
This electronic thesis or dissertation has been 

downloaded from the King’s Research Portal at 

https://kclpure.kcl.ac.uk/portal/  

Take down policy 

If you believe that this document breaches copyright please contact librarypure@kcl.ac.uk providing 

details, and we will remove access to the work immediately and investigate your claim. 

END USER LICENCE AGREEMENT 

Unless another licence is stated on the immediately following page this work is licensed 

under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International 

licence. https://creativecommons.org/licenses/by-nc-nd/4.0/ 

You are free to copy, distribute and transmit the work

Under the following conditions: 

 Attribution: You must attribute the work in the manner specified by the author (but not in any
way that suggests that they endorse you or your use of the work).

 Non Commercial: You may not use this work for commercial purposes.

 No Derivative Works - You may not alter, transform, or build upon this work.

Any of these conditions can be waived if you receive permission from the author. Your fair dealings and 

other rights are in no way affected by the above. 

The copyright of this thesis rests with the author and no quotation from it or information derived from it 

may be published without proper acknowledgement. 

Solution of Spectral Problem in Planar Supersymmetric Gauge Theories

Sizov, Grigory Alekseevich

Awarding institution:
King's College London

Download date: 26. Dec. 2024



Solution of Spectral Problem in Planar

Supersymmetric Gauge Theories

Grigory Sizov

Department of Mathematics, King’s College London,

Strand, London WC2R 2LS, U.K.

Thesis supervisor Dr. Nikolay Gromov

Thesis submitted in partial fulfilment of the requirements

of the Degree of Doctor of Philosophy

August 2015



2

Abstract

Supersymmetric gauge theories are among the most important objects of study in modern

theoretical physics. They are considered as more symmetric versions of gauge theories

describing the real world and are often dual to string theories in curved backgrounds.

In planar limit some supersymmetric gauge theories — N = 4 SYM and ABJM theory

among them — manifest integrability, a property which might allow to solve them ex-

actly. In this thesis we discuss application of integrability methods to spectral problems

in supersymmetric gauge theories. Our main topic is the Quantum Spectral Curve (QSC)

method, the ultimate simplification of integrability tools developed over the last decade.

We describe the objects of our study, N = 4 SYM and ABJM theories and their dual

string theories. Then we review the integrable structures appearing in these theories in

the planar limit. A chapter is dedicated to description of QSC in N = 4 SYM and then we

solve the QSC equations in various limits, including near-BPS limits of twist operators and

of a cusped Wilson line. For the last observable we explore the quasiclassical limit in more

detail, finding the matrix model reformulation and the corresponding algebraic curve. We

also apply QSC method to BFKL physics, a regime which establishes a more direct con-

nection between N = 4 SYM and QCD. In particular, we find a new, NNLO, coefficient

in the weak-coupling expansion of BFKL eigenvalue. We describe an efficient algorithm of

numerical solution of QSC equations and use it to explore the relation between the spin

and the conformal dimension for wide range of conformal dimension, including complex

values. In ABJM we also consider the near-BPS limit of twist operators, calculating the

slope function, and extracted from this calculation a conjecture for so-called interpolating

function h(λ) — the long-sought-for missing ingredient for the integrability construction

in ABJM.
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Part I

Objects and methods of study

1 Introduction

1.1 Integrability and supersymmetric QFTs

Quantum field theories seem to be the most suitable framework to describe Nature. We

see them both on the fundamental level, describing all interactions except gravity, and as

emergent theories in condensed matter systems. However, this approach meets with at

least two difficulties. One, which is relevant when using QFTs as fundamental theories, is

the unification with gravity. The other is that most QFTs, except the most trivial ones,

are extremely hard to solve. Chronologically the first successful and still very common

computational method is perturbation theory, often performed in QFTs with the use of

Feynman diagrams. Many crucial results in QED, QCD and other theories were obtained

in this way. However, the complexity of perturbative computations grows rapidly with

number of loops and makes it almost impossible to go beyond several loops in most cases.

Thus much of the recent progress in understanding of QFTs, especially gauge theories

is connected with development of non-perturbative methods. Integrability, which is the

main topic of this thesis, is one of the most powerful of such methods.

A major breakthrough in understanding gauge theories came in 1997, when Juan

Maldacena discovered the famous AdS/CFT duality [1] which relates N = 4 SYM , a

supersymmetric modification of QCD living in four dimensions, with string theory in ten

dimensions or its low-energy limit, SUGRA. The discovery is especially valuable, because

it addresses the two major problems in studying gauge theories at once. First, it relates

quantum field theory to gravity, thus hinting at long-awaited possibility of quantization

of gravity. Second, being a weak/strong coupling duality, it allows to explore previously

unaccessible regions of strong coupling in the gauge theory. In the same way the weak

coupling regime of the gauge theory gives access to highly quantum regime of string theory.

In this thesis we will be working in one particular limit of AdS/CFT correspondence,

called the planar limit: on the gauge theory side it means taking rank of the gauge

group to infinity; on the string theory side taking the string coupling to zero, which is

equivalent to considering only worldsheets with the topology of a sphere. In this limit
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Figure 1: Yang-Baxter equation for the scattering matrix. In integrable systems

multiparticle scattering factorizes into pairwise scatterings and the two-particle S-matrix

satisfies the Yang-Baxter equation graphically represented on the picture.

both sides of the duality acquire one more unexpected additional feature — they become

integrable. Although no rigorous universally accepted definition of integrability exists,

one usually says that a system is integrable, if possesses additional integrals of motion,

enough to allow an exact solution. In case of a system with an infinite number of degrees of

freedom, like QFT, we need an infinite family of integrals of motion. Examples of integrable

QFTs were known before the discovery of AdS/CFT duality, but they were mostly two-

dimensional. Integrability of four-dimensional N = 4 SYM is the first example when

a non-trivial four-dimensional theory has a chance be solved exactly. A distinguishing

feature of integrable systems, sometimes almost taken as their definition, is a particular

form of scattering of excitations. First, n-particle scattering should factorize into pairwise

scatterings and second, the scattering matrix should satisfy the Yang-Baxter equation

schematically represented on Fig. 1. Such factorization is natural in two dimensions, but

not in higher dimensions, that is why we often encounter integrability in two-dimensional

systems [2, 3, 4, 5, 6].

In complete agreement with this logic, the easiest way to see integrability in N = 4

SYM is in a “two-dimensional” context. An example of such a context arises when one

considers the spectral problem for single-trace operators at weak coupling. It happens that

such operators can be mapped to spin chains with integrable Hamiltonians. Solving the

spectral problem in these spin chains by well known techniques based on their integrability,

such as Bethe Ansatz, one indeed correctly reproduces the anomalous dimensions of the

original N = 4 SYM operators. Another two-dimensional system in which we can look for

integrability is the worldsheet of strings describing the system at strong coupling. Indeed,

the string theory on AdS5/CFT4 can be described as a coset sigma-model, for which a

very elegant description of integrability through the monodromy construction has been
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developed.

Miraculously, integrability extends beyond these limits into the full four-dimensional

theory at finite coupling. We still do not have a complete understanding of why and how

this happens. However, we now possess integrability-based methods describing N = 4

SYM at finite coupling. These methods have a long history of development which we

sketch in section 3. The focus of this thesis is the spectral problem in AdS/CFT, and so

we will mainly describe the methods aimed at calculation of the anomalous dimensions

of operators. Until very recently the most advanced of them was the Thermodynamical

Bethe Ansatz — a system of equations describing anomalous dimensions of operators at

finite length and finite coupling. This was a great achievement, however not very practical

for analytical computations, because it involved solving a system of infinite number of

non-linear integral equations, which is usually possible only in some very special cases,

like the near-BPS limit or weak coupling. Numerical solution of TBA also was a tedious

and not very efficient procedure. The situation changed when TBA was simplified to a

much more compact and elegant system of equations [7, 8], which was known first as a

Pµ-system and later and in a more general formulation as the Quantum Spectral Curve

(QSC). It described the spectrum of N = 4 SYM in terms of equations for the monodromy

of several functions with fixed analytic properties. QSC can be derived from TBA, but

is much more accessible for analytical solution. Furthermore, as we demonstrate further

in this thesis, there exists an efficient algorithm for numerical solution of QSC. In this

thesis we describe the QSC and apply it in a variety of scenarios for AdS5/CFT4 and

AdS4/CFT3 dualities. We hope that this ultimate simplification of the spectral problem

in the form of QSC will be an important step to the future exact solution of N = 4 SYM

.

1.2 Thesis structure

This thesis contains three parts: part I contains introductory chapters 1-4, part II mainly

presents the results of the author with collaborators in chapters 5-10, and part III consists

of conclusions in chapter 11 and appendices A, B, and C.

Here is a more detailed plan of the thesis:

• Part I

– The current chapter contains the motivational preface 1.1 and this section.
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– After this chapter we move to chapter 2 where one can find a short introduction

to the AdS/CFT duality. In particular, we briefly describe its both sides and

present Maldacena’s argument for the duality. We elaborate on some points

which will be important further in the thesis: the planar limit and most impor-

tant for us classes of operators in N = 4 SYM .

– In chapter 3 we describe the development of integrability tools in AdS5/CFT4

starting from perturbative methods at weak and strong coupling, through the

Thermodynamic Bethe Ansatz and finally to the Quantum Spectral Curve —

most recent approach to integrability in N = 4 SYM .

– Since QSC will be our main tool in this thesis, in chapter 4 we describe it in

more detail. As an example of how QSC reproduces earlier know integrability

results, we discuss the large volume limit in which QSC reduces to Beisert-

Eden-Staudacher Asymptotic Bethe Ansatz.

• Part II

In this part we apply the integrability tools described, mostly QSC, to solving prob-

lems in AdS5/CFT4 and AdS4/CFT3 .

– In chapter 5 we explore the near-BPS limit of twist operators in sl(2) sector.

It is based on the paper [9] where we calculate the quadratic in spin term in

the anomalous dimension of twist operator when spin is small and obtain from

this result predictions at weak and strong coupling.

– In chapter 6 we find anomalous dimension of a family of observables generalizing

cusp Wilson line. This is done in two ways: first by solving TBA and then by

solving the much simpler QSC equations. This chapter is based on our paper

[10].

– In chapter 7 we describe quasiclassical limit of AdS/CFT: the traditional ap-

proach through sigma-model and its relation to the quasiclassical limit of QSC.

In section 7.4, based on our paper [11], we construct a classical algebraic curve

for the observable discussed in the previous chapter, cusped Wilson line with

insertion of scalar operator at the cusp.

– In chapter 8, based on our paper [12], we develop an numerical algorithm for

solution of QSC equations and demonstrate its efficiency on several examples.

– In chapter 9 we consider QSC in so-called BFKL regime. We give a brief

introduction to BFKL physics, describe previous results in this area and in
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section 9.3 present the result of our paper [13] — calculation of the new,

NNLO coefficient in the weak coupling expansion of the BFKL eigenvalue.

– Chapter 10, unlike the rest of the thesis, deals with AdS4/CFT3 . After a

short review of ABJM theory and the integrability methods in it we present

the result of our paper [14], where calculate the slope function in ABJM and

find a conjecture for the interpolating function h(λ).

• Part III

– Chapter 11 contains the conclusions and directions for further work.

– Appendix A contains details of computation of curvature function in section

5.3 and some especially lengthy results. We also discuss generalization of the

solution to higher mode numbers.

– Appendix B contains some technical details of the derivation and some pertur-

bative data omitted in chapter 6.

– Appendix C contains some identities for elliptic function used in section 7.4.

1.3 Personal contribution

List of all publication of the author

Below is the list of all my publications; the papers (1)-(6) constitute the basis for this

thesis:

(1) N. Gromov, F. Levkovich-Maslyuk and G. Sizov, “NNLO BFKL Pomeron eigenvalue

in N=4 SYM,”

[arXiv:1507.04010 [hep-th]].

(2) N. Gromov, F. Levkovich-Maslyuk and G. Sizov, “Quantum Spectral Curve and the

Numerical Solution of the Spectral Problem in AdS5/CFT4,”

[arXiv:1504.06640 [hep-th]].

(3) N. Gromov and G. Sizov, “Exact Slope and Interpolating Functions in N=6 Super-

symmetric Chern-Simons Theory,”

Phys. Rev. Lett. 113, no. 12, 121601 (2014).[arXiv:1403.1894 [hep-th]].

(4) N. Gromov, F. Levkovich-Maslyuk, G. Sizov and S. Valatka, “Quantum spectral curve

at work: from small spin to strong coupling in N = 4 SYM,”
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JHEP 1407, 156 (2014). [arXiv:1402.0871 [hep-th]].

(5) G. Sizov and S. Valatka, “Algebraic Curve for a Cusped Wilson Line,”

JHEP 1405, 149 (2014). [arXiv:1306.2527 [hep-th]].

(6) N. Gromov, F. Levkovich-Maslyuk and G. Sizov, “Analytic Solution of Bremsstrahlung

TBA II: Turning on the Sphere Angle,”

JHEP 1310, 036 (2013). [arXiv:1305.1944 [hep-th]].

(7) B. Penante, S. Rajabi and G. Sizov, “CSW-like Expansion for Einstein Gravity,”

JHEP 1305, 004 (2013). [arXiv:1212.6257 [hep-th]].

(8) B. Penante, S. Rajabi and G. Sizov, “Parity Symmetry and Soft Limit for the Cachazo-

Geyer Gravity Amplitude,”

JHEP 1211, 143 (2012). [arXiv:1207.4289 [hep-th]].

(9) G.A. Sizov, “Dynamics of inertial particles in a random flow with strong permanent

shear,”

Phys.Rev.E 85, 016311(2012), [arXiv:1108.2691]

(10) I.V. Kolokolov, V.V. Lebedev, G.A. Sizov, “Magnetic field correlations in a random

flow with strong steady shear,”

ZhETF, 140(2), 387-400 (2011) [JETP 113(2), 339-351 (2011)], [arXiv:1010.5904v1]

Below is the list of sections and chapters of this thesis based on my papers (1)-(6), in

the chronological order.

• The first problem my collaborators and I worked during my PhD was solving Y-

system with boundaries for generalized cusped Wilson line. In paper [10] we have

solved the Y-system in the near BPS regime of the Wilson line with insertion of L

scalars at the cusp. The result was a function of L, the cusp angle θ, and coupling

and had a form of an expectation value in a matrix model (which was exploited in

the next paper). Importantly, we presented a much shorted derivation of our result

by means of QSC. This paper formed the basis for chapter 6 of this thesis.

• The second paper I published in collaboration with Saulius Valatka [11] and it was

based on considering quasi-classical limit of the result of the previous paper. This

result has a form of a matrix integral, which in the quasi-classical limit produces an

algebraic curve. The results of this work are presented in section 7.4.

http://arxiv.org/abs/1108.2691
http://arxiv.org/abs/1010.5904
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• During this time the formalism of QSC appeared and my next goal was to apply it

to a computation which would give a new result and at the same time clarify and

verify the QSC itself. In [9] my collaborators and I focused on the limit of small spin

in twist operators. The linear contribution was known before and called the slope

function. We have found the quadratic contribution for several first twists. From

our result we were able to extract a new coefficient in the strong coupling expansion

of Konishi anomalous dimension and also several coefficients in the expansion of the

intercept at strong coupling. This work is contained in chapter 8.2 and in particular

in section 5.3. The calculation of strong coupling expansion of BFKL intercept is

contained in section 9.4.

• Given that QSC was also formulated for ABJM theory, it was natural to explore

the regime of small spin in that theory as well.In this theory even the slope function

was not known before. Performing the calculations which were technically quite

similar to our previous work, in [14] we have found the slope function in ABJM

for arbitrary coupling and twist. What is probably more important, by comparing

the analytical structure of our result with a result for a different observable — BPS

Wilson loop, we where able to extract from our computation a conjecture for so-called

interpolating function h(λ) — a missing ingredient in the integrability computations

in AdS4/CFT3 . This work is presented in sections 10.3-10.5 of chapter 10.

• In paper [12] my collaborators and I formulate a efficient method for numerical

solution of QSC. We apply it to a number of scenarios, exploring sl(2) sector of

N = 4 SYM , in particular dependence of spin on conformal dimension for arbitrary

complex values of the latter. This work is presented in chapter 8.

• Our last result [13] included in this thesis is devoted to application of QSC to BFKL

physics — an intriguing regime of high energy scattering which relates N = 4 SYM

to QCD in a non-trivial way. We find the previously unknown NNLO coefficient

of weak coupling expansion of the BFKL eigenvalue and this work is contained in

section 9.3 of chapter 9.

Section 7.5 contains a minor original calculation not published elsewhere.

Finally, two projects which I’ve been working on during my PhD are still in progress

and hence are not included in this thesis.

The first, in collaboration with Ivan Kostov and Saulius Valatka, is work on application

of topological recursion methods to the matrix model described in section 7.4 with a goal
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of obtaining a systematic expansion of angle-dependent cusp anomalous dimension with

insertion of a scalar operator at the cusp at strong coupling.

The second is work with my supervisor Nikolay Gromov on a version of Asymptotic

Bethe Ansatz for BFKL regime [15].

1.4 Frequently used notation

Here we collected some notation which is most frequently used throughout the thesis.

• The coupling constant of planar N = 4 SYM is defined as

g =

√
λ

4π
, (1.1)

where λ is the ’t Hooft coupling.

• For a function f(u) of spectral parameter u

f± = f

(
u± i

2

)
f [n] = f

(
u+

in

2

)
(1.2)

Branch points of most functions are situated at ±2g+in, with integer or half-integer

n. Each pair of branch points can be connected by a cut either as [−2g+in; 2g+in], in

which case the cut is called short, or through infinity, as (−∞;−2g+in]∪[2g+in;∞),

in which case it is called long. Choosing all cuts short is called physical kinematics,

all cuts long — mirror kinematics.

We denote the analytical continuation of f under the cut on the real axis as f̃ .

• Spectral parameter u is related to Zhukovsky variable x(u) by

x+ 1/x = u/g (1.3)

• Indices of Q-functions run from one to four and in the left-right symmetric case are

raised with the matrix

χ =


0 0 0 −1

0 0 1 0

0 −1 0 0

1 0 0 0

 . (1.4)

• UHP stands for upper half-plane and LHP for lower half-plane
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2 Overview of AdS5/CFT4

In this chapter we will briefly review gauge/gravity dualities and in particular the one

most relevant for this thesis, AdS5/CFT4 duality. This subject has been covered in many

good reviews [16, 17, 18, 19, 20, 21, 22, 23], some of which we partially follow below. First

in this section we draw some intuitive picture of how string-like objects might emerge

in a gauge theory. Then in the next section 2.1 we describe the gauge side AdS5/CFT4

duality, N = 4 SYM theory. In section 2.2 we review the string side, IIB string theory on

AdS5×S5 background, and the statement of the duality, using Maldacena’s argument for

the equivalence of these two theories.

Maldacena’s 1997 discovery was not the first time physicists considered a possibility

that gauge theory can be related to gravity. First of all, string-like objects most naturally

appeared in gauge theory as flux tubes in QCD: as is widely known, string theory was

initially developed for description of strong interactions. Possibly the most fundamental

property of AdS/CFT dualities, so-called holographic principle, stating that gravity can be

described by gauge theory living in a space of codimension one was worked out in [24, 25].

Ideas that the fifth missing dimension might be related to the energy scale were also in

the air. However, thinking about a duality between a four-dimensional gauge theory and

a string theory or gravity in higher dimensions, one encounters an apparent paradox of

degrees of freedom mismatch: intuitively the former should have much less states than

the latter. The resolution of the paradox is that the missing degrees of freedom can come

from the gauge group structure of the gauge group if one makes the rank of the gauge

group N large.

Furthermore, in the limit of large N the “string worldsheet” can be seen emerging in

the usual perturbative expansion of N = 4 SYM from the summation of Feynman dia-

grams [26, 27]. Indeed, because of the gauge group structure of N = 4 SYM operators,

every Feynman diagram has some dependence on N and scales as a power of N in the

large N limit. Thus in the large N limit perturbative expansion of an expectation value of

certain observable can be organized as expansion over 1/N . Interestingly, the behavior of

a particular diagram in the expansion at large N has a nice geometric interpretation. To

see this notice that graphs which can be drawn on a plane without self-intersections make

the leading contribution at large N , and the rest of them are suppressed by powers of N .

One can classify the graphs by the minimum number of “handles” of surface on which

they can be drawn without self-intersections. Thus expansion in 1/N becomes expansions



2.1 Gauge side of the duality: N = 4 SYM 18

over topological genus of surfaces. Even more graphically, one can turn Feynman graphs

into “fat” graphs, and then different Feynman diagrams will produce “worldsheets” of

different genus determined by their scaling at large N . This, of course, strongly reminds

of expansion of string amplitudes in string coupling gstr: leading contribution comes from

worldsheets of a topology of a sphere, and adding g handles to it suppresses the con-

tribution by a power of g−2g
str . So from this point of view Feynman diagrams appear as

discretizations of string worldsheet and 1/N on gauge theory side should be related to

string coupling constant. Later we will see this correspondence between the parameters

confirmed by a more rigorous analysis.

2.1 Gauge side of the duality: N = 4 SYM

The gauge theory side of the AdS5/CFT4 duality is N = 4 super Yang-Mills theory

(SYM). It is a supersymmetric non-abelian gauge theory with gauge group SU(N) which

has a coupling parameter gYM . The theory possesses N = 4 supercharges, which is

the maximum amount of supersymmetry in four dimensions for theories with particles of

spin smaller than 2. This amount of supersymmetry makes the theory in a certain sense

“unique” among the four-dimensional theories: supersymmetry leaves no free parameters

in the Lagrangian, except for one, which can be represented as an overall factor — the

coupling constant. Its uniqueness is also reflected in the fact that it enjoys several other

remarkable and apparently interconnected properties: conformal symmetry, existence of a

dual string theory, and integrability. A convenient way to describe this theory is to view

it as the dimensional reduction of D = 10 N = 1 SYM theory defined by the following

action [22]

S =
1

g2
SYM

∫
d10x tr

(
−1

2
FMNF

MN + iχ̄γMDMχ

)
, (2.1)

where M = 0 . . . 9. Here FMN is the field strength constructed from vector potential AM

and χ is a Majorana-Weyl spinor with 16 real components.

To perform the dimensional reduction, ignore the dependence of all fields of coordinates

xM for M > 3. After that the first four components of the vector potential will form the

gauge field Aµ, µ = 0 . . . 3 and the rest will be the six massless real scalars Φi. The spinor

χ splits into four four-dimensional Weyl spinors φa. All the fields will transform in the

adjoint representation of the gauge group SU(N). In terms of these fields the reduced
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Lagrangian looks like

L =
1

g2
YM

tr

(
1

4
FµνF

µν +
1

2
DµΦiD

µΦi + ψ̄aσµDµψa

−1

4
[Φi,Φj ]

[
Φi,Φj

]
− i

2
σabi ψa

[
Φi, ψb

]
− i

2
σiabψ̄

a
[
Φi, ψ̄

b
])

(2.2)

The theory which we have obtained has N = 4 supersymmetries. Different super-

charges are also related to each other by R-symmetry SU(4), double cover of SO(6), under

which the scalars transform in the fundamental and fermions in spinor representations.

Conformal symmetry The theory defined by (2.2) is conformal, and this being an

important property, we will elaborate on this point a bit.

Conformal transformations are “local” scaling transformations, or rigorously, those

coordinate transformations, which preserve the metric up to a factor

ds2 = gµν(x)dxµdxν → Ω(x)gµν(x)dxµdxν (2.3)

Field theories which are invariant under these transformations are called Conformal

Field Theories (CFT). Curiously, under very general assumptions, in QFTs just scale

invariance itself implies conformal invariance [28, 29, 30]. CFTs appear as fixed points of

RG flows and can be either free (most common and trivial case) or interacting. The object

of our study, N = 4 SYM belongs to the latter case. The most straightforward way to

check if the theory is conformal or not is to compute its β-function. One-loop β-function

for SU(N) gauge theories is determined by the matter content and is given by [32, 33]

β = − g3

16π2

11

3
N − 1

6

∑
s

Cs −
1

3

∑
f

C̄f

 , (2.4)

where g is the coupling, the first sum goes over real scalars, the second one is over Weyl

fermions, and Cs, C̄f are the corresponding quadratic Casimirs. In N = 4 SYM all the

fields are in adjoint and so all Casimirs are equal to N . One can plug into this formula

the six real scalar and eight Weyl fermions and check that at one loop N = 4 SYM is

indeed conformal. A much more non-trivial argument shows that β-function is actually

zero to all loops; the cancellations of Feynman diagrams causing this are deeply related

to the supersymmetry of the theory [34, 35, 36].

The implications of conformal symmetry are very different in two dimensional systems

and in higher dimensional ones. In two dimensions the conformal algebra turns out to

be infinite-dimensional, the so-called Virasoro algebra, and this fact gives rise to the rich

world of two-dimensional CFTs; in higher dimensions the conformal algebra is finite. In
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four dimensions, where N = 4 SYM lives, the conformal algebra consists of fifteen gener-

ators. Ten of them constitute the Poincare algebra: they are translations Pµ and Lorentz

transformations Mµν . The remaining five are specific to conformal transformations: spe-

cial conformal transformation Kµ and dilatation D. Dilatation is just a uniform scaling

of all coordinates

x′µ = λxµ (2.5)

Special conformal transformation can be represented as a superposition of inversion x′µ =

x′µ/x
2, translation by some vector bµ, and inversion again, thus it is easy to see that the

finite form of the transformation looks like

x′µ =
xµ − bµx2

1− 2b · x+ b2x2
(2.6)

The operators of conformal algebra can be represented as differential operators acting

on functions on Minkowski space:

Pµ = −i∂µ (2.7)

Kµ = −i
(
2xµx

ν∂ν − x2∂µ
)

(2.8)

Mµν = i(xµ∂ν − xν∂µ) (2.9)

D = −ixµ∂µ (2.10)

From this representation one easily derives the commutation relations

[D,Pµ] = −iPµ, [D,Mµν ] = 0 [D,Kµ] = iKµ (2.11)

[Mµν , Pλ] = −i (ηµλPν − ηλνPµ) [Mµν ,Kλ] = −i (ηµλKν − ηλνKµ) (2.12)

[Pµ,Kν ] = 2i (Mµν − ηµνD) (2.13)

The eigenvalue of ∆ is called the conformal dimension and it will be important to

us throughout the thesis, since, as we will see later, duality maps it to the energy of a

string state. From the commutation relations it is obvious that Kµ lowers the conformal

dimension of an operator by one. However, in a unitary theory conformal dimensions can

not be negative. Thus acting with Kµ on an arbitrary operator sufficiently many times we

will obtain an operator annihilated by Kµ. Such an operator is called primary. Inverting

the logic, we can now construct the whole space of operators in this way: certain operators

are taken as primaries; each of them upon the repeated action of Pµ produces a family of

operators which are called descendants of this primary.

We have described the four-dimensional conformal group, which is isomorphic to

the group of isometries of AdS5. This isomorphism has significant implications for the
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AdS/CFT duality. It can be made more graphic by combining the generators of the

conformal algebra into the matrix representing an element of so(4, 2) in the following way

Λ =


0 −D −Kµ−Pµ

2

D 0 −Kµ+Pµ
2

Kµ−Pµ
2

Kµ+Pµ
2 Mµν

 (2.14)

Since N = 4 SYM is not only conformal, but also supersymmetric theory, the confor-

mal symmetry group is enhanced to superconformal PSU(2, 2|4). The four-dimensional

conformal group SO(4, 2) and the R-symmetry SO(6) form its bosonic subgroup. To

generate the whole superconformal group, one also have to add fermionic generators, also

called supercharges, which form a graded Lie algebra. For N = 4 there are 16 supercharges

Qαa and Q̃aα̇, α, α̇ = 1, 2 and a = 1, . . . , 4. Commutation relation of two supercharges is

proportional to the translation operator; commutation relations of supercharges with Mµν

are determined by the fact that they transform under spinor representation of Lorentz

group:

{Qαa, Q̃bα̇} = γµαα̇δ
b
a Pµ, {Qαa, Qαb} = {Q̃aα̇, Q̃bα̇} = 0 (2.15)

[Mµν , Qαa] = iγµναβε
βγQγa, [Mµν , Q̃aα̇] = iγµν

α̇β̇
εβ̇γ̇Q̃aγ̇ , (2.16)

where γµναβ = γ
[µ
αα̇γ

ν]

ββ̇
εα̇β̇.

Operators Qαa and Q̃bα̇ have conformal dimension 1/2:

[D,Qαa] = − i
2
Qαa , [D, Q̃aα̇] = − i

2
Q̃aα̇ (2.17)

To complete the algebra we have to consider the commutation relations of supercharges

with bosonic generators. This produces a new class of generators called special conformal

supercharges:

[Kµ, Qαa] = γµαα̇ε
α̇β̇S̃β̇a , [Kµ, Qaα̇] = γµαα̇ε

αβSa
β̇

(2.18)

Their (anti)commutation relations are given by

{Sαa, S̃bα̇} = γµαα̇δ
b
a Kµ, {Saα, Sbα} = {S̃aα̇a, S̃bα̇b} = 0 (2.19)

[Kµ, S
a
α] = [Kµ, S̃α̇a] = 0 (2.20)

Finally the algebra is closed by anticommutation relations between supercharges and

special conformal supercharges

{Qαa, Sbβ} = −iεαβσIJ b
a RIJ + γµναβδ

b
a Mµν −

1

2
εαβδ

b
a D (2.21)

{Qαa, S̃bβ̇} = iεα̇β̇σ
IJa

bRIJ + γµν
α̇β̇
δ b
a Mµν −

1

2
εα̇β̇δ

a
bD (2.22)

{Qαa, S̃β̇b} = {Q̃aα, Sbβ} = 0 (2.23)
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As we mentioned before, representations of conformal group can be constructed by

taking a primary operator O and considering all its descendants Pµn1
. . . PµnkO. Repre-

sentations of superconformal group are obviously larger. However, in a special case when

the primary is annihilated by certain combinations of supercharges one can construct spe-

cial, “short representations” of superconformal group. In this case the operator is called

chiral primary, or BPS operator. Such operators are dual to Kaluza-Klein supergravity

modes in AdS5; they are also notable by the fact that their conformal dimensions do not

receive quantum corrections. This property makes them important points in the space

of operators of N = 4 SYM . In particular, it is sometimes a fruitful strategy to explore

the neighbourhood around BPS point in the parameter space. We exploit this near-BPS

perturbation technique in chapters 5, 6, 10.

Perhaps the most remarkable property of CFTs is that, at least in principle, all in-

formation about the theory is encoded in its two- and three-point correlators, because

higher-point correlators can be reduced to them using so-called Operator Product Expan-

sion. Moreover, these lower-point correlators have their coordinate dependence completely

fixed by the conformal symmetry. Thus the whole theory is controlled by a rather small

and well-understood set of parameters. Let us elaborate on these parameters. Consider a

correlator of two scalar operators 〈O1(x1)O2(x2)〉 with conformal dimensions ∆1 and ∆2.

We know that it can only be a function of the distance between the two points and that an

operator of dimension ∆ transforms under the rescaling as O(λx)→ λ−∆O(x). This fixes

the correlation function up to a constant, which can be absorbed into the normalization

of the operators. Thus we arrive to the following expression for the two point function

〈O1(x1)O2(x2)〉 =
δ∆1,∆2

(x1 − x2)2∆1
(2.24)

Similarly, the three-point function’s coordinate dependence can be fixed by the rescal-

ing argument as before, however we do not have any freedom left to fix the constant

〈O1(x1)O2(x2)O3(x3)〉 =
C123

(x1 − x2)∆1+∆2−∆3(x1 − x3)∆1+∆3−∆3(x2 − x3)∆2+∆3−∆1

(2.25)

The constants C123 appearing in the right hand side are called structure constants. Same

constants enter in the OPE of two operators, thus determining all higher-order correlators.

We can now see the importance of finding conformal dimensions and structure con-

stants of N = 4 SYM : this information is enough to determine the rest of correlators in

the theory. In this thesis we will focus on the spectral problem, i.e. finding the dimensions.

However, the Quantum Spectral Curve method which is our main tool in solving this prob-
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lem could in principle be applicable to calculation of three-point functions via Sklaynin’s

of separation of variables procedure. We speculate on this a little in the conclusions.

2.2 String side of the duality and Maldacena’s argument

The AdS/CFT correspondence states that N = 4 SYM theory described above is equiva-

lent to a completely different theory — type IIB string theory on AdS5×S5 background.

More precisely, AdS5/CFT4 correspondence states the equivalence of partition functions

with sources in these two theories: the left hand side of the duality is partition function

of N = 4 SYM with sources J for local operators, and the right hand side is partition

function of the worldsheet model with sources for vertex operators fixed to value J at

the boundary of AdS. This means that there is a map between the string observables on

the boundary of AdS and states of SYM; in particular, the expectation values of these

observables are equal.

The string side of the duality is reviewed in [37]. Another useful for us formulation is

given in terms of a coset sigma-model [38] (see also [39] and section 7.1 of this thesis).

The easiest way to describe (n+1)-dimensional Anti-de Sitter (AdS) space is to embed

it into (n+ 2)-dimensional flat space with the metric ds2 = dX2
0 + dX2

n+2 −
n+1∑
k=1

dX2
k as a

surface

X2
0 +X2

n+2 −
n+1∑
k=1

X2
k = −R2. (2.26)

One can introduce a coordinate system (x1, ..xn, z) which covers part of AdS space

(z > 0) and in which the metric looks like

ds2 =
dxµdx

µ + dz2

z2
(2.27)

where xµ are coordinates of n-dimensional Minkowski space.

From this coordinate parametrization it is easy to see that the boundary of AdSn+1

space (z → 0) is conformally equivalent to n-dimensional Minkowski space. This fact

makes possible the holographic nature of AdS/CFT correspondence: we place the gauge

theory on the boundary of AdS5 space, which is precisely four-dimensional Minkowski

space. The first remarkable thing to notice is the matching of symmetry groups: indeed,

the isometries of AdS5 form SO(2, 4) group and this is same as conformal group in four

dimensions. There remain as well isometries of S5, which form SU(4) ∼= SO(6). It turns

out that they have their precise counterpart in N = 4 SYM — the R-symmetry, rotating,

for example, six real scalars in the fundamental.
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The correspondence was proposed in 1997 when Maldacena [40] suggested that planar

limit of certain CFTs contains supergravity as their subsector. Some manifestations of a

two-dimensional gauge/gravity duality were known before [41, 42, 43], but this was the

first duality of this kind involving a four-dimensional theory.

In order to see how Maldacena’s argument works we have to introduce solitonic objects

called Dirichlet-branes or D-branes — flat objects extended into p+ 1 space-time dimen-

sions. In string perturbation theory they enter as boundary conditions for open strings:

open strings end on a D-brane and satisfy Dirichlet boundary conditions on it.

One then considers type IIB string theory in the presence of a stack of Nc such branes.

There are two types of excitations in this system: closed strings in the bulk and open

strings which end on the branes. In the low energy limit the closed strings decouple and

open strings on the branes produce SU(Nc) gauge theory. For type IIB string theory this

is N = 4 SYM .

Let us sketch an argument supporting the duality. One starts by considering a stack of

Nc D3 branes in 9+1 Minkowski space. There are two types of excitations in this system:

closed strings in the bulk and opens strings which end on the branes. Each brane couples

to gravity with coupling gs, so the total effect on the metric is proportional to gsNc. We

are going to consider the low-energy limit of this system. This can be done in two different

regimes.

When gsNc � 1 the space is almost flat, so the theory in the bulk decouples and gives

just ten-dimensional supergravity. The lower energy limit of the open strings ending on

the branes is four-dimensional gauge theory, N = 4 SYM .

On the other hand, in the limit gsNc � 1 the stack is described by an extremal black

3-brane (a generalization of a black hole to an extended object). The energy seen by an

observer depends on the distance to the brane, in particular near the horizon all string

modes effectively become massless. Thus the near-horizon limit again decouples from the

bulk. The near-horizon limit of the black brane supergravity solution can be written as

ds2 ≈ R2

(
−dt2 + dx2 + dy2 + dz2 + du2

u2
+ dΩ2

5

)
, (2.28)

which is nothing but the AdS5 metric (2.27) times a sphere.

Hence we see that in the low-energy limit the physics near the branes decouples from

the rest, both at large and small gsNc. In the bulk we get supergravity in both cases.

And on the branes interesting things happen: in one regime we get string theory on the

AdS5 × S5 background and in the other a gauge theory. The most natural assumption is

that these two theories: N = 4 SYM and type IIB string theory on AdS5 × S5 are two
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regimes of the same theory.

Parameters on the two sides of the duality should be matched. On the gauge theory

side we have the coupling gYM and the number of colours Nc, which are combined into

the ’t Hooft coupling λ = g2
YMNc. The string theory side is parametrized by the inverse

string tension α′, the string coupling gstr, and the radius R of AdS and of the sphere; one

also introduces effective string tension T = R2

2πα′ . These parameters are related through

λ = 4π2T 2, g2
YM = gstr (2.29)

The duality has been proposed by Maldacena as a conjecture and since then it has

received a lot of confirmations. In particular, in [44, 45] an exact correspondence was

established between some states of N = 4 SYM and supergravity modes. Another con-

firmation came from studying the so-called BMN operators [46, 47, 48]. On gauge theory

side these are operators with large R-charge, which can be represented as long traces

made of the same fields with finite number of “impurities” inserted. R-charge of gauge

theory operator is translated into angular momentum of rotation on a sphere. Thus BMN

operators correspond to short strings rotating fast on the sphere.

Duality implies that all fields and parameters on one side have their correspondences

on the other. One of the most important observables for us, the dimension of an operator

in the gauge theory, equals to the mass of the corresponding string state. The supergravity

fields can be mapped to states of CFT: for example, the graviton corresponds to energy-

momentum tensor, dilaton to gauge kinetic term F 2
µν and the gauge field in the bulk maps

to conserved currents in CFT.

Once again revisiting the picture of gauge theory defined on the boundary of the AdS

space, in the bulk of which lives a string theory, one can see that correlators of local

operators are dual to string states with corresponding boundary conditions. This means,

in particular, that their expectation values can be calculated as the corresponding string

amplitudes. But the duality is not restricted to local operators: it turns out that expecta-

tion values of Wilson lines can be calculated as regularized areas of minimal surfaces with

boundary conditions defined by the corresponding Wilson line.

AdS5/CFT4 was the first and the most well studied of AdS/CFT dualities. After it

was discovered it was natural to look for similar dualities in different number of dimensions

and, indeed, it turned out that a three-dimensional supersymmetric gauge theory, ABJM,

is dual to string theory in AdS4 × CP 3 background [49, 50]. This system will be the

object of our studies in chapter 10. Later even lower-dimensional examples of AdS/CFT

correspondences were discovered: string theory on AdS3×S3×T 4 or AdS3×S3×S3×S1



2.3 Planar limit 26

Figure 2: Planar and non-planar contributions to 〈tr ZLtr Z̄L〉

is dual to a two-dimensional CFT [51, 52, 53].

2.3 Planar limit

In this thesis we will always be dealing with a particular limit of AdS/CFT system, the

so-called planar limit [54]. On the gauge side of the duality one should take the number of

colours Nc to infinity and the coupling constant gYM to zero, keeping their combination

g2
YMNc constant:

λ = g2
YMNc = fixed, gYM → 0, Nc →∞ (2.30)

The planar limit is remarkable for many reasons: first of all, many calculations simplify

significantly in this limit. The main reason is that of all Feynman diagrams only those

which can be drawn on a plane without self-intersection will survive, and the rest are

suppressed by powers of Nc.

Taking the planar limit affects the class of operators we should take into account. In-

deed, consider a simple example: the correlator of two BPS operators tr ZL and tr Z̄L

shown on Fig 2. Different Feynman diagrams contributing to the result correspond to

different ways of pairing Z operators with different Z̄s. All Nc Feynman diagrams pair-

ing the scalars in non-intersecting ways scale like NL
c , and all the intersecting ones are

suppressed as powers of Nc. Moreover, consider splitting one of the traces into two: the

resulting correlator will again be suppressed. One can show that this is a general rule:

contributions from multi-trace operators are suppressed compared to single trace ones.

The planar limit has a very nice geometric meaning on the string theory side: (2.30) is

equivalent to gstr → 0, in other words taking into account only worldsheets with topology

of a sphere.
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2.4 Classes of operators in N = 4 SYM

The duality implies, in particular, that each operator of N = 4 SYM corresponds to

a string state. Here we will review the most common classes of operators and their

corresponding classical string solutions.

Local operators In a gauge theory the fields transform under the action of the gauge

group, but all physically relevant information about the theory should be contained in

gauge-invariant quantities. Consider first local operators: products of covariantly trans-

forming fields and covariant derivatives taken at the same point in space-time. A natural

way of making such an object gauge-invariant is taking the trace. One can construct an

operator consisting of just one trace, or a product of several traces. However, in the planar

limit the latter are reduced to the former inside the correlators: correlation between fields

belonging to different traces is suppressed by powers of N . So we arrive to a class of

operators of the form

O(x) = tr (Q1(x) . . . QL(x)) (2.31)

where each letter Qi is one of the fields φI , ψ̄
a
α̇, ψaα, Fαβ or their covariant derivatives.

Among all possible operators a special role is played by the chiral primary operators,

which, as we have mentioned before, are annihilated by certain combinations of super-

charges. R-symmetry fixes the conformal dimensions of such operators to (half)integer

values, and thus it can not vary continuously with coupling, i.e. it does not receive quan-

tum corrections; because of this such operators are also called “protected”. Simplest

examples of local BPS operators can be constructed as traces of products of scalar op-

erators: any combination of the kind χi1...ikφi1 . . . φik with traceless symmetric tensor χ

is protected. In particular, we will often refer to its highest weight representative tr ZL,

where we introduced the notation

X = φ5 + iφ6, X̄ = φ5 − iφ6, (2.32)

Y = φ3 + iφ4, Z̄ = φ3 − iφ4, (2.33)

Z = φ1 + iφ2, Z̄ = φ1 − iφ2. (2.34)

Such an operator has one non-zero charge on the sphere J1 = L and one in AdS

∆ = L. On the string side in the quasiclassical limit this corresponds to a BMN solutions

— point-like string sitting at the centre of AdS5 and rotating with angular momentum L

around a big circle of S5 [46].
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Consider now a single trace operator made out of scalars of two types, for example

X and Y . Linear combinations of such operators form a closed subsector in the whole

algebra of operators, in the sense that they do not mix with other operators under the

action the dilatation operator. Scalars X and Y transform under the action of the su(2)

subalgebra of psu(2, 2|4), so this subsector is called su(2) subsector. The corresponding

string solution has one non-zero global charge in AdS and two on the sphere, which makes

it sit in the center of AdS and spin on S3 ⊂ S5 [55].

Another subsector which is very relevant for us is called the sl(2) subsector: it is

spanned by single-trace operators consisting of one scalar, i.e. Z and light-cone derivatives

D = D0 −D1. Denoting the number of scalars by L and the number of derivatives by S

we can write an operator of this subsector schematically as

tr
(
DSZL

)
+ . . . , (2.35)

where dots denote permutations of derivatives acting on different scalars. Since the number

of derivatives acting on a particular scalar can be arbitrarily large, sl(2) subsector is

called non-compact. Many of problems studied in this thesis deal with operators from this

subsector: the slope and curvature functions in chapter 5, the BFKL regime in chapter 9

and the slope function in ABJM in section 10.2. We often refer to L as the twist or the

length of an operator and to S as its spin.

In the limit of large spin and length the AdS/CFT duality matches the operator (2.35)

with a classical solution called folded string, which is spinning in AdS as well as on the

sphere [47, 56]. If, on the other hand, one keeps the length finite while taking the spin to

infinity the anomalous dimension scales logarithmically with spin

∆ = S + f(g) lnS (2.36)

The function f(g) is called the cusp anomalous dimension, because it also determines the

anomalous dimension of light-like cusped Wilson line [57, 58]. It is often convenient to

describe the classical string solution in terms of the so-called classical spectral curve, on

which we elaborate in section 7.3.

Finally, we will refer to the subsector of single-trace operators made of just scalars as

to so(6) subsector. The corresponding string will sit at the origin of AdS5 and rotate on

the sphere with all three angular momenta non-zero. A particular class of such solutions

was studied in [59, 60].

Wilson Lines Besides the local operators described above one can also study non-

local operators, of which the most often considered examples are Wilson lines. In gauge
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theories Wilson lines are usually defined by integrating a gauge field around some contour

and depend on the path of integration xµ(t) in spacetime.

WL = tr P exp

(
i

∮
C
dxµAµ

)
(2.37)

where P exp is path-ordered exponent. Such a Wilson line operator is gauge invariant if

the integration contour is closed.

A supersymmetric version of the Wilson line we consider in SYM is constructed as

WL = tr P exp

∮
C
dt
(
iAµẋ

µ + ~Φ · ~n|ẋ|
)
, (2.38)

The second term, required by supersymmetry, includes a six-dimensional path in the

“internal space” ~n(t), such that ~n2 = 1. This can be understood as a remainder of

the compactification from ten-dimensional theory: together 4 components of Aµ and six

components of ~n(t) form a “path” in a ten-dimensional space. Wilson lines have a physical

meaning: in QCD, for example, they describe a string connecting a quark and antiquark.

Governed by this logic in chapter 6 we extract the quark-antiquark potential from the

expectation value of cusped Wilson line.

The AdS/CFT duality maps Wilson lines to string states defined by their boundary

conditions, i.e. whose worldsheets end on the corresponding Wilson line. Thus their

expectation values are string partition functions with fixed boundary conditions, which

in the supergravity limit have a nice geometrical interpretation: they become regularized

areas of minimal surfaces in AdS space. Null-polygonal Wilson lines in N = 4 SYM are

also closely related to scattering amplitudes [61, 62]. Thus Wilson lines can serve as an

important tool to explore AdS/CFT correspondence.

3 Integrability in AdS5/CFT4

In this short chapter we will discuss some integrability techniques and concepts existing

in the context of AdS5/CFT4 . In the subsequent subsections they will be presented

roughly in the order of their development. The reader can see how each next tool is more

powerful and has a broader scope of application. Our stating point will be weak-coupling

integrability in section 3.1 and the last tool discussed here will be TBA in section 3.3.

TBA can be reformulated into a much more compact and elegant form, called QSC, which

we will describe in detail in the next chapter 4.
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The review in this section only gives a sketch of the available techniques. Some are

explained in more detail later in the text, where they are used; for a comprehensive review

of others see [63].

3.1 Weak coupling: mapping to spin chains

Integrability in the context AdS/CFT was initially noticed on the gauge theory side. The

first such occasion might be the appearance of Heisenberg spin chain Hamiltonian in the

context of Regge limit of one-loop QCD amplitudes: in [64] the lattice model proposed

in [65] to describe high energy gluon scattering was identified with integrable Heisenberg

spin chain, which was further explored in [66, 67, 68]. This limit is also studied in chapter

9 of this thesis.

Later the Heisenberg spin chain appeared again in the study of four-dimensional gauge

theories in a different context: the one-loop dilatation operator in N = 4 SYM was

identified with Hamiltonian of integrable spin chain in [69]. The spectral problem for long

single-trace operators at one loop can be mapped onto a spectral problem for a spin chain

Hamiltonian which happens to be integrable. This spectral problem is reduced to so-called

Bethe ansatz equations, which are algebraic equations for the variables called roots. The

problem at higher loops can also be mapped to spin chains, but with interaction range

increasing with the number of loops. So one-loop Bethe ansatz was generalized to any

coupling, producing so-called Asymptotic Bethe Ansatz (ABA). ABA gives answer up to

exponentially small in spin chain length corrections. These corrections, called wrapping

corrections, can be systematically computed.

In [71] the so(6) subsector of N = 4 SYM was proven to be integrable at one loop and

evidence has been presented that this integrability could be extended to all loops. The

analysis of this last paper was soon continued in [72], extending the one-loop integrability

to all the subsectors. As a first solid confirmation of conjectured integrability beyond one

loop, in [73] the three-loop dilatation operator was fixed from supersymmetry and other

constraints and was found to be integrable.

In order to give an idea how integrable structures appear in N = 4 SYM , let us briefly

describe the mapping of single trace operators to spin chains at weak coupling and the

derivation of Bethe equations. To this end, consider operators made of a trace of L scalar

operators Z and Z̄,

O = tr
(
ZZZ̄ZZ̄Z̄ . . .

)
(3.1)



3.1 Weak coupling: mapping to spin chains 31

Such operators can be naturally mapped to spin chains of length L, representing on each

site Z as spin up and Z̄ as spin down, so that, for example, the operator above is mapped

to | ↑↑↓↑↓↓ . . . 〉. The cyclicity of trace in the original picture induces periodic boundary

conditions on the spin chain, i.e. closes it into a circle. It has been shown in [74] that in

this representation the one-loop dilatation operator takes a form of Heisenberg XXX spin

chain Hamiltonian, which is known to be integrable:

D̂ = L+
λ

16π2

L∑
l=1

(1− Pl,l−1), (3.2)

where Pl,l−1 is a permutation operator acting on sites l and l − 1. One can now solve the

spectral problem, i.e. find the eigenstates and the corresponding eigenvalues by the means

of the Bethe ansatz.

In order to derive Bethe ansatz let us try to construct an eigenstate of the Hamiltonian

(3.2) in terms of excitations above some vacuum. As a vacuum we can take, for example,

as state with all spins up Ω = | ↑↑ . . . ↑〉. Then the simplest excited states will be those

with one spin flipped down. One can check that the following linear combinations of them

will be eigenstates of the Hamiltonian

|p〉 =
1√
L

L∑
l=1

eipl| ↑↑ . . . ↓
l
. . . ↑↑〉 (3.3)

Such a state is called a single magnon propagating with momentum p and has an energy

ε(p) =
λ

2π2
sin2 p

2
(3.4)

A state with two magnons should be constructed from spin chains with two spins flipped

down. Since magnon scatter on each other, the wave function can consist of two different

contributions differing by the relation between the “positions” l1, l2 of the magnons.

|p1, p2〉 =
∑
l1<l2

eip1l1+ip2l2 | . . . ↓
l1

. . . ↓
l2

. . . 〉+ eiφ
∑
l1>l2

eip1l1+ip2l2 | . . . ↓
l2

. . . ↓
l1

. . . 〉 (3.5)

The two terms can be seen as asymptotic states at right and left infinities in time (if

p1 > p2 then l1 > l2 at t =∞ and the other ways round). Thus the relative phase of the

second term is the two-magnon scattering phase. Requiring that a state of the form (3.5)

should be an eigenstate of the Hamiltonian, one fixes the value of the scattering phase to

eiφ = Sjk =
uj − uk − i
uj − uk + i

, (3.6)

where we introduced a rapidity variable u

eip =
u+ i/2

u− i/2
. (3.7)
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The corresponding eigenvalue, i.e. the energy, is the sum of the energies (3.4) of two

magnons. Similarly, for states with M magnons, i.e. M spins down, the eigenstates are

|p1, . . . , pM 〉 =
∑

l1<···<lm

eip1l1+···+ipM lM | . . . ↓
l1

. . . ↓
l2

. . . ↓
lm

. . . 〉+ . . . (3.8)

where the dots stand for terms with all possible permutations of magnons, each multiplied

by a corresponding factor of S-matrix. Since the system is integrable, scattering of many

magnons factorizes into the product of individual scatterings, in other words the S-matrix

of an M-magnon system is a product of S-matrices corresponding to pairwise permutations.

Consider a transformation under which the wave function has to be invariant: moving

one magnon around the circle to its original place. The wave function acquires factors

from the translation operator eiLp and also a factor of S(p, pj) from scattering with every

other magnon.

From (3.7) and (3.6) we then rewrite the condition of invariance of the wave-function

as (
uj + i/2

uj − i/2

)L
=

M∏
k 6=j

uj − uk + i

uj − uk − i
, (3.9)

where the left hand side is the phase coming from the translation operator and right hand

side is the scattering. This equation was first derived by Hans Bethe in 1931 [75].

Periodicity of the spin chain imposes one more constraint on the set of Bethe roots:

the total momentum
M∑
k=1

pk should vanish, which in terms of rapidity variables is

M∏
j=1

uj + i/2

uj − i/2
= 1 (3.10)

Suppose we know a solution of this system, a set of Bethe roots uj satisfying (3.9) and

(3.10). Then the energy of the corresponding eigenstate, i.e. the anomalous dimension of

the corresponding operator, can be found by summing the energies of individual magnons

given by (3.4)

γ =
λ

8π2

M∑
j=1

1

u2
j + 1/4

(3.11)

Another elegant way to obtain Bethe equations, which comes from the Algebraic Bethe

Ansatz [76], is to construct so-called transfer matrix. Introduce first the monodromy

operator defined as

M̂(u) =

(
u+

i

2
σL ⊗ σ

)(
u+

i

2
σL−1 ⊗ σ

)
. . .

(
u+

i

2
σ1 ⊗ σ

)
=

 A(u) B(u)

C(u) D(u)


(3.12)
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Here σk is a Pauli matrices acting on kth site and σ a Pauli matrix acting in the auxiliary

space. Transfer matrix is the trace of the monodromy operator over the auxiliary space

so it is an operator in the Hilbert space of the spin chain:

T̂ (u) = traM(u) = A(u) +D(u) (3.13)

Transfer-matrices at different values of spectral parameter u commute with each other,

and thus encode an infinite family of conserved charges. A state corresponding to a set of

Bethe roots u1 . . . uk is created by operators B(ui) acting on vacuum:

|Ψ〉 = B(u1) . . . B(uk)|Ω〉, (3.14)

Acting on this state with the transfer matrix and using the commutation relation of A(u)

and D(u) with B(u) one can show that the eigenvalues of T̂ (u) are given by

T (u) = (u+ i/2)L
J∏
k=1

u− uk − i
u− uk

+ (u− i/2)L
J∏
k=1

u− uk + i

u− uk
(3.15)

On the other hand, T̂ (u) is polynomial in u by construction. Thus there are no poles

u = uk in (3.15), which immediately leads to (3.9).

3.2 Asymptotic Bethe Ansatz

The one-loop Bethe ansatz demonstrated above can be generalized to all loops in the limit

of infinite spin chain length [77]. At finite coupling the elementary excitations — magnons

are characterized by the following dispersion relation

eip =
x+

x−
, E = ig

(
x− − 1

x−
− x+ +

1

x+

)
(3.16)

where Zhukovsky variable x is defined by

g(x+ 1/x) = u (3.17)

and x± = x(u ± i/2) as everywhere in the text. As a function of the spectral parameter

x(u) has two branch points in the complex plane at u = ±2g. These can be connected

by the so-called Zhukovsky cut, which will appear many times in the rest of this thesis.

More precisely, out of two solutions of (3.17) we pick the one with a short cut and satisfies

|x| > 1, i.e.

x(u) =
1

2

(
u

g
+

√
u

g
− 2

√
u

g
+ 2

)
. (3.18)
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S-matrix (3.6) has to be replaced by a more complicated all-loop matrix expression. Up

to an overall factor it can be fixed from psu(2, 2|4) symmetry constraints [78]:

Ŝ = Ŝ0σ
−2 (3.19)

The overall factor, the so-called dressing phase was not known when a conjecture for all-

loop Bethe ansatz equations for all subsectors of psu(2, 2|4) was proposed in [79]. Later

the dressing phase σ was found in [80] by implementing crossing relations for the S-matrix.

In a general situation ABA equations include 7 types of Bethe roots interacting with each

other. The roots of type four determine the energy and the momentum and are called

momentum-carrying or middle-node roots. For operators belonging to one of su(2), sl(2)

or su(1|1) sectors, only momentum-carrying roots survive. In this case Bethe equations

look like (
x+
k

x−k

)L
=

K∏
j=1,j 6=k

(
x+
k − x

−
j

x−k − x
+
j

)η 1− g2

2x+
k x
−
j

1− g2

2x−k x
+
j

σ2(xk, xj). (3.20)

Momentum-carrying roots and are constrained by zero momentum condition analogous

to (3.10)

1 =

K4∏
j=1

x+
4,j

x−4,j
(3.21)

The energy is found from the momentum-carrying roots as a sum of energies of indi-

vidual magnons

γ =
i

g2

K4∑
j=1

(
1

x+
4,j

− 1

x−4,j

)
(3.22)

We will give more details on ABA in section 4.5, where it is derived from the Quantum

Spectral Curve. As we have said before, Asymptotic Bethe Ansatz is limited to infinite spin

length: perturbatively at weak coupling it is valid to the order g2L−4. At the next order

a new type of Feynman diagrams appears and wrapping corrections have to be taken into

account, which originates from virtual magnons going around the worldsheet. This was

demonstrated in [81] by pointing out the discrepancy between ABA results and predictions

from BFKL constraints. Going beyond infinite volume limit was first achieved through

Lüscher corrections: for a general two-dimensional QFT Lüscher calculated leading order

shifts to energy levels when the system is put on a cylinder [82]. His formulas can be applied

to the wrapping interactions in N = 4 SYM and give explicit formulas for corrections to

the anomalous dimensions at weak [83, 84] and strong coupling [85, 86] (see also the review

[87]).

A more universal, but at the same time more complex approach is given by Thermo-

dynamical Bethe Ansatz described in the next section.
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3.3 Thermodynamical Bethe Ansatz

The infinite volume limitation of ABA can be overcome by the so-called Matsubara trick,

which leads to the Thermodynamical Bethe Ansatz [88, 89, 90] .

The idea is that by considering thermodynamics of a system of Bethe roots at finite

temperature (but in an infinite spin-chain) and then performing a trick of exchanging

length and inverse temperature one obtains a description of the operators of finite length.

Indeed, consider a QFT on a torus with circumferences R and L. Notice that its partition

function Z(R,L) can be written in two ways:

Z(R,L) =
∑
k

e−LEk(R) =
∑
j

e−RẼj(L), (3.23)

where Ek(R) are the energy levels of the theory on the circle of circumference R at the

temperature 1/L and Ẽk(L) are the energy levels of the theory on the circle of circum-

ference L at the temperature 1/R. If we now take a limit R → ∞, the first sum can be

interpreted as a partition function of a QFT at temperature 1/L in the infinite volume

and in the second one only the term corresponding to the ground state energy survives:

it will give a partition function of a QFT at zero temperature, but finite volume. Hence

this procedure allows to calculate the spectrum in the finite volume:

E0(L) = lim
R→∞

1

R

∑
j

e−RẼj(L) (3.24)

In order to calculate the right hand side we need to consider behavior of Bethe roots at

finite temperature, i.e. in the thermodynamical limit. We assume that all states in this

limit are bound states with densities ρA, where A labels different types of magnons. One

then has to consider a thermodynamical limit of ABA equations of the type (3.20) which

gives

ρ̄A(u) + ρA(u) =
i

2π

dε∗A(u)

du
−KBA(v, u) ∗ ρB(v) (3.25)

Here ρA and ρ̄A are densities of excitations and holes, ε is the dispersion relation and

the kernel KAB, describing the interaction between different types of excitations, is just

proportional to the logarithm of the S-matrix element. One then has to minimize the free

energy of the system on the class of densities satisfying the equation (3.25). This results in

an infinite system of non-linear integral equations for Y-functions, related to the densities

above, which depend on a complex spectral parameter u. These function are indexed by

nodes on a T-shaped lattice and information about the state described by the system is

encoded in their asymptotic behavior. The resulting equations are quite complicated and
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can be schematically represented as

log YA = KAB ∗ log(1 + 1/YB) + driving terms, (3.26)

where KAB is a linear integral operator and the driving terms are source terms depending

on specific operator under consideration.

Later analysis of analytical properties of Y-functions allowed to reduce the infinite

system of TBA equations to a finite set, called FiNLE (Finite System of Non-Linear

Integral Equations) [91]. First of all, TBA integral equation can be reformulated as purely

functional equations

Y +
1,mY

−
1,m = (1 + Y1,m−1) (1 + Y1,m+1) (3.27)

and some analyticity constraints for Y -functions. Another important observation which

made this reduction possible is the existence of an ansatz for Y-function in terms of new

set of functions Ta,s

Ya,s =
Ta,s+1Ta,s−1

Ta+1,sTa−1,s
(3.28)

in terms of which the original equations are equivalent to Hirota dynamics

T+
a,sT

−
a,s = Ta+1,sTa−1,s + Ta,s+1Ta,s−1 (3.29)

A general solution for Hirota equation can be written explicitly [92, 93, 94].

TBA allows to reduce the problem of calculating the anomalous dimension of an op-

erator in N = 4 SYM to a system of algebraic equations, which then can be solved

numerically. In rare cases TBA can be solved exactly, one of the examples being the

near-BPS limit of a cusped Wilson line, which was solved in [95, 91] and generalized in

our paper [10] (see section 6). One should also mention that TBA equations were derived

and tested for a lower-dimensional example of the AdS/CFT correspondence, AdS4/CFT3

[96, 97].

3.4 Classical spectral curve

A ground-breaking paper [98] established the relation between the perturbative integra-

bility at weak coupling and the integrability observed in the sigma-model formulation at

strong coupling (see also the review [99]). This is done through the construction of the

classical spectral curve - a complex algebraic curve encoding all the information about

a particular state, which, in principle, allows one to recover the corresponding classical
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solution. We will discuss the classical spectral curve in chapter 7 where it is, in particular,

derived from the Quantum Spectral Curve.

For closed strings there is a standard procedure for constructing the spectral curve

corresponding to finite gap solutions. One first constructs a family of flat connections

on the worldsheet parameterized by the spectral parameter and considers its monodromy

around the worldsheet. The eigenvalues of this monodromy are invariants of motion and

together they form eight sheets of the spectral curve. As we said before, the spectral curve

encodes all conserved charges of the classical solution, in particular, the energy. Moreover,

a procedure of one-loop quantization based on the spectral curve was developed in [39],

where excitations around the classical solution correspond to adding poles connecting the

sheets of the curve. For open strings a procedure of constructing a curve for an arbitrary

solution is still lacking, although curves can be constructed for some special families of

solutions (see, for example, [100, 101, 102, 103, 104]). In our paper [11] we proposed an

algebraic curve for a classical limit of a system consisting of a cusped Wilson line and a

scalar operator inserted at the cusp. Our method is a generalization of [91] and can be

found in section 7.4 of this thesis.

* * *

TBA in the form of FiNLE and algebraic curve remained the most advanced tools until

very recently, when TBA was simplified to an elegant system of equations for monodromies

of just eight functions with well-controlled analytical properties, call Quantum Spectral

Curve or Pµ-system [7]. This system is the topic of the next section.

4 Quantum Spectral Curve of AdS5/CFT4

As follows from the description of the historical development of the integrability approach

in N = 4 SYM in the previous chapter, the first approach to the solution of the spectral

problem which was valid at arbitrary coupling and for an arbitrary operator was Ther-

modynamical Bethe Ansatz (or Y-system). Unfortunately in practice using TBA was

massively inconvenient. First, its analytical solution was possible only in few specific,

mostly near-BPS cases. Second, since the system of TBA equations is so cumbersome,

it does not give any additional insights about the mathematical structure of the theory.

Last, even numerical solution of TBA equations proved to be quite difficult - existing

algorithms converge slowly and do not give high precision results.
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Fortunately, the spectral problem in N = 4 SYM can be reformulated as a new system

of equations, which is more convenient to deal with and does not have the disadvantages

listed above. This new system is called Quantum Spectral Curve (QSC) and it is equiva-

lent to TBA, however much simpler. As opposed to infinite system of non-linear integral

equations for infinite number of Y-functions, which constitutes the TBA, QSC is formu-

lated as constraints for monodromy of a set of a total of 9 function with fixed analytical

properties. The elegance of the formulation hints at some deeper structure underlying

the problem and suggests that there might be a direct derivation of QSC from the first

principles, avoiding the messy TBA step. Finally, as we show in chapter 8, there exists a

highly efficient algorithm for numerical solution of QSC.

For a large number of quantum integrable systems, including AdS5/CFT4 , Y-functions

can be parametrized as ratios of T-functions, for which the equations take much simpler

form. In fact, they look like Hirota equation on a lattice with special boundary conditions

supplemented by restrictions on analytical properties of T-functions. In particular, for

spin chains with su(N) algebras, one have to solve Hirota equation on a semi-infinite strip

of width N . The general solution is given in terms of N functions of spectral parameter

[105]. Generalizations were also obtained for superalgebras of compact su(K|M) [106] and

non-compact su(K1,K2|M) types [107, 108, 93]. They correspond to solutions of Hirota

equations on a hook where the width of horizontal and vertical bands are given by ranks

of bosonic and fermionic parts of the superalgebra respectively. In this thesis we are

mostly interested in the psu(2, 2|4) algebra, which is the symmetry algebra of both sides

of AdS5/CFT4 duality. QSC, which we describe below in this section, gives us a convenient

parametrization of a general solution of Y-system for this algebra in terms of so-called Q-

functions. We give its definition and properties in sections 4.1-4.3, consider the important

case of left-right symmetric states in 4.4 and in 4.5 show how the large volume limit of QSC

produces ABA. For the sake of brevity we do not give the derivation of QSC from TBA.

This derivation and much more complete description of QSC can be found in [8, 109].

4.1 Algebraic Q-system

As mentioned before, a general solution of Y-system for a system with psu(2, 2|4) symmetry

algebra can be parametrized in terms of 8 independent functions of spectral parameter. It

turns out, however, that in order to obtain finite, Wronskian-like formulas for the solution

it is convenient to introduce 28 Q-functions satisfying certain functional algebraic relations.
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Following this logic, the body of Q-system is constituted by Q-functions QA|I =

Qa1a2...|i1i2..., parametrized by indices ak = 1 . . . 4, ik = 1 . . . 4 and depending on the

spectral parameter u. Indices ak are called bosonic and ik — fermionic, and Q-functions

are antisymmetric with respect to permutation of bosonic or fermionic indices. The reader

can easily calculate that this leaves maximum 28 non-trivial Q-functions; they can have up

to four bosonic and four fermionic indices. By definition the Q-functions satisfy a number

of relations:

QAab|IQA|I = Q+
Aa|IQ

−
Ab|I −Q

−
Aa|IQ

+
Ab|I (4.1)

QA|IQA|Iij = Q+
A|IiQ

−
Ab|Ij −Q

−
A|IiQ

+
A|Ij (4.2)

QAa|IQA|Ii = Q+
Aa|IiQ

−
A|I −Q

−
Aa|IiQ

+
A|I (4.3)

Here, again, A and I are multi-indices. The relations above can be understood better if one

views the set of 28 Q-functions as Plukker coordinates on Grassmanians [109, 105, 107].

It is easy to see that the defining relations (4.1)-(4.3) enjoy gauge symmetry

QA|I →
g[|A|−|I|]

g[−(|A|−|I|)]QA|I (4.4)

which we fix by requiring Q∅|∅ = 1.

Q-system satisfies another, discrete symmetry, which originates from the exchange

of the right and left wings of the T-hook in TBA. Q-system can be reformulated in the

language of antisymmetric forms; in this language this symmetry will correspond to Hodge

duality, thus we will call the symmetry in question Hodge symmetry. We will denote the

Hodge dual of QA|I as QA|I and define it as 1

QA|I ≡ (−1)|A
′||I|εA

′AεI
′IQA′|I′ , (4.5)

where {A′} = {1, 2, 3, 4}/{A}, {I ′} = {1, 2, 3, 4}/{I}, and ε is the four-dimensional an-

tisymmetric tensor. In particular, one can see that Hodge transformation takes Q∅|∅ to

Q1234|1234. It can be shown that Q1234|1234 can also be normaized to 1:

Q1234|1234 = Q∅|∅ = 1, (4.6)

the property of AdS/CFT possibly related to unimodularity of the symmetry algebra

psu(2, 2|4).

The presence of a large number of relations between Q-functions makes us search for

a minimal subset from which all the rest could be generated (which we will call a “basis”,

1It is worth noting that only one Q-function enters the right hand side.
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although it is not a linear basis, strictly speaking). One possible basis consists of all

Q-functions with one index, for which we introduce the notation

Qi = Q∅|i, Pa ≡ Qa|∅. (4.7)

To see how to obtain the rest of Q-functions from the basis, consider first a particular case

of (4.3)

Q+
a|i −Q

−
a|i = PaQi (4.8)

All Q-functions with two indices can be obtained from this equation; solution can be

written as a form of formal series

Qa|i = −
∞∑
n=1

(PaQi)
[2n+1] + P, (4.9)

where P is an arbitrary periodic function. Two things should be noted about this solution:

first, the infinite sum might happen not to be convergent, and one has to find a way to

regularize it. Particular schemes of regularization will be described in the parts of this

thesis where we have to solve this equation in practice. Second, P is not constrained by

the equation above and has to be fixed from the asymptotics of Qa|i, which we will discuss

in section 4.3. After we have Q-function with one and two indices, the relations (4.1)-(4.3)

can be used to restore the rest of the Q-system.

Q-functions with two indices can be used to relate Q-function with one bosonic and

Q-functions with one fermionic index:

Qi ≡ Q∅|i = −Qa|∅Q±a|i, Qi ≡ Q∅|i = Qa|∅

(
Qa|i

)±
(4.10)

Pa ≡ Qa|∅ = −Q∅|iQ±a|i, Pa ≡ Qa|∅ = Q∅|i

(
Qa|i

)±
(4.11)

They also satisfy the following orthogonality relations

Qa|iQa|j = −δij , Qa|iQb|i = −δab (4.12)

Qa|∅Qa|∅ = 0, Q∅|iQ∅|i = 0 (4.13)

These relation follow from the definition of Hodge dual and from the normalization (4.6).

After gauge and Hodge symmetries are taken into account, there still remains a residual

symmetry of Q-system called H-transformation. Since, as we have seen before, all the Q-

functions can be reconstructed from those with one no more than one index, it is enough

to define the symmetry action on them:

Qa|∅ →
(
H±b
) c
a
Qc|∅, Q∅|i →

(
H±f

) j

i
Q∅|j (4.14)
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u u

Figure 3: Pa and Qi have one cut on the real axis as functions with short and long cuts

respectively.

An important special case of H-symmetry is rescaling realized by diagonal H-matrices

Qa|∅ → αaQa|∅ Q∅|i → βiQ∅|i (4.15)

Qa|∅ → 1

αa
Qa|∅ Q∅|i → 1

βi
Q∅|i (4.16)

The “unimodularity” constraint (4.6) requires α1α2α3α4β1β2β3β4 = 1.

4.2 Analytic structure

In the previous section we described the set of Q-functions and algebraic relations between

them constituting the Q-system. So far we have not said anything about the analytical

properties of Q-functions as functions of the spectral parameter u. We will describe

them in this section. For the sake of clarity our presentation will be axiomatic: we will

declare certain properties for particular Q-functions, namely Pa, and see what it implies

for the rest of Q-system. The rigorous way would be to present the derivation of Q-system

from TBA, but for this technical and rather tedious derivation we refer the reader to [8].

Moreover, we hope that at some point a direct derivation of Q-system will appear, without

the necessity to pass through TBA.

Q-functions are analytic functions of complex spectral parameter u in the UHP, and can

have quadratic branch points on the real axis and below. Let us start by formulating the

analytic properties of basic Q-function Qi and Pa, from which the rest can be constructed.

On the main sheet Pa have one short cut on the real axis from −2g to 2g as shown on

Fig. 3. Monodromy of Pa around these branch points is described by an antisymmetric

matrix µab(u) which also depends on a spectral parameter, in the following way

P̃a = µabP
b, P̃a = µabPb, (4.17)
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where µbc is the inverse of µab. Monodromy of µab is in its turn described by Pa:

µ̃ab − µab = PaP̃b −PbP̃a. (4.18)

When taken with long cut, µab should be i-periodic: µab(u) = µab(u+ i), see Fig. 4. One

can see that in the picture with short cuts this condition is equivalent to

µ̃ab(u) = µab(u+ i) (4.19)

In addition to this µab is constrained by Pf(µ) = 1. Notice also that PaP
a = 0 as we

uu

Figure 4: µab and ωij are periodic as functions with long and short cuts respectively.

derived in the previous section. The set of the algebraic and analytic properties satisfied

by Pa, Pa, and µab forms a closed system, called Pµ-system

P̃a = µabP
b, P̃a = µabPb (4.20)

µ̃ab − µab = PaP̃b −PbP̃a (4.21)

Pf(µ) = 1, PaP
a = 0 (4.22)

Analytical properties of Q parallel that of P with systematic differences. We see that

Qi can be obtained from Pa using “rotation” by a Q-function with two indices (4.10). Let

us also perform the corresponding “rotation” on µab, i.e. define ωij such that

µab = Q−a|iQ
−
b|jωij (4.23)

Then equations (4.20)-(4.22) and the analytical properties of Qa|i imply the following

relations for the monodromy of Qi

Q̃i = ωijQ
j , Q̃i = ωijQj , (4.24)
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where ωij the inverse of ωij , and for the monodromy of ω:

ω̃ij − ωij = QiQ̃j −QjQ̃i (4.25)

As opposed to µab, which is i-periodic with long cuts, ωij is i-periodic with short cuts

(Fig. 4). Correspondingly in the picture with long cuts Qi have only one cut on the real

axis, see Fig. 3.

The system of equations for Q’s and ωij is called Qω-system

Q̃i = ωijQ
j , Q̃i = ωijQ

j (4.26)

ω̃ij − ωij = QiQ̃j −QjQ̃i (4.27)

Pf(ω) = 1 QiQ
i = 0 (4.28)

Now that the analytical properties of the basic Q-function are defined, we can see what

it implies for the whole Q-system. Q-function with two indices is generated from Pa and

Qi by solving the equation (4.8). We can always choose a solution regular in the UHP,

for example the one given by (4.9). Then it is easy to see that the cut of the right hand

side on the real axis generates an infinite ladder of cuts [−2g − in, 2g − in], n ∈ N in the

LHP. Same ladder of cuts will propagate to the rest of Q-functions.

Equation for Q Sometimes it is convenient to eliminate µ and ω from the description

and work with Q and P. It is actually possible to obtain a fourth-order finite-difference

equation for Qi with coefficients formed of Pa [110], namely

Q[+4]D0−Q[+2]
[
D1 −P[+2]

a Pa[+4]D0

]
+

1

2
Q
[
D2 −PaP

a[+2]D1 + PaP
a[+4]D0

]
+ c.c. = 0

(4.29)
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where

D0 = det


P1[+2] P2[+2] P3[+2] P4[+2]

P1 P2 P3 P4

P1[−2] P2[−2] P3[−2] P4[−2]

P1[−4] P2[−4] P3[−4] P4[−4]

 , (4.30)

D1 = det


P1[+4] P2[+4] P3[+4] P4[+4]

P1 P2 P3 P4

P1[−2] P2[−2] P3[−2] P4[−2]

P1[−4] P2[−4] P3[−4] P4[−4]

 (4.31)

D2 = det


P1[+4] P2[+4] P3[+4] P4[+4]

P1[+2] P2[+2] P3[+2] P4[+2]

P1[−2] P2[−2] P3[−2] P4[−2]

P1[−4] P2[−4] P3[−4] P4[−4]

 (4.32)

In particular cases this fourth-order equation can factor into two second-order equa-

tions. Then two of four solutions satisfy a second order equation which is nothing else

but Baxter equation. This will be the situation in chapter 9, where we solve QSC in the

BFKL regime.

4.3 Identifying the state

Different solutions of the Q-system correspond to different states of N = 4 SYM . The

relation between the two is established via the asymptotics of Q-functions, which are

determined by global charges of the corresponding state. It is enough to specify the

asymptotics of the basis Q-functions. Let us recall that Pa with short cuts and Qi with

long have one cut on the main sheet and hence power-like behaviour at infinity. The

powers are

Pa ∼ Aau−M̃a , Qi ∼ BiuM̂i−1, Pa ∼ AauM̃a−1, Qi ∼ Biu−M̂i (4.33)

where

M̃a =

{
J1 + J2 − J3 + 2

2
,
J1 − J2 + J3

2
,
−J1 + J2 + J3 + 2

2
,
−J1 − J2 − J3

2

}
, (4.34)

M̂i =

{
∆− S1 − S2 + 2

2
,
∆ + S1 + S2

2
,
−∆− S1 + S2 + 2

2
,
−∆ + S1 − S2

2

}
. (4.35)

The powers can be deduced by comparison of the quasiclassical limit of the spectral curve

with the classical algebraic curve. The leading coefficients Aa, Bi are also constrained in
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terms of the global charges:

Aa0Aa0 = i

∏
j

(
M̃a0 − M̂j

)
∏
b6=a0

(
M̃a0 − M̃b

) , Bj0Bj0 = i

∏
j

(
M̂j0 − M̃a

)
∏
k 6=j0

(M̂j0 − M̂k)
, a0, j0 = 1, 2, 3, 4 (4.36)

where no summation over a0, j0 is assumed in the left hand side.

Having constrained the asymptotics of Q-functions with one index, it is easy to find

the asymptotics of the rest. For example, from (4.8) we immediately conclude that

Qa|i ≈ −iAaBi
u−M̃a+M̂i

−M̃a + M̂i

, u→∞ (4.37)

It remains to fix the asymptotics of µab and ωij ; we assume them to be power-like.

Since ωij with short cuts is also periodic we conclude that it is constant at infinity. Now

the relation (4.23) can be employed to determine the asymptotics of µab, since Qab|ij and

its asymptotics can easily be expressed through Q-functions with known asymptotics, e.g.

Qa|i. The asymptotics of µab which we find in this way are

µ12 = −µ34 ∝ u∆−J1 , µ12 = −µ34 ∝ u∆+J1 (4.38)

µ13 = µ24 ∝ u∆−J2−1, µ13 = µ24 ∝ u∆+J2+1 (4.39)

µ14 = −µ23 ∝ u∆+J3 , µ14 = −µ23 ∝ u∆−J3 (4.40)

All the aforesaid holds for physical operators, which require, in particular integer

quantum number. However, sometimes it seems useful to explore analytical continuation

of operators into the unphysical domain, to real or even complex quantum numbers. In

this case asymptotics of µab and ωij have to be modified. This is discussed in the parts of

this thesis in which we work with non-integer quantum numbers, such as chapters 5,8,9.

4.4 Left-right symmetric states

A particularly important for us class of solutions are those invariant under the left-right

(LR) symmetry, exchange of left and right su(2|2) subalgebras of psu(2, 2|4). In terms of

the global charges this is equivalent to S2 = 0, J3 = 0, i.e. two non-trivial charges left in

AdS and two on the sphere.

For LR-symmetric solutions Q-functions with upper and lower indices are related by

χij =


0 0 0 −1

0 0 1 0

0 −1 0 0

1 0 0 0

 , (4.41)
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for example,

Qi = χijQj , Pa = χabPb. (4.42)

Hence equation (4.17) in the symmetric case takes the form

P̃1 = −P3µ12 + P2µ13 −P1µ14 (4.43)

P̃2 = −P4µ12 + P2µ14 −P1µ24 (4.44)

P̃3 = −P4µ13 + P3µ14 −P1µ34 (4.45)

P̃4 = −P4µ14 + P3µ24 −P2µ34 . (4.46)

It is also easy to show that in this sector matrices µab and ωij satisfy

µ14 = µ23, ω14 = ω23 (4.47)

in addition to antisymmetry.

Such LR-symmetric solutions correspond, in particular, to twist-L operators tr (DSZL)

discussed in section 2.4. 2

For such operators only two quantum numbers S1 ≡ S and J1 ≡ L are non-zero and

the formulas for asymptotics of the Q-function from section 4.3 simplify. In particular,

the asymptotics of Pa and Qi are now

Pa ∼ (A1u
−L/2, A2u

−L/2−1, A3u
L/2, A4u

L/2−1) (4.48)

Qa ∼ (B1u
∆−S

2 , B2u
∆+S−2

2 , B3u
−∆+S

2 , B4u
−∆+S−2

2 ), (4.49)

where the leading coefficients Aa, Bi are related to global charges as

A1A4 =

(
(L+ S − 2)2 −∆2

) (
(L− S)2 −∆2

)
16iL(L− 1)

(4.50)

A2A3 =

(
(L− S + 2)2 −∆2

) (
(L+ S)2 −∆2

)
16iL(L+ 1)

. (4.51)

and

B1B4 = i

(
(∆− S + 2)2 − L2

) (
(∆− S)2 − L2

)
16∆(S − 1)(∆− S + 1)

(4.52)

B2B3 = i

(
(∆ + S − 2)2 − L2

) (
(∆ + S)2 − L2

)
16∆(S − 1)(∆ + S − 1)

. (4.53)

The general case (4.38) of the asymptotics of µab reduces to

(µ12, µ13, µ14, µ24, µ34) ∼
(
u∆−L, u∆+1, u∆, u∆−1, u∆+L

)
(4.54)

2Sometimes in the thesis we will use J instead of L to denote the twist.
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H-transformation in sl(2) sector It will be useful to work out the particular form

H-transformations (4.14) take in the sl(2) sector. In addition to preserving the equations

of Q-system we will require that the asymptotics (4.48), (4.49), (4.54) stay invariant.

Consider a transformation of the type (4.14) which leaves Qi invariant and transforms Pa

as P′a = Ra
bPb with a non-degenerate constant matrix R. In order to preserve the system

(4.20), µab should at the same time be transformed as

µ′ = −RµχR−1χ. (4.55)

Such a transformation also preserves the form of (4.18) if

RTχRχ = −1 , (4.56)

which also automatically ensures antisymmetry of µab, Pf µ = 1, and (4.47). However, a

general transformation of this form will spoil the asymptotics of Pa. These asymptotics

are ordered as |P2| < |P1| < |P4| < |P3|, which implies that the matrix R must have the

following structure3

R =


∗ ∗ 0 0

0 ∗ 0 0

∗ ∗ ∗ ∗

∗ ∗ 0 ∗

 . (4.57)

The general form of R which satisfies (4.56) and does not spoil the asymptotics gener-

ates a 6-parametric transformation, which we will call a γ-transformation. The simplest

γ-transformation is the following rescaling:

P1 → αP1 , P2 → βP2 , P3 → 1/βP3 , P4 → 1/αP4 , (4.58)

µ12 → αβµ12 , µ13 →
α

β
µ13 , µ14 → µ14 , µ24 →

β

α
µ24 , µ34 →

1

αβ
µ34 , (4.59)

with α, β being constants.

In left-right symmetric situation it is possible to use H-transformations to bring Pa

and µab to definite parity (even or odd depending on the asymptotics). After that we are

left with parity-preserving transformations, which can be described as following: P1 and

P2 always have opposite parity (as one can see from (4.48)) and thus should not mix under

such transformations; the same is true about P3 and P4. Thus, depending on parity of J

the parity-preserving γ-transformations are either

P3 → P3 + γ3P2, P4 → P4 + γ2P1, (4.60)

µ13 → µ13 + γ3µ12, µ24 → µ24 − γ2µ12, µ34 → µ34 + γ3µ24 − γ2µ13 − γ2γ3µ12

3This matrix would of course be lower triangular if we ordered Pa by their asymptotics.
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for odd J or

P3 → P3 + γ1P1, P4 → P4 − γ1P2, (4.61)

µ14 → µ14 − γ1µ12, µ34 → µ34 + 2γ1µ14 − γ2
1µ12 ,

for even J .

4.5 Large volume limit

One of the simplest non-trivial limits of QSC is the limit of large operator length. As

we know, in this limit the spectrum is described by Beisert-Eden-Staudacher Asymptotic

Bethe Ansatz with exponential precision. Here we will give an idea how the QSC presented

above gives rise to the ABA equations. In brief, in this limit it is possible to write a closed

system of equations for a certain subset of Q-functions. The Q-functions in this subset

are parametrized in terms of finite number of roots. We will end up with a system of

equations for these roots, which will be exactly BES ABA equations. Since our goal here

is to present the result rather than derivation, we will follow [8], sometimes modifying the

order of its logical flow for the sake of brevity.

To begin with, one needs to understand the scaling of different Q-functions as L→∞.

We assume that this can be deduced from their large u asymptotics (4.33), which contain

L. The behavoir of a Q-function in such a limit depends on how many of its indices are

1 or 2 and how many are 3 or 4. Thus it is convenient to introduce undotted indices

α, β, which can take values 1, 2 and dotted indices α̇, β̇, which take values 3, 4. We also

introduce a small parameter ε ∼ u−L/2. Then from (4.33) we deduce that

Pα ∼ Qα ∼ Pα̇ ∼ Qα̇ ∼ ε (4.62)

Pα ∼ Qα ∼ Pα̇ ∼ Qα̇ ∼ 1/ε (4.63)

Similar analysis for µab and ωij gives

µαβ ∼ 1, µαβ̇ ∼ ε
−2, µα̇β̇ ∼ ε

−4 (4.64)

ωij ∼ ωij ∼ 1 (4.65)

The Bethe ansatz equations describing the spectrum are not unique, and different

forms are related to each other through dualities [111, 112, 113]. The precise form we

will obtain is determined by choosing a path on the Hasse diagram. The path starts

with Q∅|∅ = 1 and, adding one bosonic or fermionic index at each step, ends up in the
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Q1234|1234 = Q∅|∅ = 1; of course, one should not forget that adding one lower index is

equivalent to eliminating one upper index and vice versa. We will be able to write down

a closed system of equations for the Q-functions on the path if they all will be large as

L → ∞. Guided by the rule (4.62) about dotted and undotted indices we make the

following (non-unique) choice:

Q∅|1, Q1|1, Q12|1, Q12|12 = Q34|34, Q34|4, Q4|4, Q4|∅ (4.66)

To parameterize these seven Q-functions we introduce seven types of roots

u1,k, k = 1, . . . ,K1

u2,k, k = 1, . . . ,K2

. . .

u7,k, k = 1, . . . ,K7

For each type we define a polynomial QA|I encoding all the roots of this type

Q∅|1 =

K1∏
i=1

(u− u1,i) (4.67)

Q1|1 =

K2∏
i=1

(u− u2,i) (4.68)

. . . (4.69)

Q4|∅ =

K7∏
i=1

(u− u7,i) (4.70)

It is also useful to introduce “Hilbert transform” BA|I for each QA|I , for example,

B∅|1 =

K1∏
i=1

√
g

x1,k

(
1

x
− x1,k

)
, (4.71)

and its analytical continuation under the cut RA|I = B̃A|I . It is easy to check that the two

satisfy RA|IBA|I = (−1)degQA|IQA|I . Roots of type four are also zeros of µ+
12; for them

and the corresponding polynomial we will omit the index “4” and additionally define

B(±) =

K4∏
i=1

√
g

x∓k

(
1

x
− x∓k

)
, x±k = x(uk ± i/2) (4.72)

As it is shown in [8] the QQ-relations and analyticity constraints result in the following

ansatz for the Q-functions with lower undotted indices

Pα ≡ Qα|∅ ∝ x−L/2Rα|∅Bα|12σ Qα|12 ∝ xL/2Bα|∅Rα|12σ
−1ff [2] (4.73)

Qα ≡ Q∅|α ∝ xL/2R∅|αB12|ασ
−1 f [2]

B(−)
Q12|α ∝ x−L/2B∅|αR12|ασff

[2]B(+) (4.74)

Qα|β ∝ Qα|βf
+, Q12|12 ∝ Q(f+)2 (4.75)

µ12 ∝ −
B(+)

B(−)
f̄ [−2]f [+2]Q−, ω12 ∝

B(−)

B(+)

f̄ [−2]

f [+2]
(4.76)
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Here

f ∝
∞∏
n=0

B
[2n]
(+)

B
[2n]
(−)

(4.77)

and σ is a function with one Zhukovsky cut on the main sheet which satisfies

σσ̃ ∝ f̄ [−2]f [2], σ(∞) = 1. (4.78)

An analogous ansatz representation holds for the Q-functions with upper dotted indices.

The ansatz above plus the QQ-relations can be further used to produce Bethe equations

constraining the roots u1,k, . . . , u7,k. These equations for the “lower indices” wing look

like

Q1|1
(
u1,k + i

2

)
B(−) (u1,k)

Q1|1
(
u1,k − i

2

)
B(+) (u1,k)

= 1 (4.79)

Q1|1
(
u3,k + i

2

)
R(−) (u3,k)

Q1|1
(
u1,k − i

2

)
R(+) (u3,k)

= 1 (4.80)

−
Q1|∅

(
u2,k − i

2

)
Q12|1

(
u2,k − i

2

)
Q1|∅

(
u2,k + i

2

)
Q12|1

(
u2,k + i

2

) =
Q1|1 (u2,k − i)
Q1|1 (u2,k + i)

(4.81)

and the opposite wing is obtained from this one in an obvious way. The Bethe equation

for the middle-node roots takes the form

Q[2]

Q[−2]

(
B−(−)

B+
(+)

)2 K4∏
k=1

σ−2
BES(u, uk)×

B−|1R
−
12|1B

∅|4−B34|4−

B+
|1R

+
12|1B

∅|4+B34|4+
=

(
x−

x+

)L
, u = uj , j = 1, . . .K4,

(4.82)

where σBES is the BES dressing phase [111, 114]. The conformal dimension of the operator,

or the energy of the corresponding spin-chain state enters, for example, the asymptotic

of µab (4.38). By calculating this asymptotic from the ansatz (4.73) one finds that it is

completely determined by the middle-node roots

∆ = J1 +
N∑
k=1

(
1 +

2gi

x+
k

− 2gi

x−k

)
(4.83)

The ansatz (4.73) describes the state in terms of numbers of roots of each kind. These

numbers are obviously related to the global charges through the asymptotics of the Q-
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function. Namely,

2K1 = ∆− L− S1 − S2 (4.84)

2K2 = ∆− L− J2 + J3 − S1 − S2 (4.85)

2K3 = ∆− L− S1 − S2 (4.86)

2K4 = ∆− L (4.87)

2K5 = ∆− L− S1 + S2 (4.88)

2K6 = ∆− L− J2 − J3 − S1 + S2 (4.89)

2K7 = ∆− L− S1 + S2 (4.90)

The set of equations (4.79), (4.82) and the relation to the global charges (4.84) repro-

duces exactly the BES ABA. This is a highly non-trivial verification of QSC equations,

especially taking into account emergence of the BES dressing phase, which was non a

priori present in the formulation of QSC. A similar set of equations corresponding to a

different path on the Hasse diagram can be derived in BFKL regime [15].

Part II

Applications and results

5 Small spin limit

In this chapter, based on our paper [9], we will apply the QSC to the calculation of the

twist operator in the sl(2) sector of N = 4 SYM . For this we will only use the part of

QSC called the Pµ-system, i.e. we will operate only with Pa and µab and use the names

QSC and Pµ-system interchangeably.

As described in section 4.4, twist operators of sl(2) sector can be written as 4

O = Tr
(
ZJ−1 DSZ

)
+ . . . (5.1)

Scaling dimension of such operator has the form

∆ = J + S + γ(g), (5.2)

where γ(g) is the anomalous dimension. Small spin limit is a near-BPS regime in which we

expect QSC to simplify considerably. The anomalous dimension γ(g) vanishes at S = 0;

4We will consider a two-cut configuration with a symmetric distribution of Bethe roots, thus for physical

states S is even.
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at small S it has an expansion

γ(g) = γ(1)(g)S + γ(2)(g)S2 +O(S3). (5.3)

The first term, γ(1)(g), is called the slope function. In the brilliant paper [115] it was found

exactly at any coupling

γ(1)(g) =
4πgIJ+1(4πg)

JIJ(4πg)
. (5.4)

The reason for the simplicity of this expression is that this quantity is protected from

finite-size wrapping corrections and thus the ABA prediction is exact. It is also not

sensitive to the dressing phase of the ABA, which contributes only starting from order S2.

The formula above was derived from ABA equations in two different ways [116, 117] and

further studied and generalized in [118, 119, 120, 121, 122].

Our key observation is that near S = 0 the QSC can be solved iteratively order by order

in the spin. In the next section we first solve the QSC in the leading order and reproduce

the slope function (5.4). Then in section 5.2 we explain the subtleties of working with non-

integer values of spin and in 5.3 compute the coefficient of the S2 term in the expansion,

i.e. the function γ(2)(g) which we call the curvature function. For values of twist J = 2, 3, 4

we obtain closed exact expressions for it in the form of a double integral. Unlike the slope

function, γ(2)(g) is affected by the dressing phase in the ABA and by wrapping corrections,

all of which are incorporated in QSC-system. We have checked our results against available

results in literature at weak and strong coupling, and found full agreement. We also made

new predictions from these expansions: in section 5.4 we perform weak-coupling expansion

of our result and in section 5.5 we use its strong coupling expansion to find the value of

a new term in the Konishi operator (i.e. Tr
(
D2Z2

)
) anomalous dimension at strong

coupling.

5.1 Leading order in S: Slope function

The description of QSC in the previous chapter was done for physical operators. Our goal

is to take a rather special limit when the number of covariant derivatives S goes to zero.

As we will see this requires some extension of the asymptotic requirement for µ functions.

In this section we will be guided by principles of naturalness and simplicity to deduce

these modifications which we will summarize in section 5.2. There we also give a concrete

prescription for analytical continuation in S, which we then use to derive the curvature
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function. 5

Consider first µab. Since ∆ = J +O(S), from (4.50), (4.51) it is easy to see that A1A4

and A2A3 are of order S as S → 0, so we can assume that the functions Pa are of order
√
S. This is a key simplification, because now (4.18) indicates that the discontinuities of

µab on the cut are small when S goes to zero. Thus at leading order in S all µab are just

periodic entire functions without cuts. On the other hand, the asymptotics of µab at large

u are power-like, as we know from (4.54). Thus the only possibility is that all µab are just

constants! However, we found that in this case there is only a trivial solution, i.e. Pa ≡ 0.

Obviously, this can be interpreted as QSC telling us that for physical states S must be

integer and thus cannot be arbitrarily small. Nevertheless, a sensible question would be

to define an analytical continuation of QSC from integer values of S.6

Thus we have to relax the requirement of power-like behavior at infinity. The first

possibility is to allow for e2πu asymptotics at u → +∞. We should, however, remember

about the constraints Pf µ = 1 and (4.47) which restrict our choice and the fact that we

can also use γ-symmetry.

What follows depends on the parity of J . Since solving QSC for even J is slightly

simpler, we will start with this case. 7

Let us show that by allowing µ24 to have exponential behavior and setting it to µ24 =

C sinh(2πu), with other µab being constant, we obtain the correct result. This choice is

dictated by our assumptions concerning the analytic continuation of µab to non-integer

values of S, and this point is discussed in detail in section 5.2. We will also see in that

section that by using the γ-transformation (described in at the end of section 4.4) and the

constraint

Pf µ = 1 (5.5)

we can set the constant C to 1 and also µ12 = 1, µ13 = 0, µ14 = −1, µ34 = 0 (see (5.48)).

5Another discussion of analytical continuation to non-integer quantum numbers happens in section 8.3

of this thesis, however there we focus more of Qi and ωij rather than on Pa and µab.
6Restricting the large positive S behavior one can achieve uniqueness of the continuation.
7For odd J extra branch points at infinity will appear in Pa due to the asymptotics (4.48)
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Having fixed all µ’s at leading order we get the following system of equations8 for Pa:

P̃1 = −P3 + P1, (5.6)

P̃2 = −P4 −P2 −P1 sinh(2πu), (5.7)

P̃3 = −P3, (5.8)

P̃4 = +P4 + P3 sinh(2πu). (5.9)

It follows from here that P̃a have the same analytic structure as Pa, i.e. only single short

cut on the main sheet! Hence all Pa can be represented as infinite Laurent series of the

type (8.1) in the Zhukovsky variable x(u), which rationalizes the Riemann surface with

two sheets and one cut. Equations (5.7) and (5.8) with the asymptotics (4.48) have a

unique solution P1 = εx−J/2 and P3 = ε
(
x−J/2 − x+J/2

)
, where ε is a constant yet to be

fixed; we expect it to be proportional to
√
S. Thus the equations (5.7) and (5.9) become

P̃2 + P2 = −P4 − εx−J/2 sinh(2πu) , (5.10)

P̃4 −P4 = ε(x−J/2 − x+J/2) sinh(2πu) . (5.11)

We will first solve the second equation. It is useful to introduce operations [f(x)]+ and

[f(x)]−, which take parts of Laurent series with positive and negative powers of x respec-

tively. Taking into account that

sinh(2πu) =
∞∑

n=−∞
I2n+1x

2n+1, (5.12)

where Ik ≡ Ik(4πg) is the modified Bessel function of the first kind, we can write sinh(2πu)

as

sinh(2πu) = sinh+ + sinh−, (5.13)

where explicitly

sinh+ = [sinh(2πu)]+ =

∞∑
n=1

I2n−1x
2n−1 (5.14)

sinh− = [sinh(2πu)]− =

∞∑
n=1

I2n−1x
−2n+1 . (5.15)

In this notation the general solution of equation (5.11) with asymptotics at infinity P4 ∼

uJ/2−1 can be written as

P4 = ε(xJ/2 − x−J/2) sinh−+QJ/2−1(u), (5.16)

8In this section we only consider the leading order of P’s at small S, so the equations involving them

are understood to hold at leading order in S. In section 5.3 we will study the next-to-leading order and

elaborate the notation for contributions of different orders.
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where QJ/2−1 is a polynomial of degree J/2− 1 in u. The polynomial QJ/2−1 can be fixed

from the equation (5.10) for P2. Indeed, from the asymptotics of P2 we see that the left

hand side of (5.10) does not have powers of x from −J/2 + 1 to J/2− 1. This fixes

QJ/2−1(x) = −ε
J/2∑
k=1

I2k−1

(
x
J
2
−2k+1 + x−

J
2

+2k−1
)
. (5.17)

Once QJ/2−1 is found, we set P2 to be the part of the right hand side of (5.10) with powers

of x less than −J/2, which gives

P2 = −εx+J/2
∞∑

n=J
2

+1

I2n−1x
1−2n. (5.18)

Thus (for even J) we have uniquely fixed all Pa with the only unknown parameter being

ε. The solution is summarized below:

µ12 = 1, µ13 = 0, µ14 = −1, µ24 = sinh(2πu), µ34 = 0, (5.19)

P1 = εx−J/2 (5.20)

P2 = −εx+J/2
∞∑

n=J/2+1

I2n−1x
1−2n (5.21)

P3 = ε
(
x−J/2 − x+J/2

)
(5.22)

P4 = ε
(
xJ/2 − x−J/2

)
sinh−−ε

J/2∑
n=1

I2n−1

(
x
J
2
−2n+1 + x−

J
2

+2n−1
)
. (5.23)

In the next section we fix the remaining parameter ε of the solution in terms of S and find

the energy, but before that let us briefly discuss the solution for odd J . As we mentioned

abov,e the main difference is that in this case the functions Pa have a branch point at

u = ∞, which is dictated by the asymptotics (4.48). In addition, the parity of µab is

different according to the asymptotics of these functions (4.54). The solution is still very

similar to the even J case, and we discuss it in detail in Appendix A.2. Let us present the

result here:

µ12 = 1, µ13 = 0, µ14 = 0, µ24 = cosh(2πu), µ34 = 1 (5.24)

P1 = εx−J/2, (5.25)

P2 = −εxJ/2
−J+1

2∑
k=−∞

I2kx
2k, (5.26)

P3 = −εxJ/2, (5.27)

P4 = εx−J/2 cosh−−εx−J/2
J−1

2∑
k=1

I2kx
2k − εI0x

−J/2. (5.28)

Note that now Pa include half-integer powers of x.
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Fixing the global charges of the solution. Finally, to fix our solution completely

we have to find the value of ε in terms of global charges and express the energy through

spin using (4.50) and (4.51). To this end we first extract the coefficients Aa of the leading

terms for all Pa (see the asymptotics (4.48)). From (5.20)-(5.23) or (5.25)-(5.28) we get

A1 = gJ/2ε, (5.29)

A2 = −gJ/2+1εIJ+1, (5.30)

A3 = −g−J/2ε, (5.31)

A4 = −g−J/2+1εIJ−1. (5.32)

Expanding (4.50), (4.51) at small S with ∆ = J + S + γ, where γ = O(S), we find at

linear order

γ = i(A1A4 −A2A3) (5.33)

S = i(A1A4 +A2A3) . (5.34)

Plugging in the coefficients (5.29)-(5.32) we find that

ε =

√
2πiS

JIJ(
√
λ)

(5.35)

and hence the anomalous dimension at leading order is

γ =

√
λIJ+1(

√
λ)

JIJ(
√
λ)

S +O(S2), (5.36)

which precisely coincides with the slope function of Basso [115].

While the above discussion concerned the ground state, i.e. the sl(2) sector operator

with the lowest anomalous dimension at given twist J , it can be generalized for higher

mode numbers. In the asymptotic Bethe ansatz for such operators we have two symmetric

cuts formed by Bethe roots, with corresponding mode numbers being ±n (for the ground

state n = 1). We found that in order to describe these operators within QSC one should

take µ24 = C sinh(2πnu) instead of µ24 = C sinh(2πu) (and for odd J we similarly use

µ24 = C cosh(2πnu) instead of µ24 = C cosh(2πu)). Then the solution is very similar to

the one above, and we find

γ =
n
√
λIJ+1(n

√
λ)

JIJ(n
√
λ)

S , (5.37)

which reproduced the result of [115] for non-trivial mode number n. In Appendix A.5

we also show how using QSC one can reproduce the slope function for a configuration of

Bethe roots with arbitrary mode numbers and filling fractions.

In summary, we have shown how QSC correctly computes the energy at the linear

order in S. In section 5.3 we will compute the next, S2 term in the anomalous dimension.
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5.2 Prescription for analytical continuation

The LO solution of QSC for small S which we found in the previous section contains µab

with exponential asymptotics. In order to proceed to the next order we need to deduce

the general prescription for the asymptotics of µab for non-integer S. To this end we first

study the possible asymptotics of µab for given Pa in more detail. One can combine (4.18)

with (4.17) and take into account that

µ+
ab = µ̃ab (5.38)

to write a finite difference equation on µab:

µab(u+ i) = µab(u)− µbc(u)χcdPdPa + µac(u)χcdPdPb. (5.39)

The matrix µab has 5 linear independent components. Thus the system above can be

recast as a 5th order finite-difference equation with 5 independent solutions which we

denote µab,A, A = 1, . . . , 5. Given the asymptotics of Pa (4.48) and (4.50), (4.51) there

are exactly 5 different asymptotics a solution of (5.39) could have as discussed in [7, 8]. We

denote these 5 independent solutions of (5.39) as µ12,A where A = 1, . . . , 5 and summarize

their leading asymptotics at large u > 0 in the table below

A = 1 2 3 4 5

µ12,A ∼ u∆−J C1,2u
−S+1−J C1,3u

−J C1,4u
S−1−J C1,5u

−∆−J

µ13,A ∼ C2,1u
∆+1 C2,2u

−S+2 C2,3u
+1 uS C2,5u

−∆+1

µ14,A ∼ C3,1u
∆ C3,2u

−S+1 1 C3,4u
S−1 C3,5u

−∆

µ24,A ∼ C4,1u
∆−1 u−S C4,3u

−1 C4,4u
S−2 C4,5u

−∆−1

µ34,A ∼ C5,1u
∆+J C5,2u

−S+1+J C5,3u
+J C5,4u

S−1+J u−∆+J

(5.40)

where we fix the normalization of our solutions so that some coefficients are set to 19. As

it was pointed out in [7] the asymptotics for different A′s are obtained by replacing ∆ in

(4.54) by ±∆,±(S−1) and 0. We label these solutions so that in the small S regime these

asymptotics are ordered ∆ > 1− S > 0 > S − 1 > −∆.

Obviously, any combination of solutions of (5.39) with i-periodic coefficients still re-

mains a solution. The actual solution µab is thus a linear combination of the partial

solutions µab,A with some constant or periodic coefficients. The precise combination is

additionally constrained by the analyticity condition (5.38) which is satisfied by a general

solution of (5.39).

9The coefficients Ca,A are some rational functions of S,∆, J and A1, A2. In the small S limit all

Ca,A → 0 in our normalization.
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The prescription for analytical continuation in S which we propose here is based on the

large u asymptotics of these periodic coefficients. As we discussed in the previous section

the assumption that all these coefficients are asymptotically constant is too constraining

already at the leading order in S, and we must assume that at least some of these coeffi-

cients grow exponentially as e2πu. To get some extra insight into the asymptotic behavior

of these coefficients it is very instructive to go to the weak coupling regime.

It is known that at one loop the equation (5.39) is reduced to a second order equation.

When written as a finite difference equation for µ12 it coincides exactly with the Baxter

equation for the non-compact sl(2) spin chain. For J = 2 it reads(
2u2 − S2 − S − 1

2

)
Q(u) = (u+ i

2)2Q(u+ i) + (u− i
2)2Q(u− i) (5.41)

where Q(u) = µ12(u+ i/2). This equation is already very well studied and all its solutions

are known explicitly [123]. Th reader can easily see that the asymptotics of two solutions

at infinity are uS and 1/uS+1. It is also known that at one loop and for any integer S (5.41)

has a polynomial solution which gives the energy as ∆ = J+S+ 2ig2∂u log Q(u−i/2)
Q(u−i/2)

∣∣∣
u=0

=

S + J + 8g2HS . At the same time, for non-integer S there are of course no polynomial

solutions, and according to [124] and [125] the solution which produces the energy S +

J + 8g2HS cannot even have power-like asymptotics. Instead the correct large u behavior

must be:

Q(u) ∼
(
uS + . . .

)
+ (A+Be2πu)

(
1

uS+1
+ . . .

)
, u→ +∞ . (5.42)

Furthermore, there is a unique entire Q-function with the above asymptotics. For S >

−1/2 we can reformulate the prescription by saying that the correct solution consists of a

part with power-like asymptotics, which is linear combination of possible solutions, plus

the smallest (at infinity) solution reinforced with an exponent.

In this form we can try to apply this prescription to our case. Notice that for g → 0

we have µ12,1 ∼ uS and µ12,2 ∼ u−S−1, which tells us that at least the second solution

must be allowed to have a non-constant periodic coefficient in the asymptotics. We also

assume that the coefficient in front of µab,3 tends to a constant10. This extra condition

does not follow from the one-loop analysis we deduced from our solution. We will show

how this prescription produces the correct known result for the leading order in S. From

our analysis it is hard to make a definite statement about the behavior of the periodic

coefficients in front of µ12,4 and µ12,5, but due to the expected ∆→ −∆ symmetry, which

10It could be hard or even impossible to separate µab,3 from µab,2 in a well defined way. In these

cases µab,2 is defined modulo µab,3 and other subleading solutions. Our prescription then means that the

exponential part of the coefficient in front of µab,3 is proportional to that of in front of µab,2.
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interchanges µ12,5 and µ12,1, one may expect that the coefficient of µ12,5 should also go to

a constant. All said above can be summarized by the formula

µab(u) =
5∑

A=1

cAµab,A(u) +
∑

A=2,4,5

pA(u)µab,A(u) (5.43)

where cA are constants and pA(u) are some linear combinations of e±2πu.11

Prescription at small S. In the small S limit the functions Pa are also small and the

equation (5.39) simply tells us that µab(u+ i) = µab(u) which implies that in the leading

order in S the five independent solutions are just constants. The only solution giving a

contribution to µ12 in the leading order in this limit is µ12,1 as all the other solutions could

only produce negative powers. So we start from µab = Cab+Dab sinh(2πu)+Eab cosh(2πu)

for some constants Cab, Dab, Eab such that D12 = E12 = 0. Thus we have five different

C’s, 4 different D’s and 4 different E’s. We notice that this general form of µab can be

significantly simplified. First, using the Pfaffian constraint (5.5) and the γ-transformation

(4.55) it is possible to show that any generic µab of this form can be reduced to one

belonging to the following two-parametric family inside the original 13-parametric space:

µ12 = 1, µ14 = a2 sinh 2πu+
a

2
cosh 2πu , (5.44)

µ24 = b sinh 2πu+ sinh 2πu , µ34 =
a2

4

(1− 2ab)2

b2 − 1
+ 1 , (5.45)

where µ13 is found from the Pfaffian constraint. Second, recall that according to our

prescription the 1st and 3rd solutions (columns in the table (5.40)) cannot contain expo-

nential terms. Consider µ14 and µ24, we again see that the 4th and 5th solutions could

only contain negative powers of u and thus only the 2nd solution can contribute to the

parts of µ14 and µ24 that are non-decaying at infinity. This means that these components

can be represented in the following form

µ14 = (a1 sinh 2πu+ a2 cosh 2πu)µ14,2(u) +O
(
e2πu/u

)
, (5.46)

µ24 = (a1 sinh 2πu+ a2 cosh 2πu)µ24,2(u) +O
(
e2πu/u

)
, (5.47)

for u→ +∞. The O
(
e2πu/u

)
terms contain contributions from all of the solutions except

for the 2nd. One can see that (5.45) can be of this form only in two cases: if a = 0 or if

a = 1
2b . Both of these cases can be brought to the form

µ12 = 1, µ13 = 0, µ14 = 0, µ24 = d1 sinh 2πu+ d2 cosh 2πu, µ34 = 1 (5.48)

11Some of the coefficients of pA should be zero which can be seen from the constraint (5.5).
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by a suitable γ-transformation (5.45). However, we found that there is an additional

constraint which follows from compatibility of µab with the decaying asymptotics of P2.

As we show in appendix A.5 for even J one must set d2 = 0. For odd J we must set

d1 = 0 as a compatibility requirement. This justifies the choice of µab used in the previous

section. In the next section we will show how the same prescription can be applied at the

next order in S and leads to nontrivial results which we subjected to intensive tests later

in the text.

5.3 Next order in S

In this section we use QSC to compute the S2 correction to the anomalous dimension in

the expansion (5.3), which we call the curvature function γ(2)(g). We thoroughly discuss

the case J = 2 and then describe the modifications of the solution for the cases J = 3 and

J = 4, more details on which can be found in appendix A.3.

5.3.1 Iterative procedure for the small S expansion

For convenience let us reproduce here the leading order solution of QSC for J = 2 (see

(5.19)-(5.23)):

P
(0)
1 = ε

1

x
, P

(0)
2 = +εI1 − εx[sinh(2πu)]− , (5.49)

P
(0)
3 = ε

(
1

x
− x
)

, P
(0)
4 = −2εI1 − ε

(
1

x
− x
)

[sinh(2πu)]−. (5.50)

Here ε is a small parameter, proportional to
√
S (see (5.35)), and by P

(0)

a we denote the

Pa functions at leading order in ε.

The key observation is that QSC can be solved iteratively order by order in ε. Indeed,

let us write Pa and µab as expansions in this small parameter:

Pa = P(0)
a + P(1)

a + P(2)
a + . . . (5.51)

µab = µ
(0)
ab + µ

(1)
ab + µ

(2)
ab + . . . . (5.52)

where P
(0)
a = O(ε), P

(1)
a = O(ε3), P

(2)
a = O(ε5), . . . , and µ

(0)
ab = O(ε0), µ

(1)
ab =

O(ε2), µ
(2)
ab = O(ε4), etc. 12 The procedure goes like this: since the leading order Pa

are of order ε, equation (4.18) implies that the discontinuity of µab on the cut is of order

ε2; thus to find µab in the next to leading order (NLO) we only need the functions Pa at

12This structure of the expansion is dictated by the equations (4.17) and (4.18), as we will soon see.
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leading order. After that we can find the NLO correction to Pa from equations (4.17).

This will be done below, and having thus the full solution of the Pµ-system at NLO we

will find the energy at order S2.

Correcting µab. . . In this subsection we find the NLO corrections µ
(1)
ab to µab. As

follows from (4.18) and (5.38), they should satisfy the equation

µ
(1)
ab (u+ i)− µ(1)

ab (u) = P(0)
a P̃

(0)
b −P

(0)
b P̃(0)

a , (5.53)

in which the right hand is known explicitly. In this thesis we will often encounter these

kinds of equations, so it is convenient to define an operator for solving them. More

precisely, suppose

f(u+ i)− f(u) = h(u). (5.54)

and functions f(u) and h(u) have one cut in u between −2g and 2g and no poles. Such

functions can be represented as infinite Laurent series (8.1) in the Zhukovsky variable

x(u), and we additionally restrict ourselves to the case where for h(u) this expansion does

not have a constant term13.

As always with inhomogeneous equations, the general solution of (5.54) has a form of

a particular solution plus an arbitrary i-periodic function — a zero mode of the equation

above. First we will describe the construction of the particular solution and later deal with

zero modes. The linear operator which gives the particular solution of (5.54) described

below will be denoted as Σ.

Notice that given the explicit form (5.50) of P
(0)
a , the right hand side of (5.53) can be

represented in a form

α(x) sinh(2πu) + β(x), (5.55)

where α(x), β(x) are power series in x growing at infinity not faster than polynomially.

We first define action of Σ on expressions of this form:

Σ · [α(x) sinh(2πu) + β(x)] ≡ sinh(2πu)Σ · α(x) + Σ · β(x). (5.56)

We also define Σ · x−n = Γ′ · x−n for n > 0, where the integral operator Γ′ defined as

(
Γ′ · h

)
(u) ≡

∮ 2g

−2g

dv

4πi
∂u log

Γ[i(u− v) + 1]

Γ[−i(u− v)]
h(v). (5.57)

13It is easy to see that there is indeed no constant term in the right hand side of (5.53), as it would

cancel in any expression of the form F (u)− F̃ (u).
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This requirement is consistent because of the following relation 14

(
Γ′ · h

)
(u+ i)−

(
Γ′ · h

)
(u) = − 1

2πi

∮ 2g

−2g

h(v)

u− v
dv = h−(u)− h̃+(u). (5.58)

What is left is to define Σ on positive powers of x. We do it by requiring

Σ · [xa + 1/xa] ≡ p′a(u) (5.59)

where p′a(u) is a polynomial in u of degree a+ 1, which is a solution of

p′a(u+ i)− p′a(u) =
1

2
(xa + 1/xa) (5.60)

and satisfies the following additional properties: p′a(0) = 0 for odd a and p′a(i/2) = 0 for

even a. One can check that this definition is consistent and defines of p′a(u) uniquely. The

explicit form of the first few p′a(u), which we call periodized Chebyshev polynomials, can

be found in appendix A.1.

From the aforesaid one can see that the class of functions (5.55) is closed under the

action of Σ — what is important for us is that no exponential functions other than

sinh(2πu) appear in the result.

A good illustration of how the definitions above work would be the following two simple

examples. Suppose one wants to calculate Σ ·
(
x− 1

x

)
, then it is convenient to split the

argument of Σ in the following way:

Σ ·
(
x− 1

x

)
= Σ ·

(
x+

1

x

)
− 2Σ · 1

x
. (5.61)

In the first term we recognize p′1(u) = iu(u−i)
2g , whereas in the second the argument of

Σ is decaying at infinity, thus Σ is equivalent to Γ′ in this context. Notice also that

Γ′ · 1
x = −Γ′ · x. All together, we get

Σ ·
(
x− 1

x

)
= Σ ·

(
x+

1

x

)
− 2Σ · 1

x
= 2p′1(u) + 2Γ′ · x (5.62)

In a similar way, in order to calculate Σ · sinh−− sinh+

2 , one can write sinh−− sinh+

2 =

sinh−−1
2 sinh(2πu). Notice that since sinh− decays at infinity,

Σ · sinh− = Γ′ · sinh− . (5.63)

Also, since i-periodic functions can be factored out of Σ,

Σ · sinh(2πu) = sinh(2πu)Σ · 1 = sinh(2πu)p′0(u)/2. (5.64)

14We remind that f+ and f− stand for the part of the Laurent expansion with, respectively, positive

and negative powers of x, while f̃ is the analytic continuation around the branch point at u = 2g (which

amounts to replacing x→ 1
x

)
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Finally,

Σ · sinh−− sinh+

2
= Γ′ · (sinh−)− 1

2
sinh(2πu)p′0(u). (5.65)

As an example we present the particular solution for two components of µab (below we

will argue that π12 and π13 can be chosen to be zero, see (5.75))

µ
(1)
13 − π13 = Σ ·

(
P1P̃3 −P3P̃1

)
= ε2Σ ·

(
x2 − 1

x2

)
= ε2

(
Γ′ · x2 + p′2(u)

)
,(5.66)

µ
(1)
12 − π12 = Σ ·

(
P1P̃2 −P2P̃1

)
=

= −ε2
[
2I1Γ′ · x− sinh(2πu) Γ′ · x2 − Γ′ ·

(
sinh−

(
x2 +

1

x2

))]
. (5.67)

Now let us apply Σ defined above to (5.53), writing that its general solution is

µ
(1)
ab = Σ · (P(0)

a P̃
(0)
b −P

(0)
b P̃(0)

a ) + πab, (5.68)

where the zero mode πab is an arbitrary i-periodic entire function, which can be written

similarly to the leading order as c1,ab cosh 2πu+ c2,ab sinh 2πu+ c3,ab. Again, many of the

coefficients ci,ab can be set to zero. First, the prescription from section 5.2 implies that

the non-vanishing at infinity part of coefficients of sinh(2πu) and cosh(2πu) in µ12 is zero.

As one can see from the explicit form (5.67) of the particular solution which we choose for

µ12, it does not contain cosh(2πu) and the coefficient of sinh(2πu) is decaying at infinity.

So in order to satisfy the prescription, we have to set c1,12 and c2,12 to zero. Second,

since the coefficients cn,ab are of order S, we can remove some of them by making an

infinitesimal γ-transformation, i.e. with R = 1 +O(S) (see equation (4.55)). Further, the

Pfaffian constraint (5.5) imposes 5 equations on the remaining coefficients, which leaves

the following 2-parametric family of zero modes

π12 = 0, π13 = 0, π14 =
1

2
c1,34 cosh 2πu, (5.69)

π24 = c1,24 cosh 2πu, π34 = c1,34 cosh 2πu. (5.70)

Let us now look closer at the exponential part of µ14 and µ24. Combining the leading

order (5.19) and the perturbation (5.68) and taking into account the fact that operator Σ

does not produce terms proportional to cosh 2πu, we obtain

µ14 =
1

2
c1,34 cosh 2πu+O(ε) sinh 2πu+O(ε2) + . . . , (5.71)

µ24 =
1

2
c1,24 cosh 2πu+ (1 +O(ε)) sinh 2πu+O(ε2) + . . . , (5.72)

where dots stand for powers-like terms or exponential terms suppressed by powers of u.

As we remember from section 5.2, only the 2nd solution of the 5th order Baxter

equation (5.39) can contribute to the exponential part of µ14 and µ24, which means that



5.3 Next order in S 64

µ14 and µ24 are proportional to the same linear combination of sinh 2πu and cosh 2πu.

From the second equation one can see that this linear combination can be normalized to

be 1
2c1,24 cosh 2πu+ (1 +O(ε)) sinh 2πu. Then

µ14 = C

(
1

2
c1,24 cosh 2πu+ (1 +O(ε)) sinh 2πu

)
, (5.73)

where C is some constant, which is of order O(ε), because the coefficient of sinh 2πu

in the first equation is O(ε). Taking into account that c1,24 is O(ε) itself, we find that

c1,34 = O(ε2), i.e. it does not contribute at the order which we are considering. So the

final form of the zero mode in (5.68) is

π12 = 0, π13 = 0, π14 = 0, (5.74)

π24 = c1,24 cosh 2πu, π34 = 0. (5.75)

In this way, using the particular solution given by Σ and the form of zero modes (5.75)

we have computed all the functions µ
(1)
ab . The details and the results of the calculation can

be found in appendix A.3.

Correcting Pa. . . In the previous section we found the NLO part of µab. Now, accord-

ing to the iterative procedure described in section 5.3.1, we can use it to write a closed

system of equations for P
(1)
a . Indeed, expanding the system (4.46) to NLO we get

P̃
(1)
1 −P

(1)
1 = −P

(1)
3 + r1, (5.76)

P̃
(1)
2 + P

(1)
2 = −P

(1)
4 −P

(1)
1 sinh(2πu) + r2, (5.77)

P̃
(1)
3 + P

(1)
3 = r3, (5.78)

P̃
(1)
4 −P

(1)
4 = P

(1)
3 sinh(2πu) + r4, (5.79)

where the free terms are given by

ra = −µ(1)
ab χ

bcP(0)
c . (5.80)

Notice that ra does not change if we add a matrix proportional to P
(0)
a P̃

(0)
b −P

(0)
b P̃

(0)
a to

µ
(1)
ab , due to the relations

Paχ
abPb = 0, Paχ

abP̃b = 0, (5.81)

which follow from the Pµ-system equations. In particular we can use this property to

replace µ
(1)
ab in (5.80) by µ

(1)
ab + 1

2

(
P

(0)
a P̃

(0)
b −P

(0)
b P̃

(0)
a

)
. This will be convenient for us,

since in expressions for µ
(1)
ab in terms of pa and Γ (see (5.66), (5.67) and appendix A.3) this

change amounts to simply replacing Γ′ by a convolution with a more symmetric kernel:

Γ′ → Γ, (5.82)
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(Γ · h) (u) ≡
∮ 2g

−2g

dv

4πi
∂u log

Γ[i(u− v) + 1]

Γ[−i(u− v) + 1]
h(v), (5.83)

while at the same time replacing

p′a(u)→ pa(u), (5.84)

pa(u) = p′a(u) +
1

2

(
xa(u) + x−a(u)

)
. (5.85)

Having made this comment, we will now develop tools for solving the equations (5.76)

- (5.79). Notice first that if we solve them in the order (5.78), (5.76), (5.79), (5.77),

substituting into each subsequent equation the solution of all the previous, then at each

step the problem we have to solve has a form

f̃ + f = h or f̃ − f = h , (5.86)

where h is known, f is unknown and both the right hand side and the left hand side are

power series in x. It is obvious that equations (5.86) have solutions only for h such that

h = h̃ and h = −h̃ respectively. On the class of such h a particular solution for f can be

written as

f = [h]− + [h]0/2 ≡ H · h ⇒ f̃ + f = h (5.87)

and

f = [h]− ≡ K · h ⇒ f̃ − f = h, (5.88)

where [h]0 is the constant part of Laurent expansion of h (it does not appear in the second

equation, because h such that h = −h̃ does not have a constant part). The operators K

and H introduced here can be also defined by their integral kernels

H(u, v) = − 1

4πi

√
u− 2g

√
u+ 2g√

v − 2g
√
v + 2g

1

u− v
dv, (5.89)

K(u, v) = +
1

4πi

1

u− v
dv. (5.90)

which are equivalent to (5.87),(5.88) of the classes of h such that h = h̃ and h = −h̃

respectively15. The particular solution f = K · h of the equation f̃ + f = h is unique in

the class of functions f decaying at infinity, and the solution f = H · h of f̃ − f = h is

unique for non-growing f . In all other cases the general solution will include zero modes,

which, in our case are fixed by asymptotics of Pa.

15We denote e.g. K · h =
∮ 2g

−2g
K(u, v)h(v)dv where the integral is around the branch cut between −2g

and 2g.
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Now it is easy to write the explicit solution of the equations (5.76)-(5.79):

P
(1)
3 = H · r3, (5.91)

P
(1)
1 =

1

2
P

(1)
3 +K ·

(
r1 −

1

2
r3

)
, (5.92)

P
(1)
4 = K ·

(
−1

2

(
P̃

(1)
3 −P

(1)
3

)
sinh(2πu) +

2r4 + r3 sinh(2πu)

2

)
− 2δ, (5.93)

P
(1)
2 = H ·

(
−1

2

(
P

(1)
4 + sinh(2πu)P

(1)
1 + P̃

(1)
4 + sinh(2πu)P̃

(1)
1

)
+ (5.94)

+
r4 + sinh(2πu)r1 + 2r2

2

)
+ δ,

where δ is a constant fixed uniquely by requiring O(1/u2) asymptotics for P2. This asymp-

totic also sets the last coefficient c1,24 left in π12 to zero. Thus in the class of functions

with asymptotics (4.48) the solution for µab and Pa is unique up to a γ-transformation.

5.3.2 Result for J = 2

In order to obtain the result for the anomalous dimension, we again use the formulas (4.50),

(4.51) which connect the leading coefficients of Pa with ∆, J and S. After plugging in

Ai which we find from our solution, we obtain the result for the S2 correction to the

anomalous dimension:

γ
(2)
J=2 =

π

g2(I1 − I3)3

∮
dux
2πi

∮
duy
2πi

[
8I2

1 (I1 + I3)
(
x3 −

(
x2 + 1

)
y
)

(x3 − x) y2

+
8shx−shy−

(
x2y2 − 1

) (
I1(x4y2 + 1)− I3x

2(y2 + 1)
)

x2 (x2 − 1) y2

−
4(shy−)2x2

(
y4 − 1

) (
I1(2x2 − 1)− I3

)
(x2 − 1) y2

+
8I2

1 shy−x
(
2
(
x3 − x

) (
y3 + y

)
− 2x2

(
y4 + y2 + 1

)
+ y4 + 4y2 + 1

)
(x2 − 1) y2

−
8(I1 − I3)I1shy−x(x− y)(xy − 1)

(x2 − 1) y

−
4(I1 − I3)(shx−)2

(
x2 + 1

)
y2

(x2 − 1)

]
1

4πi
∂u log

Γ(iux − iuy + 1)

Γ(1− iux + iuy)
. (5.95)

Here the integration contour goes around the branch cut at (−2g, 2g). We also denote

shx− = sinh−(x), shy− = sinh−(y) (recall that sinh− was defined in (5.15)). This is our

final result for the curvature function at any coupling.

It is interesting to note that our result contains the combination log
Γ(iux−iuy+1)
Γ(1−iux+iuy) which

plays an essential role in the construction of the BES dressing phase. We will use this

identification in section 5.5.3 to compute the integral in (5.95) numerically with high

precision.
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In the next subsections we will describe generalizations of the J = 2 result to operators

with J = 3 and J = 4.

5.3.3 Results for higher J

Solving the Pµ-system for J = 3 is similar to the J = 2 case described above, except

for several technical complications, which we will describe here, leaving the details for

appendix A.3. As in the previous section, the starting point is the LO solution of the Pµ

system, which for J = 3 reads

P1 = εx−3/2, P3 = −εx3/2, (5.96)

P2 = −εx3/2 cosh−+εx−1/2I2, (5.97)

P4 = −εx1/2I2 − εx−3/2I0 − εx−3/2 cosh−, (5.98)

µ12 = 1, µ13 = 0, µ14 = 0, µ24 = cosh(2πu), µ34 = 1 . (5.99)

The first step is to construct µ
(1)
ab from its discontinuity given by the equation (5.53). The

full solution consists of a particular solution and a general solution of the corresponding

homogeneous equation, i.e. zero mode πab. In our case the zero mode can be an i-periodic

function, i.e. a linear combination of sinh(2πu), cosh(2πu) and constants. As in the case

of J = 2, we use a combination of the Pfaffian constraint, prescription from section 5.2

and a γ-transformation to reduce all the parameters of the zero mode to just one, sitting

in µ24:

π12 = 0, π13 = 0, π14 = 0, π24 = c24,2 sinh (2πu) , π34 = 0. (5.100)

As in the previous section, the next step is to find P
(1)
a from the Pµ system expanded

to the first order, namely from

P̃
(1)
1 + P

(1)
3 = r1, (5.101)

P̃
(1)
2 + P

(1)
4 + P

(1)
1 cosh(2πu) = r2, (5.102)

P̃
(1)
3 + P

(1)
1 = r3, (5.103)

P̃
(1)
4 + P

(1)
2 −P

(1)
3 cosh(2πu) = r4, (5.104)

where ra are defined by (5.80) and for J = 3 are given explicitly in appendix A.3. In

attempting to solve this system, however, we encounter another technical complication.

As one can see from (5.96)-(5.98), the LO solution contains half-integer powers of J ,

meaning that the Pa now have an extra branch point at infinity. However, the operations

H and K defined by (5.90) work only for functions which have Laurent expansion in integer



5.3 Next order in S 68

powers of x. In order to solve equations of the type (5.53) on the class of functions which

allow Laurent-like expansion in x with only half-integer powers x, we introduce operations

H∗,K∗:

H∗ · f ≡ x+ 1√
x
H ·

√
x

x+ 1
f, (5.105)

K∗ · f ≡ x+ 1√
x
K ·

√
x

x+ 1
f. (5.106)

In terms of these operations the solution of the system (5.101)-(5.104) is

P
(1)
1 =

1

2
(H∗(r1 + r3) +K∗(r1 − r3)) + Pzm

1 , (5.107)

P
(1)
3 =

1

2
(H∗(r1 + r3)−K∗(r1 − r3)) + Pzm

2 , (5.108)

P
(1)
2 =

1

2
(H∗(r2 + r4) +K∗(r2 − r4)−

− H∗ (cosh(2πu)K∗(r1 − r3))−K∗ (cosh(2πu)H∗(r1 + r3))) + Pzm
3 , (5.109)

P
(1)
4 =

1

2
(H∗(r2 + r4)−K∗(r2 − r4)−

− H∗ (cosh(2πu)K∗(r1 − r3)) +K∗ (cosh(2πu)H∗(r1 + r3))) + Pzm
4 , (5.110)

where Pzm
a is a solution of the system (5.101)-(5.104) with right hand side set to zero, whose

explicit form Pzm
a is given in Appendix A.3 (see (A.49)-(A.50)) and which is parametrized

by four constants L1, L2, L3, L4, e.g.

Pzm
1 = L1x

−1/2 + L3x
1/2. (5.111)

These constants are fixed by requiring correct asymptotics of Pa, which also fixes the

parameter c24,2 in the zero mode (5.100) of µab
16. Indeed, a priori P2 and P1 have wrong

asymptotics. Imposing a constraint that P2 decays as u−5/2 and P1 decays as u−3/2

produces five equations, which fix all the parameters uniquely.

Skipping the details of the intermediate calculations, we present the final result for the

16Actually in this way c24,2 is fixed to be zero.
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anomalous dimension:

γ
(2)
J=3 =

∮
dux
2πi

∮
duy
2πi

i
1

g2(I2 − I4)3

[
2
(
x6 − 1

)
y(chy−)2(I2 − I4)

x3 (y2 − 1)

−
4chx−chy−

(
x3y3 − 1

) (
I2x

5y3 + I2 − I4x2
(
xy3 + 1

))
x3 (x2 − 1) y3

+
(y2 − 1)(chy−)2I2

(
(x8 + 1)

(
2y4 + 3y2 + 2

)
− (x6 + x2)

(
y2 + 1

)2)
x3 (x2 − 1) y3

−
(y2 − 1)(chy−)2I4

(
(x8 + 1)y2 + (x6 + x2)

(
y4 + 1

))
x3 (x2 − 1) y3

−
4I2chy−(x− y)(xy − 1)

(
I2
((
x6 + 1

) (
y3 + y

)
+
(
x5 + x

) (
y4 + y2 + 1

)
− x3

(
y4 + 1

))
+ I4x

3y2
)

x3 (x2 − 1) y3

−
I2
2 (y2 − 1)(x− y)(xy − 1)

(
I2
((
x6 + x4 + x2 + 1

)
y + 2x3

(
y2 + 1

))
+ I4

(
x5 + x

) (
y2 + 1

))
x3 (x2 − 1) y3

]

× 1

4πi
∂u log

Γ(iux − iuy + 1)

Γ(1− iux + iuy)
. (5.112)

We defined chx− = cosh−(x) and chy− = cosh−(y), where cosh−(x) is the part of the

Laurent expansion of cosh (g(x+ 1/x)) vanishing at infinity, i.e.

cosh−(x) =

∞∑
k=1

I2kx
−2k. (5.113)

The result for J = 4 is given in appendix A.3.

5.4 Weak coupling tests and predictions

Our results for the curvature function γ(2)(g) at J = 2, 3, 4 (equations (5.95), (5.112),

(A.66)) are straightforward to expand at weak coupling. Let us start with the J = 2 case,

for which we found

γ
(2)
J=2 = −8g2ζ3 + g4

(
140ζ5 −

32π2ζ3

3

)
+ g6

(
200π2ζ5 − 2016ζ7

)
(5.114)

+ g8

(
−16π6ζ3

45
− 88π4ζ5

9
− 9296π2ζ7

3
+ 27720ζ9

)
+ g10

(
208π8ζ3

405
+

160π6ζ5

27
+ 144π4ζ7 + 45440π2ζ9 − 377520ζ11

)
+ . . .

Notice that the result can be written in terms of simple ζ-functions and that the tran-

scendentality is uniform at each order. Same holds for the J = 3 and J = 4 cases.

Expansions up to 10 loops are given in appendix A.4.

We can check our expansions against known results, as the anomalous dimensions of

twist-two operators have been computed up to five loops for arbitrary spin [126, 127, 128,

129, 130, 81, 84, 131] (see also [132] and the review [133]). Up to three loops they can be

found by using solely the ABA equations, while at four and five loops wrapping corrections
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need to be taken into account which was done in [84, 131] by utilizing generalized Lüscher

formulas. All these results are given by linear combinations of harmonic sums17

Sa(N) =
N∑
n=1

(sign(a))n

n|a|
, Sa1,a2,a3,...(N) =

N∑
n=1

(sign(a1))n

n|a1|
Sa2,a3,...(n) (5.115)

with argument equal to the spin S. To make a comparison with our results we expanded

these predictions in the S → 0 limit. For this lengthy computation, as well as to simplify

the final expressions, we used the Mathematica packages HPL [134], the package [135]

provided with the paper [136], and the HarmonicSums package [137].

In this way we have confirmed the coefficients in (5.114) to four loops. Let us note

that expansion of harmonic sums leads to multiple zeta values ζk1,...,kn , defined as

ζk1,...,kn =
∑

i1>i2>···>in>0

1

ik1
1 . . . iknn

(5.116)

However, these transcendental constants miraculously cancel in the final result leaving

only single zeta values, i.e. ζk.

Importantly, the part of the four-loop coefficient which comes from the wrapping cor-

rection is essential for matching with our result, which confirms the validity of QSC beyond

the ABA level. Additional evidence that our result incorporates all finite-size effects is

found at strong coupling (see section 5.5).

For operators with J = 3, our prediction at weak coupling is

γ
(2)
J=3 = −2g2ζ3 + g4

(
12ζ5 −

4π2ζ3

3

)
+ g6

(
2π4ζ3

45
+ 8π2ζ5 − 28ζ7

)
(5.117)

+ g8

(
−4π6ζ3

45
− 4π4ζ5

15
− 528ζ9

)
+ . . .

The known results for any spin in this case are available at up to six loops, including the

wrapping correction which first appears at five loops [138, 139, 140]. Expanding them at

S → 0 we have verified our calculation to four loops.18

For future reference, in appendix A.4 we present an expansion of known results for

J = 2, 3 up to order S3 at first several loop orders. In particular, we found that multiple

zeta values appear in this expansion, which did not happen at lower orders in S.

17Notice that a similar basis of harmonic sums plays a crucial role in section 9.3, where we study weak

coupling expansion of BFKL eigenvalue
18As a further check it would be interesting to expand to order S2 the known results for twist-two

operators at five loops, and for twist-three operators at five and six loops – all of which are given by huge

expressions.
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Figure 5: One-loop energy at J = 4 from the Bethe ansatz. The dashed line

shows the result from QSC for the coefficient of S2 in the 1-loop energy at J = 4, i.e.

−14ζ3
5 + 48ζ5

π2 − 252ζ7
π4 ≈ −0.931 (see (5.118)). The dots show the Bethe ansatz prediction

(5.119) expanded to orders 1/J3, 1/J4, . . . , 1/J8 (the order of expansion n corresponds to

the horizontal axis), and it appears to converge to QSC result.

Let us now discuss the J = 4 case. The expansion of our result reads:

γ
(2)
J=4 = g2

(
−14ζ3

5
+

48ζ5

π2
− 252ζ7

π4

)
(5.118)

+ g4

(
−22π2ζ3

25
+

474ζ5

5
− 8568ζ7

5π2
+

8316ζ9

π4

)
+ g6

(
32π4ζ3

875
+

3656π2ζ5

175
− 56568ζ7

25
+

196128ζ9

5π2
− 185328ζ11

π4

)
+ g8

(
−4π6ζ3

175
− 68π4ζ5

75
− 55312π2ζ7

125
+

1113396ζ9

25
− 3763188ζ11

5π2

+
3513510ζ13

π4

)
+ . . .

Unlike for the J = 2 and J = 3 cases, we could not find a closed expression for the energy

at any spin S in literature even at one loop, however there is another way to check our

result. One can expand the asymptotic Bethe ansatz equations at large J for fixed values

of S = 2, 4, 6, . . . and then extract the coefficients in the expansion which are polynomial

in S. This was done in [118] (see appendix C there) where at one loop the expansion was

found up to order 1/J6:

γ(S, J) = g2

(
S

2 J2
−
(S2

4
+
S

2

) 1

J3
+
[3S3

16
+
(1

8
− π2

12

)
S2 +

S

2

] 1

J4
+ . . .

)
+O(g4)

(5.119)
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Now taking the part proportional to S2 and substituting J = 4 one may expect to get

a numerical approximation to the 1-loop coefficient in our result (5.118), i.e. −14ζ3
5 +

48ζ5
π2 − 252ζ7

π4 . To increase the precision we extended the expansion in (5.119) to order 1/J8.

Remarkably, in this way we confirmed the 1-loop part of the QSC prediction (5.118) with

about 1% accuracy! In Fig. 5 one can also see that the ABA result converges to our

prediction when the order of expansion in 1/J is being increased.

Also, in contrast to J = 2 and J = 3 cases we see that negative powers of π appear

in (5.118) (although still all the contributions at a given loop order have the same tran-

scendentality). It would be interesting to understand why this happens from the gauge

theory perspective, especially since the expansion of the leading S term (5.4) has the same

structure for all J ,

γ
(1)
J =

8π2g2

J(J + 1)
− 32π4g4

J(J + 1)2(J + 2)
+

256π6g6

J(J + 1)3(J + 2)(J + 3)
+ . . . (5.120)

The change of structure at J = 4 might be related to the fact that for J ≥ 4 the ground

state anomalous dimension even at one loop is expected to be an irrational number for

integer S > 0 (see [141], [142]), and thus cannot be written as a linear combination of

harmonic sums with integer coefficients.

In the next section we will discuss tests and applications of our results at strong

coupling.

5.5 Strong coupling tests and predictions

In this section we will present the strong coupling expansion of our results for the curvature

function and reëxpand these results to obtain anomalous dimensions of short operators at

strong coupling.

5.5.1 Expansion of the curvature function for J = 2, 3, 4

The integral representation of the result (5.95), (5.112), (A.66) makes it surprisingly diffi-

cult to obtain its strong coupling expansion analytically. Thus we chose another way: we

evaluated the result numerically with high precision for a range of values of g and then

made a fit to find the expansion coefficients. It would be of course interesting to carry out

the expansion analytically, and we leave this for the future.

For numerical study it is convenient to write our exact expressions (5.95), (5.112),
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(A.66) for γ(2)(g), which all have the form

γ(2)(g) =

∮
dux

∮
duyf(x, y)∂ux log

Γ(iux − iuy + 1)

Γ(1− iux + iuy)
(5.121)

where the integration goes around the branch cut between −2g and 2g, in a slightly

different way (we remind that we use notation x + 1
x = ux

g and y + 1
y =

uy
g ). Namely, by

changing the variables of integration to x, y and integrating by parts one can write the

result as

γ(2)(g) =

∮
dx

∮
dyF (x, y) log

Γ(iux − iuy + 1)

Γ(iuy − iux + 1)
(5.122)

where F (x, y) is some polynomial in the following variables: x, 1/x, y, 1/y, shx− and shy−

(for J = 3 it includes chx−, chy− instead of the sh− functions). The integral in (5.122) is

over the unit circle. The advantage of this representation is that plugging in shx−, shy− as

series expansions (truncated to some large order), we see that it only remains to compute

integrals of the kind

Cr,s =
1

i

∮
dx

2π

∮
dy

2π
xrys log

Γ(iux − iuy + 1)

Γ(iuy − iux + 1)
(5.123)

These are nothing but the coefficients of the BES dressing phase [111, 143, 114, 144].

Luckily the strong coupling expansion for them is known [111]:

Cr,s =

∞∑
n=0

[
−

2−n−1(−π)−ng1−nζn
(
1− (−1)r+s+4

)
Γ
(
1
2 (n− r + s− 1)

)
Γ
(
1
2 (n+ r + s+ 1)

)
Γ(n− 1)Γ

(
1
2 (−n− r + s+ 3)

)
Γ
(
1
2 (−n+ r + s+ 5)

) ]
(5.124)

However this expansion is only asymptotic and does not converge. For fixed g the terms

will start growing with n when n is greater than some value N , and so we only sum

the terms up to n = N which gives the value of Cr,s with very good precision for large

enough g.

Using this approach we computed the curvature function for a range of values of g

(typically we took 7 ≤ g ≤ 30) and then fitted the result as an expansion in 1/g. This

gave us only numerical values of the expansion coefficients, but in fact we found that with

very high precision the coefficients are as follows. For J = 2

γ
(2)
J=2 = −π2g2 +

πg

4
+

1

8
− 1

πg

(
3ζ3

16
+

3

512

)
− 1

π2g2

(
9ζ3

128
+

21

512

)
(5.125)

+
1

π3g3

(
3ζ3

2048
+

15ζ5

512
− 3957

131072

)
+ . . . ,

then for J = 3

γ
(2)
J=3 = −8π2g2

27
+

2πg

27
+

1

12
− 1

πg

(
1

216
+
ζ3

8

)
− 1

π2g2

(
3ζ3

64
+

743

13824

)
(5.126)

+
1

π3g3

(
41ζ3

1024
+

35ζ5

512
− 5519

147456

)
+ . . . ,
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and finally for J = 4

γ
(2)
J=4 = −π

2g2

8
+
πg

32
+

1

16
− 1

πg

(
3ζ3

32
+

15

4096

)
− 0.01114622551913

g2
(5.127)

+
0.004697583899

g3
+ . . . .

To fix coefficients for the first four terms in the expansion we were guided by known

analytic predictions which will be discussed below, and found that our numerical result

matches these predictions with high precision. Then for J = 2 and J = 3 we extracted the

numerical values obtained from the fit for the coefficients of 1/g2 and 1/g3, and plugging

them into the online calculator EZFace [145] we obtained a prediction for their exact

values as combinations of ζ3 and ζ5. Fitting again our numerical results with these exact

values fixed, we found that the precision of the fit at the previous orders in 1/g increased.

This is a highly nontrivial test for the proposed exact values of 1/g2 and 1/g3 terms. For

J = 2 we confirmed the coefficients of these terms with absolute precision 10−17 and 10−15

at 1/g2 and 1/g3 respectively (at previous orders of the expansion the precision is even

higher). For J = 3 the precision was correspondingly 10−15 and 10−13.

For J = 4 we were not able to get a stable fit for the 1/g2 and 1/g3 coefficients

from EZFace, so above we gave their numerical values (with uncertainty in the last digit).

However below we will see that based on J = 2 and J = 3 results one can make a prediction

for these coefficients, which we again confirmed by checking that precision of the fit at the

previous orders in 1/g increases. The precision of the final fit at orders 1/g2 and 1/g3 is

10−16 and 10−14 respectively.

5.5.2 Generalization to any J

The reader might be surprised, but based on the strong coupling expansions for several

finite J presented in the previous section we were able to recover the strong coupling

expansion of the curvature function for any J . To see how this is possible consider the

structure of classical expansions of the scaling dimension. Let us introduce the “inverse”

function S(∆), frequently encountered in the context of BFKL. It has a few simple prop-

erties: e.g. the curve S(∆) goes through the points (±J, 0) at any coupling, because

at S = 0 the operator is BPS. At the same time for non-BPS states one should have

∆(λ) ∝ λ1/4 →∞ [45] which indicates that if ∆ is fixed, S should go to zero. Combining

this with the knowledge of fixed points (±J, 0) we conclude that at infinite coupling S(∆)

is simply the line S = 0. As the coupling becomes finite S(∆) starts bending from the

S = 0 line and starts looking like a parabola going through the points ±J , see fig. 15.
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Based on this qualitative picture and the scaling ∆(λ) ∝ λ1/4 at λ→∞ and fixed J and

S, one can write down the following ansatz,

S(∆) =
(
∆2 − J2

)(
α1

1

λ1/2
+ α2

1

λ
+ (α3 + β3∆2)

1

λ3/2
(5.128)

+(α4 + β4∆2)
1

λ2
+ (α5 + β5∆2 + γ5∆4)

1

λ5/2
+ (α6 + β6∆2 + γ6∆4)

1

λ3
+ . . .

)
.

We omitted the odd powers of the scaling dimension from the ansatz taking into

account the fact that only the square of ∆ enters into (4.50) and (4.51). We can now

invert the relation and express ∆ in terms of S at strong coupling, which gives

∆2 = J2+S
(
A1

√
λ+A2 + . . .

)
+S2

(
B1 +

B2√
λ

+ . . .

)
+S3

(
C1

λ1/2
+
C2

λ
+ . . .

)
+O(S4) ,

(5.129)

where the coefficients Ai, Bi, Ci are some functions of J . There exists a one-to-one

mapping between the coefficients αi, βi, etc. and Ai, Bi etc, which is rather complicated

but easy to find. We note that this structure of ∆2 coincides with Basso’s conjecture in

[115] for mode number n = 1 19. The pattern in (5.129) continues to higher orders in

S with further coefficients Di, Ei, etc. and powers of λ suppressed incrementally. This

structure is a nontrivial constraint on ∆ itself as one easily finds from (5.129) that

∆ = J +
S

2J

(
A1

√
λ+A2 +

A3√
λ

+ . . .

)
+ S2

(
− A2

1

8J3
λ− A1A2

4J3

√
λ

+

[
B1

2J
− A2

2 + 2A1A3

8J3

]
+

[
B2

2J
− A2A3 +A1A4

4J3

]
1√
λ

+ . . .

)
. (5.130)

By definition the coefficients of S and S2 are the slope and curvature functions respectively,

so now we have their expansions at strong coupling in terms of Ai, Bi, Ci, etc. Since

the S coefficient only contains the constants Ai, we can find all of their values by simply

expanding the slope function (5.36) at strong coupling. We get

A1 = 2 , A2 = −1 , A3 = J2 − 1

4
, A4 = J2 − 1

4
. . . . (5.131)

Note that in this series the power of J increases by two at every other member, which is

a direct consequence of omitting odd powers of ∆ from (5.128). We also expect the same

pattern to hold for the coefficients Bi, Ci, etc.

The curvature function written in terms of Ai, Bi, etc. is given by

γ
(2)
J (g) = −2π2g2A2

1

J3
− πgA1A2

J3
− A2

2 + 2A1A3 − 4B1J
2

8J3
(5.132)

−A2A3 +A1A4 − 2B2J
2

16πgJ3
− A2

3 + 2A2A4 + 2A1A5 − 4B3J
2

128π2g2J3
(5.133)

−A3A4 +A2A5 +A1A6 − 2B4J
2

256π3g3J3
+O

(
1

g4

)
.

19The generalization of (5.129) for n > 1 is not fully clear, as noted in [147], and this case will be

discussed in appendix A.5.
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The remaining unknowns here (up to order 1/g4) are B1, B2, which we expect to be

constant due to the power pattern noticed above and B3, B4, which we expect to have the

form aJ2 + b with a and b constant. These unknowns are immediately fixed by comparing

the general curvature expansion (5.132) to the two explicit cases that we know for J = 2

and J = 3. We find

B1 = 3/2 , B2 = −3 ζ3 +
3

8
, (5.134)

and

B3 = −J
2

2
− 9 ζ3

2
+

5

16
, B4 =

3

16
J2(16 ζ3 + 20 ζ5 − 9)− 15 ζ5

2
− 93 ζ3

8
− 3

16
. (5.135)

Having fixed all the unknowns we can write the strong coupling expansion of the curvature

function for arbitrary values of J as

γ
(2)
J (g) = −8π2g2

J3
+

2πg

J3
+

1

4J
+

1− J2(24 ζ3 + 1)

64πgJ3
− 8J4 + J2(72 ζ3 + 11)− 4

512g2 (π2J3)

+
3
(
8J4(16 ζ3 + 20 ζ5 − 7)− 16J2(31 ζ3 + 20 ζ5 + 7) + 25

)
16384π3g3J3

+O
(

1

g4

)
. (5.136)

Expanding γ
(2)
J=4 defined in (A.66) at strong coupling numerically we were able to confirm

the above result with high precision.

5.5.3 Anomalous dimension of short operators

In this section we will use the knowledge of slope and curvature functions γ
(n)
J at strong

coupling to find the strong coupling expansions of scaling dimensions of operators with

finite S and J . As an important example we will find the three-loop coefficient of the

Konishi operator by utilizing the techniques of [115, 147]. Below we briefly review the

main ideas in these papers.

We are interested in the coefficients of the strong coupling expansion of ∆, namely

∆ = ∆(0)λ
1
4 + ∆(1)λ−

1
4 + ∆(2)λ−

3
4 + ∆(3)λ−

5
4 + . . . (5.137)

First, we use Basso’s conjecture (5.129) and by fixing S and J we re-expand the square

root of ∆2 at strong coupling to find

∆ =
√
A1S

4
√
λ+

√
A1

(
J2 +A2S +B1S

2
)

2A1

√
S

1
4
√
λ

+O
(

1

λ
3
4

)
. (5.138)

Thus we reformulate the problem entirely in terms of the coefficients Ai, Bi, Ci, etc. For

example, the next coefficient in the series, namely the two-loop term is given by

∆(2) = −
(
2A2 + 4B1 + J2

)2 − 16A1(A3 + 2B2 + 4C1)

16
√

2A
3/2
2

. (5.139)
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Further coefficients become more and more complicated, however a very clear pattern can

be noticed after looking at these expressions: we see that the term ∆(n) only contains

coefficients with indices up to n + 1, e.g. the tree level term ∆(0) only depends on A1,

the one-loop term depends on A1, A2, B1, etc. Thus we can associate the index of these

coefficients with the loop level. Conversely, from the last section we learned that the letter

of Ai, Bi, etc. can be associated with the order in S, i.e. the slope function fixed all Ai

coefficients and the curvature function in principle fixes all Bi coefficients.

Matching with classical and semiclassical results Looking at (5.138) we see that

knowing Ai and Bi only takes us to one loop, in order to proceed we need to know some

coefficients in the Ci and Di series. This is where the next ingredient in this construction

comes in, which is the knowledge of the classical energy and its semiclassical correction

in the Frolov-Tseytlin limit, i.e. when S ≡ S/
√
λ and J ≡ J/

√
λ remain fixed, while S,

J , λ → ∞. As we will explain in more detail in section 7.320, in this limit the square of

the classical energy of the string has expansion (7.32) as S → 0. We will also need the

expansion (7.33) of one-loop correction in the same limit.

If the parameters S and J are fixed to some values then the sum in (7.33) can be

evaluated explicitly in terms of zeta-functions. We now add up the classical and the 1-

loop contributions21, take S and J fixed at strong coupling and compare the result to

(5.129). By requiring consistency we are able to extract the following coefficients,

A1 = 2, A2 = − 1

B1 = 3/2, B2 = − 3 ζ3 + 3
8

C1 = − 3/8, C2 = 1
16 (60 ζ3 + 60 ζ5 − 17)

D1 = 31/64, D2 = 1
512(−5520 ζ3 − 5120 ζ5 − 3640 ζ7 + 901)

As discussed in the previous section, we can in principle extract all coefficients with indices

1 and 2. In order to find e.g. B3 we would need to extend the quantization of the classical

solution to the next order. Note that the coefficients A1, A2 and B1, B2 have the same

exact values that we extracted from the slope and curvature functions.

Result for the anomalous dimensions at strong coupling The key observation

in [147] was that once written in terms of the coefficients Ai, Bi, Ci, the two-loop term

∆(2) only depends on A1,2,3, B1,2, C1 as can be seen in (5.139). As discussed in the last

20We apologize for referring to the result which will appear only later in the thesis, but there seems to

be no linear way to organize the material
21Note that they mix various orders of the coupling.
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(S, J) λ−5/4 prediction λ−5/4 fit error fit order

(2, 2) 15 ζ5
2 + 6 ζ3 − 1

2 = 14.48929958 14.12099034 2.61% 6

(2, 3) 15 ζ5
2 + 63 ζ3

8 − 1131
512 = 15.03417190 14.88260078 1.02% 5

(2, 4) 21 ζ3
2 + 15 ζ5

2 − 25
8 = 17.27355565 16.46106336 4.94% 7

Table 1: Comparisons of strong coupling expansion coefficients for λ−5/4 obtained from

fits to TBA data versus our predictions for various operators. The fit order is the order

of polynomials used for the rational fit function (see [147] for details).

section, the one-loop result fixes all of these constants except A3, which in principle is a

contribution from a true two-loop calculation. However we already fixed it from the slope

function and thus we are able to find

∆(2) =
−21S4 + (24− 96 ζ3)S3 + 4

(
5J2 − 3

)
S2 + 8J2S − 4J4

64
√

2S3/2
. (5.140)

Now that we know the strong coupling expansion of the curvature function and thus all

the coefficients Bi, we can do the same trick and find the three loop strong coupling scaling

dimension coefficient ∆(3), which now depends on A1;2;3;4, B1,2,3, C1,2, D1. We find it to

be

∆(3) =
187S6 + 2 (624 ζ3 + 480 ζ5 − 193)S5 +

(
−146 J2 − 4 (336 ζ3 − 41)

)
S4

512
√

2S5/2

+

(
32 (6 ζ3 + 7) J2 − 88

)
S3 +

(
−28 J4 + 40 J2

)
S2 − 24 J4S + 8 J6

512
√

2S5/2
, (5.141)

for S = 2 it simplifies to

∆
(3)
S=2 =

1

512

(
J6 − 20J4 + 48J2(4ζ3 − 1) + 192(12 ζ3 + 20 ζ5 + 1)

)
(5.142)

and finally for the Konishi operator, which has S = 2 and J = 2 we get22

∆
(3)
S=2,J=2 =

15 ζ5

2
+ 6 ζ3 −

1

2
. (5.143)

In order to compare our predictions with data available from TBA calculations [149], we

employed Padé type fits as explained in [147]. The fit results are shown in Tab. 1, we

see that our predictions are within 5% error bounds, which is a rather good agreement.

However we must be honest that for the J = 3 and especially J = 4 states we did not

have as many data points as for the J = 2 state and the fit is somewhat shaky.

22The ζ3 and ζ5 terms are coming from semi-classics and were already known before [119] and match

our result.
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6 Bremsstrahlung function

6.1 Cusped Wilson line

In this chapter, based on [10], we will study an observable called Bremsstrahlung function.

It arises as a limit of the quark-antiquark potential on the three-sphere, or equivalently

the generalized cusp anomalous dimension Γcusp. Cusp anomalous dimension describes

the divergence in the expectation value of a Wilson loop made of two lines forming a cusp,

〈W 〉 ∼
(

ΛIR
ΛUV

)Γcusp

, (6.1)

with ΛUV and ΛIR being the UV and IR cutoffs [150]. The quantity Γcusp is also related to

a number of other physical quantities, such as IR divergence in amplitudes and radiation

power from a moving quark, see e.g. [151, 152, 153, 122]. The cusp anomalous dimension

is a function of two angles, φ and θ, which describe the geometry of the Wilson line setup

shown in Fig. 6 [154]. The first angle, φ, is the angle between the quark and antiquark

lines at the cusp. The second angle, θ, arises because the locally supersymmetric Wilson

lines considered here include a coupling to the scalar fields, as described in the end of

section 2.4. As there are six real scalars in N = 4 SYM the coupling can be defined by a

unit vector ~n which gives a point on S5. At each arm of the cusp the coupling is constant

but different, given by vectors ~n and ~nθ respectively. Obviously they only enter the answer

through an angle θ between them. We can write the cusped Wilson line explicitly as

W0 = P exp

0∫
−∞

dt
[
iA · ẋq + ~Φ · ~n |ẋq|

]
× P exp

∞∫
0

dt
[
iA · ẋq̄ + ~Φ · ~nθ |ẋq̄|

]
, (6.2)

where ~Φ is a vector consisting of the six real scalars of N = 4 SYM , while xq(t) and xq̄(t)

are the quark and antiquark trajectories (straight lines through the origin) which make

up an angle φ at the cusp (see Fig.6).

A fully nonperturbative description for the value of Γcusp was obtained in a remarkable

development by Drukker [155] and by Correa, Maldacena & Sever [95]. They proposed

an infinite system of TBA integral equations which compute this quantity at arbitrary

’t Hooft coupling λ and for arbitrary angles. In order to implement the TBA approach,

the cusp anomalous dimension was generalized for the case when a local operator with

R-charge L is inserted at the cusp (cf. Fig. 6):

WL = P exp

0∫
−∞

dt
(
iA · ẋq + ~Φ · ~n |ẋq|

)
× ZL × P exp

∞∫
0

dt
(
iA · ẋq̄ + ~Φ · ~nθ |ẋq̄|

)
. (6.3)
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Figure 6: The setup: a Wilson line with a cusp angle φ and L scalar fields Z = Φ1 + iΦ2

inserted at the cusp. Coupling of the scalar fields to the two half lines is defined by

directions ~n and ~nθ in the internal space, with the angle θ between them. We consider the

near-BPS limit corresponding to φ ≈ θ.

As defined before, Z = Φ1 + iΦ2, with Φ1 and Φ2 being two scalars independent from

(~Φ · ~n) and (~Φ · ~nθ). The anomalous dimension ΓL(φ, θ, λ) corresponding to such Wilson

line is captured by the TBA equations exactly at any value of L. For L = 0 the usual

quark-antiquark potential is recovered. The number of field insertions plays the role of

the system’s volume in the TBA description, and ΓL(φ, θ, λ) is obtained as the vacuum

state energy.

While the infinite system of these TBA equations is rather complicated, having the

two angles as continuous parameters opens the possibility to look for simplifications in

some limits where an exact analytical solution may be expected23. There are at least two

interesting near-BPS limits. For example, when both angles are zero, the set-up degener-

ates into a straight line, which is obviously BPS. Expansion around this configuration in

parameter space, more precisely the regime when one of the angle is zero and the other

is small, was studied in [91]. Another BPS configuration, around which we expand in

this chapter, is φ = θ [159, 160]24. Non-renormalization of anomalous dimension in this

limit can be understood from the classical string theory perspective. In a general situation

the S5 part of the curve is determined by parameters θ and L, whereas the parameters

of the AdS5 part are φ and ∆. The two parts governed by the same (up to analytical

continuation) equations and are related through the Virasoro condition. When φ = θ, ∆

becomes equal to L, which is, of course, quantized.

The small deviations from this supersymmetric case are known to be partially under

control: the cusp dimension at L = 0 was computed for φ ≈ θ analytically at any coupling

23On the other hand, non-perturbative predictions from the spectral TBA have been mostly restricted

to numerics [156, 149, 148, 157]; see also [158].
24Strictly speaking the BPS condition allows φ = −θ in addition to φ = θ but these two cases are

trivially related.
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in [151, 152] using results from localization methods [161, 162]. The answer in the planar

limit reads

Γcusp(φ, θ, λ) = − 1

4π2
(φ2 − θ2)

1

1− θ2

π2

√
λ̃ I2

(√
λ̃
)

I1

(√
λ̃
) +O

(
(φ2 − θ2)2

)
, λ̃ = λ

(
1− θ2

π2

)
(6.4)

where In are the modified Bessel functions of the first kind. The existence of such an

explicit result suggests that the cusp TBA system should simplify dramatically when

φ ≈ θ. Even though the full set of TBA equations was simplified a bit in this limit

as described in [95], the result is still an enormously complicated infinite set of integral

equations. Remarkably, it turned out that these equations admit an exact analytical

solution. For the near-BPS configuration where θ = 0 and φ is small it was obtained

in [91]. The result of [91] covers all values of L and λ and for L = 0 reproduces the

localization result (6.4) in which θ should be set to zero.

In this chapter we extend the results of [91] to the generic near-BPS limit. Thus, we

consider the case when φ ≈ θ, but θ is arbitrary and is an extra parameter in the result.

We obtain an explicit expression valid for all values of θ, L and λ. Our final result for

arbitrary θ takes a particularly elegant form

ΓL(g) =
φ− θ

4
∂θ log

detM2L+1

detM2L−1
, (6.5)

where we define an N + 1×N + 1 matrix

MN =



Iθ1 Iθ0 · · · Iθ2−N Iθ1−N

Iθ2 Iθ1 · · · Iθ3−N Iθ2−N
...

...
. . .

...
...

IθN IθN−1 · · · Iθ1 Iθ0

IθN+1 IθN · · · Iθ2 Iθ1


(6.6)

and Iθn are

Iθn =
1

2
In

(√
λ̃
)[(√π + θ

π − θ

)n
− (−1)n

(√
π − θ
π + θ

)n]
. (6.7)

At L = 0 this result just reduces to the localization result (6.4). For L > 0 our result

complements and generalizes the calculation of [91] as another integrability-based predic-

tion for localization techniques. As in [91], the determinant expressions we got suggest a

possible link to matrix models. Apart from being interesting from purely mathematical

point of view, this comes in very handy when one considers a quasiclassical expansion of

our result in order to compare with the corresponding string solution (think about the

large L limit of (6.5)). We will explore this topic in section 7.4.
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The main result of this chapter (6.5) is obtained in two ways. First, we use the old

approach of solving the Bremsstrahlung TBA analytically, following the strategy developed

in [91]. In section 6.2.1 we describe the initial simplification of the TBA system in the

near-BPS limit, resulting in an infinite set of the Bremsstrahlung TBA equations. Then in

section 6.2.2 we apply the powerful methods developed for the spectral problem to reduce

this system to a finite set of equations, known as FiNLIE [94, 163]25. In section 6.2.3

we make an analytic ansatz for the unknowns in the FiNLIE and construct its explicit

solution, obtaining our result for the energy. As in [91] a key structure we encounter in

the process is a Baxter equation for a set of auxiliary Bethe roots. Second, in section 6.3

we demonstrate how the same result can be obtained in a much simpler way using the

QSC method. The QSC we work with here differs from the one described in chapter 4 by

taking into account twisted boundary conditions. It is relevant for studying Wilson lines

or observables in twisted SYM [166, 109]. We also describe checks of our result at both

strong and weak coupling in section 6.4. Appendix B contains various technical details.

6.2 Pre-QSC solution

6.2.1 TBA equations in the near-BPS limit

In this section we discuss the first simplification of the cusp TBA system in the near-BPS

regime, when the two angles φ and θ are close to each other. Following [95] we will thus

obtain a somewhat simpler, but still infinite, set of integral equations – the Bremsstrahlung

TBA.26

Let us remind that the cusp TBA equations are analogous to those describing the

spectrum of single trace operator anomalous dimensions. The two infinite sets of equations

for the Y-functions Ya,s(u) can be brought to similar form by subtracting the asymptotic

large L solution. The integer indices (a, s) of the Y-functions take values in the infinite

T-shaped domain familiar from the spectral TBA (see Fig. 7). The only difference is in an

extra symmetry requirement for the Y-functions, and in the large L asymptotic solution27.

The asymptotic solution encodes, in particular, the boundary scattering phase which

has a double pole at zero mirror momentum. Due to this, the momentum-carrying func-

25See also [164, 165] for an alternative approach.
26The authors of [95] obtained the Bremsstrahlung TBA equations for the generic case φ ≈ θ, but the

equations were given explicitly in [95] only for the small angles case so we will repeat the derivation here.
27The extra symmetry requirement in the cusp TBA reads Ya,s(u) = Ya,−s(−u) but is irrelevant in our

discussion as for our state all Y-functions are even.
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a

s

Figure 7: The Y-hook. The indices (a, s) of Y-functions take values on the infinite T-

shaped lattice in the figure. We also show the form of expansion in small ε for different

groups of Y -functions. Notice that the momentum carrying Y -functions Ya,0 are small in

ε and enter the system only through the singularity at u = 0.

tions Ya,0(u) have a double pole for u = 0. This greatly simplifies their dynamics in the

near-BPS regime – only the residue at this pole is important and gives a non-vanishing

contribution. This residue is small for φ ≈ θ, and thus the structure of the expansion

of the cusp TBA system in our case is very similar to what happens in the small angles

regime discussed in detail in [95, 91].

We found it convenient to use a small expansion parameter

ε ≡ (φ− θ) tanφ0, (6.8)

where28 we denote φ0 = (φ+ θ)/2. As in the small angles case, it is sufficient to keep only

the leading orders in the expansion of the Y-functions, which are

Ya,1 = Ya [1 + ε(Ωa −Xa)] , 1/Y1,s = Ys [1 + ε(Ωs + Xs)] , (6.9)

Y1,1 = −1− 2εΨ, 1/Y2,2 = −1− 2εΦ,

while the residue of Ya,0 reads

lim
u→0

(
u2Ya,0

)
= (εCa)2 . (6.10)

This expansion (except for the Ωa functions which will not enter our equations) is also

shown in Fig. 7.

28To shorten notation we will sometimes use θ instead of φ0 in the text, on the understanding that

equations containing θ are assumed to hold to the leading order in ε.
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It is straightforward to plug these expansions into the cusp TBA system, and then

simplify the equations a bit further using the same techniques as in the small angles case.

We give more technical details in appendix B.2. The resulting set of Bremsstrahlung TBA

equations reads:

Φ−Ψ = πCaK̂a(u), (6.11)

Φ + Ψ = s ∗
[
−2

X2

1 + Y2
+ π(K̂+

a − K̂−a )Ca − πδ(u)C1

]
, (6.12)

log Y1,m = s ∗ Im,n log (1 + Y1,n)− δm,2s∗̂
(

log
Φ

Ψ
+ ε (Φ−Ψ)

)
− επsCm, (6.13)

∆a = [R(10)
ab + B(10)

a,b−2]∗̂ log
1 + Yb
1 +Ab

+R(10)
a1 ∗̂ log

(
Ψ

1/2

)
− B(10)

a1 ∗̂ log

(
Φ

1/2

)
, (6.14)

Ca = (−1)a+1a
sin aθ

tan θ

(√
1 +

a2

16g2
− a

4g

)2+2L

F (a, g)e∆a , (6.15)

where the kernels and conventions are the same as in [91] and are defined in appendix B.1

and in 1.4. The equation (6.13) for Y1,m should be understood to hold at orders O(ε0)

and O(ε1) only. Notice that as in the small angles case the functions Ωa from (6.9) have

dropped out of the equations.

We see that our Bremsstrahlung TBA equations are almost the same as in [91]. How-

ever, importantly, the asymptotic condition at large real u is different:

1/Y1,m →
sin2 θ

sin(m+ 1)θ sin(m− 1)θ
, (6.16)

which should hold up to terms of order O(ε) inclusive. Finally, the cusp anomalous

dimension is determined by the double pole of momentum-carrying Y -functions:

ΓL(g) = ε
∞∑
a=1

Ca√
1 + 16g2/a2

. (6.17)

In the next section we will reduce this TBA system to a finite set of nonlinear equations.

6.2.2 From TBA to FiNLIE

Twisted ansatz for T-functions In this section we apply the same methods as in

[91] to reduce the Bremsstrahlung TBA given above to a finite set of nonlinear integral

equations (FiNLIE). The FiNLIE approach of [91] is very helpful to truly reveal the power

of the spectral TBA [167, 136] 29. For us it allows to reduce drastically the number of

unknown functions, opening the way to the analytic solution of the problem in section

6.2.3.

29One can also use the Lüscher approximation to extract the first several orders like in [84, 168, 169].
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Our main task is to reduce the infinite set of equations (6.13) for the functions Y1,m. In

order to do this we use its relation to the Y-system and Hirota equations in the horizontal

right wing of the T-hook. Indeed, from the integral form of (6.13) and the analyticity of

the kernels it is clear that Y1,m(u) are analytic and regular in the strip |Im u| < m−1
2 .

Then for m > 2 the equation (6.13) can be rewritten as the Y-system functional equation

using the property (B.47):

log
(
Y +

1,mY
−

1,m

)
= log (1 + Y1,m−1) (1 + Y1,m+1) . (6.18)

This set of functional equations can be solved by switching to the so-called T-functions

according to

1/Y1,m =
T+

1,mT
−
1,m

T1,m+1T1,m−1
− 1. (6.19)

In terms of T-functions the Y-system equation becomes the Hirota equation in the

horizontal strip, for which the general solution is known [94, 93] and involves only two

unknown functions which we denote Q1 and Q2:

T1,s = C

∣∣∣∣∣∣ Q
[s]
1 Q̄

[−s]
1

Q
[s]
2 Q̄

[−s]
2

∣∣∣∣∣∣ . (6.20)

In this way we are able to replace the infinite set of Ym functions (m = 2, 3, . . . ) by

two functions Q1(u) and Q2(u)30. Now the problem is reduced to finding an ansatz for

them. The main requirement for this ansatz is that the Y1,m generated by (6.19), (6.20)

should have the correct asymptotics at large real u given by (6.16). For small angles the

asymptotics is 1
m2−1

and the corresponding ansatz for the Q-functions is known [91]. Here

we present an ansatz which works also in a deformed case with nontrivial twists.

The ansatz also has to ensure the correct analytical properties of the Y-functions

which are dictated by the integral equations (6.13). First of all, the Y1,m functions should

be analytic inside the strip |Im u| < m−1
2 and even as functions of u. The term with

δm,2 in (6.13) can be reproduced if Y1,2(u) has branch cuts starting at u = i/2 ± 2g and

u = −i/2± 2g.

Our proposal for Q-functions meeting these requirements is:

Q1 = Q̄1 = e+θ(u−iG(u)), (6.21)

Q2 = Q̄2 = e−θ(u−iG(u)), (6.22)

30Later we will see that these functions are related to Q-functions of QSC
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where G(u) should be a function with a branch cut on the real axis in order to satisfy the

properties of T-functions listed above. Note that the asymptotics (6.16) of Y -functions

is automatically satisfied for any G(u) decaying at infinity. Finally, as T1,s are even and

real functions (to ensure the same properties for Y-functions), G(u) should be odd and

imaginary.

With this choice of Q1 and Q2 we can calculate T1,s from (6.20) where for consistency

with [91] in the small angle limit we choose C = 1
2i sin θ

T1,s =
sin(s− G[s] + G[−s])θ

sin θ
. (6.23)

The discontinuity of the function G can be found from the equation analogous to (6.18)

for m = 2 [94]. It reads

T
++

1,1 T
−−
1,1

T
+−
1,1 T

−+

1,1

= r, where r =
1 + 1/Y2,2

1 + Y1,1
(6.24)

and we denoted

T+±(u) = T (u+ i/2± i0) and T−±(u) = T (u− i/2± i0) . (6.25)

More explicitly, using the formula (6.23) for T1,1 one can write

r =
sin
(
1− G[+2] + G − ρ/2

)
θ sin

(
1 + G[−2] − G − ρ/2

)
θ

sin
(
1− G[+2] + G + ρ/2

)
θ sin

(
1 + G[−2] − G + ρ/2

)
θ
, (6.26)

where G(u) is the average of G on both sides of the cut if u is on the cut, and it is equal to

G(u) + ρ(u)/2 away from the cut. This allows to deduce the discontinuity of the function

G with one real Zhukovsky cut in terms of a combination (6.24) of “fermionic” Y-functions

Y1,1 and Y2,2.

Finally, for small θ the combinations Q1±Q2 obtained from our ansatz nicely match31

(up to overall factors) the Q-functions in the small angles case [91], where Q1 = 1 and

Q2 = −iu− G(u).

Expansion in the near-BPS case The ansatz presented in the previous subsection is

valid for a general, not necessarily near-BPS situation. Here we will apply it to the case

of φ ≈ θ (i.e. small ε) studied in this chapter.

As we have seen above, the solution for Y -functions is completely defined by a single

function G(u), which we will call the resolvent. For the calculation we are doing here we

31As T1,s are given by a determinant, we are free to replace Q1,2 by their linear combinations
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only need to know G up to the linear in ε terms inclusive. Our proposal for the resolvent

is

G(u) =
1

2πi

2g∫
−2g

dv
ρ(v)

u− v
+ ε
∑
a6=0

ba
u− ia/2

. (6.27)

The first term creates a short branch cut32 in G(u), which translates into the branch cuts

of Ym. The discontinuity of the resolvent across this cut is the density ρ:

ρ(u) = G(u− i0)−G(u+ i0). (6.28)

The second term in (6.27) produces poles at ±i/2 with residues proportional to ε in Y-

functions, which account for the term επsCm in (6.13).

One can see that the properties of T1,m being real and even imposes the following

constraints on the density and poles: ρ should be even and real as a function with a long

cut, while ba = b−a and ba = −b∗a.

Most of the equations in this chapter are already expanded in ε, so it is convenient

to introduce expanded to the leading order versions of the quantities above. The leading

order part of the resolvent is33

G(u) =
1

2πi

2g∫
−2g

dv
ρ(v)

u− v
. (6.29)

We also introduce the leading order T-functions Tm related to the leading order Y-

functions as

Ym =
T +
m T −m

Tm+1Tm−1
− 1. (6.30)

Explicitly, the leading order part of (6.31) gives

Ts =
sin (s−G[s] +G[−s])φ0

sinφ0
. (6.31)

Final reduction to FiNLIE We now use the ansatz discussed above and finalize the

reduction of the initial Bremsstrahlung TBA system to a finite set of equations. The

remaining steps in the derivation are analogous to [91] so we will be brief here (more

details are given in appendix B.3).

The first two TBA equations (6.11), (6.12) contain the “fermionic” functions Φ and Ψ

in the left hand side. In order to deal with them, notice that after plugging the expansion

32i.e. a cut from −2g to 2g.
33The density ρ contains both the leading order in ε part and the linear correction, however, in this

chapter we will never need to deal with this correction. Hence, we will denote the full density and its

leading order part by the same letter ρ hoping that this will not cause any confusion.
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(6.9) of Y-functions into r defined by (6.24) one gets r = Φ/Ψ. Thus the equation (6.24)

at the leading order becomes

Φ

Ψ
=
T ++

1 T −−1

T +−
1 T −+

1

, (6.32)

where the notation analogous to (6.25) is used. The equation (6.32) allows us to introduce

another quantity which will play an important role in the FiNLIE:

η ≡ ΨT2

T −+

1 T +−
1

=
ΦT2

T −−1 T ++

1

. (6.33)

Using this definition and the explicit form of Tm (6.31) we are able to express Ψ and

Φ in terms of η, ρ and G. Then we plug them into the first two TBA equations and get

the first two FiNLIE equations (6.35), (6.36) which are given below.

To get the third FiNLIE equation we plug the explicit form of the Ym functions ex-

pressed through Tm using (6.30) and (6.23) into the equation for ∆a (equation (6.14)).

This equation then greatly simplifies (for a detailed derivation see appendix B.3) and we

find

∆a = K̃a∗̂ log η + log
Ta

sin aθ cot θ

∣∣∣∣
u=0

. (6.34)

Combining this with the last equation of Bremsstrahlung TBA (6.15) we obtain (6.37).

In summary, the FiNLIE equations read:

η
sin θρ

sin θ
= −

∑
a

πCaK̂a, (6.35)

η
cos θρ cos (2−G+ +G−)θ − cos (2G−G+ −G−)θ

sin θ sin (2−G+ +G−)θ
=

= s ∗
[
−2

X2

1 + Y2
+ π(K̂+

a − K̂−a )Ca − πδ(u)C1

]
, (6.36)

Ca = (−1)aaTa(0)

(√
1 +

a2

16g2
− a

4g

)2+2L

exp

[
K̃a∗̂ log

(
η

sinh 2πu

2πu

)]
. (6.37)

Here G(u) is the average of the resolvent on both sides of the cut if u is on the cut,

and it is equal to G(u) + ρ(u)/2 away from the cut. Other notation and the kernels can

be found in appendix B.1.

Our FiNLIE is a set of equations for functions ρ(u), η(u) and the coefficients Ca (we

remind that G is obtained from ρ according to (6.29)). As written this is a closed system

of equations up to one subtlety. Namely, the right hand side of the second equation, (6.36),

also includes an unknown function X2 which should contain the linear in ε correction to ρ.
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This correction obeys an equation which is straightforward to derive by the same methods

as in [91]34. However, in fact we will not need this equation in the following, so we do

not write it. It is replaced by a certain simple analyticity condition described in the next

section. This condition is a simple consequence of QSC formulation, which is, however,

very hard to prove directly from TBA.

Finally, the FiNLIE should be also supplemented by a relation which determines the

residues of the resolvent at u = ia/2, i.e. the coefficients ba which we introduced in (6.27).

To derive it we compare residues at ia/2 of both sides of the third equation (6.13) in the

Bremsstrahlung TBA system. This gives a recursion relation of the form

qaba−2 − (qa + pa)ba + paba+2 = Ca, (6.38)

where qa and pa depend on the values of the resolvent at the points ia/2, i(a± 2)/2, and

are defined in appendix B.3 in which the derivation of (6.38) is discussed.

In the next section we will construct an analytic solution of this FiNLIE, leading to

an explicit expression for the energy.

6.2.3 Analytical ansatz for FiNLE

In the previous sections we presented the FiNLIE - a system of equations for Ca, ρ, η.

Following the spirit of [91], in order to solve it we will analyse the analytical properties of

η and ρ as functions in the whole complex plane. We will parametrize these functions in

terms of auxiliary Bethe roots, for which we will obtain a set of Bethe equations. Then

we solve them using Baxter equation techniques and obtain the result for the anomalous

dimension ΓL(g).

Analytical ansatz for η and ρ In this section we will explore the analytical properties

of ρ and η. Although one would prefer to derive them starting from the FiNLIE, there

seems to be no easy way to do this. Instead we make a conjecture that the key quantities

entering the FiNLIE do not have infinitely many Zhukovsky cuts. In section 6.3 we will

see that this conjecture follows almost trivially from the QSC formulation. Since QSC

itself can be derived from TBA, this can be seen as an indirect derivation from TBA. In

this way we also justify similar assumptions made in [91] without a proof.

The main assumption is that η(u) has simple poles at ia/2 for a ∈ Z \ {0}, and η2(u)

is a meromorphic function in the whole complex plane. Then, taking into account that η

34see eq. (F3) in section 3.5 of [91]
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is even we can write the following representation

η2(u) = (cos θ)2
∏
k 6=0

u2 − u2
k

u2 + k2/4
, (6.39)

where the product goes from −∞ to∞. The prefactor (cos θ)2 comes from the asymptotics

η(u)→ cos θ, u→∞, (6.40)

which is easily seen from the definition (6.33).

In [91], where the case θ = 0 was considered, η was a meromorphic function with poles

at ia/2 for nonzero integer a. In our case η is not meromorphic, but η2 is. The analyticity

of η in the θ = 0 limit is recovered as pairs of zeros uk collide and produce a double zero.

We enumerate these zeros uk in such a way that the colliding pairs are uk and −u−k. For

large k the value of the factors under the product in (6.39) should approach 1, meaning

that the roots accumulate close to the half-integer points on the imaginary axis:

uk → ik/2, (6.41)

−u−k → ik/2, k → +∞.

Thus η has an infinite number of square-root cuts, each going between uk and −u−k,

located close to ik/2. We will refer to these cuts as S-cuts, and they are shown in Fig.

6.2.3.

Now let us explore the properties of the density ρ. Every kernel K̂a in the right

hand side of the first FiNLIE equation (6.35) is proportional to
√
u2 − 4g2, so the whole

expression has a cut from −2g to 2g, which we will call the Z-cut. First, let us note that

ρ is defined as a discontinuity of the resolvent G and as such it simply changes its sign

when passing the Z-cut and so the Z-cut is already taken care of by the sin θρ multiplier.

It only remains to understand the behavior of ρ when we go through an S-cut. As

the combination η sin θρ has no S-cuts due to (6.35) and since η does have infinitely many

S-cuts, it must be that sin θρ changes its sign simultaneously with η when we go through

any S-cut leaving the whole expression unchanged. Next, let us show that cos θρ also

changes sign on an S-cut. Indeed, in the second FiNLIE equation (6.36) the right hand

side does not have any S-cuts and the left hand side can be expanded into a sum of terms

proportional to η sin θρ and η cos θρ. Since from the first FiNLIE equation (6.35) we know

that η sin θρ does not branch on an S-cut, the same should be true for η cos θρ. Again,

since η changes its sign on S-cuts, the same should hold for cos θρ.

This means that on the Z-cut ρ changes its sign and on an S-cut it is shifted as

ρ→ ρ+ π/θ. (6.42)
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Figure 8: The S-cuts of η(u) and ρ(u) The function η(u) has an infinite number of

square root cuts, which we call S-cuts, each connecting uk (black dots) to −u−k (grey

dots). For ρ(u) these cuts are logarithmic. The full set of branch points consists of {uk}

together with {−uk}.

The transformation properties of different quantities with respect to transitions through

Z- and S-cuts can be summarized into the following table:

η ρ cos θρ sin θρ

S-cut −η ρ+ π/θ − cos θρ − sin θρ

Z-cut η −ρ cos θρ − sin θρ

Having understood the transformation properties of ρ on both types of cuts, let us try

and build out of ρ a quantity which would be meromorphic. First of all, to this end it is

convenient to consider ρ as a function of Zhukovsky variable x(u) defined in (3.17). It is

easy to see that Zhukovsky transformation resolves the Z-cut: two sheets of the Riemann

surface connected by the cut in variable u become the interior and the exterior of the unit

circle in variable x. Thus as a function of x the density has only S-cuts. Moreover, since

on an S-cut ρ transforms to ρ+ π/θ, the combination e2iθρ(x) is meromorphic in C \ {0}.

Going under the Z-cut in variable u is equivalent to x → 1/x transformation in variable

x, hence the property of ρ changing sign on the Z-cut now reads

e2iθρ(x) = 1/e2iθρ(1/x). (6.43)

Being meromorphic, e2iθρ(x) is completely characterized by its zeros and poles (and

asymptotics). Let us call the zeros outside the unit circle xk,+ and the zeros inside it
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1/xk,−. Then from (6.43) one can see that the poles of e2iθρ(x) are 1/xk,+ and xk,−. These

poles and zeros are shown in Fig. 9.

zeros

poles

Figure 9: The singularities of ρ. Poles and zeros of e2iθρ(x) inside and outside the unit

circle. The density ρ has logarithmic singularities at these points, which are in fact images

of ±uk under the Zhukovsky map.

It is convenient to introduce bookkeeping functions which encode xk,±

Q±(x) =
∏
k 6=0

xk,± − x
xk,±

. (6.44)

These functions are analogous to functions RA|I appearing in the derivation of ABA in

section 4.5. We denote their analytical continuation under the Z-cut by adding a tilde, i.e.

Q̃±(x) = Q±(1/x). Knowing the zeros and the poles of e2iθρ(x) and taking into account

that ρ→ 0 as x→∞, we can reconstruct it uniquely as

e2iθρ(x) =
Q+Q̃−

Q−Q̃+

. (6.45)

Using this representation for ρ we can fix η completely. Indeed, as discussed above

the left hand side of the first FiNLIE equation (6.35) does not have S-cuts. On the other

hand, we can use (6.45) to write it in terms of Q as

η sin θρ =
η

2i

Q̃−Q+ − Q̃+Q−√
Q−Q̃−Q+Q̃+

. (6.46)

Thus the square root in the denominator of (6.46) should completely cancel the numerator

of η which is equal to
∏
k 6=0

√
u2 − u2

k. The asymptotics of the numerator should be sinh 2πu,

because η(u) is finite at infinity. Thus the zeros of

√
Q−Q̃−Q+Q̃+ should approach the

zeros of sinh 2πu and there is a way to enumerate xk,+ so that xk,+ → ik/2 at large k.

Since ρ is odd35, the zeros of the numerator and the denominator of (6.45) should map

onto each other as sets under x → −x. In particular, considering only the zeros outside

35as a function with a short Z-cut
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the unit circle, the zeros of Q+ map onto zeros of Q−. Then it is possible to enumerate the

zeros of Q− (i.e. xk,−) so that xk,+ = −x−k,−. Notice that now u(xk,+), u(x−k,−)→ ik/2

as k →∞. Introducing vk such that x(vk) = xk,+, we can write

Q+Q−Q̃+Q̃− =
∏
k 6=0

x− xk,+
xk,+

x− x−k,−
x−k,−

(
1− 1

xxk,+

)(
1− 1

xx−k,−

)
=
∏
k 6=0

u2 − v2
k

−g2x2
k,+

(6.47)

Comparing this product with the product in the numerator of η2 we see that uk and vk

coincide as sets. Up to relabelling we can set vk = uk, thus establishing the relation

uk/g = xk,+ + 1/xk,+ = −x−k,− − 1/x−k,−. (6.48)

Finally, we notice that the formula (6.45) allows us to find the resolvent in terms of

Q± without performing the integration which is prescribed by (6.29). Indeed, suppose we

define a function G(u) as eiθG(u) =
√

Q̃+ (x(u)) /Q̃− (x(u)). It decays at infinity, does not

have poles on the main sheet (|x| > 1) and has a Z-cut with the discontinuity ρ, the same

as the resolvent. Hence by Liouville’s theorem it coincides with the resolvent.

Let us summarize the results of this section:

eiθρ =

√
Q+Q̃−

Q−Q̃+

, η = cos θ

√
Q+Q−Q̃+Q̃−

C̃ sinh 2πu
2πu

, (6.49)

eiθG =

√
Q̃+/Q̃− . (6.50)

In order to rewrite the ansatz for η (6.39) in the form above we used the identity

sinh 2πu

2πu
=
∞∏
k=1

u2 + k2/4

k2/4
(6.51)

and we also introduced

C̃ =

∞∏
k=1

−k2/4

g2xk,+xk,−
. (6.52)

We managed to write all the key quantities in terms of an infinite number of roots uk. By

plugging these expressions into the FiNLIE equations in the next two sections we will find

a closed set of Bethe-like equations for these roots.

Fixing residues of η Here we will find a relation for the residues of η and as a result

establish an important relation between values of ρ and G at half-integer points on the

imaginary axis which will be used in the next section to derive an auxiliary Bethe-like
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equation. Here we only outline the main steps, with more details given in appendix B.4

36.

First, we will use the second FiNLIE equation (6.36), i.e.

η
cos θρ cos (2−G+ +G−)θ − cos (2G−G+ −G−)θ

sin θ sin (2−G+ +G−)θ
= (6.53)

= s ∗
[
−2

X2

1 + Y2
+ π(K̂+

a − K̂−a )Ca − πδ(u)C1

]
,

to compute the residue of η cos θρ at ia/2. According to our assumptions about the

analytical properties of η, both sides of this equation have poles at ia/2. Using the

identity (B.47) we can get rid of the convolution with s. Then the residues at the pole on

both sides can be expressed through Ca, G(ia/2) and the residues of η cos θρ and Xa. Due

to the presence of X2, the residue of the right hand side appears to depend on ba (see the

definition of G, where the poles with residues ba appear in the first order in ε). However,

as in [91], the dependence on ba can be completely eliminated by taking into account the

recursion relation (6.38). Thus we can regard the second FiNLIE equation (6.36) as an

equation for the residues of η cos θρ which produces as shown in appendix B.4:

Res
u=ia/2

(η cos θρ) =
1

2i
Ca

sin θ

tan (2G(ia/2)θ − aθ)
. (6.54)

In addition, let us make use of the first FiNLIE equation (6.35),

η
sin θρ

sin θ
= −

∑
a

πCaK̂a. (6.55)

Equating the residues of the poles at ia/2 on both sides gives us at once

Res
u=ia/2

(η sin θρ) = − 1

2i
Ca sin θ. (6.56)

The equations (6.54) and (6.56) that we have just derived allow us to relate ρ and G

at u = ia/2. Since we assume that ρ is regular at ia/2 and the pole comes from η, from

these two equations it is easy to see that

tan θρ(ia/2) = tan (aθ − 2G(ia/2)θ), (6.57)

leading to

θρ(ia/2) = aθ − 2θG(ia/2) + πn, n ∈ Z . (6.58)

We can also write this equation as37

exp [iθρ+ 2iθG(ia/2)− iaθ] = 1 . (6.59)

36the calculation is analogous to that done in sections 3.2.1 and 4.2 of [91]
37For odd n in (6.58) we would get minus in right hand side of (6.59), but this is incompatible with the

small θ limit (see equation (103) in [91]).
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This relation already constrains the set of our parameters uk and will be very useful in

the next section.

Effective Bethe equations Above we have parametrized ρ and η in terms of two

families of roots xk,±. Here we will show that these roots satisfy a set of Bethe-like

equations, which will be solved in the subsequent sections. In [91] the effective Bethe

equation was derived by substituting the ansatz for η into the FiNLIE equation for Ca.

In our case this is equation (6.37) which reads

Ca = (−1)aaTa(0)

(√
1 +

a2

16g2
− a

4g

)2+2L

exp

[
K̃a∗̂ log

(
η

sinh 2πu

2πu

)]
. (6.60)

Plugging into this equation our ansatz for η (6.49) and following the same steps as in [91],

we get

1 =

(
i

ya

)2L+2
√

Q̃+Q̃−
Q+Q−

, with ya ≡ x(ia/2). (6.61)

In the θ = 0 limit Q+ = Q− and this equation coincides with the effective Bethe equation

in [91]. In addition to (6.59) this equation allows to fix completely all the roots xk, thus

providing the full solution to the problem.

Indeed, expressing ρ and G in (6.59) through Q± by means of (6.49) and (6.50) we

obtain

1 = e−2uθ

√
Q+Q̃+

Q−Q̃−
, u = ia/2. (6.62)

Notice that this equation contains θ (as opposed to (6.61)) and tells us how the two

families of roots are separated. In the θ = 0 limit it has a trivial solution Q+ = Q−,

causing the roots xk,+ and −x−k,− to collide and producing double zeros in η2, thus

making η meromorphic.

Multiplying (6.62) and (6.61) we get rid of the square root and finally obtain the

following auxiliary Bethe equations:

1 = e−iaθ
(
i

ya

)2L+2 Q̃+(ya)

Q−(ya)
. (6.63)

We remind that ya stands for x(ia/2), a ∈ Z. From this equation we can find the Baxter

polynomials Q±. For that in the next section we will use the Baxter equation.

Baxter equations At this point everything we want to know about the system is

parametrized in terms of two infinite series of roots xk,±. These roots are governed by

the effective Bethe equations (6.63), and to solve them we will apply Baxter equation

techniques, similarly to [91].
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Namely, let us construct the function

T(x) = e+2gθxxL+1Q−(x) + (−1)L
e−2gθ/x

xL+1
Q̃+(x). (6.64)

which encodes the whole set of auxiliary Bethe roots xk. We will call T(x) the Baxter

function. Due to the Bethe equations (6.63) we have T(ya) = 0. In addition, the relation

Q±(−x) = Q∓(x) means that T has a symmetry

T(−1/x) = −T(x) (6.65)

Let us now clarify the asymptotics of T(x). It is easy to see from the definitions (6.44)

and (6.33) that Q̃± → 1 and η → cos θ at large x. Moreover, since Q±(−x) = Q∓(x), the

asymptotics of Q+ and Q− at large u are the same and from (6.49) we get

Q± ∼ C̃
sinh 2πu

2πu
, u→ +∞ . (6.66)

Therefore the second term in (6.64) is suppressed38 compared to the first one and the

asymptotics of the whole expression at large x is T(x) ∼ xLe2g(π+θ)x. Then from (6.65)

we can find the asymptotics of T(x) at x→ 0, and combining all these analytical properties

together we can fix it uniquely to be

T(x) = sinh(2πu)e2gθ(x−1/x)PL(x), (6.67)

where PL(x) should be a rational function with behavior ∼ xL at infinity. Since T(x)

should not have singularities apart from x = 0 and x = ∞, the function PL must be a

polynomial in x and 1/x. Moreover, (6.65) means that PL(−1/x) = −PL(x) and hence

we can write

PL(x) = C1x
L + C2x

L−1 · · ·+ (−1)LC1x
−L. (6.68)

To find T(x) explicitly it only remains to determine the coefficients Ci. This is straightfor-

ward to do by imposing the condition that the right hand side of (6.67) does not contain

powers of x from −L to L in its Laurent expansion (as follows from (6.64)) which must

be the case since Q− is regular at the origin.

The energy Before proceeding with fixing completely the Baxter function T(x), let us

explain how to extract from it the value of the energy. To do this we will use the first

FINLIE equation (6.35). At large u each of the kernels K̂a in its right hand side decays as

38Strictly speaking this is so for −π < θ < π. Using periodicity in θ we can always restrict ourselves to

this range.
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1/u, so the whole sum is proportional to the sum in the definition of ΓL(g) (6.17). Hence

we get

ΓL(g) = −i(φ− θ)θ lim
u→∞

uρ(u). (6.69)

The density is defined through Q± in (6.49), so we can find the asymptotics of Q± from

(6.67), plug them into (6.49) and finally get

ΓL(g) = −2(φ− θ)g
[
− C2

2C1
+
c

2
+ gθ

]
, (6.70)

where c is the leading expansion coefficient of Q±:

Q±(x) ' 1∓ cx , x→ 0. (6.71)

Notice that the coefficients C1, C2 are also encoded in Q±: from (6.64), (6.67) we find

Q±(x) ' sinh(2πu)

[
C1

x
± 2gθC1

x2
∓ C2

x2
+ . . .

]
, x→∞ . (6.72)

Now we have all the necessary tools to obtain the energy explicitly.

The L = 0 case Let us first discuss the L = 0 case, because it is technically simpler.

The function PL(x) from (6.67) is then just a constant,

PL(x) = C1. (6.73)

To fix it we need to know the expansion of (6.67) in powers of x. Using that the exponent

of x + 1/x is a generating function for the modified Bessel functions of the first kind,

e2πg(x+1/x) =
∞∑

n=−∞
In(4πg)xn, we get the expansion

sinh (2πg(x+ 1/x)) e2gθ(x−1/x) =
+∞∑

n=−∞
Iθnx

n, (6.74)

where Iθn are the “deformed” Bessel functions

Iθn =
1

2
In

(
4πg

√
1− θ2

π2

)[(√
π + θ

π − θ

)n
− (−1)n

(√
π − θ
π + θ

)n]
. (6.75)

Below we will omit the argument of In, always assuming it to be the same as in (6.75).

The expansion (6.74) allows us to write the Baxter function (6.67) as

T(x) = e+2gθxxQ−(x) +
e−2gθ/x

x
Q+(1/x) = C1

+∞∑
n=−∞

Iθnx
n.

We can now find Q− as the regular part of the Laurent expansion of T:

Q−(x) = C1
e−2gθx

x

+∞∑
n=1

Iθnx
n. (6.76)
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From (6.44) we see that Q±(0) = 1, so setting x = 0 in the last equation we fix C1 as

C1 =

√
π2 − θ2

πI1
. (6.77)

Since L = 0 we have C2 = 0, while the coefficient c in (6.71) is read off from (6.76):

c = −2gθ +
2θ√

π2 − θ2

I2

I1
. (6.78)

Then from (6.70) we get the energy

ΓL(g) = −2(φ− θ) θg√
π2 − θ2

I2

(
λ̃1/2

)
I1

(
λ̃1/2

) , λ̃ = (4πg)2
(

1− θ2

π2

)
. (6.79)

Remarkably, this is precisely the localization result of [151]! This is the first successful

check of our construction.

Non-zero L Let us now find the explicit expression for the energy at any L.

First we need to compute the coefficients Ck, using the equation (6.67). From (6.64)

we see that the left hand side of (6.67) should not contain terms with powers of x from

−L to L, and also the coefficient of the xL+1 term should be 1. After we expand the right

hand side according to (6.74) this condition generates 2L+1 equations for 2L+1 variables

Ck: 
L∑

k=−L
Iθm−kCk+L+1 = 0, m = −L+ 1 . . . L,

L∑
k=−L

Iθm−kCk+L+1 = 1, m = L+ 1.

(6.80)

This linear system can be formulated in matrix form:

(M2L)ikCk+L+1 = δi,L+1, (6.81)

where

MN =



Iθ1 Iθ0 · · · Iθ2−N Iθ1−N

Iθ2 Iθ1 · · · Iθ3−N Iθ2−N
...

...
. . .

...
...

IθN IθN−1 · · · Iθ1 Iθ0

IθN+1 IθN · · · Iθ2 Iθ1


. (6.82)

By Cramer’s rule we obtain the solution

Ck =
detM(2L+1,k)

2L

detM2L
, (6.83)
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whereM(a,b)
N is the matrix obtained fromMN by deleting ath row and bth column. Plug-

ging these coefficients into PL(x) we can combine it into a determinant again:

PL(x) =
1

detM2L

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Iθ1 Iθ0 · · · Iθ2−2L Iθ1−2L

Iθ2 Iθ1 · · · Iθ3−2L Iθ2−2L

...
...

. . .
...

...

Iθ2L Iθ2L−1 · · · Iθ1 Iθ0

x−L x1−L · · · xL−1 xL

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (6.84)

Notice that now from (6.67) we have the Baxter function T(x) in a fully explicit form.

In particular, one can easily find the functions Q± encoding the Bethe roots. Namely, Q−

is the regular part of the Laurent expansion of T(x),

Q−(x) = x−L−1e−2gθx [T(x)]+ , (6.85)

while Q+(x) = Q−(−x).

It remains to find c — the coefficient of expansion of Q± which enters the expression

for ΓL(g). Consider expansion of (6.67) around x = 0, taking into account the definition

of T (6.64):

(1+2gθx+ . . . )xL+1(1+ cx+ . . . )+negative powers =
+∞∑

n=−∞
Iθnx

n
L∑

k=−L
Ck+L+1x

k (6.86)

Equating the coefficients of xL on both sides we get

2gθ + c =

L∑
k=−L

IL+2−kCk+L+1 . (6.87)

Plugging the solution for Ck into the right hand side of the last equation we see that it

combines nicely into a ratio of two determinants, resulting in

c = −2gθ +
detM(2L+1,2L+2)

2L+1

detM2L
. (6.88)

The determinants detM(a,b)
N satisfy a number of useful identities which we describe in

appendix B.6. They allow us to bring the expressions for c and C1/C2 to the following

form:

c = −2gθ +
detM(1,2)

2L+1

detM(1,1)
2L+1

, C1/C2 =
detM(1,2)

2L

detM(1,1)
2L

. (6.89)

Finally we can plug (6.89) into (6.70) and write our main result for ΓL(g)

ΓL(g) = (φ− θ)g (r2L−1 − r2L) , rN =
detM(1,2)

N+1

detMN
. (6.90)



6.3 Solution from Twisted QSC 100

Using the identities given in appendix B.6, we can represent it in a compact form. The

final formula reads

ΓL(g) =
φ− θ

4
∂θ log

detM2L+1

detM2L−1
. (6.91)

As an example, for L = 1 it reduces to

Γ1(g) = (φ− θ)g 1

Iθ1

(
Iθ2
)3 − 2Iθ1I

θ
2I

θ
3 +

(
Iθ1
)2
Iθ4(

Iθ1
)2 − Iθ1Iθ3 +

(
Iθ2
)2 , (6.92)

while for higher values of L the expression becomes quite lengthy.

A form more suitable for some calculations is

ΓL(g) = (−1)L+1(φ− θ)g
detM(1,2L+2)

2L+1

detM2L
. (6.93)

Notice that here the matrix in the numerator is just M2L with all indices of deformed

Bessel functions Iθn increased by 1.

The explicit result for the energy (6.91) concludes our analytical solution of the cusp

TBA equations. In section 6.4 we will describe several verifications of the result.

6.3 Solution from Twisted QSC

In this section we will see that the result obtained earlier in this chapter using cum-

bersome TBA calculations can be obtained much easier from QSC. For this the QSC

construction described in chapter 4 has to be modified to take into account the effect

of the “boundary”[166]. As the usual QSC is equivalent to TBA, this modified QSC is

equivalent to the boundary TBA of [155] and [95]. We will not reproduce here neither the

derivation nor the full description of the boundary QSC, presenting only the minimum

necessary to describe the LO solution for the cusped Wilson line.

Most part of the usual QSC construction still holds for the boundary one. The only

difference comes from the asymptotics of µab, ωij and the Q-functions. Again, as in the

case of non-integer S, one has to allow for exponential asymptotics. In particular, for Pa

one finds

P1 ∼ A1u
−1/2−Leθu(1 + a1/u+ . . . ) (6.94)

P2 ∼ A2u
−1/2−Le−θu(1− a1/u+ . . . ) (6.95)

P3 ∼ A3u
3/2+Leθu(1 + b1/u+ . . . ) (6.96)

P4 ∼ A4u
3/2+Le−θu(1− b1/u+ . . . ) (6.97)
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For the sake of brevity here we will focus on the case L = 0, although it is of course not

difficult to obtain the solution for arbitrary L. In a general situation global charges are

related to the expansion coefficients of Pa and Qa in way analogous to (4.50), (4.52) but

far more complicated. One need to expand Pa to the four order at large u in order to

write down a closed system for asymptotic coefficients! Fortunately, in the leading order

of near-BPS limit the situation simplifies. It turns out that

∆ = (θ − φ)

√
a2

1 − a1b
(0)
2 + b

(0)
3 , (6.98)

where b
(0)
n = lim

θ→φ
(θ−φ)bn, Thus we should solve the equations of QSC and the coefficients

of expansion of P1 and P3 will yield the energy.

In the near-BPS limit of twist operators we studied in chapter 5 we found that Pa

were small. For the near-BPS Wilson line operator we study here we make an assumption

that Pa will be small as well, and later find that this assumption produces a consistent

solution. If Pa are small, the P̃a are small as well and so are the discontinuities of µab.

This means that in the leading order µab are constants or periodic functions. Taking into

account that Pf µ = 1 and the γ-transformations (4.61) it is possible to bring the leading

order solution for µab to the following form

µ12 = A sinh(2πu), µ13 = 1, µ14 = 0, µ24 = −1, µ34 = 0. (6.99)

Plugging this solution into the system (4.46) we obtain

P̃1 = A sinh 2πu P3 −P2 (6.100)

P̃2 = A sinh 2πu P4 −P1 (6.101)

P̃3 = P4 (6.102)

P̃4 = P3 (6.103)

It is easy to find the solution to this system of equations with asymptotics (6.94), starting

from P3 and P4. The equations for P1 and P2 are solved by the same method as the

Baxter equations (6.64). The result is

P1 = B
√
uegθ(x−1/x)

∞∑
n=1

Iθnx
−n (6.104)

P2 = B
√
ue−gθ(x−1/x)

∞∑
n=1

I−θn x−n (6.105)

P3 = B
√
uegθ(x−1/x) (6.106)

P4 = B
√
ue−gθ(x−1/x) (6.107)
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From this solution one finds that

a1 = g
Iθ2
Iθ1
− 2θg2, b2 = − 4g2φ

θ − φ
, b3 =

4g4φ2

θ − φ
, (6.108)

so the energy is

∆ = (θ − φ)
Iθ2
Iθ1

(6.109)

which after plugging in the definition (6.75) of Iθn exactly reproduces the result (6.79)

Let us now confirm the conjecture made in section 4.2 about the absence of cuts in

η (we switch back to the case of arbitrary L). We know a formula (6.49) for η in terms

of Q±. It is easy to see that Q± are related to P1 and P2 from QSC. Indeed, Q± are

determined from the Baxter equation (6.64) where T (u) is given by (6.67). On the other

hand, the equation (6.100) for P1 takes a similar form after plugging in the solution for

P3. This allow to establish the following relationship between P1, P2 and Q±.

P1 ∝
√
ue2gθxQ− (6.110)

P2 ∝
√
ue2gθxQ+ (6.111)

So we express Q± through P1, P2 using (6.111) to obtain

η2 ∝ P1P2P̃1P̃2

sinh(2πu)2
∝ P1P2P̃1P̃2

µ2
12

(6.112)

Although in general P̃a can have an infinite ladder of cuts, for this particular solution

µab has no cuts in the leading order and, as a consequence, P̃a has only the cut on the

real axis. This cut is however cancelled in the combination appearing in the numerator.

Thus we see that from the point of view of QSC the conjecture in question is a simple

consequence of the analytical properties of Pa and µab.

6.4 Weak and strong coupling limits

While for L = 0 our result matches fully the prediction from localization, at nonzero L

our result is new. Here we will show that it passes several nontrivial checks.

At strong coupling our computation should reproduce the energy of the corresponding

classical string solution which was computed in [91]. To do this we first expanded the

energy at large g and fixed L for several first values of L. The dependence on L happened

to be polynomial which allows us to easily extend the result to an arbitrary L (see (B.57)):

ΓL
2(φ− θ)θ

= − g√
π2 − θ2

+
6L+ 3

8 (π2 − θ2)
−

3
((

6L2 + 6L+ 1
)
π2 − 2θ2(L+ 1)L

)
128gπ2 (π2 − θ2)3/2

+ . . .

(6.113)
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To compare with the classical string energy we re-expanded this formula in the regime

when L and g are both large, but L = L/g is fixed. Then at leading order in g we found

(more details are given in appendix B.5)

ΓL
2(φ− θ)θ

=

(
− g
π

+
3L

4π2
− 9L2

64gπ3
− 5L3

256g2π4
+

45L4

16384g3π5

)
(6.114)

+ θ2

(
− g

2π3
+

3L

4π4
− 21L2

128gπ5
− L3

16g2π6
− 105L4

32768g3π7

)
+ θ4

(
− 3g

8π5
+

3L

4π6
− 99L2

512gπ7
− 3L3

32g2π8
− 2085L4

131072g3π9

)
+ θ6

(
− 5g

16π7
+

3L

4π8
− 225L2

1024gπ9
− L3

8g2π10
− 7905L4

262144g3π11

)
+ θ8

(
− 35g

128π9
+

3L

4π10
− 1995L2

8192gπ11
− 5L3

32g2π12
− 97425L4

2097152g3π13

)
,

which perfectly matches the expansion of the classical string energy from [91]! Since the

classical energy was derived without appealing to integrability, this matching is a direct

test of our calculation for nonzero L. Relation to the classical string solution is discussed

in much more detail in section 7.4 of the next chapter.

At weak coupling we can compare our result against the leading Lüscher correction

to the energy. This correction was computed, as well as shown to follow from the TBA

equations, in [95] and [155] for generic φ and θ. When θ ∼ φ it reduces to

ΓL = (φ− θ)g2L+2 (−1)L(4π)1+2L

(1 + 2L)!
B1+2L

(
π − θ

2π

)
+O(g2L+4) (6.115)

where B1+2L are the Bernoulli polynomials. For L = 0, 1, 2, 3, 4 we have checked that this

expression precisely coincides with the leading weak-coupling term of our result.

7 Quasi-classical limit of AdS5/CFT4

It has been known for a long time that IIB string theory on AdS5/CFT4 background can be

rewritten as a sigma-model on a coset space [171]. This representation is particularly useful

for exploring the integrability of the theory in the quasiclassical limit: for every closed

string solution of the equation of motions one can construct an algebraic curve, in which

all the conserved charges will be encoded as holomorphic integrals [38, 172, 98, 39]. The

topics presented in this chapter are united by this approach. First in section 7.1 we give a

minimal introduction to this method following the papers cited above. Then in section 7.2

we will compare classical curve formulation obtained from the coset model with the quasi-

classical limit of QSC and find that they indeed agree. In 7.4 we present a result concerning
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the quasiclassical limit of the cusp anomalous dimension computed in the previous chapter.

This involves constructing an algebraic curve for an open string. As opposed to closed

strings, for the open string theory there is no systematic method of constructing the

algebraic curve, and our work can serve as a step for building such a method. Section

7.5 will comment on a certain reciprocity-like property of large L expansion of the cusp

anomalous dimension found in [173] after we published our result [11]. Finally in section

7.6 we use this reciprocity-like property to derive the 1-loop correction to classical energy.

7.1 Metsaev-Tseytlin sigma-model

Let us, following [171], rewrite the string action as a coset model. We notice that the

symmetry group of N = 4 SYM factored by the four-dimensional conformal group and by

the R-symmetry form a coset
PSU(2, 2|4)

SO(4, 1)× SO(5)
(7.1)

containing AdS5 × S5 as its bosonic subgroup. This gives us a way of parametrizing the

worldsheet: let g(σ, τ) be a supermatrix-valued function of worldsheet coordinates taking

values in the coset. Since we are considering closed strings, the function has to be periodic

g(σ, τ) = g(σ + 2π, τ). It also has to satisfy sdet g = 1. The current J = −g−1dg

constructed for g(σ, τ) in this way is flat and traceless by construction:

str J = 0, dJ − J ∧ J = 0 (7.2)

An important property of psu(2, 2|4) algebra is existence of a Z4 automorphism Ω (Ω4 = 1)

[171, 174, 175, 176]. This implies that the algebra can be decomposed into four subspaces

according to Z4 grading:

G = H+ P +Q1 +Q2 (7.3)

In terms of the coset (7.1) H is the denominator algebra, P is spanned by the remaining

bosonic generators and Qi are two copies of (4,4) representation of H.

The Metsaev-Tseytlin action for the GS superstring in AdS5 × S5 is given by

S =

√
λ

4π

∫
str
(
J (2) ∧ ∗J (2) − J (1) ∧ J (3)

)
+ Λ ∧ strJ (2), (7.4)

where J (i) are components of the current belonging to the corresponding subspaces in

the decomposition (7.3). The last term ensures that J (2) is supertraceless. Let us now

construct a new connection, depending on a parameter x:

A(x) = J (0) +
x2 + 1

x2 − 1
J (2) − 2x

x2 − 1
(∗J (2) − Λ) +

√
x+ 1

x− 1
J (1) +

√
x− 1

x+ 1
J (3) (7.5)
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It turns out that the string equations of motion can be rewritten as the flatness condition

of this connection

dA−A ∧A = 0 (7.6)

One can construct monodromy of the connection by integrating it around the worldsheet

at constant τ

Ω(x) = Pexp

∮
γ

A(x) (7.7)

Since the connection is flat, the monodromy depends only trivially on the path of integra-

tion. In particular, shifting τ only changes Ω by a similarity transformation and so the

eigenvalues of the monodromy are independent of the path of integration. We parameterize

them in the following form:

{eip̂1(x), eip̂2(x), eip̂3(x), eip̂4(x)|eip̃1(x), eip̃2(x), eip̃3(x), eip̃4(x)} (7.8)

Since pi(x) are logarithms of eigenvalues, they can be considered as eight sheets of a

Riemann surface parameterized by x. The Riemann surface will have branch points at

values of x at which some of the eigenvalues coincide. At such point the values of the

corresponding pi have to differ by a multiple of 2π. The branch points are connected with

cuts, which can thus be of different types: a cut connecting sheet i with sheet j will be

denoted by Cij . Each type of cuts is associated with different type of excitations. In fact,

only the following types of excitation exist in the theory

i = 1̃, 2̃, 1̂, 2̂ j = 3̃, 4̃, 3̂, 4̂ (7.9)

The sheets of the surface, otherwise called quasimomenta, satisfy

pi − pj = 2πnij , x ∈ Cij (7.10)

The integers nij are called mode numbers.

The number of excitations in each of the cuts Cij is measured by so-called filling

fractions Sij , which are calculated as

Sij = ±
√
λ

8π2i

∮
Cij

(
1− 1

x2

)
pi(x)dx (7.11)

It is possible to show that the structure of the coset (7.1) implies the following sym-

metry of the Riemann surface pi(x):

p̃1,2(x) = −2πm− p̃2,1(1/x) (7.12)

p̃3,4(x) = +2πm− p̃4,3(1/x) (7.13)

p̂1,2,3,4(x) = −p̂2,1,4,3(1/x) (7.14)
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As we have mentioned before, the global charges of the solution are encoded in the

holomorphic integrals of the curve. The most straightforward way of extracting these

charges is to consider the asymptotics at infinity (which, as follows from the equation

above, are also related to the expansion at x = 0)

p̂1

p̂2

p̂3

p̂4

p̃1

p̃2

p̃3

p̃4



≈ 2π

x
√
λ



+E − S1 + S2

+E − S1 − S2

−E − S1 − S2

−E + S1 + S2

+J1 + J2 − J3

+J1 − J2 − J3

−J1 + J2 + J3

−J1 − J2 − J3



(7.15)

One can use the framework of a Riemann surface to go beyond the classical limit and

consider one-loop corrections, i.e. excitations around the classical solutions [177, 99].

7.2 Classical Limit of QSC

The classical curve presented above was, of course, known long before QSC, but here we

will show it can be derived from QSC as its special limit (see section 5 of [8])

It is well known that the classical curve can be obtained not only through the mon-

odromy eigenvalues construction, but also as a classical limit of ABA. This gives the correct

result because the wrapping corrections do not contribute to the classical expansion. In

order to do so one takes the strong coupling limit, at the same time scaling the length L

and the number of excitations of each kind Ki so that L/g, Ki/g are fixed. It is convenient

to pack the roots into resolvents

Ha(x) =
4π√
λ

x2

x2 − 1

∑
j

1

x− x (ua,j)
(7.16)

In the classical limit the roots condense into cuts. The quasimomenta are then defined

through the resolvents and the cuts of the resolvents become cuts connecting some of the

eight sheets of the Riemann surface.

This procedure can be applied to ABA described in section 4.5. Consider the ratio

Q+
1 /Q

−
1 , which using the ansatz (4.73) can be rewritten as

Q+
1

Q−1
=
R+
∅|1B

+
12|1

R−∅|1B
−
12|1

B−(−)

B+
(+)

(
x+

x−

)L/2
σ−

σ+
(7.17)
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We expand the right hand side at g → ∞, assuming x is fixed and introduce local

charges

Qn =
4π√
λ

∑
j

x2−n(u4,j)

x2(u4,j)− 1
(7.18)

In this notation the ratio above can be written as

Q+
1

Q−1
= exp i

(
4πJ x
x2 − 1

+H3(1/x) +H1(x)−H4(x) +
xQ2

x2 − 1

)
(7.19)

The right hand side is exactly eip1̂(x), with quasimomentum p1(x) defined in the pre-

vious section. Similar calculations can be performed for all Qi and Pa, resulting in

Pa(u) = Pa|∅(u) exp

−g u/g∫
0+i0

dzpã(z)

 (7.20)

Qi(u) = P∅|i(u) exp

−g u/g∫
0+i0

dzpî(z)

 (7.21)

The preexponents can be constrained by relating Pa with Qi through Qa|i, using

equations (4.8) and (4.10)-(4.11), which is described in detail in [8].

7.3 Classical string solutions

In the classical limit it is sometimes possible to write down the solution of the string

equations of motion explicitly or define it through the algebraic curve. Let us recall that

in this limit, when the coupling goes to infinity, the global charges scale as

Si = Si/
√
λ, Ji = Ji/

√
λ, E = E/

√
λ. (7.22)

Often the goal is to find a strong coupling expansion of the string energy (conformal

dimension of the state), which looks like

E =
√
λE0 (S,J ) + E1 (S,J ) +

1√
λ
E2 (S,J ) + . . . (7.23)

Several classes of solutions are well studied and relevant for the problems we consider

in this thesis. One example is called rotating folded string and corresponds to the quasi-

classical limit of operators of sl(2) sector described in section 4.4. Operators of this sector

have three non-zero charges, two in AdS and one on the sphere, which in the quasiclassical

limit scale as S1 =
√
λ S, ∆ =

√
λ E , and J1 =

√
λ J .

The explicit form of the algebraic curve for this class of solutions was found in [148].

As we said above, in the classical limit the Bethe roots condense and form cuts. The
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algebraic curve of the folded string has two symmetric cuts with real branch-points ±a,

±b, which satisfy 1 < a < b. Two of the sheets are given by

p2̂

4π
= πn− J

2

(
a

a2 − 1
− x

x2 − 1

)√
(a2 − 1)(b2 − x2)

(b2 − 1)(a2 − x2)
+ (7.24)

+
2abSF1(x)

(b− a)(ab+ 1)
+

J (a− b)F2(x)

2
√

(a2 − 1)(b2 − 1)
(7.25)

p2̃

4π
=

J x
2(x2 − 1)

(7.26)

where

F1(x) = iF

(
i sinh−1

√
(b− a)(a− x)

(b+ a)(a+ x)

(
a+ b

a− b

)2
)
, (7.27)

F2(x) = iE

(
i sinh−1

√
(b− a)(a− x)

(b+ a)(a+ x)

(
a+ b

a− b

)2
)

(7.28)

The rest of the quasimomenta can are determined by the symmetry relations (7.12). The

integer n is called the mode number and is related to the number of spikes of the curve.

The branch points are implicitly determined by the global charges

S = 8πn
ab+ 1

ab

(
bE

(
1− a2

b2

)
− aK

(
1− a2

b2

))
(7.29)

J =
16πn

b
K

(
1− a2

b2

)√
(a2 − 1)(b2 − 1) (7.30)

E = 8πn
ab− 1

ab

(
bE

(
1− a2

b2

)
+ aK

(
1− a2

b2

))
(7.31)

It is worth noting that although the classical solution assumes the global charges are

infinite, predictions for strings with finite charges can be obtained from it by taking the

limit S,J → 0 [179]. In particular, in the limit S → 0 the square of the classical energy

of a folded string has a form [148, 147]

D2
classical = J 2 + 2S

√
J 2 + 1 + S2 2J 2 + 3

2J 2 + 2
− S3 J 2 + 3

8 (J 2 + 1)5/2
+O

(
S4
)
,(7.32)

where Dclassical ≡ ∆classical/
√
λ.

The one-loop correction to the classical energy obtained by quasi-classical quantization

in the same limit is given by

∆sc '
−S

2 (J 3 + J )
+ S2

3J 4 + 11J 2 + 17

16J 3 (J 2 + 1)5/2
−
∑
m>0
m 6=n

n3m2
(
2m2 + n2J 2 − n2

)
J 3 (m2 − n2)2 (m2 + n2J 2)3/2

(7.33)

If both J and S are taken to be finite, the energy has the following scaling

E = λ1/4a0 +
1

λ1/4
a2 + . . . (7.34)
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In particular, for a folded string from the classical energy and the one-loop correction

one gets [148]

E = λ1/4
√

2S +
2J2 + 3S2 − 2S

4(2S)1/2λ1/4
(7.35)

7.4 Algebraic curve for cusped Wilson line

In this section, based on our paper [11], we perform a quasi-classical analysis of the result

for the anomalous dimension for a cusped Wilson line with an insertion of a scalar operator

at the cusp (6.3). Such an analysis is useful, for example, as a strong coupling test of the

result: the cusped Wilson line operator is dual to an open string in AdS5×S5, the classical

solution of which was studied in [91, 95] and described here in section 7.4.2. The cusp

anomalous dimension is then dual to the energy of the string. As one might recall, the

result (6.90) included a ratio of two determinants with sizes proportional to L. This

makes taking the classical limit, with L→∞, not entirely straightforward. The solution

to this problem is to reformulate the formula as an expectation value in some matrix

model. Then the classical value of ΓL will be given by the saddle-point approximation

of a matrix integral. An elegant way to describe the solution in the classical limit is the

algebraic curve method [38, 39, 98, 180, 181] which we described earlier in this chapter.

For a more detailed review of the method, see [99]. Let us notice that the algebraic curve

construction works in the regime L ∼
√
λ → ∞, otherwise the curve is degenerate, with

its cuts collapsing to poles. In the limit of θ = 0, φ � 1 the algebraic curve in question

was found in [91] (the L = 0 case was also considered in [100]) and here we generalize this

construction for the general near-BPS case φ ≈ θ.

In section 7.4.1 we reformulate the problem in the language of matrix models, show-

ing how the cusp anomalous dimension can be expressed as an expectation value in the

aforementioned matrix model. In section 7.4.2 we review the corresponding classical string

solution and in section 7.4.3 we find the algebraic curve for θ ≈ φ and using it derive the

classical energy. We show that our results indeed agree with the known classical expansions

for the cusp anomalous dimension.

7.4.1 Matrix model reformulation

Quasiclassical limit in our case means taking L to infinity with L/
√
λ fixed. This be-

comes considerably easier once we realize that the cusp anomalous dimension (6.5) can

be expressed in terms of an expectation value of some operator in a matrix model. In
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this section we will show how to use this approach to find the large N expansion of the

determinant of MN defined in (6.82).

One can check that the quantities Iθn defined in (6.75) have the following integral

representation

Iθn =
1

2πi

∮
dx

xn+1
sinh(2πg (x+ 1/x)) e2gθ(x−1/x), (7.36)

where the integration contour is the unit circle. This makes it possible to write the

determinant of MN as

detMN =

∮ N+1∏
i=1

dxi
2πi

e
2g θ

(
xi− 1

xi

)
sinh

(
2πg

(
xi +

1

xi

))
× detX, (7.37)

where

detX =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x−2
1 x−1

1 . . . xN−1
1 xN−2

1

x−3
2 x−2

2 . . . xN2 xN−1
2

...
...

. . .
...

...

x−N−1
N x−NN . . . x−2

N x−1
N

x−N−2
N+1 x−N−1

N+1 . . . x−3
N+1 x−2

N+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∏N+1
i<j (xi − xj)∏N+1
i=1 xi+1

i

, (7.38)

and we recognize the numerator as the Vandermonde determinant ∆(xi). We can further

simplify the final result by anti-symmetrizing the denominator, which we can do because

everything else in the integrand is anti-symmetric and the integration measure is symmetric

w.r.t xi. Thus by utilizing the identity

∑
σ

(−1)|σ|
N+1∏
i=1

x−i−1
σi =

∆(xi)

(N + 1)!

N+1∏
i=1

x−N−2
i , (7.39)

we can replace detX in the integrand by

detX ′ =
∆2(xi)

(N + 1)!

N+1∏
i=1

1

xN+2
i

. (7.40)

Thus finally we get the following expression

detMN =
1

(2πi)N+1

∮ N+1∏
i=1

dxi

xN+2
i

∆2(xi)

(N + 1)!
sinh(2πg (xi + 1/xi)) e

2gθ(xi−1/xi), (7.41)

which indeed has the structure of a partition function of some matrix model39. It now

becomes a matter of simple algebra to show that the cusp anomalous dimension (6.5) can

be written in terms of expectation values in this matrix model, namely

ΓL(g) = g
φ− θ

2

 〈2L+1∑
i=1

(
xi −

1

xi

)〉
2L+1

−

〈
2L−1∑
i=1

(
xi −

1

xi

)〉
2L−1

 , (7.42)

39Namely, it is equal to the partition function of a two-matrix model. We thank I.Kostov for discussions

related to this question.
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where 〈. . . 〉N denotes the normalized expectation value in the matrix model of size N with

the partition function defined in (7.41). Note that this formula is exact and we have not

yet taken any limits.

Saddle point equations In this section we will explore the classical L ∼
√
λ→∞ limit

of the matrix model (7.41). As usual in matrix models, when the size of matrices becomes

large, the partition function is dominated by the solution of the saddle point equations.

In the leading order it is just equal to the value of the integrand at the saddle point. Here

we work in this approximation, leaving the corrections (beyond the first one calculated in

section 7.6) for future work.

The partition function (7.41) can be recast in the form 40

detM2L =
1

(2πi)2L+1

1

(2L+ 1)!

∮ 2L+1∏
i=1

dxi e
−S(x1,x2,...,x2L+1), (7.43)

where the action is given by

S =
2L+1∑
i=1

[
2gθ

(
xi −

1

xi

)
− (2L+ 2) log xi

]
+ 2

2L+1∑
i<j

log(xi − xj) + (7.44)

+
2L+1∑
i=1

log sinh

(
2πg

(
xi +

1

xi

))
.

The saddle point equations ∂S/∂xj = 0 now read41

gθ

(
1 +

1

x2
j

)
− L

xj
+

2L+1∑
i 6=j

1

xj − xi
+ πg

(
1− 1

x2
j

)
coth

(
2πg

(
xj +

1

xj

))
= 0. (7.45)

We can further simplify them by noting that a large coupling constant g appears inside the

cotangent and since the roots xi are expected to be of order 1, with exponential precision

it is possible to replace

coth

(
2πg

(
xj +

1

xj

))
≈ sgn(Re(xj)). (7.46)

Finally we bring the equations to a more canonical and convenient form and get the

following result,

− θ
x2
j + 1

x2
j − 1

+
L

g

xj
x2
j − 1

− 1

g

x2
j

x2
j − 1

2L+1∑
i 6=j

1

xj − xi
= π sgn(Re(xj)). (7.47)

An alternative way of finding these values xi is to consider the function PL(x) defined by

(6.84), which played an important role in chapter (6). The numerator of (6.84) is the same

40we take N = 2L.
41Technically the x−1

j term has a coefficient of L+1, but since we are taking L→∞ we chose to neglect

it for simplicity.
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y

r

1

r

Figure 10: Distribution of roots on the complex plane for θ = 0 (gray) and θ = 1

(black) on the left and the condensation of the roots to corresponding smooth cuts on the

right with the algebraic curve parameters r and ψ identified. The dashed circle is the unit

circle.

as detM2L except in the last line x2L+1 is replaced by x which is not integrated over.

In the classical limit all integrals are saturated by their saddle point values, i.e. one can

remove the integrals by simply replacing xi → xcli . If we replace x with any saddle point

value xcli the determinant will contain two identical rows and will automatically become

zero, thus the zeros of PL(x) are the saddle point values. On the complex plane they are

distributed on two arcs as shown in Fig. 10. As expected, for the case θ = 0 we recover

two symmetric arcs on the unit circle [91].

Now, following [39, 38, 91], we introduce the quasimomentum p(x) as

p2L+1(x) = −θ x
2 + 1

x2 − 1
+
L

g

x

x2 − 1
− 2L

g

x2

x2 − 1
G2L+1(x), (7.48)

where the resolvent G2L+1(x) is

G2L+1(x) =
1

2L

2L+1∑
k=1

1

x− xk
. (7.49)

Sometimes we will omit the index of p2L+1. The motivation for introducing p(x) is that

the saddle point equations (7.47) expressed through p(x) take a very simple form

1

2
(p(xi + iε) + p(xi − iε)) = π sgn(Re(xi)). (7.50)

In the classical limit the poles of the quasimomentum condense and form two cuts. In

anticipation of this fact we introduce the shifts ±iε in the equation above, which in the

classical limit will refer to taking the argument of the quasimomentum to one or the other

side of the cut.
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Explicit formula for the algebraic curve The quasimomentum (7.48) introduced

in the previous section is a convenient object to consider when taking the classical limit

L ∼
√
λ→∞, because in this limit it is related to the algebraic curve of the corresponding

classical solution. In this section we will construct this curve explicitly.

In the classical limit the poles of p(x), which we denote as xi, are governed by the

saddle-point equation and condense on two cuts in the complex plane, as shown in Fig.

10. The saddle-point equation (7.47) has a symmetry x→ −1/x, so does the set of poles xi.

For the quasimomentum (7.48) this symmetry manifests as the identity p(x) = −p(−1/x).

Thus we conclude that the two cuts are related by an x → −1/x transformation. This

and the invariance of the saddle-point equation under complex conjugation implies that

the four branch points can be parameterized as {r eiψ, r e−iψ,−1/r eiψ,−1/r e−iψ}. Note

that in the case θ = 0 the symmetry is enhanced to p(x) = −p(−x) and p(1/x) = p(x),

which is not true for arbitrary θ.

An important observation which will help us build an explicit formula for the curve

is that while p(x) satisfies the equation (7.50) which has different constants on the right

hand side for the two different cuts, the corresponding equation for p′(x) has a zero on

the right hand side for both cuts42, thus we expect p′(x) to have a simpler form than

p(x). Thus one can write down an ansatz for the derivative p′(x) using the symmetries

and analytical properties of p(x) and then integrate it. The form of the expression we get

is analogous to the curve constructed in [98], which also helps us to construct the ansatz.

First, p(x) has four branch points and according to (7.50) its derivative changes sign

on each cut, hence all the cuts are of square-root type. One can write p′(x) ∝ 1/y(x),

where

y(x) =
√
x− reiψ

√
x− re−iψ

√
x+

1

r
eiψ

√
x+

1

r
e−iψ. (7.51)

Second, since the algebraic curve is obtained from (7.48) in the classical limit, p(x) should

have simple poles at x = ±1. Finally, from (7.48) we can get the behaviour at infinity:

p′(x) ≈ L

g

1

x2
+O

(
1

x3

)
. (7.52)

By using the knowledge about these singularities and asymptotics we can fix p(x) com-

pletely. Based on what we know up to now we write down our ansatz for the derivative

p′(x) =
A1x

4 +A2x
3 +A3x

2 +A4x+A5

(x2 − 1)2
√
x− reiψ

√
x− re−iψ

√
x+ 1

re
iψ
√
x+ 1

re
−iψ

. (7.53)

42The sign function in the right hand side of (7.50) has a non-zero derivative only on the imaginary axis,

i.e. away from the cuts.
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The polynomial in the numerator is of order four in order to maintain the correct asymp-

totics, and below we fix its coefficients using the properties of the quasimomentum.43

The x → −1/x symmetry for the derivative implies that A1 = A5 and A2 = −A4.

Next, the condition that p(x) has only simple poles at x = ±1 requires the residues of the

order-one poles of p′(x) to vanish, which fixes A2 to be

A2 = −(2A1 +A3) r (r2 − 1) cosψ

r4 − 2 r2 cos 2ψ + 1
. (7.54)

We fix the two remaining unknowns A1 and A3 after integrating the p′(x). We do not

write the intermediate results of the integration as the expressions are enormous without

any apparent structure. Looking back at (7.50) we see that at the branchpoints

p(xbp) = ±π. (7.55)

We use this condition to fix A1 and we get

A1 =
A3

2

K1 − E1

E1 +K1 − 2 a2
rK1 cos2(ψ)

, (7.56)

where

E1 = E
(
a2
r sin2(ψ)

)
, K1 = K

(
a2
r sin2(ψ)

)
, ar =

2r

r2 + 1
. (7.57)

Finally, imposing x→ −1/x symmetry on the quasimomentum (before it was only imposed

on p′(x)) yields

A3 =
8

ar

(
E1 +K1 − 2 a2

r cos2(ψ)K1

)
. (7.58)

As expected, after plugging these coefficients into p(x) (and using the identities from

appendix C) the whole expression simplifies enormously and we are left with the following

result

p(x) = π − 4 i E1 F1(x) + 4 iK1 F2(x)− ar

(
x+ re−iψ

x+ 1
re
iψ

)(
2/r eiψ

x2 − 1

)
y(x)K1, (7.59)

where

F1(x) = F

sin−1

√√√√(x− re−iψ
x+ 1

re
iψ

)(
eiψ

iar r sinψ

) ∣∣∣∣∣∣ a2
r sin2(ψ)

 , (7.60)

F2(x) = E

sin−1

√√√√(x− re−iψ
x+ 1

re
iψ

)(
eiψ

iar r sinψ

) ∣∣∣∣∣∣ a2
r sin2(ψ)

 . (7.61)

We verified this result numerically by comparing it to the extrapolation of the discrete

quasimomentum (7.48) at large L and got an agreement up to thirty digits. We also

43Comparing with the asymptotic one can immediately see that A1 = L/g, however our objective is to

express p(x) solely in terms of r and ψ, which parameterize the algebraic curve.
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compared this expression at θ = 0 with the quasimomentum obtained in [91] and the

expressions agree perfectly.

The resulting quasimomentum is parameterized in terms of the branchpoints, i.e. the

parameters are the radius r and angle ψ. They are determined in terms of L/g and θ,

which are parameters of the matrix model. We already mentioned that L/g is simply the

constant A1, which we found to be

L

g
= 4

K1 − E1

ar
, (7.62)

and looking back at (7.48) we see that θ = p(0) = −p(∞), hence

θ = −π +
2ar
r
eiψK1

− 4 iK1 E

sin−1

√
eiψ

iar r sinψ

∣∣∣∣∣∣ a2
r sin2(ψ)


+ 4 i E1 F

sin−1

√
eiψ

iar r sinψ

∣∣∣∣∣∣ a2
r sin2(ψ)

 . (7.63)

In the next section the two equations above will be matched with two analogous equa-

tions following from the classical string equations of motion.

7.4.2 Classical string solution

As we have mentioned before, in the classical L ∼
√
λ → ∞ limit ΓL(λ) can be matched

with the energy of an open string. In this section we will describe the corresponding

classical string solution and find its energy.

The class of string solutions we are interested in was introduced in [95] and generalized

in [91]. It is a string in AdS3 × S3 governed by the parameters θ, φ, AdS3 charge E and

S3 charge L; the four parameters are restricted by the Virasoro constraint. The ansatz

for the embedding coordinates of AdS3 and S3 is

y1 + iy2 = eiκτ
√

1 + r2(σ), y3 + iy4 = r(σ)eiφ(σ), (7.64)

x1 + ix2 = eiγτ
√

1 + ρ2(σ), x3 + ix4 = r(σ)eif(σ). (7.65)

The range of the worldsheet coordinate is −s/2 < σ < s/2, where s is to be found

dynamically. The angles θ and φ parameterizing the cusp enter the string solution through

the boundary conditions φ(±s/2) = ±(π − φ)/2 and f(±s/2) = ±θ/2. The equations of

motion and Virasoro constraints lead to the following system of equations (see appendix
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E of [91] for more details, also [182]):

h1(γ, lθ) = h1(κ, lφ), (7.66)

h2(γ, lθ) = θ, h2(κ, lφ) = φ, (7.67)

h3(γ, lθ) = L/g, h3(κ, lφ) = E/g, (7.68)

where

h1(γ, l) =
2
√

2√
γ2 + k2 + 1

K
(
−k2 + γ2 + 1

k2 + γ2 + 1

)
, (7.69)

h2(γ, l) =
2l

k(1 + k2 − γ2)

[
(1 + γ2 + k2) Π

(
k2 − 2l2 − γ2 + 1

2k2

k2 − γ2 − 1

2k2

)
−

−2γ2 K
(
k2 − γ2 − 1

2k2

)]
, (7.70)

h3(γ, l) = −2
√

2

√
γ2 + k2 + 1

γ

[
E
(
−k2 + γ2 + 1

k2 + γ2 + 1

)
−K

(
−k2 + γ2 + 1

k2 + γ2 + 1

)]
, (7.71)

k4 = γ4 − 2γ2 + 4 γ2l2 + 1.

One can see that the variables θ, lθ, γ and L govern the S3 part of the solution, while

φ, lφ, κ and E are their analogues for AdS3. The two parts of the solution are connected

only by the Virasoro condition which leads to (7.66). We are interested in the limit when

θ ≈ φ. In this limit the two groups of variables responsible for S3 and AdS3 parts of the

solution become close to each other, namely lθ ≈ lφ and E ≈ L. The classical dimension

of the observable WL is L, hence the cusp anomalous dimension should be matched with

E − L. To find E − L we linearize the system (7.69),(7.70),(7.71) around φ ≈ θ, which

yields

E − L = (φ− θ)
∣∣∣∣∂(h3, h1)

∂(l, κ)

∣∣∣∣ / ∣∣∣∣∂(h2, h1)

∂(l, κ)

∣∣∣∣ . (7.72)

Plugging in here the explicit form of h1, h2 and h3 one gets as a result an extremely com-

plicated expression with a lot of elliptic functions. However, there exists a parametrization

in which the result looks surprisingly simple: this parametrization comes from comparison

of the string conserved charges with the corresponding quantities of the algebraic curve.

One can notice that the equations for θ and L/g in the end of the last section have the

same structure as the equations (7.67) and (7.68). Indeed, it is possible to match them

precisely if one chooses the correct identification of parameters of the string solution lθ, γ

with the parameters of the algebraic curve r, ψ. We used the elliptic identities presented

in appendix C to bring the equations to identical form after the following identifications

γ =
2r√

r4 − 2r2 cos 2ψ + 1
, lθ =

(r2 − 1) cosψ√
r4 − 2r2 cos 2ψ + 1

. (7.73)
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As another confirmation of correctness of this identification, after plugging it into (7.72)

the complicated expression reduces to the following simple formula for the classical energy

E − L = g(φ− θ)(r − 1/r) cosψ. (7.74)

Notice that this can be rewritten as a sum over the branch points of the algebraic curve

E − L =
g

2
(φ− θ)

∑
i

bi, (7.75)

where bi = {r eiψ, r e−iψ,−1/r eiψ,−1/r e−iψ}.

7.4.3 The energy from the quasimomentum

In this section we will find the classical limit of the cusp anomalous dimension from the

algebraic curve. At large L the formula (6.5) can be rewritten as

ΓL(g) =
φ− θ

4
∂θ∂L detM2L. (7.76)

Use the integral representation (7.41) for detML we can notice that

∂θ log detML =

〈
2g

2L∑
i=1

(xi − 1/xi)

〉
, (7.77)

where by the angular brackets we denoted an expectation value in the matrix model with

the partition function (7.41). In the quasiclassical approximation the expectation value is

determined by the saddle-point, i.e. the previous expression is equal to 2g
2L∑
i=1

(xi − 1/xi),

where the roots xi are the solutions of the saddle-point equation (7.47). Since the set of

the roots has a x→ −1/x symmetry, the two terms in the sum give the same contribution.

Thus

∂θ log detML = −4g
2L∑
i=1

1

xi
= 8 g LG(0), (7.78)

where we used the resolvent (7.49).

Using the relation (7.48) between the resolvent and the quasimomentum we findG(0) =

g
L (p′′(0)/4− θ), so the final expression for the cusp anomalous dimension in terms of the

quasimomentum is

ΓL(g) = −g
2

2

(
p′′2L+1(0)− p′′2L−1(0)

)
(7.79)

or, neglecting 1/L corrections

ΓL(g) = −g
2

2
∂Lp

′′
2L(0). (7.80)



7.4 Algebraic curve for cusped Wilson line 118

The formula for p(x) presented in the previous section is given in terms of the parameters

of the branch points r and ψ. They are implicitly defined through L/g and θ by the

equations (7.62) and (7.63). In order to get ΓL we express ∂L though ∂r and ∂ψ and then

apply (7.80) to (7.59). Finally we obtain a very simple result in terms of r and ψ

ΓL(g) = g(φ− θ) (r − 1/r) cosψ, (7.81)

which exactly coincides with the calculation from the string solution!

Comparison with the small angle limit Here we will check our formula (7.81) in

the limit φ = 0 and θ → 0 considered in section E.2 of [91]. As the angles go to zero, the

branch points approach the unit circle: r → 1, thus the formula (7.81) gives

ΓL(g) = 2 g (θ − φ)(r − 1) cosψ. (7.82)

In this limit r − 1 ∝ θ, and the coefficient of proportionality can be found by expanding

the equation (7.63) for θ around r = 1:

2(1− r)
E
(
sin2 ψ

)
cosψ

= θ. (7.83)

and using this formula to express r − 1 in (7.82) we get

ΓL(g) = g (θ − φ)θ
cos2 ψ

2E
(
sin2 ψ

) . (7.84)

Now we are almost ready to compare with the result of [91] except for one detail: since

our result is written in the leading order in θ− φ, the terms of order O(θ2) might be lost,

whereas the result of [91] is of order O(θ2) itself. To make the comparison possible, let us

rewrite the last formula keeping track of all the infinitesimally small quantities

ΓL(g) = g (θ − φ)(θ +O(θ2))
cos2 ψ

2E
(
sin2 ψ

) +O((θ − φ)2). (7.85)

On the other hand, we know [95] that at θ ≈ φ the energy behaves as

ΓL(g) = (θ2 − φ2)A(φ) +O((θ2 − φ2)2). (7.86)

From comparing the last two expressions, one can conclude that

ΓL(g) = g (θ − φ)(θ + φ)
cos2 ψ

2E
(
sin2 ψ

) +O((θ − φ)2). (7.87)

In this expression we can take the limit φ = 0, θ → 0 and get the result

ΓL(g) = g θ2 cos2 ψ

2E
(
sin2 ψ

) , (7.88)

which perfectly agrees with (190) of [91].
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7.5 Comment on discrete symmetry of 1/L2 expansion and Matrix Mod-

els

Soon after our result (6.91) appeared in [10], a curious property of its strong coupling

expansion was pointed out in [173]. Namely, it was noticed that the expansion (6.113) is

odd under a discrete transformation L→ −1−L, g → −g. This symmetry has implications

for the expansion of the energy in the quasiclassical limit, when L → ∞ and L = L/g is

fixed:
Γ(g)

θ − φ
= g

∞∑
p=0

g−pbp(L) + non-perturbative terms. (7.89)

Namely, the odd terms of the expansion are determined by the even ones

b1(L) =
1

2

d

dL
b0(L) (7.90)

b3(L) =
1

2

d

dL
b2(L)− 1

24

d3

dL3
b0(L) (7.91)

b5(L) =
1

2

d

dL
b4(L)− 1

24

d3

dL3
b2(L) +

1

240

d5

dL5
b0(L) (7.92)

. . .

The symmetry was noticed empirically, although the proof was missing; now we have at

least two ways to prove it. The first one is based on QSC44: as we have seen in this

thesis before, L only enter the QSC equation through the asymptotics of Pa. Looking

at formulas (4.50), (4.51) for the leading coefficients and (4.48) for powers, one can easily

notice that the transformation J → −1−J just swaps P1 with P4 and P2 with P3. Thus

this discrete transformation is the symmetry of the system.

The other way to understand the symmetry in question is from the point of view of

matrix model reformulation described in this chapter45. It is well known that large N

expansion of expectation values in matrix models goes in 1/N2, where N is the size of the

matrix, thus being invariant under N → −N symmetry. Since the result (7.89) involves

matrix integrals of sizes 2L + 1 and 2L − 1, one would expect that this would translate

into a discrete symmetry in L. Let us make the argument precise now. Suppose L is large

but finite and come back to the formula (7.79). To all orders in 1/N the quasimomentum

pN (x) can be computed as one-point function in a matrix model of size N + 1 and thus it

44The version of QSC relevant here is so-called “boundary” or twisted QSC [166, 109] (see also section

6.3)
45We thank Ivan Kostov for the idea that the discrete symmetry in question should be related to the

1/N2 expansion in Matrix Models
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has expansion in 1/(N + 1)2:

p(v, g,N) =

∞∑
m=0

(N + 1)−2mp(m)

(
v,
N + 1

2g

)
(7.93)

Then plugging the expansion (7.93) into (7.79) we get

ΓL
φ− θ

= −g
2

2

∂2

∂v2
|v=0 [p(v, g, 2L+ 1)− p(v, g, 2L− 1)] = (7.94)

= −g
2

2

∂2

∂v2
|v=0

∞∑
m=0

[
(2gL+ 2)−2mp(m)

(
v,L+

1

g

)
− (2gL)−2mp(m) (v,L)

]
(7.95)

Expanding it in g we get

ΓL
φ− θ

=
∂2

∂v2
|v=0

[
−1

2
g∂Lp

(0)(v,L)− 1

4
∂2
Lp

(0)(v,L)+

+g−1

(
p(1)(v,L)

4L3
− ∂Lp

(1)(v,L)

8L2
−
∂3
Lp

(0)(v,L)

12

)
+ . . .

]
(7.96)

One can identify coefficients of the expansion (7.96) with bi from (7.89) and see that

bi generated in this way automatically satisfy the relations (7.90)-(7.92).

7.6 The one-loop correction to the classical energy

The discrete symmetry of the formula for ΓL(g) found in [173] and proven in the previous

section allows us to express the even terms in the expansion (7.89) through the odd ones.

In particular, b1 can be obtained from b0 by differentiating with respect to L. Since the

classical energy is

ΓclL(g) = g (φ− θ) (r − 1/r) cosψ (7.97)

by differentiating it with respect to L we find that the perturbative part of energy in the

first two orders in the classical expansion is

ΓL(g) = g (φ− θ) (r − 1/r) cosψ

(
1 +

1

g
f(r, ψ)

)
, (7.98)

where

f(r, ψ) =
r + 1/r

4

∣∣r2e2iψ + 1
∣∣2K1 − r2

∣∣r + 1
r + eiψ − e−iψ

∣∣2E1∣∣(r + 1
r

)
(r2e2iψ − 1)E1 −

(
r − 1

r

)
(r2e2iψ + 1)K1

∣∣2 , (7.99)

and E1,K1 are defined in (7.57). We have checked this formula and the classical en-

ergy (7.74) against a numerical extrapolation of the exact expression (6.5) and found an

agreement up to more than thirty digits.
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8 Solving QSC numerically

In the previous chapters we have described several applications of QSC which allow to

obtain certain results analytically. Naturally, another important range of applications of

the QSC is the numerical investigation of the spectrum at finite coupling.

Spectrum of N = 4 SYM at finite coupling was investigated numerically before by

solving the TBA equation. Although this approach was restricted to only a few operators

46 and low precision and convergence rate, it nevertheless gave several very important

results. In particular, the anomalous dimension of a nonprotected (Konishi) operator at

finite coupling was computed in [156]. Numerics also gave a prediction for the strong

coupling Konishi anomalous dimension which was later confirmed by several methods

[183, 184, 148, 115, 9, 147, 149, 185]. The main goal of the work presented in this chapter,

based on [12], is to remove the limitations of the previously known methods by developing

an algorithm for a numerical solution of the QSC.

The low precision and performance of the TBA-based approach was mainly due to the

complicated infinite system of equations and cumbersome integration kernels. The QSC

includes only a few unknown functions and thus can be expected to give highly precise

numerical results. However, the QSC equations are functional equations supplemented

with some analyticity constraints of a novel type which makes it a priori a nontrivial task

to develop a robust numerical approach.

Below we first describe the method and then illustrate it by a few examples. Among

the several equivalent formulations of the QSC we identified the equations which are best-

suited for numerical solution. Even when implemented in relatively slow Mathematica, our

algorithm gives a massive increase in efficiency compared to the TBA or FiNLIE systems

[156, 94, 149, 165]. With one iteration taking about 2 seconds we only need 2−3 iterations

(depending on the starting points) to reach at least 10 digits of precision. Quite expectedly,

the precision gets lost for very large values of the ’t Hooft coupling. Nevertheless, without

any extra effort we reached λ ∼ 1000 keeping a good precision, which should be more than

enough for any practical goal.

Not only does our approach work for any finite length single trace operator and in

particular for any value of the spin, it also works with minimal changes even away from

46 Only for a few operators the complicated structure of the “driving terms” was deduced explicitly

in a closed form. Even for those operators the driving terms may change depending on the value of the

coupling.
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integer quantum numbers! We demonstrate this in the particularly interesting case of the

sl(2) twist-two operators. Their anomalous dimension analytically continued to complex

values of the spin S is known to have a very rich structure, in particular the region S ' −1

is described by BFKL physics (see chapter 9). As we show, within the framework of QSC

it is not hard to specify any value of the Lorentz spin S as the conserved charges enter the

equations through the asymptotics which can in principle take any complex values. Then

we can compute the analytically continued scaling dimension ∆ directly for complex S (or

even interchange their roles and study S as a function of ∆). The result of this calculation

can be seen on Fig. 11.

Figure 11: Riemann surface of the function S(∆) for twist-two operators. Plot

of the real part of S(∆) for complex values of ∆, generated from about 2200 numerical

data points for λ ≈ 6.3. We have mapped two Riemann sheets of this function. The thick

red lines show the position of cuts. The upper sheet corresponds to physical values of the

spin. Going through a cut we arrive at another sheet containing yet more cuts.



8.1 Method description 123

8.1 Method description

8.1.1 Step 1: Find Qa|i

The quantity Qa|i, defined in (4.9), is at the heart of our procedure. In this section we

will demonstrate how this set of 16 functions can be found for arbitrary Pa and Pa. In

this procedure the precise ansatz for P is not important. However, as we will see later,

we should be able to compute the combination Pa(u)Pb(u) on the upper sheet for u with

large imaginary part. In practice it is not difficult to come up with an ansatz for Pa.

They have power-like behavior at infinity and one Zhukovsky cut on the main sheet. This

implies that on the main sheet they can be represented as (truncated) series in x(u)

Pa(u) =
∞∑

n=M̃a

ca,nx
n(u) . (8.1)

Using this representation for Pa we can efficiently evaluate the combination above every-

where on the upper sheet numerically.

The process of finding Qa|i is divided into two stages. Firstly, we find a good ap-

proximation for Qa|i at some u with large imaginary part (in the examples we will need

Im u ∼ 10 − 100). At the next step we apply to this large u approximation of Qa|i a

recursive procedure which produces Qa|i at u ∼ 1.

Large u approximation. For Im u ∼ 10 − 100 we can build the solution of (8.3) as a

1/u expansion. This is done by plugging the (asymptotic) series expansion of Qa|i

Qa|i(u) = uM̂i−M̃a

N∑
n=0

Ba|i,n

un
, (8.2)

where N is some cutoff (usually ∼ 10− 20), into

Qa|i(u+ i
2)−Qa|i(u− i

2) = −Pa(u)Pb(u)Qb|i(u+ i
2), (8.3)

which is a consequence of (4.8) and (4.11). This produces a simple linear problem for

the coefficients Ba|i,n, which can be even solved analytically to a rather high order. The

leading order coefficients of Qa|i can be chosen arbitrarily. After that the linear system of

equations becomes non-homogeneous and gives a unique solution in a generic case.47

47The matrix of this system may become non-invertible unless certain constraint (which is not hard

to find) on the coefficients ca,n is satisfied. This constraint is fulfilled trivially for LR-symmetric sector,

which contains all our operators in this chapter. There is also no such problem for the situation with

generic twists (similar to β− or γ-deformations, see the review [186]). Adding twists should correspond
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Finite u approximation. Once we have a good approximation at large u we can simply

use the equation (8.3) to recursively decrease u. Indeed, defining a 4× 4 matrix

Ua
b(u) = δba + Pa(u)Pb(u) (8.4)

we have

Qa|i(u− i
2) = Ua

b(u)Qb|i(u+ i
2). (8.5)

Iterating this equation we get, in matrix notation

Qa|i(u− i
2) = [U(u)U(u+ i) . . . U(u+ iN)]a

b Qb|i(u+ iN + i
2) . (8.6)

For large enough N we can use the large u approximation (8.2) for Qb|i in the right hand

side. As a result we obtain the functions Qa|i for finite u with high precision.

8.1.2 Step 2: Recover ωab

Let us rewrite here (4.10) and its consequence:

Qi = −PaQ+
a|i, (8.7)

Q̃i = −P̃aQ+
a|i. (8.8)

Using these two equations and our numerical approximation for Qa|i(u) we can compute

Qi and Q̃i and plug them into the discontinuity of ωij (4.25). After that we can recover

ωij from its discontinuity modulo an analytic function using its spectral representation

ωij(u) =
i

2

2g∫
−2g

dv coth(π(u− v))
[
Q̃i(v)Qj(v)−Qi(v)Q̃j(v)

]
+ ω0

ij(u) (8.9)

where the “zero mode” ω0
ij(u) is the analytic part of ωij — it has to be periodic, antisym-

metric in i, j and should not have cuts. We will fix it below. We note that we only need

to know values of Q and Q̃ on the cut. In our implementation we use a finite number of

sampling points on the cut given by zeros of Chebyshev polynomials. One can then fit the

values of Q̃iQj−QiQ̃j at those points with a polynomial times the square root
√
u2 − 4g2.

After that we can use precomputed integrals of the form
∫ 2g
−2g coth(π(ui−v))vn

√
v2 − 4g2dv

to evaluate (8.9) with high precision by a simple matrix multiplication, which produces

the result at the sampling points uA in an instant.

[8] to allowing exponential factors eαau, eβiu in the asymptotics of Pa and Qi, making everything less

degenerate and providing a useful regularization. QSC with twists is considered in [166, 109] and briefly

in section 6.3 of this thesis.
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One more point to mention here is that in our implementation we only compute ωregij =

1
2(ωij − ω̃ij) at the sampling points to avoid the problem of dealing with the singularity

of the integration kernel. Note that ωregij can be used instead of ωij in the equations

like (4.25),(4.24), because the difference is proportional to QiQ
i which is zero due to

orthogonality relations (4.13).

Finding zero modes. It only remains to fix ω0
ij(u). First we notice that for all physical

operators ωij should not grow faster than constant at infinity [8]. As the integral part

of (8.9) does not grow either and since ω0
ij(u) is i-periodic it can only be a constant. To

fix this constant we use the following observation [8]: the constant matrix α+
ij which ωij

approaches at u → +∞ and the constant matrix α−ij which it reaches at u → −∞ are

restricted by the quantum numbers. To see this we can pick some point on the real axis

far away from the origin and shift it slightly up into the complex plane, then from (4.24)

we have

ωijQ
j(u+ i0) = α+

ijQ
j(u+ i0) = Q̃i(u+ i0) = Qi(u− i0). (8.10)

Similarly for −u we get

α−ijQ
j(−u+ i0) = Qi(−u− i0). (8.11)

Next, notice that since Qj is analytic everywhere except the cut on the real axis, it can

be replaced by its asymptotics above the real axis, i.e. Qj(u + i0) ∼ Bju−M̂j , and also

Qj(−u + i0) ∼ Bju−M̂je−iπM̂j , as we find from the previous expression by a rotation by

π in the complex plane. As a result we get the asymptotics of Qi at infinities and slightly

below the real axis

Qi(u− i0) = α+
ijB

ju−M̂j , Qi(−u− i0) = α−ijB
ju−M̂je−iπM̂j . (8.12)

Now we can analytically continue the first equation in the lower half plane and get

Qi(−u− i0) = α+
ijB

ju−M̂je+iπM̂j . (8.13)

Combining this with the second one we find

α+
ij = α−ije

−2iπM̂j . (8.14)

At the same time from (8.9) we get

α±ij = ±Iij + ω0
ij , Iij ≡

i

2

2g∫
−2g

dv
[
Q̃i(v)Qj(v)−Qi(v)Q̃j(v)

]
, (8.15)
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which implies that

ω0
kl = −iIkl cotπM̂l. (8.16)

We see that the zero modes can be also computed from the values of Q and Q̃ on the cut.

Note also that the right hand side is not explicitly antisymmetric. Imposing the anti-

symmetry gives

Ikl(cotπM̂l − cotπM̂k) = 0, (8.17)

so either Ikl = 0 or cotπM̂l = cotπM̂k. As Pf ω = 1, all Ikl can not be equal to

zero simultaneously. Having Ikl non-zero implies quantization of charges: for example,

the choice I12 6= 0 and I34 6= 0, which is consistent with perturbative data, requires

cotπM̂1 = cotπM̂2 and cotπM̂3 = cotπM̂4, and so S1, S2 have to be integer or half integer.

In section 8.3 we will see how to relax this condition and do an analytic continuation in

the spin S1 to the whole complex plane.

8.1.3 Step 3: Solve the optimization problem

Having ωij and Qa|i at hand we can try to impose the remaining equations of the QSC

(4.24). We notice that there are two different ways of computing Q̃i, which should give

the same result when we have a true solution: (8.8) and (4.24). Their difference, which at

the end should be zero, is

Fi(u) = P̃a(u) Qa|i(u+ i/2) + ωij(u) Qa|j(u+ i/2)Pa(u) . (8.18)

The problem is now to find ca,n for which Fi(u) is as close as possible to zero. Here we

have some freedom in how to measure its deviation from zero, but in our implementation

we use the sum of squares of Fi at the sampling points uA. Then the problem reduces

to the classical optimization problem of the least squares type. In our implementation

we found it to be particular efficient to use the Levenberg-Marquardt algorithm (LMA),

which we briefly describe in the next section. The LMA is known to have a Q-quadratic

convergence rate, which means that the error εn decreases with the iteration number n as

fast as e−c 2n . The convergence is indeed so fast that normally it is enough to do 2 or 3

iterations to get the result with 10 digits precision. We give some examples in the next

section.

Levenberg-Marquardt algorithm Our problem can be reformulated as follows: given

a vector function fi(ca) of a set of variables ca (which we can always assume to be real)
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find the configuration which minimizes

S(ca) ≡
∑
i

|fi(ca)|2 . (8.19)

Assuming we are close to the minimum we can approximate fi by a linear function:

fi(c̃a) ' fi(ca) + (c̃a − ca)Jai , Jai ≡ ∂cafi(ca) (8.20)

which gives the following approximation for S(c̃a):

S(c̃a) = [fi(ca) + (c̃a − ca)Jai]
[
f̄i(ca) + (c̃a − ca)J̄ai

]
(8.21)

The approximate position of the minimum is then at ∂c̃aS = 0 for which we get

Jai
[
f̄i(ca) + (c̃a − ca)J̄ai

]
+ [fi(ca) + (c̃a − ca)Jai] J̄ai = 0 (8.22)

from which, in matrix notation,

c̃ = c− (JJ̄T + J̄JT )−1(J̄f + Jf̄) . (8.23)

We see that for this method we should also know the derivatives of our Fa(u) w.r.t. the

parameters ca,n, which in our implementation is found numerically by shifting a bit the

corresponding parameter.

In some cases, when the starting points are far away from the minimum, the above

procedure may start to diverge. In such cases one can switch to a slower, but more stable,

gradient descent method for a few steps. The Levenberg-Marquardt algorithm provides a

nice way to interpolate between the two algorithms by inserting a positive parameter Λ

into the above procedure,

cn+1 = cn − (JJ̄T + J̄JT + ΛI)−1(J̄f + Jf̄) . (8.24)

The point is that for large Λ this is equivalent to the gradient descent method. Thus one

can try to increase Λ from its zero value until S(cn+1) < S(cn) and only then accept the

new value cn+1. This helps a lot to ensure stable convergence.

In the next section we demonstrate the performance of our numerical method by ap-

plying it to the twist-two operators in sl(2) sector.

8.2 Implementation for the sl(2) sector and comparison with existing

data
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The sl(2) sector in the QSC framework Although our method can be used for any

state of the N = 4 SYM theory, the examples we provide in this thesis are for left-right

symmetric states, more precisely for the states in the sl(2) subsector,

O = Tr
(
DSZL

)
+ . . . , (8.25)

described in section 4.4. In this section we will discuss the physical operators which have

integer spin, and as a demonstration of our numerical method apply it to the Konishi

operator. Then in section 8.3 we will show how the algorithm is modified for states with

non-integer S.

2 4 6 8 10 12
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Figure 12: Convergence of the algorithm. The error εn as measured by the value of

(8.19) reduces at the quadratic rate εn ∼ e−c 2n as a function of the iteration number. In

most cases our program managed to find the solution from a very remote starting point.

On the picture we started from all free parameters ca,n set to zero and with the initial

value for the energy ∆0 = 4.1. After 12 iterations it correctly reproduced ∆ = 4.4188599

at λ = 16π2(0.2)2 ' 31.6. With each iteration taking about 1.5sec the whole procedure

took about 20 sec on a Laptop with Intel i7 2.7GHz processor.

Implementation for Konishi Here we discuss the convergence on a particular example

of an operator belonging to the sl(2) sector — the Konishi operator which corresponds

to S = 2, L = 2. The reason we start from this operator is because it is very well studied

both analytically at weak and strong coupling and also numerically. So we will have lots

of data to compare with.

To start the iteration process described in the previous sections, we need some rea-

sonably good starting points for the coefficients ca,n. For the iterative methods, like, for
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√
λ

4π ∆S=2(λ)
√
λ

4π ∆S=2(λ)

0.1 4.115 506 377 945 0.2 4.418 859 880 802

0.3 4.826 948 662 284 0.4 5.271 565 182 595

0.5 5.712 723 424 787 0.6 6.133 862 814 488

0.7 6.531 606 077 852 0.8 6.907 504 206 024

0.9 7.264 169 587 439 1. 7.604 070 717 047

Table 2: Conformal dimension of Konishi operator

instance, Newton’s method, good starting points are normally very important. Depend-

ing on them the procedure may converge very slowly or even diverge. We made a rather

radical test of the convergence of our method by setting all coefficients to zero except for

the leading ones, which are fixed by the charges. For ∆ we took the initial value 4.1 at

the value of ’t Hooft coupling g = 0.2. To our great surprise it took only 12 steps to

converge from the huge value of S(ca) ∼ 10+7 (defined in (8.19)) to S(ca) ∼ 10−9. The

whole process took about 20 seconds on a usual laptop (see Fig. 12), producing the value

∆ = 4.4188599, consistent with the best TBA estimates [156, 149].

After that we used the obtained coefficients as starting points for other values of the

coupling to produce Tab. 8.2. All the values obtained are consistent with the TBA results

within the precision of the latter, being considerably more accurate at the same time.

The reason for such an excellent convergence is the Q-quadratic convergence rate of the

algorithm we use. It means that the number of exact digits doubles with each iteration,

or that the error decreases as e−c 2n at the step n, if the starting point is close enough.

What is perhaps surprising is that the algorithm converges from a very remote starting

point.

Another indicator of the convergence is the plot of Q̃a computed in two different ways,

i.e. (8.8) and (4.24). On the true solution of the QSC both should coincide. On Fig. 5

we show how fast the difference between them vanishes with iterations, i.e. how fast we

approach the exact solution of the QSC.

In the next section we discuss the analytic continuation in S away from its integer

values. This is an important calculation which bring us to a highly accurate numerical

estimate for the pomeron intercept at finite coupling in section 9.5 — a quantity which

can be studied exclusively by our methods.
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Figure 13: Q-functions at the first several iterations. Here we show how Q3 con-

verges to the solution in just four iterations when calculating the Konishi anomalous

dimension. At each picture solid and dashed blue lines show Q3 slightly below the cut

calculated with (4.24) and (8.8) respectively, which should coincide on the solution. Red

lines show the same slightly above the cut.

8.3 Generalization to non-integer spin

In this section we explain which modifications are needed in order to extend our method

to non-integer values of spin S, and give a specific example of a calculation for such S.

8.3.1 Modification of the algorithm for non-integer spin

First we need to discuss how non-integer S modifies the procedure of fixing zero modes

of the ω’s described in section 8.1.2. As we already know from chapter 5, the analytic

continuation to non-integer S changes the asymptotic behavior of ωij , µab, and Q-functions

at large u. The modification of µab was described in section 5.2. Since our algorithm

works more with the Qω-system than with the Pµ-system, we need to understand the

asymptotics of ωij for non-integer S. As described in [9, 110, 15], for non-integer S some

components of ω have to grow exponentially (as opposed to constant asymptotics for

integer S). Without this modification the system has no solution: indeed, in section 8.1.3

we assumed constant asymptotics of all ω’s and derived the quantization condition for

global charges.

A minimal modification would be to allow exponential asymptotics in one of the com-

ponents of ω. In order to understand which of the components can it be, let us recall the

Pfaffian constraint satisfied by ωij

Pf ω = ω12ω34 − ω13ω24 + ω2
14 = 1. (8.26)

First, it is clear ω14 alone can not have exponential asymptotics. Second, in the case

of integer S both ω12 and ω34 are non-zero constants at infinity [110, 9]; then shifting
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S infinitesimally away from an integer we see that it would be impossible to satisfy the

condition (8.26) if we allow one of them to have exponential asymptotics at infinity: this

exponent will multiply the constant in the other one. So the only two possibilities left

are ω13 and ω24, which are both zero at infinity for integer S. From perturbative data

we know that it is ω24 which should have exponential asymptotics. Thus we formulate

the “minimal” prescription for analytic continuation of Q-system to non-integer S: e2π|u|

asymptotic has to be allowed in ω24. This prescription was tested thoroughly on a variety

of examples [124, 125, 110, 9, 15], but it would be interesting to derive it rigorously

and generalize it to states outside of the sl(2) sector. Of course, one can also consider

adding exponents to more than one component of ωij : in this case the solution will not

be unique. A complete classification of solutions of the Q-system according to exponents

in their asymptotics might be interesting. For example it is known that allowing for

an exponent in some other components corresponds to the generalized cusp anomalous

dimension [9, 166].

Because of the exponential asymptotics of ω24, the argument in section 8.1.2, which

fixes the zero modes of ω, has to be modified. First, formula (8.16) still holds true for

i = 1 or i = 3, as ω24 does not enter anywhere in the derivation. Thus

ω12 = −iI12 cot
π (S + ∆)

2
, ω34 = −iI34 cot

π (S −∆)

2
. (8.27)

Consequently, one can use (8.16) for both ω13 and ω31, and reproduce the quantization

condition (8.17) for global charges, which in this case implies that either ∆ = 0 or ω13 = 0.

Equation (8.16) can also be used for ω14 and ω23 (which are equal) and imposes that either

∆ = 0 or ω14 = 0.

It remains to fix the zero mode in ω0
24, for which we use an ansatz

ω0
24 = a1e

2πu + a2 + a3e
−2πu. (8.28)

The constants a1, a2, a3 can be found from the Pfaffian constraint (8.26). To this end we

expand the hyperbolic cotangent in (8.9) to get

ωij = ω0
ij + Iij + 2e−2πuI+

ij + 2e−4πuI++
ij + . . . , u→ +∞, (8.29)

where the terms of the expansion are integrals similar to Iij with additional factors of

e2πu or e4πu in the integrand48. Analogous expansion can be obtained at u→ −∞. Then

plugging these expansions into (8.26) we get formulas for the coefficients a1, a2, a3. For

48Actually, these integrals can be evaluated analytically in terms of Bessel functions
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Figure 14: Section of the Riemann surface S(∆) along Im ∆ = 0 for different

values of coupling g. The upper two solid curves, shown in black and grey, represent

the BFKL eigenvalue (see section 9) as a function of ∆, whereas the lower two come from

the unphysical sheet which can be accessed from the upper one by going through the cuts.

The dashed line shows the zero-coupling limit of the curve. Orange dots mark BPS states

Tr(ZZ).

example,

a1 = 2i
1 + I12I34

4

(
1 + i cot π(∆+S)

2

)(
1− i cot π(∆−S)

2

)
I+

13

. (8.30)

With these modifications we can reconstruct all ωij including the zero modes and then

proceed with our algorithm as in the case of integer S.

8.3.2 Exploring complex spin

In this section we briefly describe the results of our numerical exploration of ∆(S) as

an analytic function of a complexified spin S. As explained in the previous section the

generalization of our numerical method to arbitrary values of spin requires minimal mod-

ifications in the code. Thus we are able to generate numerous values of the anomalous

dimension for any S with high precision in seconds. In fact both S and ∆ enter the QSC

formalism on almost equal footing and we can also switch quite easily to finding S for

given ∆. This is what is adopted in the vast literature on the subject and what we are
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going to consider below. This viewpoint is additionally convenient due to the symmetry

∆→ −∆.

Starting from S = 2 (Konishi operator) we decreased the value of S or ∆ in small steps

each time using the solution at the previous step as a starting point for the next value. In

this way we built the upper two curves on Fig. 14. Let us point out one curious technical

problem – one can see for instance from (8.30) that the lines S = ±∆ + Z are potentially

dangerous due to the divergence. The divergence is cancelled because of the vanishing

I12I34 factor, but this affects the convergence “radius” of our iterative procedure. Thus

we found it quite complicated to cross those lines, even though in very small steps we were

able to reach close to them. The solution is to go around these lines in the complex plane

∆ instead of crossing them.

To make sure there is no true singularity or branch point we also explored a big patch

of the complex plane ∆, indeed finding some branch points, but deep inside the complex

plane, having nothing to do with these lines. For example when g = 0.2 we found 4 closest

branch points at roughly ±1±i, see Fig. 11. By making an analytic continuation (described

above) through those cuts we found another sheet of the Riemann surface S(∆). On this

sheet we have found four cuts: two are connecting it to the first sheet and two other ones,

located symmetrically on the imaginary axis, lead to further sheets. We expect an infinite

set of sheets hidden below and also more cuts on both sheets outside of the area that we

have explored.

It is instructive to see how this Riemann surface behaves as g → 0. First, the real

parts of branch points on the physical sheet are very close to ±1, but the imaginary part

goes to zero. Thus at infinitely small g the cuts collide, isolating the region |Re ∆| < 1

from the rest of the complex plane. These two separated regions become then the areas

of applicability of two different approximations: for |Re ∆| > 1 one can apply the usual

perturbation theory and Beisert-Eden-Staudacher Asymptotic Bethe Ansatz, whereas the

region |Re ∆| < 1 is described by BFKL approximation and so-called Asymptotic BFKL

Ansatz [15].

The presence of the cut can be to some extent deduced from perturbative perspective

in each region: in the regime of usual perturbation theory

∆(S) = 2 + S − 8g2HS +O(g4), (8.31)

where HS is the harmonic number. It has poles for all negative integer values of S —

these poles are weak-coupling remnants of the cuts we see at finite coupling. In the BFKL
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regime one should instead look at the leading order BFKL equation [192, 193, 187]

S(∆) = −1 + 4g2

[
ψ

(
1 + ∆

2

)
+ ψ

(
1−∆

2

)
− 2ψ(1)

]
+O(g4) . (8.32)

To make sense of this equation one has to take the limit g → 0, S → −1 so that the l.h.s

stays finite. Then the ψ-functions in the r.h.s generate poles at odd values of ∆, which,

again, are cuts degenerated at weak coupling.

BFKL physics which gives rise to (8.32) is a rich topic to explore. In particular, it

connects the spectral problem to Regge behaviour of scattering cross-sections and will be

discussed in details in the next chapter.

Fig. 14 represents a section of the Riemann surface by the plane Im u = 0, i.e.

dependence of S on ∆ for real ∆, which, of course, consists of two curves, originating from

the two sheets we explored. At weak coupling the upper curve becomes piecewise linear,

approaching different parts of the dotted line: for |∆| > 1 it coincides with S = ±∆ − 2

and for |∆| < 1 it becomes S = −1. One could expect a similar piecewise linear behavior

for the lower curve: it approaches S = ±∆ − 2 for |∆| < 1, approaches S = 0 in some

region outside of |∆| < 1 and becomes a certain linear function even further away from

∆ = 0. It would be interesting to explore the complete analytic structure of this Riemann

surface, and understand what describes its asymptotics when g → 0. It should produce a

hierarchy of “Asymptotic Bethe Ansätze” each responsible for its own linear part of the

limiting surface.

* * *

The numerical method described in this chapter can of course be improved in many

ways. The most obvious thing to do is to rewrite the algorithm, which is now written

in Mathematica, in a lower-level language such as C++. Since our algorithms only uses

simple matrix operations, this should not be too difficult and will give a significant increase

in speed. Also the of applications of our algorithm can be vastly extended. Up to now we

have only demonstrated how it works in sl(2) sector of N = 4 SYM . However, in principle

it should work for any state of N = 4 SYM , including non-symmetric ones. For example,

the wider class of sl(2,C) operators (identified in [15]), also exhibiting a BFKL regime,

could be a good candidate to begin with. Moreover, since spectrum of ABJM theory can

also be described by QSC [194] (presented in section 10), our numerical method is also

applicable there.
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9 BFKL regime

In this chapter we will apply of QSC method to long-standing problems of BFKL physics.

First, in section 9.1 we will briefly describe BFKL regime, its importance, and summary

of known results. Then in section 9.2 we will present the LO order solution of QSC and

use it to reproduce the known result for LO BFKL eigenvalue. In chapter 9.3, which is

based on our paper [13], we find a new, NNLO term in BFKL expansion using analytical

solution of QSC. In section 9.4 we find two new terms in the strong coupling expansion

of BFKL intercept. Finally, in section 9.5 we use the numerical method developed in the

previous chapter in order to compute BFKL intercept at finite values of coupling.

9.1 Introduction to BFKL physics

One of the limits often studied in QFTs is the Regge limit: high energy scattering with

fixed momentum transfer, s � |t|. In this regime the usual perturbation theory can not

be applied directly, because each order in the coupling constant contains powers of large

logarithms of the ratio of energy scales: (g log t/s)n. In order to obtain a meaningful result,

one has to resum large logarithms in all orders in perturbation theory. This can be seen as

a disadvantage, because it makes obtaining any result in this regime much more difficult.

However, it also makes the Regge limit extremely interesting, because one can probe all

orders of perturbation theory at once. This resummation of leading logarithms often leads

to power-law behaviour of the cross-sections, which one might hope to see experimentally.

This is the case, for example, in small x regime of deep inelastic scattering in QCD, where

the cross-section depends on the energy like

σ ∝ sj(0)−1. (9.1)

The quantity j(0), which will play an important role in this chapter, is called the pomeron

intercept.

In order to see how this power-law comes about one notices that the BFKL regime is

characterized by separation of physics in the plane of collision and in the transversal plane.

The process of scattering of two partonic jets factorizes into two vertex contributions,

depending only on the small transverse momenta, and the non-trivial part f(∆y, p⊥) which

also depends on the large rapidity separation ∆y [195]. The process receives contributions

from diagrams including emission of arbitrary number of intermediate gluons. Each new
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gluon’s momentum k needs to be integrated over the transverse plane with the measure

of d2k/k2 — and that is where the logarithms come from. Thus f(∆y, p⊥) satisfies an

integral equation of Bethe-Salpeter type, whose solution can be schematically represented

as

f(∆y, p⊥) =

+∞∑
n=−∞

einφ̃
∞∫
−∞

dν Qν(p⊥)e4g2χ(n,ν)∆y. (9.2)

We see that in the limit of very large rapidity separation ∆y the integral can be taken by

the saddle-point approximation and indeed produces the power-law.

In the formula above Qν(p⊥) absorbs the trivial dependence on the transverse momenta

and the nontrivial part χ(n, ν) is the eigenvalue of the leading order BFKL Hamiltonian.

In order to define the Hamiltonian it is convenient to introduce transverse coordinates and

their corresponding momenta:

ρk = xk + iyk, ρ∗k = xk − iyk (9.3)

pk = i
∂

∂ρk
, p∗k = i

∂

∂ρ∗k
(9.4)

In terms of these variables the LO BFKL Hamiltonian takes the form

H = ln |p1p2|2 +
1

p1p∗2

(
ln |ρ12|2

)
p1p
∗
2 +

1

p∗1p2

(
ln |ρ12|2

)
p∗1p2 − 4ψ(1), (9.5)

where ρ12 = ρ1 − ρ2. One can see that the Hamiltonian enjoys symmetry under Mobius

transformations in the transversal plane

ρk →
aρk + b

cρk + d
. (9.6)

Thus its eigenvalues are classified by a pair m, m̄ which parametrize representations of

sl(2,C). They are related to ν and conformal spin n by

m =
1

2
+ iν +

n

2
, m̃ =

1

2
+ iν − n

2
(9.7)

In this notation the LO eigenvalue can be written as

χLO(n, ν) = 2ψ(1)− ψ
(
n+ 1 + iν

2

)
− ψ

(
n+ 1− iν

2

)
(9.8)

In this thesis we will be working with n = 0, leaving the operators with non-vanishing

conformal spin for further work.

Taking into account Next-to-Leading, Next-to-Next-to-Leading corrections we get a

structure similar to (9.2), where the BFKL eigenvalue χ in the exponent gets corrected.

One usually introduces j(iν), which in the LO is related to the BFKL eigenvalue as

j = 1 + 4g2χ and beyond the LO has an expansion in g2 which can be represented as

j(iν) = 1 +
∞∑
`=1

g2`

[
F`

(
iν − 1

2

)
+ F`

(
−iν − 1

2

)]
, (9.9)
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From the point of view of effective physical description one can say that this regime is

dominated by exchange of an quasi-particle — BFKL pomeron, which is a bound state

of two reggized gluons. In the leading order BFKL pomeron is just a pair of gluons in a

color singlet, which explains why j(0) = 1 at zero coupling. The LO correction is given

by (9.8); NLO BFKL (F2(x) in the formula above) was obtained after 9 years laborious

calculations in [196, 197, 198, 187]; the result in modern notation is presented below in the

text (9.14). The corrections turned out to be numerically rather large compared to the

LO, which makes one question the validity of the whole BFKL resummation procedure

and its applicability for phenomenology. Moreover, the sign of NLO is such that at some

finite value of coupling it completely cancels the LO correction and then changes the sign

of the BFKL intercept, meaning that, for example, partonic cross-sections will increase,

and not decrease with energy. All this points out that just NLO is not enough to match

experimental predictions: it is important to understand the general structure of BFKL

expansion terms and find a meaningful way of resummation. As a first step towards this

goal in the last part of this chapter we present a result for NNLO BFKL eigenvalue in

N = 4 SYM .

Notably, it was observed in [187] that the N = 4 SYM reproduces correctly a part of

the QCD result with maximal transcendentality. In particular the LO coincides exactly

in the two theories. Since this thesis deals with supersymmetric gauge theories, we will

consider Regge limit of N = 4 SYM , sometimes making comparison with QCD.

Since in this thesis we work with QSC formalism, which is designed for solving the

spectral problem, it is crucial for us that [198] related BFKL pomeron to a certain an-

alytical continuation of twist-two operators. To be more precise, for an operator of the

form tr (ZDSZ) the spin S and conformal dimension ∆ are related to j and ν in formulas

above as

S = j(iν)− 2, ∆ = iν (9.10)

The anomalous dimension as a function of spin has singularities at negative integer values.

The first pole at S = −1 corresponds to the BFKL regime. In order to explore the weak

coupling BFKL expansion we approach the singularity in the scaling

Λ ≡ g2

S + 1
= fixed, S → −1, g → 0 (9.11)

This gives us the leading order relation between spin and anomalous dimension as

1

4Λ
= χLO (∆) + g2χNLO (∆) + g4χNNLO (∆) + . . . , (9.12)

where χLO is LO BFKL eigenvalue, χNLO is NLO BFKL eigenvalue and so on.
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It was noticed in [189] that both LO and NLO BFKL eigenvalues can be expressed

in terms of the so-called nested harmonic sums Sa1,...,ak . These functions are defined

recursively for even integer arguments

Sa1,a2,...,an(x) =

x∑
y=1

(sign (a1))y

y|a1|
Sa2,...,an(y), S(x) = 1.

Below we use nested harmonic sums of complex argument, understanding them as analyti-

cal continuation of the expression above in the complex plane. In practice this continuation

can be performed by expressing harmonic sums through η-functions defined in (9.44). Hav-

ing defined the harmonic sums in this way we can rewrite Fl from (9.9) in the first two

orders as

F0(x) = −S1(x) (9.13)

F1(x) = −3

2
ζ(3) + π2 ln 2 +

π2

3
S1(x) + 2S3(x) + π2S−1(x)− 4S−2,1(x) (9.14)

In the last part of this chapter we show how the assumption that χNNLO can also

be written in this form allows us to find its exact analytical form — a result which is

virtually impossible to reach by the usual perturbation theory.

9.2 LO solution of QSC in the BFKL regime

In this section we will sketch the derivation of the LO BFKL eigenvalue from QSC. In

order to do this we consider twist-two operators near S = −1 and find some Q-functions

to the LO and some to NLO. The derivation will closely follow [110].

As we mentioned before, the BFKL eigenvalue is accessible as an anomalous dimension

of twist-two operators in the limit (9.11). All quantities of the Q-system will be presented

as series expansions in ω = S+1, so the first thing to do before looking for the solution is to

determine scaling of different variables with ω. We will not derive this scaling rigorously,

but rather give an empirical argument for a particular scaling and later check that there

indeed exists a solution with this scaling. Let us start with Pa: from the formulas (4.50)

one can see that their leading coefficients Aa stay finite when ω → 0; same holds for Qi.

So we assume that

Pa ∼ 1,Qi ∼ 1 (9.15)

We also know that Pa have singularities at u = 0: the strongest in the leading order

is P1 ∼ u−2. This singularities is what remains of short cuts after expansion in ω. Thus

if we “zoom in” close enough to the cut, on the scale of order ω the singularities have a
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cut-off and match the value of Pa on the other sheet, i.e. P̃a. This leads to the conclusion

that at least some of P̃a scale as ω−2. Taking into account the equation (4.17) and the fact

that Pa are finite, we see that the factor of ω−2 can only come from µab. So we conjecture

the following scaling for all µab

µab ∼ ω−2 (9.16)

From (4.23) we see that µab and ωij are related by Qab|ij , which can be expressed

through Pa and Qi and so is of order 1. Thus at least some ωij have to diverge as ω → 0.

We found the following scaling consistent:

ω24 ∼ ω−2, ω13 ∼ ω2, (9.17)

ω12, ω14, ω34 ∼ 1, (9.18)

Now that the scaling of all functions in established, let us find an ansatz for the solution,

starting with Pa. As it was argued in the previous chapter, Pa can be represented as series

in x(u) on the main sheet:

Pa =

∞∑
n=−1

ca,n
xn

(9.19)

Since x̃ = 1/x, the corresponding series on the other second sheet is

P̃a =
∞∑

n=−1

ca,nx
n (9.20)

In fact, in series above only every second coefficient is non-zero: since we are in a left-right

symmetric situation, each Pa has a definite parity which can be deduced its asymptotics.

We will also need an ansatz for the leading order µab. Notice that up to a periodic

function µab has polynomial asymptotics. Also it can not have a singularity at zero,

otherwise P̃a would be singular in the leading order. Finally, one can show that µ+
ab

should have definite parity defined, again, by the asymptotics49.

Thus we write down the following ansatz: µab = qab
ω2 P, where qab is a polynomial and

P is a periodic function. Under assumption of absence of higher-frequency modes we can

parameterize P in terms of two coefficients

P = C1 + C2 sinh2(πu) (9.21)

Having an ansatz for Pa and µab, we can try to constraint its coefficients by equations

(4.17) and (4.18). We find that, indeed, for the leading order of µab and the first two

49Here we assume that µ has long cuts. Definite parity of µ+ with long cuts follows from definite parity

of µ with short ones



9.2 LO solution of QSC in the BFKL regime 140

orders of Pa there is a consistent solution, which we present here without going into the

details of calculations:

P1 '
1

u2
+

2Λω

u4
(9.22)

P2 '
1

u
+

2Λω

u3
(9.23)

P3 ' A(0)
3 +A

(1)
4 ω (9.24)

P4 ' A(0)
4 u− i(∆2 − 1)2

96u
+

(
A

(1)
4 u+

c
(2)
4,1

uΛ
− i(∆2 − 1)2Λ

48u3

)
ω, (9.25)

where c
(2)
4,1 = − iΛ

24

(
∆2 − 1

) [
2
(
∆2 − 1

)
Λ− 1

]
.

The corresponding µab’s are

µ+
12 ' +

P
ω2
, (9.26)

µ+
13 ' −

P
16ω2

iu
(
∆2 − 1

)2
, (9.27)

µ+
14 ' −

P
128ω2

i
(
4u2 + 1

) (
∆2 − 1

)2
, (9.28)

µ+
24 ' −

P
192ω2

iu
(
4u2 + 1

) (
∆2 − 1

)2
, (9.29)

µ+
34 ' −

P
49152ω2

i
(
4u2 + 1

) (
4u2 − 3

) (
∆2 − 1

)4
. (9.30)

With Pa given above we can write down the fourth-order equation (4.29) explicitly in

the first two orders in ω. It turns out that the finite-difference operator in the left hand

side can be factorized into two second-order ones, i.e. two of the solutions satisfy a second

order equation:

Qj

(
∆2 − 1− 8u2

4u2
+ ω

(∆2 − 1)Λ− u2

2u4

)
+ Q−−j

(
1− iω/2

u− i

)
+ Q++

j

(
1 +

iω/2

u+ i

)
= 0

(9.31)

By comparing the asymptotics one can conclude that these two solutions are Q1 and Q3.

They can be written in terms of hypergeometric functions, the leading order being

Q1(u) = 2iu3F2

(
iu+ 1,

1−∆

2
,
1 + ∆

2
; 1, 2; 1

)
, (9.32)

Q3(u) =
Q1(−u)

cos π∆
2

+ Q1(u)

[
−i coth (πu) + tan

π∆

2

]
(9.33)

The leading order solution of the Baxter equation is found, but to obtain from it the

LO BFKL eigenvalue we still need to performs several additional steps.

First, we need to analyse the singular behaviour of Qj near u = 0. To do this, recall

that Qi can have singularities at zero and below, but not in the upper half plane. Thus,

considering the equation (9.31) near u = i we conclude that

Q
(1)
j (u)

Q
(0)
j (u)

=
iω

2u
+O(u0) , j = 1, 3 (9.34)
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where Qj = Q
(0)
j + ωQ

(1)
j +O(ω2).

Second, it is important to understand the properties of Qi under reflection in u. Since

Qi(−u) and Q̃i(u) have identical analytical properties, they can be expressed though each

other with constant coefficients. Without going into detail, we state that

Q̃1(u) = −Q1(−u) (9.35)

Q̃3(u) = +Q3(−u)− 2 tan

(
π∆

2

)
Q1(−u) (9.36)

Finally, to put the two arguments together, notice that the combinations Q1 + Q̃1 and

Q1−Q̃1√
u2−4ωΛ

are regular. Using this fact one can separate Q1 into singular and regular parts

in the following way

Q1 =
Q1 − Q̃1

2
√
u2 − 4ωΛ

√
u2 − 4ωΛ +

Q1 + Q̃1

2
=

Q1 − Q̃1√
u2 − 4ωΛ

(
−Λω

u
− Λ2ω2

u3
+ . . .

)
+ reg

(9.37)

But from (9.35) and the explicit form of the solution (9.32) one finds that

Q3 − Q̃3√
u2 − 4g2

= 2iQ3(0)

[
ψ

(
1−∆

2

)
+ ψ

(
1 + ∆

2

)
− 2ψ(1)

]
+O(ω) +O(u) (9.38)

which, plugged into (9.37) and compared with (9.34), yields the LO BFKL formula

− 1

4Λ
= ψ

(
1−∆

2

)
+ ψ

(
1 + ∆

2

)
− 2ψ(1) (9.39)

9.3 NNLO BFKL eigenvalue

Here we will describe how the iterative analytical solution of QSC allowed us to find a

previously unknown, NNLO term of the weak coupling expansion of BFKL eigenvalue

in [13]. The method for the analytical iterative solution is based on principles which

are similar but not identical to those of the numerical method described in the previous

chapter. Therefore we present here a brief description of the method, the result and its

numerical verification.

The crucial assumption of our calculation is that, similar to LO and NLO, the NNLO

correction can also be written as a combination of nested harmonic sums of fixed tran-

scendentality. Assuming this, we have only finite number of coefficients to fix, and we do

this by solving QSC iteratively in two small expansion parameters. The first expansion is

in coupling g; the second is in ∆ around certain integer positive values ∆0 of conformal

dimension at which QSC simplifies.



9.3 NNLO BFKL eigenvalue 142

9.3.1 Analytic constraints from QSC

We describe now the details of our analytical method. We will focus on some particular

points ∆0 = 1, 3, 5, 7. It can be seen already from the LO (9.8) that the function S(∆) is

singular at these points, however the coefficients of the expansion are relatively simple and

are given by ζ-functions. We will perform a double expansion first in g up to the order g6

and then in δ = ∆−∆0.

General iterative procedure for solving QSC. We describe a procedure which for

some given Pa (or equivalently ca,n from the expansion (8.1)) takes as an input some

approximate solution of (8.3) Q(0)
a|i valid up to the order εn (where ε is some small ex-

pansion parameter) and produces as an output new Qa|i accurate to the order ε2n. The

method is very general and in particular is suitable for perturbative expansion around any

background.

Let dS be the mismatch in the equation (8.3), i.e.

Q(0)
a|i (u+ i

2)−Q(0)
a|i (u−

i
2) + PaP

bQ(0)
b|i (u+ i

2) = dSa|i, (9.40)

where dSa|i is small ∼ εn. We can always represent the exact solution in the form

Qa|i(u) = Q(0)
a|i (u) + b ji (u+ i

2) Q(0)
a|j(u) (9.41)

where the unknown functions b ji are also small. After plugging this ansatz into the equa-

tion (9.40) we get (
b ji (u)− b ji (u+ i)

)
Q+(0)
a|j = dSa|i + dSa|jb

j
i . (9.42)

Since b ji is small it can be neglected in the right hand side where it multiplies another

small quantity. Finally, multiplying the equation by Q(0)a|k and using the orthogonality

relation (4.12) we arrive at

bki (u+ i)− bki (u) = −dSa|i(u)Q(0)a|k (u+ i
2

)
+O(ε2n) .

We see that the right hand side contains only the known functions dS and Q(0) and does

not contain b which means that the original 4th order finite difference equation is reduced

to a set of independent 1st order equations! In most interesting cases the first order

equation can be easily solved. After Qa|i is found one can use (8.8) to find Qi.

Iterations at weak coupling. For our particular problem we will take either ε = g or

ε = δ. Applying this procedure a few times we generate Qi for sufficiently high order both
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in g and in δ. Finally, by “gluing” Qi and Q̃i on the cut we find ca,n and S(∆) also as a

double expansion.

For the above procedure we need the leading order Q(0)
a,i . One can expect that to the

leading order in g the solution should be very simple, because the branch cuts collapse to

a point making most of the functions polynomial or having very simple singular structure.

Also one can use that to the leading order in g functions Pa are very simple and are

already known from [110] for any ∆. By making a simple ansatz for Qi we found for

∆0 = 1 to the leading order

Q1 ' u, Q2 ' 1/u, Q3 ' 1, Q4 ' 1/u2 . (9.43)

For ∆0 = 3, 5, . . . the solution involves also the η-functions introduced in the QSC context

in [136, 199]

ηs1,...,sk(u) =
∑

n1>n2...nk≥0

1

(u+ in1)s1 . . . (u+ ink)sk
. (9.44)

which are related in a simple way to the nested harmonic sums. For ∆ = 3 we found

Q1 ' u2, Q2 ' u2η1,3 − i−
1

2u
, (9.45)

Q3 ' u2η1,2 − iu−
1

2
, Q4 ' u2η1,4 −

i

u
− 1

2u2
,

which reflects the general structure of the expansion of Qi around integer ∆’s which

contain only η1,2, η1,3 and η1,4 with polynomial coefficients.

Let us introduce a class of functions called η-polynomials — linear combinations of

η-functions with polynomial coefficients. As explained in [136, 199], it is closed under all

essential for us operations. Indeed, the product of any two η-functions can be written as

a sum of η-functions, and, most importantly, one can easily solve equations of the type

f(u+ i)− f(u) = unηs1,...,sk (9.46)

for any integer n again in terms of η-polynomials. For example for n = −1 and k = 1, s1 =

1 we get f = −η2−η1,1. Thus starting with LO expressed in terms of η-polynomials we are

guaranteed to get η-polynomials on each step of the iterative procedure described above.

Proceeding in this way we computed Qi up to the order g6 and δ10 for ∆ = 3, 5, 7. After

that we fix the coefficients in the ansatz for Pa from analyticity requirements described

below.

Fixing remaining parameters. Here we will describe how to use Qi found before to

finally extract a relation between S and ∆ and the constants ca,n. This is done by using
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a relation between Qi and their analytical continuations Q̃i. On the one hand we have

the relation (4.24). On the other hand we can use the u → −u symmetry50 of the twist-

two operators to notice that Qi(−u) should satisfy the same finite difference equation as

Qi(u) and thus we should have Qi(u) = Ωj
i (u)Qj(−u) where Ωj

i (u) is a set of periodic

coefficients. As Qi(u) has a power-like behavior at infinity, Ωj
i (u) should not grow faster

than a constant. Furthermore, since Qi has a definite asymptotic (8.2) only diagonal

elements of Ωi
i(u) can be nonzero at infinity. Combining these relations we find

Q̃A(u) = αiAQi(−u) , A = 1, 3 , (9.47)

where αjA = ωAiχ
ikΩj

k are i-periodic (as a combination of i-periodic functions), analytic

(as both Q̃a(u) and Qa(−u) should be analytic in the lower-half-plane) and growing not

faster than a constant at infinity which implies that they are constants. Furthermore most

of them are zero because only ω12, ω34 and Ωi
i are non-zero at infinity. Thus we simply

get

Q̃1(u) = α13Q3(−u) , Q̃3(u) = α31Q1(−u) . (9.48)

Next we note that if we analytically continue this relation and change u→ −u we should

get an inverse transformation which implies α13 = 1/α31 ≡ α. The coefficient α depends on

relative normalization of Q1 and Q3. Let us see how to use the identity (9.48) to constrain

the constants ca,n of the expansion (8.1) of Pa. We observed that all the constants are

fixed from the requirement of regularity at the origin of the combinations Q1 + Q̃1 and

Q1−Q̃1√
u2−4g2

, which now can be written as

Q1(u) + αQ3(−u) = reg ,
Q1(u)− αQ3(−u)√

u2 − 4g2
= reg .

This relation is used in the following way: one first expands in g the left hand side and

then in u around the origin. Then requiring the absence of the negative powers will fix α,

all the coefficients ca,n, and the function ∆(S)! So we can completely ignore ωij , Q2, and

Q4 in this calculation. This observation can be used in more general situations and allows

avoiding construction of ωij , and in particular could considerably simplify the numerical

algorithm of chapter 8.

Constraints from poles. We use the procedure described above to compute the ex-

pansion of S(∆) around ∆0 = 3, 5, 7. In particular for ∆ = 5 + ε we computed the first 8

50More generally one can also use complex conjugation symmetry
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terms

χNNLO = −1024

ε5
+

64
(
4π2 − 33

)
3ε3

+
16
(
−36ζ3 + 2π2 + 31

)
ε2

+
−288ζ3 + 232π4

45 − 16π2 − 296

ε
− 2

15

[
20
(
4π2 − 75

)
ζ3 + 6300ζ5 + π4 − 215π2 + 285

]
+ε

[
40ζ2

3 + 2
(
8π2 − 123

)
ζ3 − 396ζ5 +

373π6

945
+

11π4

9
− 26π2 +

1771

4

]
.

+ε2
[
−48ζ2

3 +

(
505

2
− 6π2 +

43π4

45

)
ζ3 +

(
329 +

4π2

3

)
ζ5

−1001ζ7

4
+

31π6

252
+

27π4

40
+

147π2

8
− 12387

16

]
+ε3

[
−2

3

(
π2 − 30

)
ζ2

3 +

(
218ζ5 +

7π4

5
+

4π2

3
− 1779

8

)
ζ3 +

(
8π2 − 1161

4

)
ζ5

−2715ζ7

8
+

78S5,3(∞)

5
− 14233π8

3402000
− 223π4

144
− 557π2

48
+

7625

8

]
+O

(
ε4
)
. (9.49)

We also reproduced expansions extracted from [200] for ∆ = 1.

9.3.2 Result for NNLO BFKL

One can notice that formulas (9.13), (9.14) for LO and NLO have uniform transcenden-

tality if one assigns to Sa1,...,ak transcendentality equal to
k∑
j=1
|aj |. As usual, transcenden-

tality of a product is the sum of transcendentalities of the factors, transcendentalities of

ζn and Lin
(

1
2

)
are both n, transcendentalities of log 2 and π are both 1. The principal

assumption of our calculation states that F3(x) can also be written as a linear combination

of nested harmonic sums with coefficients made out of several transcendental constants

π2, log(2), ζ3, ζ5,Li4
(

1
2

)
,Li5

(
1
2

)
of uniform transcendentality 5. The final basis obtained

after taking into account the constants contains 288 elements.

Hence we build the linear combination of these basis elements with free coefficients

and constrained them by imposing the expansion at ∆ = 1, 3, 5, 7 to match the results of

the analytic expansion of QSC (in particular, requiring (9.49)). This gave an overdefined

system of linear equations for the unknown coefficients which happen to have a unique
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solution presented below:

F3(x)

256
= −5S−5

8
− S−4,1

2
+
S1S−3,1

2
+
S−3,2

2
− 5S2S−2,1

4

+
S−4S1

4
+
S−3S2

8
+

3S3,−2

4
− 3S−3,1,1

2
− S1S−2,1,1

+S2,−2,1 + 3S−2,1,1,1 −
3S−2S3

4
− S5

8
+
S−2S1S2

4
(9.50)

+π2

[
S−2,1

8
− 7S−3

48
− S−2S1

12
+
S1S2

48

]
−π4

[
2S−1

45
− S1

96

]
+ζ3

[
−7S−1,1

4
+

7S−2

8
+

7S−1S1

4
− S2

16

]
+

[
2Li4

(
1
2

)
− π2 log22

12
+

log42

12

]
(S−1 − S1)

+
log52

60
− π2 log32

36
− 2π4 log 2

45
− π2ζ3

24
+

49ζ5

32
− 2Li5

(
1
2

)
.

The simplicity of the final result is quite astonishing: only 37 coefficients out of 288

turned out to be nonzero. Furthermore, they are significantly simpler than the coefficients

appearing in the series expansion around the poles (9.49). These are all clear and expected

indications of the correct result similar to what was observed in the usual perturbation

theory [81]. In addition we also performed the numerical test described below.

9.3.3 Numerical tests

Using the method of [12], described in chapter 8, we evaluated 40 values of spin S for

various values of the coupling g in the range (0.01, 0.025) with 80 digits precision and then

fit this data to get the following prediction for the NnLO BFKL coefficients at the fixed

value of ∆ = 0.45:

value error

N2LO
10775.6358188471766379575931271924

56995929170948057653783424533229
10−61

N3LO
−366392.20520539170389379035074785

44549935531959333919163403836
10−56

N4LO
1.33273645568112691569404431036982

8561521940588979476878854× 107
10−51

N5LO
−4.9217401266579165009139555520750

70060721450958436559876× 108
10−47

We found that our result (9.50) reproduces perfectly the first line in the table within

the numerical error 10−61 which leaves no room for doubt in the validity of our result.
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Figure 15: The BFKL trajectories S(∆) at various values of the coupling. Blue

lines are obtained using the known two loop weak coupling expansion [188, 187] and red

lines are obtained using the strong coupling expansion [189, 190, 191].

9.4 Strong coupling regime of BFKL pomeron

Another interesting problem is to determine the strong coupling expansion of the BFKL

pomeron intercept at strong coupling. At strong coupling the quasiparticle can be de-

scribed as a graviton in AdS, thus j(λ) approaches 2, as can be seen on Fig. 16.

As shown in [201], when λ→∞ the expansion of j(ν) has the following form

j(ν) = 2− 2 + 2ν2

√
λ

(
1 +

∞∑
n=2

j̃n
(
ν2
)

λ
n−1

2

)
, (9.51)

where j̃n(ν2) is a polynomial of order n− 2.

One can also use the same techniques as in section 5.5.3 to calculate the coefficients of

this expansion. As mentioned before, the intercept of a BFKL trajectory j(∆) is simply

j(0) and we already wrote down an ansatz for S(∆) in (5.128). Obviously, the coefficients

αi, βi, . . . are in one-to-one correspondence with the coefficients Ai, Bi, . . . from (5.130),

values of which we found in chapter 5. Using this relation we find

α1 = 1/2, α2 = 1/4, α3 = −1/16 , α4 = −3ζ3

2
− 1

2
, (9.52)

α5 = −9ζ3

2
− 361

256
, α6 = −39ζ3

4
− 447

128
(9.53)
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Figure 16: The BFKL intercept dependence on the coupling constant g at two orders

at weak coupling (blue lines), four orders at strong coupling (red lines) and a Padé type

interpolating function in between (dashed line).

β3 = −3/16, β4 =
3ζ3

8
− 21

64
, β5 =

9ζ3

8
− 51

128
, β6 =

45ζ3

8
+

15ζ5

16
+

13

512
(9.54)

γ5 =
21

128
, γ6 = −51ζ3

64
− 15ζ5

64
+

137

256
(9.55)

Furthermore, setting ∆ = 0 we find the intercept to be

j(0) = 2 + S(0) = 2− 2

λ1/2
− 1

λ
+

1

4λ3/2
+ (6ζ3 + 2)

1

λ2

+

(
18 ζ3 +

361

64

)
1

λ5/2
+

(
39 ζ3 +

447

32

)
1

λ3
+O

(
1

λ7/2

)
. (9.56)

The first four terms successfully reproduce known results [189, 190, 191] and the last two

terms of the series are a new prediction (their derivation relies on the knowledge of the

constants B3,4;J=2 found in section 5.5.3).

9.5 Numerical calculation of the Pomeron intercept

In the previous sections of this chapter we saw how QSC can be used to obtain perturbative

analytic results in the BFKL regime at weak and strong coupling. Here we take an alter-

native approach and solve QSC numerically at intermediate values of the coupling, which

are unaccessible by analytical methods. Namely, we will apply the numerical algorithm of
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the previous chapter to determine the BFKL intercept numerically at intermediate values

of coupling.

As explained earlier, the problem of determining j(iν) can be mapped to the spectral

problem for twist-two operators. In this approach the intercept will be defined as j =

S(∆ = 0) + 2, where S is the spin of the twist-two operator such that ∆(S) = 0. Having

formulated the problem like this, we can in principle apply the algorithm described in

chapter 8 to find the correct value of S, while keeping ∆ at zero. However, one may

already suspect that the point ∆ = 0 is special. Indeed, we know that for any solution

of QSC there is always another one related by ∆ → −∆ symmetry. At the level of Qi

functions this allows simultaneously interchanging Q1 ↔ Q3 and Q2 ↔ Q4 as one can

see from the asymptotics (4.49). From this we see that at small ∆ two different solutions

of QSC (related by the symmetry) approach each other, making the convergence slow,

exactly like Newton’s method becomes inefficient for degenerate zeros. In other words, in

the limit ∆→ 0 the Q’s related by the symmetry become linearly dependent in the leading

order. Furthermore, since the matrix Qa|i should stay invertible, the leading coefficients

Bi of asymptotic expansion of Qi diverge at ∆→ 0.

To lift the degeneracy we perform a linear transformation of Q’s preserving the equa-

tions: it will replace two of them by linear combinations Q3−γQ1 and Q4+γQ2 with some

coefficient γ, so that the divergent leading order cancels and the four functions Qi become

linearly independent. This will be a particular case of H-transformations (4.14), analogous

to the γ-transformation (4.61) for Pa. For the gauge choice in which B1 = B2 = 1 the

transformation acts on i-indices of Q-functions with a matrix

Hi
j =


1 0 0 0

0 1 0 0

−γ 0 1 0

0 γ 0 1

 , γ =
i(S − 4)(S − 2)S(S + 2)

16(S − 1)2∆
. (9.57)

One can check that rotation by this matrix will render Qa|i finite and linearly inde-

pendent, and moreover, preserve relations (4.42). After this one can apply the standard

procedure from chapter 8 with the only modification that the large u expansion of Qa|i
will contain log u/un terms in addition to the usual 1/un.

Having done this, we can readily generate lots of numerical results. In particular we

numerically built the function j(λ) which interpolates perfectly between the weak and

strong coupling predictions. We have found j(λ) with high precision (up to 20 digits) for

a wide range of ’t Hooft coupling (going up to λ ' 1000). The results are also summarized
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1 10 100 1000
λ

1.2

1.4

1.6

1.8

j

Figure 17: The BFKL intercept j as a function of coupling λ from numerics. The

red solid line with tiny red dots is obtained by our numerical procedure. It interpolates

perfectly between the known perturbative predictions (the blue dashed lines) at weak

[187, 188] and strong coupling [189, 190, 191, 9].

in Tab. 3 and Fig. 17.

Tab. 3 represents a small portion of all data we generated. In particular we generated

∼ 100 points with small g in the range 0.017 . . . 0.1, each with more than 20 digits precision.

Fitting this data with powers of g2 we found

j = 1 + 11.09035488895912495068g2 − 84.078566807464919912295g4

−2543.0481651804494295352129g6 + 156244.80863043450157642924g8

where the first 3 terms are known analytically from Feynman diagram perturbation theory

calculations [187, 188] and their numerical values coincide in all digits with our prediction

above. The g6 term agrees the NNLO formula we presented in the previous section to

all significant digits. The last term gives a numerical prediction for the numerical values

of the NNNLO BFKL pomeron intercept. Our fit also gives predictions for the higher

corrections, but with smaller precision.
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√
λ

4π j(λ)
√
λ

4π j(λ)

0. 1.000 000 000 000 000 000 0 0.1 1.101 144 978 997 772 874 8

0.2 1.301 794 032 258 782 208 7 0.3 1.470 445 240 989 187 630 6

0.4 1.587 128 066 254 129 730 4 0.5 1.666 438 709 974 061 852 3

0.6 1.721 917 842 815 631 353 9 0.7 1.762 239 296 816 453 814 3

0.8 1.792 626 253 069 403 59 0.9 1.816 252 952 807 284 11

1. 1.835 109 464 032 173 0 1.1 1.850 489 553 739 522 8

1.2 1.863 264 346 392 640 4 1.3 1.874 039 320 799 460

1.4 1.883 247 290 966 33 1.5 1.891 205 346 040 23

1.6 1.898 150 851 852 49 1.7 1.904 264 892 928 17

1.8 1.909 687 948 271 74 1.9 1.914 530 628 017 38

2. 1.918 881 187 304 9 2.1 1.922 810 887 750

2.2 1.926 377 890 67 2.3 1.929 630 129 41

2.4 1.932 607 459 1 2.5 1.935 343 287 2

Table 3: Numerical data for the pomeron intercept for various values of the ’t Hooft

coupling.

10 Integrability in AdS4/CFT3

The main part of this thesis deals with integrability in AdS5/CFT4 . However, AdS/CFT

dualities in lower dimensions can also manifest integrability in the planar limit. In this

chapter we will discuss the case of AdS4/CFT3 duality, which relates a three-dimensional

supersymmetric gauge theory called ABJM to type IIA string theory on a curved back-

ground. The duality is briefly described in section 10.1. In section 10.2 we make an

overview of the integrability tools in ABJM with emphasis on differences and similari-

ties with respect to the AdS5/CFT4 case (for more details see [202]). As in the case of

AdS5/CFT4 , in ABJM the integrability properties of the theory are compactly encoded

into a version of QSC which we discuss in section 10.3. However, ABJM possesses one

important feature which differs it from N = 4 SYM — in this theory all integrability-

based calculations are performed in terms of one unknown function of coupling, so-called

interpolating function h(λ). For a long time this function was known only in its weak

and strong coupling expansions. In section 10.4 we solve QSC in a near-BPS limit and in

section 10.5 show how this solution allows us to make a conjecture about the exact form

of the interpolating function.
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10.1 Overview of AdS4/CFT3

The AdS4/CFT3 duality was proposed in [49] and relates a three-dimensional N = 6

supersymmetric gauge theory named ABJM to type IIA string theory on AdS4 × CP 3.

The QFT side of the duality, ABJM theory consists of two copies of Chern-Simons theory

with gauge groups U(N) at levels k and −k and the matter. The matter is composed of

four complex scalars Y A and four Weyl spinors ψA, which transform in the bi-fundamental

representation of U(N) and their counterparts Y †A and ψ†A in the anti-bi-fundamental.

To complete the field content one has to also include gauge fields Aµ and Âµ of the two

copies of U(N), which transform in the adjoint. The explicit action can be written in the

form [203]

S =
k

4π

∫
d3x

[
εµνλtr

(
Aµ∂νAλ +

2i

3
AµAνAλ

)
−tr (DµY )†DµY − itr ψ†Dψ − Vferm − Vbos

]
(10.1)

where

Vbos = − 1

12
tr
[
Y AY †AY

BY †BY
CY †C + Y †AY

AY †BY
BY †CY

C

+4Y AY †BYCY
†
AY

BY †C − 6Y AY †BY
BY †AY

CY †C

]
(10.2)

and

Vferm =
i

2
tr
[
Y †AY

Aψ†BψB − Y AY †AψBψ
†B + 2Y AY †BψAψ

†B − 2Y †AY
Bψ†AψB

−εABCDY †AψBY
†
CψD + εABCDY

Aψ†BY
Cψ†D

]
(10.3)

Here the covariant derivative acts on the bi-fundamental fields as DµY = ∂µY + iAµY −

iY Âµ.

This action possesses OSp(6|4) symmetry and an additional “barionic” U(1) under

which bi-fundamental, anti-bi-fundamental and adjoint fields transform with charges 1, −1,

and 0 respectively. The OSp(6|4) group contains as a bosonic subgroups three-dimensional

conformal group Sp(4) ∼= SO(2, 3) and R-symmetry SO(6) ∼= SU(4). It also contains

N = 6 SUSY transformations.

The parameters of the gauge theory, N and k, are related to the parameters of the

string theory, string coupling gs and the radius R of CP 3, which is twice the radius of

AdS4

gs =
(
N/k4

)1/4
= (λ/k3)1/4, R2/α′ = 4π

√
2λ (10.4)
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where λ = N/k. One can see that in the strong coupling limit (λ → ∞) the string

background becomes flat and strings propagate classically. On the other hand, in the

small coupling limit the background becomes highly curved and the strings are quantum.

10.2 Integrability in AdS4/CFT3

Fields in the action (10.1) can be rescaled in such a way that the quadratic terms will come

without a factor of k and the interaction terms will be suppressed by powers of 1/k. This

means that effectively 1/k can be treated as a coupling constant. In analogy with N = 4

SYM one can consider ’t Hooft limit, otherwise called the planar limit: weak coupling and

large rank of the gauge group. In the context of ABJM this will mean

λ = N/k = fixed, N →∞, k →∞. (10.5)

As one can see from (10.4), on the string side the planar limit corresponds to gs → 0. In

other words, the string interactions are suppressed and only tree-level amplitudes survive.

As the N = 4 SYM , in the planar limit ABJM becomes integrable. A similar hierarchy of

integrability-based methods was developed, which we will very briefly describe here. The

starting point is, as before, to map the spectral problem for the dilatation operator at

weak coupling to spin chain spectral problem. Because the matter in ABJM transforms

in (anti-)bi-fundamental representation, the spin chain should be alternating — fields

Y A, ψAα live on odd sites and Y †A, ψ
†A
α live on even sites. The Hamiltonian at two loops

in su(4) sector was found in [204, 205]

H =
λ2

2

2L∑
l=1

(2− 2Pl,l+2 + Pl,l+2Kl,l+1 +Kl,l+1Pl,l+2) (10.6)

It was shown to be integrable and the Bethe equations at two loops were derived, which

were later generalized to all operators in [206] and [207].

As in N = 4 SYM , the Asymptotic Bethe Ansatz — all-loop Bethe equations valid in

the infinite volume limit were derived in [208]. One of its peculiarities was presence of two

types of momentum-carrying roots, originating from the alternating nature of the spin-

chain. Another feature which differs the ABA and, more broadly, the whole integrability

picture in ABJM from that of N = 4 SYM is that in ABJM symmetries and crossing-

relations do not fix the S-matrix completely, but up to one unknown function h(λ). This

function first appears in one-magnon dispersion relation

E(p) =

√
Q2 + 4h2(λ) sin2 p/2, (10.7)
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where Q is the magnon charge equal to 1 in N = 4 SYM and 1/2 in ABJM. The real

difference comes from the fact that whereas in N = 4 SYM the function h(λ) is known and

equal to
√
λ/4π (the argument for its non-renormalization was given in [209]), in ABJM

until recently only its weak and strong expansions were known. In section 10.5 we propose

a conjecture for the exact form of this function.

On the classical side the string action was formulated and written as a coset model

[210, 211, 212]
OSp(6|4)

SO(1, 2)× U(3)
(10.8)

As in N = 4 SYM case, it possesses Z4 grading and allows to construct an algebraic

curve. In this case the algebraic curve is a ten-sheeted Riemann surface parametrized by

Zhukovsky variable x satisfying

p1,2,3,4,5(x) = −p10,9,8,7,6(x) (10.9)

These all are perturbative tools, at weak and strong coupling. The thermodynamic

Bethe Ansatz, working for any value of coupling for finite length operators was developed

in ABJM in [96, 97]. Finally, the cumbersome system of TBA equations was reformulated

as Quantum Spectral Curve in [194]. This is our main tool and we will describe it in the

next section.

10.3 Quantum Spectral Curve for ABJM

In this section we describe the Quantum Spectral Curve (QSC) also known as Pµ-system

for the ABJM model of [194]. The structure found in [194] has an unexpected and in-

triguing relation to that of QSC of N = 4 SYM described in the previous chapters of the

thesis. Here we briefly describe the part of the construction essential for our applications.

As in N = 4 SYM , TBA can be reduced to Hirota equation for T-functions supple-

mented by some analyticity constraints. Then Q-functions originate as a parametrization

of a general solution of this Hirota equation on given lattice. As a consequence of a dif-

ferent symmetry algebra, the form of a lattice here is different from that of N = 4 SYM

[96, 97]. The set of Q-functions is modified as well. We do not describe here the whole

Q-system, but only its Pµ-part, essential for our calculation.

The main objects are 5 functions PA, A = 1, . . . , 5 and 4 function νa, a = 1, . . . , 4 of

the spectral parameter u. PA are restricted by a quadratic constraint P5 =
√

1−P1P4 + P2P3.

Depending on the choice of the branch cuts νa could be made i-periodic. However, for our
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calculation it will be more convenient to choose the branch of νa(u) with infinitely many

cuts going from −2h+ in to 2h+ in for any integer n. In this case νa are quasi-periodic

and satisfy

νa(u+ i) = −Pab(u)νb(u), (10.10)

where ν1 = −ν4, , ν
2 = ν3, ν

3 = −ν2, ν
4 = ν1 and Pab is a 4× 4 matrix built out of PA:

Pab =


0 −P1 −P2 −P5

P1 0 −P5 −P3

P2 P5 0 −P4

P5 P3 P4 0


ab

. (10.11)

Analytical continuation of νa under the cut [−2h, 2h], denoted as ν̃a, is related to νa itself

simply by ν̃a(u) = νa(u+ i). Finally, functions PA have only one cut [−2h, 2h] and their

analytical continuation P̃A under this cut is given by

P̃ab = Pab + νaν̃b − νbν̃a . (10.12)

It is easy to notice that this construction is very similar to that of N = 4 SYM : indeed,

replace Pab by µN=4
ab and νa by PN=4

a and compare the equations (10.12) and (10.10) with

(4.18) and (4.17) respectively. Algebraically, we get exactly the same equations! However,

their analytical properties are interchanged (see [194] for more details).

Finally, we have to specify how the quantum numbers of a state enter into this con-

struction. Here we focus on sl(2) subsector (analogue of sl(2) subsector of N = 4 SYM

described in 4.4) which includes single trace operators of the type tr[DS
+(Y 1Y †4 )L] 51, thus

there are 3 quantum numbers to specify: L, S, and the scaling dimension ∆ = L+ S + γ,

where γ denotes its anomalous part. As usual, the quantum numbers enter QSC through

the large u asymptotics

PA ∼ (A1u
−L, A2u

−L−1, A3u
+L+1, A4u

+L, A5u
0) (10.13)

and ∆ and S are encoded into the coefficients as

A1A4 = −
2
(
(L− S)2 −∆2

) (
(L + S − 1)2 −∆2

)
(1− 2L)2L

, (10.14)

A2A3 = −
2
(
(L + S)2 −∆2

) (
(L− S + 1)2 −∆2

)
(1 + 2L)2L

,

where we introduced ∆ = ∆ + 1
2 and L = L+ 1

2 .

51Strictly speaking these operators could also mix with fermions, for a detailed description see [202]
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Figure 18: Mapping the cuts. Antiperiodic functions ρ2,3(u) have infinitely many short

cuts. In the variable y = e2πu only two cuts remain.

10.4 Slope function

In this section we compute the slope function exactly as a function of the effective coupling

h(λ). This observable is close to the BPS point in the parameter space. Similar observables

— slope and curvature — were studied in N = 4 SYM in chapter 5 and an enormous

simplification of the QSC system equations was observed there, which allowed for an

exact explicit solutions for any value of ‘t Hooft coupling. For us the BPS operator is

tr[(Y 1Y †4 )L] so in order to be close to the protected point we have to take the number

of derivatives S small. The expansion coefficients in small S are expected to be exactly

computable, and we will find the first such coefficient, called slope function. In N = 4

SYM it was first computed by Basso [115]. There the situation was a priori simpler as in

N = 4 the slope function is not affected by wrapping effects which means that the result

can be calculated solely from a simple algebraic set of equations called asymptotic Bethe

ansatz. At the same time in the QSC formalism the wrapping corrections are incorporated

automatically and both theories can be treated very similarly. As we will show in many

ways the calculation in ABJM based on QSC is similar to that for the curvature function

in N = 4 SYM described in [9] and section 5.3 of this thesis.

To see that there is a simplification in the limit S → 0, we notice that in this limit

∆ ' L and thus A1A4 ∼ A2A3 ∼ S. Like in N = 4 case we can assume that Pa ∼
√
S, a = 1, . . . , 4 and due to the constraint we must have P5 ' 1. Based on this, we found

that the consistent scaling of νa is ν1, ν4 ∼ 1, ν2, ν3 ∼
√
S. Then in the leading order of
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the equations for the monodromy of νa become
ν̃1

ν̃2

ν̃3

ν̃4

 =


1 0 0 0

P3 −1 0 P1

P4 0 −1 P2

0 0 0 1




ν1

ν2

ν3

ν4

 , (10.15)

from where we see that to the leading order ν1 and ν4 do not have cuts whereas ν2 and ν3

are nontrivial. There is still certain freedom in the construction which allows, for example,

to shift P4 → P4 +αP2 with arbitrary constant α. We use this freedom to set ν1 = 1 and

ν4 = 0 [194]. The equations for the monodromy of Pa take the form

P1 − P̃1 = ν̃2 − ν2, P̃3 = P3,

P2 − P̃2 = ν̃3 − ν3, P̃4 = P4. (10.16)

From (10.15), (10.16) one can see that the equations for P2,P4, ν3 decouple from P1,P3, ν2.

The two groups of equations differ only by asymptotics of Pa, so here we only give details

on the solution of the first one, i.e. ν̃3 + ν3 = P4, P2 − P̃2 = ν̃3 − ν3, which together

with periodicity gives ν3(u + i) + ν3(u) = P4(u). There is another important difference

between ν2 and ν3 – we have to assume that asymptotics of ν3 grows as eπu and ν2 decays

at infinity. This is a peculiarity of analytical continuation in S to non-integer values,

described for N = 4 SYM in [9] in detail.

Taking into account that P4 does not have a cut according to (10.16) and also its

asymptotic behavior (10.13), we conclude that it is a polynomial in u of degree L. Intro-

ducing notations

ν3(u+ i
2) = ρ3(u+ i

2) +Q3(u), (10.17)

where Q3(u) is a polynomial such that Q3(u+ i
2) +Q3(u− i

2) = P4(u), we get

ρ3(u+ i) = −ρ3(u) , ρ̃3 + ρ3 = Q+
3 −Q

−
3 ≡ q3 , (10.18)

i.e. ρ3 is antiperiodic. It is convenient to make a change of variables y = e2πu, which maps

infinitely many cuts of νi or ρi into one cut and introduces a quadratic cut from 0 to −∞,

see Fig. 18.

In order to resolve equations of the form g̃+g = f like in (10.18) we define the following

Hilbert transformation H as

H[f ](z) =
1

2

∮
γ

dy

2πi

√
z − e4πh

√
z − e−4πh√

y − e4πh
√
y − e−4πh

f(y)

y − z
, (10.19)
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which gives a solution of this equation with non-growing asymptotics at infinity with one

cut [e−4πh, e+4πh]. Note, however, that ρ3(z) has another cut (−∞, 0) on which it simply

changes its sign. We can overcome this problem by dividing it by
√
z. After that we can

use (10.19) to get

ρ3(z) =
C√
z

+
√
zH

[
1
√
y
q3

(
log y

2π

)
− 2C

y

]
. (10.20)

The term proportional to C is added here, because it is not prohibited by the asymptotics:

ν3 can grow as eπu at infinity. The constant C is fixed at the end from the condition that

ρ3(u) should be even.

Next, knowing ρ3 and thus ν3 in terms of the yet to be fixed polynomial P4, we can

find P2 as a solution of corresponding equation in (10.16). As P2 is a function with one

cut we simply use the Cauchy kernel

P2(v) = −
∮

dz

2πiz

ρ3(z)

log z − 2πv
. (10.21)

Thus we found all the objects in terms of a few coefficients of the polynomial P4. To

extract γL(h) we have to find these coefficients. Consider first, for simplicity, L = 1. In

this case P4 = A4u , so q3 = iA4
2 and

P2 = A4

∮
dz

4π
√
z

H[y−1/2]

2πv − log z
. (10.22)

Thus considering the leading asymptotics of P2 we can obtain

A2/A4 =

∮
dz log z

2(2π)3
√
z
H[y−

1
2 ] (10.23)

and similarly P1 gives A1/A3. On the other hand, expanding equations (10.14) to the first

order in S yields γ1 = −2S

1+ L
L+1

A1A4
A3A2

and substituting the ratios of the coefficients we get

γ1(h) = −2S
∂αI− 1

2
,− 1

2

∂αI− 1
2
,− 1

2
+ ∂βI− 1

2
,− 1

2

, (10.24)

where

Iα,β =

∮
γ
dy

∮
γ
dz

√
y − e4πh

√
y − e−4πh

√
z − e4πh

√
z − e−4πh

yαzβ

z − y
. (10.25)

Both integrals go around the cut [e−4πh, e4πh]. Another convenient representation of

Iα,βe
4πh(α+β+1) is

π2β

e8πh−1∫
0

2F1

(
3
2 ,−α; 2;−S

)
2F1

(
3
2 , 1− β; 2;−S

)
SdS. (10.26)

For odd L > 1 there are L+1
2 constants in q3. To fix them we use L−1

2 conditions of

the form
∮

du
2πiu

kγ3(u) = 0 for k = 1, 3 . . . L − 2, which ensure that asymptotics of P2 at
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infinity is O
(
u−L−1

)
. These conditions take a form of a system of linear equations for

constants entering q3 with coefficients of the form sn,k = ∂kα∂
n
β I−1/2,−1/2. The solution for

this system takes form of a ratio of determinants made of sn,k. A similar strategy also

applies to P1,P3 and ν2.

Using again the formula for γL in terms of A1/A3, A2/A4 we get that the result for

any L 52 is

γL = − 2S

1 + rL/rL−2
, (10.27)

where

rL =
det sL−2i−1,L−2j

det sL−2i,L−2j−1
, i, j = 0 . . . bL2 c, L ≥ 0 (10.28)

We define sk,n as

sk,n = ∂kα∂
n
β I−1/2,−1/2, k, n ≥ 0, (10.29)

and

sk,−1 = ∂kαI−1/2,−1, (10.30)

s−1,n =
1

2
∂nβ

(
e4πβh

2F1

(
1

2
,−β; 1, 1−e8πh

))∣∣∣∣
β=−1/2

. (10.31)

Equation (10.27) is our result for the slope function which we now test at weak and strong

coupling.

Weak coupling. At weak coupling it is convenient to use (10.26). Up to the order h2L

we can compare our result against the slope function γABAL = S 2πh
L

IJ+1(2πh)
IJ (2πh) ofN = 4 SYM

[115] which does not take into account the wrapping effects. These effects appear at the

order O
(
h2L+2

)
and the leading deviation can be compared with the Lüscher correction

which we found as a generalization of [213, 214]:

γwrapL = −Sh2L+2 4π3/2(4L − 2)ζ2LΓ
(
L+ 1

2

)
LΓ(L+ 2)

. (10.32)

We found a perfect agreement with our exact formula for L = 1, . . . , 5 and 7.

Strong coupling. At strong coupling we notice an interesting phenomenon – our result

can be written explicitly as a rational function of h with exponential precision. For example

γL=1 = 4g3−12g2+12g−3ζ3
6g2−6g

S + O(e−4g) where g = 2πh + log 2. To get this expression we

52the procedure for odd L, which we do not describe here, is analogous.
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have evaluated the integral (10.25) with exponential precision

Iαβ ' −
2πΓ

(
α+ 1

2

)
Γ
(
−β − 1

2

)
e4πh(α−β)

Γ(α+ 2)Γ(−β)
(10.33)

−
4π
(
β + 1

2

)
Γ
(
−α− 1

2

)
Γ
(
−β − 1

2

)
e4πh(−α−β−1)

(α+ β + 1)Γ(−α)Γ(−β)

+
4π(α+ 1

2)Γ
(
+α+ 1

2

)
Γ
(
+β + 1

2

)
e4πh(+α+β+1)

(α+ β + 1)Γ(α+ 2)Γ(β)
.

We found that for any L the result is some rational function of g of a growing with L

complexity. However, the large g expansion coefficients can be found explicitly for any L

to be
γL
S

=
g − L− 1

L+ 1
2

+

(
1

2g
− 3ζ3 − 4

8g2

)
L2 + L

L+ 1
2

+O(g−3). (10.34)

To test our result we take the quasi-classical limit L ∼ g� 1. Introducing J = L+1/2
g ∼ 1

and S = S
g and expanding at large g in (10.34) we find

∆− L
S

'
(

1

J
+
J
2

+ . . .

)
+

1

g

(
−1

2J
+ J 4− 3ζ3

8
+ . . .

)
which reproduces the corresponding terms in the tree level and one-loop quasi-classical

folded string quantization [215]. Note that with our definition of J all log 2 terms and

all even powers of J disappear from the one-loop terms of [215]. From that we can see

that L ≡ L+ 1/2, which appears in denominator of (10.34), and ∆ ≡ ∆ + 1/2 are natural

combinations as is already clear at the level of (10.14) which only depends on ∆2 and

where under the change of sign of L the two lines in (10.14) simply interchange. This

hints the following ansatz for double expansion at large g and small S, similar to the

result (5.129) for N = 4 SYM [115]

∆2 − L2 =
∑
n,k=1

An,k(L
2)Sng−n−k+3 (10.35)

where the coefficients An,k are polynomials of degree bk2c in L2. By comparison with

(10.34) and with quasi-classics [216] we find A1,1 = 2, A1,2 = −1 , A1,3 = L2 − 1
4 ,

A1,4 = (L2− 1
4)(1− 3ζ3

4 ), A2,1 = 3
2 , A2,2 = 5

8 −
9ζ3
4 . Next we can re-expand (10.35) sending

g→∞ like in [115]. For example at L = 1, S = 2 we get (10.35)

∆L=1,S=2 = 2
√

g − 1

2
+

25

16
√

g
+

(
271

1024
− 9ζ3

4

)
g−3/2 + . . . . (10.36)

which gives a prediction for a strong coupling expansion of the anomalous dimension of

a short operator. As we see this result can be trivially generalized to any S and L, but

the expression we found is rather bulky. We also note that the third term disagrees with

[216], which is most likely due to the different ansatz used in [216]. As our ansatz is
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based on an extra insight about the structure of the spectrum coming from QSC and the

symmetries of (10.14) our result is likely to be the correct one. It would be interesting

to use the methods of [185] to check this result. That is important to note that it is not

expected that this result holds for odd S, as operators with odd S belong to a different

trajectory, as can be seen already at weak coupling [207, 217]. In particular the analytical

continuation of γ from odd S does not go through the BPS point and does not vanish at

S = 0 and thus should be treated differently 53.

10.5 Comparison with localization and h(λ)

Here we compare the structure of our result for the slope function with the result of

[218, 219, 220] obtained using localization [221, 222]. The quantity calculated in [218] is

the expectation value of 1/6 BPS Wilson loop, which in N = 4 is known to similar to

the slope function. Although in ABJM these quantities are not related that closely, we

still expect similarity in structure, which allow us to make a conjecture about h(λ). The

result of [218] can be written in a parametric form in terms of κ as an integral over the

matrix-model eigenvalue logZ

〈W 1/6
m=1〉 =

∫ A+

1
A+

dZ

2π2iλ
arctan

√
2 + iκ− Z − 1

Z

2− iκ+ Z + 1
Z

(10.37)

we see that the argument of arctan has 4 branch-points. The integration goes between

the branch-points from the numerator are A+ and 1/A+ and those from the denominator,

which we denote A− and 1/A− where

A± = ±1
2

(
2± iκ+

√
κ(±4i− κ)

)
(10.38)

and the parameter κ is related to the ‘t Hooft coupling by [218]

λ =
κ

8π
3F2

(
1

2
,
1

2
,
1

2
; 1,

3

2
;−κ

2

16

)
. (10.39)

The main observation is that the integral (10.37) is similar to the main ingredient of our

result (10.25). To make the similarity more clear, one can make a change of variable with

a suitable Mobius transformation which will map the branch points A− → ∞, 1/A− → 0

and A+ → G, 1/A+ → 1/G like on Fig.18. There is a unique Mobius transformation

with this property. Furthermore, it fixes uniquely the value of G in terms of κ as G =(
1
4(
√
κ2 + 16 + κ)

)2
, which is easy to find from the cross-ratio of the branch points before

53We thank B.Basso for pointing this subtlety out to us.
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and after the transformation. Thus to relate (10.37) with (10.25) we set G = e4πh which

leads to our conjecture

λ =
sinh(2πh)

2π
3F2

(
1

2
,
1

2
,
1

2
; 1,

3

2
;− sinh2(2πh)

)
. (10.40)

Expansion at weak/strong coupling gives

h(λ) = λ− π2λ3

3
+

5π4λ5

12
− 893π6λ7

1260
+O(λ9),

h(λ) =

√
1

2

(
λ− 1

24

)
− log 2

2π
+O

(
e−π
√

8λ
)
, (10.41)

which reproduces all known coefficients at weak and at strong coupling i.e. in total 4

nontrivial coefficients [223, 224, 225, 226, 227]. Curiously, the shift by − 1
24 at strong

coupling coincides with the anomalous radius shift of AdS found in [228], as also noticed

in [220].

Of course such identification at the level of the integrands is not completely rigorous

and in order to derive h(λ) one should apply the method of the QSC to the Bremsstrahlung

function like in [155, 95, 91, 7] and compare it to the result from localization [219, 229,

230] for the same quantity (for recent results on weak and strong coupling expansions of

Bremsstrahlung function see [231, 232]).

A non-trivial perturbative check supporting our conjecture appeared in [233], where

null cusp anomalous dimension was computed at two loops at strong coupling.

Part III

Conclusions and appendices

11 Conclusions and perspectives

In this thesis we studied the Quantum Spectral Curve method in application to AdS5/CFT4

and AdS4/CFT3 .

After reviewing the AdS5/CFT4 duality and the previously existing integrability meth-

ods in it, we presented a brief, but self-sufficient description of the Quantum Spectral Curve

method. This method yields the ultimate simplification of the spectral problem in planar

AdS/CFT: it allows to compute conformal dimensions of arbitrary operators at arbitrary

values of the coupling. Namely, it reduces this computation to a system of equations in

terms of monodromies of several functions of the spectral parameter in the complex plane.
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In the rest of the thesis we consider different limits of this system and apply it to various

problems in AdS5/CFT4 and AdS4/CFT3

The first limit we consider is a near-BPS, small spin limit of twist-two operators and

compute the quadratic correction in spin which we call the curvature function. From this

finite coupling result we extract several perturbative predictions, in particular new term

in the strong coupling expansion of Konishi operator and two new terms in the strong

coupling expansion of BFKL intercept.

Then we consider a different kind of observable, but also in a near-BPS limit: a cusped

Wilson line with insertion of scalar operators at the cusp. We calculate the cusp anoma-

lous dimension using two methods: first, using the Thermodynamical Bethe Ansatz and

then in a such simpler computation using QSC method. The result for general length L

of the inserted operator turns out to be expressed through determinants of matrices of

sizes proportional to L. The quasiclassical limit of this kind of expression is an interesting

problem in itself because of its relation to Matrix Models and, of course, it helps to com-

pare against strong coupling perturbative results. We found the corresponding classical

algebraic curve, which for open string solutions is a non-trivial task, because there is no

general method analogous to the monodromy construction for closed strings.

Although analytical calculations with QSC are much easier than with previously ex-

isting techniques, their scope of applications is still restricted to particular limiting cases.

Thus we developed an efficient numerical method for solving the QSC and demonstrate its

power by exploring operators from sl(2) sector for physical values of spin and away from

them: see, for example, Fig. 11 which shows the dependence of S on ∆ in the complex

plane.

An extremely interesting regime to study is the high energy Regge scattering, which is

related to the spectral problem for twist operators analytically continued to negative values

of spin, and thus can be studied by the method of QSC. We review the previously existing

results and present a new one — NNLO correction to BFKL eigenvalue, a quantity which

is practically unaccessible to perturbative calculations.

Finally, QSC was also developed in AdS4/CFT3 . There we again consider small spin

limit of twist operators and calculate the linear in spin contribution to the anomalous

dimension. Moreover and more importantly, by comparing our result with a certain local-

ization computation, we were able to extract the so-called interpolating function h(λ) —

an important and previously missing ingredient of the integrability picture in AdS4/CFT3

.
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The method of QSC has clearly proved its efficiency, but there are plenty of directions

in which it can be developed.

The first and obvious one is formulating the QSC for lower-dimensional AdS/CFT.

A partial description of QSC for AdS4/CFT3 appeared in [194]. The AdS3/CFT2 case

was for a long time a challenge for researchers: a large body of work on it was done

[234, 235, 236, 237, 238, 239, 240, 241, 242], however until very recently even the all-loop

Bethe Ansatz was not known in this case. Since the dressing phase necessary to write

down such an ansatz was found in [243], one might hope that QSC will soon be found for

this system as well. It is also worth mentioning that a variant of QSC has been developed

for Hubbard model [244].

The standard way to derive QSC is from Thermodynamical Bethe Ansatz. However,

the equations of TBA are much more cumbersome then those of QSC: instead of equations

for monodromy of several functions with known analytical properties you have an infinite

system of non-linear integral equations. Hence one might try to derive the elegant QSC

description directly from first principles and symmetry considerations.

As have been mentioned before, N = 4 SYM is a conformal theory, and this means that

data from the two-point functions (conformal dimensions of the fields) and from three-

point functions (structure constants) will be enough, at least in principle, to define the

whole theory, in particular, an n-point correlator. While large progress has been achieved

in applying QSC to the first part — the spectral problem — there has not been any

applications of QSC to three-point functions yet. However, work in progress suggests

that such application is possible in combination with Sklyanin’s Separation of Variables

method. In particular, there are indication that in this approach Pa play the role of wave-

functions. This direction is particularly promising because of the huge progress achieved

recently for three-point function with SoV and Spin Vertex approach [245, 246, 247, 248]

as well as with OPE approach [249].

Finally, after we have several example of Quantum Spectral Curve for different systems

it is not improbable that some general rule can be derived which could tell us how QSC

should look like based on the symmetry of the system.

In addition to these global problems there are a lot of smaller ones which arise as a

natural development of the problem developed in this thesis. We will only name several

most interesting ones.

After we have found an analytical form of NNLO BFKL, which seem to be unaccessible

for so manly years, it would be interesting to move further in this direction. First of all,
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it is apparent that our initial conjecture that the result is expressed in terms of harmonic

sums can be made much stronger: since only 37 of possible 288 function enter the basis,

it is clear that we only need a certain subclass of all possible harmonic sums of given

transcendentality. Once this subclass is identified, it would not be very hard to calculate

further corrections; more importantly, it will tell us something about the structure of the

general term in the expansion and possibility of resummation.

We have described an algorithm solving QSC numerically and demonstrated its appli-

cation to some simple examples. There is obviously a lot of work to be done here. First,

the algorithm, which is now written in Mathematica, can be rewritten in a lower-level lan-

guage, such a C and optimized, which should strongly increase its performance. Second,

although the method was described for any local operator, the computations we presented

all lie in the sl(2) sector. Numerical studies of states outside of this sector is the goal of

the nearest future.

Everywhere in the thesis we working in the planar limit. However, if we want to

approach QCD, which has N = 3, we have to find way to go beyond this limit. It is a

general understanding that beyond for finite N integrability probably breaks down. Can

some of the results obtained with integrability give us a hint of what happens for finite N?

To try and answer this question we recall that localization techniques allow to described

expectation values of certain supersymmetric enough observables as integrals in matrix

models of size N . In the large N limit the eigenvalues which are integrated over condense

into cuts. In section 10, based on our paper [14], we used a map of these cuts onto the

Zhukovsky cuts appearing in integrability calculations. This map seems to make physical

sense: it produces a conjecture for the interpolating function h(λ) which is supported by

independent perturbative tests. So one might propose a hypothesis that Zhukovsky cuts

are actually formed at large N by condensed eigenvalues of a particular matrix model

which would describe the system at finite N . We will certainly check this hypothesis in

our future work.

An important and still unexplored field of work can be trying to relate integrability-

based approach with another, parallel one — on-shell methods of computing scattering

amplitudes and emerged from there positive Grassmannian. Both approaches study the

same theory, N = 4 SYM , and both reveal beautiful mathematical structures, however

different ones. Some work in this direction was done in the series of papers [250, 251, 252,

253, 254, 255] but still the connection between the two approaches is far from clear.

Another possible approach connecting integrability to scattering amplitude studies is
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the limit of strong coupling where amplitudes are determined by areas of minimal surfaces

with null-polygonal boundary. These areas are described by so-called “Thermodynamical

Bubble Ansatz” [256, 257, 258] which was noticed to have formal similarity to TBA.

Understanding the possible connection between these two Ansätze can tell us if some form

of TBA (and as a consequence QSC) can be applied to calculation of scattering amplitudes.

A Appendices to chapter 5

A.1 Summary of notation and definitions

In this appendix we summarize some notation used throughout chapter 5.

Laurent expansions in x

We often represent functions of the spectral parameter u as a series in x

f(u) =

∞∑
n=−∞

fnx
n (A.1)

We denote by [f ]+ and [f ]− part of the series with positive and negative powers of x:

[f ]+ =

∞∑
n=1

fnx
n, (A.2)

[f ]− =

∞∑
n=1

f−nx
−n. (A.3)

Functions sinh± and cosh±

We define Ik = Ik(4πg), where Ik(u) is the modified Bessel function of the first kind.

Then

sinh+ = [sinh(2πu)]+ =
∞∑
k=1

I2k−1x
2k−1, (A.4)

sinh− = [sinh(2πu)]− =

∞∑
k=1

I2k−1x
−2k+1, (A.5)

cosh+ = [cosh(2πu)]+ =

∞∑
k=1

I2kx
2k, (A.6)

cosh− = [cosh(2πu)]− =

∞∑
k=1

I2kx
−2k. (A.7)
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In some cases we denote for brevity

shx− = sinh−(x), chx− = cosh−(x). (A.8)

Integral kernels

In order to solve for P
(1)
a in section 5.3.1 we introduce integral operators H and K with

kernels

H(u, v) = − 1

4πi

√
u− 2g

√
u+ 2g√

v − 2g
√
v + 2g

1

u− v
dv, (A.9)

K(u, v) = +
1

4πi

1

u− v
dv, (A.10)

which satisfy

f̃ + f = h , f = H · h and f̃ − f = h , f = K · h. (A.11)

Since the purpose of H and K is to solve equations of the type A.11, H usually acts on

functions h such that h̃ = h, whereas K acts on h such that h̃ = −h. On the corresponding

classes of functions H and K can be represented by kernels which are equal up to a sign

H(u, v) = − 1

2πi

1

xu − xv
dxv

∣∣∣∣
h̃=h

, (A.12)

K(u, v) =
1

2πi

1

xu − xv
dxv

∣∣∣∣
h̃=−h

. (A.13)

In order to be able to deal with series in half-integer powers of x in section 5.3.3 we

introduce modified kernels:

H∗ · f ≡ x+ 1√
x
H ·

√
x

x+ 1
f, (A.14)

K∗ · f ≡ x+ 1√
x
K ·

√
x

x+ 1
f. (A.15)

Finally, to write the solution to equations of the type (5.53), we introduce the operator Γ′

and its more symmetric version Γ

(
Γ′ · h

)
(u) ≡

∮ 2g

−2g

dv

4πi
∂u log

Γ[i(u− v) + 1]

Γ[−i(u− v)]
h(v), (A.16)

(Γ · h) (u) ≡
∮ 2g

−2g

dv

4πi
∂u log

Γ[i(u− v) + 1]

Γ[−i(u− v) + 1]
h(v). (A.17)



A.2 The slope function for odd J 168

Periodized Chebyshev polynomials

Periodized Chebyshev polynomials appearing in µ
(1)
ab are defined as

p′a(u) = Σ · [xa + 1/xa] = 2Σ ·
[
Ta

(
u

2g

)]
, (A.18)

pa(u) = p′a(u) +
1

2

(
xa(u) + x−a(u)

)
, (A.19)

where Ta(u) are Chebyshev polynomials of the first kind. Here is the explicit form for the

first five of them:

p′0 = −i(u− i/2), (A.20)

p′1 = −iu(u− i)
4g

, (A.21)

p′2 = −i(u− i/2)(−6g2 + u2 − iu)

6g2
, (A.22)

p′3 = −i
u(u− i)

(
−6g2 + u(u− i)

)
8g3

, (A.23)

p′4 = −i
(
u− i

2

) (
30g4 − 20g2u2 + 20ig2u+ 3u4 − 6iu3 − 2u2 − iu

)
30g4

. (A.24)

A.2 The slope function for odd J

Here we give details on solving QSC for odd J at leading order in the spin. First, the

parity of the µab functions is different from the even J case, which can be seen from the

asymptotics (4.54). Following arguments similar to the discussion for even J in section

5.1, we obtain

µ12 = 1, µ13 = 0, µ14 = 0, µ24 = cosh(2πu), µ34 = 1. (A.25)

Plugging these µab into (4.46) we get a system of equations for Pa

P̃1 = −P3, (A.26)

P̃2 = −P4 −P1 cosh(2πu), (A.27)

P̃3 = −P1, (A.28)

P̃4 = −P2 + P3 cosh(2πu). (A.29)

This system can be solved in a similar way to the even J case. The only important

difference is that due to asymptotics (4.48) the Pa acquire an extra branch point at

u =∞.
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Let us first rewrite the equations for P1,P3 as

P̃1 + P̃3 = − (P1 + P3) (A.30)

P̃1 − P̃3 = P1 −P3. (A.31)

This, together with the asymptotics (4.48) implies P1 = εx−J/2, P3 = −εxJ/2 where ε is a

constant. Let us note that these P1,P3 contain half-integer powers of x, and the analytic

continuation around the branch points at ±2g replaces
√
x→ 1/

√
x. Now, taking the sum

and difference of the equations for P2, P4 we get

P̃2 + P̃4 + P2 + P4 = −a1

(
xJ/2 + x−J/2

)
cosh 2πu (A.32)

P̃2 − P̃4 − (P2 −P4) = a1

(
xJ/2 − x−J/2

)
cosh 2πu (A.33)

We can split the expansion

cosh 2πu =
∞∑

k=−∞
I2kx

2k (A.34)

into the positive and negative parts according to

cosh 2πu = cosh−+ cosh+ +I0 (A.35)

where

cosh+ =

∞∑
k=1

I2kx
2k, cosh− =

∞∑
k=1

I2kx
−2k. (A.36)

Then we can write

P2 + P4 = −a1(xJ/2 + x−J/2) cosh−−a1I0x
−J/2 +Q, (A.37)

P2 −P4 = −a1(xJ/2 − x−J/2) cosh−+a1I0x
−J/2 + P, (A.38)

where Q and P are some polynomials in
√
x, 1/

√
x satisfying

Q̃ = −Q, P̃ = P. (A.39)

We get

P2 = −a1x
J/2 cosh−+

Q+ P

2
, (A.40)

P4 = a1x
−J/2 cosh−−a1I0x

−J/2 +
Q− P

2
. (A.41)

Now imposing the correct asymptotics of P2 we find

P +Q

2
= a1x

J/2

J−1
2∑

k=1

I2kx
−2k (A.42)
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Due to (A.39) this relation fixes Q and P completely, and we obtain the solution given in

section 2.1,

µ12 = 1, µ13 = 0, µ14 = 0, µ24 = cosh(2πu), µ34 = 1, (A.43)

P1 = a1x
−J/2, (A.44)

P2 = −a1x
J/2

−J+1
2∑

k=−∞
I2kx

2k, (A.45)

P3 = −a1x
J/2, (A.46)

P4 = a1x
−J/2 cosh−−a1x

−J/2

J−1
2∑

k=1

I2kx
2k − a1I0x

−J/2. (A.47)

Notice that the branch point at infinity is absent from the product of any two P’s, as it

should be [7], [8]. One can check that this solution gives again the correct result (5.36)

for the slope function.

A.3 NLO solution of QSC: details

In this appendix we will provide more details on the solution of QSC and calculation of

curvature function for J = 2, 3, 4 which was presented in the main text in section 5.3.

NLO corrections to µab for J = 2

Here we present some details of calculation of NLO corrections to µab for J = 2 omitted

in the main text. As described in section 5.3.1, µ
(1)
ab are found as solutions of (5.53) with

appropriate asymptotics. The general solution of this equation consists of a general solu-

tion of the corresponding homogeneous equation (which can be reduced to one-parametric

form (5.75)) and a particular solution of the inhomogeneous one. The latter can be taken

to be

µdiscab = Σ ·
(
P(1)
a P̃

(1)
b −P

(1)
b P̃(1)

a

)
. (A.48)

One can get rid of the operation Σ, expressing µdiscab in terms of Γ′ and p′a. This procedure

is based on two facts: the definition (5.59) of p′a and the statement that on functions

decaying at infinity Σ coincides with Γ′ defined by (5.57). After a straightforward but
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long calculation we find

µdisc31 = ε2Σ

(
1

x2
− x2

)
= −ε2

(
Γ · x2 + p2

)
,

µdisc41 = ε2

[
−2I1p1 − 4I1Γ · x+ sinh(2πu)

(
Γ · x2 + p0

)
+ Γ · sinh−

(
x− 1

x

)2
]
,

µdisc43 = −2ε2

[
−2I1p1 − 4I1Γ · x+ sinh(2πu)(p2 − p0) + Γ · sinh−

(
x− 1

x

)2
]
,

µdisc21 = ε2
[
2I1Γ · x− sinh(2πu) Γ · x2 − Γ · sinh−

(
x2 +

1

x2

)]
,

µdisc24 = ε2
[
2I1Γ · sinh−

(
x+

1

x

)
+ I2

1p0+

+ sinh(2πu)Γ · sinh−

(
x2 − 1

x2

)
− Γ · sinh2

−

(
x2 − 1

x2

)]
.

Here we write Γ and pa instead of Γ′ and p′a taking into account the discussion between

equations (5.80) - (5.85).

NLO solution of QSC at J = 3

In this appendix we present some intermediate formulas for the calculation of curvature

function for J = 3 in section 5.3.3 omitted in the main text.

• The particular solution of the inhomogeneous equation (5.53) which we construct

as µdisc31 = Σ ·
(
P

(1)
a P̃

(1)
b −P

(1)
b P̃

(1)
a

)
can be written using the operation Γ and pa

defined by (5.85) and (5.83)54

µdisc31 = Σ · (P3P̃1 −P1P̃3) = −2ε2
[
Γx3 + p3

]
,

µdisc41 = −ε2
[
2p2I2 + 2I2Γx2 + 2Γ · cosh−+(I0 − cosh(2πu))p0

]
,

µdisc34 = ε2
[
2I2Γx+ I0Γx3 − Γ · (x3 + x−3) cosh−+ cosh(2πu)(2p3 + Γx3)

]
,

µdisc21 = ε2
[
2I2Γx+ (I0 − cosh(2πu))Γx3 − Γ

(
(x3 + x−3) cosh(2πu)

)]
,

µdisc24 = −2ε2
[
−1

2
Γ · cosh2

−
(
x3 − x−3

)
+

(
cosh(2πu)

2
− I0

)
Γ · cosh−

x3

−I2Γ ·
(
x+

1

x

)
cosh−−

1

2
cosh(2πu)Γ · x3 cosh−+

+
I0

2
(I0 − cosh(2πu)) Γ · x3 +

I1I2

2πg
Γx− I2

2p1

]
.

• The zero mode of the system (5.101)-(5.104), which we added to the solution in

54Alternatively one can use p′a and Γ′ instead of pa and Γ- see the discussion between the equations

(5.80) - (5.85)
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equations (5.107)-(5.110) to ensure correct asymptotics, is

Pzm
1 = L1x

−1/2 + L3x
1/2, (A.49)

Pzm
2 = −L1x

1/2ch− + L2x
−1/2 − L3x

−1/2

(
ch− +

1

2
I0

)
+ L4

(
x1/2 − x−1/2

)
,

Pzm
3 = −L1x

1/2 − L3x
1/2,

Pzm
4 = −L1

(
I0x
−1/2 + x−1/2 cosh−

)
− L2x

1/2 + L4(x1/2 − x−1/2)

− L3x
1/2

(
ch− +

1

2
I0

)
.

NLO solution of QSC at J = 4

Solution of QSC at NLO for J = 4 is completely analogous to the case of J = 2. The

starting point is the LO solution (5.20)-(5.23). As described in section A.3, from LO Pa

we can find µab at NLO. Its discontinuous part is

µdisc31 = −ε2
(
Γ · x4 + p4

)
, (A.50)

µdisc41 =
1

2
ε2
(
sinh(2πu)

(
p0 + Γ · x4

)
+ 2 (I1p1 + I3p3) + (A.51)

+Γ · sinh−

(
x2 − 1

x2

)2

− 2 (I1 + I3)
(
Γ · x3 + Γ · x

))
, (A.52)

µdisc43 = ε2 ((p4 − p0) sinh(2πu) + 2 (I1p1 + I3p3)− (A.53)

−Γ · sinh−

(
x2 − 1

x2

)2

+ 2 (I1 + I3)
(
Γ · x3 + Γ · x

) )
, (A.54)

µdisc21 = ε2
(
−1

2
sinh(2πu)Γ · x4 + I1p3 + I3p1− (A.55)

−1

2
Γ · sinh−

(
x4 +

1

x4

)
+ I1Γ · x3 + I3Γ · x

)
, (A.56)

µdisc24 = ε2
(

1

2
sinh(2πu)Γ · sinh−

(
x4 − 1

x4

)
+ I2

3p2 + I1I3p0− (A.57)

−1

2
Γ · sinh2

−

(
x4 − 1

x4

)
+ I1Γ · sinh−

(
x3 +

1

x3

)
+ (A.58)

+I3Γ · sinh−

(
x+

1

x

)
+
(
I2

3 − I2
1

)
Γ · x2

)
, (A.59)

and as discussed for J = 2 the zero mode can be brought to the form

π12 = 0, π13 = 0, π14 = 0, (A.60)

π24 = c1,24 cosh 2πu, π34 = 0. (A.61)
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After that, we calculate ra by formula (5.80) and solve the expanded to NLO QSC for

P
(1)
a as

P
(1)
3 = H · r3, (A.62)

P
(1)
1 =

1

2
P

(1)
3 +K ·

(
r1 −

1

2
r3

)
, (A.63)

P
(1)
4 = K ·

[
(H · r3) sinh(2πu) + r4 −

1

2
r3 sinh(2πu)

]
− C(x+ 1/x), (A.64)

P
(1)
2 = H ·

[
−P

(1)
4 −P

(1)
1 sinh(2πu) + r2

]
+ C/x, (A.65)

where C is a constant which is fixed by requiring correct asymptotics of P2. Finally we

find leading coefficients Aa of P
(1)
a and use expanded up to O(S2) formulas (4.50), (4.51)

in the same way as in section 5.3.2 to obtain the result (A.66).

Result for J = 4

The final result for the curvature function at J = 4 reads

γ
(2)
J=4 =

∮
dux
2πi

∮
duy
2πi

1

ig2(I3 − I5)3

[
(A.66)

2
(
shx−

)2
y4
(
I3

(
x10 + 1

)
− I5x

2
(
x6 + 1

))
x4 (x2 − 1)

−
2
(
shy−

)2
x4
(
y8 − 1

) (
I3x

2 − I5

)
(x2 − 1) y4

+

+
4shx−shy−

(
x4y4 − 1

) (
I3 + I3x

6y4 − I5x
2
(
x2y4 + 1

))
x4 (x2 − 1) y4

+ shy−
((
y4 + y−4

)
x−1

((
I1I5 − I2

3

) (
3x4 + 1

)
− 2I1I3x

6
)

+

+
2I3x

2
(
I5

(
x2 + 1

)
x2 + I1

(
1− x2

))
− I1I5

(
x2 − 1

)2
+ I2

3

(
−2x6 + x4 + 1

)
x(x2 − 1)

+

+2
(
y3 + y−3

) I1I3x
6 − I1I5x

4 − I2
3

(
x2 − 1

)
x2 − 1

−

−2I3

(
y + y−1

) I1

(
x2 − 1

)
− I3

(
x6 − x2 + 1

)
+ I5

(
x4 − x2 + 1

)
x2 − 1

)
+

+
4x6y2I3

(
I2

3 − I2
1

)
x2 − 1

+
4xyI1

(
I3y

2 + I1

)
(I3 + I5)

x2 − 1
+

2y4 (I1 + I3)
(
I1I5 − I2

3

)
x2 − 1

−
2y
(
y2 + 1

)
(I1 + I3)

(
I1I5 − I2

3

)
x (x2 − 1)

−

−
2x3y (I1 + I3)

(
I1

(
2I3 +

(
3 y2 + 1

)
I5

)
− I3

(
2I5y

2 +
(
y2 + 3

)
I3

))
x2 − 1

+
2x2y4

(
−I3

3 − I1 (3I3 + I5) I3 + I2
1I5

)
x2 − 1

+
2x4y

(
I2

1

(
2yI5 − 2y3I3

)
− 2y

(
y2 + 1

)
I2

3I5

)
x2 − 1

+

+
4x5yI3

(
2I2

1y
2 + I3 (I5 − I3) y2 + I1 (I3 + I5)

)
x2 − 1

]
1

4πi
∂u log

Γ(iux − iuy + 1)

Γ(1− iux + iuy)

where, similarly to J = 2, 3, the integrals go around the branch cut between −2g and 2g.
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A.4 Weak coupling expansion – details

First, we give the expansion of our results for the slope-to-slope functions γ
(2)
J to 10 loops.

We start with J = 2:

γ
(2)
J=2 = −8g2ζ3 + g4

(
140ζ5 −

32π2ζ3

3

)
+ g6

(
200π2ζ5 − 2016ζ7

)
(A.67)

+ g8

(
−16π6ζ3

45
− 88π4ζ5

9
− 9296π2ζ7

3
+ 27720ζ9

)
+ g10

(
208π8ζ3

405
+

160π6ζ5

27
+ 144π4ζ7 + 45440π2ζ9 − 377520ζ11

)
+ g12

(
−7904π10ζ3

14175
− 17296π8ζ5

4725
− 128π6ζ7

15
− 6312π4ζ9

5

−653400π2ζ11 + 5153148ζ13

)
+ g14

(1504π12ζ3

2835
+

106576π10ζ5

42525
− 18992π8ζ7

405
− 16976π6ζ9

15

+
25696π4ζ11

9
+

28003976π2ζ13

3
− 70790720ζ15

)
+ g16

(
−178112π14ζ3

382725
− 239488π12ζ5

127575
+

2604416π10ζ7

42525
+

8871152π8ζ9

4725

+
30157072π6ζ11

945
+

8224216π4ζ13

45
− 133253120π2ζ15

+979945824ζ17

)
+ g18

(147712π16ζ3

382725
+

940672π14ζ5

637875
− 490528π12ζ7

8505
− 358016π10ζ9

189

−37441312π8ζ11

945
− 9616256π6ζ13

15
− 16988608π4ζ15

3

+1905790848π2ζ17 − 13671272160ζ19

)
+ g20

(
−135748672π18ζ3

442047375
− 103683872π16ζ5

88409475
+

1408423616π14ζ7

29469825

+
2288692288π12ζ9

1403325
+

34713664π10ζ11

945
+

73329568π8ζ13

105

+
305679296π6ζ15

27
+ 121666688π4ζ17 − 27342544320π2ζ19

+192157325360ζ21

)
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Next, for J = 3,

γ
(2)
J=3 = −2g2ζ3 + g4

(
12ζ5 −

4π2ζ3

3

)
+ g6

(
2π4ζ3

45
+ 8π2ζ5 − 28ζ7

)
(A.68)

+ g8

(
−4π6ζ3

45
− 4π4ζ5

15
− 528ζ9

)
+ g10

(
934π8ζ3

14175
+

8π6ζ5

9
− 82π4ζ7

9
− 900π2ζ9 + 12870ζ11

)
+ g12

(
−572π10ζ3

14175
− 104π8ζ5

175
− 256π6ζ7

45
+

2476π4ζ9

9

+
57860π2ζ11

3
− 208208ζ13

)
+ g14

(
2878π12ζ3

127575
+

404π10ζ5

1215
+

326π8ζ7

75
+

3352π6ζ9

135

− 80806π4ζ11

15
− 316316π2ζ13 + 2994992ζ15

)
+ g16

(
−159604π14ζ3

13395375
− 257204π12ζ5

1488375
− 14836π10ζ7

6075
− 71552π8ζ9

2025

+
4948π6ζ11

189
+

4163068π4ζ13

45
+

14129024π2ζ15

3
− 41116608ζ17

)
+ g18

(
494954π16ζ3

81860625
+

156368π14ζ5

1819125
+

6796474π12ζ7

5457375
+

332π10ζ9

15

+
1745318π8ζ11

4725
− 868088π6ζ13

315
− 22594208π4ζ15

15

−67084992π2ζ17 + 553361016ζ19

)

+ g20

(
−940132π18ζ3

315748125
− 244456π16ζ5

5893965
− 29637008π14ζ7

49116375
− 11808196π12ζ9

1002375

− 2265364π10ζ11

8505
− 68767984π8ζ13

14175
+

480208π6ζ15

9

+
71785288π4ζ17

3
+ 934787840π2ζ19 − 7390666360ζ21

)
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Finally, for J = 4,

γ
(2)
J=4 = g2

(
−14ζ3

5
+

48ζ5

π2
− 252ζ7

π4

)
(A.69)

+ g4

(
−22π2ζ3

25
+

474ζ5

5
− 8568ζ7

5π2
+

8316ζ9

π4

)
+ g6

(
32π4ζ3

875
+

3656π2ζ5

175
− 56568ζ7

25
+

196128ζ9

5π2
− 185328ζ11

π4

)
+ g8

(
−4π6ζ3

175
− 68π4ζ5

75
− 55312π2ζ7

125
+

1113396ζ9

25
− 3763188ζ11

5π2

+
3513510ζ13

π4

)
+ g10

(176π8ζ3

16875
+

2488π6ζ5

7875
+

2448π4ζ7

125
+

209532π2ζ9

25
− 3969878ζ11

5

+
13213200ζ13

π2
− 61261200ζ15

π4

)
+ g12

(
−88072π10ζ3

20671875
− 449816π8ζ5

4134375
− 327212π6ζ7

65625
− 338536π4ζ9

875

−129520798π2ζ11

875
+

66969474ζ13

5
− 220540320ζ15

π2

+
1017636048ζ17

π4

)
+ g14

(795136π12ζ3

487265625
+

522784π10ζ5

13921875
+

4021288π8ζ7

2953125
+

1869152π6ζ9

21875

+
18573952π4ζ11

2625
+

62633272π2ζ13

25
− 1092799344ζ15

5

+
17844607872ζ17

5π2
− 16405526592ζ19

π4

)
+ g16

(
−30581888π14ζ3

51162890625
− 43988768π12ζ5

3410859375
− 446380184π10ζ7

1136953125

−20108936π8ζ9

984375
− 31755036π6ζ11

21875
− 321449336π4ζ13

2625

−1031925232π2ζ15

25
+

87296960712ζ17

25
− 283092985656ζ19

5π2

+
259412389236ζ21

π4

)
+ g18

(6706432π16ζ3

31672265625
+

816838192π14ζ5

186232921875
+

2004636572π12ζ7

17054296875

+
1950592976π10ζ9

378984375
+

2220222512π8ζ11

6890625
+

20963856π6ζ13

875

+
254959316π4ζ15

125
+

584553371616π2ζ17

875

−1375388084412ζ19

25
+

4432313039616ζ21

5π2
− 4049650420200ζ23

π4

)
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+ g20
(
−15308976272π18ζ3

209512037109375
− 1764947984π16ζ5

1197211640625
− 18667123736π14ζ7

517313671875

−538293689008π12ζ9

399070546875
− 657466372π10ζ11

8859375
− 119709052π8ζ13

23625

−9095498848π6ζ15

23625
− 260407748416π4ζ17

7875
− 1869110789976π2ζ19

175

+
4293062840352ζ21

5
− 13755955395600ζ23

π2
+

62673161265000ζ25

π4

)
For future reference we have also computed55 the weak coupling expansion of the

anomalous dimensions at order S3, using the known predictions from ABA which are

available for any spin at J = 2 and J = 3. For J = 2 we have computed the expansion to

three loops56:

γ
(3)
J=2 = g2 4

45
π4 + g4

(
40ζ2

3 −
28π6

405

)
(A.70)

+ g6

(
192

5
ζ5,3 −

6992ζ3ζ5

5
+

280π2ζ2
3

3
+

6962π8

212625

)
+O(g8)

Compared to the S2 part, a new feature is the appearance of multiple zeta values – here

we have ζ5,3, which is defined by

ζa1,a2,...,ak =
∑

0<n1<n2<...<nk<∞

1

na1
1 n

a2
2 . . . nakk

(A.71)

and cannot be reduced to simple zeta values ζn.

For J = 3 we have obtained the expansion to four loops:

γ
(3)
J=3 =

1

90
π4g2 + g4

(
4ζ2

3 +
π6

1890

)
+ g6

(
4ζ5,3 + 4π2ζ2

3 − 72ζ3ζ5 −
2π8

675

)
+ g8

(
−112ζ2,8 +

20

3
π2ζ5,3 + 728ζ3ζ7 + 448ζ2

5 −
224

3
π2ζ3ζ5

+
4π4ζ2

3

5
− 41π10

133650

)
+O(g10) (A.72)

A.5 Higher mode numbers

Slope function for generic filling fractions and mode numbers

Let us extend the discussion of section 5.1 by considering the state corresponding to

a solution of the asymptotic Bethe equations with arbitrary mode numbers and filling

55As described in the main text (see section 6.4), in the calculations we used several Mathematica

packages for dealing with harmonic sums.
56The anomalous dimension is written as γ = γ(1)S + γ(2)S2 + γ(3)S3 + . . .
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fractions57. We expect that in QSC this should correspond to58

µ24 =
∞∑

n=−∞
Cne

2πnu. (A.73)

As an example, for the ground state twist operator we have µ24 = sinh(2πu), which is

reproduced by choosing C−1 = −1/2, C1 = 1/2 and all other C’s set to 0.

It is straightforward to solve the QSC equations in the same way as in section 5.1, and

we find the energy

γ =

√
λ

J

∑
nCnIJ+1(n

√
λ)∑

nCnIJ(n
√
λ)/n

S, (A.74)

which can also be written in a more familiar form as

γ =
∑
n

αn
n
√
λ

J

IJ+1(n
√
λ)

IJ(n
√
λ)

S, (A.75)

where

αn =
CnIJ(n

√
λ)/n∑

mCmIJ(m
√
λ)/m

(A.76)

are the filling fractions.

The coefficients Cn are additionally constrained by

∑
n

CnIJ(n
√
λ) = 0, (A.77)

which ensures that the Pa functions have correct asymptotics. This constraint implies a

relation between the filling fractions,

∑
n

nαn = 0, (A.78)

which is also familiar from the asymptotic Bethe ansatz.

Curvature function and higher mode numbers

In the main text we discussed the NLO solutions to QSC which are based on the leading

order solutions (5.20)-(5.23) or (5.25)-(5.28). One of the assumptions for constructing the

leading order solution was to allow µab to have only e±2πu in asymptotics at infinity (we

recall that this led to all µ’s being constant except µ24 which is equal to sinh (2πu) or

cosh (2πu)), while in principle requiring µab to be periodic one could also allow to have

e2nπu with any integer n. Thus a natural generalization of the leading order solution is

to consider µ24 = sinh (2πnu) or µ24 = cosh (2πnu), where n is an arbitrary integer. As

57For simplicity we also consider even J here.
58We no longer expect µ24 to be either even or odd, since in the Bethe ansatz description of the state

with generic mode numbers and filling fractions the Bethe roots are not distributed symmetrically.
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discussed above (see the end of section 5.1 and appendix A.5), we believe that at the

leading order in S such solutions correspond to states with mode numbers equal to n, and

they reproduce the slope function for this case.

Proceeding to order S2, the calculation of the curvature function γ(2)(g) with µ24 =

sinh (2πnu) or µ24 = cosh (2πnu) can be done following the same steps as for n = 1. The

final results for J = 2, 3 and 4 are given by exactly the same formulas as for n = 1 ((5.95),

(5.112) and (A.66) respectively) — the only difference is that now one should set in those

expressions

Ik = Ik(4πng), (A.79)

shx− = [sinh (2πnux)]− , (A.80)

shy− = [sinh (2πnuy)]− , (A.81)

chx− = [cosh (2πnux)]− , (A.82)

chy− = [cosh (2πnuy)]− . (A.83)

It would be natural to assume that this solution of QSC describes anomalous dimensions

for states with mode number n at order S2. However we found some peculiarities in the

strong coupling expansion of the result. The strong coupling data available for comparison

in the literature for states with n > 1 also relies on some conjectures (see [115], [147]), so

the interpretation of this solution is not fully clear to us.

The weak coupling expansion for this case turns out to be related in a simple way to

the n = 1 case. One should just replace π → nπ in the expansions for n = 1 which were

given in (A.67), (A.68), (A.69). For example,

γ
(2)
J=2 = −8g2ζ3 + g4

(
140ζ5 −

32n2π2ζ3

3

)
+ g6

(
200n2π2ζ5 − 2016ζ7

)
+ . . .

It would be interesting to compare these weak coupling predictions to results obtained

from the asymptotic Bethe ansatz (or by other means) as it was done for n = 1 in section

5.4.

Let us now discuss the strong coupling expansion. According to Basso’s conjecture

[115] (see also [147]), the structure of the expansion may be obtained from

∆2 = J2+S (A1
√
µ+A2 + . . .)+S2

(
B1 +

B2√
µ

+ . . .

)
+S3

(
C1

µ1/2
+

C2

µ3/2
+ . . .

)
+O(S4) ,
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where µ = n2λ. This gives

∆ = J +
S

2J

(
A1n
√
λ+A2 +

A3

n
√
λ

+ . . .

)
+ S2

(
− A2

1

8J3
n2λ− A1A2

4J3
n
√
λ+

[
B1

2J
− A2

2 + 2A1A3

8J3

]
+

[
B2

2J
− A2A3 +A1A4

4J3

]
1

n
√
λ

+ . . .

)
+O(S3) .

where Ai are known from Basso’s slope function. Substituting them, we find

γ
(2)
J (g) = −8π2g2n2

J3
+

2πgn

J3
+
B1 − 1

2J
+

8B2J
2 − 4J2 + 1

64πgJ3n
+ . . . (A.84)

However, already in [147] some inconsistencies were found if one assumes this structure for

n > 1. Let us extend that analysis by comparing the prediction (A.84) to our results from

QSC. To compute the expansion of our results, similarly to the n = 1 case, we evaluated

γ
(2)
J (g) numerically for many values of g, and then fitted the result by powers of g. As

for n = 1 we found with high precision (about ±10−16) that the first several coefficients

involve only rational numbers and powers of π. Our results for n = 2, 3 and J = 2, 3, 4

are summarized below:

γ
(2)
J=2,n=2(g) = −4π2g2 +

πg

2
+

17

8
− 0.29584877037648771(2)

g
+ . . . (A.85)

γ
(2)
J=3,n=2(g) = −32

27
π2g2 +

4πg

27
+

17

12
− 0.2928304112866493(9)

g
+ . . . (A.86)

γ
(2)
J=4,n=2(g) = −1

2
π2g2 +

πg

16
+

17

16
− 0.319909936615448(9)

g
+ . . . (A.87)

γ
(2)
J=2,n=3(g) = −9π2g2 +

3πg

4
+

23

4
− 0.8137483(9)

g
+ . . . (A.88)

γ
(2)
J=3,n=3(g) = −8

3
π2g2 +

2πg

9
+

23

6
− 0.892016609(2)

g
+ . . . (A.89)

γ
(2)
J=4,n=3(g) = −9

8
π2g2 +

3πg

32
+

23

8
− 1.035945580(6)

g
+ . . . (A.90)

Here in the coefficient of 1
g the digit in brackets is the last known one within our precision59.

Comparing to (A.84) we find full agreement in the first two terms (of order g2 and of

order g). The next term in (A.84) (of order g0) is determined by B1, which in [147] was

found to be

B1 =
3

2
(A.91)

for all n, J , based on consistency with the classical energy. However, comparing our results

with (A.84) we find a different value:

B1 =
19

2
for n = 2 , (A.92)

B1 = 23 for n = 3 .

59We did not seek to achieve high precision in this coefficient for n = 3.
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For both n = 2 and n = 3 this prediction for B1 is independent of J .

The next term is of order 1
g and is determined by B2, which in [147] was fixed to

B2 =


−3 ζ3 + 3

8 , n = 1

−24 ζ3 − 13
8 , n = 2

−81 ζ3 − 24
8 , n = 3

. (A.93)

However, this does not agree with our numerical predictions for n = 2 and 3. Furthermore,

for n = 2 we extracted the coefficient of 1
g with high precision (about 10−17, see (A.85)) but

were unable to fit it as a combination of simple zeta values using the EZ-Face calculator

[145].

Thus our results appear to disagree with the values of B1 and B2 obtained in [147].

There might be two reasons for this disagreement. First, it is not clear if the solution of

QSC we choose for n > 1 is the correct one: we have conjectured that introducing n is

taken into account by replacing sinh (2πu) with sinh (2πnu), but this conjecture should

be further verified against independent data. The second reason is that the ansatz for

the structure of anomalous dimensions at strong coupling may need to be modified when

n > 1 (as already suspected in [147]). At this point we do not yet know which scenario is

realized and hope to clarify this issue in future.

B Appendices to chapter 6

B.1 Notation and conventions

This appendix contains some notation used throughout chapter 6, in particular a glossary

of integration kernels.

We denote

Im,n ≡ δm+1,n + δm−1,n. (B.1)

and

T = eiθ, ca = e2iG(ia/2), ya = x(ia/2), (B.2)

where G is the resolvent from (6.29).

We denote by ∗ the convolution over the full real axis from −∞ to ∞, and by ∗̂ the

convolution over the range −2g < u < 2g.
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Our definitions of the kernels coincide with the ones used in [95] and [91], and we

summarize them below:

s(u, v) =
1

2 cosh(π(u− v))
, (B.3)

Ka(u, v) =
2a

π(a2 + 4(u− v)2)
, (B.4)

K̂a(u) = K̂y,a(u, 0) =

√
4g2 − u2

4g2 + a2/4
Ka(u), K̃a(u) =

√
4g2 + a2/4

4g2 − u2
Ka(u), (B.5)

Kn,m(u, v) =

n−1
2∑

j=−n−1
2

m−1
2∑

k=−m−1
2

K2j+2k+2(u, v), (B.6)

K(u, v) =
1

2πi

√
4g2 − u2

4g2 − v2

1

v − u
, (B.7)

logFa(a, g) = K̃a∗̂ log
sinh(2πu)

2πu

∣∣∣∣
u=0

. (B.8)

r(u, v) =
x(u)− x(v)√

x(v)
, b(u, v) =

1/x(u)− x(v)√
x(v)

, (B.9)

R(ab)
nm =

n−1
2∑

j=−n−1
2

m−1
2∑

k=−m−1
2

1

2πi

d

dv
log

r(u+ ia/2 + ij, v − ib/2 + ik)

r(u− ia/2 + ij, v + ib/2 + ik)
, (B.10)

B(ab)
nm =

n−1
2∑

j=−n−1
2

m−1
2∑

k=−m−1
2

1

2πi

d

dv
log

b(u+ ia/2 + ij, v − ib/2 + ik)

b(u− ia/2 + ij, v + ib/2 + ik)
, (B.11)

Given the definitions above one can prove the following identities (see [95]):

R(10)
a1 (u, v) + B(10)

a1 (u, v) = Ka(u, v), (B.12)

R(10)
a1 (u, v)− B(10)

a1 (u, v) = K(u+ ia/2, v)−K(u− ia/2, v), (B.13)

R(01)
1a (u, v) + B(01)

1a (u, v) = Ka(u, v), (B.14)

R(01)
1a (u, v)− B(01)

1a (u, v) = K̂y,a(u, v) = K(u, v − ia/2)−K(u, v + ia/2), (B.15)

R(01)
2n =

1

2

(
K̂+
n − K̂−n +K+

n +K−n

)
(B.16)
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K̃ab = R(10)
ab + B(10)

ab−2 = (B.17)

=
1

2

(
K̃ [b−1]
a − K̃ [−b+1]

a +K [b−1]
a +K [−b+1]

a

)
+

a∑
r=1

Kb−a−3+2r

K̂ba = R(01)
ba + B(01)

b−2,a = (B.18)

=
1

2

(
K̂ [b−1]
a − K̂ [−b+1]

a +K [b−1]
a +K [−b+1]

a

)
+

a∑
r=1

Kb−a−3+2r

B.2 Bremsstrahlung TBA in the near-BPS limit

Here we give more details concerning the derivation of the simplified Bremsstrahlung TBA

system from the cusp TBA equations of [95, 155].

Asymptotic solutions

As it was mentioned in section 6.2.1, the main difference between the spectral TBA and

the cusp TBA is the asymptotic large L solution. In order to obtain the asymptotic

solution in our limit we expand in small ε the asymptotic solution given in [95] (denoting

the asymptotic Y-functions by bold font as in [95])

Y1,1 = 1/Y2,2 = − cos θ

cosφ
≈ −1− ε, (B.19)

Ya,1 =
sin2 φ

sin(a+ 1)φ sin(a− 1)φ
≈ Aa −

ε

tanφ0
Ba, (B.20)

1/Y1,s =
sin2 θ

sin(s+ 1)θ sin(s− 1)θ
≈ As +

ε

tanφ0
Bs, (B.21)

with Aa and Ba given by

Aa =
sin2 φ0

sin(1 + a)φ0 sin(a− 1)φ0
, (B.22)

Ba =
4 sinφ0 sin aφ0(a cos aφ0 sinφ0 − cosφ0 sin aφ0)

(cos 2φ0 − cos 2aφ0)2
. (B.23)

Thus for the asymptotic solution the leading orders of the Y-functions (as defined in (6.9))

read

Φ = Ψ =
1

2
, (B.24)

Ya = Aa, (B.25)

Xa =
Ba cotφ0

Aa
, (B.26)

and we also have

Ya,0 ≈
((φ− θ) sin aφ0)2

u2
a2

(
F (a, g)

z
[−a]
0

z
[+a]
0

)2

, u→ 0. (B.27)
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Derivation of Bremsstrahlung TBA

First, plugging into the cusp TBA equations of [95] our expansion (6.9) of the Y-functions

and using the asymptotic solutions derived in the previous section we obtain

Ψ− 1

2
= Km−1 ∗

(
Xm

Ym
1 + Ym

− Bm cotφ0

1 +Am

)
− πCaR(01)

1a (u, 0),

Φ− 1

2
= Km−1 ∗

(
Xm

Ym
1 + Ym

− Bm cotφ0

1 +Am

)
− πCaB(01)

1a (u, 0),

log
Ym
Am

= −Km−1,n−1 ∗ log
1 + Yn
1 +An

−Km−1∗̂ log
Ψ

Φ
,

Xm −
Bm cotφ0

Am
= −Km−1,n−1 ∗

(
Yn

1 + Yn
Xn −

Bn cotφ0

1 +An

)
+ πCn

[
R(01)
mn + B(01)

m−2,n

]
(u, 0),

∆a = [R10
ab + B10

a,b−2]∗̂ log
1 + Yb
1 +Ab

+R10
a1∗̂ log

(
Ψ

1/2

)
− B10

a1∗̂ log

(
Φ

1/2

)
,

Ca = (−1)a+1a
sin aφ0

tanφ0

(√
1 +

a2

16g2
− a

4g

)2+2L

F (a, g)e∆a .

Using the strategy described for the small angles case in appendix F of [95] we can simplify

these equations and get

Ψ− Φ = πCa
[
B(01)

1a −R
(01)
1a

]
(u, 0),

Ψ + Φ =

(
B2 cotφ0

A2(1 +A2)
+ 1

)
− 2s ∗ X2

1 + Y2
+ 2πCns ∗ R(01)

2n − πCa
[
R(01)

1a + B(01)
1a

]
(u, 0),

log
Ym
Am

= s ∗ Im,n log

(
Yn

1 + Yn
1 +An
An

)
+ δm,2s∗̂ log

Φ

Ψ
,

Xm =
Bm cotφ0

Am
+ s ∗ Im,n

(
Xn

1 + Yn
− Bn cotφ0

(1 +An)An

)
+ πCms + δm,2s∗̂(Φ−Ψ).

Finally, substituting the explicit form of An, Bn we can simplify the equations even further.

Using that

B2 cotφ0

A2(1 +A2)
= −1, (B.28)

Bm cotφ0

Am
− 1

2
Im,n

Bn/An cotφ0

1 +An
= 0, (B.29)

and

1

2
log

1 +Am+1

Am+1

1 +Am−1

Am−1
+ logAm = 0. (B.30)

we obtain the final form of the equations as written in section 6.2.1.
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B.3 Derivation of FiNLIE: details

In this appendix we extend section 6.2.2 by explaining in more detail reduction of the

Bremsstrahlung TBA equation (6.11)-(6.15) to a set of three equations (6.35)-(6.37) for

the quantities η(u), ρ(u),Ca called FiNLIE.

Ψ± Φ equations

The left hand sides of the first two Bremsstrahlung TBA equations are Ψ ± Φ. Let us

express this combination in terms of ρ and η. Using the definition (6.33) of η and the

explicit form (6.31) of Tm we get

Ψ− Φ =
T −+

1 T +−
1 − T −−1 T ++

1

T2
η =

sin ρθ

sin θ
η (B.31)

and

Ψ + Φ =
T +−

1 T −+

1 + T −−1 T ++

1

T2
η =

cos ρθ cos (2−G+ +G−)θ − cos (2G−G+ −G−)θ

sin θ sin (2−G+ +G−)θ
η.

(B.32)

Comparing this with the first two equations of Bremsstrahlung TBA (equations (6.11) and

(6.12)) give the first two FiNLIE equations (6.35) and (6.36).

Equation for ∆a

Here we discuss the reduction of the equation (6.14) for ∆a to the third FiNLIE equation

(6.37). Using identities for kernels (6.14) can be written as

∆a =
1

2
Ka∗̂ log

Ψ

Φ
+

1

2
K̃a∗̂ log

(
ΨΦ

1/4

)
+
∞∑
b=2

K̃ab ∗ log

(
1 + Ya
1 +Aa

)
. (B.33)

Let us introduce a notation for the asymptotic large u values of Ta:

ψa =
sin aφ0

sinφ0
. (B.34)

We can transform equation (B.33) performing the same manipulations as in section 3.3 of

[91]. The only difference is that we are using Ta divided by their asymptotic values ψa in

order to ensure validity of manipulations with infinite sums below. We express Y-functions

through T-functions and split the infinite sums as follows:
∞∑
b=2

K̃ab ∗ log

(
1 + Yb
1 +Ab

)
=
∞∑
b=2

K̃ab ∗
[
log
T +
b

ψ+
b

+ log
T −b
ψ−b
− log

Tb+1

ψb+1
− log

Tb−1

ψb−1

]
=

=

∞∑
b=2

[
K̃+
ab + K̃−ab − K̃a,b−1 − K̃a,b+1

]
∗ log

Tb
ψb

+ K̃a,1 ∗ log
T2

ψ2
− K̃a,2 ∗ log

T1

ψ1
. (B.35)
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We have checked numerically that this last shifting of indices in the infinite sums is valid,

i.e.

lim
B→∞

K̃aB+1 ∗ log
TB
ψB
− K̃aB ∗ log

TB+1

ψB+1
= 0. (B.36)

The expression in square brackets in (B.35) is zero almost everywhere, as one can see from

the equation (46) of [91]. Taking into account that K̃a,1 = 0 one gets

∆a =
1

2
K̃a∗̂ log

ΨΦT 2
2

T +−
1 T ++

1 T −−1 T −+

1

− K̃a∗̂ log
ψ2

ψ+
1 ψ
−
1

+ log
2Ta
ψa

. (B.37)

Recalling the definition of η (the second equality is due to (6.32))

η ≡ ΨT2

T −+

1 T +−
1

=
ΦT2

T −−1 T ++

1

(B.38)

we find

∆a = K̃a∗̂ log η − K̃a∗̂ log
ψ2

ψ+
1 ψ
−
1

+ log
2Ta
ψa

(B.39)

Substituting the explicit form of ψa and taking into account that K̃a∗̂1 = 1 we finally

obtain

∆a = K̃a∗̂ log η + log
Ta

sin aφ0 cotφ0

∣∣∣∣
u=0

(B.40)

thus giving equation (6.34) presented in the main text.

Fixing the residues ba

The residues ba of G(u) at ia/2 satisfy a recursion relation which we derive in this section

by comparing poles on both sides of (6.13). This recursion relation is used to find the

residues of η and obtain a relation between G(ia/a) and ρ(ia/2) which is described in

section 6.2.3 and in more details in appendix B.4.

By construction, the only poles in 1/Y1,m(u) can originate from the poles of the resol-

vent at u = ia/2, a ∈ Z. Consistently with this the equation (6.13) tells the residue at

u = 0 should cancel and the residue at u = i/2 should obey

log Y1,m ≈ −ε
Cm

2i(u− i/2)
. (B.41)

Expressing Y1,m through T -functions which are written in terms of the resolvent (see

(6.19), (6.23)), and expanding at u = i/2, we obtain the recursion relation for ba which

was given in (6.38):

qaba−2 − (qa + pa)ba + paba+2 = Ca, (B.42)
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where explicitly

qa = i
4T 2ca−2 log T (T 2a − c2

a)

(T 2ca−2 − ca)(T 2a − T 2ca−2ca)
, (B.43)

pa = i
4T 2ca+2 log T (T 2a − c2

a)

(T 2ca − ca+2)(T 2a+2 − T 2caca+2)
, (B.44)

T = eiθ, (B.45)

ca = e2iG(ia/2). (B.46)

B.4 Fixing the residues of η: details

In this appendix we find the residues of η at ia/2 from the second FiNLIE equation (6.36).

These residues are then used in section 6.2.3 to derive the relation (6.58).

To use (6.36) let us first of all get rid of the convolution in the right hand side by using

the following property of s: for any function f analytical in the strip |Im u| < 1/2 but

having poles at u = ±i/2 with residues ∓iC/2

f = s ∗ g + πCs(u) ⇔ f+(u− i0) + f−(u+ i0) = g(u). (B.47)

Thus equation (6.36) takes the form(
cos ρθ cos (2−G+ +G−)θ − cos (2G−G+ −G−)θ

sin θ sin (2−G+ +G−)θ
η

)+−

+ c.c =

= −2
X2

1 + Y2
+ π(K̂+

a − K̂−a )Ca. (B.48)

Consider the residue at ia/2 of both sides of (B.48). The terms that appear after expanding

the right hand side are proportional either to η sin θρ, or to η cos θρ. We know the residues

of the first type of terms from the first FiNLIE equation (6.35):

Res
u=ia/2

(η sin θρ) = −πCa
2πi

sin θ. (B.49)

To deal with the terms proportional to η cos θρ let us introduce the notation

Res
u=ia/2

(η cos θρ) =
ea
2πi

. (B.50)

In the right hand side of (B.48) residues of Xa are expressed in terms of coefficients ba

whose explicit value we do not know. However, a nice cancellation helps us to proceed.

The residue at ia/2 of the Xm/(1+Ym) term has the form k1ba−3+k2ba−1+k3ba+1+k4ba+3,

where ki are some clumsy coefficients. Nevertheless when we use the recursion relation

(6.38) to exclude ba−3 and ba+3 we see that ba−1 and ba+1 also cancel out! Thus we get

an equation completely in terms of ea and Ca:
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− T (T 2ca−1 − ca+1)

π(T 2 − 1)

(
ea−1(T 2ca−3 − ca−1)

ca−1(T 4ca−3 − ca+1)
+
ea+1(T 2ca+1 − ca+3)

ca+1(T 4ca−1 − ca+3)

)
+

+
Ca+1(ca+1 − T 2ca−1)(c2

a+1 + T 2a+2)(T 2ca+1 − ca+3)

2ca+1(T 2a+2 − c2
a+1)(T 4ca−1 − ca+3)

+

+
Ca−1(ca−1 − T 2ca−3)(c2

a−1 + T 2a−2)(T 2ca−1 − ca−3)

2ca−1(T 2a−2 − c2
a−1)(T 4ca−3 − ca+1)

= 0. (B.51)

One can see that this equation is solved by

ea =
π(T 2 − 1)

2T
Ca
c2
a + T 2a

c2
a − T 2a

. (B.52)

By the same argument as in [91] the initial conditions will help us to exclude other solu-

tions. From (6.35) one can see that e0 = 0 (as ρ(0) 6= 0 in general), and C0 can be set to

zero because the sum starts at a = 1. Thus from (B.51) it follows that (B.52) holds for all

even a. In order to fix ea at odd a we look at the residue of the second FiNLIE equation

(6.36) at u = i/2. The only source of singularities in the right hand side are the terms

with delta-function. Hence

e1 =
π(T 2 − 1)

2T
Ca
c2

1 + T 2

c2
1 − T 2

. (B.53)

This agrees with (B.52), so our solution holds for all a.

B.5 Strong coupling expansion

Here we discuss the strong coupling expansion of the cusp anomalous dimension. In order

to recover for θ = 0 the expansion given in [91] (appendix F) it is convenient to introduce

the “Bremsstrahlung function” BL(g) related to the cusp anomalous dimension as

ΓL(g) = −2(φ− θ) tan θBL(g), (B.54)
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It is straightforward to expand our result at strong coupling for fixed values of L, and we

find, e.g.,

1

θ cot θ
BL=0 =

g√
π2 − θ2

− 3

8 (π2 − θ2)
+

3

128g (π2 − θ2)3/2
+

3

512g2 (π2 − θ2)2

+
63

32768g3 (π2 − θ2)5/2
+O

(
1/g4

)
, (B.55)

1

θ cot θ
BL=1 =

g√
π2 − θ2

− 9

8 (π2 − θ2)
+

3
(
13π2 − 4θ2

)
128π2g (π2 − θ2)3/2

+
3
(
−6θ4 + 12π2θ2 + 13π4

)
512π4g2 (π2 − θ2)2

+
9
(
−48θ6 + 64π2θ4 + 136π4θ2 + 31π6

)
32768π6g3 (π2 − θ2)5/2

+O
(
1/g4

)
(B.56)

We have computed such expansions for L = 0, 1, . . . , 4 and when θ = 0 they reproduce the

results in (195) of [91]. As in [91] we observed that the coefficients are polynomial in L,

so we can now extrapolate to arbitrary L which gives

1

θ cot θ
BL =

g√
π2 − θ2

− 6L+ 3

8 (π2 − θ2)
+

3
((

6L2 + 6L+ 1
)
π2 − 2θ2(L+ 1)L

)
128gπ2 (π2 − θ2)3/2

+
f1

512g2π4 (π2 − θ2)2 −
f2

32768π6g3 (π2 − θ2)5/2
+O

(
1/g4

)
(B.57)

where

f1 = −3θ4L
(
2L2 + 3L+ 1

)
+ 6π2θ2L

(
2L2 + 3L+ 1

)
(B.58)

+π4
(
10L3 + 15L2 + 11L+ 3

)
,

f2 = 18θ6L
(
5L3 + 10L2 + 7L+ 2

)
− 18π2θ4L

(
5L3 + 10L2 + 11L+ 6

)
(B.59)

−6π4θ2L
(
55L3 + 110L2 + 47L− 8

)
+ 9π6

(
10L4 + 20L3 − 22L2 − 32L− 7

)
Notice that for θ = 0 our expansion (B.57) reduces to that in equation (196) of [91].

We can now make a comparison with the classical string energy. Expanding (B.57) at

fixed L = L/g and large g, we get an expansion of the form

ΓL(g) = gEcl (L) + E1−loop (L) +
1

g
E2−loop (L) + . . . . (B.60)

The first term, gEcl, is proportional to
√
λ and is expected to reproduce the energy of the
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classical string configuration. Indeed, we found

g

2(φ− θ)θ
Ecl =

(
− g
π

+
3L

4π2
− 9L2

64gπ3
− 5L3

256g2π4
+

45L4

16384g3π5

)
(B.61)

+ θ2

(
− g

2π3
+

3L

4π4
− 21L2

128gπ5
− L3

16g2π6
− 105L4

32768g3π7

)
+ θ4

(
− 3g

8π5
+

3L

4π6
− 99L2

512gπ7
− 3L3

32g2π8
− 2085L4

131072g3π9

)
+ θ6

(
− 5g

16π7
+

3L

4π8
− 225L2

1024gπ9
− L3

8g2π10
− 7905L4

262144g3π11

)
+ θ8

(
− 35g

128π9
+

3L

4π10
− 1995L2

8192gπ11
− 5L3

32g2π12
− 97425L4

2097152g3π13

)
.

and all coefficients here match perfectly the expansion of the classical string energy from

equation (193) of [91]! This is a deep test of our computation at L 6= 0 against a result

which does not rely on integrability.

B.6 Identities for MN

In this appendix we describe the determinant identities which, in particular, allow us to

switch between different representations (6.90), (6.91), (6.93) of the final result. Though

not all of those identities have been used, we decided to present all that we have found for

future reference. Some of them we have not proven analytically, but checked numerically

for all N < 30.

Recall that MN is an N + 1 × N + 1 matrix given by (6.82) and M(a,b)
N is a matrix

obtained from MN by deleting the ath row and the bth column. It is easy to see that

M(1,1)
N =MN−1.

Determinants with a row/column removed

Using (B.68) and the fact that detM(a,b)
N is proportional to

(
M−1

)
ba

it is possible to show

that

detM(a,b)
N = detM(N+2−b,N+2−a)

N , 1 ≤ a, b ≤ N + 1. (B.62)

For any even N

detM(1,2)
N = −detM(2,1)

N , (B.63)

detM(a,1)
N = (−1)a+N/2+1 detM(N+2−a,1)

N , 1 ≤ a ≤ N + 1. (B.64)



191

For any odd N

detM(N+1,1)
N = 0, (B.65)

detM(a,1)
N = (−1)a+(N+1)/2 detM(N−a+1,1)

N , 1 ≤ a ≤ N (B.66)

Derivative of a determinant

For any integer N
1

2g
∂θ detMN−1 = detM(2,1)

N − detM(1,2)
N . (B.67)

Deformed Bessel functions.

The “deformed” Bessel functions Iθn defined by (6.75) satisfy

Iθn = (−1)n+1Iθ−n, Iθ0 = 0. (B.68)

In addition,

∂θI
θ
n = 2g

(
Iθn−1 − Iθn+1

)
. (B.69)

The first identity is obvious from the definition and the second one is easy to see from the

generating function representation (6.74).

C Appendix to chapter 7: Elliptic Identities

This appendix contains some identities for elliptic functions which we use in chapter 7.

For real z

E(z)√
1− z

=


iE
(

z
z−1

)
, z < 1,

E
(

z
z−1

)
+ 2i

[
K
(

1
1−z

)
− E

(
1

1−z

)]
, z > 1.

(C.1)

√
1− zK(z) =


K
(

z
z−1

)
, z < 1,

K
(

z
z−1

)
+ 2iK

(
1

1−z

)
, z > 1.

(C.2)
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The following two-parametric identity holds for r > 0, 0 < ψ < π/2:

π =
4r2

r2 + 1
eiψ K(sin2(q))

+
4r

r2 − 1
tan q cosψ

[
K
(
− tan2(q)

)
− r2 + 1

4r2
Π

(
(r2 − 1)2

4r2
tan2(q) − tan2(q)

)]
+ 4i

[
E
(
sin2(q)

)
F

(
sin−1

(√
r2 + 1

2

√
1− i cotψ

)
sin2(q)

)

−K
(
sin2(q)

)
E

(
sin−1

(√
r2 + 1

2

√
1− i cotψ

)
sin2(q)

)]
,

where sin2(q) =
4r2 sin2 ψ

(r2 + 1)2
. (C.3)
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