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Abstract—Continuum manipulators are a rapidly emerg-
ing class of robots. However, due to the complexity of
their mathematical models and modelling inaccuracies, the
development of effective control systems is a particularly
challenging task. This paper presents the first attempt on
kinematic control of continuum manipulators using a fuzzy-
model-based approach. A fuzzy controller is proposed for
autonomous execution of end-effector trajectory tracking
tasks for a continuum manipulator. Particularly, member-
ship functions are employed to combine the linearized
state-space models, to achieve, overall, a fuzzy model. The
fuzzy model can help design the fuzzy controller; in our
approach this process is supported by a thorough stabil-
ity analysis. This control methodology enables a solution
with low computational requirements to this motion control
problem - there is no need to continuously update the Ja-
cobian of the continuum manipulator. The superior perfor-
mance of this controller is validated in MATLAB simulations
and compared with those of classical controllers found
in the literature. The experiments on a rapid-prototyped
continuum manipulator further verify the feasibility and
the advantages of this fuzzy controller in the presence of
modelling discrepancies and hardware inaccuracies.

Index Terms—Continuum manipulators; Closed-loop
tracking control; Fuzzy-model-based control; H∞ perfor-
mance; Jacobian; Kinematics; Nonlinear systems.

I. INTRODUCTION

CONTINUUM manipulators are mainly characterised by
their ability to continuously bend along the length of

their structure; further, due to the inherent compliance, these
manipulators demonstrate appealing flexibility and allow safe
interactions in constrained environments. Although continuum
robotics is still in its infancy, considerable current research is
focusing on the development of both hardware and machine
learning methods for such continuum robots, including design,
modelling, control, and learning [1]. Continuum robot manip-
ulators have made inroads into a rapidly growing number of
applications across different sectors, ranging from industrial
operations [2] to health care and domestic environments [3].
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Compared with conventional manipulators with segmented
rigid-links, the architecture concept and actuation principles
for continuum manipulators are fundamentally different –
they often mimic biological trunk or tentacle behaviours and
manipulate objects in ways similar to how the biological role
models do it. Particularly, continuum manipulators emphasise
“whole arm manipulation” of a wide range of objects [4],
which is even performed without prior knowledge of the
shape of the object. Detailed surveys of the state-of-the-
art and continuum manipulator designs are given in [1],
[5]. Frequently applied continuum manipulator structures are
tendon-driven flexible backbone designs [6], pneumatically
actuated bellow-integrated designs [7], concentric tube designs
[8], and soft body structures with locally actuated cells [9].
Significant progress has not only been made in design but
also in modelling, including both kinematics and dynamics.
Chirikjian published their pilot research in the 1990s on
continuum robot kinematics and dynamics [10]. Hannan and
Walker provided the general kinematic model for continuum
manipulators using the well-established Denavit-Hartenberg
(D-H) convention [11]. This approach adopted the modelling
methodology originally used for traditional rigid-link manipu-
lators to establish the continuum kinematics via virtual rigid-
link kinematics. Other approaches focusing on static modelling
give insight into the mechanics of continuum manipulators
based on the elastic beam theory [12]. Among different
kinematic models, the underlying methodology is the use of
constant-curvature approximation [5]. It provides closed-form
position and velocity kinematics which is the basis for real-
time control and further motion planning.

There are several different approaches for the robotic control
of continuum manipulators. Penning et al. investigated closed-
loop control in both task space and joint space, resulting in
improved end-point positioning accuracy of robot catheters
[13]. Due to the nonlinear behaviour and high flexibility of
continuum manipulators, the system performance has shown
to benefit from closed-loop control. Regarding the selection
of task space or joint space control, generally, the task space
controllers that employ a feedback loop to directly minimize
task errors show some advantages [14]. In terms of kinematic
control versus dynamic control, it is noted that kinematic
control embedding the velocity-level kinematics is commonly
utilized [15]–[17]; dynamic control has also been studied [18],
however, the lack of a well understood efficient dynamic model
of continuum manipulators limits its implementation. In [19],
considering the problems of steady state positioning errors and
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undesirable dynamic behaviours of continuum manipulators, a
combined control system incorporating a position feedback
and a modal-space controller was proposed and shown to be
effective. At the intelligent control level, a distributed fuzzy
controller was introduced as part of a control law in [20]
which avoids the difficulties determined by the complexity
of nonlinear integral-differential equations. Recently, a fuzzy
logic methodology was proposed in [21] to design a non-
linear controller to regulate the end-effector of a continuum
manipulator to a constant desired position. Furthermore, a
neural network-based tracking controller was presented for a
wide range of continuum manipulators [22] and it does not
require an accurate manipulator dynamic model. In [23], an
adaptive neural network controller was implemented achieving
the end-effector position tracking control in real time with
high accuracy. Likewise, considering the situation in which
continuum manipulators interact with unknown obstacles and
environments, a task space closed-loop controller, only based
on empirical estimates of the real-time Jacobian but without
using a model, is used for overcoming these disturbances [24].
For the future, we foresee autonomous execution of command
tracking tasks based on practical control strategies approaching
more new applications in the presence of continuum manip-
ulators. Recently, an impressive implementation of a motion
controller for a catheter (realised as a type of a continuum
manipulator) for beating heart intracardiac surgery has been
reported in [25], [26].

In this paper, we present a fuzzy-model-based approach
for controlling a continuum manipulator. The controller was
designed based on stability analysis for general continuous-
time nonlinear systems [27]. We first derive the kinematic
model and analyse its successive state-space model. Then,
a fuzzy model is established to represent this state-space
model by using a local approximation technique [28]. We
design the fuzzy controller based on the stability conditions
proposed in [27]. This controller enables the states of our
continuum manipulator to track a desired reference model. The
fuzzy-model-based approach can suppress the tracking error
according to H∞ performance based on the Lyapunov stability
theory. Compared with open-loop feedforward control which
is highly dependent on the accuracy of the model in real-time
control, our closed-loop control is adequate to accommodate
the online trajectory adjustments and has effective trajectory
tracking capabilities. Although there commonly exists a certain
modelling error between the established fuzzy model and the
physical nonlinear model, the stability and performance of the
specified tracking task can still be accomplished. Compared
with other (pseudo-)inverse Jacobian based kinematic control
systems, the proposed method does not require online updating
of the Jacobian, nor rely on continuously updated estimations
of the Jacobian. It responses to sensor inputs, thus also
providing a closed-form low-computation solution of a motion
control problem with respect to continuum manipulators. To
the best of our knowledge, this is the first work of achieving
task space closed-loop control proposed with respect to a
continuum manipulator using a fuzzy-model-based approach.

The remainder of the paper is organized as follows: Section
II presents a general continuum manipulator kinematics under

Fig. 1. Kinematic mapping and its decomposition of a continuum
manipulator modelled using constant-curvature theory.

the constant-curvature approximation. Section III introduces
the methodology of the fuzzy-model-based approach for kine-
matic control of the continuum manipulator. A fuzzy controller
is developed. In Section IV, simulation examples are given
to show the feasibility and merits of the proposed controller.
Section V reports the demonstration of the controller in real-
time tracking tasks employing a rapid-prototyped continuum
manipulator [29]. Two other traditional Jacobian-based control
methods are implemented for comparison. Concluding remarks
and a plan for future work are given in Section VI.

II. GENERAL CONTINUUM MANIPULATOR KINEMATICS

In this section, we give an overview of the constant-
curvature based continuum manipulator kinematics. The de-
rived models form the basis for robot controller development.

The constant-curvature arc approximation has been fre-
quently applied to the kinematic modelling of many continuum
manipulators [11]. Different modelling approaches producing
equivalent results of constant-curvature forward kinematics
are reviewed and unified in [5]. Due to its simplifications in
modelling, it enables an analytical closed-form relationship
between actuator inputs and arc parameters useful for real-
time control. Extensions of fundamental concept of constant-
curvature kinematics, piecewise constant-curvature and finite-
fragmentation curvature modelling are proposed to fit the
physical model of manipulators with a multi-section backbone
or a variable section curvature [15]. The latter considers the
backbone shape comprised of a finite number of small curved
units and it is equivalent to modelling a single section with
piecewise constant-curvature approximation. Unlike conven-
tional rigid-link discrete manipulators [30] the use of joint
variables and link parameters does not directly yield contin-
uum kinematics. The elastic bending feature of a continuum
manipulator leads kinematics to be decomposed into two
submappings that link together with configuration variables
(please refer to Fig. 1). In order to lighten the notation, we
drop all time-varying variable notations in this paper.

The two decomposed submapping portions are respectively
described by a manipulator-specific kinematics g : Rn → Rn,
u 7→ q, and a manipulator-independent kinematics h : Rn →
Rn, q 7→ η. The former varies with different actuation
manners (although sometimes there exists certain correlation
among common actuation strategies), while the latter is totally
general and applies to all the individual sections of a contin-
uum manipulator under the assumption of constant-curvature.
Hence, the complete kinematics mapping that computes the
end-effector’s pose η depending on the actuator state u is
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Fig. 2. Diagram of a continuum manipulator bending in (a) 2D space
and in (b) 3D space. The configuration variables and different coordinate
systems are illustrated.

given by f = h(g(·)). The function f defines a chaining
process where the output of the function g becomes the input
of the function h.

Without limiting generality, the actuator space variables are
chosen as the most direct actuation – tendon-driven design,
where an arc is shaped by tendons. Herein, the three tendon
lengths are written in vector form u = [τ1, τ2, τ3]T .

The arc parameters are represented by the curvature (k),
rotational angle (φ), and arc length (l). (please refer to Fig.
2). The configuration space triplets above are all functions of
the actuator variables, i.e. q = [k(u), φ(u), l(u)]T .

Furthermore, the arc geometry provides the relationships
θ = k · l and r = 1/k which enables the calculation of
the arc bending angle θ and radius r. Regarding the pose
representation, we only specify the position of the end-effector
for the purpose of motion control, which in three-dimensional
Euclidean space is defined by the vector η = [x, y, z]T .

A. Coordinate systems

With different coordinate frame choices, the derived kine-
matic mapping would be diverse in form. In order to describe
the position of the end-effector in the universe, the reference
coordinate system must be first established. Likewise, addi-
tional moving frames attached to the continuum manipulator
are introduced. All the coordinate systems with respect to a
single-section continuum manipulator (please refer to Fig. 2)
are described below.
• Reference Coordinate System {xyz}, for convenience, is

fixed to the proximal end of the continuum manipulator
with its z axis tangent to the backbone curve of the
bending manipulator and pointing toward the distal end.
The x–y plane is perpendicular to the bending plane.

• Bending Plane Coordinate System {xbybzb} is defined
such that continuum manipulator always bends in the
xb–zb plane. The origin Ob coincides with the origin O
and the zb axis is collinear with the z axis.

• End-effector Coordinate System {xeyeze} is attached to
the tip of the continuum manipulator. The origin Oe is
at the centre of the tip cross section and the ze axis
tangent to the backbone curve, or equivalently normal
to the tip cross section. For convenience, the xe–ze plane
is coplanar with the bending plane xb–zb.

B. Manipulator-independent submapping
Once the aforementioned coordinate systems are estab-

lished, the problem of deriving the manipulator-independent
submapping is transformed into solving the mathematics to
describe the end-effector coordinate system {xeyeze} relative
to the reference coordinate system {xyz}. Thus, a parame-
terised homogenous transformation can be used as

oTe(q) =

[
oRe(q) ope(q)

0T 1

]
, (1)

where the 4×4 homogeneous transformation matrix oTe(q)
constitutes the standard representation of the special Euclidean
group SE(3) with the effect of transforming the coordinate
frame {xeyeze} to the reference coordinate frame {xyz}; the
matrix oTe(q) is constructed by a 3×3 rotation matrix oRe(q)
and a 3×1 position vector ope(q); oRe(q) is an element of
the special orthogonal group SO(3) and denotes the orientation
of the coordinate frame {xeyeze} relative to the reference
coordinate frame {xyz}; the 3-vector ope(q) is an element
of the translation group T(3) and denotes the position of the
origin Oe relative to the reference coordinate frame {xyz}.

Each components of the homogeneous transformation ma-
trix are derived as follows. The columns of the rotation
matrix oRe(q) can be obtained by writing the unit vectors
that define directions of the principle axes of end-effector
coordinate system {xeyeze} in reference coordinate frame
{xyz}. ope(q) is a pure position vector translating the point
in space. The operations of SE(3) can be performed through
the matrix multiplication, with the transformation composition
implemented. Therefore, oTe(q) = oTb(q)bTe(q). Note here
that the operations of SE(3) is non-commutative, hence the
order for composition is important. Composition of the homo-
geneous transformation matrix oTe(q) is accomplished as

oTe(q) =

[
oRb(φ) 0

0T 1

] [
bRe(k, l)

bpe(k, l)
0T 1

]
=

[
oRb(φ)bRe(k, l)

oRb(φ)bpe(k, l)
0T 1

]
, (2)

where one homogeneous transformation matrix describing the
frame {xbybzb} relative to the reference frame {xyz} is
oTb(q) =

[ oRb(φ) 0
0T 1

]
, and another one describing the

frame {xeyeze} relative to the frame {xbybzb} is bTe(q) =[
bRe(k, l) bpe(k, l)

0T 1

]
.

Referring to Fig. 2(a), in 2D bending model of a continuum
manipulator, the position vector bpe(k, l) can be written as

bpe(k, l) =


1− cos(k · l)

k
0

sin(k · l)
k

 , (3)

And both the rotation matrix bRe(k · l) representing a rotation
of θ(= k · l) about yb axis and the rotation matrix oRb(φ)
representing the bending plane rotation of φ about z axis can
be written in the form of the corresponding rotation matrices.

Therefore, the complete homogeneous transformation ma-
trix oTe(q) can be calculated. When in the case of
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only considering the end-effector position representation, the
manipulator-independent submapping h only takes the first
three elements of the last column of oTe(q), i.e. h = ope(q).

h = oRb(φ)bpe(k, l) =


cosφ(1−cos(k·l))

k
sinφ(1−cos(k·l))

k
sin(k·l)

k

 , (4)

So far, we complete the derivation of the manipulator-
independent submapping based on a homogeneous transforma-
tion. Furthermore, using the derived 4×4 homogeneous trans-
formation matrix oTe(q), any vectors es expressed relative to
the end-effector coordinate system {xeyeze} can be expressed
relative to the reference coordinate system {xyz}. Thus,[

os
1

]
= oTe(q)

[
es
1

]
. (5)

Equation (5) can be used to solve for the pose representation
including end-effector positions and orientations.

C. Manipulator-specific submapping
Now to find the manipulator-specific submapping, we de-

cide to adopt the three-tendon-driven actuation strategy. First,
we assume that all the three tendons are in tension during the
manipulator articulation and there is no slack. Referring to
the references [5], [15], all the defined configuration variables
can be expressed with respect to tendon actuation variables as
written by (17)–(19) in [5].

This mathematic model is most frequently applied to
tendon-driven continuum manipulators and also to any contin-
uously bending actuator, for example, the bellow-like actuators
in Festo’s Bionic Handling Assistant (BHA) [7], [15]. Hereby,
we complete the manipulator-specific submapping g and end
the forward kinematics. Upon the analytical kinematic mod-
elling, the inverse mapping can be further derived and in case
of the current simplified model, both the submappings g−1

and h−1 can be produced analytically by solving the nonlinear
equations defined by forward mappings g and h.

D. Jacobian
The Jacobian is a multidimensional form of partial deriva-

tives with respect to time of the forward kinematics. It re-
veals the velocity-level forward kinematics that the actuator
velocities to the spatial velocity of the end-effector. Given the
forward kinematics of the form

η = f(u) = h(g(u)), (6)

then, the velocity kinematics is derived as

η̇ =
∂f

∂u
u̇ =

∂h

∂q

∂g

∂u
u̇, (7)

This yields the Jacobian matrix equals

J(u) =
∂h

∂q

∂g

∂u
,⇒ η̇ = J(u)u̇, (8)

where J(u) is a time-varying 3×3 matrix, whose elements are
nonlinear functions of instant actuator states expressed by u.

Fig. 3. Overview of a task space closed-loop tracking control system
using the fuzzy-model-based approach for continuum manipulators. ηr
represents the desired end-effector trajectory in task space. Gj and Fj ,
(j = 1, 2, ..., 6), are feedback gains. (˙) is a time derivative and u̇ denotes
the end-effector motion velocity. The feedback information is acquired
with position sensors.

In (8), the left component of the Jacobian represents the
Jacobian Jh(q) of the manipulator-independent portion of
kinematics and the right component of the Jacobian represents
the Jacobian Jg(u) of the manipulator-independent portion of
kinematics. We get both explicit Jacobian matrices as

Jh(q) =

[
cosφ(k·l sin(k·l)+cos(k·l)−1)

k2
− sinφ(1−cos(k·l))

k
cosφ sin(k · l)

sinφ(k·l sin(k·l)+cos(k·l)−1)

k2
cosφ(1−cos(k·l))

k
sinφ sin(k · l)

k·l(cos(k·l)−sin(k·l)
k2

0 cos(k · l)

]
(9)

Jg(u) = 3(τ1τ2+τ1τ3−τ
2
2−τ

2
3 )

dτ2sumτsqrt
−

3(τ21−τ1τ2−τ2τ3+τ23 )

dτ2sumτsqrt
−

3(τ21−τ1τ3−τ2τ3+τ22 )

dτ2sumτsqrt√
3(τ3−τ2)

2τ2sqrt

√
3(τ1−τ3)

2τ2sqrt

√
3(τ2−τ1)

2τ2sqrt
1
3

1
3

1
3


(10)

where d is the radius of the cross-section of continuum
manipulator; τsum = τ1 + τ2 + τ3;
τsqrt =

√
τ21 + τ22 + τ23 − τ1τ2 − τ1τ3 − τ2τ3.

III. KINEMATIC CONTROL USING FUZZY-MODEL-BASED
APPROACH

The objective of the kinematic control task is to find a
solution with respect to the actuation space variables to enable
the end-effector of the continuum manipulator to track a de-
sired trajectory. Fig. 3 illustrates the control architecture using
fuzzy-model-based approach. Afterwards, we first introduce
the design procedures step-by-step according to the literature.
Then the state-space model with respect to the continuum
manipulator is proposed, based on which the fuzzy model
can be developed. We specify two different trajectory tracking
tasks and accordingly design two sets of feedback gains in the
fuzzy controllers. Details about control synthesis are shown in
the following subsections.
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A. Polynomial fuzzy-model-based stability conditions

The methodology of the fuzzy-model-based control is sum-
marised in this subsection based on [27].

1) Polynomial fuzzy model: In order to apply the fuzzy-
model-based stability analysis, the polynomial fuzzy model is
employed to represent the system state model of the continuum
manipulator. The polynomial fuzzy model is constructed by
using membership functions to blend the local polynomial
models. The p-rule polynomial fuzzy model describing the
behaviour of a general nonlinear model can be defined as [31]

ẋ =

p∑
i=1

wi(y)(Ai(x)x̂(x) + Bi(x)v), (11)

y = Cx̂(x), (12)

where x denotes the system state vector; y denotes the
output vector; wi(y) is the normalised grade of membership;
Ai(x) and Bi(x) are the known polynomial system and input
matrices, respectively; x̂(x) is a vector of monomials in x; v
is the input vector; C is a constant output matrix. It is assumed
that x̂(x) = 0 iff x = 0.

2) Reference model: The reference model mathematically
describes the desired trajectory. It is specified by users and
later is utilised in the fuzzy-model-based stability analysis for
the tracking control of a continuum manipulator. The reference
model is defined as follows [27]:

ẋr = Arx̂r(xr) + Brr, (13)

yr = Cx̂r(xr), (14)

where xr denotes the state vector of the reference model;
Ar and Br are the constant system and input matrices,
respectively; x̂r(xr) is a vector with monomials in xr as the
entries; r denotes the reference input vector; yr denotes the
output vector of the reference model.

3) Output-feedback polynomial fuzzy controller: The basic
idea of trajectory tracking is to continuously reduce the
discrepancies between the desired position and the actual
position. A polynomial fuzzy controller is employed here
to track the trajectory without the online computation of
a (pseudo-)inverse Jacobian matrix. This fuzzy controller is
designed based on the concept of the parallel distributed
compensation (PDC) [32]. In other words, the membership
functions integrated in the fuzzy controller are the same as
those in (11). The output-feedback polynomial fuzzy controller
is defined as follows [27]:

v =

p∑
j=1

wj(y)(Fj(h)Cê+ Gj(h)Cx̂r(xr)), (15)

where we define h =
[
yT yTr

]T
; Fj(h) and Gj(h) are the

polynomial feedback gains to be determined; the tracking error
is defined by ê = x̂(x)− x̂r(xr).

4) H∞ performance of tracking control: The tracking
performance can be governed by an H∞ performance index
which can be adjusted by the user to minimise the tracking
error ê in (15). It origins from the Lyapunov-based stability
analysis. The H∞ performance of tracking control is defined
as follows [27]:

tf∫
0

zT1 z1dt− V (0)

tf∫
0

(σ2
1z

T
2 z2 + σ2

2z
T
3 z3)dt

≤ 1, (16)

where tf is the termination time of tracking control; σ1
and σ2 are the pre-defined scalars; z1 = X(x̃)−1Γ−1ê,
z2 = X(x̃)−1Γ−1xr, z3 = r; X(x̃) =

[
X11 0
0 X22(x̃)

]
is

termed as a symmetric decision variable which can be obtained
in MATLAB; Γ =

[
CT (CCT )−1 ortc(CT )

]
and ortc(.)

denotes the orthogonal complement; V (t) = ρTX(x̃)−1ρ
is the polynomial Lyapunov function candidate, ρ = Γ−1ê;
x̃ =

[
xj1 , xj2 , ..., xjq , xrk1 , xrk2 , ..., xrks

]T
, the subscripts

j1, j2, ..., jq are the row indices that the entries of the entire
row of Bi(x) for all i are all zeros, the subscripts k1, k2, ..., ks
are the row indices that the entries of the entire row of Br are
all zeros.

5) Stability conditions of the polynomial fuzzy-model-based
control systems: The defining feature and also the superiority
of the fuzzy-model-based approach is that various control
problems such as trajectory tracking and H∞ performance can
be systematically analysed whilst ensuring the system stability.
This gives the theoretical support to physically implement
the designed controller. It is derived based on the Lyapunov
stability theory.

Before proceeding further, we first describe the following
notations which will be employed in the theorem. A polyno-
mial p(x) is a sum of squares (SOS) if it can be written as

p(x) =
m∑
j=1

qj(x)2 where qj(x) is polynomial and m is a non-

zero integer. Thus, if the condition “p(x) is an SOS” holds,
then we have p(x) ≥ 0. SOSTOOLS is a third-party MATLAB
toolbox to numerically find solutions to SOS conditions [33].

Theorem 1 ( [27]): The designed polynomial fuzzy con-
troller in (15) is guaranteed to enable the states of the polyno-
mial fuzzy model in (11) representing the physical nonlinear
system to track a desired reference model in (13) subject to
an H∞ performance of (16) if there exists decision variables
X(x̃) referring to (16), Mj(h) and Nj(h), (j = 1, 2, ..., p),
such that the following SOS conditions are satisfied.

νT1 (X(x̃)− ε1(x̃)I)ν1 is SOS;
−νT2 (Ξij(x,xr) + Ξji(x,xr) + ε2(x,xr)I)ν2 is SOS

∀j = 1, 2, ..., p; i < j;
where ν1 and ν2 are arbitrary vectors independent of x and
xr; ε1(x̃) and ε2(x,xr) are pre-defined positive polynomials;
the technical details of Ξij(x,xr) can be found from (29) in
[27]. The feedback gains can be obtained by

Fj(h) = Mj(h)X−111 , Gj(h) = Nj(h)X−111 .
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B. State-space representation

The derived Jacobian in (8) reveals the velocity-level kine-
matics and fully describes the continuous-time dynamic sys-
tem. From the control aspect, the mathematical description of
the system is expressed as

η̇ = J(g−1(h−1(η)))u̇ ⇐⇒ η̇ = J(η)u̇, (17)

where the equation is known as the state-space model and
u = g−1(h−1(η)) can be obtained analytically by solving
their respective parts of forward kinematics.

With the substitution of the above state-space model in the
time domain, the state-space controller design techniques such
as [27], [28], are enabled towards a dynamic system for the
continuum manipulator.

C. Fuzzy model construction via the local approximation

In order to represent the continuum manipulator state-
space model embodied in (17) by a fuzzy model, a local
approximation technique is utilized. In our case, the task space
in Cartesian coordinate system for a continuum manipulator
with 0.01m diameter is specified as

D3 = {x, y, z|x ∈ [0.015, 0.075], y ∈ [−0.075, 0.075],

z ∈ [0.015, 0.15]} (Unit: m).
(18)

Based on this range of interest, we approximate the state-
space model at six different local sets of system states,
i.e. η1 = [0.015,−0.075, 0.075]T , η2 = [0.015, 0, 0.075]T ,
η3 = [0.015, 0.075, 0.075]T , η4 = [0.075,−0.075, 0.075]T ,
η5 = [0.075, 0, 0.075]T , η6 = [0.075, 0.075, 0.075]T . Note
that more local sets of system states can be used to establish
a more accurate fuzzy model. However, it will lead to higher
computational demand. Other advanced fuzzy modelling tech-
niques can be employed to find a better trade-off between
the accuracy and computational burden. In this paper, the
system state z is only approximated at one point to lower
the computational demand. Then, the local state-space models
with respect to each set of system states can be obtained like:

Ai = 0; Bi = J(ηi), i = 1, 2, ..., 6, (19)

where the derived input matrices are

B1 =

−0.50 5.77 −5.15
−3.91 2.11 1.17
−6.15 2.29 4.49

 B2 =

 0.06 4.34 −4.21
−5.07 2.53 2.53
0.32 −0.83 1.48


B3 =

−0.50 −5.15 5.77
3.91 −1.17 −2.11
−6.15 4.49 2.29

 B4 =

−2.24 5.70 −2.96
−5.16 4.42 0.26
−6.04 −2.11 8.64


B5 =

 0.21 3.36 −2.93
−6.37 3.18 3.18
0.21 −5.30 5.73

 B6 =

 2.57 3.29 −5.37
−4.84 0.58 4.74
6.37 −8.31 2.43

.

After deriving the six local state-space models of (19), we
then define six fuzzy rules to smoothly combine them to form
the overall fuzzy model. Six fuzzy rules are described as

Rule i: IF x is M i
1 and y is M i

2, THEN η̇ = Biu̇,

where M i
1, i = 1, 2, ..., 6, is the fuzzy term of rule i

corresponding to the premise variable x, M1
1 = M2

1 = M3
1 =
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Fig. 4. Illustrations of the employed membership functions.

“around 0.015”, M4
1 = M5

1 = M6
1 = “around 0.075”; M i

2,
i = 1, 2, ..., 6, is another fuzzy term of rule i corresponding
to the premise variable y, M1

2 = M4
2 = “around −0.075”,

M2
2 = M5

2 = “around 0”, M3
2 = M6

2 = “around 0.075”. Since
z is approximated at only one point, the transition between
local models does not depend on z. Consequently, the premise
variables are only x and y.

In order to enable the transitions among the six separate
fuzzy rules, we propose the following membership functions.
µMi

1
(x) and µMi

2
(x), i = 1, 2, ..., 6, are grades of membership

corresponding to the fuzzy terms M i
1 and M i

2, respectively
(please refer to Fig. 4). They are defined as

µMi
1
(x) = 1− 1

1 + exp(−x−0.0450.0045 )
, i = 1, 2, 3; (20)

µMi
1
(x) = 1− µM1

1
(x), i = 4, 5, 6; (21)

µMi
2
(y) = 1− 1

1 + exp(−y+0.03
0.0075 )

, i = 1, 4; (22)

µMi
2
(y) =

1

1 + exp(−y−0.030.0075 )
, i = 2, 5; (23)

µMi
2
(y) = 1− µM1

2
(y)− µM2

2
(y), i = 3, 6. (24)

The membership functions for the local state-space models
are then derived by

wi(η) = µMi
1
(x)µMi

2
(y), i = 1, 2, ..., 6, (25)

where wi(η), i = 1, 2, ..., 6, are the employed membership

functions and they possess the following property
6∑
i=1

wi(η) =

1, wi(η) ≥ 0,∀i.
Here we consider the full state-feedback control instead of

output-feedback control, thus, C = I which leads to Γ = I. So
far, the fuzzy model is established by substituting the derived
Ai,Bi,C, and wi(η) into (11) and (12) as

η̇ =
6∑
i=1

wi(η)Biu̇. (26)

The difference of each entry between the original state-space
model in (17) and the fuzzy model in (26) is measured by the
mean absolute error (MAE) for all system states in the range
of interest described in (18), which is defined by

βmn =
1

N

N∑
j=1

|Jmn(ηj)− B̃mn(ηj)|, m, n = 1, 2, 3, (27)
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where N is the number of a series of dense system states
in the range of interest; m and n define the (m,n)-th entry
of the corresponding matrix; ηj is the sampled system state;

B̃(η) =
6∑
i=1

wi(η)Bi.

The calculated MAEs are β11 = 0.4149, β12 =
2.4850, β13 = 2.6373, β21 = 2.6893, β22 = 1.2943, β23 =
1.4764, β31 = 1.4137, β32 = 1.2130, β33 = 0.7695. It can
be seen that the fuzzy modelling error exists due to the high
nonlinearity of the original state-space model and the limited
number of fuzzy rules, which can be reduced in the future.

D. Fuzzy controller design

We first define two trajectory tracking cases to specify the
reference model: one is to track a straight line in task space;
another one is to follow an ellipse.

The straight line reference model in the form of (13) is
given by

η̇r = Brr, (28)

where Br =
[
−0.0005 −0.002 0.0018

]T
;

r =

{
1, t ≤ 60s

0, t > 60s
.

Given the above task, the corresponding fuzzy controller is
designed by applying Theorem 1. Choosing the decision vari-
ables X,Mj ,Nj as constant matrices; ε1 = ε2 = 0.001;σ1 =
σ2 = 0.1 in (16); the feedback gains are obtained as follows:

F1 =

−1.14 −0.22 −0.39
−1.31 −0.35 −0.55
−1.03 −0.16 −0.62

 , F2 =

−0.43 0.34 −0.09
−0.36 0.26 −0.17
−0.34 0.36 −0.23

 ,
F3 =

−2.75 −1.26 −1.85
−2.47 −1.67 −2.12
−2.50 −1.25 −2.42

 , F4 =

−0.50 0.23 0.51
−0.52 0.19 0.48
−0.50 0.24 0.45

 ,
F5 =

−0.28 0.34 0.03
−0.30 0.28 −0.00
−0.28 0.32 −0.05

 , F6 =

−0.98 0.03 −0.84
0.93 −0.11 −0.92
−0.93 0.02 −1.04

.

Here Gi ≈ 0, i = 1, 2, ..., 6, (the magnitude of the entries
of the matrix Gi is less than 10−14).

The designed fuzzy controller in the form of (15) can be
acquired to comply with the fuzzy model in (26) as

u̇ =
6∑
j=1

wj(η)(Fj∆η + Gjηr), (29)

∆η ≡ η − ηr.

The ellipse reference model in the form of (13) is given by

η̇r = Arηr + Brr, (30)

where Ar =

[
0 −0.1 0

0.1 0 0
0.2 0 −0.1

]
;

Br =
[
0 −0.0045 −0.001

]T
; r = 1.

Given this task, the corresponding fuzzy controller is de-
signed similarly by applying Theorem 1. Choosing the deci-
sion variables X,Mj ,Nj as constant matrices; ε1 = ε2 =
0.001;σ1 = σ2 = 1 (different from the straight line tracking

case) in (16); the feedback gains are then correspondingly
obtained as follows:

F1 =

−397 −246 −124
−402 −252 −127
−377 −232 −121

 , F2 =

−69.1 −35.5 −22.3
−65.9 −35.0 −22.5
−51.4 −24.2 −18.9

 ,
F3 =

−1227 −774 −395
−1237 −789 −402
−1201 −758 −396

 , F4 =

−23.73 −10.03 0.53
−36.80 −18.55 3.95
−24.02 −9.61 −0.46


F5 =

 5.51 11.06 3.09
−12.78 −1.20 −2.93
−8.36 2.31 −2.29

 , F6 =

−362 −219 −120
−379 −233 −126
−366 −222 −124

 ,
G1 =

0.06 −0.03 −0.04
0.10 −0.04 −0.05
0.10 −0.04 −0.06

 , G2 =

0.15 −0.06 −0.10
0.16 −0.07 −0.10
0.17 −0.05 −0.11

 ,
G3 =

−0.20 0.09 0.09
−0.21 0.09 0.11
−0.22 0.10 0.10

 , G4 =

0.05 −0.07 −0.04
0.07 −0.08 −0.04
0.09 −0.07 −0.05

 ,
G5 =

0.16 −0.08 −0.07
0.16 −0.09 −0.06
0.18 −0.08 −0.08

 , G6 =

0.29 −0.10 −0.15
0.28 −0.11 −0.14
0.28 −0.10 −0.15

.

The fuzzy controller in the form of (29) can be acquired
but with feedback gains Fj ,Gj , j = 1, 2, ..., 6, designed for
this ellipse trajectory.

IV. SIMULATION EXAMPLES AND ANALYSIS

We implement the proposed fuzzy controller in MATLAB
simulation to investigate its performance. The simulation en-
vironment contains the aforementioned task space (see (18))
with respect to a continuum manipulator. The manipulator’s
mathematical model described in (8) is utilized and ode23
function command in MATLAB is executed to generate the
continuous navigation path. In order to include the modelling
inaccuracies and other real-time errors in simulation and vali-
date the robust performance of the designed fuzzy controller,
we introduce an additive term ∆J to the analytically derived
Jacobian matrix, i.e.

η̇ = (J(u) + ∆J)u̇. (31)

Two different types of reference models respectively de-
scribing the straight line and ellipse tracking trajectories are
utilized in the simulation. To compare with other controllers,
we implement all the controllers in the same situation, where
the same additive term in the disturbed model is considered.

A. Straight line trajectory tracking task

In the simulation, the initial states of the disturbed model
in (31) and the specified straight tracking trajectory in (28)
are defined as η(0) = ηr(0) =

[
0.06 0.06 0.03

]T
. The

additive disturbance term is chosen as ∆J =

0.2 0.2 0.2
0.2 0.2 0.2
0.2 0.2 0.2


in the case. This value is chosen based on expert knowledge
and it is approximately the mean value to simulate disturbance
in our experimental setup. Implementing the designed fuzzy
controller in (29), the simulation results are shown in Fig.
5(a). We can see that the trajectory tracking task is effectively
achieved by the proposed fuzzy controller.
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Fig. 5. (a) Performance of the designed fuzzy controller used to track a
straight line trajectory (Unit: m). The trajectory of the continuum manip-
ulator tip in 3D task space are captured and illustrated in blue line and
the central backbone shape of the continuum manipulator is illustrated
in pink; The green dot indicates the initial position [0.06, 0.06, 0.03]T

and the red dot indicates termination position [0.03,−0.06, 0.135]T ; the
green dotted line shows the specified reference trajectory. (b) Perfor-
mance comparisons of the four controllers shown via the x–y plane view
of 3D task space. The blue, black, cyan, and pink trajectories indicate the
trajectories based on the controllers “I-A”, “I-B”, “I-C”, “I-D”, respectively.
A “zoom-in” view around the target is presented, which shows the spiral
phenomenon associated to our fuzzy controllers.

Fig. 6. Overview of a closed-loop control that is based on the (pseudo)
inverse Jacobian method. Control input includes both the desired time-
varying trajectory and the pre-planned task space velocity with respect
to the desired task (trajectory) [15], [34]. K is a diagonal matrix and if
K = 0, then this control architecture becomes an open-loop control.

We further compare our designed controller (labeled by “I-
A”) with three other types of controllers: fuzzy controller with
different H∞ performance (labeled by “I-B”), closed-loop
Jacobian-based controller (labeled by “I-C”) [15], [34] (please
refer to Fig. 6), and open-loop Jacobian-based controller
(labeled by “I-D”) [35].

To design a fuzzy controller with different H∞ perfor-
mances, we choose σ1 = σ2 = 100 in (16) while other
controller design parameters remain the same in Theorem 1.
Therefore, the feedback gains can be similarly obtained.

The closed-loop Jacobian-based controller is designed based
on (40) in [15] with W = I,K = 0.1I resulting u̇ =
J(u)−1(η̇r + 0.1(ηr − η)). The open-loop Jacobian-based
controller is simply given by u̇ = J(u)−1η̇r. The performance
comparisons among the total four controllers are illustrated in
Fig. 5(b) and Fig. 7. The proposed fuzzy controller demon-
strates the best performance with the minimum tracking errors.
Compared with the additional fuzzy controller with different
H∞ performance, the results imply that the smaller the val-
ues of σ1 and σ2, the better the H∞ tracking performance
governed by (16). Both implemented fuzzy controllers exhibit
a spiral phenomenon and this converged spiral decreases the
tracking error around the target. The open-loop and closed-
loop Jacobian-based controllers suffer from the modelling
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Fig. 7. Illustrations of time responses with respect to each of the four
controllers: (a) I-A, (b) I-B, (c) I-C, and (d) I-D, respectively.

TABLE I
NUMERICAL COMPARISONS OF DIFFERENT CONTROLLERS’ STRAIGHT

LINE TRACKING PERFORMANCES VIA PERFORMANCE INDICES.

Controllers IAE ITAE IAV Execution Rate
I-A 0.3513 11.4858 0.1871 23.83 kHz
I-B 0.4279 14.3184 0.1906 22.24 kHz
I-C 0.9997 45.9150 0.1981 13.54 kHz
I-D 4.6803 282.7586 0.2741 13.97 kHz

inaccuracies. Although the closed-loop controller can reduce
the tracking error based on the real-time feedback infor-
mation, large modelling error results in poor performances.
Both Jacobian-based controllers need online updates of the
Jacobian which causes a computational burden, which could
be particularly problematic in a real-time system; on the other
hand, our fuzzy controllers are very efficient and have a low
computational load.

The performance indices are calculated by using the Integral

Absolute Error (IAE) h̄1 =
tf∫
0

(|x − xr| + |y − yr| + |z −

zr|)dt; Integral of Time multiply Absolute Error (ITAE) h̄2 =
tf∫
0

t(|x−xr|+|y−yr|+|z−zr|)dt; and Integral of the Absolute

Value of the control input (IAV) h̄3 =
tf∫
0

(|τ̇1|+ |τ̇2|+ |τ̇3|)dt;
where tf = 100 seconds and τ̇1, τ̇2, τ̇3 are control inputs
representing the controlled tendon speeds of three respective
tendons. The results are shown in Table I and they further
illustrate the superiority of the proposed fuzzy controller.

B. Ellipse trajectory tracking task
In this simulation, the initial states of the disturbed model

in (31) and the ellipse tracking trajectory in (30) are η(0) =
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Fig. 8. Simulated performances for the ellipse trajectory tracking task.
The same drawing convention applies here as used for Fig. 5. In this
case, the initial position is [0.065, 0, 0.1]T . The blue, black, cyan, and
pink trajectories indicate the trajectories based on the controllers “II-A”,
“II-B”, “II-C”, “II-D”, respectively.

ηr(0) = [0.065, 0, 0.1]T . The additive disturbance term, 3×3
matrix ∆J(t), is chosen by assigning each of all 9 entries as
0.1 sin(πt30 ) . Implementing the designed fuzzy controller in
(29) with the feedback gains derived in subsection III-D for
the ellipse trajectory case, the simulation results are shown in
Fig. 8(a). The ellipse tracking task is accomplished perfectly
by the designed fuzzy controller.

Here we also compare our designed fuzzy controller (la-
beled by “II-A”) with three other types of controllers: closed-
loop Jacobian-based controller (labeled by “II-C”) and open-
loop Jacobian-based controller (labeled by “II-D”) are same
as those used for straight line trajectory tracking task; another
linear controller (labeled by “II-B”) is designed with the same
methodology as to design the fuzzy controller but choosing
only one operating point η = [0.04, 0, 0.075]T (a special case
of the fuzzy model). The linear controller is described as

u̇ = F∆η + Gηr, (32)

where F =

[
−0.85 0.02 0.27
−0.85 −0.02 0.28
−0.85 −0.02 0.26

]
,G =

[
−0.08 −0.12 0.04
−0.08 −0.12 0.04
−0.07 −0.12 0.03

]
.

The comparisons of the four controllers are illustrated in
Fig. 8(b) and Fig. 9. Similar results with those for straight line
tracking case can be obtained. We can see that although the
actual trajectories from both the open-loop and closed-loop
Jacobian-based controllers are ellipse-like, they quickly run
away from the defined the ellipse after the starting position.
The performance of the linear controller obtained from one
operating point is worse than the fuzzy controller obtained
from six operating points. One operating point is not enough
to represent the original nonlinear model. The numerical
comparison results using performance indices (i.e. IAE, ITAE,
IAV) are given in Table II. As indicated by IAE and ITAE,
the proposed fuzzy contoller with the lowest cost provides
the best performance. The larger value of the IAV index for
the proposed fuzzy controller indicates that there is a cost of
control effort to achieve the smaller error. In both Table I and
Table II, the execution rates of all implemented controllers are
listed for comparison, which indicates that the fuzzy controller
operates faster and has the superiority of a low computational
cost compared to conventional Jacobian-based methods.
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Fig. 9. Illustrations of time responses with respect to each of four
controllers: (a) II-A, (b) II-B, (c) II-C, and (d) II-D, respectively.

TABLE II
NUMERICAL COMPARISONS OF DIFFERENT CONTROLLERS’ ELLIPSE

TRAJECTORY TRACKING PERFORMANCES VIA PERFORMANCE INDICES.

Controllers IAE ITAE IAV Execution Rate
II-A 0.0214 0.6555 0.8120 40.55 kHz
II-B 0.7800 25.5389 0.3570 52.42 kHz
II-C 0.6271 24.8722 0.4170 13.35 kHz
II-D 2.0268 85.0483 0.3893 13.74 kHz

V. EXPERIMENTS

The proposed fuzzy controller is implemented on a tendon-
driven 3D-printed continuum manipulator, whose design was
presented in [29]. This continuum manipulator demonstrates
an effectively decoupled bending with contraction via three
tendons at the periphery, thus, in line with the previously
presented kinematic model for a general continuum manip-
ulator. The contraction capability enables the length of the
manipulator to vary from the original full length to contract to
a length of about 70%. In order to measure the manipulator’s
tip position, a commercial electromagnetic (EM) tracking
system NDI Aurorar is used. One 0.8 mm diameter × 11 mm
length sensor coil is integrated in the head of the continuum
manipulator to track real-time tip positions and orientations.
Each tendon is actuated via a DC motor (Maxon Motorr).
For comparative purposes, both the traditional Jacobian-based
open-loop and closed-loop controllers are implemented under
the same condition; Fig. 10 illustrates the experimental setup.

A. System Description
All the three controllers and the reference trajectory gener-

ator are implemented in Robot Operating System (ROS) En-
vironment on an Intelr Core i3 @2.40GHz and 1.5GB RAM
based platform running Linux Mint 13 Operating System. The
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Fig. 10. Experimental setup. The controllers are implemented on a
tendon-driven continuum manipulator with validated constant-curvature
bending performance. The NDI Aurorar EM position sensor is used for
the purpose of tracking the manipulator tip.

control signal is fed to the EPOS2 Module motor controller
to control the velocities of three Maxon DC Motors, each
equipped with encoders to ensure precise velocity control. The
motors are connected to the tendons via a gearbox with a
reduction ratio of 128:1. The rotation of the motors moves
each tendon with the desired velocity. A change in tendon
length will move the tip of the continuum manipulator; the
motor control is based on the kinematic model.

An Aurora sensor coil, embedded in the tip of the ma-
nipulator, will give the position of the tip with respect to
another sensor coil embedded in the base of the manipulator.
This information is fed to the computer via the NDI Aurora
tracking system and used as a feedback to the fuzzy controller.
A standard Jacobian-based closed-loop controller receives
Aurora signals in the same way during the comparative
experiments. The reference trajectory in this experiment is
chosen to be a straight line measured with respect to the base
of the robot. The reference trajectory position, as well as the
manipulator tip’s position and the tendon velocity as control
signal are also recorded via ROS to enable further analysis
and documentation. The block diagram of the experimental
system integration is shown in Fig. 11. The parameters of
the experiment are as follows: the length of manipulator
l = 143 mm; cross-section radius d = 13.4 mm; the specified
workspace range x : [7, 31.5], y : [−31.5, 31.5], z : [110, 134],
where the coordinate system is in accordance with the global
coordinate system as shown in Fig. 2(b) (unit: mm); velocity
Br = [0.250, 0.750, 0.267]; 70 seconds duration.

The control programs are first tested off-line using simulated
tracking sensor feedback. These tests validate the advantage
of the fuzzy controller in terms of its reduced amount of nec-
essary calculations. When executed on our computer system,
the proposed fuzzy controller operates at an execution rate
of 168.79Hz (0.0059 seconds execution time per iteration) as
opposed to 40.90Hz (0.0244 seconds execution time per iter-
ation) for the Jacobian-based methods. This big difference in
execution time is caused by the fact that the fuzzy controller’s
feedback gains do not need to be updated. However, the
Jacobian-based controllers need to execute numerical integra-
tions to estimate the current length of each tendon and update

Fig. 11. Block diagram of the experimental system integration.

the Jacobian matrix in every control iteration. Besides, the
matrix inversion operation – a complex mathematical process
– to inverse the derived Jacobians is needed in Jacobian-based
controllers and slows down the computations. Based on the
analyzed execution rate above, the system is thus determined
to be executed with a sampling rate of 40 Hz.

B. Experimental results and analysis

To implement the fuzzy-model-based control for experi-
mental studies, six different local operating points [7, −31.5,
122], [7, 0, 122], [7, 31.5, 122], [31.5, −31.5, 122], [31.5,
0, 122], [31.5, 31.5, 122] (Unit: mm), with respect to the
specified workspace range, are chosen to approximate the
state-space model. Accordingly, membership functions are
then derived and utilised for both fuzzy model construction and
fuzzy controller design. The experimental results are illustrated
in Fig. 12. Despite the fact that model discrepancies and
hardware tolerances exist, the proposed fuzzy-model-based
approach still accomplishes the tracking task. As shown in Fig.
12(a), the final stage of the experimental recorded trajectory
presents a converged spiral, which indicates the feasibility of
the controller. For comparison purposes, we also implemented
two other traditional Jacobian-based controllers and tested in
an experimental study. Figs. 12(c) and 12(d) show tracking
performance with an open-loop Jacobian-based controller;
Figs. 12(e) and 12(f) show the tracking performance with
a closed-loop Jacobian-based controller (K = 0.1I), whose
control architecture is shown in Fig. 6. From Fig. 12, we can
see that both traditional controllers achieve the tracking tasks
but there exist a significant distance between the end-point to
the target. Based on Figs. 12(c) and 12(e), the performance
with the closed-loop controller is better than the performance
with the open-loop controller. The open-loop control execution
leads to an accumulation of the tracking errors, and it can be
seen that the experimental recorded trajectory gradually moves
away from the reference without any trend to decrease the
error. The closed-loop Jacobian-based controller keeps to a
trajectory that is almost parallel with respect to the reference.
After 40 seconds when the reference model terminates at the
target point, the closed-loop control will drive the tip of the
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TABLE III
NUMERICAL COMPARISON OF DIFFERENT CONTROLLERS TACKING

PERFORMANCES IN EXPERIMENTS.

Controllers Targeting Precision IAE ITAE IAV
IV-A 0.7165 mm 0.2446 6.5240 48.0182
IV-B 3.1 mm 0.2968 11.8942 35.7483
IV-C 5.2 mm 0.4311 18.2555 29.3033

IV-A: the proposed fuzzy controller;
IV-B: closed-loop Jacobian-based; IV-C: open-loop Jacobian-based.

manipulator to gradually approach the steady target, while
the open-loop control terminates at exactly 40 seconds. Due
to the delay on the ROS Node initialization, the controller
does not start to produce control signals immediately, rather
it lags by a small duration of time at the beginning of
the experiments. The numerical comparisons regarding the
performances with these three different controllers are given
in Table III. It can be seen that, with regards to the targeting
precision and these performance indices of the proposed fuzzy-
model-based controller shows advantages. It is also to be
noted that the performance of implementing the open-loop
controller reflects the accuracy of our kinematic model and the
hardware shortcomings. Both the closed-loop Jacobian based
controller and the proposed fuzzy-model-based controller still
have space to be further improved so that a better tracking
performance can be expected. These experiments in this paper
validate the feasibility of the fuzzy-model-based controller
to be implemented for continuum manipulators with some
appealing advantages. This is the first work of achieving task
space closed-loop control with a fuzzy-model-based approach.
Besides, the (fuzzy-model-based) PI control can be achieved
by adding an integral term. The analysis will remain more or
less the same but the integral term will increase the dimensions
of the (augmented) system and input matrices. Given that
the current performance is acceptable in simulations and
experiments, and, in order to avoid complicating the controller,
the integral action is not considered in this work.

VI. CONCLUSIONS AND FUTURE WORK

A fuzzy controller has been proposed for autonomous exe-
cution of end-effector trajectory tracking tasks of a continuum
manipulator, overcoming model complexities and uncertainty
issues that plague other types of controllers. In MATLAB
simulations, the proposed controller was implemented and
compared with three other controllers. The results showed that
the designed fuzzy controller had the best performance with
regards to the minimum tracking errors and accomplished both
tracking tasks efficiently. The other Jacobian-based controllers
suffered from model inaccuracies. Experiments were con-
ducted employing a rapid-prototyped continuum manipulator.
The results verified the feasibility of the controller in presence
of modelling discrepancies and hardware tolerances.

Some limitations are discussed here. The proposed fuzzy
approach has a high computational complexity when deriv-
ing the controller gains, especially when we choose more
linearization points; this could be solved by using high-
performance computers. Besides, we did not use the exact
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Fig. 12. Experimental results of a trajectory tracking execution via fuzzy-
model-based approach (shown by (a) and (b)), open-loop Jacobian
based approach (shown by (c) and (d)), and closed-loop Jacobian
based approach (shown by (e) and (f)). The figures in left column
show the experimental recorded trajectory in 3D space and the zoom-
in view around the target. The green dot indicates the initial position
and red dots indicate the termination positions. The green line shows
the specified reference trajectory. The magenta trajectory indicates the
trajectory based on the applied controller. The figures in right column
show the tendon speed control signals.

original nonlinear model (we linearized it) when deriving the
controller, and more rules are required to achieve a more
accurate model. Therefore, it is critical to find a balance
between the better performance and more rules.

Future work will include refining the controller design and
testing the controller with practical continuum manipulator
systems. A future work on both dynamic model and elastic
material’s hysteresis issue will help further understand and
control such continuum manipulators. Multi-section contin-
uum manipulators with more degrees-of-freedom are to be
analysed and controlled with the fuzzy-model-based approach.
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