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In classical theory, teeth of vertebrate dentitions evolved from co-option of

external skin denticles into the oral cavity. This hypothesis predicts that

ordered tooth arrangement and regulated replacement in the oral dentition

were also derived from skin denticles. The fossil batoid ray Schizorhiza stromeri
(Chondrichthyes; Cretaceous) provides a test of this theory. Schizorhiza pre-

serves an extended cartilaginous rostrum with closely spaced, alternating

saw-teeth, different from sawfish and sawsharks today. Multiple replacement

teeth reveal unique new data from micro-CT scanning, showing how the ‘cone-

in-cone’ series of ordered saw-teeth sets arrange themselves developmentally,

to become enclosed by the roots of pre-existing saw-teeth. At the rostrum tip,

newly developing saw-teeth are present, as mineralized crown tips within a

vascular, cartilaginous furrow; these reorient via two 908 rotations then relo-

cate laterally between previously formed roots. Saw-tooth replacement

slows mid-rostrum where fewer saw-teeth are regenerated. These exceptional

developmental data reveal regulated order for serial self-renewal, maintain-

ing the saw edge with ever-increasing saw-tooth size. This mimics tooth

replacement in chondrichthyans, but differs in the crown reorientation and

their enclosure directly between roots of predecessor saw-teeth. Schizorhiza
saw-tooth development is decoupled from the jaw teeth and their replacement,

dependent on a dental lamina. This highly specialized rostral saw, derived

from diversification of skin denticles, is distinct from the dentition and

demonstrates the potential developmental plasticity of skin denticles.
1. Introduction
An evolutionary and developmental link between external skin denticles and the

oral dentition remains controversial [1–3]. This link is suggested by the classical

theory that in vertebrate evolution, oral teeth were derived from the dermal skin

denticles (placoid scales in chondrichthyans). Consequently, teeth and skin den-

ticles should share a common development (for example, similarities in gene

expression [4,5]). These similarities in the individual developmental module

(tooth or denticle) should extend to their ordered patterning and replacement,

two fundamental features of the functional oral dentition [3]. As potential

examples of this process, elongate cartilaginous rostra with ‘saw-teeth’ along

their edges have evolved within both major chondrichthyan crown groups: the

Holocephali [6] and Elasmobranchii (e.g. sawfish, sawsharks, extinct scleror-

hynchid rays [7]). Of particular interest is the Cretaceous sclerorhynchid ray

Schizorhiza stromeri Weiler in Stromer & Weiler 1930, possessing an extended ros-

trum with saw-teeth in a close-packed and distinct alternate pattern [8], differing

strongly from saw-teeth along extant sawfish and sawshark rostra, but similar to
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the alternating pattern characteristic of the chondrichthyan

dentition. In both the sawfish and sawsharks, rostrum saw-

teeth are regularly spaced along the rostrum, and replacement

saw-teeth only form in sawsharks after the existing saw-tooth

is lost, while in sawfish they are not replaced, but instead

each one grows continuously [9,10]. Saw-teeth in these taxa

are distinct from the oral dentition and show more similarities

in development and replacement to external skin denticles [10].

With saw-teeth putatively more similar to the oral denti-

tion, Schizorhiza provides a tractable model to further test

the hypothesis for the evolution of teeth that links dermal

denticles and oral dentitions. We investigated sequential

developmental stages for saw-tooth replacement, stacked

‘cone within cone’ beneath each functional saw-tooth [8], an

arrangement approaching structural patterning in oral denti-

tions with multiple replacement teeth (110–120 organized

saw-tooth files [8]). However, important differences in this

replacement relative to chondrichthyan oral teeth suggest

that Schizorhiza saw-teeth represent modified denticles. We

suggest that this extinct taxon models complex ‘tooth’ repla-

cement outside the mouth as an example of diversification of

skin denticles but is decoupled from the evolution of oral

dentitions and the dental lamina-driven replacement system

in the jaws.
2. Material and methods
Specimens of rostra of S. stromeri were obtained from commercial

sources from Maastrichtian (Cretaceous) age phosphorites near

Oued Zem, Morocco, but without detailed provenance. These

include an articulated partial rostrum tip (NHMUK PV P.73626),

two more proximal (towards the chondrocranium) articulated

portions of rostrum (NHMUK PV P.73625, Naturhistorisches

Museum in Wien Inv.NR 1999z009/0001a), and a near-complete

and largely articulated rostrum (NHMUK PV P.73625). Numerous

isolated rostral saw-teeth were also collected from a number of

sites across Morocco (CJU). Specimens (except for the large articu-

lated rostrum) were scanned using a Metris X-Tek HMX ST 225

CT scanner (Imaging and Analysis Centre, Natural History

Museum, London), GE Locus SP CT Tech scanner (KCL,

London), Viscom X8060 (Department of Anthropology, Univer-

sity of Vienna; 160 kV, 300 mA, time 1400 ms, filter, 1 mm

copper). Three-dimensional renderings, segmentation and ana-

lyses were performed using AVIZO STANDARD v. 8.1 (http://www.

vsg3d.com/avizo/standard), VG STUDIO MAX v. 2.0 (http://

www.volumegraphics.com/en/products/vgstudio-max.html)

and DRISHTI v. 3.02 (http://sf.anu.edu.au/Vizlab/drishti). Due to

a high prevalence of broken roots, we used AVISO segmentation tool

in our primary morphometric analysis; calculating saw-tooth cap

volumes (from apex to widest coronal point; figure 3a, inset) for

direct comparison between NHMUK PV P.73626, P.73627 and

Naturhistorisches Museum in Wien Inv.NR 1999z009/0001a, as

well as quantifying saw-tooth disparity in NHMUK PV P.73626.

In these, saw-teeth constituting the functional saw were selected

as ones most likely to have completed morphogenesis. In conjunc-

tion with volumetric calculations, we measured saw-tooth height

(from apex to the end of medial root lobe) manually using callipers

(also in NHMUK PV P.73625). We used R v. 3.1.2 and RSTUDIO

v. 0.98.1091 for statistical analyses (one-way ANOVA and

Tukey multiple means comparisons test; cap volumes were log

transformed due to unequal variances) and for graphical represen-

tations of data. Schematic drawings in figure 4 were created using

PIXELMATOR v. 1.1. A portion preserving saw-tooth files was

removed and embedded for sectioning. Sections (NHMUK PV

P.73626) were 60 mm thick mounted and covered on glass slides.
Photographs were either taken on a Leica MZ95, or a Zeiss photo-

microscope II with Nikon 100, in both Nomarski and polarized

light with a gypsum plate, and processed using PS CS or Leica

APPLICATION SUITE.
3. Investigation and observations
Schizorhiza occurs rarely in numerous Late Cretaceous deposits

along the southern margin of the western Tethys and the wes-

tern part of the Atlantic Ocean including the Gulf Coastal Plain

ranging from the Santonian to Maastrichtian (ca 86–66 Ma

[11]). The oldest records are from Jordan, while Campanian

and Maastrichtian records are from North Africa and North

America [8,11], indicating a rapid westward migration across

the Atlantic Ocean. Its rare distribution in coastal deposits

and across open marine areas, and the size of the almost com-

plete rostrum (NHMUK PV P.73625, electronic supplementary

material, figure S1a,b), suggest that Schizorhiza was a medium-

sized pelagic ray, contrary to the widely held assumption that

sclerorhynchids were bottom-dwellers [12].

Four articulated partial to near-complete rostra of

Schizorhiza from the Cretaceous of Morocco were studied,

including two showing preserved rostrum tips with functional

saw-tooth crowns. Volume-rendered and segmented micro-CT

scans, as well as histological thin sections, were examined

to investigate saw-tooth arrangement and development.

The Schizorhiza rostrum comprises a near continuous battery

of staggered saw-teeth, arranged laterally to form the func-

tional saw edge. Saw-teeth are absent from the rostrum tip,

as well as at the caudal base of the rostrum (figures 1a and

2c; electronic supplementary material, figure S3a,b, asterisk).

Saw-teeth appear abruptly rostral to this base (electronic

supplementary material, figure S3a,c, black arrows). Prox-

imo-lateral and rostro-caudal waves of ordered saw-tooth

files produce an undulating saw surface (figures 1 and 2b,c;

electronic supplementary material, figures S1a and S3a).

Between the functional rostrum saw edge and the rostrum

cartilage is a wide zone composed of the stacked saw-tooth

roots (figures 1a and 2d; electronic supplementary material,

figures S1 and S3). These four-lobed, bifurcated roots extend

towards a densely mineralized, shallow convex supporting

cartilage on the rostrum edge, additional to the tessellated

surface of the rostrum (figure 1e, asterisk, and figure 2b,c;

electronic supplementary material, figure S1c). Developing

saw-teeth are not located in sockets but in a shallow groove

in this support cartilage (figure 1c,e; electronic supplementary

material, figures S1c and S2a–c). Saw-tooth crowns lie below

the functional teeth, fitting between their roots (figures 1c–g
and 2b,f; electronic supplementary material, figures S1c and

S2a,c). A single saw-tooth file shows a developmental series

of up to six saw-teeth (figures 1c–e and 2f; electronic sup-

plementary material, figure S1c); across the rostrum saw edge

crowns are regularly spaced and display an organization in

diagonal rows and horizontal alternating rows (figures 1a–c
and 2a–c). However, more proximally, in the supporting carti-

lage furrow, developing saw-teeth are not oriented in the

lateral plane (figures 1c,d and 2a–c,e; electronic supplementary

material, figure S2a–c). Although these orientations may

appear random, their precise, gradual rotation laterally into

position beneath roots of pre-existing saw-teeth is a constant

feature. Newly developing saw-teeth are enclosed by, and pro-

tected between, the elongated, bilobed, divided roots of

functional saw-teeth (providing the generic name). Because
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Figure 1. Rostrum with developing saw-teeth, crown and root histology. Schizorhiza stromeri Maastrichtian (Latest Cretaceous), Oved Zem region, Morocco. (a – l ) NHMUK
PV P.73626, smallest specimen (figure 3). (a – e) Micro-CT volume-rendered models with segmentation showing arrangement of saw-teeth; size increases sharply from
distal to proximal, at a certain point, saw-teeth are of similar size, rostrum tip lacks saw-teeth (arrow; double arrow is section plane in (f – l )). (a) Exposed surface shows
wave-like arrangement of arrowhead-shaped, exposed saw-tooth crown. (b) Lower-density roots removed virtually, showing stacked crowns extending laterally from car-
tilage support surface (red to purple, higher density), arranged in close-packed, alternate rows. (c) Saw-tooth crowns with developing saw-teeth in rotation phase 1 – 4; first
forming are laterally flattened against the cartilage support furrow ((e,f ) t1); second, dorsoventrally flattened crown tips pointing caudally, then laterally ((f ) t2), before
moving into position within the saw-tooth file and between the roots of older saw-teeth (5, 6, position of segmented tooth set in (d )). (d ) Segmented tooth file showing
different positions of saw-tooth crown (3, 4), before moving into position beneath roots of older saw-teeth (5, 6), while roots develop (electronic supplementary material,
Video). (e) Dorsal surface, plus vertical virtual section through middle of saw-tooth file, saw-tooth crowns with highest mineralization (tsc, mineralized support cartilage; *,
developmental furrow), stacked saw-tooth crowns (3 – 6 of saw-tooth file) aligned between roots (tr) of previous saw-teeth (as in (c,d )). (f – l ) Tissue composition of saw-
teeth (lateral to right). ( f,g) Reflected light; (f ) attachment of roots to saw-tooth support cartilage, blood vessels (bv) supplying teeth, fibre direction in cartilage and saw-
tooth root (double arrow, asterisk, soft tissue junction, see (L) gap in þve birefringent fibres); new saw-tooth crown (t1) flattened laterally onto cartilage, sub-parallel
orientation; second rotation saw-tooth (t2) proximo-distally flattened. (g) More lateral field, new saw-tooth crown (t5) below roots of all saw-teeth; osteodentine (od) fills
in pallial dentine cone ( pd) below thin enameloid, and in roots (tr-od). (h,i,l ) Polarized light, gypsum plate (arrow 458 to crossed PþA) shows colour of birefringence as
blue (þve) or yellow (2ve) reflecting crystallite orientation (aligned along original collagen fibre bundles) and attachment fibre direction. (h) Functional saw-tooth crown
tip with very thin enameloid (en), crystallites orthogonal, over pallial dentine ( pd). I, field below tip, solid infill of osteodentine with organized osteodentine crystal fibres
(þve and 2ve signs of birefringence). ( j,k) Nomarski optics; ( j ) central pulp field with denteone (d.on, double arrow) and tiny pulp canal ( pc), from which dentine
tubules emerge (tub). (k) Field near tip, enameloid, pallial dentine, osteodentine with small pulp canal, fine tubules extend through dentine of both types. (l ) Attachment
region (field at 458 to (f )) showing direction of crystal Sharpey’s fibre bundles (sfb), many in support cartilage and thick groups in root ends (tr; * gap for soft tissue
fibres). Scale bars, h,i,l ¼ 500 mm: j,k ¼ 100 mm.
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(a) (b) (c) (e)(d)

( f )

Figure 2. Volume-rendered micro-CT scans showing stages of saw-tooth development. Schizorhiza stromeri Maastrichtian (Latest Cretaceous) Oved Zem region, Morocco.
(a – c) NHMUK PV P. 73626, saw-teeth in the distalmost rostrum (figure 1a – c), distal at top, micro-CT rendered density volume models. Saw-tooth size increases disto-
proximally, rostrum tip lacking saw-teeth (arrow, (c)), saw-tooth files near tip have the smallest saw-teeth, with progressively more saw-teeth per file, away from the
rostrum tip. (a) Surface render (dorsoventral), saw-tooth crowns with highest density after roots dissected away, false colour. As saw-teeth develop, crown tips are
oriented caudally (green), shifting to partly lateral below root tips ( purple), then immediately below root space of older saw-teeth (red), all crowns close-packed
in alternate positions, final positions show rostro-caudal wave of saw-tooth crowns (grey). (b) Surface render, two groups with timed wave of saw-tooth initiation
(arrows), one illustrated in false colours (fuschia, laterally flattened against rostrum; green, dorsoventrally flattened, crown tip caudal; orange, partially rotated;
pink, crown tip lateral, roots forming; blue and red, position of alternate tooth files, longer roots). (c) Ventrally deeper surface render, showing sets of developing
saw-teeth between those in (b) smallest developing crowns below saw-tooth roots visible, saw-tooth timed series with individual saw-teeth (1 – 5) showing rotation
into lateral position within the file (5; arrow, toothless rostrum tip). (d – f ) Naturhistorisches Museum in Wien Inv.NR 1999z009/0001a, larger saw-teeth mid-rostrum. (d )
Macrophoto showing functional tooth row, exposed roots, with superimposed segmented saw-tooth stack and caudally orientated replacement tooth crowns (red) lying
below these roots. (e) Two hollow segmented developing crowns (red; see green in (b)) close to lateral cartilage (grey) showing second stage of orientation during two-
stage 908 rotation relative to rostrum. ( f ) Oblique, antero-ventral view of saw-tooth stack (cone in cone, colours red to green for each, successive saw-tooth addition),
including positions of a small number of early stage replacement crowns. N.B. different colours (figure 1c,d ) for these mature replacement teeth.

rspb.royalsocietypublishing.org
Proc.R.Soc.B

282:20151628

4

 on April 27, 2016http://rspb.royalsocietypublishing.org/Downloaded from 
of this mode of saw-tooth development, in a fossil, there

is potential for developmental data to be obtained, for

comparison to oral dentitions.

To investigate the arrangement of functional teeth and

the series of replacement teeth beneath them, we used

specimen NHMUK PV P.73626, a partial but exceptionally

well-articulated rostrum tip, with the smallest saw-teeth adja-

cent to the tip, and becoming larger caudally (figures 1a–c
and 2a–c; electronic supplementary material, figure S1d).

In vivo exposed arrowhead-shaped crowns are closely

spaced and overlapping, producing the serrated blade with

a regular alternate, flattened crown pattern. Virtual dissection

of the roots exposed the mineral-dense, successively gener-

ated saw-tooth crowns in a strikingly regular space-filling

arrangement (figures 1b and 2a). Developing and functional

crowns form a close-packed arrangement with roots extend-

ing to the rostrum support cartilage (figures 1a–e and 2a,b).

These virtual serial dissections also expose the newest devel-

oping saw-teeth (figures 1b,c and 2a). Saw-teeth of serially

iterative, successive stages form within the rostrum saw-

blade (figures 1c–e and 2d,f; electronic supplementary

material, figure S1c) as a ‘cone within cone’ arrangement

(ready-made saw-teeth numbered 3–6), sheltered within the

roots (figure 1d,e; electronic supplementary material, movie;

http://dx.doi.org/10.5519/0068733).
To inform the type of tissues comprising the saw-tooth

blade, we examined thin sections of the entire blade, cut in the

vertical plane (figure 1f– l; electronic supplementary material,

figure S2a–f). These showed the newest saw-tooth crowns

and the highly mineralized saw-tooth support cartilage forming

the developmental furrow (figure 1f, tsc, t1, t2; electronic sup-

plementary material, figures S1 and 2a–c). Attachment of the

saw-tooth stack to the supporting (non-tesselated) cartilage is

via extensive and numerous Sharpey’s fibres (double arrow;

figure 1f, *, tr, 1 L, sfb; electronic supplementary material,

figures S1 and S2d,f). This is unusual in cartilage but relates to

attachment of the substantial roots infilled with osteodentine,

the latter easily identified by regular vascular canal spaces

with radiating dentine tubules leading from them. This also

fills saw-tooth crowns (relative to unfilled small, developing

crowns) and theclosely packedroots, enclosing developing teeth

(figure 1f,g,i–k, od, tr-od; electronic supplementary material,

figure S2a–c,e,f). This tissue substitutes for bone (absent in

chondrichthyans), and with the fibrous attachment of the

roots to the cartilage provides extra stability of the saw-tooth

edge (double arrow, figure 1f,g,l ), as well as substantial

protection for the developing saw-teeth.

To determine the location of the rostrum growth centre,

we compared numbers of saw-teeth per replacement file

and their measurements. These showed that with rostrum

http://dx.doi.org/10.5519/0068733
http://dx.doi.org/10.5519/0068733
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Figure 3 Comparative measurements of crown volume and saw-tooth height. Schizorhiza stromeri Maastrichtian (Latest Cretaceous) Oved Zem region, Morocco.
(a,b) NHMUK PV P.73626, distal rostrum as in figure 1. (a) Graph shows volume of individual saw-tooth crowns, proximal to distal. Inset, individual saw-
tooth, horizontal black line delineating coronal volume and vertical line showing height measurement. (b) Specimen with three colours equivalent to crowns
measured in (a). (c) Mean coronal volume in NHMUK PV P.73626 (rostrum 1; also distal rostrum teeth—electronic supplementary material, figure S1d—excluding
smallest teeth near addition site), Naturhistorisches Museum in Wien Inv.NR 1999z009/0001a (rostrum 2, also electronic supplementary material, figure S1a – c) and
NHMUK PV P.73627 (middle rostrum 3, also electronic supplementary material, figure S1e,f ), revealing a significant volumetric difference between rostral saw-teeth
from these three regions (one-way ANOVA F3,37 ¼ 23.8, p-value , 0.001). (d ) Mean saw-tooth height in rostrum 1 (excluding smallest teeth near distal addition
site), rostrum 2, rostrum 3 and complete rostrum 4 (NHMUK PV P.73625, excluding smallest teeth near distal site of rostrum growth; also electronic supplementary
material, figure 1). Asterisks denote specimens not significantly different from one another. Individual p-values from the Tukey multiple comparisons of means
available in the electronic supplementary material.
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growth, saw-teeth increase in number and size equally, away

from the rostrum tip (figures 1a,b, 2a and 3; electronic sup-

plementary material, figures S1d and 3a,b, arrowhead), which

entirely lacks mineralized saw-tooth germs (figure 2c, white

arrow; electronic supplementary material, figure S3b, asterisk).

This region can be interpreted as the soft tissue growth centre

for both cartilage and saw-teeth (figure 4). To determine

whether saw-teeth were replaced, we compared crown

volumes, showing that those near the rostrum tip are demon-

strably smaller. These must be shed and replaced during

growth, to reach the maximum saw-tooth size found along the

rostrum (figure 3; electronic supplementary material).

We investigated how saw-teeth were regenerated

and replaced, as tooth renewal is an important part of the

control mechanism for oral teeth; we also examined whether

this renewal always occurred at the same rate. We compared

saw-teeth along the rostrum, from the proximal chondrocra-

nium to the distal rostrum tip, with proximal saw-teeth

significantly larger (figure 3a,b). As noted, multiple new

saw-teeth develop close to the rostrum tip (figures 1a–c,

2a–c and 3b); by comparison, there are markedly fewer new

saw-teeth developing in the proximal or middle rostrum,

where form and size stabilizes (figure 2d– f, red crowns).

This indicates that replacement had slowed in the more prox-

imal, older regions, with the greater rate of saw-tooth renewal

associated with the rostrum growth centre near the tip.

We sought evidence for control of timing and spatial

organization of saw-teeth that would be produced by a
precise, genetic regulatory developmental mechanism, as

within oral teeth [13,14]. We found that the gradual, precise

rotation of new saw-tooth crowns into position beneath

roots of pre-existing saw-teeth is a frequent feature of the

growth region (figures 1a–e and 2a– f; electronic sup-

plementary material, figure S2a–c). A model of regular

spatio-temporal rotation of the saw-tooth germs is proposed

from observations of the first mineralized crowns, with differ-

ent mineral densities, allowing a temporal developmental

pattern to be identified (figure 1c,d ). Crowns with increasing

densities are numbered in developmental order to illustrate

the gradual steps of their rotation (figures 1c–e, 1–6, and

2b,c, 1–5). From the earliest crowns, lying against the carti-

lage (laterally flattened) pointing caudally, they first rotate

908 into the lateral plane (dorsoventrally flattened) and then

continue to rotate through 908 relative to the lateral saw

edge (figure 1c,d, 4–6) until they lie below the previous

saw-tooth’s roots (4), prior to forming roots. These obser-

vations of mineralized crowns developing with controlled,

multiple rotations in Schizorhiza are different from any chon-

drichthyan reported. However, the second rotation is similar

to the movement in sharks that developed teeth make to

come into the functional position at the jaw margins (also

the rotation of the saw-teeth in sawsharks Pristiophoridae

[7,10]), and to tooth rotation in a variety of teleost fishes

(e.g. Elopomorpha, Characiformes), where regenerated teeth

rotate through 908 into position, to replace functional teeth

along the jaw [15]. Also, the development and replacement of

http://rspb.royalsocietypublishing.org/
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Oved Zem region, Morocco). Information is extrapolated from developmental studies in modern day taxa. (a) Distal (anterior) region of the saw-tooth rostrum
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initiating saw-tooth addition more proximally ( pink, saw-tooth initiation sites). (b,c) Dorsal view of proposed saw-tooth addition site where interactions between
skin epithelium (invaginating epithelial dental lamina) and underlying neural-crest-derived mesenchyme give rise to new saw-teeth—a process developmentally
linked to rostrum extension. Epithelial invagination and odontogenic competency would have likely arisen from expression of known, conserved markers of tooth
initiation including perhaps Sox2, Shh and members of the Wnt/b-catenin pathway. Subsequent saw-tooth development would have been guided by spatio-tem-
poral expression of Shh, and members of the BMP, Wnt/b-catenin, FGF and Notch signalling pathways. (d ) Transverse cross-section (based on micro-CT scans and
soft tissue interpretation) through a saw-tooth replacement family, showing site of saw-tooth development above the highly vascularized cartilage furrow; growing
root of the predecessor saw-tooth (root epithelial sheath HERS þ dental papilla) would probably house competent cells responsible for tooth replacement (stem
cell-mediated). (e) Close-up schematic of the cartilage furrow (in (d)), detailing hypothetical stem-like cellular interactions between epithelium derived from HERS-
like cells (blue circles) with neural crest and nerve-associated glial-derived mesenchyme (dark green circles).
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saw-teeth positioned directly beneath the roots of functional

ones (made of osteodentine, a bone substitute) shows more

similarities to oral tooth replacement in some osteichthyans

with intraosseus tooth development [15–17] than to chon-

drichthyans with replacement teeth in soft tissue within the

dental lamina. This is presumed to be true for oral dentitions

of Schizorhiza, but no articulated jaws with teeth are known.
4. Discussion
We have presented data for Schizorhiza showing how the indi-

vidual developmental module (saw-tooth) is ordered into a

structural pattern along the rostrum saw in two ways: initiation

of saw-tooth files at the rostrum growth centre, linked with

establishment of replacement saw-teeth during growth, then

in maintenance of the saw edge through regeneration.

These parameters define the oral dentition in chondrichthyans

but tied to and dependent on a dental lamina. Saw-tooth
development in Schizorhiza as well as in others with elongated

rostra [10] can test hypotheses that oral teeth can be derived

from modification of external skin denticles, as proposed in

canonical theories of tooth evolution.

We have demonstrated that Schizorhiza preserves an

unusually high degree of developmental data for a fossil, in

building the rostrum saw through saw-tooth addition, with

growth and renewal, larger saw-teeth replacing small. We

suggest there were two important sites for saw-tooth initiation:

(i) the rostrum tip, as a symphyseal signalling centre, regulat-

ing initiation to the left and right of the tip, which otherwise

remains free of saw-teeth; (ii) more posteriorly along the

cartilage furrow, regulating regeneration below the saw-

tooth stacks (figures 1–4). As shown in our interpretive

model in figure 4, the rostrum tip signalling centre would

express conserved gene markers linked to cartilage growth

and extension and odontogenesis, including members of the

Hedgehog, Bmp, Fgf and Wnt/b-catenin signalling path-

ways [18]. The rostrum cartilage furrow with odontogenic

http://rspb.royalsocietypublishing.org/
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competence for continued saw-tooth replacement was rich

in a vascular supply from rostrum cartilage blood vessels [7],

supplying saw-tooth root growth (figure 1f, bv). Here, vascu-

larized, innervated tissue could provide multipotent stem

cells (perivascular, neural derivatives) contributing to saw-

tooth development and renewal (figure 4d), comparable with

those stem cells demonstrated to contribute to development,

growth and renewal of mammalian teeth [19]. Additionally,

the outer dental epithelial cells associated with the extended

saw-tooth root system could act as a source of epithelial and

mesenchymal stem cells similar to those of oral dentitions,

for saw-tooth regeneration (Hertwig’s root sheath, HERS

[20]; figure 4e). We suggest a further potential neurovascular-

based origin for signals at the rostrum tip growth centre

(derived from nerve-associated glial cells, NAGCs [19,21])

directing and maintaining stem cell activity for continued

growth with saw-tooth renewal. Notably, the rostrum in

extant chondrichthyans is rich with sensory ampullae; these

could be a source of NAGCs, linked to the proposed symphy-

seal signalling centre. Although these growth centres are

identified in the fossil Schizorhiza, our reconstructions and

interpretations can be tested using modern sharks and rays

as developmental models (for example, the sawshark).

We conclude that neither Schizorhiza nor other chon-

drichthyan taxa with a saw-tooth rostrum exactly replicate

the developmental organization and structural arrangement

of teeth in the oral dentition [10,22]. In Schizorhiza, develop-

mental rotation of saw-teeth is unique, while the position of

successive, replacement saw-teeth directly below one another

is more similar to the osteichthyan dentition [11,15,23] than

to the replacement of oral teeth of any shark or ray. Therefore,

we agree that rostrum saw-teeth are highly modified dermal

denticles [24,25], but propose that they have diversified after

co-option from a regional, symphyseal-based system, such as
organized skin denticles located at, or near, the rostrum tip

(M.M.S. & Z.J. 2015, personal observation). This is convergent

with the oral dentition of sharks and rays. The capacity for

organized succession and renewal demonstrated in Schizorhiza
informs the process of skin denticle diversification through

developmental plasticity, representing a true paradigm for pat-

terning ‘teeth outside the mouth’, but distinct from ‘teeth

inside the mouth’, associated with articulating jaws [3].
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