Not examined here. Cdk5 
activity reported by 
others as increased by 12 
months of age (Sy et al., 
2011). 

Increased p25/cdk5 in 
28 div slices (section 
3.4.17). 

Synaptic 
dysfunction 

Levels of synaptophysin 
and PSD-95 are reduced 
(Masliah et al., 2001, 
Proctor et al., 2010).  

No changes in PSD-95 or 
synaptophysin (section 
3.4.8). Decreases in PSD-
95 and synaptophysin 
reported at 13 months of 
age (Revilla et al., 2014). 

No changes in 
amounts of PSD-95 
and synaptophysin 
(section 3.4.18). 

Tau at the 
synapse 

Tau is found at the 
synapse in both control 
and AD patients, 
however, 
phosphorylated tau 
species are only found 
in AD synapses (Tai et 
al., 2012). 

Levels of total tau at the 
synapse increased in 1 
and 2 month old mice, 
reducing to WT levels at 
4, 9 and 12 months of 
age (section 3.4.9). 

Increased tau at the 
synapse in 14, but not 
21 or 28 div slice 
cultures (section 
3.4.19). 

APP at the 
synapse 

APP is not increased in 
AD synapses (Gylys et 
al., 2004). 

Increased presence of 
APP at the synapse at 1, 2 
and 9 months of age 
(section 3.4.9). 

No change in APP 
amounts at the 
synapse (section 
3.4.19). 
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3.6 Discussion 

The work described in this chapter was conducted to characterise disease-associated 

changes in Aβ, tau and synapses over time in vivo in our colonies of WT and 3xTg-AD 

mice, in comparison to organotypic brain slice culture models produced from these 

mice.  

 

3.6.1 The disease phenotype in our 3xTg-AD colony is similar to that previously 

reported 

Our 3xTg-AD colony displayed a progressive development of relevant, and previously 

reported AD-like changes, which recapitulate features of human AD. The majority of this 

data corroborates others' findings; however a few disparities were apparent. 

 

Firstly, although it is evident from genotyping and immunoblots that our 3xTg-AD colony 

overexpress tau and APP, the changes in the expression of these proteins was quite mild 

and was deemed only to be significantly different from WTs rarely. This likely reflects 

variations between animals in each group when taking into account the small group size 

available for this work (n=3). Our 3xTg-AD colony show significantly higher levels of Aβ-

42 in the cortex by 12 months of age, as reported previously in 3xTg-AD mice (Oddo et 

al., 2003b, Oddo et al., 2003a). At 4 months of age in our 3xTg-AD colony, no changes in 

levels of Aβ-42, Aβ-40 or Aβ-42/40 in the cortex were detected, as predicted from 

previous findings (Oddo et al., 2003b). Similarly, Aβ-40 and Aβ-42/40 were not elevated 

in the cortex in our 3xTg-AD colony at 12 months of age, which agrees with previous 
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reports that the increases in these parameters are first apparent at 13 months of age 

(Oddo et al., 2003b). 

 

Furthermore, tau pathology in our 3xTg-AD colony follows a similar spatiotemporal 

progression as reported in previous literature. Indeed, tau in an abnormal (MC1) 

conformation, one of the early changes observed in tau in AD brain (Weaver et al., 

2000), and increased tau phosphorylation at ser 396/404 were detected in the 

hippocampus of our 3xTg-AD mice at 12 months of age, at the same time, increased 

levels of sarkosyl-insoluble tau were detected in the amygdala. No changes in tau 

phosphorylation were detected in the cortex at this age, which again corroborates 

previous reports of tau pathology developing in the hippocampus prior to the neocortex 

(Oddo et al., 2003b), similar to in human AD (Braak and Braak, 1995). 

 

Lastly, no loss of amounts of the synaptic markers, synaptophysin and PSD-95 in the 

hippocampus was detected at any age of 3xTg-AD brain studied here. This is in 

agreement with some previous reports which describe no reductions in synaptophysin 

or PSD-95 in whole brain 3xTg-AD lysates at 9 months of age (Chen et al., 2014).   

However, synaptic dysfunction in the hippocampus is clearly apparent in other 3xTg-AD 

colonies at 6 months of age (Oddo et al., 2003b) including reports that synaptophysin is 

reduced in the cortex, but not in the hippocampus at 6 to 7 months of age (Hedberg et 

al., 2010), and that PSD-95 and synaptophysin are subtly but significantly reduced in the 

hippocampus by 13 months of age (Revilla et al., 2014). Thus, there is clearly some 

variation between individual colonies of these mice, which may explain the results 
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obtained in this work. It is not possible to exclude the possibility that there could be 

synaptic changes in our colony of 3xTg-AD mice since synaptic dysfunction does not 

necessarily result in a rapid loss of functional synapses, and an associated loss of 

synaptic markers, but could instead arise from subtle changes in the size and distribution 

of synaptic coupling (Barnes, 1999).  

 

In summary, these findings suggest that our colony of 3xTg-AD mice show progressive 

development of AD-like Aβ and tau abnormalities by 12 months of age, as would be 

expected from previous reports.  

 

3.6.2 Ex vivo 3xTg-AD organotypic brain slice cultures can survive at least 28 div and 

faithfully recapitulate key features of AD pathology 

Slice cultures from 3xTg-AD mice were successfully cultured for up to 28 div for the first 

time and these developed similar AD-like abnormalities as the 3xTg-AD mice from which 

they are derived. In particular, the over-production of Aβ-42 and the progressive 

accumulation of phosphorylated and aggregated tau are recapitulated in 3xTg-AD slice 

cultures. The presence of these features was associated with alterations in kinase 

activity and an early accumulation of tau at the synapse. 

 

Slice cultures from 3xTg-AD mice show significantly increased levels of Aβ-42, another 

feature of human AD brain (O’Brien and Wong, 2011), which is also found in 3xTg-AD 

mice in vivo from 6 months of age (Oddo et al., 2003a). Since pro-aggregatory Aβ-42 is 

considered to be the most toxic species of Aβ (Zhang et al., 2011b), the rapid 
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accumulation of Aβ-42 in 3xTg-AD slice cultures may suggest that they are a particularly 

relevant method for assessing Aβ-directed therapies for AD.  

 

In addition, slice cultures from 3xTg-AD mice aged in culture for up to 28 days show 

significantly increased amounts of high molecular weight tau and tau phosphorylated at 

ser 202 and ser 396/404 compared to slice cultures produced from WT mice. These 

human AD-like changes (Wolozin et al., 1986, Su et al., 1994, Barghorn et al., 2000, 

Sjogren et al., 2001, Iqbal et al., 2005) are all found in vivo in this transgenic mouse line 

but not until the mice are considerably older (Oddo et al., 2003a, Oddo et al., 2003b). 

 

GSK-3 is a prominent tau kinase, recognised to phosphorylate many of the residues of 

tau that are abnormally phosphorylated in AD (Hanger et al., 1992). In vivo, 3xTg-AD 

mice show significantly decreased phosphorylation of ser 21/9 GSK-3, and therefore 

increased GSK-3 activity, at 15 months of age compared to younger transgenics and age-

matched WT controls (Sy et al., 2011). Increased GSK-3 activity indicated by the 

inhibitory phosphorylation of ser 21/9 GSK-3 (Sutherland et al., 1993) was unaltered in 

3xTg-AD slice cultures, suggesting that GSK-3 may not contribute to tau phosphorylation 

in these slice cultures. However, there are several mechanisms leading to GSK-3 

activation (Wang et al., 1994, Ryves and Harwood, 2001), not all of which were studied 

here, so a contribution of GSK-3 to tau phosphorylation in 3xTg-AD slice cultures cannot 

be completely discounted.  
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Significantly increased amounts of the cdk5 activator p25, but not p35, relative to cdk5 

were found in 3xTg-AD slice cultures. This recapitulates in vivo findings in this AD 

transgenic line where significantly increased p25 is found in 12 month old mice 

compared to 3 month old mice (Sy et al., 2011). Again, this finding recapitulates the 

increased cdk5 activation by p25 reported in human AD brain (Tseng et al., 2002), 

although the human brain findings are highly controversial (Tandon et al., 2003). This 

data suggests that the 3xTg-AD slice culture model may also be useful for investigating 

therapeutic strategies based on p25/cdk5 inhibitors, such as  the cdk5 inhibitory 

peptide, CIP (Sundaram et al., 2013). 

 

Levels of the synaptic markers, synaptophysin and PSD-95, were not significantly 

different between WT and 3xTg-AD slice cultures, or over time in culture. This is not 

unexpected, as no differences in synaptic marker amounts were detected between 

genotypes in vivo in our colony, and only subtle but significant reductions have been 

shown in 13 month old 3xTg-AD mice (Revilla et al., 2014). Loss of synapses is the most 

accurate neuropathological correlate of loss of cognition in AD (Terry et al., 1991), 

however measurement of synaptic markers is not the most sensitive method of 

detecting synapse loss, and synaptotoxicity may have been better studied using 

alternative methods, for example, quantification of spine size and number (Rochefort 

and Konnerth, 2012). 

 

Overall, disease features in slice cultures from 3xTg-AD mice develop much more rapidly 

than those observed in vivo in our colony and those reported in vivo previously. It is 
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plausible to suggest that the disease features observed in 14, 21 and 28 div slice cultures 

recapitulate those found in vivo at approximately 6, 9 and 12 months of age. These 

estimates are provided on the basis that Aβ-42 levels are increased at 14 div in slice 

cultures and at 6 months in vivo (Oddo et al., 2003a), whilst increased tau 

phosphorylation is found at 28 div in slice cultures and at 12 months in vivo (Oddo et al., 

2003a), in the absence of any changes in levels of synaptic markers (section 3.4.8). The 

reasons for this rapid development of AD-like features in slice cultures remain unclear, 

however one may speculate that the culture environment may promote oxidative stress 

and encourage the acceleration of this disease phenotype (Sundstrom et al., 2005, 

Butterfield et al., 2002). 

   

3.6.3 Increased APP and tau at synapses may be early disease features in 3xTg-AD 

mice 

The results presented here show for the first time that total amounts of APP and tau are 

significantly increased in the synapse at an early age.  Significantly increased amounts of 

APP and tau were found at early ages (1, 2 and 9 months, 1 and 2 months, respectively) 

in enriched synaptosomes of the hippocampus of 3xTg-AD mice in comparison to age-

matched WT controls. In addition, significantly increased tau amounts were found in 

enriched synaptosomes of 3xTg-AD slice cultures at 14 div but not at 21 or 28 div.  

 

In human AD, total tau (Tai et al., 2012, Tai et al., 2014) and APP (Gylys et al., 2004) 

amounts at the synapse do not differ from controls. However, tau at the synapse is 

phosphorylated and misfolded in human AD (Tai et al., 2014) and Aβ is also found at the 



 
181 

 

synapse in human AD (Fein et al., 2008). Similarly, in mice expressing mutant FTD-linked 

P301L tau, phosphorylated tau is found at the synapse (Harris et al., 2012, Kopeikina et 

al., 2013), and only P301L tau, but not WT tau, is targeted to spines (Xia et al., 2015). 

 

It is plausible that during the course of AD, increased phosphorylation of tau and 

misfolding of tau occur at the synapse, potentially as a result of mislocalisation of tau 

that has detached from microtubules upon increased phosphorylation. Synaptic tau may 

be synaptotoxic and prevent physiological functions of tau at the synapse, mechanisms 

that are presently poorly understood (Crimins et al., 2013). 

 

Increased amounts of APP were also found in synaptosomes prepared from the 

hippocampus of 3xTg-AD mice at 1, 2 and 9 months, but no changes were found in 3xTg-

AD slice cultures at 14-28 div. In human AD brain, APP amounts at the synapse are 

similar to control levels (Gylys et al., 2004), however increased amounts of Aβ are found 

at the synapse in human AD brain (Fein et al., 2008). Taken together, this might suggest 

that early increases in APP amounts at synapses in AD may precede APP processing via 

the amyloidogenic pathway (Zhang et al., 2011b) to generate increased amounts of Aβ 

which are retained at the synapses throughout AD. This build-up of Aβ at the synapse is 

likely detrimental to synapse health and function in AD (Sheng et al., 2012).   

 

3.6.4 Limitations of this work 

Although overall disease progression was similar in our colony to that reported by others 

(Oddo et al., 2003a, Oddo et al., 2003b) some of the results failed to reach statistical 
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significance, despite clear changes being apparent on immunoblots. This is likely a 

reflection of the small sample size available for this analysis (n=3), and variation 

between samples within groups, typical of transgenic colonies.  

 

At the outset of the project, the intention was to culture slices for much longer periods 

of time, since successful culture up to 6 months had previously been reported (Duff et 

al., 2002). However, slices cultured beyond 28 div showed a rapid death rate with the 

majority suddenly dying at around 30 div, and only a few slice cultures were able to 

survive up to 2/3 months in vitro. It is difficult to ascertain exactly why slice health was 

compromised after 30 div. Previous studies in the laboratory group routinely maintained 

slices for 5-6 months (Dawn Lau, 2014; PhD thesis). The slices in this previous study were 

prepared in exactly the same way as in this project, so the problems were unlikely to 

have been due to the methodology used. However, it is possible that one of the 

reagents used could have been a factor. The slice culture inserts used in this project 

were sourced from Millipore. These were very reliable in the past, and preliminary work 

undertaken as part of this project showed that PET membrane alternatives from BD 

Falcon Ltd. were not as efficient in promoting the health of slice cultures. Notably, at 

around the time the project started the description of this product on the Millipore 

website first included the information that "The Biopore™ (PTFE) membrane provides 

high viability - for as long as 40 days - and excellent trans-membrane oxygen transport", 

the text "- for as long as 40 days -" was not previously a part of the product overview. 

The laboratory queried this addition, but we were not able to determine whether or not 

the composition of the inserts had been altered such that they were no longer able to 
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support slice culture up to 6 months. In addition, there were issues with the tissue 

culture facilities being used for the culture of slices. These included problems with the 

manifolds used to automatically switch from one CO2 cylinder to another when one 

emptied. Such an event occurs on a regular basis, and it is possible that manifold failure 

resulted in insufficient CO2 levels for a period of time which affected slice health. There 

were also several occasions on which fans that control air-flow through the tissue 

culture hoods malfunctioned and this would have affected the sterility of the tissue 

culture hoods. Since slice culture medium is changed every 2-3 days, it is possible that 

infections were obtained whilst in the tissue culture hoods which also affected slice 

health. Finally, several of the incubators used for this work, although carefully 

monitored, developed issues with humidity. It was believed that this might have 

contributed to slice death, but this was not formally assessed. 

 

Additionally, several antibodies to detect PS1, sAPPα, sAPPβ, C83 and C89 were used in 

order to further characterise our 3xTg-AD colony and the 3xTg-AD slice cultures 

compared to their WT counterparts and over time; however for reasons beyond our 

control, the proteins of interest were not detected in the time-scale of the project. 

 

3.6.5 Conclusions 

In conclusion, the results presented in this chapter suggest that organotypic brain slice 

cultures prepared from 3xTg-AD mice provide a novel ex vivo alternative to in vivo 

experiments aimed at investigating the mechanisms underlying AD, and for testing 

potential new therapies. 3xTg-AD slice cultures faithfully recapitulate several AD-like 
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features, and they demonstrate a rapid progression of the disease phenotype compared 

to their in vivo counterparts. The following chapter extends these results by 

investigating the utility of 3xTg-AD slice cultures as a platform for pre-clinical testing of 

AD treatments. 
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Chapter 4 : Organotypic brain slice cultures as a tool for AD drug 

discovery 

 

4.1 Introduction 

Organotypic 3xTg-AD brain slice cultures show conservation of some of the key AD-like 

features that develop over time in vivo (Chapter 3). It was next important to determine if 

this brain slice culture model has utility for AD drug screening and pre-clinical 

development.  

 

3xTg-AD mice have been used to test the efficacy of several candidate AD drugs. For 

example: 

 Tau-directed therapies: Treatment of 12 month old 3xTg-AD mice for 3 months 

with the GSK-3 inhibitor, LiCl, was shown to reduce phosphorylation of tau at 

several sites; thr 181, ser 202 and thr 205, thr 231, and thr 212 and ser 214, but 

not ser 396/404. Levels of soluble and insoluble Aβ-40 and Aβ-42, and Aβ-

positive plaque load were not reduced by LiCl (Caccamo et al., 2007), in contrast 

to previous publications (Su et al., 2004), nor did LiCl recover working memory in 

3xTg-AD mice (Caccamo et al., 2007).  

 Microtubule-stabilising drugs/neuroprotective agents: neuroprotective effects of 

the peptide NAPVSIPQ, previously reported to maintain microtubule stabilisation 

in mutant tau (P301S; K257T) over-expressing transgenic mice (Shiryaev et al., 

2009), were investigated over a 3 month treatment period in 12 month old 3xTg-
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AD mice. NAPVSIPQ lowered levels of Aβ-40 and Aβ-42 and also reduced 

phosphorylation of tau at ser 202/thr 205 and thr 231, but not at ser 202 alone. 

As well as these changes in pathological protein accumulations, improvements in 

memory were also observed following NAPVSIPQ treatment (Matsuoka et al., 

2007). 

 A-targeted therapies: BTA-EG4 is an amyloid-binding drug which reduces Aβ-

induced toxicity in vitro (Habib et al., 2010). BTA-EG4 can cross the blood brain 

barrier and reduce production of Aβ-40, whilst also increasing synaptic density 

and function in WT mice in vivo (Megill et al., 2013). A 2 week treatment of 6 to 

10 month old 3xTg-AD mice with BTA-EG4 was found to decrease increase spine 

density, drive other alterations in spine morphology and improve cognitive 

performance (Song et al., 2014). Effects of this compound on tau and kinase 

activity have not yet been reported. 

 

4.2 Aims and objectives 

The aims of the studies presented in this chapter were to investigate the effects of the 

therapeutic strategies described above (LiCl, NAPVSIPQ, and BTA-EG4) in 3xTg-AD 

organotypic brain slice cultures. These studies should elucidate whether or not 3xTg-AD 

slice cultures are a useful tool for AD drug discovery and development. The primary aims 

of this chapter were to: 

 



 
187 

 

 Use primary cortical neurons to identify effective and non-toxic treatment 

conditions for LiCl, NAPVSIPQ and BTA-EG4, for subsequent use in 

organotypic brain slice culture experiments.  

 

 Treat 3xTg-AD brain slice cultures with LiCl, NAPVSIPQ and BTA-EG4 to assess 

the effectiveness of these treatments on relevant AD-like phenotypes, and to 

further explore their modes of action. 

 

 Determine whether the effects of drug administration to 3xTg-AD 

organotypic brain slice cultures recapitulates the published effects of the 

same treatments in vivo, providing data in support of the use of 3xTg-AD 

brain slice cultures as a relevant and sensitive model for pre-clinical AD drug 

testing.  

 

4.3 Methods 

The methods used in this work are detailed in Chapter 2. In brief, embryonic day 18 rat 

primary cortical neurons were cultured for between 7 and 14 div and treated with LiCl, 

NAPVSIPQ and BTA-EG4 for 4, 24, and 24 hours, respectively. At 7 div, primary cortical 

neuron cultures contain approximately 4% astrocytes and 0.01% microglia, at 14 div, 

cultures contain approximately 15% astrocytes and 0.01% microglia (Garwood et al., 

2011). Cell viability was determined using live/dead cell assays (section 2.2.5), and 

biochemical analysis of AD-relevant protein and synaptic changes were also investigated 

(section 2.2.4). Organotypic brain slice cultures containing the cortex, hippocampus and 
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connecting regions were prepared from p8/9 3xTg-AD mice and cultured for 28 days. 

Slice cultures were then treated with LiCl, NAPVSIPQ and BTA-EG4, for 4, 24 and 48 

hours, respectively. The effects of treatments were assessed by measuring LDH release 

from slices as an indicator of cell viability (Section 2.2.5) and biochemical changes, as 

described above.  

 

4.4 Results 

4.4.1 LiCl is not toxic to primary cortical neurons 

A live/dead cell assay was performed to assess any toxicity resulting from treatment of 

10 div primary cortical cultures for 4 hours with 1-40 mM LiCl. In this assay, the 

fluorescent dead cell dye is taken up by cells with compromised membranes, and the 

levels of fluorescent dye remaining after washing can be visualised and quantified as a 

measure of cell death. The results of these experiments showed no increases in cell 

death after application of 1-40mM LiCl in comparison to vehicle (20mM NaCl)-treated 

control cultures (Figure 4.1).  

 

Immunolabelling of fixed cells identified basal levels of cell death in these cultures as 

being largely neuronal, as indicated by a lack of colocalisation between the dead cell dye 

and GFAP-labelled astrocytes. In addition, there were no apparent increases in GFAP 

immunoreactivity indicating that LiCl has not activated astrocytes in these cultures 

(Figure 4.1). 
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Figure 4.1: Lithium treatment is not toxic in primary cortical cultures.  
(A) Bar chart shows levels of cell death, measured by incorporation of dead cell dye, 
following treatment of 10 div primary cortical cultures with 1-40mM LiCl or control 
(20mM NaCl) for 4 hours. Data is shown as fold change from control. Data is mean ± 
SEM, (n=9 wells from three independent experiments). (B) Representative images from 
these analyses showing incorporation of the dead cell dye (red), astrocytes 
immunolabelled using an antibody against GFAP (green) and Hoechst 33342 staining of 
cell nuclei (blue). Scale bar: 75μm. 
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4.4.2 LiCl inactivates GSK-3 in primary cortical neurons 

LiCl is a known inhibitor of GSK-3 (Noble et al., 2005) and GSK-3 is a major tau kinase 

that is implicated in AD pathogenesis (Hanger et al., 1992). To demonstrate that LiCl 

inhibits GSK-3 activity in the primary cortical cultures, lysates from treated cells were 

immunoblotted with antibodies specific to total (phosphorylated and non-

phosphorylated) GSK-3α/β and GSK-3α/β phosphorylated at ser 21/9, respectively. 

These are sites of inhibitory phosphorylation on GSK-3 (Sutherland et al., 1993); 

therefore increased phosphorylation of GSK-3 at ser 21/9 indicates inhibition of kinase 

activity. Immunoblotting with these antibodies revealed bands of approximately 47 and 

52 kDa corresponding to the expected sizes of GSK-3β and α, respectively. Treatment of 

primary cultures with LiCl did not affect total GSK-3 levels relative to that detected in 

vehicle-treated cell lysates (data not shown). However, 20 mM and 40 mM LiCl 

significantly increased GSK-3 phosphorylation at ser 21/9 when normalised to levels of 

total GSK-3 in the same sample, thereby indicating that 20 and 40 mM LiCl is sufficient to 

significantly inhibit GSK-3 activity in primary cortical cultures (Figure 4.2, p<0.05, 

p<0.001).  
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Figure 4.2: Lithium chloride treatment inactivates GSK-3 in primary cortical neurons.  
(A) Representative western blots of lysates from LiCl- or control (NaCl, 20mM)-treated 
primary cortical neurons showing total (phosphorylated and non-phosphorylated) GSK-
3α/β and GSK-3α/β phosphorylated at ser 21/9 (47 and 52 kDa). (B) Bar chart shows 
amounts of GSK-3α/β phosphorylated at ser 21/9 following normalisation to total GSK-3 
in each sample. Data are shown as fold change from control. Data is mean ± SEM, (n=6 
wells from two independent experiments, *p<0.05, ***p<0.001). 
 

4.4.3 LiCl decreases tau phosphorylation in primary cortical neurons 

The effect of LiCl on amounts of total and phosphorylated tau was assessed. Total tau 

(phosphorylated and non-phosphorylated) and tau phosphorylation-dependent primary 

antibodies were used to immunoblot lysates from LiCl and control treated primary 

cortical cultures. LiCl was found not to affect total tau amounts, as assessed by 

quantification of tau amounts relative to β-actin amounts in each sample (Figure 4.3). 

However, treatment of cultured cells with 5-40 mM LiCl, but not 1 mM LiCl, significantly 

reduced phosphorylation of tau at ser 396/404 (Figure 4.3, p<0.01, p<0.001), a known 

GSK-3 phosphorylation site on tau (Hanger et al., 2009). Taken together, these 
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experiments indicate that a 4 hour treatment of primary cortical neurons with 20 mM 

LiCl leads to a marked reduction of tau phosphorylation and GSK-3 activity whilst 

avoiding any cell death. Therefore, these conditions were selected for experiments using 

3xTg-AD brain slice cultures. 

 

 

Figure 4.3: Lithium chloride treatment reduced tau phosphorylation at ser 396/404 in 
primary cortical neurons.  
(A) Representative western blots of lysates from LiCl- and control (NaCl, 20mM)-treated 
primary cortical cultures probed with antibodies against total (phosphorylated and non-
phosphorylated) tau and tau phosphorylated at ser 396/404 (both 50-55 kDa). An 
antibody against β-actin (42 kDa) was used as a loading control. (B) Bar charts show 
amounts of total tau following normalisation to actin amounts in each sample, and 
amounts of tau phosphorylated at ser 396/404 following normalisation to total tau 
levels in each sample. Data are shown as fold change from control. Data is mean ± SEM, 
(n=9 wells from three independent experiments, **p<0.01, ***p<0.001). 
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4.4.4 LiCl is not toxic to 3xTg-AD slice cultures 

An LDH assay (section 2.2.5) was used to quantify any toxicity resulting from a 4 hour 

treatment of 28 div 3xTg-AD slice cultures with 20 mM LiCl. LDH is released into culture 

medium when cell membranes are compromised, and therefore an indirect measure of 

cell death can be gained by quantifying LDH content in medium as a proportion of the 

total LDH content in the slice culture lysates and medium. Treatment of slice cultures 

with 20 mM LiCl for 4 hours did not cause any significant change in the proportion of 

LDH in medium, when compared to control (20 mM NaCl)-treated cultures, indicating 

that 20 mM LiCl treatments are not toxic to brain slice cultures (Figure 4.4). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4: 20 mM LiCl does not significantly affect viability of 3xTg-AD 
organotypic brain slice cultures.  
LDH assays were used to measure the effects of LiCl and NaCl (control) on slice 
viability. LDH in culture medium was determined as a proportion of total LDH (LDH 
in lysates plus that in culture medium). Bar chart shows medium/total LDH as fold 
change from control (20mM NaCl). Data is mean ± SEM, (n=9 wells from three 
independent experiments). 
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4.4.5 LiCl does not significantly inactivate GSK-3 in 3xTg-AD slice cultures 

LiCl treatment of 3xTg-AD mice inactivates GSK-3α/β through the inhibitory 

phosphorylation of GSK-3α/β at ser 21/9 (Caccamo et al., 2007). To determine if LiCl 

application for 4 hours led to inactivation of GSK-3 in 28 div 3xTg-AD slice cultures, 

lysates were immunoblotted with total GSK-3α/β and pser21/9 GSK-3 α/β antibodies, as 

described above. Total GSK-3 amounts were normalised to β-actin amounts in each 

sample and this quantification showed no change in total GSK-3 amounts in treated 

cultures compared to controls (Figure 4.5). Surprisingly, treatment of the slice cultures 

with LiCl led to a small, but significant decrease in the amounts of  GSK-3 

phosphorylated at ser 21/9 when this was quantified as a proportion of total GSK-3 in 

each sample (Figure 4.5, p<0.05), thereby suggesting that LiCl treatment increases GSK-3 

activity in 3xTg-AD slice cultures. To further investigate this, lysates were also 

immunoblotted using an antibody against β-catenin. β-catenin is targeted for 

degradation upon its phosphorylation by GSK-3, and therefore if GSK-3 activity is 

increased, a reduction in β-catenin amounts would be predicted (MacDonald et al., 

2009), and vice versa. Analysis of β-catenin amounts as a proportion of β-actin in each 

sample showed no significant differences between LiCl and NaCl-treated slices (Figure 

4.5).  Therefore, from these analyses it is not possible to conclude that GSK-3 activity has 

been significantly modified by LiCl treatment of slice cultures.  
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Figure 4.5: Lithium chloride treatment increases activity of GSK-3 in organotypic brain 
slice cultures from 3xTg-AD mice  
(A) Representative western blots of lysates from LiCl- or control (NaCl, 20mM)-treated 
3xTg-AD slice cultures showing total (phosphorylated and non-phosphorylated) GSK-
3α/β, GSK-3α/β phosphorylated at ser 21/9 (47 and 52 kDa) and β-catenin (94 kDa). β-
actin was used as a loading control (42 kDa). (B) Bar charts shows amounts of total GSK-
3 normalised to β-actin, GSK-3α/β phosphorylated at ser 21/9 normalised to total GSK-3 
and β-catenin normalised to β-actin in each sample. Data are shown as fold change from 
control. Data is mean ± SEM, (n=9 wells from three independent experiments, *p<0.05). 
 

4.4.6 LiCl decreases phosphorylated tau load and levels of total tau in 3xTg-AD slice 

cultures 

As described above, tau can be phosphorylated by GSK-3; therefore the effects of a 4 

hour treatment with 20 mM LiCl on levels of phosphorylated tau was assessed in 28 div 

3xTg-AD slice cultures. Slice culture lysates were immunoblotted with antibodies specific 

to tau phosphorylated at different sites that are known to be aberrantly phosphorylated 

in AD (Hanger et al., 2007). Total tau amounts were normalised to β-actin content in 

each sample, whereas the amounts of phosphorylated tau detected were standardised 
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to total tau levels in each sample. Treatment of 3xTg-AD slices with LiCl caused a 

significant decrease in the levels of total (phosphorylated and non-phosphorylated) tau 

when compared to control cultures (Figure 4.6, p<0.05). There was also a notable shift in 

tau molecular mass in lysates from LiCl treated cultures; this increased motility of tau on 

blots being characteristic of reduced tau phosphorylation (Pooler et al., 2012). 

Phosphorylation at ser 396/404 was also significantly reduced by LiCl treatment (Figure 

4.6, p<0.01), and a concomitant increase in amounts of tau dephosphorylated at ser 

199/202 and thr 205 was also detected in LiCl-treated cultures compared to NaCl-

treated controls (Figure 4.6, p<0.01). These data indicate that tau phosphorylation has 

been reduced by LiCl treatment of 3xTg-AD slices, despite inhibition of GSK-3 activity by 

LiCl not being detected in these slice culture lysates. 
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Figure 4.6: LiCl reduces total tau amounts and tau phosphorylation in organotypic 
brain slice cultures from 3xTg-AD mice.  
(A) Representative western blots of lysates from LiCl- and control (NaCl, 20mM)-treated 
3xTg-AD slice cultures probed with antibodies against total (phosphorylated and non-
phosphorylated) tau, tau phosphorylated at ser 396/404, and tau dephosphorylated at 
ser 199/202 and thr 205 (all 50-55 kDa). An antibody against β-actin (42 kDa) was used 
as a loading control. (B) Bar charts show amounts of total tau following normalisation to 
β-actin amounts in each sample, amounts of tau phosphorylated at ser 396/404 and 
amounts of tau dephosphorylated at ser 199/202 and thr 205 following normalisation to 
total tau levels in each sample. Data are shown as fold change from control (NaCl). Data 
is mean ± SEM, (n=9 wells from three independent experiments, *p<0.05, **p<0.01). 
 

4.4.7 LiCl decreases APP phosphorylated at thr 668 but does not affect levels of total 

APP in 3xTg-AD slice cultures 

The effect of LiCl treatment on levels of APP phosphorylated at thr 668 in vivo in 3xTg-

AD mice has previously not been reported. Phosphorylation of APP at thr 668 has been 

implicated in increasing the propensity of APP to be cleaved by β-secretase and γ-

secretase via the amyloidogenic pathway to produce Aβ-42 which can then lead to the 
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build-up of amyloid plaques and associated neuronal loss (Lee et al., 2003). GSK-3 has 

previously been shown to contribute to phosphorylation of APP at thr 668 (Standen et 

al., 2001, Acevedo et al., 2014) and inhibition of GSK-3α with LiCl has been shown in vivo 

to reduce amyloidogenic APP processing (Phiel et al., 2003). The effect of LiCl treatment 

of 3xTg-AD slice cultures on levels of phosphorylation of APP at thr 668 was explored by 

probing immunoblots with an antibody specific to phosphorylation at this APP site, and 

the phosphorylated APP amounts were then normalised to levels of total 

(phosphorylated and non-phosphorylated) APP. Levels of total APP were established by 

probing immunoblots with an antibody to amino acids 61-88 at the N-terminus of APP 

and the amounts of total APP were normalised to levels of β-actin. The results of this 

analysis showed that levels of total APP were unaffected by LiCl treatment when 

compared to controls (Figure 4.7). However, treatment with LiCl resulted in a significant 

reduction in phosphorylation of APP at thr 668 when compared to control-treated 3xTg-

AD slice cultures (Figure 4.7, p<0.05). These data provide further evidence that LiCl 

treatment of 3xTg-AD slices inhibits GSK-3 activity to lower tau and APP 

phosphorylation. 
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Figure 4.7 LiCl reduces phosphorylation of APP at thr 668 in 3xTg-AD organotypic brain 
slice cultures.  
(A) Representative western blots of lysates from LiCl- and control (NaCl, 20mM)-treated 
3xTg-AD slice cultures probed with antibodies against total (phosphorylated and non-
phosphorylated) APP and APP phosphorylated at thr 668 (both 90-120 kDa). An antibody 
against β-actin (42 kDa) was used as a loading control. (B) Bar charts show amounts of 
total APP following normalisation to actin, and APP phosphorylated at thr 668 following 
normalisation to total APP levels in each sample. Data is shown as fold change from 
control (NaCl). Data is mean ± SEM, (n=9 wells from three independent experiments, 
*p<0.05). 
 

4.4.8 LiCl treatment does not affect astrocyte activation in 3xTg-AD cultures 

The role of inflammation and astrocytic activation in AD are the subject of much current 

research in the field (Phillips et al., 2014). Of relevance to this work are findings showing 

that GSK-3β regulates activity of the inflammatory transcription factor NF-κB, an 

interaction important for astrocyte survival (Sanchez et al., 2003). To determine if LiCl 

treatment of 3xTg-AD slice cultures affects levels of astrocyte activation, immunoblots 

were probed with an antibody against GFAP, a key marker of activated astrocytes. LiCl 

treatment was found not to alter levels of GFAP in 3xTg-AD cultures (Figure 4.8), 

indicating that LiCl does not alter astrocyte activation, at least in this model. 
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Figure 4.8: LiCl does not alter GFAP levels in 3xTg-AD slice cultures 
Representative western blots of lysates from LiCl- and control (NaCl)- treated 3xTg-AD 
slice cultures probed with antibodies against GFAP (50 kDa). An antibody against β-actin 
(42 kDa) was used as a loading control. (B) Bar chart shows amounts of total GFAP 
following normalisation to β-actin amounts in the same sample. Data is shown as fold 
change from control (NaCl). Data is mean ± SEM, (n=9 wells from three independent 
experiments). 
 

4.4.9 NAPVSIPQ is not toxic to primary cortical neurons. 

NAPVSIPQ has previously been shown to be neuroprotective at low concentrations in 

vitro (Habib et al., 2010), and in 3xTg-AD mice in vivo (Matsuoka et al., 2007). Prior to 

treating 3xTg-AD slice cultures with NAPVSIPQ, the potential toxicity, effects on tau, and 

microtubule-stabilising properties of a range of concentrations of the octapeptide were 

explored. 

 

7 div primary cortical neurons were treated for 24 hours with 1 x 10-15, 10-13, 10-11, 10-9 

and 10-7 M NAPVSIPQ to first identify a suitable non-toxic, but effective dose. No toxicity 
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was observed with any of the above concentrations of NAPVSIPQ when compared to 

vehicle-treated control cultures (Figure 4.9). 

 

Immunolabelling of fixed cultures identified basal levels of cell death as largely neuronal, 

as there was no colocalisation between the dead cell dye and astrocytes. Furthermore, 

there were no increases in GFAP immunofluorescence indicating that NAPVSIPQ 

application did not activate astrocytes in these cultures (Figure 4.9). 
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Figure 4.9: NAPVSIPQ is not toxic in primary cortical cultures. 
(A) Bar chart shows levels of cell death, measured by incorporation of dead cell dye, 
following treatment of 7 div primary cortical cultures with 1 x 10-15 – 1 x 10-7M 
NAPVSIPQ treatment or control (H2O, 0M). Data is shown as fold change from control. 
Data is mean ± SEM, (n=9 wells from three independent experiments). (B) 
Representative images from these analyses showing incorporation of the dead cell dye 
(red), astrocytes immunolabelled using an antibody against GFAP (green) and Hoechst 
33342 staining of cell nuclei (blue). Scale bar: 75 μm. 
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4.4.10 NAPVSIPQ reduces tau phosphorylation at specific sites without affecting total 

tau levels in primary cortical neurons 

NAPVSIPQ has previously been shown to reduce tau phosphorylation in vitro and in vivo 

(Gozes and Divinski, 2004, Matsuoka et al., 2007, Matsuoka et al., 2008, Shiryaev et al., 

2009). The effects of 24 hour treatments of 7 div primary cortical neurons with 

NAPVSIPQ on tau were therefore assessed by immunoblotting with a panel of antibodies 

specific to sites of tau phosphorylation identified in these previously published studies. 

Levels of total (phosphorylated and non-phosphorylated) tau in each sample were 

normalised to β-actin, and these analyses showed no effect of any concentration of 

NAPVSIPQ on amounts of total tau relative to control (H2O)-treated cultures (Figure 

4.10). Levels of phosphorylated tau were quantified as a proportion of total tau. 

Treatment for 24 hours with 10-13, 10-11 , 10-9 and 10-7 M NAPVSIPQ significantly reduced 

levels of tau phosphorylation at thr 231 (Figure 4.10, p<0.05), a putative GSK-3, cdk5 and 

PKA phosphorylation site. Tau phosphorylated at ser 202 was unaffected by any dose of 

NAPVSIPQ when compared to vehicle-treated controls (Figure 4.10). 
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Figure 4.10: NAPVSIPQ reduces tau phosphorylation at thr 231 without affecting total 
tau amounts in primary cortical neurons 
(A) Representative western blots of lysates from NAPVSIPQ-treated and control (H2O, 
0M)-treated primary cortical cultures probed with antibodies against total 
(phosphorylated and non-phosphorylated) tau, tau phosphorylated at ser 202 and tau 
phosphorylated at thr 231 (all at ~50-55 kDa). An antibody against β-actin (42 kDa) was 
used as a loading control. Bar charts show (B) amounts of total tau following 
normalisation to actin amounts in each sample, and (C) amounts of tau phosphorylated 
at ser 202 and tau phosphorylated at thr 231 following normalisation to total tau levels 
in each sample. Data are shown as fold change from control. Data is mean ± SEM, (n=9 
wells from three independent experiments, *p<0.05, **p<0.01, ***p<0.001). 
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4.4.11 NAPVSIPQ does not affect binding of tau to microtubules nor does it rescue 

nocodazole-induced microtubule destabilisation in primary cortical neurons 

NAPVSIPQ is reported to interact with microtubules, and this is commonly reported to 

be related to its neuroprotective effects (Shiryaev et al., 2009). In addition, 

phosphorylation of tau at thr 231 is known to affect the binding of tau to microtubules 

and affect microtubule stability (Sengupta et al., 1998). Therefore, a microtubule binding 

assay was carried out to assess whether a 24 hour treatment with NAPVSIPQ alters the 

binding of tau to microtubules. The assay uses differential centrifugation to pellet bound 

microtubules and any associated proteins such as tau, and these can be detected by 

immunoblotting. Lysates from primary cortical neurons treated with different doses of 

NAPVSIPQ were processed through this assay and the microtubule-unbound and bound 

fractions were immunoblotted with an antibody against total tau. Treatment of primary 

cortical neurons with 10-15, 10-11, 10-7 M NAPVSIPQ did not alter the proportion of 

microtubule-bound tau when compared to vehicle-treated controls (Figure 4.11). 

 

In addition, to determine if NAPVSIPQ can protect neurons from chemically-induced 

microtubule destabilisation, primary cortical neurons were treated with control or 10-7 

M NAPVSIPQ for 21 hours, followed by a 3 hour treatment with the microtubule 

destabilising agent nocodazole (5 mg/ mL). Nocodazole destabilises microtubules by 

blocking the self-assembly of tubulin (Samson et al., 1979). As before, microtubule- 

unbound and -bound fractions were prepared and these were immunoblotted with an 

antibody against total tau. Treatment with nocodazole was found to significantly reduce 

the proportion of tau bound to microtubules (Figure 4.12, p<0.001), and pre-treatment 
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of cells with NAPVSIPQ did not prevent this destabilisation (Figure 4.12, p<0.05), when 

compared to vehicle-treated controls. As shown above, treatment with NAPVSIPQ alone 

did not alter the proportion of microtubule-bound tau when compared to vehicle-

treated controls (Figure 4.12). 

 

 

Figure 4.11: NAPVSIPQ treatment of primary cortical neurons does not increase the 
proportion of tau that is bound to microtubules. 
(A) Representative western blots of microtubule-bound and -unbound fractions 
prepared from primary cortical cultures treated with 10-15, 10-11, 10-7 M NAPVSIPQ or 
control (H20, 0M) immunoblotted with an antibody to total (phosphorylated and non-
phosphorylated) tau (50-55 kDa). (B) Bar chart shows amounts of microtubule-bound 
relative to unbound tau. Data are shown as fold change from control. Data is mean ± 
SEM, (n=6 wells from two independent experiments). 
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Figure 4.12: NAPVSIPQ treatment does not rescue nocodazole-induced tau dissociation 
from microtubules in primary cortical cultures. 
(A) Representative western blots of microtubule-bound and -unbound fractions 
prepared from primary cortical cultures treated for 3 hours with 5mg/mL nocodazole or 
control, +/- a 21 hour pre-treatment with 10-7 M NAPVSIPQ. Blots were probed with an 
antibody to total (phosphorylated and non-phosphorylated) tau (50-55 kDa). (B) Bar 
chart shows amounts of microtubule-bound relative to unbound tau. Data are shown as 
fold change from control. Data is mean ± SEM, (n=4 wells from four independent 
experiments, *p<0.05, ***p<0.001). 
 

4.4.12 NAPVSIPQ treatment does not affect viability of 3xTg-AD slice cultures 

NAPVSIPQ treatment of primary cortical neurons identified a 24 hour dose of 10-7 M as 

effective, but not toxic to cells in primary cortical cultures, therefore this concentration 

of NAPVSIPQ was chosen for investigations in 3xTg-AD slice cultures. An LDH assay was 

used to quantify any toxicity resulting from a 24 hour application of 10-7 M NAPVSIPQ to 
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28 div 3xTg-AD slice cultures. Release of LDH into the media was calculated as a 

proportion of the total LDH, as described before. 10-7 M NAPVSIPQ did not cause any 

significant change in the proportion of LDH in culture medium relative to vehicle-treated 

control cultures, indicating that this treatment is not toxic to 3xTg-AD slice cultures 

(Figure 4.13). 

 

Figure 4.13: NAPVSIPQ does not significantly affect the viability of 3xTg-AD 
organotypic brain slice cultures.  
LDH assays were used to determine the effects on cell viability of 1 x 10 -7 M NAPVSIPQ 
and control (vehicle) treatments in 28 div 3xTg-AD brain slices. Bar chart shows LDH 
content in medium as a proportion of total LDH (LDH in lysates plus that in culture 
medium) represented as fold change from control (vehicle). Data is mean ± SEM, (n=12 
wells from two independent experiments). 
 

4.4.13 NAPVSIPQ decreases tau phosphorylation at thr 231 without affecting total tau 

levels in 3xTg-AD slice cultures 

NAPVSIPQ has previously been shown to reduce tau phosphorylation in 3xTg-AD mice in 

vivo (Matsuoka et al., 2007). Therefore, effects of a 24 hour treatment of 10-7 M 

NAPVSIPQ on tau were next explored in the 28 div 3xTg-AD slice cultures. Slice culture 

lysates were immunoblotted with antibodies to several tau phosphorylation sites, and 

the resulting signals were normalised to total tau levels in the same sample. Levels of 
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total (phosphorylated and non-phosphorylated) tau were unchanged by treatment with 

NAPVSIPQ following normalisation of tau signals to those of β-actin in the same sample 

(Figure 4.14). Phosphorylation of tau at thr 231, calculated as a proportion of total tau, 

was significantly reduced in 3xTg-AD slice cultures following treatment with 10-7 M 

NAPVSIPQ (Figure 4.14, p<0.05). Phosphorylation of tau at ser 202 and at ser 396/404 

was unaffected by 10-7 M NAPVSIPQ treatment (Figure 4.14). Similarly, 

dephosphorylation of tau at ser 199/202 and thr 205 was also unaffected in 3xTg-AD 

slice cultures after 10-7 M NAPVSIPQ treatment relative to control cultures (Figure 4.14). 

These findings substantiate those from primary cultures and indicate that NAPSVIPQ can 

significantly reduce tau phosphorylation at specific sites that are known to be aberrantly 

phosphorylated in AD (Hanger et al., 2009). 
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Figure 4.14: NAPVSIPQ reduces tau phosphorylation at thr 231 without affecting total 
tau amounts in 3xTg-AD slice cultures 
(A) Representative western blots of lysates from NAPVSIPQ-treated and control (H2O, 
0M)-treated 3xTg-AD slice cultures probed with antibodies against total (phosphorylated 
and non-phosphorylated) tau, tau phosphorylated at ser 202, thr 231, ser 396/404 and 
tau dephosphorylated at ser 199/202 and thr 205 (all at ~50-55 kDa). An antibody 
against β-actin (42 kDa) was used as a loading control. (B) Bar charts show amounts of 
total tau normalised to actin amounts in each sample and amounts of tau 
phosphorylated at thr 231, ser 202, ser 396/404 and tau dephosphorylated at ser 
199/202 and thr 205 following normalisation to total tau levels in each sample. Data are 
shown as fold change from control. Data is mean ± SEM, (n=12 wells from two 
independent experiments, *p<0.05). 
 



 
211 

 

4.4.14 NAPVSIPQ does not affect microtubule stabilisation in 3xTg-AD slice cultures 

Although NAPVSIPQ was shown above not to affect the microtubule binding of tau in 

primary cells, it was also important to check this in a disease model.  Therefore, 3xTg-AD 

slice cultures were pre-treated with control or 10-7 M NAPVSIPQ for 21 hours, followed 

by a 3 hour application of nocodazole treatment (5 mg/ mL), and microtubule-bound 

and unbound fractions prepared as described above. In 3xTg-AD slices, treatment with 

nocodazole was not found to reduce the proportion of tau bound to the microtubules 

relative to unbound tau, despite a marked reduction in the amount of tau in the 

microtubule-bound fraction being apparent on blots. Pre-treatment of nocodazole-

treated slices with NAPVSIPQ also did not affect the amounts of microtubule-bound tau 

when compared to vehicle-treated controls (Figure 4.15). As seen with primary cortical 

neurons, NAPVSIPQ treatment alone also did not increase amounts of tau bound to the 

microtubules when compared to vehicle-treated controls in 3xTg-AD slice cultures 

(Figure 4.15). The reason for the discrepancy in the effects on microtubule-binding of 

tau following nocodazole treatment in primary neurons and 3xTg-AD slices is not clear, 

but may reflect the higher phosphorylation status of tau in slice cultures leading to lower 

proportion of tau being microtubule-bound. Under these conditions, any effect of 

microtubule destabilisation may be difficult to detect. Nevertheless, when taken 

together these findings indicate that NAPVSIPQ reduces tau phosphorylation via a 

mechanism not related to the microtubule-binding capacity of tau. Any microtubule-

stabilising properties of NAPVSIPQ were also assessed by measuring amounts of 

acetylated α-tubulin in control and NAPVSIPQ-treated 3xTg-AD slice cultures. Acetylated 

α-tubulin has previously been demonstrated to be a marker of long-lived stable 
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microtubules (Hubbert et al., 2002, Fukushima et al., 2009), although this is somewhat 

contentious as others have shown that the acetylation of α-tubulin does not affect 

microtubule stability, and increased amounts of acetylated α-tubulin have actually been 

found in AD brain (Palazzo et al., 2003, Zhang et al., 2015a). Nonetheless, amounts of 

acetylated α-tubulin were measured in lysates from 24 hour NAPVSIPQ and control-

treated 3xTg-AD slice cultures by immunoblotting and standardised to total amounts of 

α-tubulin. Acetylated α-tubulin was significantly reduced with NAPVSIPQ treatment 

(Figure 4.16, p<0.01), again suggesting that NAPVSIPQ does not reduce tau 

phosphorylation by affecting microtubule stability. 
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Figure 4.15: NAPVSIPQ does not affect the proportion of tau that is microtubule-bound 
in 3xTg-AD slice cultures. 
(A) Representative western blots of microtubule-bound and -unbound fractions 
prepared from 3xTg-AD slice cultures treated for 3 hours with 5mg/mL nocodazole or 
control, +/- a 21 hour pre-treatment with 10-7 M NAPVSIPQ. Blots were probed with an 
antibody to total (phosphorylated and non-phosphorylated) tau (50-55 kDa). (B) Bar 
chart shows amounts of microtubule-bound relative to unbound tau. Data are shown as 
fold change from control. Data is mean ± SEM, (n=6 wells from two independent 
experiments). 
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Figure 4.16: NAPVSIPQ reduces amounts of acetylated α-tubulin in 3xTg-AD slice 
cultures. 
(A) Representative western blots of lysates from NAPVSIPQ-treated and control (H2O, 
0M)-treated 3xTg-AD slice cultures probed with antibodies against total α-tubulin and 
acetylated α-tubulin (both at ~50 kDa). (B) Bar chart shows amounts of acetylated α-
tubulin following normalisation to total α-tubulin levels in each sample. Data are shown 
as fold change from control. Data is mean ± SEM, (n=12 wells from two independent 
experiments, **p<0.01). 
 

4.4.15 BTA-EG4 is not toxic to primary cortical neurons 

The amyloid-binding drug, BTA-EG4 was identified as a compound of interest to treat 

3xTg-AD slice cultures  due to its neuroprotective effects against Aβ in vitro (Habib et al., 

2010) and in vivo in WT mice (Megill et al., 2013), as well as its ability to maintain 

synapse health and improve cognitive performance in 3xTg-AD mice (Song et al., 2014). 

The effects of this compound on tau and kinase activity are currently unknown. As with 

the studies described above, preliminary experiments were conducted in primary 

cortical cultures to determine an effective sub-toxic dose of BTA-EG4 for further 

investigation in 3xTg-AD slice cultures.  
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In the first instance, primary cortical neurons were cultured for 7 div and then treated 

with control (vehicle, DMSO), 20, 40 or 60 μM BTA-EG4 for 24 hours, and the effects on 

cell viability determined using a quantitative live/dead cell assay. No changes in cell 

viability were apparent following treatment of primary cortical neurons with any 

concentration of BTA-EG4 when compared to vehicle-treated control neurons (Figure 

4.17). Since potential effects of BTA-EG4 on synapse health became of interest for this 

work, 14 div primary cortical neurons, which have developed, functional synapses, were 

used for most BTA-EG4 studies; therefore the non-toxic effect of a 24 hour, 40 μM BTA-

EG4 treatment was confirmed in these older neurons using the same methods (Figure 

4.18).   

 

 
Figure 4.17: BTA-EG4 is not toxic to 7 div primary cortical neurons.  
Bar chart shows levels of cell death measured by incorporation of dead cell dye 
following treatment of 7 div primary cortical cultures with control (DMSO, 0µM), 20, 40 
or 60 μM BTA-EG4. Data is shown as fold change from control. Data is mean ± SEM, (n=9 
wells from three independent experiments). 
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Figure 4.18: 40 μM BTA-EG4 is not toxic to 14 div primary cortical neurons.  
Bar chart shows levels of cell death measured by incorporation of dead cell dye 
following treatment of primary cortical cultures with control (vehicle, 0µM) or 40 μM 
BTA-EG4. Data is shown as fold change from control. Data is mean ± SEM, (n=12 wells 
from two independent experiments). 
 

4.4.16 BTA-EG4 treatment does not affect levels of total APP in primary cortical 

neurons 

BTA-EG4 has previously been shown to bind amyloid in vitro (Habib et al., 2010) and also 

act in vivo in WT mice to alter APP processing (Megill et al., 2013). Treatment of WT 

mice with BTA-EG4 results in increased levels of sAPPα and reduces levels of sAPPβ, 

thereby likely precluding formation of Aβ. This is without altering total amounts of APP 

(Megill et al., 2013). Therefore, the effects of BTA-EG4 on amounts of total APP were 

determined in primary cortical cultures. Lysates from 24 hour control and BTA-EG4 

treated 14 div primary cortical neurons were immunoblotted with antibodies against 

total APP, and β-actin as a loading control. Treatment with BTA-EG4 did not affect levels 

of total APP in the BTA-EG4-treated neurons compared to vehicle-treated controls 

(Figure 4.19). Unfortunately, in the time of the project it was not possible to detect and 

examine amounts of sAPPα and sAPPβ in these cultures with the antibodies available. 

Additionally, it was not possible to measure any effects of BTA-EG4 on Aβ levels in the 
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medium of these cultures, since assays for detecting endogenous rat Aβ are not 

sufficiently sensitive. 

 

 

Figure 4.19: Treatment with BTA-EG4 does not affect levels of total APP in primary 
cortical neurons  
Representative western blots of lysates prepared from 14 div primary cortical neuron 
treated with BTA-EG4 and control (DMSO, 0µM) probed with an antibody against total 
APP (90-120 kDa). Blots were also probed with an antibody against β-actin (42 kDa) as a 
loading control. (B) Bar chart shows amounts of total APP following normalisation to β-
actin amounts in the same sample. Data are shown as fold change from control. Data is 
mean ± SEM, (n=9 wells from three independent experiments). 
 

4.4.17 BTA-EG4 decreases total tau amounts and tau phosphorylation in primary 

cortical neurons 

The effects of BTA-EG4 on cognition, synaptic enhancement and Aβ have previously been 

explored in vivo in 3xTg-AD mice (Song et al., 2014); however, the effect of BTA-EG4 on 

tau in vitro or in vivo has not been studied. Therefore, levels of total (phosphorylated 
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and non-phosphorylated) tau and phosphorylated tau were measured in lysates from 

primary cortical cultures treated for 24 hours with 40 μM BTA-EG4. A BTA-EG4 treatment 

significantly reduced total tau levels in 14 div primary cortical neurons (Figure 4.20, 

p<0.05). In addition, the amount of tau phosphorylated at ser 396/404 and also at ser 

202 relative to total tau was significantly reduced in primary cortical neurons by 40 μM 

BTA-EG4 when compared to vehicle-treated controls (Figure 4.20, both p<0.001). 

Furthermore, the amount of tau dephosphorylated at ser 199/202 and thr 205 was 

found to be significantly increased in BTA-EG4 treated primary cortical cultures when 

compared to vehicle-treated controls (Figure 4.20, both p<0.001). This novel data 

indicates that BTA-EG4 has the capacity to significantly reduce tau phosphorylation at 

several AD-relevant epitopes, at least in primary culture. 
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Figure 4.20: 40 μM BTA-EG4 significantly reduces total and phosphorylated tau 
amounts in primary cortical cultures.  
(A) Representative western blots of lysates from BTA-EG4-treated and control (vehicle, 
DMSO)-treated primary cortical cultures probed with antibodies against total 
(phosphorylated and non-phosphorylated) tau, tau phosphorylated at ser 202 and ser 
396/404 and tau dephosphorylated at ser 199/202 and thr 205 (all at ~50-55 kDa). An 
antibody against β-actin (42 kDa) was used as a loading control. (B) Bar charts show 
amounts of total tau normalised to actin amounts in each sample and amounts of tau 
phosphorylated at ser 396/404 and ser 202 and tau dephosphorylated at ser 199/202 
and thr 205 following normalisation to total tau levels in each sample. Data are shown as 
fold change from control. Data is mean ± SEM, (n=9 wells from three independent 
experiments, *p<0.05, **p<0.01, ***p<0.001). 
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4.4.18 BTA-EG4 increases GSK-3 activity in primary cortical neurons 

The mechanism by which BTA-EG4 affects tau phosphorylation has not previously been 

explored. BTA-EG4 was shown above to reduce tau phosphorylation at epitopes known 

to be substrates for the prominent tau kinases GSK-3 and cdk5 (Hanger et al., 2009); 

therefore the activity of these kinases was determined in lysates from treated cells by 

western blotting. As described above, GSK-3 activity was investigated by 

immunoblotting with antibodies against total GSK-3α/β and GSK-3α/β phosphorylated at 

ser 21/9.  Total amounts of GSK-3 were unaffected by treatment with BTA-EG4 in 

primary cortical neurons (Figure 4.21). However, when amounts of GSK-3 

phosphorylated at ser 21/9 were quantified as a proportion of total GSK-3, a small but 

significant decrease was observed following BTA-EG4 treatment, suggesting that 

increased activation of GSK-3 results from treatment of primary neurons with this 

compound (Figure 4.21, p<0.001).  
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Figure 4.21: BTA-EG4 increases activation of GSK-3 in 14 div primary cortical neurons.  
(A) Representative western blots of lysates from BTA-EG4-treated and control (vehicle, 
DMSO)-treated primary cortical cultures probed with antibodies against total 
(phosphorylated and non-phosphorylated) GSK-3α/β and GSK-3 α/β phosphorylated at 
ser 21/9 (both at 47 and 52 kDa). An antibody against β-actin (42 kDa) was used as a 
loading control. (B) Bar charts show amounts of total GSK-3 normalised to actin amounts 
in each sample and amounts of phosphorylated GSK-3 at ser 21/9 following 
normalisation to total GSK-3 levels in each sample. Data are shown as fold change from 
control. Data is mean ± SEM, (n=9 wells from three independent experiments, 
***p<0.001). 
 

4.4.19 BTA-EG4 inactivates cdk5 to reduce tau phosphorylation in primary cortical 

neurons 

The results presented above show that BTA-EG4 is able to reduce levels of 

phosphorylated tau at several AD-relevant sites in primary cortical neurons (section 

4.4.16), despite increasing GSK-3 activity (section 4.4.18). Cdk5 is another major tau 

kinase which is shown to  phosphorylate tau at many of the same sites as GSK-3 (Tsai et 

al., 2004). Moreover, inhibition of cdk5 has previously been shown to result in increased 
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GSK-3 activity (Engmann and Giese, 2009). Therefore, lysates from BTA-EG4 treated 

primary cortical cultures were immunoblotted with antibodies against cdk5 and its 

neuronal activators, p35 and p25, as described previously (section 3.4.17). Total levels of 

cdk5 were found to be unaffected by treatment with BTA-EG4 (Figure 4.22). In contrast, 

amounts of p35, but not p25, were significantly decreased in primary cortical neurons 

following BTA-EG4 treatment relative to control cultures (Figure 4.22, p<0.001), 

indicating reduced cdk5 activity in these cultures. This finding may explain the observed 

decrease in tau phosphorylation observed in the presence of increased GSK-3 activity in 

these studies.  
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Figure 4.22: BTA-EG4 reduces p35/cdk5 in 14 div primary cortical neurons  
(A) Representative western blots of lysates from BTA-EG4- and control-treated primary 
cortical cultures probed with antibodies against cdk5 (33 kDa), p35 (35 kDa) and p25 (25 
kDa). An antibody against β-actin (42 kDa) was used as a loading control. Bar charts 
show (B) amounts of total cdk5 following normalisation to β-actin amounts in each 
sample, and (C) amounts of p35 and p25 following normalisation to total cdk5 in each 
sample. Data are shown as fold change from control. Data is mean ± SEM, (n=9 wells 
from three independent experiments, ***p<0.001). 
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4.4.20 BTA-EG4 reduces levels of pre- and post-synaptic markers in primary cortical 

neurons 

BTA-EG4 has previously been shown to increase synaptic density and levels of synaptic 

markers in vivo in both WT and 3xTg-AD mice (Megill et al., 2013, Song et al., 2014). To 

corroborate this, synaptosome fractions enriched in synaptic proteins were prepared 

from 24 hour BTA-EG4-treated and control-treated 14 div primary cortical neurons, and 

levels of synaptophysin and PSD-95 were quantified as described above. Surprisingly, 

treatment of primary cortical cultures with BTA-EG4 caused a significant reduction in 

amounts of both PSD-95 and synaptophysin relative to β-actin in synaptosomal fractions 

when compared to vehicle-treated controls (Figure 4.23, p<0.01, p<0.05, respectively). 

This finding suggests that despite reducing tau phosphorylation, BTA-EG4 may be 

synaptotoxic in primary cultured cells. 

 

Figure 4.23: Treatment of primary cortical neurons with BTA-EG4 significantly reduces 
levels of the pre- and post-synaptic markers, synaptophysin and PSD-95  
(A) Representative western blots of synaptosome fractions isolated from BTA-EG4 and 
control (DMSO) treated primary cortical neurons probed with antibodies against 
synaptophysin (38 kDa) and PSD-95 (95 kDa). Blots were also probed with an antibody 
against β-actin (42 kDa) as a loading control. (B) Bar charts show amounts of PSD-95 and 
synaptophysin, following normalisation to β-actin levels in each sample. Data are shown 



 
225 

 

as fold change from control. Data is mean ± SEM, (n=6 wells from two independent 
experiments, *p<0.05, **p<0.01). 
 

4.4.21 BTA-EG4 reduces levels of total APP and tau in synaptosomes from primary 

cortical neurons 

As BTA-EG4 has previously been shown to have actions at the synapse in vivo (Megill et 

al., 2013, Song et al., 2014), it was important to determine if levels of APP and/or tau 

may be altered at the synapse following BTA-EG4 treatment, since both tau and APP may 

hold physiological and pathological roles at the synapse (Spires-Jones and Hyman, 2014). 

Therefore, synaptosome fractions were immunoblotted with antibodies against total 

(phosphorylated and non-phosphorylated) tau, APP and β-actin. Treatment with BTA-

EG4 was found to cause a significant reduction in the amounts of both tau and APP in 

synaptosomes relative to vehicle-treated controls, when the amounts of these proteins 

was normalised to β-actin (Figure 4.24, p<0.01, p<0.05, respectively). This finding 

suggests relocalisation of tau and APP following BTA-EG4 treatment - events that might 

be related to the apparent synaptotoxicity observed here upon BTA-EG4 treatment. 
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Figure 4.24: Treatment of primary cortical neurons with BTA-EG4 significantly reduces 
levels of total tau and APP in synaptosome preparations  
(A) Representative western blots of synaptosome fractions isolated from BTA-EG4-and 
control (DMSO)-treated primary cortical neurons probed with antibodies against APP 
(90-120 kDa) and tau (50-55 kDa). Blots were also probed with an antibody against β-
actin (42 kDa) as a loading control. (B) Bar charts show amounts of total tau and total 
APP following normalisation to β-actin amounts in each sample. Data are shown as fold 
change from control. Data is mean ± SEM, (n=6 wells from two independent 
experiments, *p<0.05, **p<0.01). 
 

4.4.22 BTA-EG4 does not affect viability of 3xTg-AD slice cultures 

Based on the findings described above, the effect of 40 and 60 μM BTA-EG4 was further 

investigated in 28 div organotypic brain slice cultures from 3xTg-AD mice. An LDH assay 

was used to first quantify any toxicity resulting from BTA-EG4 treatments of 3xTg-AD 

slice cultures. Release of LDH into the media was calculated as a proportion of the total 

LDH in the slice culture lysates and media. Treatment with 40 μM and 60 μM BTA-EG4 

over 48 hours did not significantly affect the amount of LDH in culture medium, 

indicating no change in slice viability when compared to vehicle-treated control cultures 

(Figure 4.25). 
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Figure 4.25: Treatment of 3xTg-AD organotypic brain slice cultures with BTA-EG4 does 
not affect slice culture viability.  
Bar chart shows levels of cell death measured by incorporation of dead cell dye 
following treatment of 3xTg-AD slice cultures with control (vehicle, 0µM), 40 μM or 
60µM BTA-EG4. Data is shown as fold change from control. Data is mean ± SEM, (n=12 
wells from two independent experiments). 
 

4.4.23 BTA-EG4 treatment does not affect levels of total APP in 3xTg-AD slice cultures 

It was next important to determine if BTA-EG4 treatment of 3xTg-AD slice cultures 

affected levels of total APP since this model shows altered APP processing and increased 

Aβ production. Lysates from 3xTg-AD slice cultures treated for 48 hours with control 

(DMSO), 40 or 60 μM BTA-EG4 were therefore immunoblotted for total APP and β-actin. 

Treatment with 40 and 60 μM BTA-EG4 did not affect levels of total APP, quantified 

relative to β-actin amounts in the same sample, when compared to vehicle-treated 

controls (Figure 4.26). Unfortunately, as before, in the time of the project it was not 

possible to detect and examine amounts of sAPPα and sAPPβ in these cultures with the 

antibodies available. 
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Figure 4.26: BTA-EG4 treatment does not affect levels of total APP in 3xTg-AD slice 
cultures. 
(A) Representative western blots of lysates prepared from 3xTg-AD slice cultures treated 
with BTA-EG4 and control (DMSO, 0 µM) probed with an antibody against total APP (90-
120 kDa). Blots were also probed with an antibody against β-actin (42 kDa) as a loading 
control. (B) Bar chart shows amounts of total APP following normalisation to β-actin 
amounts in the same sample. Data are shown as fold change from control. Data is mean 
± SEM, (n=12 wells from two independent experiments). 
 

4.4.24 BTA-EG4 does not reduce Aβ amounts in 3xTg-AD slice cultures 

Treatment with BTA-EG4 increases amounts of sAPPα and reduces levels of sAPPβ in WT 

mice, suggesting an ability of BTA-EG4 to alter APP processing, whilst also reducing Aβ-40 

amounts in vivo (Megill et al., 2013). BTA-EG4 also protects against Aβ and prevents the 

interaction of amyloid fibrils with amyloid binding proteins in vitro (Inbar et al., 2006, 

Habib et al., 2010). Results from chapter 3 demonstrated that 3xTg-AD slice cultures 

produce increased amounts of Aβ-42 and Aβ-42/40 compared to WT slice cultures. 

Therefore the effects of BTA-EG4 on Aβ production in 3xTg-AD mice cultured for 28 div 

and treated for 48 hours with control, 40 or 60 μM BTA-EG4 was determined using 
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commercial ELISA kits specific for human Aβ-40 and Aβ-42. BTA-EG4 treatment had no 

effect compared to control on amounts of Aβ-42, Aβ-40 or the Aβ-42/40 ratio in 3xTg-AD 

brain slice cultures (Figure 4.27), suggesting a lack of amyloid-binding capacity of this 

compound in the slice culture model.  

 

Figure 4.27: Levels of Aβ are unchanged in 3xTg-AD slice cultures following BTA-EG4 

treatment 
Amounts of Aβ-40 and Aβ-42 were measured in lysates prepared from 28 div 3xTg-AD 
slice cultures treated for 48 hours with control (DMSO), 40 or 60 μM BTA-EG4 by specific 
Aβ-40 and Aβ-42 ELISAs. Lysates contained equivalent amounts of total protein. Bar 
charts show amounts of (A) Aβ-42 and (B) Aβ-40. Data are shown in pg/mL. (C) Bar chart 
shows ratio of Aβ-42 relative to Aβ-40. Data are shown as fold control. Data is mean ± 
SEM, (n=4 wells from two independent experiments). 
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4.4.25 BTA-EG4 decreases phosphorylation of tau at ser 202 in 3xTg-AD slice cultures 

It was then investigated whether or not BTA-EG4 can alter tau phosphorylation in 28 div 

3xTg-AD slice cultures treated with vehicle, 40 μM or 60 μM BTA-EG4 for 48 hours. Slice 

culture lysates were immunoblotted with tau antibodies and quantified as described 

above (section 4.4.17). A 48 hour treatment with 40 and 60 μM BTA-EG4 did not affect 

levels of total tau, tau dephosphorylated at ser 199/202, or tau phosphorylated at ser 

396/404 in 3xTg-AD slices relative to controls (Figure 4.28). In contrast, the amounts of 

tau phosphorylated at ser 202 were significantly reduced by 60 μM BTA-EG4 treatment 

of 3xTg-AD slice cultures compared to vehicle-treated controls (Figure 4.28, p<0.05). This 

significant reduction in tau phosphorylated at ser 202 in 3xTg-AD slice cultures with 60 

μM BTA-EG4 treatment is also seen following immunolabelling of fixed slices with the 

antibody against tau phosphorylated at ser 202 (Figure 4.29). It is also apparent from 

immunolabelling that tau is redistributed from cell soma into axons upon BTA-EG4 

treatment (Figure 4.29).  
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Figure 4.28: BTA-EG4 decreases phosphorylation of tau at ser 202 in 3xTg-AD slice 
cultures. 
(A) Representative western blots of lysates from BTA-EG4-treated and control (vehicle, 
DMSO)-treated 3xTg-AD slice cultures probed with antibodies against total 
(phosphorylated and non-phosphorylated) tau, tau phosphorylated at ser 202 and ser 
396/404 and tau dephosphorylated at ser 199/202 and thr 205 (all at ~50-55 kDa). An 
antibody against β-actin (42 kDa) was used as a loading control. (B) Bar charts show 
amounts of total tau normalised to actin amounts in each sample and amounts of tau 
dephosphorylated at ser 199/202 and thr 205, tau phosphorylated at ser 396/404 and at 
ser 202 following normalisation to total tau levels in each sample. Data are shown as 
fold change from control. Data is mean ± SEM, (n=12 wells from two independent 
experiments, *p<0.05). 
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Figure 4.29: BTA-EG4 reduces tau phosphorylation at ser 202 in 3xTg-AD slice cultures 
Representative images from fixed 3xTg-AD organotypic brain slice cultures cultured for 
28 div and treated with control (DMSO) or 60 μM BTA-EG4, immunolabelled with 
antibodies against total tau (green) and tau phosphorylated at ser 202 (red). Scale bar is 
20 μm.  
 
 
4.4.26 BTA-EG4 significantly reduces GSK-3 activity in 3xTg-AD slice cultures 

Treatment of primary cortical neurons with BTA-EG4 significantly increased GSK-3 activity 

but decreased cdk5 activation by p35 resulting in significant reductions in tau 

phosphorylation at several AD relevant sites. The activity of GSK-3 and cdk5 was 

therefore determined in 28 div 3xTg-AD slice cultures BTA-EG4 since significant 

reductions in tau phosphorylated at ser 202 were observed in this model upon BTA-EG4 
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treatment. Immunoblotting with antibodies against total GSK-3 and phosphorylated ser 

21/9 GSK-3 showed that total  amounts of GSK-3 were unaffected by treatment with 

BTA-EG4 (Figure 4.30), however,  phosphorylation of GSK-3 at ser 21/9 was significantly 

increased following 60 μM BTA-EG4 treatment relative to controls (Figure 4.30, p<0.05), 

suggesting decreased activation of GSK-3.  

 

 

Figure 4.30: BTA-EG4 significantly decreases inhibitory phosphorylation of GSK-3 in 
3xTg-AD slice cultures  
(A) Representative western blots of lysates from BTA-EG4-treated and control (vehicle, 
DMSO)-treated 3xTg-AD slice cultures probed with antibodies against total 
(phosphorylated and non-phosphorylated) GSK-3α/β and GSK-3α/β phosphorylated at 
ser 21/9 (both at 47 and 52 kDa). An antibody against β-actin (42 kDa) was used as a 
loading control. (B) Bar charts show amounts of total GSK-3 normalised to actin amounts 
in each sample and amounts of phosphorylated GSK-3 at ser 21/9 following 
normalisation to total GSK-3 levels in each sample. Data are shown as fold change from 
control. Data is mean ± SEM, (n=12 wells from two independent experiments, *p<0.05). 
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4.4.27 BTA-EG4 does not affect cdk5 activity in 3xTg-AD slice cultures 

Treatment of primary cortical neurons with BTA-EG4 decreased cdk5 activity (section 

4.4.19). Levels of cdk5, p35 and p25 were detected in lysates from 3xTg-AD slice cultures 

treated for 48 hours with control, 40 or 60 μM BTA-EG4 by immunoblotting. Levels of 

total cdk5 were standardised to actin and amounts of p35 and p25 were normalised to 

total amounts of cdk5. Total levels of cdk5, and its activators p35 and p25 were 

unaffected by treatment with BTA-EG4 (Figure 4.31) suggesting that inhibition of cdk5 

activity does not mediate the reduction in tau phosphorylation at ser 202 detected 

following BTA-EG4 treatment of 3xTg-AD slice cultures. The reason for the discrepancy in 

the effect of BTA-EG4 on cdk5 and GSK-3 activities in primary cortical cultures and 3xTg-

AD brain slice cultures is not clear; however, this might be related to alterations in 

interactions between cdk5 and GSK-3 during the progression of AD in various model 

systems (Engmann and Giese, 2009). 
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Figure 4.31: BTA-EG4 does not affect cdk5 activity in 3xTg-AD slice cultures 
(A) Representative western blots of lysates from BTA-EG4- and control-treated 3xTg-AD 
slice cultures probed with antibodies against cdk5 (33 kDa), p35 (35 kDa) and p25 (25 
kDa). An antibody against β-actin (42 kDa) was used as a loading control. (B) Bar charts 
show amounts of total cdk5 following normalisation to β-actin amounts in each sample, 
and amounts of p35 and p25 following normalisation to total cdk5 in each sample. Data 
are shown as fold change from control. Data is mean ± SEM, (n=12 wells from two 
independent experiments). 
 
 

4.4.28 BTA-EG4 does not affect levels of pre- and post- synaptic markers in 3xTg-AD 

slice cultures 

To begin to determine the effect of BTA-EG4 treatment on synapse health in the 3xTg-AD 

slice culture model, synaptosome fractions were isolated from 28 div 3xTg-AD slice 

cultures after treatment for 48 hours with control, 40 or 60 μM BTA-EG4. The 

synaptosomal fraction was immunoblotted for synaptophysin, PSD-95 and actin. 

Treatment with BTA-EG4 did not significantly affect amounts of PSD-95 nor 

synaptophysin, relative to actin in the synaptosome fraction, when compared to vehicle-

treated controls (Figure 4.32). 
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Figure 4.32: Treatment of 3xTg-AD slice cultures with BTA-EG4 does not affect levels of 
the pre- and post-synaptic markers, synaptophysin and PSD-95  
(A) Representative western blots of synaptosome fractions isolated from BTA-EG4 and 
control (DMSO) treated 3xTg-AD slice cultures probed with antibodies against 
synaptophysin (38 kDa) and PSD-95 (95 kDa). Blots were also probed with an antibody 
against β-actin (42 kDa) as a loading control. (B) Bar charts show amounts of PSD-95 and 
synaptophysin, following normalisation to β-actin levels in each sample. Data are shown 
as fold change from control. Data is mean ± SEM, (n=9 wells from three independent 
experiments). 
 
 

4.4.29 BTA-EG4 does not affect levels of APP or tau at the synapse in 3xTg-AD slice 

cultures 

Increased synaptic tau has been reported here in young 3xTg-AD mice and 14 div 3xTg-

AD slice cultures (chapter 3), therefore the effect of BTA-EG4 treatment on the presence 

of these proteins in 3xTg-AD slices was investigated in the synaptosomal fractions by 

immunoblotting. Treatment of 3xTg-AD slice cultures with BTA-EG4 did not affect 

amounts of tau nor APP in the enriched synaptosomal pellets compared to vehicle-
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treated controls (Figure 4.33). Taken together, these results indicate that BTA-EG4 

causes reduction in tau phosphorylation at specific sites in 3xTg-AD brain slice cultures 

that are not related to changes in Aβ production or tau localisation in synapses. 

 

Figure 4.33: Treatment of 3xTg-AD slice cultures with BTA-EG4 does not affect amounts 
of  tau and APP in synaptosomes  
(A) Representative western blots of synaptosome fractions isolated from BTA-EG4-and 
control (DMSO)-treated 3xTg-AD slice cultures probed with antibodies against APP (90-
120 kDa) and tau (50-55 kDa). Blots were also probed with an antibody against β-actin 
(42 kDa) as a loading control. (B) Bar charts show amounts of total tau and total APP 
following normalisation to β-actin amounts in each sample. Data are shown as fold 
change from control. Data is mean ± SEM, (n=9 wells from three independent 
experiments). 
 

4.5 Summary 

The work presented in this chapter aimed to provide information regarding the potential 

of 3xTg-AD slice cultures as an alternative to in vivo testing for some studies 

investigating potential AD therapeutics. The main findings were that: 
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 3xTg-AD slice cultures treated with LiCl show reduced tau phosphorylation at 

sites also shown to be affected by LiCl treatment in vivo (Caccamo et al., 2007). 

APP phosphorylation at thr 668 was also shown to be reduced by LiCl treatment 

in these cultures. However, it was not possible to demonstrate GSK-3 inhibition, 

and therefore these effects may have been mediated by a GSK-3-independent 

mechanism.  

 

 3xTg-AD slice cultures treated with the octapeptide NAPVSIPQ show reduced 

phosphorylation of tau at thr 231, in agreement with previous 3xTg-AD in vivo 

studies (Matsuoka et al., 2007, Matsuoka et al., 2008) through an, as yet, 

unidentified mechanism. The effect on tau was not related to NAPVSIPQ 

promoting microtubule stabilisation. 

 

 3xTg-AD slice cultures treated with the amyloid-binding agent BTA-EG4, show no 

change in APP or Aβ amounts, but did reveal novel inhibitory effects of this 

compound on tau phosphorylation at ser 202 and GSK-3 activity.  

 

4.6 Discussion 

4.6.1 LiCl reduces tau phosphorylation and APP phosphorylation in 3xTg-AD slice 

cultures but not through phosphorylation of ser 21/9 GSK-3 

Initial experiments in primary cortical neurons established a disease-relevant, non-toxic 

dose of LiCl to take into 3xTg-AD slice cultures (20mM) in an attempt to mimic previous 

in vivo findings that LiCl treatment reduces disease-associated tau phosphorylation.  
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In vivo treatment of 3xTg-AD mice with LiCl has previously been reported to reduce GSK-

3 activity and tau phosphorylation at several sites; thr 181, ser 202/thr 205, thr 231, and 

thr 212/ser 214. However, treatment of this cohort of 3xTg-AD mice with LiCl did not 

affect phosphorylation of tau at ser 396/404, levels of soluble and insoluble Aβ-40 and 

Aβ-42, levels of Aβ-positive plaques, nor did it affect working memory (Caccamo et al., 

2007). In 3xTg-AD slice cultures, a 4 hour treatment with 20mM LiCl significantly reduced 

total tau amounts, tau phosphorylation at ser 396/404 and ser 199/202 and thr205, and 

reduced the phosphorylation of APP at thr 668. It was not possible to conclude that 

these effects were mediated by inactivation of GSK-3, as indicated by increased GSK-3 

ser 21/9 phosphorylation, since phosphorylation at these inhibitory phosphorylation 

sites was actually significantly decreased by LiCl application to 3xTg-AD slice cultures. 

 

Thus, treatment of 3xTg-AD slice cultures with LiCl only recapitulated some of the in vivo 

findings. Reduced tau phosphorylation at ser 202/thr205 was observed in both models, 

however in the slice culture model, reduction in total tau levels and reduced 

phosphorylation of tau at ser 396/404 was also observed, in contrast to findings in vivo 

(Caccamo et al., 2007). Lithium has previously been demonstrated to decrease tau 

protein levels and levels of tau phosphorylation in primary neuronal cultures 

independently of proteolytic processes including calpains, caspases and proteasome or 

neuronal loss but through reduced GSK-3 activity (Rametti et al., 2008, Martin et al., 

2009). This reduction in total tau amounts observed in slice cultures was not through 

inhibition of GSK-3 at pser21/9 but could well be through tau undergoing autophagy as a 

result of lithium treatment (Motoi et al., 2014). It is plausible that phosphorylated or 
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aggregated tau species undergo autophagy and this could be why both a reduction in 

total tau and phosphorylated tau amounts are observed in slice cultures (Krüger et al., 

2012). As phosphorylated tau amounts are standardised to total tau amounts in the 

analysis, lithium treatment reduces both phosphorylated tau and total tau in 3xTg-AD 

slice cultures. In vivo, reduced phosphorylation of tau in 3xTg-AD mice was attributed to 

reduced GSK-3 activity through increased phosphorylation of ser 21/9 GSK-3 (Caccamo 

et al., 2007), but no change in the inhibitory phosphorylation of GSK-3 was observed 

here. The tau sites investigated in these studies are all targets of GSK-3 (Sperbera et al., 

1995, Lovestone et al., 1996), but can also be phosphorylated by other kinases such as 

cdk5 (Kimura et al., 2014). It is also well established that GSK-3 activity can be regulated 

by cdk5 activity and vice versa, and that this relationship can change during the 

progression of neurodegenerative tauopathies (Engmann and Giese, 2009). It is possible 

that the complex relationship between GSK-3 and cdk5 may thus have precluded 

detection of reduced GSK-3 activity upon LiCl treatment in 3xTg-AD slices. Alternatively,  

LiCl can also inhibit GSK-3 activity by competing with magnesium ions (Ryves and 

Harwood, 2001), and GSK-3 activity can be regulated by phosphorylation at other ser/thr 

and tyr sites (Wang et al., 1994). These mechanisms were not investigated here and 

therefore, an effect of LiCl on GSK-3 cannot be discounted in these studies. Finally, it is 

well known that LiCl can affect the activity of other kinases, and it is possible that these 

actions might be responsible for the reductions in tau phosphorylation observed in 3xTg-

AD slice cultures (Lenox and Wang, 2003). 
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Levels of insoluble and soluble Aβ-40 and Aβ-42, and Aβ-positive plaques, were 

unaffected by LiCl treatment in vivo in 3xTg-AD mice (Caccamo et al., 2007). Due to 

restraints with time and resources Aβ was not specifically quantified in the 3xTg-AD slice 

cultures after treatment, however, LiCl treatment of 3xTg-AD slice cultures was found to 

significantly reduce levels of APP phosphorylation at thr 668. Reduced phosphorylation 

at this APP site increases its propensity to be processed via the non-amyloidogenic 

pathway, precluding the formation of Aβ-42 (Lee et al., 2003), therefore suggesting that 

LiCl treatment in slice cultures may have reduced levels of Aβ, should they have been 

quantified here. Whether LiCl treatment can affect APP processing and Aβ production in 

AD is unclear as some studies, both in vitro and in vivo, suggest an ability of lithium to 

reduce Aβ levels (Su et al., 2004), although this was not seen following LiCl treatment of 

3xTg-AD mice (Caccamo et al., 2007).  

 

4.6.2 NAPVSIPQ reduces tau phosphorylation in 3xTg-AD slice cultures, but does not 

affect microtubule stabilisation 

Initial experiments carried out in primary cortical neurons established several non-toxic 

doses of the octapeptide NAPVSIPQ. The non-toxic dose of 1 x 10-7 M NAPVSIPQ, which 

was found to significantly reduce tau phosphorylation in cultured cells, was selected for 

treatments in 3xTg-AD slice cultures. 

 

NAPVSIPQ was previously reported to lower levels of Aβ-40 and Aβ-42, reduced tau 

phosphorylation and improved memory impairments in 9 to 12 month old 3xTg-AD mice 

(Matsuoka et al., 2007). In 12 to 18 month old mice, reduced tau phosphorylation and 
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cognitive improvements were again observed, but at this age no effects on Aβ-40 and 

Aβ-42 were detected (Matsuoka et al., 2008).  In vitro treatment of 3xTg-AD slice 

cultures with NAPVSIPQ replicated some of these in vivo findings.  

 

In 3xTg-AD slice cultures, NAPVSIPQ reduced tau phosphorylation at thr 231, in 

agreement with in vivo studies (Matsuoka et al., 2007, Matsuoka et al., 2008). However, 

phosphorylation of tau at ser199/202 and thr205 was unaffected by NAPVSIPQ 

treatment in 3xTg-AD slice cultures, despite phosphorylation at these sites being 

reduced by NAPVSIPQ treatment in vivo (Matsuoka et al., 2007, Matsuoka et al., 2008). 

This discrepancy could perhaps be attributed to levels of tau phosphorylation in the 

3xTg-AD slice cultures being higher than those observed in aged mice, and therefore 

possibly less amenable to treatment with NAPVSIPQ. Another important difference is 

that the slice cultures were only treated once with NAPVSIPQ, whereas the 3xTg-AD 

mice were dosed every day for 4 weeks (Matsuoka et al., 2007) or every day over 3 to 6 

months (Matsuoka et al., 2008). It is possible that chronic exposure to NAPVSIPQ is 

needed to reduce tau phosphorylation at sites other than thr 231.  

 

No mechanisms to explain reductions in tau phosphorylation and insoluble tau resulting 

from NAPVSIPQ treatment in mouse models of tauopathies have yet been described 

(Matsuoka et al., 2007, Matsuoka et al., 2008, Shiryaev et al., 2009). In vitro experiments 

show that NAPVSIPQ can increase the probability of microtubules becoming stabilised 

(Gozes and Divinski, 2004, Divinski et al., 2006). The microtubule binding assays 

conducted here and assessments of acetylated α-tubulin levels indicate that NAPVSIPQ 
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does not increase the amounts of tau bound to microtubules in primary cortical cultures 

or 3xTg-AD mice, and therefore it is unlikely that NAPVSIPQ is mediating its effects on 

tau through alterations in microtubule stability. Similarly, others have shown that 

NAPVSIPQ does not directly affect the polymerization or dynamics of purified tubulin or 

microtubules (Yenjerla et al., 2010).  

 

4.6.3 BTA-EG4 reduces GSK-3 activity and tau phosphorylation at ser 202 in 3xTg-AD 

slice cultures  

A non-toxic, concentration of up to 60 μM BTA-EG4 was identified in primary cortical 

neurons as causing significant reductions in tau phosphorylation, and this was further 

investigated in 3xTg-AD slice cultures. This neuroprotective, amyloid-binding compound 

(Inbar et al., 2006, Habib et al., 2010) had previously been reported to have  positive 

effects on memory and at the synapse in both WT and 3xTg-AD mice (Megill et al., 2013, 

Song et al., 2014). Until now, effects of BTA-EG4 on kinase activity and tau 

phosphorylation have not been reported. 

 

No effects of BTA-EG4 on total amounts of APP were observed in treated 3xTg-AD slice 

cultures, in agreement with previous findings in vivo in WT mice (Megill et al., 2013). In 

3xTg-AD slice cultures, no effects of BTA-EG4 on levels of Aβ-42, Aβ-40 or the Aβ-42/40 

ratio were detected. This is in contrast to in vivo studies in WT mice and 3xTg-AD mice, 

where BTA-EG4 was shown to significantly reduce levels of Aβ-40 (Megill et al., 2013, 

Song et al., 2014), however this effect was lost in older 3xTg-AD mice (Song et al., 2014). 

Taken together, these findings suggest that in the very early stages of AD development, 
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where only small over-production of Aβ is observed, BTA-EG4 can reduce Aβ levels, but 

that this protective effect is lost in later disease stages, at times when Aβ has 

accumulated. Extrapolating these findings might suggest that perhaps BTA-EG4 had no 

effect on Aβ in 28 div 3xTg-AD cultures since these already show significant over-

production of Aβ.   

 

In 3xTg-AD slice cultures, BTA-EG4 was shown for the first time to significantly reduce 

GSK-3 activity, and tau phosphorylation at ser 202, but not ser 396/404. Cdk5 activity 

was unaffected by BTA-EG4 treatment in 3xTg-AD slice cultures. Significant reductions in 

phosphorylation of tau at ser 199/202 and thr 205, ser 202 and ser 396/404 were 

observed following BTA-EG4 treatment of primary cortical neurons, although in this case 

cdk5, rather than GSK-3 activity, was found to be reduced. The discrepancy in kinase 

activities might be related to interactions between GSK-3 and cdk5, which differ 

depending on whether the system contains pathological tau (3xTg-AD slice cultures) or 

more physiological tau (WT primary cortical neurons), as discussed above. Taken 

together, these findings suggest that treatment with BTA-EG4 can reduce tau 

phosphorylation at several AD-relevant sites, but its effect is likely to be highly 

dependent on disease stage. Nevertheless, these findings support further investigations 

into the use of BTA-EG4 and similar compounds in the treatment of tauopathies. They 

also highlight the importance of the disease stage of models when determining the 

effectiveness of potential therapies.   
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4.6.4 Limitations of this work 

28 div slice cultures were used in this study. These show increased tau phosphorylation 

at several AD-relevant sites, an increased abundance of high molecular weight tau and 

increased Aβ-42. If time had permitted, it would have been interesting to determine the 

effects of treatments on slices cultured for shorter and longer times to further 

investigate the effects of disease stage on the effectiveness of each treatment.  

 

Additionally, to corroborate findings of (Megill et al., 2013) on the effects of BTA-EG4 on 

sAPPα and sAPPβ, several antibodies were used to try to detect these proteins, but 

unfortunately in the time of the project these were unable to be examined. 

 

4.6.5 Conclusions 

The findings presented in this chapter suggest that treatment of 3xTg-AD organotypic 

brain slice cultures with the AD-relevant therapies - LiCl and NAPVSIPQ - faithfully 

recapitulate the majority of findings obtained when these treatments were investigated 

in vivo in 3xTg-AD mice. Together, these results suggest that 3xTg-AD slice cultures are a 

suitable ex vivo alternative for some in vivo drug development and discovery projects. It 

is well established that lithium is an inhibitor of GSK-3; findings here suggest that lithium 

may also act to reduce tau phosphorylation by the inhibition of other kinases or the 

promotion of autophagy as previously reported (Lenox and Wang, 2003, Motoi et al., 

2014). Furthermore, experiments in 3xTg-AD slice cultures have demonstrated that 

NAPVSIPQ does not act to reduce tau phosphorylation via increasing microtubule 

stability, which is the only mode of action which has been suggested for NAPVSIPQ 
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previously (Quraishe et al., 2013). It is plausible to speculate that NAPVSIPQ may inhibit 

the major tau kinases - GSK-3 and cdk5 to reduce tau phosphorylation and this could 

easily be addressed in future experiments in 3xTg-AD slice cultures. Finally, treatment of 

3xTg-AD slice cultures with the amyloid-binding agent BTA-EG4 has allowed 

identification of novel actions on GSK-3 activity, as well as its previously identified 

effects on Ras activity and the prevention of amyloid interactions (Megill et al., 2013, 

Habib et al., 2010). Overall, 3xTg-AD slice cultures provide an excellent novel platform in 

which to test compounds on AD-like disease features and to investigate the mechanisms 

by which they act. In the next chapter 3xTg-AD slice cultures are used as a model in 

which to investigate additional disease mechanisms, namely mechanisms of tau release 

and propagation in AD. 
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Chapter 5 : Understanding mechanisms of physiological and 

pathological tau release using organotypic brain slice cultures 

 

5.1 Introduction 

Understanding the mechanisms of tau release and propagation in tauopathy brain is 

likely to be critical for developing new strategies to treat these diseases. Several studies 

have shown that pathological tau species can be seeded and transmitted in vivo from 

brain region to region and from cell to cell through anatomical connections in a 

spatiotemporal manner (Clavaguera et al., 2009, de Calignon et al., 2012, Clavaguera et 

al., 2013, Sanders et al., 2014). Research in this area has expanded over the last several 

years, as we seek to understand the mechanisms underlying the release and 

propagation of “normal” tau in basal conditions and that of “pathological” tau in disease 

models, as well as the implications of tau propagation for neurodegeneration. The latter 

has recently come into question since removing endogenous tau from a transgenic 

model of tau propagation was shown not to prevent tau propagation but removes its 

toxicity (Wegmann et al., 2015). 

 

Low levels of tau have been found in the CSF and ISF of normal individuals (Hampel et 

al., 2010) as well as in the CSF and ISF of healthy mice (Barten et al., 2011, Yamada et al., 

2011) suggesting that tau release is a normal physiological process and that extracellular 

tau is not found only as a result of passive tau release from degenerating neurons. 

Considerable evidence from cell and animal models adds support to this hypothesis. For 
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example, tau is found in the medium of healthy primary cultured mouse and human 

neurons (Chai et al., 2012, Pooler et al., 2013, Kanmert et al., 2015) with tau release 

shown to occur through mechanisms not involving classical secretion pathways (Chai et 

al., 2012), or association of tau with exosomes (Chai et al., 2012, Kanmert et al., 2015), 

although small amounts of secreted tau have been found in association with ectosomes, 

vesicles that originate from plasma membranes (Dujardin et al., 2014). Furthermore, the 

increased physiological secretion of tau from neurons can be increased upon neuronal 

stimulation with KCl and AMPA (Pooler et al., 2013). Synaptic activity has been further 

implicated in this process since blocking neuronal activity and pre-synaptic vesicle 

release with tetrodotoxin and tetanus toxin was found to block calcium-dependent tau 

release in these studies (Pooler et al., 2013). Similar findings have since been reported in 

healthy WT mice (Yamada et al., 2014).  

 

There has been considerable interest in determining the species of tau released from 

neurons and some conflicting data exists in the literature. Endogenous tau species 

released from cultured rat neurons are predominantly dephosphorylated when 

compared to tau species found intracellularly (Pooler et al., 2013), although  

phosphorylation at thr 181 was detected in extracellular tau released from human iPSC-

derived neurons (Chai et al., 2012). In addition, several studies report that extracellular 

endogenous tau contains predominantly full-length tau species (Chai et al., 2012, Pooler 

et al., 2013), however, C-terminally truncated  tau species  have been reported as 

released from neurons in other studies (Kanmert et al., 2015). While the function of this 

extracellular tau is not well understood, its clearance from wild-type mouse brain can 
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take many days (Yamada et al., 2014), and exogenously applied extracellular tau species 

have been shown to activate muscarinic receptors (Gómez-Ramos et al., 2008, Gómez-

Ramos et al., 2009) suggesting a signalling function of extracellular tau. 

 

In disease, the levels of both total and phosphorylated tau are elevated in the CSF and 

ISF of individuals with AD relative to controls (Blennow et al., 1995, Meredith Jr et al., 

2013), and the CSF from AD patients contains increased amounts of N-terminal tau 

fragments, with no evidence of full-length or C-terminal fragments of tau compared to 

controls (Meredith Jr et al., 2013). Moreover, elevated total and phosphorylated tau 

protein levels can be detected in exosomes prepared from blood from MCI and AD 

patients. Neural exosomes were prepared through differential centrifugation using an 

ExoQuick™ (System Biosciences, USA) precipitation method followed by 

immunochemical enrichment with antibodies for the neuronal adhesion proteins L1 and 

NCAM. ELISAs were then used to detect levels of total and phosphorylated tau in the 

enriched neuronal exosomes (Fiandaca et al., 2015). This finding suggests that there are 

alterations to normal tau secretion pathways that may underlie tau propagation in 

neurodegenerative tauopathies. The trans-synaptic spread of tau pathology has been 

elegantly demonstrated in vivo (Liu et al., 2012, de Calignon et al., 2012) and many in 

vitro experiments have since been conducted to elucidate the mechanisms underlying 

these events.   

 

It has been demonstrated that unlike normal endogenous tau, exogenously expressed 

abnormally phosphorylated or aggregated “pathological” tau released from cultured 
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neural cells is commonly associated with exosomes in the extracellular space  (Saman et 

al., 2012, Simón et al., 2012, Asai et al., 2015) and can be full-length or C-terminally 

truncated (Plouffe et al., 2012). In addition, in models in which the cell to cell 

propagation of tau species has been studied, tau capable of transmission has been 

identified as largely soluble and oligomeric, but not fibrillar since PHFs have been 

demonstrated to not propagate (Lasagna-Reeves et al., 2012, Iba et al., 2013), and one 

recent paper has shown that rare and very highly phosphorylated tau multimers are 

integral to this process (Takeda et al., 2015). Since tau species released under 

physiological conditions are largely dephosphorylated, this raises questions about 

whether or not tau release under physiological and disease conditions occurs through 

the same or alternative mechanisms.  

 

Finally, the effects of Aβ on the propagation of pathological tau are still under 

investigation since this may be highly relevant for the spread of tau pathology across AD 

brain. In vivo, the presence of Aβ dramatically increases the speed and distance of tau 

propagation and increases tau-induced neurotoxicity (Pooler et al., 2015). Furthermore, 

when neuronal injury by Aβ is caused, the extracellular levels of both aggregation-prone 

microtubule binding region-containing fragments of tau and full-length tau are increased 

(Kanmert et al., 2015).   

 

It is important that we further elucidate any similarities and differences between the 

release of tau under physiological and pathological conditions as this will increase 

understanding of the relevance of tau propagation in neurodegenerative diseases since 
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targeting the spread of extracellular tau could be useful in preventing the progression of 

AD and tauopathies. In addition, it is useful to better understand the function of tau 

released under physiological conditions since it is possible that dysregulation of normal 

tau release may also have damaging effects in disease. 

 

5.2 Aims and objectives 

The primary aims of the studies presented in this chapter were to begin to gain a better 

understanding of the mechanisms of physiological and pathological tau release in slice 

cultures prepared from WT and 3xTg-AD mice. The specific aims of this chapter were to: 

 

 Measure basal levels of tau release from WT and 3xTg-AD slice cultures. 

 

 Determine the effect of stimulating neuronal activity on tau release from 

WT and 3xTg-AD slice cultures. 

 

 Assess the effects of inhibiting neuronal activity on the secretion of tau 

from WT and 3xTg-AD slice cultures. 

 

 Investigate the relationship between tau localisation in neurons and its 

release by examining tau content in the cytosol and membrane under 

basal conditions and following neuronal stimulation.  
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5.3 Methods 

The methods used for this work are detailed in Chapter 2. In brief, organotypic brain 

slice cultures were prepared from postnatal day 8 or 9 WT and 3xTg-AD mice and 

cultured for 28 days. At this point, total amounts of tau released into culture medium 

under basal conditions or following treatment to stimulate neuronal activity and/or 

block pre-synaptic vesicle release was measured by a total tau ELISA, developed in-

house. LDH release from these slice cultures was used as a measurement of cell death. 

Cytosol and membrane fractions from slice cultures were also prepared using 

differential centrifugation, and tau species in these fractions were assessed by 

immunoblotting.  

 

5.4 Results 

5.4.1 Basal tau release from 3xTg-AD slice cultures is significantly increased compared 

to that from WT slice cultures 

Basal tau release from both WT and 3xTg-AD slice cultures was assessed to determine 

any differences in tau release from an AD model in which disease-related changes in tau 

phosphorylation are apparent (Chapter 3). Total amounts of tau released into fresh 

culture medium over a period of 30 minutes were measured using an in-house total tau 

ELISA that uses two commercially available tau antibodies with epitopes in the middle 

region (BT2) and C-terminal portion (DAKO) of tau. Intracellular tau amounts were 

determined in the same cultures by immunoblotting, as described previously (Chapter 

3). The amounts of tau detected in culture medium were then normalised to amounts of 

intracellular tau in the same sample to control for the effects of tau over-expression in 
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the 3xTg-AD slices and allow determination of the proportion of total tau released from 

slices to be determined. In addition, the amount of LDH released into the media from 

the same slices was measured to ensure that changes in tau release were not a result of 

increased cell death. The LDH content in culture medium was calculated as a proportion 

of the total LDH in the slice culture lysates plus that measured in medium.  

 

The results of these analyses revealed that there were no significant differences in the 

amounts of LDH released from WT and 3xTg-AD slice cultures, (Figure 5.1). In contrast, 

the medium of 3xTg-AD slice cultures was found to contain significantly increased tau 

amounts when compared to WT slice cultures, indicating increased basal tau release 

from 3xTg-AD slices (Figure 5.1, p<0.05). Since no changes in LDH release were observed, 

these results indicate that the increased tau release from 3xTg-AD slices did not result 

from increased cell death in 3xTg-AD cultures.  
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Figure 5.1: Basal tau release is significantly increased in 3xTg-AD slice cultures. 
Tau and LDH release into the culture medium of 28 div WT and 3xTg-AD slice cultures 
was measured over a period of 30 minutes. (A) Release of LDH was measured to assess 
slice viability. LDH in culture medium was determined as a proportion of total LDH (LDH 
in lysates plus that in culture medium). Bar chart shows medium/total LDH as fold 
change from WT slice cultures. (B) Amounts of total tau released into the media were 
measured by ELISA and were standardised to total intracellular tau amounts in the same 
sample. Data are shown as fold change from WT slice cultures. Data is mean ± SEM, 
(n=24 wells from four independent experiments, *p<0.05). 
 
5.4.2 Neuronal stimulation increases the release of tau from WT but not 3xTg-AD slice 

cultures 

To assess the effects of neuronal stimulation on the release of normal and disease-

associated tau from both WT and 3xTg-AD slice cultures, 50mM KCl was applied to 

depolarise neurons and stimulate neuronal activity over a period of 30 minutes. This had 

previously been shown to increase tau release from rat primary cortical neurons (Pooler 

et al., 2013). As described above, tau release into the media was detected by ELISA and 
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standardised to intracellular tau amounts, and LDH release was also measured to 

account for any tau release by cell death.  

 

No significant differences in amounts of LDH release between depolarised and non-

depolarised WT and 3xTg-AD slice cultures were identified, suggesting any increased tau 

release was not a result of increased cell death (Figure 5.2). When stimulated with KCl, 

WT slice cultures showed significant increases in extracellular tau release compared to 

non-stimulated WT slice cultures (Figure 5.2, p<0.05), in agreement with published data 

from rat primary cortical neurons (Pooler et al., 2013). In stark contrast, 3xTg-AD slice 

cultures stimulated with KCl did not demonstrate any further release of tau when 

compared to non-stimulated 3xTg-AD slice cultures (Figure 5.2). These findings suggest 

that possibly different mechanisms control the release of normal and disease-associated 

tau. 
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Figure 5.2: Neuronal stimulation with KCl significantly increases tau release from WT 
but not 3xTg-AD slice cultures. 
Tau and LDH release into the media from 28 div WT and 3xTg-AD slice cultures, 
stimulated with 50 mM KCl, or control (non-stimulated) was measured over a period of 
30 minutes. (A) Release of LDH was measured to assess slice viability. LDH in culture 
medium was determined as a proportion of total LDH (LDH in lysates plus that in culture 
medium). Bar chart shows medium/total LDH as fold change from control-treated slice 
cultures. (B) Amounts of total tau released into the media were measured by ELISA and 
standardised to total intracellular tau amounts. Data are shown as fold change from 
control-treated slice cultures. Data is mean ± SEM, (n=24 wells from four independent 
experiments, *p<0.05). 
 

5.4.3 3xTg-AD slice cultures have increased amounts of dephosphorylated tau at the 

membrane 

Mislocalisation of tau is a prominent feature of diseased brain (Noble et al., 2013). 

Although generally thought of as cytosolic, a significant proportion of tau is associated 

with plasma membranes (Brandt et al., 1995, Pooler et al., 2013). Membrane-associated 

tau is predominantly dephosphorylated at ser/thr residues compared to cytosolic tau 
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(Arrasate et al., 2000, Pooler et al., 2012), and since some of the vesicles (ectosomes, 

exosomes) associated with tau release originate at the plasma membrane it was of 

interest to investigate the proportions of tau at membranes in WT and 3xTg-AD slices to 

determine if there may be any association with levels of tau release. Therefore, 

differential centrifugation was used to prepare membrane and cytosol fractions from 

the slice culture lysates cultured in fresh medium for 30 minutes prior to measurement 

of tau released into culture medium. The method to prepare membrane and cytosol 

fractions has been reported previously and the majority of the tau in the membrane 

fraction was determined to be plasma membrane-associated (Pooler et al., 2012). These 

fractions were then immunoblotted with total (phosphorylated and non-

phosphorylated) tau and phosphorylation-dependent tau primary antibodies. In 3xTg-AD 

slice cultures the ratio of total tau present in the membrane fraction relative to the 

cytosolic fraction was significantly decreased compared to WT slice cultures (Figure 5.3, 

p<0.05). However, the ratio of tau dephosphorylated at ser 199/202 and thr 205 

(following normalisation to total tau) present in the membrane fraction relative to the 

cytosolic fraction was significantly increased in 3xTg-AD slices compared to that in WT 

slice cultures (Figure 5.3, p<0.05). In agreement with this finding, the ratio of tau 

phosphorylated at ser 396/404 (as a proportion of total tau) present in the membrane 

fraction relative to the cytosolic fraction was significantly decreased compared to WT 

slice cultures (Figure 5.3, p<0.01). These findings show that in 3xTg-AD slices, although 

overall there is a decreased total proportion of tau associated with membranes, there is 

an increased pool of membrane-associated dephosphorylated tau under basal 
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conditions, an environment in which these slices also show elevated tau release relative 

to that of WT slices.  

 

Figure 5.3: 3xTg-AD slice cultures contain less total membrane-associated tau, yet an 
increased presence of a dephosphorylated tau pool at membranes. 
(A) Representative western blots of membrane and cytosol fractions prepared from WT 
and 3xTg-AD slice cultures showing total (phosphorylated and non-phosphorylated) tau, 
tau phosphorylated at ser 396/404 (PHF-1) and dephosphorylated at ser 199/202 and 
thr 205 (Tau-1), all at ~50-64 kDa. Bar charts show (B) the ratio of total tau present in the 
membrane fraction relative to the cytosolic fraction, and (C) the ratio of tau 
dephosphorylated at ser 199/202 and thr 205 or tau phosphorylated at ser 396/404 
present in the membrane fraction relative to the cytosolic fraction all normalised to total 
tau amounts in the same fraction of the same sample. Data is shown as fold change from 
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WT slice cultures. Data is mean ± SEM, (n=12 wells from two independent experiments, 
*p<0.05, **p<0.01). 
 

 

5.4.4 Both N-terminal and C-terminal fragments of tau are present in the membrane in 

WT and 3xTg-AD slice cultures 

The cleavage of tau is a post-translational modification which can affect tau function, 

with some fragments acting as seeds which promote tau aggregation (Wang et al., 

2014). Tau cleaved at both its N- and C-termini has been detected in AD brain (Garcia-

Sierra et al., 2008). This truncation of tau is catalysed predominantly by caspases, 

calpains and asparagine endopeptidases (Rissman et al., 2004, Ferreira and Bigio, 2011, 

Zhang et al., 2014). 

 

Currently, no consensus exists on whether N-terminally or C-terminally truncated or 

intact tau is the species of tau that propagates, as discussed above. Endogenous tau 

released under basal conditions from primary cortical rat neurons has been 

demonstrated to be predominantly full length (Pooler et al., 2013), although some  

truncated species have been identified together with full-length tau (Dujardin et al., 

2014). However, others show that only C-terminally truncated forms of endogenous tau 

are secreted from unstimulated human and rodent neurons (Kanmert et al., 2015). In 

contrast, pathological extracellular tau in a rat model of tauopathy contains tau lacking 

the C-terminus but containing the N-terminus (Dujardin et al., 2014), and C-terminally 

truncated tau is also released from AD synaptosomes (Sokolow et al., 2015). 
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Additionally, exogenously expressed hyperphosphorylated tau secreted from non-

neuronal cells was demonstrated to be C-terminally cleaved (Plouffe et al., 2012). 

 

To determine which species of tau are associated with membranes, the membrane 

fractions prepared from 28 div WT and 3xTg-AD slice cultures were immunoblotted with 

primary antibodies directed against the N-terminus (TP007) and C-terminus (TP70) of 

tau. As can be seen in Figure 5.4, membranes of both WT and 3xTg-AD slice cultures 

contain predominantly full length tau species of 50-64 kDa with intact N- and C- termini. 

However, some smaller tau species of approximately 35-40 kDa and 28-30 kDa were 

detected by the TP007 and TP70 antibodies, respectively indicating the presence of 

some C-terminally and N-terminally truncated tau present at membranes in both WT 

and 3xTg-AD slices. There were no marked differences in the tau species detected 

between genotypes. 

 

Figure 5.4: Membrane-associated tau is largely intact in both WT and 3xTg-AD slice 
cultures. 
Representative western blots of membrane fractions prepared from 28 div WT and 3xTg-
AD slice cultures showing N-terminally intact (TP007) and C-terminally intact (TP70) tau 
at 50-64 kDa representing full-length tau, and some smaller fragments of ~28-40 kDa. 
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5.4.5 Neuronal stimulation of WT and 3xTg-AD slice cultures has differential effects on 

the pool of dephosphorylated tau associated with membranes 

Membrane and cytosolic fractions were prepared from WT and 3xTg-AD slice cultures at 

28 div treated with control or 50 mM KCl to induce depolarisation. These fractions were 

immunoblotted with total tau (phosphorylated and non-phosphorylated) and tau 

phosphorylation-dependent primary antibodies. In both WT and 3xTg-AD slice cultures 

treated with KCl, the ratio of total tau present in the membrane fraction relative to the 

cytosolic fraction did not differ from control treatment (Figure 5.5). However, in WT slice 

cultures treated with KCl, the ratio of tau phosphorylated at ser 396/404 (following 

normalisation to total tau) present in the membrane fraction relative to the cytosolic 

fraction was significantly decreased compared to control treatment (Figure 5.5, p<0.05). 

Similarly, the ratio of tau dephosphorylated at ser 199/202 and thr 205 (following 

normalisation to total tau) present in the membrane fraction relative to the cytosolic 

fraction was significantly increased compared to control treatment (Figure 5.5, p<0.01), 

showing an increased association of dephosphorylated tau with membranes following 

neuronal stimulation, conditions under which tau release was increased. 

 

In contrast, in 3xTg-AD slice cultures treated with KCl, the ratio of tau phosphorylated at 

ser 396/404 (normalised to total tau) present in the membrane fraction relative to the 

cytosolic fraction was significantly increased compared to control treatment (Figure 5.5, 

p<0.05), and the ratio of tau dephosphorylated at ser 199/202 and thr 205 (normalised 

to total tau) present in the membrane fraction relative to the cytosolic fraction did not 
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differ from the control treatment (Figure 5.5). These data show no increase in the pool 

of dephosphorylated tau associated with membranes upon neuronal stimulation of 

3xTg-AD slices, conditions under which tau release was not increased above basal levels. 

Taken together, these data indicate that conditions leading to an increased pool of 

dephosphorylated tau at membranes are associated with tau release from slice cultures. 

In addition, these data further suggest that differences in the effect of neuronal 

stimulation on tau release from tissues containing normal or disease-associated tau 

might be related to the subcellular localisation of pools of dephosphorylated tau. 
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Figure 5.5: Increased amounts of dephosphorylated tau at the membrane upon 
neuronal stimulation of WT, but not 3xTg-AD slice cultures. 
(A) Representative western blots of membrane and cytosol fractions prepared from WT 
and 3xTg-AD slice cultures treated with 50mM KCl or control (non-stimulated) for 30 
mins showing total (phosphorylated and non-phosphorylated) tau, tau phosphorylated 
at ser 396/404 (PHF-1) and dephosphorylated at ser 199/202 and thr 205 (Tau-1), all at 
~50-64 kDa. Bar charts show (B) the ratio of total tau present in the membrane fraction 
relative to the cytosolic fraction, and the ratio of tau dephosphorylated at ser 199/202 
and thr 205 or tau phosphorylated at ser 396/404 present in the membrane fraction 
relative to the cytosolic fraction all normalised to total tau amounts in the same fraction 
of the same sample. Data is shown as fold change from control-treated slice cultures. 
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Data is mean ± SEM, (n=12 wells from two independent experiments, *p<0.05, 
**p<0.01). 
 
5.4.6 Physiological tau release but not pathological tau release can be inhibited by 

blocking pre-synaptic vesicle release 

To further investigate the mechanisms underlying tau release from slice cultures, slices 

were treated with TTX prior to KCl application. TTX is a neurotoxin which blocks voltage-

gated Na+ channels, thereby preventing pre-synaptic vesicle release and the propagation 

of action potentials (Lee and Ruben, 2008). Previous research has suggested that pre-

treatment with TTX blocks the increased release of endogenous tau that occurs when 

neuronal activity is stimulated in vitro in primary neurons (Pooler et al., 2013), and in 

vivo in mice (Yamada et al., 2014). However, basal tau release was not significantly 

reduced in vivo in mice treated with TTX (Yamada et al., 2014). 

 

Therefore, 28 div WT and 3xTg-AD slice cultures were pre-treated with 2 μM TTX or 

control for 1 hour, followed by a 30 minute control or KCl treatment. 2 μM TTX 

treatment of primary cortical neurons has previously been demonstrated as an effective 

non-toxic dose to inhibit neuronal activity (Pooler et al., 2013). As before, total amounts 

of tau released into the media were measured by ELISA and standardised to amounts of 

intracellular tau. Due to time restraints, the data presented for this experiment 

represents results from only one experiment with a group size of 2-6 resulting from 

some unhealthy cultures not being analysed. Nevertheless, the results of this work 

suggest that pre-treatment with TTX in WT slice cultures prevents the KCl-induced 

increases in tau release, but does not lower basal levels of tau release.  In 3xTg-AD slice 

cultures, in which KCl did not increase levels of tau release, pre-treatment with TTX does 
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not affect tau release in either stimulated or non-stimulated conditions (Figure 5.6). 

These data further suggest that there are different mechanisms underlying tau release 

from normal and diseased tissues.  

 

 

Figure 5.6: Increased tau release with neuronal stimulation can be inhibited by TTX in 
WT, but not 3xTg-AD slice cultures 
28 div WT and 3xTg-AD slice cultures were pre-treated with TTX or control for 1 hour, 
followed by a 30 minute control or KCl treatment to stimulate neuronal activity. 
Amounts of total tau released into the media were measured by ELISA and standardised 
to total intracellular tau amounts. Data are shown as fold change from control-treated 
slice cultures. Data is mean ± SEM, (n=2-6 wells from one independent experiment). 
 

5.5 Summary 

The main findings presented in this chapter are that: 

 Organotypic brain slice cultures from 3xTg-AD mice show significantly 

increased basal release of tau compared to WT slice cultures. 

 

 Neuronal stimulation of WT, but not 3xTg-AD, slice cultures significantly 

increases tau release. 
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 Inhibiting neuronal activity with TTX prevents KCl-induced increases in tau 

release from WT slice cultures, but does not affect tau release from 3xTg-

AD slice cultures. 

 

 The increased presence of dephosphorylated tau at membranes is 

associated with tau release. 

 

5.6 Discussion 

5.6.1 3xTg-AD slice cultures release increased amounts of tau compared to WT slice 

cultures under basal conditions and this is associated with an increased presence of 

dephosphorylated tau at membranes 

The results presented show for the first time that slice cultures from 3xTg-AD mice 

release almost two-fold the amount of tau released by WT slice cultures in basal 

conditions, after controlling for tau over-expression in 3xTg-AD slices. It is likely that this 

release of tau, by an as yet undefined mechanism, into the extracellular space 

contributes to tau propagation in disease, the latter having been demonstrated 

previously in several AD and tauopathy models (Clavaguera et al., 2009, de Calignon et 

al., 2012, Clavaguera et al., 2013, Sanders et al., 2014).  

 

The results also demonstrate that 3xTg-AD slice cultures contain a greater proportion of 

dephosphorylated tau at membranes as shown by an increased abundance of tau 

dephosphorylated at ser 199/202 and thr 205 and decreases in amounts of tau 

phosphorylated at ser 396/404 in this fraction. While it is has not been possible to 
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explore the exact relationship between membrane-associated tau and tau release in this 

work, previous studies have suggested that tau is held at the membrane before it is 

released, potentially in association with exosomes (Saman et al., 2012, Simón et al., 

2012, Asai et al., 2015) or ectosomes (Dujardin et al., 2014). In agreement with the data 

shown here, tau species at the membrane have previously been identified as being 

predominantly dephosphorylated at ser/thr residues as compared to cytosolic tau 

(Pooler et al., 2012), and increased phosphorylation of tau, particularly at N-terminal 

residues, reduces it association with the membrane (Arrasate et al., 2000). Taken 

together, this suggests that these largely dephosphorylated species of tau may be 

awaiting secretion, as it has been demonstrated that both physiological and pathological 

extracellular tau species are predominantly dephosphorylated compared to species 

found intracellularly (Plouffe et al., 2012, Pooler et al., 2013). Additionally, 3xTg-AD slice 

cultures show overall increases in tau phosphorylation (chapter 3), but have increased 

pools of dephosphorylated tau at their membranes, and the reasons for this remain 

unclear. 

 

It remains to be determined which species of tau are released by 3xTg-AD slice cultures, 

and also the mechanism by which they are released. There is some suggestion that 

pathological tau can be released in association within vesicles (Simón et al., 2012, Saman 

et al., 2012, Dujardin et al., 2014), and this may be related to the tran-synaptic 

propagation of tau (Liu et al., 2012, Calafate et al., 2015). Additional studies using slice 

cultures may allow further investigation of the precise mechanisms involved in tau 

release from WT and 3xTg-AD slices under basal conditions. Additionally, in both WT and 
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3xTg-AD slice cultures, full-length and N- and C- terminal fragments of tau were 

detected at the membrane. Full length, N-terminally truncated and C-terminally 

truncated tau species have all been found extracellularly in previous studies (Pooler et 

al., 2013, Dujardin et al., 2014, Bright et al., 2015, Kanmert et al., 2015). 

 

5.6.2 Neuronal stimulation increases tau release from WT slice cultures and this is 

associated with an increased presence of dephosphorylated tau at  membranes  

Stimulating neuronal activity with KCl was shown here to significantly increase tau 

release from WT slice cultures, but not to stimulate any further increases in tau release 

from 3xTg-AD slice cultures. Increased release of tau upon KCl treatment has previously 

been shown in both WT rat primary cortical neurons (Pooler et al., 2013) and in vivo in 

WT mice (Yamada et al., 2014). The reasons why KCl does not stimulate further tau 

release from 3xTg-AD slices is not clear. Increased tau release was found to occur upon 

KCl depolarisation of synaptosomes isolated from human AD brain, but not control brain 

(Sokolow et al., 2015), in apparent disagreement with the data shown here. However, 

this published work used a different model that measured tau release from the synapse 

only, compared to the entire neural cells present in slice cultures. Additionally, 

differences in the species of tau released from the synapse in physiological (Pooler et al., 

2013, Yamada et al., 2014) and pathological (Liu et al., 2012, Calafate et al., 2015) 

conditions have been described, in addition to differential association of extracellular 

tau with vesicles (Simón et al., 2012, Chai et al., 2012, Saman et al., 2012, Dujardin et al., 

2014, Asai et al., 2015). It is possible that the increased overall phosphorylation of tau 

demonstrated in the 3xTg-AD slice cultures (chapter 3) changes its subcellular 
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distribution such that an increased pool of tau is docked at membranes in readiness for 

release, and this cannot be further increased by neuronal stimulation. In partial support 

of this idea, increased tau release upon KCl treatment of WT slices was associated with 

increased amounts of membrane-associated tau dephosphorylated at ser 199/202 and 

thr 205 and decreased amounts of membrane-associated tau phosphorylated at ser 

396/404. There were no changes in the amounts of dephosphorylated tau at 

membranes upon KCl stimulation of 3xTg-AD slices, and increases in membrane-

associated tau phosphorylated at ser 396/404 were identified, conditions under which 

no elevated tau release was observed.  Additionally, neuronal hyperactivity has been 

demonstrated in AD (Quiroz et al., 2010), and it could be that KCl cannot elicit any 

further tau release under conditions where neurons are already over-stimulated. 

 

5.6.3 KCl-induced increases in tau release, but not basal tau release, can be inhibited 

by blocking pre-synaptic vesicle release 

The preliminary findings presented in this chapter suggest that pre-treatment of WT 

slice cultures with TTX prior to KCl application prevents the increased tau release that 

results from neuronal stimulation. In both WT and 3xTg-AD slices basal levels of tau 

release were not affected by TTX.  Unfortunately, this data only represented results from 

one experiment with each group size being 2-6, but the general trend towards 

significance supports the validity of these findings. In particular, despite the small group 

numbers, the variability within groups is small, and the findings from one experiment 

recapitulate those of previous experiments where KCl was shown to stimulate increased 

tau release from WT slice cultures, but not 3xTg-AD slice cultures.  
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Data from others support these preliminary findings by showing that basal tau release in 

WT mice cannot be reduced by preventing neuronal activity (Yamada et al., 2014), 

suggesting both neuronal activity-dependent and non-dependent mechanisms of tau 

release exist. The data presented here highlights additional differences in normal and 

diseased brain tissues. 

 

Importantly, the half-life of physiologically released tau has been demonstrated to be 

approximately 11 days (Yamada et al., 2014), suggesting that the clearance of 

extracellular tau is a slow process. This clearance of extracellular tau may be even slower 

in AD due to the increased presence of extracellular tau (Blennow et al., 1995, Meredith 

Jr et al., 2013). If this tau is required for tau propagation, then therapeutic approaches 

that reduce tau release could be a very efficacious treatment. Therefore, experiments 

aimed at increasing knowledge about the mechanisms of tau release are warranted, and 

the data presented here suggests that brain slice cultures might represent an ideal 

model with which to probe these processes further.  

 

5.6.4 Limitations of this work 

Although the work presented in this chapter increases our knowledge of some aspects 

of both physiological and pathological tau release, further experiments are required to 

build upon this data. 

 

Firstly, the association of released tau with vesicles has been highlighted in some studies 

(Saman et al., 2012, Dujardin et al., 2014, Asai et al., 2015). Unfortunately, studies where 
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the media from both WT and 3xTg-AD slice cultures, treated with control or KCl was 

going to be concentrated in order to identify any vesicular-associated tau were not able 

to be completed due to technical difficulties combined with time constraints. Slice 

cultures were prepared but unfortunately died from reasons beyond my control before 

the 28 div treatment day. 

 

Similarly, this media would have been column concentrated to allow examination of the 

tau species present (full-length, N- and C-terminally truncated species), as well as 

phosphorylation status. It would have been interesting to identify whether there were 

any differences in phosphorylation or truncation of extracellular tau in WT and 3xTg-AD 

slice medium. 

 

Finally, it is clear that the interplay between Aβ and tau is important for the propagation 

of tau (Pooler et al., 2015, Bright et al., 2015). The presence of both increased amounts 

of Aβ and tau in 3xTg-AD slice cultures lends themselves to understand the effect of Aβ 

on tau release, but this was not exploited in this project. Specifically, Aβ production 

could have been suppressed, for example, with inhibitors of γ-secretase or antibodies to 

deplete Aβ, and any changes in tau release could have been explored.  

 

5.6.5 Conclusions 

The results in this chapter suggest that pathological tau, that is tau with AD-related 

properties such as increased phosphorylation, as found in 3xTg-AD slice cultures is 

released in higher amounts compared to normal WT tau released from WT slices, yet in 
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both models the release of tau is associated with the presence of dephosphorylated tau 

at  membranes. In addition, neuronal activity regulates the release of WT tau, but 

appears not to affect the release of disease-associated tau, indicating that physiological 

and pathological tau release is likely mediated by alternative mechanisms. 
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Chapter 6 : Discussion 

 

The studies presented in this thesis demonstrate that slice cultures produced from 3xTg-

AD mice develop both biochemical and physiological features of AD, which recapitulate 

those observed in vivo in 3xTg-AD brain, as well as in post-mortem human AD brain. 

Importantly, many of these AD-like changes appeared to be accelerated with respect to 

those observed in vivo. In addition, the utility of slice cultures as a drug screening tool 

was demonstrated, as well as their potential to be used to understand mechanisms of 

physiological and pathological tau release. 

 

6.1 Organotypic brain slice cultures as an AD research tool 

6.1.1 Organotypic brain slice cultures as an alternative model for AD research 

A multitude of approaches can be taken to understand AD. Currently, the majority of 

scientists approach AD research using transgenic mouse models of AD. Although none of 

the transgenic mouse models currently available develop the full spectrum of 

neurodegenerative changes seen in human AD (Radde et al., 2008, Puzzo et al., 2015), 

they have been successfully used to identify some of the mechanisms and pathways 

involved in the disease. The most commonly used transgenic mouse models of AD 

commonly over-express one or more FAD- or FTLD- causing mutations in human APP 

and/or PS1/2 and/or MAPT to allow development of Aβ- and/or tau-associated 

neurodegeneration that is characteristic of AD (LaFerla and Green, 2012). Although the 

causes of sporadic and familial AD clearly differ, they share common characteristics such 

as the progressive development of abnormal APP and tau processing, tau 
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mislocalisation, Aβ plaques, intracellular NFTs, widespread synaptic and neuronal loss, 

inflammation, calcium dyshomeostasis and oxidative injury that precedes cognitive and 

behavioural changes (Hardy and Selkoe, 2002). Therefore, in the absence of rodent 

models that spontaneously develop human AD features, these transgenic lines are the 

best we have available for AD research, at least until other better alternatives are 

developed. 

 

Mice have several features that make them very useful for investigating the progressive 

neurodegeneration that characterises AD and other neurodegenerative conditions. 

Namely, their genome is very similar to humans – approximately 97.5% of working DNA 

is shared (Waterston et al., 2002), they are readily amenable to genetic modification, 

and are suitable for a range of cognitive and behavioural tests to reveal abnormalities 

observed in human diseases. Additionally, their average 2 year life-span allows 

monitoring of progressive disease phenotypes with age. Finally, they allow for pre-

clinical investigation of AD therapies in an intact organism, an essential step before 

clinical testing can commence. However, there are obvious ethical issues with using 

mouse models in biomedical research, and the utility of lower (less sentient) organisms 

must also be considered. 

 

Several alternatives to transgenic mice exist for studying AD, each with their own 

advantages and disadvantages. The most common of these will be discussed here, but 

this is not an exhaustive list. Alternative in vivo models include Drosophila melanogaster, 

Caenorhabditis elegans and zebrafish (Jucker, 2010). All of these organisms have a much 
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shorter life-span than mice, which reduces both costs and time, and a much less 

complex nervous system which allows easier study of neuronal circuitry. However, it 

could be argued that the latter point makes these organisms unsuitable for researching 

human neurodegenerative disorders since relevant brain regions (such as the cortex) are 

not present in at least some of these model species (Friedrich et al., 2010). Drosophila 

are the most used alternative to rodents for investigating neurodegenerative diseases, 

and these have particular utility as models for screening genetic modifiers of disease 

(Shulman et al., 2014). They have also been used to provide some useful information 

regarding the role of tau  in neurodegeneration (Wittmann et al., 2001) - seminal studies 

that were later reproduced in mice (SantaCruz et al., 2005). However, their utility for 

examining the mechanisms underlying AD is questionable since the drosophila homolog 

of APP does not contain an Aβ-42 domain (Prüβing et al., 2013), and other important 

pathways such as the activation of cdk5 are not the same as in mammals (Lin et al., 

2006). 

 

In vitro models, including neuronal cell lines and primary neuronal cultures,  are also 

invaluable for understanding aspects of AD (Shastry et al., 2001). These are easy to 

obtain and maintain, readily susceptible to genetic and pharmacological information, 

and are an easily replaceable source of protein and genetic material. However, cell lines, 

even neuronal cell lines, usually require modification to express exogenous proteins, and 

even then they do not always demonstrate the same trafficking pathways as neurons 

(Usardi et al., 2011). Moreover, the brain is a complex organ, composed of multiple cell 

types, in precise arrangements, with important anatomical and functional connectivity 
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that cannot be readily replicated in vitro; therefore, the use of these in vitro systems can 

often be too simplistic and the data often do not translate to more complex systems.  

 

Recent advances in iPSC technology has allowed the investigation of disease processes in 

neurons differentiated from iPSCs derived from familial and sporadic AD patient and 

control tissues (Israel et al., 2012). The generation of human neurons, and in particular 

those from AD patients, has allowed investigation of disease processes in highly relevant 

cell models, particularly since they have been shown to conserve the downstream 

effects of AD-causing mutant genes (Israel et al., 2012, Nieweg et al., 2015) and can be 

used to identify risk haplotypes (Soldner and Jaenisch, 2015) and gene regulatory 

networks (Hossini et al., 2015) in sporadic cases. However, these are still not ideal since 

several groups have reported that their human AD iPSCs only produce small amounts of 

4R tau (Iovino et al., 2010), and that this takes a long time (one year) to appear (Sposito 

et al., 2015) indicating that iPSC-derived neurons have an immature phenotype for long 

periods of time which is not ideal for investigating a disease that typically affects those 

in mid-late life. Together with the fact that methods to generate all neural cell types 

believed to be implicated in AD, including microglia and astrocytes (Gentleman, 2013, 

Phillips et al., 2014, Tejera and Heneka, 2015) are not yet fully established, it is clear that 

further work is required to develop iPSC-based models before they can be fully utilised 

in AD research (Ovchinnikov and Wolvetang, 2014). More recently, a three-dimensional 

human neural progenitor cell derived 'organoid' transfected with known FAD mutations 

has also been described (Choi et al., 2014). These show development of some 

astrocytes, however, these 'organoids' still do not represent the elaborate connectivity 
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and architecture of regions of the human brain and cell types involved in AD, as they are 

just cultures of several layers of cells (Choi et al., 2014). 

 

Although it cannot be considered a “model” per se, a great deal of AD research is 

conducted using post-mortem human brain tissue (Bell et al., 2008). As more and more 

research institutes develop banks of brain tissue from control, AD and other 

neurodegenerative conditions, these have become an increasingly useful resource to 

study biochemical and neuropathological changes in diseased human brain relative to 

age- and gender-matched controls. This can be particularly useful for back translation of 

findings e.g. investigating the mechanisms leading to the development of pathologies 

observed in human brain (Wray et al., 2008). Indeed, this type of work is responsible for 

decades of investigation into the implications of tangles and plaques in AD (Braak et al., 

2011). However, there are several disadvantages to using post-mortem brain tissue in 

isolation to draw conclusions, and careful consideration to these has to be made. Firstly, 

most research is conducted using relatively small sample sizes which is not ideal since 

human brain is known to be highly heterogeneous (Atherton et al., 2014). Additionally, 

post-mortem delay, brain pH and storage temperature can considerably affect findings 

for several reasons including freeze-thawing, activation of proteases and protein, DNA 

and RNA degradation (Ferrer et al., 2008). Furthermore, age-matched controls are vital 

for comparisons to AD brain; however these are often obtained from people suffering 

other acute or chronic conditions which could ultimately affect the brain and confound 

results and interpretations. Perhaps most importantly, most brains available for study 
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are at the end-stages of disease, or at least a fixed stage of disease, making temporal 

assessment of progressive alterations impossible. 

 

This thesis outlines the use of ex vivo organotypic brain slice cultures as a model for AD 

research. The preparation of brain slice cultures is a well-documented technique in 

neuroscience research (Gähwiler et al., 1997), and here we provide, to the best of our 

knowledge, the first evidence of an organotypic brain slice culture model of AD that 

progressively develops both Aβ and tau abnormalities, together with other 

representative features of human AD. These ex vivo organotypic brain slice cultures offer 

several advantages over alternative in vitro systems as they can replicate many aspects 

of the progressive development of disease phenotypes observed in an in vivo context, 

and they are amenable to manipulation and can be used in unison with techniques 

which are invasive in vivo. 

 

The results presented in this thesis have demonstrated the utility of 3xTg-AD brain slice 

cultures as a model that can be used to understand the mechanisms and pathways 

underlying the development and progression of AD, as well as a drug screening and 

development tool for developing novel AD therapeutics. 3xTg-AD slice cultures rapidly 

develop important features of in vivo brain in the 3xTg-AD mice from which they are 

derived as well as human AD. The most interesting findings in 3xTg-AD slice cultures 

which recapitulate human AD, and that were found to develop more rapidly ex vivo than 

in vivo are discussed below. These findings suggest that 3xTg-AD slice cultures have 

utility for investigating therapeutic strategies that are directed at reducing levels of Aβ 
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and post-translationally modified tau as well as those which inhibit p25/cdk5 activity. 

The results of this work all suggest that 3xTg-AD slices are suited to research aimed at 

understanding mechanisms involved in the interplay between Aβ and tau in AD, which 

are still relatively poorly understood.  

 

By 14 div, 3xTg-AD slice cultures were found to have accumulated substantial amounts 

of Aβ-42, a major feature of human AD brain (O’Brien and Wong, 2011), that is not 

apparent in 3xTg-AD mice in vivo until 6 months of age (Oddo et al., 2003a). In addition, 

3xTg-AD  slice cultures display highly phosphorylated tau and high molecular weight tau 

species by 21 div, which are a major feature of human AD (Iqbal et al., 2005), but are 

only found to develop in vivo at 12 to 15 months of age (Oddo et al., 2003a, Oddo et al., 

2003b). 3xTg-AD slice cultures also show an increased p25 activation of cdk5 from 28 

div, which is also a feature found in human AD brain (Tseng et al., 2002), although this 

finding is somewhat contentious (Tandon et al., 2003). Again, in vivo in the 3xTg-AD 

mice, increased cdk5 activity is not observed until 12 months of age (Sy et al., 2011). 

Thus, the seemingly rapid development of important AD features in 3xTg-AD brain slice 

cultures compared to those observed in this model in vivo suggests that the slice culture 

model is a sensitive system to be used in AD research that will allow investigations to be 

conducted in a shorter, more efficient time-scale, and one that avoids aging of animals 

until harmful phenotypes develop.  
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6.1.2 Advantages of organotypic brain slice cultures for AD research 

As an alternative to in vivo research in 3xTg-AD mice, slice cultures derived from this line 

hold several advantages. Firstly, as described above, 3xTg-AD slice cultures show a much 

more rapid development of AD-relevant changes with features such as highly 

phosphorylated tau species being present at 21 to 28 div in slice cultures as opposed to 

12 to 15 months in vivo (Oddo et al., 2003a, Oddo et al., 2003b). The use of 14-28 div 

slice cultures avoids ageing mice for long periods of time, where the disease phenotype 

can become a lot more severe and cause harm to the animal, and this technique also 

allows smaller breeding colonies of mice to be maintained since slices are prepared from 

mice, pre-weaning, at postnatal day 8 or 9. This significantly reduces the time and cost 

and in vivo implications of AD research. Overall, the use of slice cultures is highly 

relevant to the implementation of the 3Rs in neurodegeneration research; the numbers 

of animals for particular AD experiments can be reduced by greater than 90%, a huge 

number of experiments investigating the molecular mechanisms underlying AD or drug 

screening for AD can be conducted in slice cultures, thereby replacing some animal 

research, and procedures which may be invasive in vivo can be performed ex vivo 

instead, thus refining AD research. 

 

Specifically, when compared to in vivo research, the numbers of mice used is 

considerably reduced since one 3xTg-AD pup is used to produce 36 slice cultures 

containing the hippocampus and cortex (typically used in experiments in groups of 3). 

This enables the study of up to 12 compounds at once, or observations of several 

disease-related changes over time in brain tissue derived from the same mouse, a 
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system that also reduces inter-animal variation. Furthermore, compared to pre-clinical in 

vivo research, treatment paradigms are much easier to implement and results can be 

obtained more rapidly from 3xTg-AD slice cultures. For example, treatment of 3xTg-AD 

slice cultures with LiCl led to reduced tau phosphorylation after a 4 hour period in 28 div 

cultures. In vivo, 3xTg-AD mice were aged to 15 months of age and then treated for a 4 

week period with LiCl (Caccamo et al., 2007). It is clear that in vivo studies using 

transgenic models of neurodegeneration require a long treatment protocol after a 

prolonged aging period, and this prevents a rapid clinical translation of AD therapies, 

which instead can be accelerated using 3xTg-AD slice cultures. In addition, further 

advantages of brain slice cultures lie in their ease of use. For example, drug treatments 

or other manipulators can be easily added to their external environment. Further 

convenience lies in the fact that many slice cultures can be produced and maintained in 

relative short time frames, and experiments can be easily and rapidly conducted using 

supplies of slices maintained in tissue culture incubators, removing some of the 

technical problems associated with maintaining large groups of age-matched mice for 

prolonged periods of time. Thus, overall,  long-term 3xTg-AD slice cultures provide a 

means to replace, refine and reduce some aspects of in vivo AD research, as suggested 

for other AD brain slice models (Humpel, 2015a), in addition to providing a more readily 

tractable and considerably cheaper alternative to in vivo transgenic studies.  

 

Ex vivo organotypic brain slice cultures also provide several advantages over more 

common in vitro models. Ex vivo organotypic brain slice cultures show preservation of 

three-dimensional organisation and architecture of the tissue from which they are 
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derived (Humpel, 2015a). In particular, the 3xTg-AD slice cultures reported here contain 

both the cortex and hippocampus, and therefore a range of cell types which are not 

represented in single cell lines or primary neural cell cultures unless an advanced co-

culture method, and scaffolding matrices are employed (Chwalek et al., 2015). Even 

then, co-culture systems do not usually contain all of the cell types of the region from 

which they are derived and in the correct proportions. The presence of astrocytes in 

3xTg-AD slice cultures has been demonstrated here (chapter 3) and other published 

reports suggest that all glia develop normally in organotypic cultures, in approximately 

the same proportions as observed in vivo (Hailer et al., 1996), which is particularly 

important as astrocytes and microglia are implicated in the progression of AD 

(Gentleman, 2013, Phillips et al., 2014, Tejera and Heneka, 2015) so it is imperative as 

much of the original cytoarchitecture is maintained in order to correctly model the 

disease. Additionally, although transfection techniques can be employed in slice 

cultures, and Aβ or other manipulators could be added to the external environment of 

slice cultures prepared from wild-type or other AD transgenic lines, 3xTg-AD slice 

cultures express the human mutant PS1, MAPT, and APP transgenes, leading to 

overexpression of APP and tau proteins, and Aβ overproduction, so do not require any 

further transfection of proteins of interest.  

 

In vitro alternatives to 3xTg-AD slice cultures are also less ideal for pre-clinical screening 

of AD therapeutics because despite a compound often showing efficacy and hitting a 

desired target in vitro these often do not translate to intact organisms, particularly 

mammals, due to the lack of biological complexity (Sundstrom et al., 2005). In 
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comparison to high-content screening in cell cultures, treatment of 3xTg-AD slice 

cultures should enable a more robust selection of lead compounds to investigate in vivo 

since they are more biologically relevant than dissociated primary cells or cell lines 

(Sundstrom et al., 2005).  

 

Finally, 3xTg-AD organotypic brain slice cultures lend themselves to the exploitation of 

various other exciting techniques. Although not demonstrated in this thesis, slice 

cultures can be easily biolistically or virally transfected (McAllister, 2004). For example, 

this would be useful to examine the effects of upregulation or knockdown of 

inflammatory mediators implicated in AD (Sastre et al., 2011) as demonstrated in vivo 

(Chakrabarty et al., 2015). The electrical activity of 3xTg-AD slice cultures could be 

probed over long durations using single or multi-electrode arrays (Plenz et al., 2011), this 

would be useful to investigate the presence or absence of any abhorrent electrical 

activity in AD (Quiroz et al., 2010). Additionally, this slice culture model of AD could 

easily be used in a wide range of live imaging setups (Goldberg and Yuste, 2009), in 

particular, the imaging of any calcium dyshomeostasis in the slice cultures could increase 

our understanding of this aspect of AD (Egorova et al., 2015). 

 

In summary, ex vivo 3xTg-AD slice cultures hold several advantages as a sensitive and 

tractable model of AD that has the capacity and potential to provide an alternative 

system to in vivo research, but at a lower cost and at a more rapid pace, and with more 

biological reliability and relevance than other in vitro systems. Due to the numerous 

advantages of this 3xTg-AD slice culture system it is likely they will be useful to 
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understand the basic science underpinning AD as well as in the discovery and 

development of new AD drugs in the future. 

 

6.1.3 Disadvantages of organotypic brain slice cultures to study AD 

It is also important to point out that there are some disadvantages to brain slice culture 

systems, and that other models are more appropriate for studying certain aspects of AD. 

 

Firstly, most studies have identified that organotypic slice cultures are synaptically 

similar to acute preparations, however increased axonal branching and higher order 

dendrites have been reported in these organotypic cultures (De Simoni et al., 2003), 

suggesting an increased synaptic integrity in slice cultures. Similarly, an increased 

frequency of synaptic miniature currents, suggesting an increased number of synapses 

has also been reported (De Simoni et al., 2003). These differences are likely accounted 

for during the initial preparation and culture of these slices where several axons are cut, 

and it is likely that recovery would be seen over long-term culture, as suggested in 

previous publications (De Simoni et al., 2003). It is important, however, to be aware of 

these potential synaptic differences which may confound results, particularly since 

synaptic degeneration is a key feature of human AD. Specifically, this potential for an 

increased synaptic integrity in slice cultures may mean synapses in slice cultures are 

more resistant to degeneration. 

 

Secondly, as with all ex vivo or in vitro preparations, the main prolific symptoms of AD - 

loss of memory and cognition, cannot be assessed in slice cultures, so in vivo studies will 
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inevitably have to take place to examine the effects of treatments or other 

manipulations on behaviour and cognitive function. However, ex vivo slice cultures 

should allow screening of potential therapeutics before they are tested in vivo so that 

only the most specific and biologically relevant strategies are taken in vivo (Sundstrom et 

al., 2005). 

 

Additionally, although slice cultures contain multiple cell types in relevant proportions 

and can contain several brain regions (e.g. hippocampus and cortex), they are not fully 

intact brain; therefore the full extent of the spatiotemporal progression of disease 

cannot be explored. 

  

Finally, the generation and manipulation of slice cultures is technically demanding, 

requires substantial training and exacting conditions, so at present there is no possibility 

of automation of any experiments. Therefore, organotypic slice cultures still require a 

modest amount of time, and some relatively substantial costs are required to generate 

and maintain them. 

 

6.2 Organotypic brain slice cultures as a model to study the mechanisms 

underlying AD 

The findings presented in this thesis demonstrate the rapid progression of pathological 

changes in 3xTg-AD slice cultures that are relevant to the progression and development 

of AD. Therefore, this supports their application in research aimed at studying the 

mechanisms and pathways involved in AD, and particularly the interplay between Aβ 
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and tau in a much more rapid timescale than other approaches. In particular, the work 

presented here shows that tau is redistributed to the synapse at relative early disease 

stages in 3xTg-AD slice cultures and this may be an early change that contributes to 

further neurodegenerative changes in AD. Such events could be further investigated in 

3xTg-AD slice cultures. 

 

6.2.1 Studying AD-like abnormalities in tau and Aβ in 3xTg-AD brain slice cultures 

Tau, APP and Aβ all independently hold physiological and pathological effects at the 

synapse (section 1.5). In addition, the interplay between Aβ and tau at the synapse is 

highly relevant in AD. Indeed, Aβ can drive the missorting of tau to dendritic 

compartments causing microtubule breakdown, calcium dyshomeostasis and spine loss 

(Zempel et al., 2010). Similarly, other studies have shown that tau mislocalisation and 

the phosphorylation of tau at the synapse may be required to mediate Aβ-induced 

synaptotoxicity (Mairet-Coello et al., 2013, Miller et al., 2014). In addition, tau enables 

Aβ to exert its toxic effects at the synapse, as removal of tau reduces excitotoxicity, 

improves memory function and synaptic deficits (Roberson et al., 2007, Roberson et al., 

2011, Ittner et al., 2010), implicating tau at dendritic spines in Aβ-induced synaptic 

dysfunction. 

 

The results presented here show for the first time that total amounts of tau are 

significantly increased at the synapse in 3xTg-AD slices at 14 div, indicating a 

redistribution of tau from its normal cytoplasmic localisation at an early disease stage. 

Significantly increased total tau amounts were found in synaptosomes prepared from 
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3xTg-AD slice cultures at 14 div but not at 21 or 28 div.  This is similar to changes 

observed in synaptosomes isolated from 3xTg-AD mice here, where increased total tau 

amounts were found at 1 and 2 months of age, but not at 4, 9 or 12 months of age. The 

pathological relevance of these findings is not clear; however, in end-stage human AD 

brain, it has been reported that total tau amounts at the synapse do not differ from 

those found in control human brain (Tai et al., 2012, Tai et al., 2014). However, it has 

been shown that tau at the synapse is phosphorylated and misfolded in human AD 

(Henkins et al., 2012, Tai et al., 2014) and also in mice which express FTD-causing P301L 

mutant human tau (Harris et al., 2012, Kopeikina et al., 2013). Additionally, it has been 

demonstrated that P301L tau, but not WT tau, is targeted to dendritic spines (Xia et al., 

2015). Taken together, these findings suggest that increases in total amounts of tau at 

the synapse may be an early disease feature in AD, and at later stages of the disease, 

some of the tau may have been transported to an alternative neuronal compartment or 

released from the neurons, with the remainder being misfolded or phosphorylated at 

the synapse. This synaptic tau may be synaptotoxic and prevent physiological functions 

of tau at the synapse, as suggested by (Hoover et al., 2010) leading to the decline in 

cognition and memory that occurs in AD. Unfortunately, these are all mechanisms that 

are poorly understood at present (Crimins et al., 2013). 

 

Increased amounts of APP were also found in synaptosomes prepared from the 

hippocampus of 3xTg-AD mice at 1, 2 and 9 months, but no increased amounts of APP 

were found at the synapse in 3xTg-AD slice cultures at 14, 21 or 28 div. In human AD 

brain, no increases in total amounts of APP are found at the synapse compared to 
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control brain (Gylys et al., 2004); however increased amounts of Aβ are found at the 

synapse in human AD brain (Fein et al., 2008). Taken together, this might suggest that 

early increases in APP amounts at synapses in AD may precede APP processing via the 

amyloidogenic pathway (Zhang et al., 2011b) to generate increased amounts of Aβ 

which are retained at the synapses throughout AD. This build-up of Aβ is likely 

detrimental to synapse health and function in AD (Sheng et al., 2012). In particular, Aβ 

can drive internalisation of NMDA and AMPA receptors, causing LTD as well as driving 

NMDA-dependent excitotoxicity (Hsieh et al., 2006, Shankar et al., 2007, Shankar et al., 

2008). Alternatively, Aβ is suggested by many to exert synaptotoxicity through 

disruptions in calcium homeostasis and altering neuronal excitability (Kuchibhotla et al., 

2008). In addition, tau may also be involved in driving this Aβ-toxicity in the dendritic 

compartment through its trafficking of Fyn to the dendrites postsynaptic and its role in 

NMDAR-mediated signalling (Ittner et al., 2010).  

 

6.2.2 Organotypic slice culture models for investigating tau release and propagation 

The data presented in this thesis also demonstrates the utility of WT and 3xTg-AD slice 

cultures as a suitable and relevant model with which to investigate the mechanisms of 

physiological and pathological tau release. In brief, tau released from organotypic brain 

slice cultures can be measured in the extracellular culture medium, allowing us to 

understand differences between tau release from WT slices containing normal 

(physiological) tau and that from 3xTg-AD slice cultures which contain AD-like 

(pathological) tau. 
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The data presented here highlights differences between the release of tau from normal 

and diseased brain tissues under basal conditions. Tau release was manipulated here by 

adding pharmacological agents that stimulate or block neuronal activity to the slice 

culture environment. As more is elucidated about potential mechanisms involved in tau 

release, additional agents could be further investigated in a similar way.  

 

The work described in this thesis has focussed on tau release, which is likely related to 

the ability of tau to propagate across diseased brain. Tau propagation has previously 

been demonstrated both in vitro and in vivo in seeding experiments (Clavaguera et al., 

2009, Clavaguera et al., 2013, Sanders et al., 2014), as well as in vivo through controlled 

expression of human FTD-causing P301L tau only in the entorhinal cortex, which 

spreads, trans-synaptically, to regions downstream of the entorhinal cortex in a 

spatiotemporal manner (de Calignon et al., 2012). 

 

It is likely that slice cultures from WT, 3xTg-AD mice and other transgenic models of 

neurodegeneration could also be used for tau seeding experiments, which tend to be 

conducted in vivo or in single cell lines, and/or as a mode of tau propagation which is 

largely studied in vivo. It is conceivable that tau seeds from human AD or tauopathy 

brain can be applied on to the slice cultures, and propagation from cell to cell and region 

to region can be assessed using histological or advanced live imaging methods more 

rapidly in slice cultures than in vivo, enabling a greater understanding of propagation of 

tau in AD. In addition, adeno-associated virus (AAV) technology (Chakrabarty et al., 

2015) could be used to express tau in one specific region of the slice cultures, and its 
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spread could also be rapidly identified. Furthermore, pharmacological methods to block 

this release of tau and propagation could be efficiently explored in slice culture models, 

particularly antibodies against extracellular tau are of interest (Bright et al., 2015). 

 

6.2.3 Mechanisms of physiological tau release 

Recent studies have indicated that endogenous tau is released from neurons (Chai et al., 

2012, Pooler et al., 2013, Yamada et al., 2014). While the reasons for this and potential 

functions of extracellular tau are not well understood, tau may act as a mediator of 

extracellular signalling by binding to and activating muscarinic receptors (Gómez-Ramos 

et al., 2008, Gómez-Ramos et al., 2009). It has not yet been investigated whether or not 

this novel function of tau is disrupted in disease conditions. WT slice cultures have been 

used in this thesis to further investigate the release of endogenous wild-type tau. 

 

Firstly, corroborating previous findings from both WT rat primary cortical neurons 

(Pooler et al., 2013) and in vivo experiments in WT mice (Yamada et al., 2014), the 

results presented here show that small amounts of tau are released from WT slice 

cultures under basal conditions. Moreover, neuronal stimulation using KCl was found to 

significantly increase tau release from WT slice cultures. Previous research has shown 

that tau is released from neurons via an unconventional secretion pathway (Chai et al., 

2012). Since extracellular tau is largely dephosphorylated (Pooler et al., 2013) and a pool 

of dephosphorylated tau exists at membranes (Pooler et al., 2012) the amounts and 

phosphorylation status of membrane-associated tau was also investigated in WT slice 

cultures. It was shown here that the increased tau release that results from neuronal 
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stimulation occurred concurrently with reduced presence of tau phosphorylated at ser 

199/202 and thr 205 and ser 396/404 at membranes. Neuronal stimulation of WT slice 

cultures did not change overall tau amounts at the membrane. Overall, this suggests 

that perhaps the pool of dephosphorylated endogenous tau that is held at membranes is 

that which is released upon neuronal stimulation. The mechanisms that are involved in 

this process are as yet undetermined.  

 

Preliminary findings presented in this thesis also suggest that pre-treatment of WT slice 

cultures with TTX to inhibit pre-synaptic vesicle release, prior to KCl application, 

prevents neuronal-activity induced increases in tau release. This is in agreement with 

data showing that pre-treatment of WT primary cortical neurons and WT mice with TTX 

prevents KCl-induced action potentials, and therefore increases in extracellular tau 

amounts (Pooler et al., 2013, Yamada et al., 2014). In addition, others have shown 

release of tau is dependent on neuronal activity (Karch et al., 2012, Frandemiche et al., 

2014). However, basal levels of tau release from WT slice cultures were not affected by 

treatment with TTX, as has also been previously demonstrated in vivo in WT mice 

(Yamada et al., 2014). Taken together, this suggests both neuronal activity-dependent 

and non-dependent mechanisms of endogenous tau release.  

 

6.2.4 Mechanisms of pathological tau release 

3xTg-AD slice cultures containing pathological tau species release almost two-fold the 

amount of tau compared to WT slice cultures in basal conditions. This increased release 

of extracellular tau may enable its propagation through the brain which has been 
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demonstrated previously in several AD and tauopathy models (Clavaguera et al., 2009, 

de Calignon et al., 2012, Clavaguera et al., 2013, Sanders et al., 2014).  

 

Furthermore, the results presented here demonstrate that the increased release of 

basal tau amounts from 3xTg-AD slice cultures is also associated with a reduced pool of 

tau phosphorylated at ser 199/202 and thr 205 and at ser 396/404 at the membrane. 

This further suggests an association between membrane-associated dephosphorylated 

tau and tau release, as discussed above. However, unlike in WT slice cultures, 

stimulation with KCl did not elicit any further increases in amounts of extracellular tau 

release from 3xTg-AD slices, and additionally, KCl treatment resulted in increased 

presence of tau phosphorylated at ser 396/404 at the membrane. This in part suggests 

that the translocation of phosphorylated tau species to the membrane may prevent any 

further increases in tau release in pathological 3xTg-AD slice cultures. One could 

speculate that increased basal tau release in 3xTg-AD slice cultures may be as a result of 

increased neuronal activity as reported in early stages of AD (Quiroz et al., 2010), 

potentially through altered excitatory glutamatergic neurotransmission (Gonzalez et al., 

2015) with further neuronal stimulation from KCl treatment not eliciting any further tau 

release, due to synapses already being over-stimulated. However, findings from 

preliminary experiments where 3xTg-AD slice cultures did not show any attenuation in 

basal amounts of tau release upon pre-treatment with TTX suggest that pathological tau 

release is likely not mediated through increased neuronal activity. 
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Despite adding to our understanding of physiological and pathological tau release, a 

multitude of questions relating to this topic still need to be explored. In particular, more 

research into how tau is taken up and released both physiologically and pathologically 

needs to be understood. Evidence so far suggests that endogenously expressed tau is 

not contained within vesicles when it is released, and that it is secreted via non-classical 

mechanisms (Chai et al., 2012) which are likely dependent on neuronal activity and 

calcium (Pooler et al., 2013). Pathological tau, especially when exogenously expressed is 

released in association with vesicles (Saman et al., 2012, Simón et al., 2012, Asai et al., 

2015), and spreads trans-synaptically (Liu et al., 2012, de Calignon et al., 2012). Little is 

known about how tau is taken up into cells, but misfolded tau species can be taken up 

by endocytosis and axonally transported (Wu et al., 2013). Additionally, a role for the 

microglial uptake of tau by phagocytosis and subsequent exosomal release of tau in AD 

has recently emerged (Asai et al., 2015). 

 

Furthermore, the identification of which species of tau are released and propagated 

needs to be determined. Most evidence demonstrates that endogenous extracellular tau 

species are predominantly dephosphorylated compared to tau found intracellularly 

(Plouffe et al., 2012, Pooler et al., 2013), although some reports indicate that tau is 

phosphorylated at thr 181 (Chai et al., 2012). Most endogenously released tau species 

have been demonstrated to be full-length or C-terminally truncated (Pooler et al., 2013, 

Kanmert et al., 2015). Pathologically released tau species have also been demonstrated 

as full-length and N- or C-terminally truncated (Plouffe et al., 2012, Bright et al., 2015).  

In addition, it has been demonstrated that pathological tau species which propagate are 
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largely soluble and oligomeric, but not fibrillar since PHFs have been demonstrated to 

not propagate (Lasagna-Reeves et al., 2012, Iba et al., 2013). Additionally, recent 

evidence has suggested that rare and highly phosphorylated multimers of tau can also 

propagate (Takeda et al., 2015). However, the removal of endogenous tau does not 

prevent the propagation of tau, but does reduce neuronal death (Wegmann et al., 

2015). 

 

Lastly, further work is required to explore the effects of Aβ on the propagation of 

pathological tau. It has been demonstrated that Aβ dramatically increases the speed and 

distance of tau propagation and increases tau-induced neurotoxicity in vivo (Pooler et 

al., 2015). Additionally, when inducing neuronal injury with Aβ is caused, the release of 

extracellular tau species is also increased (Kanmert et al., 2015).  Furthermore, 

extracellular tau drives aberrations in neuronal excitability, likely increasing the 

production of Aβ driving an increased release of tau and further hyperactivity in a feed-

forward mechanism (Bright et al., 2015). Slice cultures from 3xTg-AD mice lend 

themselves to studying this aspect of pathological tau release. 

 

It is important that we further elucidate the mechanisms by which tau is released under 

physiological and pathological conditions and determine how this relates to the 

propagation of tau that is observed in neurodegenerative conditions. This should clarify 

whether targeting the spread of extracellular tau is therapeutically relevant, or whether 

it is actually dysfunctions in normal tau release that should be targeted. 
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In summary, 3xTg-AD slice cultures recapitulate important pathological features of in 

vivo brain, and here have been used to identify novel early changes in APP and tau at the 

synapse, whilst also identifying a possible association between the accumulation of 

pools of dephosphorylated tau at the membrane and the release of tau. In conclusion, 

this slice culture model lends itself to investigate disease mechanisms underlying the 

progression and development of AD, including tau release and 

propagation/transmission. 

 

6.3 Organotypic brain slice cultures in novel AD drug discovery and 

development 

As described above 3xTg-AD slice cultures lend themselves to applications to discover 

novel therapies targeted against Aβ-42, tau phosphorylation and high molecular weight 

tau, as well as inhibitors of p25/cdk5. 

 

6.3.1 Validation of AD slice cultures to develop novel AD therapeutics and new 

understanding of previously used compounds 

Data presented in this thesis demonstrate that treatment of 3xTg-AD organotypic brain 

slice cultures with LiCl and NAPVSIPQ yielded results which recapitulate those reported 

by others when used in vivo in 3xTg-AD mice (Caccamo et al., 2007, Matsuoka et al., 

2007, Matsuoka et al., 2008). Additionally, treatment of 3xTg-AD slice cultures with 

these compounds has increased our knowledge of new AD-relevant properties of LiCl, as 

well as, identification of mechanisms by which NAPVSIPQ does not act. 
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In brief, a 20 mM 4 hour treatment of 28 div 3xTg-AD slice cultures reduced total tau 

amounts, tau phosphorylation at ser 396/404 and at ser 199/202 and thr 205, and APP 

phosphorylation at thr 668. It is difficult to conclude that these effects were solely 

mediated by reduced GSK-3 activity since no increases in GSK-3 phosphorylation at the 

inhibitory residues ser 21/9 phosphorylation were observed. In fact, phosphorylation at 

these GSK-3 sites was actually significantly decreased by LiCl treatment in 3xTg-AD slice 

cultures. Thus, LiCl treatment of 3xTg-AD slice cultures recapitulated some, but not all of 

the findings presented by (Caccamo et al., 2007) who treated  3xTg-AD mice with LiCl. 

Treatment of slice cultures confirmed the reduction of tau phosphorylation at 

ser199/202 and thr205 reported by Caccamo et al., but also resulted in reduced 

phosphorylation at ser 396/404, which was not observed in vivo. Additionally, the 

inhibitory phosphorylation of GSK-3 at ser 21/9 was shown in vivo, but this was not 

recapitulated in slice cultures. Reasons for the discrepancies between these findings 

could be that GSK-3 was inhibited by LiCl through other mechanisms in slice cultures, for 

example, by competition with magnesium (Ryves and Harwood, 2001), or regulatory 

phosphorylation at other ser/thr and tyr sites (Wang et al., 1994). It also cannot be ruled 

out that the changes in phosphorylated tau could have been mediated by changes in 

cdk5 activity since there is complex interplay between GSK-3 and cdk5 (Engmann and 

Giese, 2009, Kimura et al., 2014) or also through changes in the activity of other kinases 

by LiCl (Lenox and Wang, 2003). Alternatively the effects of LiCl on tau may be through 

the enhancement of autophagy by lithium, driving an increased autophagy and 

degradation of phosphorylated tau amounts and aggregation-prone tau, as previously 

reported (Shimada et al., 2012, Motoi et al., 2014). 
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Additionally, LiCl treatment of 3xTg-AD slice cultures resulted in reduced levels of APP 

phosphorylation at thr 668. Reduced phosphorylation at this APP site increases its 

propensity to be processed via the non-amyloidogenic pathway, precluding the 

formation of Aβ-42 (Lee et al., 2003). This finding therefore suggests that LiCl treatment 

of slice cultures may have reduced levels of Aβ, should they have been quantified here. 

The effects of lithium on APP processing and Aβ production in AD are currently unclear. 

Previous studies, both in vitro and in vivo, suggest an ability of lithium to reduce Aβ 

levels (Phiel et al., 2003, Su et al., 2004), although no changes in Aβ levels were observed 

following LiCl treatment of  3xTg-AD mice (Caccamo et al., 2007). These findings also 

support those of others where lithium treatment of neuroblastoma cells prevents 

phosphorylation of APP at thr 668, reducing axonal transport of APP (Acevedo et al., 

2014). This axonal transport is necessary to enable the transport of APP for physiological 

functions at the synapse (Hoe et al., 2012) as well as in other neuronal compartments. 

However, increased amounts of APP phosphorylation at thr 668 are found in AD brain, 

and are thought to be associated with synaptic deficits and memory loss in AD (Shin et 

al., 2007, Lombino et al., 2013), suggesting that reduced phosphorylation of APP at thr 

668 may be beneficial in AD. Thus, although the mechanism of action is not clear, the 

results presented here, and by others, suggests that LiCl could have beneficial effects in 

AD by reducing both tau and APP phosphorylation.   

 

To further validate slice cultures as a tool for drug discovery, 3xTg-AD slice cultures were 

treated for 24 hours with 1 x 10-7 M NAPVSIPQ. Treatment of the slice cultures reduced 

tau phosphorylation at thr 231, a site thought to be involved in microtubule binding and 
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stabilisation (Sengupta et al., 1998). This finding recapitulated previous in vivo findings in 

3xTg-AD mice, where phosphorylation of tau at thr 231 was also attenuated by 

NAPVSIPQ treatment (Matsuoka et al., 2007, Matsuoka et al., 2008). Conversely, 

phosphorylation of tau at ser 199/202 and thr 205 in 3xTg-AD slice cultures was not 

affected by NAPVSIPQ treatment, despite phosphorylation at these sites being reduced 

by NAPVSIPQ treatment in vivo (Matsuoka et al., 2007, Matsuoka et al., 2008). Again, the 

reasons for the discrepancies between these results is not clear, but it is possible that 

NAPVSIPQ treatment of 3xTg-AD slice cultures did not affect tau phosphorylation at ser 

199/202 and thr 205 because chronic exposure may be required to reduce 

phosphorylation at these sites and only one dose of NAPVSIPQ was applied to slices 

unlike the several doses given in vivo. Alternatively, levels of tau phosphorylation at 

these sites may have been higher in 3xTg-AD slice cultures than in vivo so these may 

have been less readily responsive to treatment. 

 

NAPVSIPQ is widely reported as a microtubule interacting agent (Quraishe et al., 2013). 

However, the results presented here using 3xTg-AD slice cultures have shown that 

NAPVSIPQ does not increase the binding of tau to microtubules, nor does it rescue 

microtubule destabilisation after treatment with nocodazole, a microtubule destabilising 

agent (Samson et al., 1979). This suggests that positive effects of NAPVSIPQ on tau 

phosphorylation are not mediated through changes in microtubule stability. This is in 

agreement with others who have demonstrated that NAPVSIPQ does not directly affect 

the polymerisation or dynamics of microtubules (Yenjerla et al., 2010), but disagrees 

with in vitro findings that have shown that NAPVSIPQ can increase microtubule stability 
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(Gozes and Divinski, 2004, Divinski et al., 2006). Previous in vivo work in mouse models 

of tauopathies has also not been able to uncover the mechanisms by which NAPVSIPQ 

treatment leads to reduced tau phosphorylation and lowering of insoluble tau amounts 

(Matsuoka et al., 2007, Matsuoka et al., 2008, Shiryaev et al., 2009). Here, we have 

shown that the reductions in tau phosphorylation at thr 231 that result from NAPVSIPQ 

treatment does not cause changes in the binding of tau to microtubules. The 

mechanisms underlying the tau-targeted effects of NAPVSIPQ remain to be established. 

 

6.3.2 BTA-EG4 as a novel AD drug 

Previous research has highlighted that BTA-EG4 may hold potential as a novel AD 

therapeutic. BTA-EG4 has amyloid-binding properties (Inbar et al., 2006), and is 

neuroprotective in vitro against Aβ preparations and associated subsequent hydrogen 

peroxide release (Habib et al., 2010). BTA-EG4 readily crosses the blood-brain-barrier and 

is soluble in aqueous environments (Inbar et al., 2006) making it an ideal candidate for 

pre-clinical studies into its potential use in the treatment of AD or other tauopathies.  

 

Several beneficial effects of BTA-EG4 relevant to AD have been identified in this thesis 

and by others. Firstly, BTA-EG4 treatment reduces the production of Aβ-40 in vivo in 

adult WT mice and young 3xTg-AD mice (Megill et al., 2013, Song et al., 2014). 

Production of Aβ-42 was not assessed in these published studies, however treatment 

with BTA-EG4 in this work did not attenuate levels of Aβ-42 and nor did it affect the ratio 

of Aβ-42 to Aβ-40 or Aβ-40 levels in 3xTg-AD slice cultures at 28 div, a time at which Aβ-

42 is significantly overproduced in these cultures,. Additionally, BTA-EG4 increases the 
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production of sAPPα and reduces production of sAPPβ in WT mice (Megill et al., 2013), 

suggesting BTA-EG4 is able to drive less β-secretase cleavage of APP under certain 

conditions. Therefore positive effects against Aβ and reduced β-secretase cleavage of 

APP in some systems are likely relevant to the treatment of AD before the build-up of 

Aβ-containing plaques in AD (O’Brien and Wong, 2011). Taken together with the findings 

that amounts of Aβ-40 are attenuated in young but not old 3xTg-AD mice (Song et al., 

2014), it is likely that the stage of AD in which BTA-EG4 is given is important for its effects 

on Aβ amounts since APP processing changes as AD progresses (Stockley and O'Neill, 

2007, O’Brien and Wong, 2011). Secondly, BTA-EG4 increases spine density, the number 

of functional synapses and overall synaptic function, as measured by an increased 

frequency of miniature excitatory postsynaptic currents (mEPSCs) in the cortex and 

hippocampus in WT mice. These synaptic improvements are also accompanied by 

improved cognitive performance in WT mice (Megill et al., 2013). BTA-EG4 treatment of 

3xTg-AD mice also increases spine density and spine size in the cortex and hippocampus, 

alongside improving cognitive performance compared to untreated 3xTg-AD mice (Song 

et al., 2014). These positive effects of BTA-EG4 at synaptic and behavioural levels further 

support the likely beneficial effects of this treatment for AD (Terry et al., 1991, Sheng et 

al., 2012).  Lastly, in 3xTg-AD slice cultures, BTA-EG4 was shown here for the first time to 

significantly reduce tau phosphorylation at ser 202, but not ser 396/404. Again, the 

stage of AD at which BTA-EG4 is given is suggested to be critical, as in primary cortical 

neurons, where there is no accumulation of pathological tau, the phosphorylation of tau 

at ser 199/202 and thr 205, ser 202 and ser 396/404 is attenuated with BTA-EG4. These 

novel effects of BTA-EG4 on tau are also likely relevant to the treatment of AD since 
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changes in tau are most closely associated with dementia in AD (Perez-Nievas et al., 

2013) and tau is necessary for Aβ-induced neuronal loss (Rapoport et al., 2002) and 

deficits in LTP (Shipton et al., 2011). 

 

Several mechanisms for the mode of action of BTA-EG4 have been proposed so far. 

Firstly, BTA-EG4 has been shown to increase the cell surface expression of APP (Megill et 

al., 2013), which enhances preferential cleavage by α-secretase to preclude Aβ 

formation (Hyman, 2011). Increased synaptic density observed with BTA-EG4 both in WT 

and 3xTg-AD mice was shown to be as a result of APP-dependent increases in Ras 

activity as well as downstream Ras signalling (Megill et al., 2013, Song et al., 2014). 

Lastly, data presented in this thesis has shown that BTA-EG4 significantly reduces GSK-3 

activity in 3xTg-AD slice culture but does not affect cdk5 activity. However, in WT 

primary cortical neurons, p35 activation of cdk5, rather than GSK-3 activity, was found to 

be reduced. This discrepancy in the effect of BTA-EG4 on cdk5 and GSK-3 activity in these 

different model systems is unclear, but might be related to interactions between GSK-3 

and cdk5 (Engmann and Giese, 2009), which likely differ depending on whether the 

system contains physiological tau (WT primary cortical neurons) or pathological tau 

(3xTg-AD slice cultures). 

 

Taken together, these findings support further investigation into the potential beneficial 

effects of BTA-EG4 and similar compounds in the treatment of AD, particularly since BTA-

EG4 appears to have positive effects at the synapse, on Aβ and tau, and also improving 

cognition. Finally, the results discussed here indicate that for all treatments, it is 
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important to assess the disease stage of models when interpreting the effectiveness of 

potential therapies as this is likely to be relevant to successful outcomes in clinical trials.   

 

6.4 Limitations of this work 

For all of the work presented in this thesis, the utmost effort was taken to ensure that 

the experimental work carried out was well designed, planned and controlled. However, 

it is important to discuss some of the limitations of this work.  

 

6.4.1 Slice Culture survival 

At the outset of the project, it was planned that slice cultures would be cultured for 

longer durations of time, as culture periods of up to 6 months had previously been 

reported (Duff et al., 2002). However, WT and 3xTg-AD slice cultures showed a rapid 

death rate beyond 28 div. Most slice cultures were found to suddenly die at 

approximately 30 div, and only a few slice cultures were found to survive up to 2-3 

months in vitro. Throughout the course of this project, reasons for this sudden death 

were explored, however, it was not possible to identify a specific reason for this sudden 

death. Further optimisation of methods to prepare slice cultures could potentially 

enable slices to survive for longer periods of time. 

 

Levels of Aβ and phosphorylated tau species were assessed here using biochemical 

methods, but it is likely that if slice cultures were able to survive for longer durations in 

culture allowing the disease phenotype to further develop, that aggregated Aβ and tau 

species may also have been detected using histological methods, as reported by (Duff et 
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al., 2002). Additionally, longer culture periods would allow other important disease 

characteristics such as synaptic integrity to be monitored over time, as well as allowing 

the assessment of treatment effects in cultures maintained for time periods beyond 28 

div, representing later disease stages. 

 

6.4.2 Limitations of antibodies 

Despite using different dilutions, dilution buffers, incubation periods, alternative 

epitopes and suppliers, several primary antibodies for western blotting, ELISA or 

immunohistochemistry did not detect the protein of interest. This prevented certain 

proteins from being detected in 3xTg-AD slice cultures to allow a greater breadth of 

characterisation of the slice cultures. 

 

Specifically, antibodies were used to detect PS1, sAPPα, sAPPβ, C83, C99, Aβ-40, Aβ-42 

but none of these were detected in organotypic brain slice cultures using western 

blotting. Additionally, several antibodies against additional tau phosphorylation sites 

were used to try and establish a direct ELISA that would enable simultaneous analysis of 

several samples; however, some of these antibodies did not work at all in direct ELISAs 

and others did not produce reproducible, reliable results. Since ELISAs are well 

established in the laboratory, this is likely not to be a general problem with the 

methodology, yet again reflects difficulties in obtaining reliable signals with some 

commercially available antibodies. Finally, some antibodies were used successfully to 

detect phosphorylated tau in organotypic brain slice cultures from mice using 

immunohistochemistry, however the tau antibodies; MC1, tau-1, Tg3 and TOC1 were 
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not able to be successfully optimised for this work, despite these antibodies being 

previously published for this type of use (Brion et al., 1999, Oh et al., 2010, Ward et al., 

2014). 

 

6.4.3 Tau release mechanisms 

As described in chapter 5, several experiments were planned to be conducted in WT and 

3xTg-AD slice cultures, however, due to time constraints and unexpected slice culture 

death they were not able to be carried out, or were carried out only once. 

 

Specifically, media from control or KCl-treated WT and 3xTg-AD slice cultures was 

planned to be concentrated in order to identify any extracellular vesicular-associated 

tau, phosphorylated or dephosphorylated tau and any N-terminal or C-terminal 

truncated or intact species to understand the species of tau associated with 

physiological and pathological tau release. In addition, experiments exploring the effect 

of neuronal activity on physiological and pathological tau release were only performed 

once, with small group sizes, allowing no statistical tests to be performed on the data, 

and only allowing assumptions rather than conclusions to be drawn from the gathered 

data. 

 

6.5 Future directions 

A lot of the work presented in this thesis involved the development of the 3xTg-AD slice 

culture model and subsequent characterisation of AD-relevant features. Now that this 

model is well characterised, it lends itself to further optimisation, as well as for the 
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development of techniques designed to exploit this slice culture system in further 

research to understand the mechanisms involved in AD. The following section outlines 

some of the experiments that could be conducted to extend from the work presented in 

this thesis. 

 

6.5.1 Optimise slice culture survival 

Methods presented in this thesis enabled both WT and 3xTg-AD organotypic brain slice 

cultures to survive up to 30 div. 3xTg-AD slice cultures showed progressive increases in 

tau phosphorylation at several AD-relevant sites, an increased abundance of high 

molecular weight tau, as well as increased levels of Aβ-42 and other AD-relevant 

proteins. However, beyond 30 div slice cultures showed a rapid release of LDH and 

subsequent death. It would be interesting to further optimise the culture of organotypic 

brain slices to allow investigation of AD-related changes and the effects of drug 

treatments beyond this time-point. Approaches which could optimise the survival of 

slice cultures for longer durations would include: 

1. Alternative medium composition. Slice culture medium containing less 

horse serum (20%), or B27 supplement as an alternative, alongside altered levels 

of sugars and salts have also been shown to promote long-term culture (Opitz-

Araya and Barria, 2011, Mewes et al., 2012). These culture mediums may be 

more suited to promoting the survival of 3xTg-AD slice cultures. 

2. Alternative membrane inserts. The Millipore inserts used in these 

experiments are made from polytetrafluoroethylene (PTFE) and are marketed as 

supporting culture for up to 40 div. Other inserts made from polyethylene 
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terephthalate (PET) were tested when developing the slice culture model but did 

not support slice culture survival. Other inserts made from Anopore™ are 

available and it is possible that these may support longer-term culture. 

3. Preparing thinner slice cultures. Slices cultured at 200 μm thickness 

compared to 300 μm thickness show a 30–50 % higher metabolism rate likely 

through a better nutrition supply and show reduced levels of cell death (Mewes 

et al., 2012). 

4. Culturing at a lower temperature. Slices cultured at 32 oC instead of 35 oC 

show a better survival rate, likely through reduced levels of ischaemia (Frantseva 

et al., 1999, Mewes et al., 2012). 

 

6.5.2 Optimise imaging methods for examining pathological changes in 3xTg-AD slice 

cultures 

As discussed above, should slice culture methods be optimised such that they can 

survive beyond 30 div, it is likely they may develop aggregates of tau or Aβ, as previously 

demonstrated after long periods of culture in mice overexpressing mutant APP or tau 

(Duff et al., 2002). An optimised protocol to detect plaques using thioflavin s or congo 

red (Rajamohamedsait and Sigurdsson, 2012) and to detect NFTs using gallyas staining 

(Kuninaka et al., 2015) in organotypic brain slice cultures would be useful to identify 

these neuropathological features of AD. 

 

In addition, slice cultures lend themselves to other advanced imaging techniques which 

could be used to underpin the progression of AD-relevant changes in the slice cultures. 
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For example, array tomography could be used to more closely look at the effects of Aβ, 

tau and APP at the synapse in slice cultures (Micheva and Smith, 2007, Koffie et al., 

2009). In addition, using live imaging of calcium to identify any changes in slice cultures 

would also increase our knowledge of this aspect of AD (Goldberg and Yuste, 2009). 

 

6.5.3 Investigate different time points of drug intervention 

Due to time constraints of the project, treatments were provided to 3xTg-AD slice 

cultures at 28 div, when significant amounts of Aβ-42, phosphorylated tau and high 

molecular weight tau had accumulated. Future work should elucidate the effects of 

treatments on slices cultured for shorter and longer times to further investigate the 

effects of disease stage on the effectiveness of each treatment. In particular, 3xTg-AD 

slice cultures treated at  28 div with BTA-EG4 did not show any changes in levels of Aβ-

42, but one may speculate that had slice cultures been treated at 14 div when only a 

small overproduction of Aβ-42 is evident, treatment with BTA-EG4 may have shown 

different effects since treatment of young but not old 3xTg-AD mice with BTA-EG4 

reduces levels of Aβ-40 (Song et al., 2014). Consequently, this is highly relevant to the 

treatment of AD in humans, particularly concerning the need for an early and accurate 

diagnosis of the disease (Schaffer et al., 2015) for certain treatments to be effective, as 

well as a demand for other treatments which can be used if the diagnosis of the disease 

is received much later in the disease course.  
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6.5.4 Investigate BTA-EG4 and other benzothiazole derivatives ex vivo and in vivo 

3xTg-AD slice cultures treated with BTA-EG4 showed reduced activation of GSK-3 and 

this was associated with reductions in the phosphorylation of tau at ser 202. 

Additionally, primary cortical neurons treated with BTA-EG4 showed reductions in tau 

phosphorylation at ser 199/292 and thr 205 and ser 396/404 that were associated with 

inactivation of cdk5. This suggests that the differential effects of BTA-EG4 on tau and 

kinase activity are apparent in different disease states of a system, as discussed above. 

However, these results also suggest that exploring the effects of BTA-EG4 on tau in vivo 

could be an important focus of future experiments. Additionally, other benzothiazole 

derivatives similar to BTA-EG4 have been confirmed with better blood-brain-barrier 

penetration, a lower toxicity and an increased solubility (Jerry Yang, personal 

communication), suggesting these could also be investigated as potential AD 

therapeutics which target disease-associated changes in tau. 

 

6.5.5 Develop a further understanding of mechanisms of pathological and 

physiological tau release 

Due to time constraints and problems with slice culture survival, some planned 

experiments to investigate physiological and pathological tau release in organotypic 

brain slice cultures were not performed, so these would be a focus of future work. 

Specifically, medium from both WT and 3xTg-AD, control and KCl-treated slice cultures 

should be concentrated and examined for tau associated with vesicles, full-length, N- 

and C-terminally truncated tau species, as well as phosphorylated and dephosphorylated 

species of tau, to begin to investigate the role of these tau species physiologically and in 
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disease. The media could also be used to examine species of tau release via alternative 

methods including ELISA (Kanmert et al., 2015) or mass spectrometry (Bright et al., 

2015). 

 

Additionally, experiments using the pre-treatment of TTX to inhibit neuronal stimulation 

of WT and 3xTg-AD slice cultures were only performed once so should be repeated to 

fully understand the effects of neuronal activity on physiological and pathological tau 

release. In addition, slice cultures lend themselves to electrophysiology studies, so any 

changes in neuronal hyperactivity accompanying release could be assessed using this 

method (Plenz et al., 2011, Bright et al., 2015). 

 

Furthermore, 3xTg-AD slice cultures lend themselves to study the interplay between Aβ 

and tau in the propagation of tau in AD. Specifically, treatment of 3xTg-AD slice cultures 

with γ-secretase inhibitors to prevent the formation of Aβ species (Golde et al., 2013) or 

applying antibodies to the slice cultures against Aβ would provide novel information to 

understand the role of Aβ in the propagation and release of extracellular tau in AD. In 

addition, slice cultures also provide an appropriate platform to study therapies targeting 

extracellular tau, including antibodies against extracellular tau (Bright et al., 2015). 

 

Finally, it is conceivable that slice cultures could be used for tau seeding experiments, 

where tau seeds from human AD or tauopathy brain can be applied on to the slice 

cultures, and propagation from cell to cell and region to region can be assessed using 

histological or advanced live imaging methods more rapidly in slice cultures than in vivo, 
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but in more intact brain than in vitro studies (Sanders et al., 2014) enabling a greater 

understanding of propagation of tau in AD. In addition, AAV technology (Chakrabarty et 

al., 2015) could be used to express tau in one specific region of the slice cultures, and its 

spread could also be rapidly identified. Taken together, this series of experiments which 

could be easily and efficiently conducted in slice cultures would dramatically increase 

our knowledge of tau release and its role in tau propagation. A summary of experiments 

to investigate tau release and propagation in organotypic brain slice cultures can be 

seen in Figure 6.1. 

 

Figure 6.1: Visualisation of experiments to investigate tau propagation in organotypic 
brain slice cultures. 
Both WT and 3xTg-AD slice cultures can be used to investigate tau release and 
propagation. Tau seeds could be applied to slice cultures or AAV technology could be 
used to express tau in one region of a slice culture; any propagation of tau could then be 
assessed by histological or advanced imaging methods. To investigate whether tau is 
released at the synapse, the application of TTX prior to depolarisation with KCl would 
block this release should it be synaptic. Furthermore, interactions between Aβ and tau in 
the release and propagation of tau could be investigated using γ-secretase inhibitors or 
antibodies against tau or Aβ. In all these situations, levels of total, phosphorylated and 
cleaved tau and exosomal total and phosphorylated tau should be measured in the 
media by western blotting, ELISA or mass spectrometry. 
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6.5.6 Determine whether increased total tau amounts are found at the synapse in 

early AD 

Previous research assessing tau at the synapse has been performed in both control and 

advanced-staged AD brain. These findings suggest that there are no differences in total 

tau amounts at the synapse between AD and non-diseased brain (Tai et al., 2012, Tai et 

al., 2014), however, increased amounts of phosphorylated and misfolded tau are found 

at the synapse in AD (Tai et al., 2014). Results both in vivo and ex vivo in 3xTg-AD mice 

and slice cultures, respectively, suggest an early increase in total tau amounts at the 

synapse, which progressively returns to control levels, thus suggesting the redistribution 

of tau from the synapse to other compartments or the extracellular space and/or post-

translational modifications of tau at the synapse at later stages of AD. As we have access 

to post-mortem human brain diagnosed at all the Braak stages of AD (Braak and Braak, 

1991, Braak and Braak, 1995), it would be interesting to prepare synaptosomes from this 

brain tissue and determine whether this early but not sustained increases in tau at the 

synapse is also found in human AD brain.  Furthermore, array tomography could be used 

to study interactions between Aβ species and tau species at the synapse at the different 

Braak stages (Kay et al., 2013). It would also be interesting to identify whether 

dephosphorylated tau is also present at the membrane in human tissue preparations as 

found in vitro (Arrasate et al., 2000, Pooler et al., 2012) and ex vivo in slice cultures, as 

this may be associated with the propagation of tau in AD. 

 



 
312 

 

6.6 Final Conclusions 

Overall, the data presented in this thesis demonstrates that organotypic brain slice 

cultures prepared from 3xTg-AD mice provide a reliable ex vivo model of AD which 

rapidly develops progressive AD-related changes. This slice culture system can be used 

effectively to understand mechanisms and pathways underlying the development and 

progression of AD, as well as in pre-clinical testing of potential AD therapeutics. In 

particular, slice cultures have been exploited here to increase understanding of the 

mechanisms implicated in physiological and pathological tau release and to understand 

the novel tau-targeted effects of the amyloid-binding agent BTA-EG4. 

In conclusion, this novel slice culture model of AD, developed using NC3Rs funding, 

should significantly reduce the number of animals required for neurodegeneration 

research, refine experiments into AD by reducing variability, whilst also reducing and 

replacing the need for invasive in vivo studies. Therefore, this novel experimental model 

should accelerate studies underpinning the mechanisms of AD and the discovery of 

novel therapeutics for AD and other neurodegenerative conditions. 
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