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Abstract 

Transepithelial migration (TEpM) of leucocytes during the inflammatory process 

requires engagement with receptors expressed on the basolateral surface of the 

epithelium. One such receptor is Coxsackie and Adenovirus Receptor (CAR) 

which binds to Junction Adhesion Molecule - L (JAM-L) on leucocytes during 

TEpM.  

This study reports the first evidence that TEpM of leucocyte cells requires, and is 

controlled by, phosphorylation of the cytoplasmic tail of CAR. The in vitro data 

shows that these leucocyte cells can adhere to an epithelial layer but where the 

cytoplasmic tail of CAR is prevented from undergoing phosphorylation the 

leucocytes are unable to transmigrate. Furthermore it shows that this CAR 

phosphorylation step is driven by TNF α signalling via a TNFR1-PI3K-PKCδ 

dependent signalling pathway. The work demonstrates that THP-1 cells can 

secrete TNF α thereby activating the CAR phosphorylation pathway leading to 

TEpM without addition of exogenous TNF α but importantly where TNF α is 

added this process is augmented suggesting a role for CAR in inflammatory 

conditions.  Mouse models also confirm that CAR phosphorylation in response to 

inflammatory stimuli occur in vivo. Both acute (a 24 hour inhaled TNF α 

challenge) and chronic (a 34 day ovalbumin challenge) inflammatory conditions 

are studied. Confocal microscopy techniques are used to show that the 

cytoplasmic tail of CAR is phosphorylated. Specifically this is seen at the cell 

membrane of epithelial cells of bronchioles with associated inflammatory cells in 

the interstitium.  

Taken together these data describe a novel method for the control of TEpM by 

transmigrating leucocytes that can also be heightened by the presence of pro-

inflammatory cytokines during inflammation. This provides a novel target for 

controlling inflammation at the epithelium, a key component of the pathogenesis 

of many diseases including asthma. 
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1 : Introduction 

1.1 The Respiratory Epithelium 

The respiratory epithelium comprises a layer of cells that line the respiratory 

system. It is predominantly made up of three epithelial cell types that work in 

combination to ensure the smooth flow of air in and out of the lungs and ensure 

that harmful substances do not enter the body. These cells include columnar 

epithelial cells, goblet cells and basal cells. In the oro and nasopharynx these 

columnar epithelial cells are replaced by squamous cells as they are designed to 

withstand the abrasive nature of the environment with an increased turnover of 

cells. As the layer reaches the alveolar space type I and II pneumocytes 

predominate to facilitate gas exchange. The epithelial cells form a single 

monolayer as they are all in contact with the underlying basement membrane but 

are referred to as ‘pseudo-stratified’ as in cross section the nuclei are not aligned 

and thereby the cells appear to be on top of one another. They do not function in 

isolation but instead interact closely with the underlying mesenchymal tissue, 

including dendritic cells and fibroblasts to affect the overall function of the 

airways. This process is key to both homeostasis of the lung airway and repair 

through stimulation of the primary stem cells within the lung epithelium: basal 

cells (cartilaginous airways), club cells (cartilaginous airways and bronchioles) 

and ATII cells (alveoli). 

1.2 The Role of the Respiratory Epithelium in Asthma and 

Inflammation 

The respiratory epithelium performs a complex role in the maintenance and 

function of the respiratory system. With an estimated area of 100m2 it provides 

the largest surface area in contact with the outside world (Holgate, 2007). With 
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each breath the airway is exposed to a variety of allergens and infectious agents. 

In view of this, it functions as a barrier, which incorporates physical, chemical and 

immunological actions (Lambrecht and Hammad, 2012, Davies, 2009, Tam et al., 

2011). As such, the lung epithelium is in a central position to control immune 

homeostasis. Understanding of the immune system in the lungs has historically 

focused on leucocytes as both effectors and controllers. However an epithelial-

centred approach provides an explanation for the lungs response to a diverse 

degree of stimuli including smoke, viruses and allergens (Hallstrand et al., 2014).  

This conclusion was first drawn following experiments that aimed to produce an 

asthma model (Boushey and Holtzman, 1985, Holtzman et al., 2014). The 

concept has developed as epithelial cells have been shown to have pattern 

recognition receptors that are designed to recognise foreign and potentially 

dangerous inhaled materials (Holgate et al., 2000, Lambrecht and Hammad, 

2012).  Asthma, as a disease entity, provides a paradigm of the growing evidence 

for the role of the epithelium in the inflammatory process. The term was originally 

used to describe patients with paroxysmal dyspnoea in 1860 by Henry Salter 

(Cohen, 1997). Our concept and treatment of asthma developed with an 

understanding of allergic pathways associated with atopy and the function of 

white blood cells and in particular eosinophils and more recently T lymphocytes in 

inflammation. However, despite our improved knowledge of the function of these 

cells in vitro and their responses, treatments have proved unsuccessful in 

controlling all aspects of the disease. This reflects its heterogeneous nature and 

the complex interaction that occurs in vivo between the individual and the 

environment which incorporates a variety of different cell types and has led to the 

introduction of the concept of the epithelial mesenchymal trophic unit (EMTU) 

(Holgate et al., 2000). This model places epithelial and mesenchymal cells in an 
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important bidirectional role in the inflammatory response seen in asthma as these 

cells both trigger a response to a stimuli and respond to other cells that are 

activated by the provocation (figure 1.1).  

 

Figure 1-1: The Epithelial-Mesenchymal Trophic Unit.  
Demonstrating the interaction between immunological and inflammatory 
mechanisms and structural elements of the respiratory system, placing epithelial 
cells in a key position to control the response. Adapted from Holgate 2010 
(Holgate, 2010). 
 

Aside from their ability to provide the initial response and stimulus to a perceived 

threat in the airway, epithelial cells are also key to controlling access either into or 

out of the airway thereby regulating the reaction that can occur. To perform its 

barrier role, the epithelium forms a continuous and highly regulated gate through 

which there can only be controlled movement. Interestingly, in a chronic lung 

inflammatory state in patients with asthma there is disruption of this barrier. This 

process has long been shown in asthmatic patients at a broad structural level 
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with the ‘desquamation’ of epithelial cells in post-mortem bronchoscopy 

specimens of patients dying as a result of their disease (Hogg, 1993). In life this 

disruption happens in a more subtle fashion through the interruption of stable 

links between cells with the loss of distinct junctional proteins (Holgate, 2007). 

This was demonstrated when cells taken from asthmatic patients and grown in 

vitro, for several passages, in the absence of other inflammatory mediators failed 

to form effective tight junctions with confocal staining demonstrating the reduction 

of the tight junction proteins Zonular Occludins-1 (ZO-1) and occludin (Holgate, 

2007). Further work has supported this finding (Xiao et al., 2011) and additionally 

showed that adherens junctions are altered via a reduction in E-cadherin in 

patients with asthma (Lambrecht and Hammad, 2012). These data highlight the 

impact that the link between individual epithelial cells, as provided by their 

junctions, may play in during inflammation. Our understanding of the role of 

specific junctional proteins, including Coxsackie and Adenoviral Receptor, in 

inflammation and particularly asthma is reviewed in the following sections. 

The model also shifts our understanding of the overall structural impact of the 

epithelium on airway remodelling in asthma, as the characteristic increase in 

smooth muscle surrounding the airway wall and thickening of the basal lamina 

can be seen in the relative absence of airway inflammation (Baraldo et al., 2011). 

This paradigm is instead dependent on abnormal wound healing driven by failure 

of the epithelial layer to regenerate appropriately leading to loss of its barrier 

integrity as a result of abnormal stem cell activation (Volckaert and De Langhe, 

2014).  
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1.3 Epithelial Cell Junctions 

The epithelium, as described, is composed of a single layer of epithelial cells. 

These cells are held in contact by a series of junctional complexes originally 

identified at an ultrastructural level in 1963 (Farquhar and Palade, 1963). They 

contain three different junctional structures (Figure 1-2). Adherens junctions form 

the initial cell to cell interaction through homotypic transmembrane adhesions. 

They are made up of two complexes; nectin-afadin complex and the classical 

cadherin-catenin complex, of which in the respiratory epithelium E-cadherin is the 

predominant cadherin present (Hallstrand et al., 2014, Niessen, 2007). These 

junctions are dynamic in nature to provide the cell contacts as they link to the 

cells internal actin cytoskeleton and microtubules via p120 and cytoplasmic 

adaptor proteins α-catenin and β-catenin (Hallstrand et al., 2014).  

A second more apical link is formed by tight junctions (TJ’s) whose primary 

function is to control the passage of solutes and immune cells between epithelial 

cells, either from the airway lumen into the interstitium or vice versa. These 

junctions are made up of a complex of transmembrane proteins that either 

homodimerise with proteins in adjacent cells or with alternative proteins on 

transmigrating cells. These proteins include members of the junctional adhesion 

molecule family (JAM’s), claudins and occludins. They in turn link to ZO at the 

cell membrane to form a stable tight junction complex.  

Finally desmosomes form a third interaction to resist mechanical stress and 

shearing forces on the epithelium. They consist of non-classical cadherins such 

as desmocollin and desmoglein which form strongly adhesive links between the 

filamentous cytoskeleton of epithelial cells and the lamina propria (Garrod and 

Chidgey, 2008).  
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Figure 1-2: Cell to cell adhesion in the airway epithelium.  

Showing the three common connections made between epithelial cells. Tights 
junctions shown are formed from the interaction between transmembrane 
proteins, Junction Adhesion Molecules (JAM’S), claudins and occludin anchored 
to further proteins including the Zonular Occludins (ZO) and Partitioning defective 
(PAR) proteins. They function to control permeability between cells. Adherens 
junctions  mechanically connect adjacent cells and initiate the formation and 
maturation of cell–cell contacts through homotypic adhesions of E-cadherin, 
which is stabilized in the membrane by binding to anchor proteins p120 catenin, 
β-catenin, and α-catenin, which form an interface with the cell's microtubule 
network and actin cytoskeleton. Desmosomes consist of non-classical cadherins 
and form adhesive bonds with the filament cytoskeleton of the cells. Adapted 
from Hallstrand et.al (Hallstrand et al., 2014). 

1.4 Tight Junctions 

Tight junctions, as described, provide discrete contacts between adjacent cells 

that enable them to control paracellular permeability of water, solutes and cells as 

well as serving to define the apical and basolateral membrane compartments of 

polarised epithelial cells (Cohen et al., 2001, Anderson and Van Itallie, 2009). 

This mechanism is vital in the normal physiological function of the airway 

epithelial layer as it is key to providing an interface between the external 
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environment and the underlying tissue (Swindle et al., 2009). Where this is 

disrupted there is uninhibited movement of anything from small molecules to 

cells. This process is bi-directional as immune cells can pass out into the lumen.  

Tight junctions are formed by the interaction of multiple transmembrane receptors 

including occludin, claudins, tricellulin and the JAM family, of which Coxsackie 

and Adenovirus Receptor (CAR) is a member (figure 1.3) (Schulzke and Fromm, 

2009).  Tight junction associated adaptor proteins, such as the ZO family, link the 

membrane to the actin cytoskeleton. Together they work in complex to stabilise 

both endothelial and epithelial layers and to control passage of substances 

between cells (Hardyman et al., 2013). They sit at the most apical point of the 

intracellular junctions and as such mark the boundary between the apical 

membrane of the cells and the basolateral component (Niessen, 2007). When 

formed they pull the two adjacent cell membranes very closely together to ensure 

there is almost no intracellular space through which solutes can pass 

uncontrolled. In addition to this barrier function, specific tight junctions 

components can play individual roles such as receptors, signalling molecules or 

regulators of absorption (Schulzke and Fromm, 2009). 

The proteins that make up the tight junction can be modified in multiple ways to 

alter the function and structure of the junction. This includes steps to control the 

presence of the protein at the junction through regulation of gene expression, 

modification of mRNA or protein half-life, endocytosis and/or micropinocytosis 

and cleavage of tight junction proteins (Schulzke and Fromm, 2009). Alterations 

can also be made to the activity of the proteins when they are at the junctions via 

phosphorylation (Gonzalez-Mariscal et al., 2008). The importance of 

phosphorylation of tight junction proteins was first advanced through its impact on 

ZO-1 which when phosphorylated was found be associated with a loss of trans-
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epithelial resistance (Stevenson et al., 1989). Our understanding of the relevance 

of these phosphorylation events is hampered by the fact that individual tight 

junction proteins can be phosphorylated at different sites by different kinases at 

the same time. One such family of kinases is the Protein kinase C (PKC) family 

which comprises 15 separate enzymes subdivided into three separate groups 

depending on their method of activation: (1) conventional (α, β1, β2 and γ) which 

are Ca2+ and diacylglycerol (DAG) dependent, (2) novel (δ, ε, θ, η and μ) which 

are DAG dependent and (3) atypical (λ, ξ and τ) which are both Ca2+ and DAG 

independent.  

These kinases phosphorylate serine/threonine residues and have shown to be 

active at tight junctions following a number of diverse stimuli including oxidative 

stress (Perez et al., 2006), calcium wash out (Citi, 1992), vascular endothelial 

growth factor (Muto et al., 2000) and cytokines (Tumour necrosis factor (TNF α) 

and Interferon γ) (Coyne et al., 2002). Interestingly they have been shown to 

phosphorylate specific tight junction proteins causing a variety of disease states. 

For example when nPKCδ is blocked, occludin is no longer phosphorylated with a 

resultant loss of tight junction formation in MDCK cells (Andreeva et al., 2006). 

Phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K) is another kinase 

associated with tight junction protein phosphorylation. It works in sequence with 

Akt to drive serine/ threonine phosphorylation. Depending on the cell type and 

stimulus used its activity can lead to both an increase and a decrease in junction 

stability (Gonzalez-Mariscal et al., 2008). Therefore proteins in the tight junction 

are not in a passive state but instead can be controlled by the overall epithelial 

state. 
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Figure 1-3: Graphic representation of a tight junction. 
Includes the transmembrane components comprising claudins, occludin, 
tricellulin and JAM’s. Also shown are the intracellular anchoring proteins (ZO1/2, 
Membrane-associated guanylate kinase 1(MAGI), Multi-PDZ domain protein 
1(MUPPI), Cingulin) necessary to provide a link to the actin cytoskeleton adapted 
from Niessen 2007 (Niessen, 2007). 
 

1.5 Junction Adhesion Molecules  

The Junction Adhesion Molecule (JAM) family make up part of the tight junction 

complex and are members of the larger immunoglobulin (Ig) superfamily of 

adhesion receptors. They are part of the same immunoglobulin family due to their 

shared extracellular Ig-like domains: a membrane-distal V type Ig-domain and a 

membrane-proximal C2-type Ig-domain that allow for both homo and 

heterodimerisation in trans (Ebnet et al., 2004). Within the family itself there is a 

degree of additional grouping based on their amino acid sequence. The JAM 
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family include a distinct group sometimes referred to as the ’classical’ JAM 

proteins with an approximate 35% amino acid similarity containing JAM-A 

(Malergue et al., 1998), JAM-B (Cunningham et al., 2000, Palmeri et al., 2000) 

and JAM-C (Arrate et al., 2001).  These three JAM family members are distinct 

as they contain a class II PDZ-binding motif at the C-terminus of their cytoplasmic 

tail (Ebnet et al., 2004). Coxsackie and Adenovirus Receptor (CAR), CAR like 

membrane protein (CLMP), Endothelial Selective Adhesion Molecule (ESAM) 

and JAM-4 make up a separate subfamily as they have an alternative class I 

PDZ-binding domain at the C-terminus of their cytoplasmic tail. This difference 

leads to alternative intracellular binding proteins for the different family members 

which in turn results in their different intracellular functions. The different 

subfamilies also vary by the average length of their cytoplasmic tails (figure 1.4). 

The variation in the tail length with the resultant presence of different 

phosphorylation sites suggests that these differences are present in order to 

enable the protein to cause functional changes to the cells.  
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Figure 1-4: Members of the junction adhesion family of transmembrane 
proteins. 
A – Showing different members of the JAM family and highlighting the variation in 
the cytoplasmic tail length. B – The phylogenic tree of for the JAM family (Ebnet 
et al., 2004). 
 

Importantly although they do subtly differ in their amino acid structure and 

sequence their extracellular domains are capable of interacting. Individual JAM 

family proteins can form dimers with each other at the cell membrane. JAM-A for 

example was originally shown to be orientated in a U-shaped cis dimer at the cell 

membrane of individual endothelial cells which can homodimerise in trans with 

JAM-A found at the cell membrane in adjacent cells (Kostrewa et al., 2001). CAR 

is another member of the family to have been shown to homodimerise in trans at 

the cell membrane (Coyne and Bergelson, 2005) but interestingly it can also form 

heterodimers with other members of the JAM family, in particular JAM-L found on 

transmigrating leucocytes (Verdino et al., 2010, Witherden et al., 2010).  
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Significantly JAM-L expression is restricted to neutrophils, monocytes, and 

memory T cells (Luissint et al., 2008). At the cell membrane JAM-L interacts with 

VLA-4, where VLA-4 controls its dimerisation with CAR. VLA-4 is important in the 

transmigration of leukocytes through the endothelial layer. This interaction 

between CAR and JAM-L has an exceptional number of interdigitating salt 

bridges formed through the interaction of the domain 1 (D1) immunoglobulin 

components of both the CAR and JAM-L molecules which contributes binding 

energy but, more importantly, imparts high ligand specificity. CAR and JAM-L are 

not specific in their ability to form heterodimers as demonstrated in figure 1.5. 

Their specificity in forming heterodimers, therefore, places the JAM family in an 

important position to facilitate trans-epithelial migration (TEpM).  
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Figure 1-5: JAM family interactions.  
The multiple interactions of JAMs. JAMs can form specific cis- or trans- 
interactions with other JAM members (area marked as JAM interactions). All JAM 
members have been described as capable of forming or potentially forming 
homophilic cis and trans interactions (overlapping same colour). Heterophilic cis- 
and trans- interactions can occur between specific members of the JAM family 
(interlaced colour) or trans-interactions with integrin partners (overlapping colour, 
area marked as integrin interactions) (Lymphocyte function-associated antigen 
1(LFA-1), Very Late Antigen-4 (VLA-4) Macrophage-1 antigen (Mac-1). The 
prerequisite of a JAM-B/JAM-C interaction before JAM-B can engage VLA-4 is 
represented by arrows showing the sequential steps.(Bradfield et al., 2007) 
 

Members of the JAM family are found in leucocytes, endothelial cells and 

epithelial cells (Luissint et al., 2014). Given their association with endothelial cells 

and leucocytes extensive research has been undertaken showing their 

importance to vascular permeability through barrier control and leucocyte cell 

trafficking (Garrido-Urbani et al., 2008, Bradfield et al., 2007). Although present 
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on epithelial cells too their role in trans-epithelial migration (TEpM) has been less 

well studied.  

1.6 Coxsackie and Adenovirus Receptor 

Coxsackie and Adenovirus Receptor (CAR) is a 46 KDa transmembrane protein 

that in its predominant isoform, found at the cell membrane, is made up of 346 

amino acids (Coyne and Bergelson, 2005). It acts as a receptor for Coxsackie 

and Adenoviruses in addition to playing a role in cell-cell adhesion.  

CAR was initially identified as the primary docking protein for Coxsackie B 

viruses (CV1-CVB6) and members of the adenovirus family (subgroups A, C, D, 

E and F but not B) (Bergelson et al., 1997, Tomko et al., 1997). It has been 

extensively studied as adenoviruses have been evaluated as candidate vectors in 

gene therapy for conditions such as cystic fibrosis (Kremer and Perricaudet, 

1995) and in the treatment of a variety of cancers (Bruning and Runnebaum, 

2003). The adenovirus CAR binding site is the same used for extracellular D1-D1 

homotopic interactions and for heterodimerisation with JAM-L suggesting a 

reason for the sites preservation and use by viruses(Schreiber et al., 2014). 

1.6.1 The Structure of CAR 

Its structure comprises an extracellular domain, a transmembrane section and a 

cytoplasmic component (figure 1.6). As with other members of the JAM family, 

the extracellular domain is made up of two immunoglobulin components: a V-type 

Ig domain and a membrane-proximal C2-type Ig domain, referred to as D1 and 

D2 respectively and contains glycosylation and palmitoylation sites which are 

thought to be important in its function in Adenovirus infection (Coyne and 

Bergelson, 2005). The D1 component containing 118 amino acids has been 

expressed in bacteria and its crystalline structure forms a β-pleated sheet 
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sandwich fold that places it in the Ig family of membrane bound proteins (van 

Raaij et al., 2000, Bewley et al., 1999). Using Nuclear magnetic resonance 

(NMR) spectroscopy, the D2 component containing  98 amino acids has also 

been shown to form a β-pleated sheet sandwich in keeping with other members 

of the Ig superfamily but its sequence and structure does differ from other 

members with two -sheets, one consisting of -strands A, B and G and the other 

of β-strands C, E and G (Jiang and Caffrey, 2007).  

There is also  a single 23 amino acid trans-membrane domain which in the full 

length splice variant links to a 107 amino acid cytoplasmic domain (Coyne and 

Bergelson, 2005). There are splicing variants of the cytoplasmic tail that can 

result in an alteration in its structure and function. In human cells the gene 

responsible for CAR is found on chromosome 21q11.2 (Bowles et al., 1999). 

There have been several splice variants identified for the murine form of this 

gene, which can lead to alterations in the cytoplasmic tail (Chen et al., 2003). In 

Bergelson et al’s initial description of human CAR, it is reported as a 7 exon gene 

(Bergelson et al., 1997). The same group identified a mouse version as an 8 

exon gene (Bergelson et al., 1998). It has since been established that multiple 

isoforms of CAR exist with small variations of the 8 exons identified (Excoffon et 

al., 2010, Shaw et al., 2004, Raschperger et al., 2006, Gye et al., 2011). These 

isoforms are almost entirely identical but can have subtle physiological effects. 

For example; Excoffon et al showed that those forms that retain the terminal end 

of CAR’s cytoplasmic tail and therefore have the PDZ binding component but are 

shortened by 13 amino acids in the 7 exon form compared to the 8 exon have a 

different membrane localisation. The exon 7 form is instead predominantly 

basolateral whereas the exon 8 form appears mainly apically (Excoffon et al., 

2010) This alteration has been suggested as necessary for Coxsackie and 
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Adenoviruses infection of epithelial cells as the basolateral localisation of the 

originally identified exon 7 human form of CAR means that the receptor is hidden 

to a virus at the apical surface. However, across species the cytoplasmic tail is 

more extensively conserved than in other parts of the protein. For example, mice 

share 95% of the same amino acids on their cytoplasmic tail with the human 

version of CAR. The Zebrafish form of CAR is 44% identical to that found in 

human cells but this figure rises to 66% for the cytoplasmic tail  suggesting that 

the tail plays an important physiological role thereby ensuring its evolutionary 

maintenance (Coyne and Bergelson, 2005). 

  

Figure 1-6: Showing the four domains of CAR as a transmembrane protein 
(Coyne and Bergelson, 2005). 

D1 and D2 are extracellular domains, followed by a transmembrane region and 
long cytoplasmic tail (c). 

The intracellular section contains sites at which phosphorylation or palmitoylation 

can occur which suggests that it may play a physiological role in cell signalling 

and function (van't Hof and Crystal, 2002, Coyne and Bergelson, 2005). CAR 

truncation mutants have been used to show that the amino acids from 261 to 315 

(which contain the tyrosine/threonine/serine phosphorylation sites in figure 1.7) 
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are required to both enable calyculin-driven phosphorylation of CAR and activate 

p44/42 in response to homodimerisation (Morton et al., 2013, Farmer et al., 

2009). Furthermore two serine/threonine (290/293) phosphorylation sites have 

been specifically identified and have been shown to influence CAR meditated 

endocytosis of E-cadherin (Morton et al., 2013). In addition to this, the 

cytoplasmic tail contains one postulated tyrosine phosphorylation sites although 

to date this remains unvalidated (figure 1.7). There are also two membrane-

proximal cysteines that can be subject to fatty acid acylation and a C-terminal 

hydrophobic peptide motif that interacts with PDZ-domain proteins (Tomko et al., 

1997, van't Hof and Crystal, 2002). This C-terminal hydrophobic peptide is 

important in CAR’s function at the cell membrane as it enables it to bind to 

multiple other structural proteins including ZO-1, membrane-associated guanylate 

kinase 1b (MAGI-1b), protein interacting with protein C kinase (PICK1) and 

postsynaptic density 95 (PSD-95) which implies that it is present in multiple 

protein complexes (Excoffon et al., 2010). 
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Figure 1-7: Possible sites for phosphorylation of the CAR cytoplasmic tail.  
Threonine -290 (TAR) and Serine – 293 (ARSYIG) sites have been shown to be 
phosphorylated previously (Morton et al., 2013). The tyrosine 261 site (YEK) is a 
putative site for phosphorylation. Key: CD – cytoplasmic domain, TMD –
Transmembrane domain, D1 & D2 – extracellular domains. 
 

 

1.6.2 The expression of CAR in the body 

CAR expression varies between organs. Challenges with the available antibodies 

has limited detailed tissue staining, although Tomoko et al have shown high CAR 

expression levels in the liver, intestines and lung of rats, along with scattered 

signalling in the pancreas and heart. Interestingly within the lung the staining was 

seen in the epithelium of the trachea and bronchi but not alveoli (Tomko et al., 

2000). Other work using Ribonucleic acid (RNA) blot analysis in humans 

suggests the highest expression levels are found in the heart, pancreas, brain, 

testis and prostate (Coyne and Bergelson, 2005, Bergelson et al., 1998). In these 

organs in mice, Raschperger et al showed that CAR was only localised to 

epithelial layers (Raschperger et al., 2006). However, in human skin derived 

cultured lymphatic endothelial cells, CAR expression is seen and is suggested to 

play a role in maintaining lymphatic vessel integrity (Vigl et al., 2009). These 

expression levels change during embryonic development with high levels 
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particularly present in the central nervous system and heart (Ito et al., 2000, 

Hotta et al., 2003). The embryonic expression in the developing heart has been 

shown to be particularly important by Chen et al where CAR deletion leads to 

mouse embryo death as a result of cardiac defects (Chen et al., 2006, Dorner et 

al., 2005).  

In other tissue types CAR expression has been reported to be low or absent, 

including in healthy adult skeletal muscle (Fechner et al., 2003), primary human 

fibroblasts (Hidaka et al., 1999) and most peripheral blood cells (Huang et al., 

1997), 1997) thereby ensuring they are difficult to transfect using adenoviral 

vectors.  

Expression levels are also altered in response to different conditions as well as 

being tissue specific. In response to inflammatory conditions in the presence of 

TNF α and Interferon (INF) γ CAR expression levels are downgraded at the cell 

surface after 24 hours and to a greater degree at 48 hours in vascular endothelial 

cells (Vincent et al., 2004). Interestingly this response was not reproduced in 

either human bronchial epithelial cells or A549 cell line once again highlighting 

the varying response of CAR in different tissue and cell types.  

1.6.3  CAR in tight junctions 

The cellular role of CAR in the dynamic control and regulation of epithelial cell 

junction formation and stability has only been recently investigated (Cohen et al., 

2001, Honda et al., 2000). It importantly plays this role at cell-cell junctions 

through homodimerisation in trans with the extracellular D1 domain of other CAR 

proteins in adjacent cells (figure 1.7). This is supported by the structural analysis 

of CAR D1 domain. The D1 component of CAR is able to form homodimers in the 

crystal lattice but also in solution, with a measured dissociation constant of 16 μM 
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(van Raaij et al., 2000) consistent with those measured for other cell adhesion 

complexes (van der Merwe and Barclay, 1994, van der Merwe et al., 1994). 

Disruption of this extracellular interaction has been extensively explored in 

relation to adenovirus binding (Santis et al., 1999, Kirby et al., 2000, Walters et 

al., 2002). Notably this work has shown that the adenovirus type 5 fibre knob 

domain binds to CAR with much higher affinity than CAR binds to itself (Lortat-

Jacob et al., 2001). This process therefore leads to loss of CAR 

homodimerisation at tight junctions. However, whether this homodimerisation is 

necessary for the intracellular functions of CAR via its cytoplasmic tail has not 

been established. 

Where CAR is disrupted in its role as a tight junction protein by the addition of its 

soluble extracellular domain (CAR-ECD) to cell media, the trans-epithelial 

resistance is reduced and the rate of FITC-dextran passage increased (Cohen et 

al., 2001). These effects are organ specific, though, with loss of CAR at tight 

junctions leading to increased permeability in the heart but not in the gut of mice. 

(Pazirandeh et al., 2011) Aside from its direct role in tight junctions, CAR 

expression also effects adherens junction regulation. E-Cadherin levels, which 

play an integral role in respiratory epithelial cells, are reduced at these junctions 

in the presence of high levels of CAR (Morton et al., 2013). This event has been 

suggested as cause of the increased level of tumour activity seen with CAR 

positive tumours (Luissint et al., 2014). The explanation for this is that E-Cadherin 

associates with the transcription factor β–catenin. This means that when E-

Cadherin is replaced at junctions β–catenin is free to translocate to the nucleus 

resulting in increased cell proliferation. This is supported by evidence from CAR 

knockdown cancer models where α–catenin is downregulated (Stecker et al., 

2009). Its significance in tumourgenesis is, however, not universal as in vivo data 
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has proved contradictory. In the lungs a study of 120 lung cancer patients found 

that both by real time-PCR(RT-PCR) and western blot analysis the expression 

levels of CAR were higher in tumour cells and more specifically in patients with a 

squamous cell carcinoma their CAR expression levels equated to the tumour 

grade (Chen et al., 2013). This was supported by another study of multiple 

different tumour types that suggested CAR expression was raised in malignancy 

(Reeh et al., 2013). In other primary tumours and tumour cell lines, CAR 

expression has instead been seen to inversely correlate with the rate of cell 

proliferation, suggesting that CAR may act as a tumour suppressor (Fuxe et al., 

2003, Okegawa et al., 2000). Induced expression of CAR has been shown to 

inhibit tumour cell growth in human prostate cancer (Okegawa et al., 2000, 

Rauen et al., 2002), bladder cancer (Li et al., 1999) and glioma cell lines (Kim et 

al., 2003), indicating CAR tumour inhibitory properties. Other reports also showed 

that absent or reduced expression of CAR is associated with a higher tumour 

grade in human prostate and bladder cancer patients, while healthy tissues 

express easily detectable CAR (Okegawa et al., 2001, Rauen et al., 2002). These 

earlier papers concentrated on CAR in the context of determining the success of 

possible gene therapy delivered by adenoviruses. This difference is reflected in 

the fact that they predominantly used cell lines rather than tissue samples which 

may explain the different clinical picture seen in later studies. Interestingly 

though, a possible explanation for CAR acting as a tumour suppressor is that the 

palmitoylation motif localised on the cytoplasmic tail of CAR appears to be 

essential for tumour-inhibitory activity and cell cycle regulation possibly via the 

downstream activation of p21 (Okegawa et al., 2001). This again highlights the 

possible importance of the cytoplasmic tail in the function of CAR. As previously 

discussed the serine/threonine phosphorylation status of the CAR cytoplasmic tail 
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effects the localisation of E-Cadherin to the cell membrane (Morton et al., 2013). 

Importantly E-Cadherin at the cell membrane has been found to be diminished in 

patients in the chronic inflammatory condition, asthma, suggesting a possible 

interaction between tight junctions and adherens junctions in long term 

inflammatory states (de Boer et al., 2008).   

1.6.4 CAR in Inflammation 

The role of CAR during inflammation is yet to be defined with conflicting data 

suggesting that its response is dependent on cell and tissue type. In rat 

cardiomyocyte cells expression is upregulated in chronic autoimmune 

inflammatory conditions using an experimental model based on the presence of 

porcine myosin (Ito et al., 2000). However, in the presence of a combination of 

cytokines including TNF and INF there was a reduction in CAR expression in 

human umbilical endothelial cells (Vincent et al., 2004). Interestingly this group 

did not show the same effect in a respiratory epithelial cell line. Therefore the 

presence of CAR during inflammation depends on a number of factors including 

both the source of the stimulus and the type cells being affected.  

A mechanism for the role of CAR in this immune reaction has been suggested 

through more recent work that addressed CAR’s interaction with other members 

of the JAM family (Verdino and Wilson, 2011, Witherden et al., 2010, Zen et al., 

2005). As described previously CAR has a similar structure to other proteins in 

the JAM family and their extracellular components can heterodimerise. Some 

members of the family including JAM-A is also found on leucocytes as well as 

endothelial and epithelial cells. JAM-A disruption in leucocytes leads to a 

reduction in leucocyte trans-endothelial migration due to loss of 

homodimerisation with JAM-A found on epithelial cells (Martin-Padura et al., 

1998). The more recent work by Verdino et. al. and Witherden et. al. showed that 
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CAR on the skin epithelial cell membrane binds to JAM-L on γδ T cells 

(Witherden et al., 2010, Verdino et al., 2010) and Zen et al. have shown that the 

same binding occurs between CAR on gut epithelial cells with JAM-L on 

neutrophils (Zen et al., 2005). This is important as these neutrophils and T cells 

play a key role in host immunity as they are found in the gut and skin, where they 

protect against environmental insults such infection, trauma and malignancy. 

Where this interaction between CAR and JAM-L is disrupted skin healing is 

slowed (Witherden et al., 2010). Therefore JAM-L, with its ligand CAR, can been 

seen as a co-stimulatory receptor for γδ T cells (Verdino and Wilson, 2011) which 

places CAR in the position to modulate the immune response.  

Although as yet not fully understood, this complex interaction between epithelial 

cells and leucocytes can lead to disease and also therefore open the possibility 

for pathogenic modification.  

1.7 Leucocytes and Trans-epithelial Migration (TEpM) 

The fundamental function of the inflammatory process in response to infection or 

an allergen is the elimination and removal of the offending agent. For this to 

occur, the immune system needs to ensure its effector cells are able to reach the 

correct site. In the case of the lungs this is a multi-step process that requires the 

leucocytes to leave the vascular system by crossing the endothelial barrier, then 

move through the tissue in an appropriately targeted fashion, and finally cross 

through the epithelial barrier into the airway (Liu et al., 2004b, Garrido-Urbani et 

al., 2008, Klesney-Tait et al., 2013). As outlined in the previous section, CAR has 

been shown to play role in this process through its binding to proteins on 

transmigrating leucocytes.  
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There is evidence that CAR is firstly required in the movement of immune cells 

across the endothelium and into the interstitium. At the cell membrane JAM-L is 

known to immunoprecipitate with VLA-4 and this interaction is required for its 

dimerisation with CAR (Luissint et al., 2008). VLA-4 is also known to be important 

in the transmigration of leukocytes through the endothelial layer via its interaction 

with VCAM-1 thereby incorporating these molecules in a larger complex required 

for the transmigration process. This study does not focus on the process of trans-

endothelial migration and the role of CAR in this but it does suggest that at the 

broader significance of any treatment directed at the CAR protein. By inhibiting 

CAR function at tight junctions immune cells would firstly by prevented from 

leaving the interstitium into the airway lumen but they would also be prevented 

from leaving the vasculature thereby preventing the a prolonged and protracted 

inflammatory response.  

The process of TEpM requires a specific sequence of events to occur that is 

distinct although similar to trans-endothelial transmigration. The process is firstly 

different as the leucocytes approach the epithelial barrier from the basal surface 

which exposes them to a different selection of adhesion molecules than on the 

apical endothelial surface. Secondly, the leucocytes themselves have been given 

an extended period of priming by their passage through the endothelial barrier 

and the surrounding tissue, during which they will be exposed to both 

chemokines and cytokines thereby altering their state of activation. Finally the 

actual distance they need to travel when crossing the epithelial barrier is 

significantly larger than the endothelium. There is a minimum 20µm additional 

distance to traverse with the resultant need for greater interaction between the 

leucocyte and epithelial cell. 
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The first step in TEpM requires the adhesion of leucocytes to the basal 

membrane of the epithelial cell. In neutrophils this adhesion step is critically 

controlled by β2 integrins and in particular CD11b/CD18 on the neutrophil 

(Zemans et al., 2009, Parkos et al., 1991). This adhesion step has most 

extensively been studied in intestinal epithelial models but has also been shown 

to occur in the respiratory epithelium (Celi et al., 1999, Jagels et al., 1999). This 

effect has been confirmed through antibody blocking experiments whereby 

competitive blocking of CD11B/CD18 leads to loss of neutrophil transmigration 

(Parkos et al., 1991). Furthermore the binding action is stimulated by the 

presence of TNF α highlighting the importance of the interplay between cytokines 

and junctional proteins in leucocyte transmigration (Miyata et al., 1999). 

Specifically in the lungs the β1 integrin (CD29) also appears to act as an 

adhesion molecule as the presence of CD29 blocking antibodies in 

lipopolysaccharide (LPS) induced inflammatory conditions led to a reduction in 

the accumulation in neutrophils in the mouse airway (Ridger et al., 2001). The 

corresponding binding component on the epithelial cell does differ from that on 

endothelial cells. Intercellular Adhesion Molecule 1 (ICAM-1) has been 

extensively studied as a possible binding target. It is well known to be required for 

trans-endothelial migration (Zemans et al., 2009) and has been shown to be 

upregulated during inflammation in a variety of epithelial cells including alveolar, 

bronchial and tracheal (Burns et al., 1994, Look et al., 1992, Tosi et al., 1992). 

However, ICAM-1 is only found on the apical surface of epithelial cells and is 

therefore only in a position to act as a binding partner following TEpM when the 

cells are anchored to the epithelial surface, thereby explaining the failure of 

ICAM-1 antibody to block a rise in leucocyte counts following a stimulus (Zemans 

et al., 2009). Members of the JAM family provide an alternative ligand on 
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epithelial cells. Both JAM-A and JAM-C are ligands to β2 integrins but only JAM-

C has been shown to be required for TEpM through its interaction with 

CD11b/CD18 (Zen et al., 2004).  

Once the leucocyte is firmly adhered to the surface of the epithelial cell it must 

then pass across the epithelial barrier. Unlike in the endothelium this process 

cannot occur in a trans-cellular fashion but instead is purely via a para-cellular 

route (Zemans et al., 2009). In the lungs this happens preferentially at tri-cellular 

junctions between two type I alveolar cells and one type II alveolar cell as the 

adhesional complex is already disrupted at these sites (Burns et al., 2003). CD47 

plays a key role in this paracellular migration as pre-incubation with blocking 

antibodies leads to a build-up of leucocytes at the apical surface as although they 

are able to adhere to the cells they do not move further (Parkos et al., 1996). 

CD47 appears to control this function through both its activation of tyrosine 

kinases and its interaction with Signal regulatory protein alpha (SIRPα) This in 

turn activates the phosphatases Src homology region 2 domain-containing 

phosphatase-1 & 2 (SHP-1&2) which are postulated to alter the epithelial cell 

architecture (Liu et al., 2001, Liu et al., 2004a).  As outlined previously CAR at 

the epithelial cell membrane can also dimerise with JAM-L on leucocytes, and a 

loss or inhibition of this results in a loss of TEpM (Zen et al., 2005, Verdino and 

Wilson, 2011, Witherden et al., 2010). 

Finally once the leucocyte has crossed the epithelium it can adhere to the 

epithelial surface despite physical factors such as coughing or pulmonary 

oedema. In so doing the leucocytes are able to remain in place to deal with the 

original inflammatory stimulus. This occurs through multiple binding partners 

including ICAM-1 with CD11B/CD18 and the Fc receptors on the leucocyte 
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binding to antibodies which are in turn bound to the ligands on the epithelial cell 

surface (Huang et al., 1996, Halstensen et al., 1990).   

 

Figure 1-8: Leucocyte migration across an epithelial barrier into the lumen.  
TEpM occurs in 4 steps: 1) Leucocytes adhere to the basolateral side of the 
epithelium. 2) Trans-epithelial migration occurs along the basolateral membrane 
through interaction with adhesion molecules such as JAMs and CD47. 3) 
Leucocytes reach the apical side of the epithelium and are retained at the surface 
of epithelial cells by ICAM-1–Mac-1 and Ig–FcR (Fc receptor) interactions. 4) 
Finally neutrophils can get access to pathogens and to mediate an effective 
immune response. (Garrido-Urbani et al., 2008, Zemans et al., 2009). 
 

A summary of the TEpM process is shown in figure 1.8 highlighting the three 

steps of adhesion, migration and post-migrational adhesion that happen. As 

described this is a tightly controlled process that ensures the epithelial barrier is 

maintained to prevent the movement of unwanted substances during the 

leucocytes passage. This includes the release of adenosine by transmigrating 

leucocytes to aid the reformation of tight junctions (Zemans et al., 2009, 

Lawrence et al., 2002). In pathogenic states, where there is a significant 

movement of cells, TEpM and the influx of leucocytes can lead to damage to the 

epithelial barrier. This can occur in several ways including direct physical damage 
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due to mechanical force resulting in epithelial wounds as well through the 

sustained release of inflammatory mediators such as cytokines by the leucocytes. 

1.8 Cytokine driven cell signalling 

The impact of cytokines on cell function is wide-ranging and reflects their ability to 

alter multiple cellular processes. One way of particular relevance by which they 

control the inflammatory response is through their effect on tight junctions. 

Interferon (INF) γ was the first cytokine shown to drive inflammation through its 

impact on tight junctions by causing an increase in tight junction permeability 

(Madara and Stafford, 1989). Since then multiple other cytokines have been 

implicated in both junctional disruption and stability including TNF α, IL-1β, IL-13 

and IL10 (Al-Sadi et al., 2009). In particular in the intestine it has been shown that 

both in-vitro and in vivo cytokine derived barrier disruption of the epithelium leads 

to inflammation (Al-Sadi et al., 2009). Importantly this cytokine driven junction 

disruption can be blocked in vivo with the resultant loss of inflammation 

demonstrating a direct causal link for junctional disruption leading to inflammation 

(Schwarz et al., 2007). These findings though are not specific to the intestinal 

epithelium. For example in the lungs of asthmatic patients IL4 and IL-13 have 

also been indicated in causing epithelial disruption suggesting they play a role in 

propagating the chronic inflammation seen (Ahdieh et al., 2001). TNF α is 

another cytokine that has been shown to affect the tight junctions of a wide 

variety of cell types including the epithelial cells of the kidney, gut and lung as 

well as endothelial cells from the lung (Al-Sadi et al., 2009, Mullin et al., 1992, 

Marano et al., 1998, McKenzie and Ridley, 2007). Its effect on the junctions 

includes stimulating the internalisation of junctional proteins, JAM-A, occludin and 

claudins (McKenzie and Ridley, 2007, Ivanov et al., 2005) but TNF α exemplifies 
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the multiple pathways cytokines can activate to drive inflammation and therefore 

alternative pathways may also play a role in its impact on permeability. 

1.8.1 Tumour necrosis factor alpha (TNF-α) 

TNF is of specific interest given its established pleotropic role in the inflammatory 

response which can be both appropriate to ensure protection against infection 

(Waters et al., 2013) and also lead to a variety of unwanted effects at the 

epithelium in diseases such as in rheumatoid arthritis, psoriasis, asthma and 

inflammatory bowel disease (Baert and Rutgeerts, 1999, Berry et al., 2007, 

Holgate, 2010, Murdaca et al., 2009). This is of particular relevance in the 

respiratory epithelium as it has been shown in those patients with severe steroid 

resistant asthma that their airway hyper-responsiveness can be controlled 

through TNF α inhibition with etanercept (Holgate, 2010, Morjaria et al., 2008, 

Howarth et al., 2005, Berry et al., 2006). Although in a larger study the efficacy of 

anti-TNF α treatment was limited by its adverse effects profile (increased rates of 

infection and cancer), analysis did show that airway flow rates and inflammation 

did respond in a dose dependent fashion further supporting a role for  TNF in 

inflammatory lung disease (Wenzel et al., 2009).  

TNF  belongs to the large TNF superfamily which includes at least 19 different 

ligands. It is a pleotropic cytokine and as such acts upon almost all differentiated 

cells to trigger a wide range of biological responses including cell proliferation, 

differentiation and apoptosis along with lymphocyte and leucocyte activation and 

migration, as well as more systemic effects such as fevers and the acute phase 

response (Waters et al., 2013). TNF  is mainly produced by macrophages, 

monocytes and to a lesser extent B-cells, Natural Killer (NK) - cells, Kupffer and 

glial cells. It is either found as a membrane bound 34 KDa type II transmembrane 
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protein or following cleavage by the metalloproteinase enzyme, TNF α converting 

enzyme, to a 17 KDa soluble protein. Both these two forms of TNF α bind as a 

trimer to two distinct receptors, TNF receptor 1 and 2 (TNFR1 and TNFR2). 

These receptors have been shown to play a role in both infection and 

inflammation. Firstly they are required for successful S. aureus infection through 

their binding with protein A released by the bacteria (Gomez et al., 2004, Gomez 

et al., 2006). TNFR1 in particular has also been shown to play a role in the loss of 

intestinal epithelial barrier function that occurs with total parenteral nutrition 

through its upregulation (Feng and Teitelbaum, 2013). When TNF α binds to its 

receptors they undergo trimerisation to activate multiple different signalling 

proteins including TNF-receptor associated factor 2 (TRAF2), receptor interactin 

protein 1 (RIP1) and fas-associated death domain protein (FADD). TRAF2 

activates the MAPK pathway, while RIP1 activates the nuclear factor kappa beta 

(NF-B), which in turn translocates to the nucleus, binds DNA and induces or 

represses gene expression (Baud and Karin, 2001, Waters et al., 2013). Another 

process induced by TNF α is apoptosis and this is mainly mediated through 

FADD. NF-B can inhibit apoptosis through induction of cellular inhibitors of 

apoptosis (cIAPs) (Baud and Karin, 2001). In Caco-2 epithelial cells TNF  

induces activation of NF-B pathways which lead to cytoplasmic-to-nuclear 

translocation of NF-B, increased NF-κB binding to the DNA binding site, 

downregulation of ZO-1 protein expression, disturbance in junctional localisation 

of ZO-1 protein and functional opening of the TJ carrier (Ma et al., 2004).  

 
Significantly TNF α has been shown to play a role in the stability and function of 

tight junctions in both endothelial and epithelial cells through its ability to control 

the function the proteins present in tight junction (Baert and Rutgeerts, 1999, 
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Fischer et al., 2013, Feng and Teitelbaum, 2013). Interestingly the presence of 

TNF α has also been shown to stimulate neutrophil infiltration of both endothelial 

and epithelial layers (Woodfin et al., 2009, Finsterbusch et al., 2014). Studies 

have furthermore indicated that the presence of TNF leads to the redistribution of 

JAM proteins in endothelial cells so that they are present at the apical surface of 

endothelial cells in order that they are in a position to facilitate leucocyte 

transmigration (Ozaki et al., 1999, Ostermann et al., 2002). Therefore TNF is 

altering tight junction composition in such a way as to ensure effective leucocyte 

movement. Pertinently for this study a TNF mediated increase in barrier 

permeability has been shown to be associated with a loss of epithelial junctional 

proteins including E-Cadherin and P-120 (Hardyman et al., 2013). This was also 

correlated with in vivo biopsy results that showed an equivalent loss of these 

junctional proteins and an increased number of neutrophils in the airways of 

asthmatic patients compared to healthy human subjects suggesting that it can 

play a role in epithelial junction disruption in disease and that this could lead to 

leucocyte TEpM in the lung (Hardyman et al., 2013).  

Therefore TNF has been shown to affect both tight junction protein structure and 

function as well as drive leucocyte TEpM. Given the role CAR plays in tight 

junctions and leucocyte activity there is consequently the suggestion that the two 

are in a position to interact to control the inflammatory response through control 

of TEpM.  

1.9 Aims and hypothesis of this study 

CAR is a member of the tight junction complex and is known to act as a binding 

partner to facilitate the TEpM of leucocytes. However, it is currently unknown as 

to whether CAR plays active or passive role in this process and if so how this 
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might occur. We hypothesise that epithelially-expressed CAR is responsive to 

inflammatory cytokines, potentially through phosphorylation of CAR, and this 

controls the rate of passage of leucocytes across the lung epithelium. 

In order to test this hypothesis, the aims of this study are to: 

1. Determine whether sites on the cytoplasmic tail of CAR are 

phosphorylated in response to cytokine stimulus. 

2. Identify possible signalling pathways that may control any phosphorylation 

effect. 

3. Determine whether the phosphorylation of the cytoplasmic tail of CAR 

alters its interaction with leucocytes facilitating their transmigration. 
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2 Methods and Materials 

2.1 Cell Lines 

Human bronchial epithelial cells (HBEC) were originally from a 65 year old female 

with no evidence of cancer. They were  immortalised by over expression of the 

cell cycle protein cdk4 which abrogates the p16/Rb cell cycle check point 

pathway and the catalytic subunit of the telomerase enzyme (human telomerase 

reverse transcriptase, hTERT) to bypass replicative senescence (Sato et al., 

2006). They were kindly donated to us by Dr Jerry Shay from the University of 

Texas, Southwestern Medical Centre. 

The human acute monocytic leukaemia cell line (THP-1) cells were a gift from 

Prof Gareth Jones at King’s College London. They were originally purchased 

from American Type culture Collection (Rockville, MD). They are derived from a 

one year old male with leukaemia but have no identified chromosomal 

abnormality and can if required be stimulated to form mature macrophages. 

2.2 Cell culture 

HBEC (Human Bronchial Epithelial Cells) were maintained in Keratinocyte-SFM 

(K-SFM) Medium with L-Glutamine (Invitrogen) supplemented with Human 

recombinant Epidermal Growth Factor (EGF 1-53), Bovine Pituitary Extract (BPE) 

penicillin/streptomycin (Invitrogen)). The media was supplied in 500ml bottles to 

which the supplied aliquots of EGF 1-53 and BPE were added along with 5mls of 

the penicillin solution.   

Flasks and plates were coated with a sufficient volume to cover the whole surface 

of the plastic (for example 3mls for a T25 flask) with 10% type I bovine collagen 

(BD biosciences) for 1 hour prior to sub-culturing. Following 1 hour the collagen 
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coating was removed to be reused and the surface rinsed with Phosphate-

Buffered Saline (PBS) to remove any excess. 

Cells were passaged by washing with warm PBS before being incubated with 

Trypsin/EDTA 5mM (Invitrogen) at 37oC until they detached (approximately 5 

minutes depending on the confluency on the flask). Cells were re-suspended in 

warmed fresh growth media before centrifugation at 200G for 5 minutes. Cells 

were grown in 25cm2 tissue culture flasks with a filter cap (Greiner Bio-One 

CELLSTAR®) at 37oC in a humidified incubator with an atmosphere containing 

5% CO2. They were split at 75-80% confluence. 

THP-1 cells were maintained in RPMI-1640 medium (GIBCO) supplemented with 

10% (v/v) heat inactivated foetal bovine serum(FBS) and 0.05mM of β-mercapto-

ethanol. The cells were kept in suspension culture in complete growth media in 

75cm2 or 175cm2 tissue culture flasks with a filter cap (Greiner Bio-One 

CELLSTAR®) at 37oC in a humidified incubator with an atmosphere containing 

5% CO2. Cells were kept at 40-50% confluence and split at 80-90%. 

2.3 Antibodies 

Table 1. Table of antibodies used during the project. WB: Western Blot, IHC: 
immunohistochemistry. IP: Immunoprecipitation.  

Antibody Name Species Source Use Optimal 

dilution 

Concentra

tion 

Anti-CAR H300 Rabbit Santa Cruz WB/

IHC 

1:100 200ug/ml 

Anti-CAR (clone 

RmcB) 

Mouse Milipore WB/

IHC 

1:500 1mg/ml 
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p-thr290/ser293CAR 

polyclonal antibody 

Rabbit Perbioscience 

(Thermofisher) 

WB 

IHC 

1:250 

1:50 

 

p-tyr263CAR 

polyclonal antibody 

Rabbit Perbioscience 

(Thermofisher) 

WB 1:250  

Anti-E-Cadherin 

[HECD-1] 

Mouse Abcam IHC 1:100 Data not 

provided 

by supplier 

Anti-E-Cadherin 

(MB2) 

Mouse Abcam IHC 1:100 1mg/ml 

TNFR1 antibody 

(MAB225) 

Mouse R&D IHC 

Bloc

king 

1:200 

10µg/ml 

1μg/ml 

p38 MAPK Rabbit Cell Signalling WB 1:1000 Data not 

provided 

by supplier 

P-p38 MAPK 

(Thr180/Tyr 182) 

Rabbit Cell Signalling WB 1:1000 Data not 

provided 

by supplier 

p44/42MAPK 

(ERK1/2) 

Rabbit Cell signalling WB 1:1000 Data not 

provided 

by supplier 

P-p44/42MAPK Rabbit Cell signalling WB 1:1000 Data not 



51 
 

(ERK1/2)(Thr202/Tyr

204) 

provided 

by supplier 

AKT (#9272) Rabbit Cell signalling WB 1:1000 Data not 

provided 

by supplier 

P-AKT (Ser473) Rabbit Cell signalling WB 1:1000 Data not 

provided 

by supplier 

GAPDH [6C5] Mouse GeneTex WB 1:25000 12.8mg/ml 

HSC-70 Mouse Santa Cruz WB 1:3000 200µg/ml 

NF-Κb p65 (D14E12) Rabbit Cell Signalling IHC 1:400 20ng/ml 

Phospho-PKCδ/θ 

(SER643/676) 

Rabbit Cell Signalling WB 1:1000 10ng/ml 

PKC δ (SC-937) Rabbit Santa Cruz IHC 1:200 5ng/ml 

Anti-CLMP Rabbit Atlas WB 1:200 0.1mg/ml 

Anti-AMICA1 (JAM-

L) 

Rabbit Sigma WB 1:500 0.2mg/ml 

Anti-GFP Rabbit MBL IP 3µL/sa

mple 

 

anti-phospho-serine Rabbit Cell signalling WB 1:1000 0.25mg/ml 

anti-phospho- Rabbit Cell signalling WB 1:1000 0.25mg/ml 



52 
 

threonine 

anti-phospho-

tyrosine (p-100Tyr) 

Mouse Cell signalling WB 1:1000 0.25mg/ml 

Alexa Fluor® 568 

goat anti-mouse IgG 

Mouse Invitrogen IHC 1:400 1.4mg/ml 

Alexa Fluor® 488 

goat anti-mouse IgG 

Mouse Invitrogen IHC 1:400 1.4mg/ml 

Alexa Fluor® 568 

goat anti-rabbit IgG 

Rabbit Invitrogen IHC 1:400 1.4mg/ml 

Goat anti-mouse 

IgG-HRP 

Mouse Santa Cruz WB 1:2000 400μg/ml 

Goat anti-rabbit IgG-

HRP 

Rabbit Santa Cruz WB 1:2000 400μg/ml 

Alexa Fluor® 633 

phalloidin 

 Invitrogen IHC 1:100 Data not 

provided 

by supplier 

 

2.4 Cytokines 

TNF α was produced in yeast and supplied by Sigma (10ng/ml). Interferon γ was 

produced in E.coli and supplied by Sigma (used at 5ng/ml). Recombinant Human 

IL-13 (3.5ng/ml), IL-5 (2.5ng/ml), IL-1β (2.5ng/ml), IL-17 (3.125ng/ml) were all 

produced in E.coli and supplied by R&D systems. 
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2.5 Antibody production and ELISA assays 

The polyclonal antibodies to the specific phosphorylation sites on the CAR 

cytoplasmic  tail were produced by Perbioscience on behalf of Thermofisher. Two 

rabbits were inoculated against the peptide sequence Ac-

RTS(pT)AR(pS)YIGSNH-C in order to generate an antibody against the 

serine/threonine site on the tail. Two further rabbits were inoculated against with 

the peptide sequence EEK(pY)EKEV-C in order to create the tyrosine site 

antibody. 

The rabbits were then bled at days 28, 56 and 72 following inoculation. ELISA 

assays were then performed to determine whether antibodies were generated 

against the peptide sequence identified as indicating phosphorylation at each 

site. This technique was used as it would show whether an antibody had been 

generated capable of specific binding to the protein sequence of interest as only 

this would remain fixed to the protein during the washing steps.  

The ELISA assays were performed with a capture antibody coated onto wells of a 

microplate. The peptide sequence for the phosphorylation sites were then added 

to the wells and allowed to bind to the capture antibody for 2 hours at room 

temperature. These wells were then aspirated and washed 4 times with a TBS 

wash buffer to remove any unbound protein. Either the rabbit sera from the 

inoculated animals or negative control rabbit sera was then added to each well 

and incubated at room temperature for one hour in order to allow any antibody to 

the specific phosphorylation site to bind. The sera were then aspirated away and 

the wells again washed three times with a TBS buffer to clear any unbound 

material away. Diluted HRP conjugate was then added to each well and the plate 

covered and incubated at room temperature for 30 minutes. The wells were then 
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again thoroughly aspirated to remove the solution from each well and the liquid 

discarded, followed by a further 4 washes. A chromogenic substrate could then 

be added to each well and the plate was allowed to develop in the dark for 30 

minutes before a 0.16 M sulphuric acid stop solution was added to each well. The 

plate was then evaluated using an optical plate reader within 30 minutes to 

evaluate the titre values for each bleed in comparison to the control samples.  

The tables below show the crude data of the different bleed days for the 4 

animals. 

Table 2: CAR p-ser293/thr290 antibody data 

Animal Number Date Day Titer Titer Type Description 

PA5829 09/12/2012 0 50 CrudeSera Treatment 

PA5829 09/12/2012 0 50 CrudeSera Control 

PA5829 10/10/2012 28 12800 CrudeSera Control 

PA5829 10/10/2012 28 51200 CrudeSera Treatment 

PA5829 11/07/2012 56 51200 CrudeSera Control 

PA5829 11/07/2012 56 102400 CrudeSera Treatment 

PA5829 11/23/12 72 1600 CrudeSera Control 

PA5829 11/23/12 72 51200 CrudeSera Treatment 

PA5830 09/12/2012 0 50 CrudeSera Treatment 

PA5830 09/12/2012 0 50 CrudeSera Control 

PA5830 10/10/2012 28 6400 CrudeSera Control 

PA5830 10/10/2012 28 51200 CrudeSera Treatment 

PA5830 11/07/2012 56 12800 CrudeSera Control 

PA5830 11/07/2012 56 204800 CrudeSera Treatment 

PA5830 11/23/12 72 3200 CrudeSera Control 

PA5830 11/23/12 72 102400 CrudeSera Treatment 
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Table 3: CAR p-tyr269 antibody data 

Animal Number Date Day Titer Titer Type Description 

PA5831 09/12/2012 0 50 CrudeSera Treatment 

PA5831 09/12/2012 0 50 CrudeSera Control 

PA5831 10/10/2012 28 12800 CrudeSera Treatment 

PA5831 10/10/2012 28 25600 CrudeSera Control 

PA5831 11/07/2012 56 51200 CrudeSera Treatment 

PA5831 11/07/2012 56 51200 CrudeSera Control 

PA5831 11/23/12 72 6400 CrudeSera Treatment 

PA5831 11/23/12 72 6400 CrudeSera Control  

PA5832 09/12/2012 0 50 CrudeSera Treatment 

PA5832 09/12/2012 0 50 CrudeSera Control 

PA5832 10/10/2012 28 25600 CrudeSera Control  

PA5832 10/10/2012 28 25600 CrudeSera Treatment 

PA5832 11/07/2012 56 102400 CrudeSera Control  

PA5832 11/07/2012 56 102400 CrudeSera Treatment 

PA5832 11/23/12 72 12800 CrudeSera Control  

PA5832 11/23/12 72 25600 CrudeSera Treatment 

 

2.6 PKCδ silencing 

In order to determine the role played by PKCδ in the phosphorylation of the 

cytoplasmic tail of CAR its synthesis was inhibited using a small interfering RNA. 

This siRNA binds to the messenger RNA responsible for the production of PKCδ 

causing its degradation and therefore limiting the protein synthesis. 

To do this 10 µL of 5 µM PKCδ siRNA targeting the 

GGGACACUAUAUUCCAGAAtt sequence (Ambion s11099) was added to 90 µL 

Opti-MEM® and 5 µL of DharmaFECT reagent was added to 95 µL of Opti-
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MEM® and left for 5 minutes at room temperature. The DharmaFECT was used 

as a lipid based reagent that aided the siRNA’s passage across the cell 

membrane and into the cell.  

The two were then combined together and left for 20 minutes at room 

temperature. Then a further 800 µL of Opti-MEM® was added to the mixture and 

replaced the media covering HBEC which had been grown to a 50% confluence 

in 6 well plates and then incubated at 37 0C in 5% CO2. The media covering the 

control cells was replaced with Opti-MEM®. The Opti-MEM® +/- siRNA was 

replaced with HBEC media after 6 hours and the cells were grown for a further 48 

hours. 

2.7 Immunoblotting 

These experiments were performed to determine the activity of specific proteins 

in response to different stimuli. This was predominantly focused on determining 

whether the cytoplasmic tail was being phosphorylated in the presence of certain 

cytokines. To do so cells were stimulated and then lysed with the aim of 

preserving the phosphorylation state of any protein. 

HBEC were seeded in 6 well plates and grown to confluency in normal growth 

media. One hour pre-treatment media was replaced with 2mls of warm (37 oC) 

serum free media (Opti-MEM®) before the addition of treatments as indicated in 

the results section. Samples were then lysed in 300ul hot sample buffer (at 95oC) 

containing -mercaptoethanol to break disulphide bonds and open protein 

structures. The sample buffer was composed of Tris Cl, (pH 6.8, 60mM) to act as 

a buffer, Glycerol, (25%) to increase the density of the solution to ensure it settled 

into each well for SDS-PAGE, SDS (25%) to disrupt covalent bonds thereby 

inactivating enzymes as well as providing a negative charge, along with 
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bromophenol blue to aid visualisation. Lysates were immediately scrapped from 

their plates and heated at 95oC for 10 minutes before being subjected to SDS-

PAGE. 

The separation of different proteins by molecular weight and charge was 

performed via electrophoresis using the Laemmli SDS-PAGE method with a 10% 

polyacrylamide gel for all CAR protein experiments and 4% stacking gel. 

Between 10 and 20 μl of the samples were added to each well depending on the 

volume of cassette used for each experiment. Samples were initially run through 

the stacking gel at 100V for 30 minutes before increasing to 160V to run through 

the separating gel (approximately 90 minutes). The running buffer used was 

purchased from Thermofisher Scientific (Novex® Tris-Glycine SDS Running 

Buffer (10X)) and diluted 10 times in distilled water.  

At the end of the run the gels were transferred to nitrocellulose membranes. In 

brief, the gel/membrane was sandwiched between two 1x Transfer Buffer pre-

soaked Whatman filter papers and two 1x Transfer Buffer pre-soaked blotting 

pads. The gel/membrane blot module was run for 90minutes at 30 volts in 1x 

Transfer Buffer (Novex® Tris-Glycine Transfer Buffer). The outer buffer chamber 

was filled with deionised water to dissipate heat produced during the run. 

Upon completion of the run, the membranes were blocked for 30 minutes at room 

temperature in 5% Bovine Serum Albumin (BSA) in Tris-Buffered Saline Tween-

20 (TBS-T) (Sigma). Membranes were incubated with the appropriate 

concentration of primary antibodies (section 2.3) in 5mls of 5% BSA TBS-T 

overnight at 4oC on a roller.  

The following day the immunoblots were washed 3 times for 5 minutes in TBS-T 

and incubated for 1 hour at room temperature with the appropriate concentrations 
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of either anti-mouse or anti-rabbit horseradish peroxidase-conjugated (HRP) 

(Santa-Cruz Biotechnologies) in 10mls of 5% BSA TBS-T on a rocker at room 

temperature. It is the HRP that provides the means of detection. After incubation 

the immunoblots were washed 3 times in TBS-T for 15 minutes per time and 

placed on tissue paper to remove any excess buffer.  

Detection was carried out using ECL Western Blotting Detection Kit (Amersham), 

this relies upon the HRP enzyme to oxidise luminal. The detection kit contains 

two solutions, labelled 1 and 2, which were mixed in equal quantities and added 

to the nitrocellulose membranes for one minute before bloating off. Then, in the 

dark room using a Bio-Rad developer after a set period depending on the amount 

of protein detected the film was developed and the bands were visualised. 

For re-probing, blots were stripped using Re-blot 10x stripping buffer (Chemicon). 

Bound antibodies from the nitrocellulose membranes can be removed without 

having an effect on the immobilised proteins. Blots were treated with 1x stripping 

buffer diluted in distilled water. 20ml of solution was added to the blot and 

incubated for 15 minutes by gently agitating at room temperature. Subsequently, 

the blots were twice washed with 5% milk TBS-T for 15 minutes each time at 

room temperature. Blots were then re-probed with primary antibodies at 4OC 

overnight for total protein or other proteins.   

2.8 Immunoprecipitation 

The aim of immunoprecipitation is to determine whether a specific protein is 

present within a complex. In this case the protein of interest was phosphorylated 

CAR with the addition of GFP  which was captured from the complex by binding 

to a GFP SPECIFIC antibody which was in turn stabilised through its binding to 

A/G agarose beads. The CAR protein could then be eluted from beads and 
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analysed by SDS-PAGE, followed by Western blot detection using commercial 

anti-phospho antibodies. This process was used in the initial trial experiments 

before CAR phosphorylation specific antibodies were developed. 

HBEC and CARGFP-HBEC were cultured in normal growth media for 24 hours 

before the media was replaced with a serum free media (Opti-MEM®) for one 

hour. Treatments were added as indicated in the results figures and then were 

washed with ice-cold phosphate-buffered saline (PBS) with the samples on ice. 

Samples were then lysed in 200 µl of IP lysis buffer (pH7.4 50mM Tris, 150mM 

NaCl, 1mM EDTA, 1% Triton, 1% NP40, PI cocktail). The cell lysates were then 

scraped into 1.5ml Eppendorf tubes and left on ice for 10 minutes. Cell nuclei and 

debris were removed by centrifugation at 13,000 rpm for 10 minutes. The 

supernatants were then transferred to new tubes and used for 

immunoprecipitation or stored at -80oC.  

Lysates were incubated with 50μl of A/G agarose beads overnight at 5oC on a 

rotating wheel. The agarose beads were pre-prepared by rinsing 50 µl of beads 

with PBS before adding 3g GFP antibodies (table 1) and leaving on the rotating 

wheel overnight. The GFP antibody was used as the CAR constructs all 

contained a GFP tag ensuring that the only protein that bound to the beads would 

need to contain GFP. To act as a negative control an empty GFP tag was 

transiently transfected into wild type HBEC cells using FuGENE as a non-

liposomal transfection reagent to deliver the GFP DNA to the cells. 

The following day the samples were centrifuged at 13,000 rpm for 10 minutes 

and 50 µl of unbound sample was saved. The remaining samples were then 

washed with 50μl of IP lysis buffer 3 times to clear any unbound sample. 30 μl of 

hot sample buffer (as described in section 2.7) with 5 µl of -mercaptoethanol 
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was then added to the samples to remove the remaining bound protein from the 

agarose beads. The samples were then placed at 95 oC for 10mins and 

separated using SDS-PAGE and immunoblotted for anti-phospho-serine, anti-

phospho-threonine or anti-phospho-tyrosine as described in section 2.7. 

2.9 Immunostaining and confocal microscopy 

Immunostaining aims to identify a specific cell antigen of interest. This is done 

with a similar principle as used for the previous immunoblotting experiments by 

using the antibody binding to specific antigens. Using immunostaining and 

confocal microscopy additionally requires an antibody to be linked to a 

fluorophore. The first, primary antibody, binds to the antigen of interest and then 

a secondary antibody with a fluorophore binds to this. The fluorophore can then 

be excited by a certain wavelength of light which then emit a different wavelength 

that is detected. Figure 2.1 shows the principle behind the confocal microscope 

where the laser provides the energy to excite the florescent molecule using the 

dichromatic mirror to filter out any unwanted wavelengths of light. The quality and 

resolution of the image is then improved by the pin hole which blocks any 

extraneous light that does not come from the point of focus. The detector can 

then build up a three dimensional image by adding separate images together 

taken from individual slices through the sample. 
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Figure 2-1 Graphic showing the principles of a confocal microscope. 
 

Cells were cultured in 12 well plates on glass coverslips. They were then treated 

as described in the results section. Following treatment they were washed by 

briefly immersing them in PBS and fixed with 4% PFA in PBS for 10min and 

permeabilised with 0.2% TritonX-100 for 10min. Samples were blocked with a 5% 

BSA solution for 30 minutes and were then incubated with primary antibodies for 

2 hours. They were then washed by again immersing in PBS followed by dH2O 

and the appropriate secondary antibodies conjugated to Alexafluor-568 or cy5 

and Phalloidin conjugated to Alexafluor 568 or 633 where added in 5% BSA for 1 

hour before once again washing in PBS followed by dH2O. Cells were mounted 

onto slides using Immunofluore (ICN) in order to protect the fluorescence of the 

secondary antibody. Confocal microscopy of HBEC alone was performed using 

an LSM510 Zeiss upright confocal microscope using a 63x oil objective or a 

Nikon A1R inverted confocal microscope using a 60x oil objective and laser 

excitation wavelengths of 405nm (for hoechst nuclear staining) 488nm (for GFP 
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or Alexafluor-488), 543nm (for Alexafluor-568) and 633nm (for Alexafluor-633 

and cy5). Images were exported as tif files and prepared for figures using 

Photoshop. 

2.10 TNFR1 inhibition 

30,000 HBEC were seeded in collagen coated 6 well plates and grown to 

confluency in 2 millilitres of normal growth media. The wells had been coated in 

10% type I bovine collagen for a minimum for one hour before the collagen was 

removed to be reused and the wells rinsed with PBS. The TNFR1 or control 

antibodies were added at a concentration of 10µg/ml for one hour prior to further 

treatment. HBEC cells were then further subjected to either the addition of 

10ng/ml of TNF α or 100,000 THP-1 cells. The TNF α treated cells were then 

lysed after one hour as described in section 2.7. Where THP-1 cells were added 

the KSFM media was replaced with RPMI media. They were left for 4 hours 

before the media was removed and the cells lysed as described in section 2.7. 

2.11 Permeability Assay 

HBEC cells (either CARGFP or Wt populations) were seeded in 6.5mm Transwell 

chambers (Corning) with 8.0m pores at 100,000 cells per well in 0.5 ml media in 

12 well, collagen coated wells, with 1ml media in external part of the well (Figure 

2.2). Wells were reviewed after 24hrs to ensure an even covering of cells with a 

stable complete monolayer. This step was fundamental to ensure an even 

monolayer of cells. Layers with obvious gaps between cells or where there was 

significant clumping of cells were disregarded as providing unrepresentative 

results. Equal numbers of CARGFP and Wt cell wells were required to ensure 

comparative data. 5µM TNF α was added to the specific treatment wells, followed 

by 10 µl of fitc-dextran (20 KDa) solution added to the upper chamber of all wells. 
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100 µl of the media was then collected from the lower chamber at 30 minutes and 

one hour after addition of fitc-dextran. Between collection points the samples 

were returned to the incubator to be maintained in their optimum conditions. The 

collected fluid samples were then compared for relative FITC-dextran 

concentration on a Fluostar Omega fluorescence plate reader (BMG). The 

system compared light absorption from each sample to provide a comparative 

reading of light transmission between the samples. 

 

Figure 2-2: Permeability model showing cells grown on a collagen coated 
plate for a FITC/dextran permeability assay. 

 

2.12 Transmigration Assay 

HBEC cells were seeded in 6.5mm Transwell chambers (Corning) with 8.0m 

pores at 30,000 cells per chamber and allowed to form monolayers. After 48 

hours media in the upper and lower chambers was changed to RPMI containing 

10% FBS before the addition of 100,000 THP-1 cells stained with Cell TrackerTM 

Orange Dye (Molecular probes) to the top well of the chambers. After 48 hours, 

the number of THP-1 cells in the lower chamber was counted using a 

FACSCalibur flow cytometer (BD Biosciences). For Ad5 fibre-knob competition 

assays recombinant Ad5FK (100µg of an 11mg/ml stock concentration) or BSA 
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control (100µg of 11mg/ml stock concentration) was added to HBEC cells 3 hours 

after seeding and remained in the media throughout the experiment. 

2.13 THP-1 cell adhesion assay 

HBEC cells were seeded onto 13mm coverslips and allowed to form monolayers. 

After 48 hours 100,000 THP-1 cells stained for 30 minutes with Cell TrackerTM 

Orange (Molecular Probes) were added to the monolayers in RPMI 

supplemented with 10% FBS. THP-1 cells were allowed to adhere to HBEC 

monolayers for 16 hours before fixation and immunostaining with Phalloidin-633. 

A total of 5 5x5 tile-scans per sample were obtained using a 40x air objective on 

a Nikon A1R confocal microscope. The tiles were assembled together using 

Nikon NIS Elements software and further analysed using Cell Profiler (BD) to 

count the number of adhered THP-1 cells per image. 

2.14 Organotypic culture 

Organotypic cultures were performed as an alternative strategy to mimic 

physiological conditions whilst maintaining the use of immortalised cells with CAR 

alterations. Stromal cells are of fundamental importance in overall epithelial 

function and a more relevant assay therefore incorporates stromal components 

such as fibroblasts, and also reproduces the 3D characteristics of the relevant 

organ.  

The cultures were established as shown in figure 2.3. Firstly a fibroblast 

containing gel was made using a bovine collagen type 1 (Millipore)/ matrigel 

(VWR international) mix (1:1 ratio) with 10x DMEM (Sigma), foetal calf serum, 

fibroblast cells (5 x105 cells per gel) and 7.5% sodium bicarbonate (at a ratio of 

7:1:1:1). This is all performed on ice to prevent the matrigel from forming a gel 

before the mixture was complete. Sodium hydroxide was additionally added in a 
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drop wise fashion to neutralise the solution (the solution changes from yellow to 

pink). The gel mix was then placed in a 24 well plate and left to set at 37 oC for 

1hour before 1ml of DMEM was added to the top and they were left over night. 

The following day HBEC cells (5 x 105) were added to the top and they were left 

to settle overnight. The nylon sheets shown in figure 2.3 were soaked in the 

same gel mixture as the original gel mixture aside from the lack of matrigel and 

fibroblasts. The sheets were then fixed using 1% glutaraldehyde. The nylon 

sheets and gels were placed on the steel grids as shown in figure 2.1. The media 

was replaced on alternate days for 10-14 days to ensure stable epithelial layer 

development. The gel/epithelial layer mixture was then submerged in 4% 

paraformaldehyde to fix them.  Paraffin embedded sections were then prepared 

of the gels by the histology department at St Thomas’ Hospital and slides stained 

and viewed via confocal microscopy as described in section 2.9.  

 

Figure 2-3: Organotypic culture showing HBEC cells grown at an air liquid 
interface on a matrigel/collagen/ fibroblast layer 
 

No data from these experiments has been included in the thesis from these 

experiments. This is due to the technical and financial constraints these 
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experiments entailed. The technique is a slow process requiring at least one 

month for the culture and fixation of the experiment. During this process the 

samples are prone to infection as they cannot be grown in standard antibiotic 

media as used with most cell culture. The samples processed were also fragile 

and failed to establish stable three dimensional structures which reduced their 

relevance to a study of tight junction proteins. Mouse models were also 

developed in synchrony with these experiments and given their success were 

focused on. 

2.15 Mouse models 

2.15.1 Acute inflammatory mouse lung model 

C57BL/6 (B6) mice (Harlan) were used at 4-8 weeks. All experiments were 

approved by our Institutional Animal Welfare Committee under UK Home Office 

Regulations. For mucosal sensitization 1μg recombinant murine TNF α 

(Immunotools) was given intranasally in 50µl PBS/mouse under light inhaled 

anaesthesia (isoflurane). After 24 hours animals were killed and bronchoalveolar 

lavage (BAL) performed using 1ml PBS.   

Flow cytometry was used to identify the separate immune cell types present in 

the BAL fluid.  This technique is useful as it allows large numbers of cells to be 

separated by type rapidly. This is based on the principle that cells passing 

through a laser beam will scatter light, which is detected as forward scatter (FS) 

and side scatter (SS). The combination of scattered and fluorescent light is 

detected and analysed. If the cells are pre-treated with antibodies that are known 

to bind to certain cell types the degree of forward and side scatter of light can be 

predicted and gated when stimulated by specific wave lengths of light. 
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 Inflammatory cells in the BAL samples were identified as described (van Rijt et 

al., 2004). This used auto fluorescence of macrophages, and simultaneous one-

step staining with antibodies for T cells (CD3-Cy-Chrome), B cells (B220-Cy-

Chrome), eosinophils (CCR3-PE), and dendritic cells (DCs) (MHCII-FITC, 

CD11c-APC) with the addition of anti-Gr-1 to identify neutrophils (Gr-1+CD11c-

CCR3-CD4-CD8-B220-). Antibody staining (0.1µg/sample, all eBioscience) was 

performed in PBS 1% FBS with each BAL sample after washing and was 

analysed on a FACScalibur (BD Bioscience). Total cell numbers were calculated 

by analysis of fixed sample volumes, validated with fluorescent beads. Figure 2.4 

shows an example of the gating strategy used to identify the separate cell types.  
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Figure 2-4: FACS gating strategy for BAL cell data. 
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2.15.2 Chronic inflammatory mouse lung model 

Paraffin embedded slides of the mouse ovalbumin lung model sections were 

kindly supplied by Dr Gisli Jenkins, University of Nottingham. These slides were 

generated from BALB/c 6-wk-old mice, sensitized by i.p. injection of 10 μg OVA 

diluted 1:1 with adjuvant, followed by a second sensitization on day 12. At day 

19, mice were challenged daily by oropharyngeal administration of either 400 

μg/ml OVA in 50μl saline or 50 μl saline alone for 6 d, followed by additional 

challenges on days 26, 28, 30, and 33. The mice were sacrificed on day 34. For 

formalin-fixed tissue, the left lobe was inflated with formalin and fixed in formalin 

overnight and then embedded in paraffin wax. The slides were initially heated at 

75 oC to warm the paraffin. The slides were then rehydrated via a step wise 

process of 2x immersion in xylene (supplied by Fisher scientific) for 10 minutes 

followed by 2 x immersion in 100% ethanol, 1x immersion in 90% ethanol, 1x 

immersion in 70% ethanol, 1 immersion in 50% ethanol all for 5 minutes each. 

Antigen retrieval was then performed in a citrate buffer at a pH of 6 in a pressure 

cooker for 15minutes. Slides were then washed in TBS and TBS tween and 

antibody staining was undertaken with the method as described in section 2.9.  
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3 Characterising the effects of cytokines on CAR 

phosphorylation and function 

3.1 Introduction 

3.1.1 Cytokines and Tight Junction Proteins 

Cytokines are a broad group of small proteins that are known to both alter the 

constituents and function of cell junctions (Al-Sadi et al., 2009) and activate 

protein kinases responsible for serine, threonine and tyrosine phosphorylation 

(Thomas and Brugge, 1997). Interferon γ was the original cytokine implicated in 

tight junction control and function (Madara and Stafford, 1989) and is a pro-

inflammatory cytokine principally secreted by lymphocytes in order to activate 

macrophages and drive a THP-1 immune response (Schroder et al., 2004). As 

part of this pro-inflammatory response it has also been shown to increase trans-

epithelial permeability through disruption of tight junctions by increasing for 

example the micropinocytosis of occludin, JAM-A and claudin-1 (Madara and 

Stafford, 1989, Bruewer et al., 2005, Utech et al., 2005, Boivin et al., 2009, 

McKay et al., 2007, Ivanov et al., 2005). TNF α has also been shown to effect the 

function of tight junction proteins. TNF α exposure has been associated with 

disruption of tight junctions measured by a loss of trans-epithelial resistance 

(TER) (Mullin et al., 1992, Ma et al., 2004, Fish et al., 1999). Interestingly TNF α 

has also been associated with a reduction of tight junction complexity and 

activation of both protein kinases A and C as well those tyrosine kinases inhibited 

by genistein (Schmitz et al., 1999, Coyne et al., 2002). By affecting these kinases 

there are implications for any phosphorylation events occurring at associated 

tight junction proteins, as for example occludin, E-cadherin and β-catenin have all 

been shown to have their place in cell junctions affected by their phosphorylation 
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status (McCole, 2013). Significantly, VE-cadherin specifically has been shown to 

undergo tyrosine phosphorylation in response to the presence of TNF α (Angelini 

et al., 2006). Similarly IL-1β has also been implicated in the permeability of 

epithelial layers by increasing Na+ and Cl- passage through respiratory epithelium 

which is a process controlled by tight junction proteins (Coyne et al., 2002). IL-13 

is another cytokine associated with tight junction disruption (Sanders et al., 1995) 

and although this has not been demonstrated in the respiratory epithelium 

interestingly it has been linked to activation of P1-3K (Prasad et al., 2005) which 

has also been shown to be activated by TNF α as previously stated (Kilpatrick et 

al., 2002).  IL-17 is an additional cytokine linked with loss of tight junction integrity 

via the associated activation of ERK (Kinugasa et al., 2000). 

A wide range of cytokines have also been studied and shown to have a 

deleterious effect in relation to tight junction function including IL2, 4, 6, 10 and 

15. However, IL-3, 5, 7, 8, 9 12, 14, 16 have not been found to have an effect on 

tight junction stability suggesting that disruption of cell junction integrity is not a 

general function of pro-inflammatory cytokines (Al-Sadi et al., 2009). 

Given our previous findings that the cytoplasmic tail of CAR can be 

phosphorylated (Morton et al., 2013), and work by others showing that cytokines 

can cause functional changes in tight junction proteins by their phosphorylation 

(Angelini et al., 2006), along with the important role of CAR in immune cell 

migration (Verdino et al., 2010, Witherden et al., 2010, Zen et al., 2005), we 

sought to investigate whether CAR might be phosphorylated in response to 

cytokine driven inflammatory conditions. 
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3.1.2 Objectives 

The aim of experiments described in this chapter is to characterise the effect of 

cytokine stimulation on the putative phosphorylation sites on the cytoplasmic tail 

of CAR. Data demonstrates that the presence of inflammatory cytokines lead to 

phosphorylation of the cytoplasmic tail of CAR and the sites where this occurs. 

Moreover, further analysis shows TNF α to be the cytokine most strongly 

stimulating phosphorylation of CAR and this occurs through defined signalling 

pathways. Finally these data suggest that CAR recruitment, homodimerisation 

and maintenance at cell-cell adhesions is necessary for this TNF α-

phosphorylation response to occur. 
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3.2 Results 

3.2.1 Phosphorylation of CAR in response to cytokines 

Our group has previously identified via in silico analysis two possible sites for 

PKC phosphorylation within the cytoplasmic tail of CAR; threonine at the amino 

acid 290 and serine at amino acid 293 (see Figure 1.7 in the introduction). To 

investigate these sites further, the group have previously established HBEC cells 

that either overexpress CAR (CAR-GFP) or alternative CAR cytoplasmic tail 

mutants that would either mimic phosphorylation by replacing the serine and 

threonine amino acids with aspartic acid (DDCAR-GFP) or would be incapable of 

being phosphorylated by replacing them with alanine (AACAR-GFP) (Morton et 

al., 2013). Using these cell lines we have previously shown that CAR is 

serine/threonine phosphorylated (Morton et al., 2013). This phosphorylation 

response altered the junctional protein components by controlling E-cadherin 

dynamics at the cell membrane thereby establishing a functional role for 

phosphorylation of the cytoplasmic tail of CAR. 

Our group has additionally identified a potential Src kinase phosphorylation motif 

on the cytoplasmic tail of CAR; Tyrosine 269. HBEC cell lines were generated 

using CAR-GFP mutants that either block phosphorylation of this site by 

replacing the tyrosine residue with the similar, but non-phosphorylateable 

phenylalanine (Y2F CAR-GFP), or mimic phosphorylation by replacing the 

tyrosine with glutamic acid (Y2E CAR-GFP) at this site. Figure 3.1 highlights the 

difficulty inherent with this process as the tyrosine phospho-mimic substitution; 

glutamic acid is significantly structurally different to phosphotyrosine. 



74 
 

 

Figure 3-1 Alternative amino acids for tyrosine substitution. 
A) Comparison of tyrosine with the alternative phospho-dead amino acids. B) 
Comparison of the phospho-mimic amino acid alternative glutamate with 
phosphoserine, phosphothreonine and phosphotyrosine. 

 

To examine the role of CAR in inflammatory processes we first analysed the 

effect of pro-inflammatory cytokines on the phosphorylation status of CAR using 

CAR-GFP HBECs. TNF α and interferon γ were chosen for an initial trial of CAR’s 

response to inflammatory conditions as they have long been established as 

playing a key role in the function of tight junctions in the epithelial response to 

inflammation both individually and in combination (Al-Sadi et al., 2009, Madara 

and Stafford, 1989, Mullin et al., 1992, Fish et al., 1999). The cells were 

alternatively treated with protein phosphatase inhibitors for serine/threonine sites 

(calyculin A) and tyrosine sites (pervanadate) as positive controls to the possible 

phosphorylation sites identified on the CAR cytoplasmic tail. Wild type (Wt) HBEC 

were also transiently transfected with an empty GFP tag (eGFP) to act as a 

negative control. These samples were then immunoprecipitated using an anti-

GFP antibody and subjected to SDS-PAGE and western blot using pan phospho-

serine, phospho-threonine or phospho-tyrosine antibodies (Figure 3.2).  This 
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revealed that CAR serine and threonine phosphorylation was induced after TNF α 

but not interferon γ treatment. Neither cytokine treatment induced a detectable 

phospho-tyrosine signal despite a strong pervanadate induced signal (figure 3.2). 

 

Figure 3-2 The cytoplasmic tail of CAR is phosphorylated at both the 
threonine and serine sites by TNF α but not at the tyrosine site or by 
Interferon γ. Western blot of immunoprecipitated CAR-GFP from HBEC lysates 
treated as indicated with either 30 µM Pervanadate, 0.5 mM Calyculin A, 10ng/ml 
TNF α or 5ng/ml Interferon γ as indicated. Western blots were probed with pan 
phospho-tyrosine, -serine or –threonine antibodies (Sampling repeated 4 times per 
test condition). The bands at 70 kDa are appropriate for a phosphorylation response 
by CAR. A response is seen to calyculin, TNF α and TNF α/INFγ with P-threonine, 
Vanadate, calyculin and TNF α with P-serine but only vanadate with P-tyrosine. 
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3.2.2 Development of serine/threonine phosphorylation specific CAR 

antibodies 

Using pan-serine and threonine antibodies allowed identification of TNF α 

mediated CAR ser/thr phosphorylation via immunoprecipitation. However, this 

method does not allow us to specifically target the identified sites on the CAR 

cytoplasmic tail. We therefore developed polyclonal antibodies that were raised 

against the target sequence on the cytoplasmic tail containing the serine and 

threonine sites (peptide sequence Ac-RTS(pT)AR(pS)YIGSNH-C). Given the 

proximity between the 290 serine site and the 293 threonine site it was not 

possible to develop antibodies to recognise each one individually. The peptide 

was designed therefore to encompass both. The use of a polyclonal antibody as 

opposed to a monoclonal antibody did reduce cost and significantly allowed for 

greater tolerance of minor changes in the antigen. However, it does lead to 

limitations with an increased chance of non-specific signals and if further antibody 

was required would risk problems from inter batch variability. 

Two separate rabbits were inoculated with the peptide and then bled on days 28, 

56 and 72. The sera from these bleed days was used to probe for CAR 

phosphorylation of the serine and threonine sites in western blots of CARGFP-

HBEC cells. These cells were either untreated, treated with a serine and 

threonine phosphatase inhibitor (Calyculin A) as a positive control or pervanadate 

as a negative control. The strongest western blot response using the sera 

occurred from the day 72 bleed in rabbit PA5829 and day 28 for rabbit PA5830 

as they had the most sensitive and specific response to CAR phosphorylation 

(figure 3.3a). The CAR phosphorylation effect in these cell lysates was confirmed 

using a commercial GFP antibody (figure 3.3b) which has previously been used 
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to indicate CAR phosphorylation with the presence of a double band in response 

to calyculin (Morton et al., 2013). Figure 3.3c shows ELISA data performed by 

PERBIOSCIENCE (THERMOFISHER) antibodies using the phosphorylation 

antigen. Data shown demonstrate a strong titre response to the sera taken on 

day 72 for rabbit PA5829 and on day 28 from rabbit PA5830.  

Serum from rabbit PA5829 was further purified following a terminal bleed to 

produce the final CAR p-ser293/thr290 antibody. This antibody was used to 

probe for CAR phosphorylation in western blot of CAR-GFP HBEC lysates. 

These cells were again either untreated or treated with the phosphatase inhibitors 

Calyculin A (pan-serine/threonine phosphatase inhibitor) or vanadate (pan-

tyrosine phosphatase inhibitor).  Western blots using this purified polyclonal 

antibody showed the expected band at approximately 70 KDa corresponding to 

phosphorylated CAR-GFP, but also bands at 55KDa (figure 3.4a). Figure 3.4b 

shows the same lysates probed using a commercial antibody to CAR (CAR H300 

antibody, Santa Cruz Biotechnology). No additional band was seen at 55KDa 

indicating that the antibody was not detecting a specific cleaved portion of CAR. 

The experiment was repeated with WT HBEC, which express CAR at very low 

levels, and AACAR-GFP HBEC, which overexpress mutated CAR that had been 

modified to prevent phosphorylation at the serine/threonine site (figure 3.4c). In 

this case only the CAR-GFP cells have the expected band at approximately70 

KDa in response to calyculin, indicating the phosphorylated protein. The 55KDa 

band, however, is present in all 3 cell lines suggesting that this is not specific to 

CAR. Given the extensive similarity with CAR like membrane protein (CLMP) and 

the fact that this protein has a predicted molecular weight of 55KDa the samples 

were also probed using a commercially available antibody against CLMP to 

determine whether the antibody was detecting this protein instead. The antibody 
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does pick up the presence of a band at 54KDa, which would indicate the 

presence of CLMP in these cell lysates. Yet the additional strong band with the 

phospho-specific antibody is several KDa higher and therefore it does not likely 

represent binding to CLMP (figure 3.4d). 

The CAR p-ser/thr antibody was then used to analyse CAR phosphorylation by 

confocal microscopy. Phosphorylated CAR was identified specifically, as 

expected, at the cell-cell contacts of CARGFP HBEC and not in either WT or 

AACARGFP (phosphodead) HBEC (Figure 3.4e).  
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Figure 3-3 Phospho-Serine/threonine antibody development. 
A) Western of HBEC lysates using the initial antibody developed from the donor 
rabbits on the specified bleed days. The bands seen at 72 kDa represent the 
serine/threonine site when it is phosphorylated on CAR-GFP cells (N=3).  B) 
Western of the same lysates probed using the commercial antibody to GFP 
showing the double band associated with CAR phosphorylation (n=3). C) ELISA 
data for antibody titers from rabbits PA5829 and PA5830 on the specified bleed 
days to correspond to strongest and cleanest western data shown in image 3.3a.  
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Figure 3-4 Serine/threonine CAR phosphorylation antibody purification. 
A)  Western of CAR-GFP lysates treated as indicated with 30 µM Pervanadate or 
0.5 mM Calyculin A probed with purified CAR P-ser/thr antibody with the 
appropriate band seen at approximately 72 kDa as well additional bands at 
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55kDa. (n=3) B) Western of the same CAR-GFP lysates probed with the H300 
CAR Santa Cruz antibody with no additional 55kDa band (n=2). C) Western of Wt 
HBEC, CAR-GFP HBEC and AACAR-GFP HBEC lysates treated as previously 
with band seen in CAR-GFP cell line following treatment with serine/threonine 
phosphatase inhibitor at 72kDa but not in the other cell lines. All three cell lines 
show an equivalent band at 55kDa (n=3). D) Western of CAR-GFP lysates 
probed for CAR Like Membrane Protein. Band seen at approximately 54kDa 
therefore below the non-specific band seen with the serine/threonine phospho-
specific antibody (n=1).  E) Confocal images using the serine/threonine phospho-
specific antibody on CAR-GFP and AACAR-GFP cells treated with PDBu to drive 
phosphorylation. Presence of both CARGFP and phosphorylated CARGFP 
indicated by the yellow staining (n=3). 
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3.2.3 CAR phosphorylation at the serine/threonine phosphorylation site in 

response to TNF α 

The development of a serine/threonine CAR phosphorylation site specific 

antibody allowed for further investigation of the sites response to cytokine 

stimulation. Initial data showed that CAR was ser/thr phosphorylated in response 

to TNF α stimulation in CAR-GFP HBEC cells. To confirm that TNF α induces 

phosphorylation of CAR at thr290/ser293 specifically, CAR-GFP was 

immunoprecipitated from untreated or TNF α treated HBEC cell lysates (figure 

3.5a). TNF induced rapid phosphorylation of CAR at thr290/ser293 within 15 

minutes, which diminished by 1 hour after treatment. Western blot of CAR-GFP 

HBEC lysates revealed similar induction of CAR phosphorylation at 

thr290/ser293 however with different kinetics (figure 3.5b). This may be due to 

differences in cell culture methods prior to treatment of the HBEC. CAR-GFP 

HBEC were treated and lysed when semi-confluent for immunoprecipitation (24 

hours post-seeding) and when fully confluent (72hours post-seeding) for western 

blots shown in figure 3.5b. This effect was seen with multiple repeats of both 

short and longer-term cell culture. Quantification of western blots from multiple 

experiments confirmed the finding that there was a delay in the phosphorylation 

with increasing cell density and time in culture (figures 3.5c and 3.5d). This 

variation possibly reflects the difficulty for TNF α in accessing the TNF receptor 

with increasing cell density and increasing maturity of cell junctions following a 

longer culture period. This phosphorylation effect on the cytoplasmic tail of CAR 

in response to TNF α occurred at the cell membrane suggesting that CAR may 

be phosphorylated only when localised to cell junctions and may also need to be 

homodimerised for phosphorylation to occur (figure 3.6).  
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The over expressing CAR-GFP cell line showed increased CAR phosphorylation 

at the cell membrane following TNF α treatment (figure 3.5a) whereas the control 

AACAR-GFP cell line which are unable to be phosphorylated at the 

serine/threonine site showed no phosphorylation (figure 3.5a). Phosphorylated 

CAR has been found in internalising vesicles during cell junction disassociation 

caused by calcium washout (Morton et al., 2013). These p-se290r/thr293 CAR 

positive vesicles were not seen following TNF treatment (figure3.6), which could 

either be due rapid de-phosphorylation following internalisation or that the 

junctions themselves had not yet started to disassociate, as the previous study 

showed that cells with stable junctions did not have p-ser290/thr293 CAR positive 

vesicles present. Although this is only one time point this also suggests that the 

internal pool of CAR found in cells is not phosphorylated and instead needs to be 

trafficked to the cell membrane before this can occur. 
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Figure 3-5 CAR phosphorylation following the addition of TNF α at the 
serine/threonine sites. A) Western of immunoprecipitated CAR-GFP from 
HBEC lysates treated as indicated with either 30 µM Pervanadate, 0.5 mM 
Calyculin A or 10ng/ml TNF α.  Cells were grown for approximately 30 hours prior 
to treatment. Western blots were probed with the CAR specific serine/threonine 
phospho-specific antibody showing the strongest band at 15 minutes in response 
to TNF α.  (N=3) B) Western blot of HBEC lysates treated as indicated with 
10ng/ml TNF α. Cells grown for 72 hours before treatment with the strongest 
band at 2 hours in response to TNF α (N=3). C&D) Relative intensity of P-CAR 
bands from westerns with a short growth period of (30 hours-C) and a long 
growth period (72 hours -D) - Error bars are SEM. *=p<0.05, **=p<0.01 
***=p<0.005 compared to untreated sample. N=3. 
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Figure 3-6: Imaging of CAR phosphorylation following the addition of TNF α 
at the serine/threonine sites. Confocal images of CAR-GFP and AACARGFP 
cells following treatment with 10ng/ml TNF α for 15 minutes using either GFP or 
the serine/threonine phospho-specific antibody (representation of 3 experiments) 
(Scale bar 10μm). 
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3.2.4 Development of tyrosine phosphorylation specific CAR antibodies 

and response to TNF α 

An antibody (p-tyr269 CAR ab) was also raised against the tyrosine 

phosphorylation site at position 269 on the CAR cytoplasmic tail using the peptide 

sequence EEK(pY)EKEV-C. This was a rabbit derived polyclonal antibody 

developed in collaboration with Perbioscience (Thermofisher). This targeted the 

KKRREEKYEK sequence identified on the cytoplasmic tail of CAR as a possible 

site for tyrosine phosphorylation (figure 1.7).  

Sera taken from initial bleeds from the two inoculated rabbits showed no 

detection of a specific tyrosine phosphorylation band in response to the positive 

control vanadate (a tyrosine phosphatase inhibitor) (figure 3.7a). Western blotting 

of the same samples with a commercial pan-phosphotyrosine antibody showed 

robust tyrosine phosphorylation indicating the positive control had caused 

tyrosine phosphorylation. This poor response is consistent with the ELISA data 

supplied by Perbioscience (Thermofisher) which demonstrates that there was 

less of an antibody response in comparison to the p- thr290/ser293 CAR ab 

(figure 3.7b).  

Given that the rabbits had failed to mount an adequate antibody response to the 

first inoculation rabbit PA5832 underwent a second prolonged stimulation with the 

peptide. To test the antibodies function CAR-GFP was immunoprecipitated from 

vanadate and TNF treated HBEC lysates and western blotted using the p-tyr 

CAR ab (figure 3.7c). Following the extended inoculation the resulting antibody 

did detect a band at the appropriate molecular weight for phosphorylated CAR in 

response to the positive control for tyrosine phosphorylation, vanadate. There 

was, however, no tyrosine response to TNF α stimulation (figure 3.7c) implying 

that its effects were specific to the serine/threonine site. The mutant tyrosine site 



87 
 

cell lines were also used in this experiment. The Y2ECAR-GFP cells were those 

that had the CAR cytoplasmic tail altered to ensure that they appeared 

permanently phosphorylated at the tyrosine site, whereas on the Y2FCAR-GFP 

cells it was altered to prevent phosphorylation of the tyrosine site. As outlined in 

the chapter introduction mutations of tyrosine phosphorylation sites do not 

necessarily produce the intended changes. With these cells the results suggest 

that this is the case as the phospho-mimic cells (Y2ECAR-GFP) in fact behave as 

if they are not able to be phosphorylated at the tyrosine site (figure 3.7c).  
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Figure 3-7 Phospho-tyrosine CAR antibody development and response to 
cytokine stimulation. 
A) Initial western response using the bleed day with the strongest ELISA response 
(n=1). B) ELISA values from the two rabbits. C) Western blot of immunoprecipitated 
CAR-GFP from HBEC lysates treated as indicated with either 30 µM Pervanadate or 
10ng/ml TNF α.  Cells were grown for approximately 30 hours prior to treatment. 
Western blots were probed with the purified CAR specific phospho-tyrosine antibody 
from rabbit PA5832 following a prolonged inoculation period. A response is seen in 
the third bound lane in response to vanadate in the CAR-GFP cell line but not with 
TNF α (n=3). 
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3.2.5 CAR response to cytokines 

TNF α has a broad inflammatory effect on the bronchial epithelium, which 

includes disruption of junctions and stimulation of alternative cytokine secretion 

(Hardyman et al., 2013, Mazzon and Cuzzocrea, 2007, Turner, 2009, Al-Sadi et 

al., 2009, Al-Sadi et al., 2008).  However, the inflammatory process is not driven 

by TNF alone. Instead a multitude of complex interactions occur between a 

variety of cytokines and cells. As discussed in the chapter introduction multiple 

alternative cytokines play a role in tight junction protein function. Alternative 

cytokines were therefore trialed to determine whether TNF α was unique in 

causing CAR phosphorylation.  

Treatment with IL-5 promoted phosphorylation of the serine/threonine site on 

CAR (figure 3.8 a & b). This was not as strong as that seen with TNF but was 

consistent and reproducible. IL-5, like TNF α, is a chemoattractant and stimulant 

for eosinophils in ulcerative colitis (Lampinen et al., 2001). Importantly IL-5 is also 

known to be upregulated in patients with asthma, in particular in those with more 

severe disease (Peters et al., 2014). These patients are also those known to 

have an altered epithelial-mesenchymal trophic unit. However, there have not 

been previous reports showing a direct effect on epithelial cells and therefore this 

observed effect on CAR is novel for both its phosphorylation of this protein and its 

impact on epithelial cells. PKC δ is known to phosphorylate CAR and interestingly 

we also observed phosphorylation of PKCδ downstream of IL-5 (fig3.8a).  

Additionally the cytokines IL-13, IL-1β, IL-17 and IL-8 were tested to determine 

whether they also induced phosphorylation of CAR (figures 3.8 c, d, e and f 

respectively). These cytokines have all been shown drive an inflammatory 

response, with evidence of IL-1β, IL-13 and IL-17 in particular causing epithelial 

barrier dysfunction through tight junction impairment (Al-Sadi et al., 2008, Turner, 
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2009, Schulzke et al., 2009). However, none of these cytokines promoted the 

phosphorylation of the serine/threonine phospho-sites on the cytoplasmic tail of 

CAR (Figure 3.8c-f). 
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Figure 3-8 CAR response to alternative cytokines. 
A) IL-5 stimulates ser/thr CAR phosphorylation in a similar time dependent and 
PKCδ fashion as TNF α. (n=3) B) The graph shows the relative signal intensity in 
response to IL-5 (25ng/ml) in 3 independent experiments. Error bars are SEM. 
*=p<0.05, **=p<0.01 ***=p<0.005 compared to untreated samples. C) No 
response seen to IL-13 (25ng/ml) presence (n=2). D) No response seen to IL1β 
(25ng/ml) presence (n=2).  E) No response seen to IL-17 (25ng/ml) presence 
(n=2). E) No response seen to IL8 (5ng/ml) (n=2). 
 

 



92 
 

3.2.6 PKCδ is responsible for CAR phosphorylation in response to TNF α 

stimulation 

The role of PKC δ in the phosphorylation of the serine/threonine site has already 

been established (Morton et al., 2013). This demonstrated that the absence of 

PKC δ resulted in loss of serine/threonine phosphorylation of the CAR 

cytoplasmic tail in response to Phorbol 12,13-dibutyrate (PDBu; an activator of 

cPKC’s) or calyculin A . PKC δ is also activated in response to TNF activation of 

TNFR1 in neutrophils (Kilpatrick et al., 2006, Kilpatrick et al., 2002). Given the 

established role for PKC δ in CAR phosphorylation, the activation of PKC δ was 

studied in response to TNF α treatment (figure 3.9a). PKCδ phosphorylation 

showed a time dependent response to TNF α with kinetics that mirrored the 

phosphorylation of CAR. To determine whether PKCδ has a direct effect on CAR 

phosphorylation in response to TNF, siRNA to PKCδ was used to transiently 

reduce PKCδ expression in HBEC. PKCδ knockdown resulted in reduced CAR 

phosphorylation in response to TNF α stimulation compared with TNF α alone 

controls (Fig3.9B). This finding was confirmed using confocal microscopy, as a p-

ser/thr CAR response at cell junctions to TNF α treatment was seen at sixty 

minutes, and this was lost when PKCδ was depleted (figure 3.10c). Taken 

together, these data support a role for PKCδ in controlling phosphorylation of the 

CAR cytoplasmic tail in response to TNF α. 
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Figure 3-9 PKC δ phosphorylates CAR downstream of TNF α.  
A) Western blot analysis of phospho-CAR and phospho-PKCδ after treatment 
with 10ng/ml TNF α for the indicated times. Western blots were also probed for 
GAPDH as a loading control. (N=3) B) Western blot analysis of phospho-CAR in 
CAR-GFP HBEC expressing PKCδ siRNA or a non-targeted control (NT). Cells 
were treated with 10ng/ml TNF α for 60min where indicated. Western blots were 
probed for phospho-CAR, PKCδ and GAPDH as a loading control.  (N=3) 
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Figure 3-10 PKC δ phosphorylates CAR downstream of TNF α (imaging).  
Representative confocal imaging of 3 separate experiments with CAR-GFP (green) 
and PKCδ (red) expressing PKCδ siRNA either untreated or treated with TNF α in 
comparison to CAR-GFP (scale bar 10μm). 
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3.2.7 PI3K inhibition leads to loss of PKCδ phosphorylation and therefore 

CAR phosphorylation in response to TNF α 

 PI-3 kinase has previously been shown to be required for TNF α mediated PKCδ 

activity in neutrophils (Kilpatrick et al., 2002). The activation of PI3K by alternative 

cytokines has also been shown to affect tight junction function in epithelial cells, 

in particular INF γ (Boivin et al., 2009, Al-Sadi et al., 2009). We therefore 

hypothesised that PI3K may be required for PKCδ mediated CAR 

phosphorylation downstream of TNF α.   

To test this hypothesis, HBEC cells were treated with the PI3K inhibitor 

LY294002 (figure 3.11a). This experiment was performed over a time course of 

TNF treatments with the cells incubated for an extended period and therefore 

expected to have a prolonged stimulation period before causing phosphorylation. 

Following the addition of LY294002 there was a loss of both CAR and PKC δ 

phosphorylation in response to TNF α (figure 3.11). The relative effect of this 

reduction in three separate experiments is most pronounced between two to four 

hours reflecting the longer time course for activation seen in HBEC cells grown 

for an extended period (figure 3.11b). These data indicate that PI3K supports the 

phosphorylation of the serine/threonine site on the cytoplasmic tail of CAR and 

also that this effect occurs upstream of PKCδ as its inhibition also leads to 

reduction of PKCδ activation. 
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Figure 3-11 PI3K inhibition causes loss of both PKCδ phosphorylation and 
CAR phosphorylation in response to TNF α. 
A) Western blot analysis of phospho-CAR and phospho-PKCδ after pre-treatment 
with 10µM/L LY294002 for 2 hours where indicated and further treatment with 
10ng/ml TNF α for the times shown. Western blots were also probed for GAPDH 
as a loading control. B) Relative intensity of P-CAR bands from westerns - Error 
bars are SEM. *=p<0.05. N=3. 
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3.2.8 NFκB activation downstream of TNF is unaffected by CAR 

Alternative cell signaling pathways known to be stimulated by TNF α were also 

investigated. Binding of TNF α to its cell receptor TNFR1 on epithelial cells 

results in the recruitment of a complex of proteins to the cell membrane to drive 

intracellular signaling, including TRADD and RIP1, which in turn cause signal 

transduction via NFκB (Kilpatrick et al., 2006, Micheau and Tschopp, 2003). 

NFκB is rapidly transported from the cytoplasm to the nucleus to trigger gene 

transduction. Therefore to determine whether this process was altered by the 

presence of phosphorylated CAR, CAR-GFP HBEC and WT HBEC were treated 

with TNF α and fixed at two different time points. These cells were then fixed and 

stained for NFκB to identify its sub-cellular location. In both cell types, NFκB 

moved to the nucleus by thirty minutes with no alteration seen regardless of 

whether CAR was overexpressed in the cells (figure 3.12), indicating that 

activation of this pathway is unaffected by the presence of overexpressed CAR. 
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Figure 3-12 NFκB signaling is unaffected in the presence of CAR. 
Confocal imaging of NFκB (Alexa 568 secondary antibody; red) in Wt 
HBEC and CARGFP HBEC treated with 10ng/ml TNF for the times 
indicated before fixation. NFκB shows nuclear staining when activated in 
response to TNF α (Representative imaging of 3 separate experiments). 
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3.2.9 MAPK signalling in response to TNF is unaffected by CAR 

overexpression 

TNF α is also known to activate the MAP kinases following recruitment of the 

TRADD based protein complex to the cell membrane. Multiple MAPK pathways 

exist following TNF treatment including p38 MAPK and Extracellular Signal-

Related Kinases (ERK) and their responses are seen to be cell specific (Kant et 

al., 2011).  

To assess responses in this pathway, western blotting analysis of both ERK and 

p38 phosphorylation in response to TNF α was performed in both CAR-GFP 

HBEC and WT HBEC (figures 3.13 a, b). No stimulation of ERK by TNF α was 

detected in these cells and this was unchanged by overexpression of CAR (figure 

3.13a). The timing points for ERK phosphorylation were used to correspond to 

the equivalent CAR phosphorylation events. The ERK response itself can be 

varied by cell type and this may have underestimated the ERK response as this 

can occur very rapidly. It has been shown to have a more gradual response in 

mammalian cells (Aoki et al., 2011) and the aim of the experiment was to ensure 

that the additional presence of phosphorylated CAR was not altering this 

signalling pathway. The presence of TNF α, however, did lead to p38 

phosphorylation, but this was not significantly different in HBEC overexpressing 

CAR (figure 3.13 b). The response by these MAP kinases to TNF α is not a novel 

finding but reinforces the NFκB results and further supports that CAR 

overexpression does not cause general alterations in multiple signalling 

pathways. 
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Figure 3-13: MAPK signaling unaffected in the presence of 
phosphorylated CAR.  
A) P-ERK activation in CAR-GFP HBEC and Wt HBEC in the presence of 
10ng/ml TNF α and phosphatase inhibitors calyculin A and vanadate. Two 
bands seen at 42 and 44 kDa.  (N=5) B) P-p38 activation in CAR-GFP HBEC 
and Wt HBEC in the presence of 10ng/ml TNF α and phosphatase inhibitors. 
(N=5) 
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3.2.10 The disruption of CAR with adenovirus 5 fibre knob leads to the loss 

of CAR phosphorylation in response to TNF α 

The initial work shown indicates that CAR can be phosphorylated at the 

serine/threonine sites on its cytoplasmic tail. However, whether this occurs at cell 

junctions or within intracellular vesicles was not determined. In stable cell 

monolayers, CAR forms homodimers with other CAR molecules from adjacent 

cells in tight junctions. The adenovirus 5 fibre knob (Ad5FK) binds competitively 

to the extracellular domain of CAR (Santis et al., 1999, Kirby et al., 2000). This 

binding has a significantly greater affinity than the CAR extracellular domain has 

with itself and thus the presence of Ad5FK causes disruption of CAR 

homodimerisation at cell junctions.  

Western blot analysis was performed on lysates of stable CAR-GFP HBEC 

monolayers treated with Ad5FK prior to the addition of TNF α. The addition of 

Ad5FK with the resulting loss of CAR homodimerisation at cell-cell tight junctions 

was associated with the inability of TNF α to cause p-ser290/thr293 of the 

cytoplasmic tail of CAR (figure 3.14). This implies that CAR homodimerised 

across adjacent cell-cell contacts in order for it to be phosphorylated.  
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Figure 3-14: Fibre knob associated disruption of CAR homerdimerisation 
leads to loss of TNF α driven CAR phosphorylation. Western blot analysis of 
CARGFP HBEC treated with 10ng/ml TNF α and 100μg/ml Ad5FK or BSA 
100μg/ml control as indicated, probed for phospho-CAR and HSC-70 as a 
loading control.  
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3.3 Discussion 

This chapter set out to establish whether the presence of cytokines associated 

with tight junction disruption and respiratory inflammation are involved in the 

phosphorylation of CAR.  

3.3.1 CAR phosphorylation in response to cytokines 

CAR has been shown to be involved in the immune response by acting as a 

binding partner for proteins on neutrophils and other immune cells during their 

passage through epithelial layers (Verdino et al., 2010, Witherden et al., 2010). 

The findings presented here, that TNF stimulates CAR phosphorylation, provides 

a novel mechanistic insight into control of CAR in the inflammatory cascade. TNF 

α has been shown to interact with alternative tight junction proteins resulting in 

their disruption as well as activating protein kinases that are responsible for 

phosphorylation events during the immune response, therefore suggesting that 

CAR phosphorylation has a physiologically relevant function (Al-Sadi et al., 2009, 

Schmitz et al., 1999, Coyne et al., 2002). This is supported by the finding that the 

p-ser290/thr293 phosphorylation is a rapid time dependent response that was 

lost within a few minutes to hours, depending on the density of the cells being 

treated. This rapid phosphorylation response suggests that CAR plays a more 

active role in leucocyte transmigration than previously thought as it happens in a 

similar timeframe as leukocyte movement occurs in response to an inflammatory 

stimuli (Sarris et al., 2012). 

A further tyrosine at the 269 position was studied to determine whether this may 

be an additional phosphorylation site. Interestingly the data showed that this site 

was not phosphorylated in the presence of TNF α. This is a noteworthy finding 

given the previous study by Angelini et al (2006) in which pulmonary vascular 
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endothelial cells were shown to exhibit high active Src family kinases following 

the addition of TNF α. This in turn caused phosphorylation of alternative 

junctional proteins including vascular endothelial cadherin and P120 catenin 

(Angelini et al., 2006). This difference in the site of phosphorylation stimulated by 

TNF α may be a reflection of the difference in cell type studied, namely epithelial 

as opposed to endothelial cells or may reflect a different role for CAR in cell 

junctions. 

IL-5 has not previously been indicated in epithelial cell signalling. Classically IL-5 

is seen as a TH2 cytokine that acts as an eosinophil chemo-attractant and is 

therefore associated with diseases such as asthma (Peters et al., 2014). 

Intriguingly it has, though, been shown to activate PKCδ (Bankers-Fulbright et al., 

2001). In CAR-GFP HBEC, the pathway for both TNF α and IL-5 driven 

phosphorylation of CAR was also via activation of PKCδ. This may therefore 

provide a link between these two cytokines given that IL-5 has not previously 

shown to be active in cells that are not part of the immune system. It was also 

established that PI-3K was required as an intermediate step in the activation. As 

described, both of these kinases are known to be activated in response to TNF α 

and IL-5. Separately it was also shown that CAR was phosphorylated via PKCδ 

but this work is the first to show that the two processes are connected and that 

they occur in epithelial cells. 

Alternative cytokines were tested to determine if they would also induce a similar 

response in CAR. As outlined in the introduction multiple cytokines have been 

identified as triggering disruption of tight junction proteins including IFN γ, IL-1β, 

IL-13 and IL-17 but from this data do not cause phosphorylation of the 

serine/threonine site on the cytoplasmic tail of CAR. This selectivity is interesting 

given our current knowledge of the effect of these alternative cytokines. IFN γ did 
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not affect CAR in this cell model but is known to activate the PI3K pathway which 

our results show activates CAR phosphorylation (McKay et al., 2007, Boivin et 

al., 2009). This difference could reflect the difference in cell types used in these 

studies; gastrointestinal epithelial cells versus the respiratory epithelium. Further 

work with gastrointestinal epithelial cells shows that in the presence of IFN γ 

there is an increased turnover of tight junction proteins including JAMA (Bruewer 

et al., 2005) which may suggest that INF γ is having longer-term effects on 

protein localisation rather than triggering short term changes to tight junction 

proteins through phosphorylation. Therefore given that these cytokines are not 

driving CAR phosphorylation at the cytoplasmic tail the response to TNF α and 

IL-5 is not a simple reaction to tight junction impairment or alteration alone but is 

instead directly related to their presence. 

3.3.2 CAR at the cell membrane 

The second key aspect of these findings is that this phosphorylation effect occurs 

when CAR is at the cell membrane. The basis for investigating this 

phosphorylation effect was our recent work (Morton et al 2013) which showed 

that this site on the cytoplasmic tail of CAR can be phosphorylated leading to 

alterations in cell-cell junction protein localisation. These adhesion proteins, in 

particular E-cadherin, have also been found to be altered following cytokine 

stimulation as part of the immune response (Al-Sadi et al., 2009). The previously 

identified CAR phosphorylation events were found to occur at both junctions and 

recycling vesicles in association with disruption to the junctions (Morton et al., 

2013). This process of CAR phosphorylation was related to the localisation of 

junction proteins, as E-cadherin was recycled from the cell membrane when CAR 

was not phosphorylated. Confocal images presented in this chapter indicate that 

CAR phosphorylation is specifically occurring at the membrane in response to 



106 
 

TNF α. This is significant, as CAR has long been established as playing a role in 

the formation and stability of tight junctions via homerdimerisation of its 

extracellular domain (Cohen et al., 2001). As previously described this position at 

the cell membrane also places CAR in the position where it can bind with 

leucocytes implicating it in the immune response. Therefore the fact the 

phosphorylation response to TNF α occurs only at the membrane implies that it is 

of physiological relevance, possibly by ensuring that CAR is still in a position to 

act on the transmigrating leucocytes. Its physiological relevance was reinforced 

by that fact that although these effects were demonstrated in an immortalised cell 

line overexpressing CAR, the downstream pathways for TNF α signalling were 

not being altered by the presence of phosphorylated CAR and thereby implying 

that CAR overexpression is not altering the overall mechanics of the cell. 
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4 Inflammation leads to CAR phosphorylation and 

immune cell migration in vitro  

4.1 Introduction 

The previous chapter showed that the serine/threonine site on the cytoplasmic 

tail of CAR, when CAR is homerdimerised at cell junctions, is phosphorylated in 

response to TNF α. This phosphorylation is driven by PI-3K and PKCδ but does 

not result in an alteration in the expected intracellular signalling pathways 

associated with TNF α; NFκB, p38 and ERK. This chapter explores the 

physiological role the phosphorylation of CAR may have in inflammatory 

conditions. 

4.1.1 CAR and the immune response 

There is a growing body of evidence that the epithelial barrier in the lungs of 

patients with asthma and cystic fibrosis is disrupted through effects on both tight 

junctions (Xiao et al., 2011) and adherens junctions (Lambrecht and Hammad, 

2012) (Coyne et al., 2002). As described previously CAR is a member of the 

epithelial junction complex and its expression is upregulated in chronic 

autoimmune inflammatory conditions in mice suggesting the role of CAR in cells 

is altered in response to inflammation (Ito et al., 2000). A mechanism for the role 

of CAR in this immune reaction has been suggested through more recent work 

that addressed CAR’s interaction with other members of the JAM family (Verdino 

and Wilson, 2011, Witherden et al., 2010). As described previously CAR has a 

similar structure to other proteins in the JAM family and their extracellular 

components can hetero-dimerise. Some members of the family including JAM-A 

are also found on leucocytes as well as endothelial and epithelial cells. JAM-A 

disruption in leucocytes has long been known to lead to a reduction in leucocyte 
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trans-endothelial migration due to loss of homerdimerisation with JAM-A found on 

epithelial cells (Martin-Padura et al., 1998). The more recent work by Verdino et. 

al. and Witherden et. al. showed that CAR on the epithelial cell membrane binds 

to JAM-L on γδT cells and neutrophils (Witherden et al., 2010, Verdino et al., 

2010, Zen et al., 2005). The γδT cells play a key role in host immunity and are 

resident in the epidermis (Jameson et al., 2002, Girardi et al., 2001, Sharp et al., 

2005). These cells are the primary responders to epidermal insult thereby 

protecting against environmental insults such as infection, trauma and 

malignancy. Importantly where this interaction between CAR and JAM-L on 

epidermal and T cells respectively is disrupted skin healing is slowed (Witherden 

et al., 2010). Therefore JAM-L with its ligand CAR can been seen as a co-

stimulatory receptor for γδT cells (Verdino and Wilson, 2011) which places CAR 

in the position to modulate the immune response. The nature of CAR’s role in this 

process in particular needs to be established, as it’s binding to JAM-L on immune 

cells may be a passive function but also have an active role through control of 

junction stability or through intracellular signalling. Therefore this complex 

interaction may be responsible for disease activity and also open the possibility 

for therapeutic modification. 

4.1.2 Leucocyte Transepithelial Migration (TEpM) in response to cytokine 

stimuli 

Leucocyte TEpM into luminal sites such as respiratory airways in response to 

inflammatory stimuli is a complex process that requires multiple molecular and 

cellular responses to occur in sequence, as outlined in the introductory chapter. It 

occurs in three steps: adhesion, migration and post migration (Zen and Parkos, 

2003). CAR in its role as a ligand to JAM-L on immune cells has therefore been 
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implicated in the adhesion step and may also be necessary for successful 

migration. 

This process requires a trigger, which is often provided by a cytokine. IL-1β, IL-8 

and TNF α act as neutrophil chemo-attractants (Strieter et al., 1993, Strieter et 

al., 1992, Salva et al., 1996) and hence were tested as possible triggers for CAR 

phosphorylation in the previous chapter. These cytokines have also been 

implicated in the regulation of junctional proteins through modification of their 

expression and localisation to the cell membrane. This was shown for JAM, ZO-1 

and ICAM-1 in response to TNF α and INF γ. (Coyne et al., 2002). This suggests 

a mechanism for feedback control of leucocyte movement. 

Following the findings that CAR was phosphorylated at serine290 and 

threonine293 sites in response to TNF α we next sought to determine whether 

this process was integral to the previously established role for CAR in leucocyte 

migration. 
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4.2 Results 

4.2.1 Localisation of TNF receptor and CAR in HBEC 

In the previous chapter, it was established that CAR is phosphorylated at the 

serine290/threonine293 sites in response to TNF α stimulation in a time 

dependent fashion. This phosphorylation effect was mediated by PI-3K and 

PKCδ, however these results do not determine whether this process occurs with 

CAR in complex with the TNFR1 receptor or as part of a downstream signalling 

cascade (figure 4.1). TNF α signals predominantly through TNFR1 in epithelial 

cells as the alternative receptor TNFR2 is not known to be found in the epithelium 

(Speeckaert et al., 2012). Both CAR and TNFR1 are localised to the cell 

membrane and interact with other proteins at this site (Coyne and Bergelson, 

2005, Park et al., 2014).  

 

Figure 4-1: CAR phosphorylation at cell junctions: TNF signals through PI-3K 
and PKC which could act at a separate site at the cell membrane on CAR (A) or 
occur in complex (B). This phosphorylation effect though is lost if CAR is no 
longer homerdimerised at cell junctions (C). 
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To determine whether CAR and TNFR1 were in complex at junctions, confocal 

microscopy was performed to visualise their respective positions at the cell 

membrane in both resting conditions and in response to TNF α (figure 4.2b&c). 

The maximum intensity confocal microscopy projection images provided strong 

evidence that when at the membrane, the two receptors are not co-localised. This 

is not due to the over expression of TNFR1 in CAR-GFP cells as there are equal 

amounts of TNFR1 in the CAR-GFP cells as the WT HBEC (figure 4.2a). 
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Figure 4-2: Localisation of TNF receptor and CAR in HBEC. A) TNFR1 levels 
in Wt HBEC and CARGFP HBEC.  B) Confocal images of mixed populations of 
Wt HBEC and CARGFP HBEC with TNFR1 (red) and CAR (green) at cell 
junctions. C)  Maximum intensity projection of the confocal images (TNFR1 – red 
and CAR – green). The white boxed areas are cropped and shown in the images 
below. Scale bars are 10um. 
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4.2.2 Functional effect of TNF α driven p-ser290/thr293 CAR 

phosphorylation 

Increased epithelial permeability as a result of the presence of TNF α is a well-

established phenomenon (Al-Sadi et al., 2009). The reasons for this response 

have been studied previously and multiple factors have been implicated, 

including loss of tight junction proteins (Al-Sadi et al., 2009, Ivanov et al., 2005) 

and increased cell death (Gitter et al., 2000a, Gitter et al., 2000b). 

CAR has also been shown to influence permeability at tight junctions; CAR 

homodimerisation has been shown to be disrupted at tight junctions in T84 

metastatic lung carcinoma cells by the addition of its soluble extracellular domain 

(CAR-ECD) to cell media (Cohen et al., 2001). These effects are organ specific 

though with loss of CAR leading to increased permeability in the heart myocytes 

but not in gut epithelial cells in knockout mice. (Pazirandeh et al., 2011) 

Given the role both CAR and TNF α have been shown to play in the stability of 

the epithelial barrier it was therefore important to determine whether CAR was 

influencing the effect of TNF α on cell junction stability and permeability given the 

fact that CAR is being phosphorylated in its presence. Therefore permeability 

assays were undertaken as described in section 2.11. These assays were 

performed on stable confluent monolayers of either WT HBEC or CAR-GFP 

HBEC grown on transwells and either untreated or treated with TNF α. The 

amount of FITC-dextran passing through the monolayer is indicative of 

permeability between cells (figure 4.3 a,b). The reproducibility of the results in 

this model was highly sensitive to the formation of complete cell monolayers, 

which necessitated many repeats. The data is shown in two formats to aid 

interpretation. Firstly the average absolute values obtained from all of the 
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experiments are shown (figure 4.3a). The second figure shows the percentage 

change at each time point seen in those experiments where a realistic response 

to TNF α was seen. This removed two of the experimental repeats as there was 

no corresponding change in permeability with TNF which given the cytokines 

physiological effect likely reflects experimental error. Interestingly, the data shows 

that cells with high levels of CAR were less permeable in the presence of TNF α 

than those without, particularly at 30 minutes post TNF addition. This suggests 

that CAR plays a functional role in the response to TNF α by maintaining cell to 

cell contact. Given that the timing of this response coincides with phosphorylation 

effect seen in CAR in response to TNF α it may be that the two events are 

associated.  
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Figure 4-3: CAR plays a role in control of TNF-induced epithelial cell 
monolayer permeability. A) Transwell fitc/dextrans permeability assay data of 
multiple experimental repeats (n=6) of Wt HBEC or CARGFP HBEC monolayers 
either treated or untreated with TNF α (10ng/ml). B) Graph showing the 
percentage change in permeability between the Wt or CARGFP monolayers 
either treated or untreated at 30 or 60 minutes where there was a demonstrable 
change with the addition of TNFα (n=4). 
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4.2.3 Confocal imaging of junction markers in mixed populations of Wt 

HBEC and FLCAR HBEC 

Following the data suggesting that the presence CAR at junctions is capable of 

maintaining their stability after the addition of TNF α it was necessary to 

determine whether there was alteration in other protein markers associated with 

both tight and adherens junctions. ZO-1 was used as a marker for tight junctions 

and was as expected seen to co-localise with CAR at epithelial junctions both in a 

resting state and in the presence of TNF α (figure 4.4a).  

E-cadherin was used as a marker for adherens junctions. E-cadherin has 

previously been shown to be displaced from junctions that over-express CAR at 

junctions, specifically when the cytoplasmic tail of CAR is not phosphorylated at 

either the p-ser290/thr293 sites (Morton et al., 2013). As previously identified 

confocal imaging showed that when untreated there was little co-localisation of 

CAR and E-Cadherin to epithelial junctions. Following treatment with TNF α for 

30 minutes the p-ser290/thr293 sites on CAR have been shown to be 

phosphorylated. The confocal imaging suggests that it also leads to an increased 

expression of E-Cadherin at epithelial junctions with a representative image 

showing increased red staining of E-Cadherin at junctions (figure 4.4b). This 

supports the previous assertion that where the p-ser290/thr293 sites on CAR are 

phosphorylated then E-Cadherin is able to be expressed at the junction.  
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Figure 4-4: Confocal imaging showing maximum intensity projections of 
junction markers in HBEC following TNF α treatment: A) Tight junction 
staining (ZO-1 - red, CAR - green, co-localisation of both - yellow, nucleus - 
white) of HBEC +/- treatment with 10 µg TNF α for 30 minutes. B) Adherens 
junction staining (E-Cadherin – red, CAR - green, co-localisation of both - yellow, 
nucleus - white) of HBEC +/- treatment with 10 µg TNF α for 30 minutes. Scale 
bars are 10um. 
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4.2.4 Phospho-CAR alters leucocyte transmigration 

The role of CAR at the cell membrane has already been established as more 

complex than simply homodimerising with adjacent epithelial cells. As described 

in the introduction, CAR is also able to act as a ligand for proteins on 

transmigrating leucocytes (Witherden et al., 2010, Zen et al., 2005) but the 

mechanisms underpinning this are unclear. In order to test the hypothesis that 

phosphorylation of CAR may be involved in leucocyte transmigration, a 

monocytic-derived cell line THP-1 (that express JAM-L) were incubated with 

control WT HBEC or CAR-GFP HBEC and allowed to undergo transmigration 

over 24 hours. In agreement with previous studies, data demonstrated that 

overexpression of CAR-GFP significantly increased THP-1 cell transmigration but 

not adhesion to the epithelial layer (Figure 4.5 a, b). Moreover, incubation with 

recombinant Ad5FK (Kirby et al 2000 inhibited THP-1 transmigration but had no 

effect on adhesion (Figure 4.5 a,b). This suggests that THP-1 migration might be 

dependent on the ability of CAR to homodimerise in trans. Alternatively, as the 

binding sites on CAR for JAM-L and Ad5FK overlap (Verdino et al., 2010, 

Witherden et al., 2010, Kirby et al., 2000), Ad5FK may inhibit THP-1 

transmigration by competitively blocking THP-1 binding to CAR. Interestingly, 

THP-1 interaction with CAR-GFP HBEC led to a prolonged increase in p-

ser290/thr293 CAR that peaked at around 4 hours post-THP-1 addition (Figure 

4.5 c), which correlated with the time taken for THP-1 to fully integrate into HBEC 

monolayers.  

To investigate whether this observed increase in phospho-CAR played a role in 

TEpM we analysed transmigration in previously described ser290/thr293 CAR 

phosphorylation site mutants DDCAR-GFP or AACAR-GFP as well as WT and 

CAR-GFP HBEC. Data demonstrated that expression of DDCAR-GFP but not 
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AACAR-GFP supported enhanced THP-1 transmigration across HBEC indicating 

that phosphorylation of CAR is required for this process (Figure 4.5 d). Confocal 

analysis further revealed that CAR-GFP and DDCAR-GFP but not AACAR-GFP 

were clustered around transmigrating THP-1 cells between HBEC cells (Figure 

4.5 e). These data collectively demonstrate that CAR is required for efficient 

transmigration of leucocytes and this is promoted by phosphorylation of the CAR 

cytoplasmic tail. 
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Figure 4-5 CAR phosphorylation does not affect adhesion but promotes 
THP-1 integration: (data from Dr. Penny Morton) (A) Epithelial 
transmigration of THP-1 cells was analysed using Transwell chambers. THP-1 
cells were stained using cell-tracker orange before adding to the top well of 
transwell inserts with WT or CARGFP-HBEC monolayers grown on top and 
pre-treated with BSA control or recombinant Ad5FK. After 48hours cell-tracker 
orange stained cells in the bottom well were counted using FACS. (B) 
Quantification of THP-1 adhesion to wild-type or CAR-GFP HBEC cells. HBEC 
cells were grown to confluence in the presence of BSA control or recombinant 
Ad5FK before addition of THP-1 cells stained with cell-tracker orange for 24 
hours. N=4 (C) Western blot of phosphorylated CAR during THP-1 
transmigration. THP-1 were applied to CARGFP HBEC monolayers for the 
times indicated before lysis and western blotting using antibodies against p-
CAR, GFP, E-cadherin and HSC-70 as a loading control. (D) Transmigration 
analysis as in 1B using wild-type, CARGFP, AACARGFP and DDCARGFP 
HBEC. (E) Example confocal images of THP-1 cells undergoing transepithelial 
migration. Cell tracker orange stained THP-1 cells were added to confluent 
monolayers of HBEC and fixed after 24 hours before confocal imaging to obtain 
z-stacks. Cell tracker orange THP-1 cells (blue), CARGFP (green) and actin 
(red) to show the position of the HBEC are shown. Z-slice shows the location of 
THP-1 in relation to HBEC monolayer and recruitment of CARGFP to THP-1. 
Error bars are SEM. *=p<0.05, **=p<0.01 ***=p<0.005. 
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4.2.5 TNF α induced CAR phosphorylation promotes TEpM of THP-1 cells 

Given that phosphorylation of CAR can regulate THP-1 migration, and that TNF α 

promotes CAR phosphorylation, as we have shown, we next sought to clarify 

whether TNF α could promote integration of leucocytes within epithelial 

monolayers in a CAR-dependent manner. CAR-GFP HBEC monolayers 

stimulated with 10ng/ml TNF α showed significantly higher THP-1 integration 

after 4 hours than untreated monolayers (Fig 4.5 a). Moreover, WT HBEC (that 

express low levels of CAR) and AACAR-GFP HBEC did not exhibit an increase in 

THP-1 integration when treated with TNF α (Fig 4.5 a). These data show that 

phosphorylation of CAR is required for TNF α-induced transmigration of THP-1 

cells. Importantly, although TNF α has been shown to promote TEM through 

increasing permeability of endothelial cells (Cain et al., 2010). The results from 

the permeability experiments show that CAR-GFP expression actually reduces 

TNF α-mediated paracellular permeability (figure 2.3b,c). This suggests that CAR 

does not promote TEpM via weakening of cell-cell contacts.   

THP-1 have previously been shown to secrete TNF α (Satsu et al., 2006) so we 

next investigated whether this may act on the HBEC in a paracrine fashion to 

promote THP-1 transmigration. In support of this, pre-incubation of CAR-GFP 

HBEC with TNFR1 blocking antibodies resulted in reduced THP-1 integration into 

CAR-GFP HBEC monolayers (figure 4.5 b) there by confirming a requirement for 

TNFR1 in this process. Moreover, blocking TNFR1 inhibited both TNF α- and 

THP-1 induced CAR phosphorylation (figure 4.5 c, d) further demonstrating a 

requirement for TNF-TNFR1 engagement in controlling TNF α induced CAR 

phosphorylation. Taken together, these data show that TNF α secreted by THP-1 

cells can induce CAR phosphorylation in epithelial cells via TNFR1 to promote 

THP-1 epithelial integration.  
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Figure 4-6: TNF α promotes trans-epithelial migration of THP-1 cells in a 
CAR dependent manner. (A) Analysis of THP-1 integration into WT, CARGFP 
or AACARGFP HBEC monolayers 4 hours after addition of THP-1. Where 
indicated, HBEC cultures were pre-treated with 10ng/ml TNF α for 1 hour prior to 
addition of THP-1. (B)  Analysis of THP-1 integration into WT, CARGFP or 
AACARGFP HBEC monolayers 6 hours after addition of THP-1. Where indicated, 
HBEC cultures were pre-treated with 10μg/ml anti-TNFR1 blocking antibody or an 
isotype specific control antibody, for 1 hour prior to addition of THP-1. (C) 
Western blot analysis of phospho-CAR in CARGFP HBEC treated with 10ng/ml 
TNFR1 blocking antibody or a control antibody, and further treated with 10ng/ml 
TNF α where indicated. (N=3)(D) Western blot analysis of phospho-CAR in 
CARGFP HBEC cultured with THP-1 cells for 4 hours. Where indicated, 
CARGFP HBEC were treated with 10μg/ml TNFR1 blocking antibody prior to 
addition of THP-1 (N=3). 
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4.3 Discussion 

In vitro data presented in this chapter provides a direct functional role for CAR in 

TEpM, as integration of THP-1 cells was reduced in the absence of CAR at the 

cell membrane. This process has previously been demonstrated in the TEpM of 

neutrophils through the heterophilic interaction between CAR on epithelial cells 

and JAM-L on neutrophils (Zen et al., 2005). THP-1 cells have also been shown 

to contain JAM-L and their transmigration through endothelial layers was 

impaired when JAM-L was blocked from interacting with its likely binding partner 

CAR (Guo et al., 2009). In the longer term this interaction is augmented by 

soluble JAM-L released by transmigrating neutrophils which extenuates the loss 

of barrier function through its binding to CAR which slows wound healing (Weber 

et al., 2014).  

Data presented here shows that CAR is only active in mediating TEpM when it 

can be phosphorylated at the ser290/thr293 site. This phosphorylation event was 

a prerequisite for TNF driven TEpM. There have been several studies to show 

that the presence of TNF α leads to increasing epithelial permeability through a 

variety of methods. This firstly includes the internalisation of the apical tight 

junction, thereby causing disruption of cell-cell contacts and increased solute 

passage (Ivanov et al., 2004, Schwarz et al., 2007). TNF α has also been 

associated with the mechanisms that control cell survival and cell death, in 

particular via activation of NFκB (Saile et al., 2001) however the presence of CAR 

had no effect on signalling to MAPK or NFkB downstream of TNF suggesting that 

CAR does not play a role in these pathways. Therefore TNF α may also be 

causing an increase in permeability via the apoptosis of epithelial cells leading to 

holes forming in the epithelial raft. This process has been shown to be the case in 

HT-29/B6 intestinal cells with a doubling of their rate of death in the presence of 
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TNF α with a resulting fifty percent loss in their TER (Gitter et al., 2000a, Gitter et 

al., 2000b). This response is not universal, however, with multiple other studies 

showing the epithelium is highly conserved during cell apoptosis with cells 

stretching to fill any spaces caused by cell death and thereby preserving the 

barrier function (Madara, 1990, Madara, 1989, Moore et al., 1989, Florian et al., 

2002). Importantly all of these events are shown to occur over a 24 hour period 

where as the effect on CAR at cell junctions occurs much more rapidly with 

phosphorylation within fifteen minutes.  

Significantly, for the TEpM data, the increased permeability effect was not found 

to be the case in the presence of CAR, which suggests that the changing 

movement of leucocytes is not simply due to the physical loss of cell contacts. 

From the data shown this may reflect the importance of p-ser290/thr293 CAR at 

stabilising the junction but could it also be related to the alteration of other tight 

junction proteins in the presence of CAR. Occludin but not claudin-4, ZO-1 or E-

cadherin for example was shown to be lost from junctions in response to TNF 

and IL18 in Human colonic epithelial (Caco-2) cells (Marchiando et al., 2010, 

Lapointe and Buret, 2012). Lapointe and Buret also noted that in Caco-2 cells 

there was no rise in permeability but there was an increase in TEpM with this 

occludin loss. They suggest that fine changes in epithelial barrier structure, 

although too subtle to alter paracellular permeability, may be of great 

physiological significance by accommodating leukocyte transmigration.  

These subtle changes with the loss of tight junction proteins does not account for 

the need for CAR to be present at the epithelial membrane and capable of 

phosphorylation for TEpM to occur. Neutrophils are known to secrete TNF α 

when in contact with endothelial cells to increase vascular leakage (Finsterbusch 

et al., 2014, Satsu et al., 2006). This TNF α secretion response has implications 



125 
 

for the results seen in this chapter. THP-1 cells alone were capable of driving 

CAR phosphorylation but this effect was lost in the presence of a TNFR1 blocking 

antibody implying a similar paracrine release of TNF from THP-1 was sufficient to 

drive p-ser290/thr293 CAR. It was this phosphorylation effect that was shown to 

be necessary for THP-1 trans-migration demonstrating that CAR plays an active 

role in this second step in TEpM. However, this process was not associated with 

leakage of solute through the epithelial barrier as the presence of CAR instead 

reduced the expected increase in permeability. Rather than as Lapointe and 

Buret suggest the loss of tight junction proteins may lead to subtle structural 

changes enabling TEpM CAR may instead be playing a role in maintaining 

junction integrity so that it is still present to act as a ligand for the migration of  

leucocytes attracted to a site of inflammation (Lapointe and Buret, 2012).  

Two alternative JAM’s, endothelial cell-selective adhesion molecule (ESAM) and 

JAM-C in contrast have been shown to increase junctional permeability when 

compared to knockout mice in endothelial layers rather than the epithelium 

(Luissint et al., 2014). This effect is associated with myosin light chain 

phosphorylation leading to actin contraction (Orlova and Chavakis, 2007) and 

therefore may explain the difference seen with CAR as its presence in 

inflammatory conditions appears to stabilise actin at the cell junctions rather than 

promote its contraction. This is an interesting finding as tight junction proteins 

along with the adherens junctions, are intimately linked to the peri-junctional acto-

myosin ring, a belt like structure formed by actin and myosin II that encircles the 

apical pole of epithelial cells. This belt projects actin filaments that interface with 

the tight junction and thus circumferential contractions of the peri-junctional 

actomyosin ring regulate tight junction structure and para-cellular permeability 

(Ulluwishewa et al., 2011). It also ties into previous work that has shown that 
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where CAR in epithelial cells is phosphorylated E-cadherin is mobilised to cell 

junctions which would aid junction stability and reduce permeability (Morton et al., 

2013). Although the phosphorylation of tight junction proteins does not always 

lead to reduced permeability as seen  with ZO-1 at epithelial junctions are 

associated with a reduction in TEER (Stevenson et al., 1989) other JAM family 

members, JAM-A and JAM-2, have also been found to stabilise cell junctions. 

This was seen between endothelial and epithelial cells respectively and led to 

reduced permeability when they were phosphorylated at serine sites (Ebnet et al., 

2003, Iden et al., 2012). Therefore the increased TEpM seen with p-

ser290/thr293 CAR must be related to its interaction with the THP-1 cells rather 

than the general porousness of the epithelial layer. Data shown in the previous 

chapter also suggests that this is not a reflection of downstream signalling events 

as there was no alteration in the pathways associated with TNF α signalling when 

p-ser290/thr293 CAR occurred. Therefore the TEpM response to TNF α driven p-

ser290/thr293 CAR may reflect an alteration in the binding of CAR to JAM-L to 

aid leucocyte binding and movement. The extracellular domain of JAM-A for 

example will bind significantly more strongly if it can occur in cis rather than in 

trans (Monteiro et al., 2014). Therefore if the cytoplasmic phosphorylation of CAR 

is having an effect on the extracellular domain then it could be mediating the 

impact on TEpM.  

The paracrine release of TNF α from THP-1 during adhesion and the resulting 

CAR phosphorylation driving THP-1 migration also suggests a possible reason 

for the conflicting results for anti-TNF treatments in inflammatory conditions in the 

lungs (Erin et al., 2006, Brightling et al., 2002, Rennard et al., 2007). These 

studies have only ever shown a limited response to systemic anti-TNF therapies 

in particular in asthma which may reflect that the movement of inflammatory cells 
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that drive the disease can be released by the cells themselves and act over very 

short distances by controlling tight junction proteins such as CAR that are found 

in the adjacent epithelial cells. 

In conclusion, these results support a novel mechanism where CAR can control 

TEpM of leucocytes through its own post-translational modification in response to 

a TNF α inflammatory stimulus. These findings implicate CAR as an important 

mediator of immune cell recruitment to sites of epithelial inflammation. 
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5 Inflammation leads to CAR phosphorylation and 

immune cell migration in vivo 

5.1 Introduction 

The conclusions drawn from the last two chapters have been based on the use of 

immortalised cell lines. The understanding of the importance of CAR in 

inflammation is limited and therefore many of the fundamental principles 

underlying any role it may play are unknown. In vitro models are essential in the 

development of any understanding of these principles and have been widely used 

previously in the study of epithelial junctional dynamics in asthma (Xiao et al., 

2011, Hackett et al., 2011). These cells were used as they allowed for stable 

expression of CAR in a controlled and reproducible form. In so doing the 

fundamental biology of CAR could be interrogated. Primary cells in in vitro 

models provide a closer reflection of living systems as they have not been 

manipulated in such a way as to ensure immortality. However, they have been 

shown to exhibit a high degree of variability between donors, experiments, and 

passage, particularly with respect to development of epithelial junctional stability 

(Stewart et al., 2012). Primary cells are also costly and therefore unsuitable for 

large scale experiments, have a finite lifespan and can be difficult to manipulate 

as required by these experiments to alter the formation of the CAR cytoplasmic 

tail. Immortalised cell lines therefore represent an attractive alternative to 

investigate basic biological principles.   

Nevertheless, there remains concern that immortalised cells do not replicate 

living systems. Animal models have been established as providing additional 

relevant information for our understanding of inflammatory conditions in the 

complex interactions that occur in the human lung (Vargaftig, 1999, Hraiech et 
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al., 2015, Erle and Sheppard, 2014). This chapter therefore addresses the 

physiological relevance of CAR in respiratory inflammation by testing the 

conclusions of the preceding two sections in animal models.  

5.2 Results 

5.2.1 Mouse lung response to acute inflammatory stimulation 

The initial experiments investigating a role for CAR phosphorylation in leucocyte 

transmigration in response to inflammatory conditions were all performed In-vitro 

but suggest at a physiologically relevant response. Following the finding that the 

CAR phosphorylation response in vitro occurs rapidly in response to TNF α a 

mouse model was chosen to reflect an acute inflammatory response. The 

inflammatory conditions were provided by intranasal inhalation of TNF α 24 hours 

prior to animal sacrifice. This challenge led to a significant response in the mouse 

lung with a rise in the number of neutrophils seen in the peri-bronchial region 

(figure 5.1) and bronchoalveolar lavage (BAL) fluid (figure 5.2). 

Importantly this increase in neutrophil egression measured in bronchoalveolar 

lavage and by H&E staining in the same animals corresponded with a dramatic 

increase in CAR phosphorylation at junctions between small airway epithelial 

cells as detected by immunohistochemical staining of fixed lung tissue (figure 5.3 

a). This was not due to increased presence of total CAR at tight junctions in 

response to TNF α stimulation, as equivalent amounts of CAR was seen at 

junctions in both the PBS control mice and the TNF stimulation group (figure 5.3 

b). These data are therefore suggestive that CAR, which is present at tight 

junctions during resting conditions in the lung, is being phosphorylated in 

inflammatory conditions.  



130 
 

Further analysis of lung tissue revealed that 24 hours following TNF α stimulation 

there was no clear change in localisation of other epithelial junctional markers 

including P120, ZO-1 and E-cadherin (figure 5.4 a,b,c). This would suggest that 

the epithelium remains intact and the change in neutrophil number seen in the 

BAL data is not a reflection of the loss of the epithelial barrier effect but instead 

an active process that allows for leucocyte egression. 

These data show that CAR phosphorylation and neutrophil recruitment into the 

broncho-alveolar spaces occur at similar time-frames and similar locations in the 

lung suggesting that exogenously applied TNF α stimulates CAR phosphorylation 

and promotes migration of leucocytes in the bronchial lumen. 
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Figure 5-1 Acute inflammatory mouse model with increased neutrophil 
presence in response to TNF stimulation. A) Mouse lung sections of either 
TNF or PBS stimulated animals. Neutrophils marked with black arrows in the 
tissue space and leukocytes migrating through the epithelial layer marked by 
white arrows. Scale bars are 50μm.  
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Figure 5-2: Acute inflammatory mouse model with increased neutrophil 
presence in response to TNF stimulation. Flow cytometry results from the 
bronchiolar lavage results of the pooled data from the control and treatment 
groups (n=6 per group). Error bars are SEM and ** =p0.009 
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Figure 5-3: Mouse lung model of acute TNF α stimulation leads to CAR 
phosphorylation. A) p-ser290/thr293 CAR staining (green) of mouse lung tissue 
following TNF stimulation or PBS control. Nuclei are shown in blue. Zoomed 
images of individual cells shown in each corner B) CAR staining of the same 
mouse lung tissue following TNF or PBS treatment showing no variation in CAR 
expression. Images representative of 6 mouse lungs. Scale bars represent 10μm. 
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Figure 5-4: Junction marker staining is unaltered in an acute inflammatory 
mouse lung model. A) P120 staining. B) ZO-1 staining. C) E-cadherin staining. 
All antibodies in green, blue are DAPI staining (nuclei). Images representative of 
6 mouse lungs. Scale bars represent 10μm. 
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5.2.2 Mouse lung response to TNF α in the presence of Ad5FK 

The initial in vivo data demonstrated a correlation between the phosphorylation of 

CAR and increased transmigration of neutrophils in response to TNF α 

stimulation but did not provide a causal link between the two. To determine 

whether this is the case, the experiments were repeated but with the additional 

inclusion of mice pre-treated with intra-nasal inhalation with Ad5FK. Ad5FK was 

used as it had been shown to both block p-ser290/thr293 CAR (figure 3.13) and 

CAR mediated THP-1 migration (figure 4.5 a). Analysis of immune cell infiltration 

revealed that the presence of Ad5FK resulted in a significant reduction in the 

number of neutrophils found in the BAL (Figure 5.5). This implies that blocking 

CAR homodimerisation and phosphorylation leads to reduced leucocyte 

transmigration through the epithelial layer and into the airways in response to 

TNF α stimulation.  

Interestingly the in vitro experiments used the THP-1 cell line which was derived 

from the blood of a patient with acute monocytic leukaemia. These cells therefore 

are used to model monocyte or macrophage responses in vitro. As a cell line 

THP-1 cells are useful as they have a homogenous genetic history thereby 

ensuring a reproducible response. They, however, do have some differences in 

their response when compared to primary monocyte or macrophage cells, 

including the effect of the cytokines such as IL 10 and IL 27 (Qin, 2012). This 

could be the cause for the difference shown with the in vivo data which shows 

that there is a stronger response from neutrophils rather than macrophages.  
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Figure 5-5 Acute inflammatory mouse model with loss of increased 
neutrophil presence in response to TNF stimulation with the addition of 
Ad5FK. Flow cytometry results from the bronchiolar lavage results of the pooled 
data from the control and treatment groups (n=4 per group). Error bars are SEM 
and * = p0.029 
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5.2.3 Mouse lung response to chronic inflammatory stimulation 

To further evaluate the effect of CAR activity on lung inflammation an alternative 

mouse model was used to reproduce chronic inflammatory conditions. The 

Ovalbumin challenge model of chronic lung inflammation was used. Although it 

does not exclusively drive TNF α stimulation it is well established as providing a 

reflection of many of the findings seen in asthmatic conditions in the lung (Kumar 

et al., 2008, Nials and Uddin, 2008).  These experiments were carried out in the 

lab of Dr Gisli Jenkins (University of Nottingham) and fixed tissues and protein 

samples provided to us for analysis. 

H&E staining of the mouse lung tissue demonstrates significant architectural 

changes in response to the ovalbumin challenge (figure 5.6 a,b). This response is 

driven by extensive peri-vascular and peri-bronchiolar leucocyte infiltration (figure 

5.7 a,b) reflecting the strong inflammatory response generated by this model. The 

leucocytes seen were predominantly macrophages and neutrophils as highlighted 

in figure 5.7b. 

Further immunostaining revealed that, as seen with the acute inflammatory 

model, a strong CAR p-ser290/thr293 increase was observed at the cell 

membrane of epithelial cells associated with an influx of inflammatory cells (figure 

5.7).  
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Figure 5-6: H&E staining of ovalbumin treated mouse lung. A) H&E staining 
of widefield view of PBS and ovalbumin mouse lungs. B) H&E stained images 
focused on small airways. Images representative of 6 mouse lungs. 
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Figure 5-7: H&E staining of ovalbumin treated mouse lung (Higher 
magnification). A,B) H&E stained images focused on leukocyte cell types in the 
sub epithelial zone in mouse lung tissue. Representative neutrophils highlighted 
with white arrows and macrophages with black arrows. Images representative of 
6 mouse lungs. 
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Figure 5-8: Confocal imaging of CAR phosphorylation of mouse epithelium 
in response to ova stimulation. A) Imaging for p-ser290/thr293 CAR in 
ovalbumin treated mouse lung with a zoomed image of epithelial junctions. B) 
Confocal imaging of CAR in ova albumin treated mice. Images representative of 
6 mouse lungs. 
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5.3 Discussion 

This thesis set out to determine whether CAR phosphorylation in response to 

TNF α is of physiological relevance through CAR’s known interaction with 

leucocytes during TEpM. 

The in vivo models used mice as the animal system which does lead to 

limitations in its possible application in human biology. In particular mice do not 

naturally suffer with inflammatory conditions such as asthma and as such model 

systems looking to recreate similar inflammatory lung states require artificial 

sensitisation. Therefore an alternative tissue engineered model using human 

epithelial cells in combination with other parenchymal cells to develop artificial 

human lung equivalents may provide additional relevant data (Bucchieri et al., 

2012). However, the two mouse models used here both show that CAR is 

phosphorylated at cell membranes during inflammatory conditions. The fact both 

mouse strains demonstrate a CAR phosphorylation response implies a consistent 

physiologically relevant response which is important given previous reports that 

the genetic background of the mouse strain can significantly affect the presence 

and function of specific junctional proteins (Schenkel et al., 2004, Woodfin et al., 

2009).  

It is also interesting to note that the phosphorylation effect is maintained despite 

chronic inflammatory stimulation. Vincent et al. have previously shown that CAR 

mRNA levels in vascular endothelial cells are reduced following prolonged 

exposure to both TNF α and IFN γ but not immortalised A549 respiratory 

epithelial cells (Vincent et al., 2004). Therefore the suggested feedback 

mechanism in response to inflammation caused by the loss of CAR in endothelial 

cells does not appear to occur in the mouse lung epithelium as CAR was still 
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present and phosphorylated at the cell membranes despite prolonged 

inflammation. This consequently indicates that CAR may play a role in chronic 

inflammatory conditions in the lung and more specifically this role is relevant to 

the epithelium rather than the endothelium as there is no down regulation of its 

expression in these cells. 

The significance of CAR phosphorylation in response to TNF α is difficult to prove 

In vivo as the mouse model by its very nature is a complex system.  Confirming a 

direct link between CAR phosphorylation and TEpM would be greatly enhanced 

by studying this in a CAR knockout model. This in itself would be challenging as a 

CAR knockout is a lethal mutation by day 12 in mouse embryonic development 

(Chen et al., 2006). Therefore a lung conditional knockout mouse using either a 

Cre/loxP or Flp/FRT system would be required to ensure a spatial and temporal 

specific effect (Hall et al., 2009). Data here shows a correlation between 

increased neutrophil migration and CAR phosphorylation and combined with our 

in vitro data suggests a link between these two events.  The in vivo neutrophil 

response to TNF α is reduced in the presence of Ad5FK showing that CAR is 

required for TNF α stimulated egression in the lung and suggests that CAR 

homerdimerisation at the cell membrane is required. This supports a role for CAR 

phosphorylation as this was shown to be blocked in the presence of Ad5FK. 

However since Ad5FK binds CAR on the same domain as JAM-L this result may 

also reflect competitive binding preventing the interaction of leukocyte proteins 

with CAR. 
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6 Discussion 

6.1 CAR phosphorylation in inflammatory conditions 

In this thesis I have set out to determine whether there is a physiological 

relevance for the two previously published, and one putative phosphorylation 

sites on the cytoplasmic tail of CAR during the inflammatory response in lung 

epithelial cells. Threonine290 and serine293 sites can be phosphorylated in 

response to inhibition of phosphatases (Morton et al., 2013) and we additionally 

identified a putative phosphorylation site at tyr269. Phosphorylation of the 

threonine290/serine293 sites was shown to control stability of E-Cadherin at the 

cell membrane (Morton et al., 2013). This finding suggested a possible function 

for these phosphorylation sites during both the normal inflammatory response 

and in disease as once at the cell membrane E-cadherin would be able to 

stabilise epithelial junctions and maintain its barrier function. This is of particular 

relevance to inflammatory conditions in the lung such as asthma as previous 

work has shown a down regulation of junctional proteins including E-Cadherin 

(Xiao et al., 2011). Therefore, phosphorylation of these sites during inflammation 

would indicate a potentially important role for CAR in the inflammatory processes. 

However, the importance in the overall function of CAR within the cell, and 

interaction with other cells, was not been clearly established.  

Data presented in this thesis is the first to demonstrate that CAR phosphorylation 

can be triggered by an inflammatory stimulus, in particular in response to the pro-

inflammatory cytokines TNF α and IL-5. TNF α is a pleotropic cytokine with 

multiple effects on almost all differentiated cells including the epithelium. In 

particular TNF α has been shown to have multiple effects on tight junction 

proteins in both epithelial and endothelial cells including causing the 
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internalisation of proteins such as JAM-1, occludin, and claudin-1 and 4 (Al-Sadi 

et al., 2009, Feng and Teitelbaum, 2013), which contributes to control of junction 

stability in these cells. This suggests that CAR phosphorylation downstream of 

TNF may play a role in the inflammatory cascade, possibly through control of E-

cadherin and junction integrity. As outlined in the introduction this is also of 

particularly relevance in the respiratory epithelium as those patients with severe 

steroid resistant asthma can have their airway hyper-responsiveness controlled 

by TNF α inhibition with etanercept (Holgate, 2010, Morjaria et al., 2008, Howarth 

et al., 2005, Berry et al., 2006).  This effect is not universal, though, (Erin et al., 

2006, Brightling et al., 2002) and may reflect the time dependent effect seen in 

the in-vitro data where phosphorylation in response to cytokines was lost after a 

few hours. This transient phosphorylation event implies a method of auto 

regulation to prevent an uncontrolled inflammatory response as it is self-limiting. 

However, CAR phosphorylation was still evident in our chronic inflammation 

model suggesting that this autoregulation does not happen in cases of chronic 

stimulation of airway inflammation. This challenges previous work that found 

alternative junctional proteins, including ZO-1, occludin and E-cadherin were 

downregulated in patients with asthma (de Boer et al., 2008, Xiao et al., 2011). 

This may reflect the difference in the model system used which relied on 

recurrent stimulation of normal tissue compared to the intrinsically abnormal cells 

seen in asthmatic airways. Previous work has shown down regulation of CAR 

expression following chronic exposure to TNF α and Inf γ (Vincent et al., 2004). 

However, these observations were not reproduced when the same experiments 

were performed in respiratory cells (Vincent et al., 2004). Therefore there may be 

a specific response seen in the lung epithelium that enables CAR 



145 
 

phosphorylation to be maintained in chronic inflammatory conditions such 

asthma.  

This contrasts with IL-5, the other cytokine shown to cause phosphorylation of the 

same sites on CAR. IL-5 is associated with TH2 derived inflammatory responses 

and in particular acts as a chemo-attractant to eosinophils. The results shown 

here confirm previous reports which showed that IL-5 activates PKCδ activity 

thereby suggesting that IL-5 could use a similar pathway to TNF to drive 

phosphorylation of the cytoplasmic tail of CAR (Bankers-Fulbright et al., 2001). Its 

activation of PKCδ could also point to a possible synergistic effect with TNFα as 

both cytokines would be driving the same pathway. IL-5, however, has not 

previously been shown to have any effect on epithelial cells (Al-Sadi et al., 2009). 

The IL-5 receptor has never been identified on epithelial cells and therefore the 

physiological relevance of IL-5 in the phosphorylation of CAR may be limited. IL-5 

does act as a chemoattractant to eosinophils in particular therefore its 

phosphorylation effect may be of more relevance to endothelial cells to aid 

eosinophilic extravasation and accumulation in tissues. In this position a 

synergistic effect with the pro-inflammatory TNF α could lead to a rapid 

extravasation of leukocytes. The work in this thesis did not extend to the 

endothelium as the focus was the role that CAR can play in the complex function 

of the respiratory epithelium. However, further work could concentrate on its 

function within endothelial cells, particularly with reference to determining 

whether there is an additive effect of using both IL 5 and TNFα together. 

Several alternative cytokines were also tested to determine whether they also 

drove the phosphorylation of CAR at the serine/threonine sites. As shown none of 

these other cytokines caused CAR phosphorylation despite their well-established 

role during inflammation of the lung epithelium, in particular in patients with 
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asthma. IFN γ and IL-17 have also been shown to activate PI-3K showing that 

activating PI3K is not sufficient to drive CAR phosphorylation (McKay et al., 2007, 

Prasad et al., 2005). The fact that TNF controls CAR phosphorylation in these 

conditions suggests that the activation of CAR occurs in a targeted and therefore 

controllable and adjustable manner. The lack of response to these cytokines may 

also reflect a difference in organ specificity. Section one highlighted the 

difference seen in organ expression of CAR. The response from PI-3K to IFN γ 

was seen in intestinal cells which are known to express CAR and which may 

respond differently to cytokines than airway epithelial cells (McKay et al., 2007). 

As yet CAR phosphorylation in the intestine has not been investigated and would 

be an interesting avenue to pursue further. It also supports the proposed pathway 

requiring the stimulation of both PI-3K and PKCδ. Theoretically the two 

processes could act independently to drive CAR phosphorylation. The previously 

reported PI-3K response to IFNγ and IL-17 would imply that they should be able 

to drive CAR phosphorylation if this kinase alone was required. Given that they 

do not have this ability therefore there is likely to be an additional necessity for 

PKCδ to work in sequence. 

The serine and threonine phosphorylation response contrasts with that seen at 

the tyrosine site. Previously TNF has been shown to drive tyrosine 

phosphorylation on the junction protein, P120 in endothelial cells (Angelini et al., 

2006) but it does not appear to cause a similar effect with CAR. There are 

multiple alternative cytokines that could instead drive phosphorylation of the 

tyrosine site and further work would need to be undertaken to establish whether 

this is the case. It would also be interesting to determine whether any cytokine 

response was cell type specific as the P120 data was confined to an endothelial 

cell line as opposed to the epithelial cells used in this study. 
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6.2 Phosphorylation of the cytoplasmic tail of CAR controls CAR-

dependent leucocyte transmigration. 

The necessity for CAR to be present at the cell membrane to facilitate the 

transmigration of leucocytes has previously been established (Zen et al., 2005, 

Witherden et al., 2010, Verdino et al., 2010). However, these previous studies 

have failed to show whether CAR plays an active role in controlling this 

movement or is simply a passive intermediary. Work presented in this thesis 

demonstrates that the phosphorylation of the cytoplasmic tail facilitates TEpM. 

These data demonstrate that the CAR cytoplasmic tail is phosphorylated during 

TEpM and where this is prevented the efficiency of TEpM is reduced. By so doing 

control of the cytoplasmic domain of CAR has an active role in TEpM thereby 

placing the tail in a new role in mediating the inflammatory cascade. As 

described, CAR is activated in inflammatory conditions and this has the added 

effect of controlling the physiologically relevant function of TEpM of leucocytes 

that is required for an ongoing inflammatory response. In so doing it emphasises 

the concept of the mesenchymal trophic unit in the pathogenesis of asthma 

(Holgate et al., 2000). This concept emphasises the key role played by the 

epithelium in the control of the pathogenic mechanism seen in asthma through 

direct contact of leucocytes with the inflammatory stimulus.  

This data may provide an explanation for the wide range of responses to TNF α 

inhibitors observed in the treatment of patients with asthma. There is a known 

paracrine release of TNF α by transmigrating leucocytes (Finsterbusch et al., 

2014) which is likely to cause local phosphorylation of proteins such as CAR 

thereby altering junctional complexes at a very local level. Given their proximity to 

the individual junctions when released it would be difficult to prevent their effect 

with the  systemic anti-TNF α therapies used in current clinical studies (Erin et al., 
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2006, Brightling et al., 2002, Rennard et al., 2007). To ensure a sufficient local 

response to therapy a high treatment dose would be required leading to the 

previously observed associated complications of systemic anti-TNF α therapy 

(Wenzel et al., 2009). However, by targeting the phosphorylation site on the 

cytoplasmic tail of CAR some of the inflammatory effects of TNF α may be 

prevented without the associated complications of inhibiting it’s intended other 

functions. The acute mouse model supports this as a future treatment model as 

the use of Ad5FK was sufficient to reduce the number of neutrophils in the 

airway. Use of Ad5FK may not be ideal since it also reduced CAR 

homodimerisation and in doing so may destabilise epithelial cell junctions.  An 

alternative might be to instead target the upstream factors in the pathway to CAR 

phosphorylation to overcome some of these difficulties, including PKC δ, PI3K 

and the TNF α/TNFR1 complex. PKC δ could theoretically provide one option as 

it has previously been inhibited in order to potentiate the effect of chemotherapy 

with significant benefits in vivo (Pabla et al., 2011). These findings though have 

failed to lead to a clinically effective treatment as importantly the inhibitors so far 

developed struggle to have specific effects on particular PKC isoforms and as a 

result have had many unintended off target effects (Mochly-Rosen et al., 2012). 

The targeting of the alternative kinase PI3K also has the issue of unintended off 

target effects. As a member of the PI3K/AKT/mTOR pathway it has multiple roles 

in cellular function and therefore its inhibition has been clinically unhelpful in 

previous trials (Rodon et al., 2013). Treatment of lung conditions can be 

undertaken via inhaled therapies, though, which reduces the systemic burden 

thereby reducing side effects. The mouse experiments in this thesis demonstrate 

that this could be used to prevent the phosphorylation CAR by administration of 

inhaled Ad5FK . As outlined the use of Ad5FK will lead to preferential binding to 
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the extracellular domain of CAR thereby preventing CAR homodimerisation in 

trans but an alternative could be to use inhaled treatments to target the 

respiratory system and block the binding of TNF α to its receptor with the 

resulting loss of CAR phosphorylation.    

Identifying those patients in whom such treatment would be helpful to its resultant 

efficacy. Our understanding of many diseases such as asthma has significantly 

increased over the last decade and with it has come an increased awareness of 

the heterogeneity of these diseases. This is of particular relevance in this model 

of disease as the response from CAR seems to be confined to a limited range of 

cytokines and in vivo is specific to the function of neutrophils. Therefore future 

work would need access to multiple samples from patients with a variety different 

pathologies to determine firstly whether there is abnormal function of CAR in their 

conditions and to use primary airway cells to compare the response to different 

stimuli and treatments. 

6.3 Potential mechanisms for CAR mediated TEpM. 

A link between the cytoplasmic tail of CAR and its extra cellular domain has not 

been investigated so it remains unclear how blocking CAR homo-dimerisation 

might alter events at the cytoplasmic face of the cell. In particular the interaction 

with the extracellular domain and other members of the JAM family during TEpM 

has been reported as a passive process (Zen et al., 2005, Verdino et al., 2010, 

Witherden et al., 2010). Data presented in this thesis clearly demonstrate that 

phosphorylation of either or both the CAR serine/threonine sites results in an 

increase in TEpM. This may reflect a conformational change in the CAR extra 

cellular domain to improve its ability to heterodimerise with alternative JAM family 

members. TNF α has been shown to signal through phosphorylation and 
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conformational change of Pin1 binding to p47phox previously (Boussetta et al., 

2010). This process of conformational change would require a significant 

alteration of the protein to occur across the epithelial cell membrane which is not 

an effect that has been specifically shown in previous studies of CAR. However, 

our previously published work demonstrated a band shift in the western blot 

analysis of CAR in response to its phosphorylation which may indicate 

conformation change (Morton et al., 2013). A conformational change in the extra 

cellular domain of CAR may also switch CAR from favouring homodimerisation to 

hetero-dimerisation with neutrophil expressed JAM-L, thereby facilitating TEpM. 

This process of altering the barrier function of the epithelium through the 

phosphorylation of a tight junction protein in order to aid its binding to other 

junctional proteins has been seen with occludin highlighting this as a possible 

mechanism (Cummins, 2012). However, to date conformational changes in CAR 

have not been reported.  

An alternative method for this process may instead relate to its role in the 

junctional complex and the impact this has on stability. This response to TNF α 

has previously been associated with other members of the tight junction complex 

as occludin, claudin 1, claudin 4 and JAM-1 have all been found to internalise in 

detergent insoluble membrane microdomains in epithelial cells (Ivanov et al., 

2004). We have shown that when the pSer/293 and pThr/290 sites are activated 

there is an alteration in the composition of the junctional complex with an 

associated alteration in E-Cadherin in adherens junctions (Morton et al., 2013). 

This process could in turn ensure the passage of leucocytes between epithelial 

cells would be easier as they would meet less resistance. This process where 

epithelial junctions ‘unzip’ in the presence of phosphorylated CAR to facilitate 

TEpM is partially contradicted by the paracellular permeability data. This has 



151 
 

shown that the presence of CAR reduced the known effect of TNF α on junctional 

permeability.  

Transmigration is a controlled process requiring the leucocyte to move through 

the epithelium by interacting and binding to individual epithelial cells. Therefore 

although the junctions may not be disrupted in such a way as to cause increased 

solute permeability they may instead be primed to facilitate the passage of whole 

leucocyte cells. Additional work undertaken within the group has specifically 

looked at the role of threonine290 and serine293 phosphorylation of CAR in 

junction permeability (S. Raghavan, unpublished data). In these experiments an 

epithelial layer comprising either CAR-GFP cells or AACAR-GFP cells were 

treated with TNF α and the cell junctions imaged. Interestingly the AACAR-GFP 

cell junctions were maintained for significantly longer before disassociating in the 

presence of TNF α suggesting that although the presence of CAR may limit the 

impact of TNF α on epithelial barrier permeability this effect is reduced when the 

cytoplasmic tail is phosphorylated.   

Finally, the observed increase in TEpM following phosphorylation of CAR in 

response to TNF α may be due to downstream cell signalling. TNF α has been 

shown to activate the Rho GTPase pathway leading to an alteration in the actin 

cytoskeleton that promotes junction permeability (Mong et al., 2008). Although 

this was undertaken in endothelial cells and led to increased permeability of the 

vascular system its relevance is supported by previous work from the group that 

showed a significant increase in Rho FRET efficiency in CAR-GFP cells when 

compared to wild type cells and interestingly in the AACAR-GFP mutants where 

the cytoplasmic tail of CAR is altered. TNF α stimulation of Rho has also been 

shown to drive MAPK to cause permeability changes (Nwariaku et al., 

2003).These findings are, however, unlikely to be relevant to CAR 
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phosphorylation at the threonine290 and serine293 sites as the data showed that 

MAPK activity was unaltered by the presence or absence of phosphorylated 

CAR. An alternative pathway that is known to be associated with endothelial 

permeability and Rho activity in response to TNF is MRCK (Vandenbroucke et 

al., 2008). Although this is again focused on endothelial cells, mass spectrometry 

analysis of phosphorylated CAR undertaken by the group shows an association 

with MRCK. It would therefore be interesting to determine whether TNF induced 

CAR phosphorylation leads to an increase in MRCK activity or binding to CAR. 

However, despite findings showing that Rho and MRCK are activated in the 

presence of TNF their inhibition does not prevent an increase in permeability 

(McKenzie and Ridley, 2007). In this case loss of permeability was maintained by 

a loss of the tight junction proteins JAM-A and occludin at junctions which may 

suggest that the presence of CAR itself at the junction along with its interaction 

with other junctional proteins plays a more significant role than its effect on 

downstream signalling. 

6.4 Conclusion 

In summary these results are the first to show that the cytoplasmic tail of CAR is 

responsible for the extra cellular function of the protein and significantly that this 

process is activated in inflammatory conditions. Significantly, this provides CAR 

with a new role in the immune response that can be manipulated to the control its 

effect. The model system in figure 5.1 highlights the steps that have been 

identified in this process and importantly includes the inhibition of the pSer/293 

and pThr/290 phosphorylation of CAR in the presence the Ad5FK. Given that this 

in turn results in the inhibition of neutrophil transmigration in the mouse model it 

demonstrates a novel target mechanism for possible control of inflammation in a 

variety of disease states. 
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Figure 6-1: Proposed model for phosphorylation of CAR leading to 
transepithelial migration of leucocytes.  
1) Systemic TNF binds to the TNF receptor to trigger serine/threonine 
phosphorylation of the cytoplasmic tail of CAR via PI-3K and PKC δ enabling 
leucocyte transmigration possibly through alteration of other junctional proteins. 
2) The same pathway is activated by TNF release from the transmigrating 
leucocytes. 3) Transmigration is prevented in the presence of adenovirus fibre 
knob which both prevents the homerdimerisation of CAR due to competitive 
binding and blocks JAM-L binding to CAR. 
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