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Abstract
Metabolomic profiling is a powerful approach to characterize human metabolism and help

understand common disease risk. Although multiple high-throughput technologies have

been developed to assay the human metabolome, no technique is capable of capturing the

entire human metabolism. Large-scale metabolomics data are being generated in multiple

cohorts, but the datasets are typically profiled using different metabolomics platforms. Here,

we compared analyses across two of the most frequently used metabolomic platforms, Bio-

crates and Metabolon, with the aim of assessing how complimentary metabolite profiles are

across platforms. We profiled serum samples from 1,001 twins using both targeted (Bio-

crates, n = 160 metabolites) and non-targeted (Metabolon, n = 488 metabolites) mass spec-

trometry platforms. We compared metabolite distributions and performed genome-wide

association analyses to identify shared genetic influences on metabolites across platforms.

Comparison of 43 metabolites named for the same compound on both platforms indicated

strong positive correlations, with few exceptions. Genome-wide association scans with

high-throughput metabolic profiles were performed for each dataset and identified genetic

variants at 7 loci associated with 16 unique metabolites on both platforms. The 16 metabo-

lites showed consistent genetic associations and appear to be robustly measured across

platforms. These included both metabolites named for the same compound across plat-

forms as well as unique metabolites, of which 2 (nonanoylcarnitine (C9) [Biocrates]/

Unknown metabolite X-13431 [Metabolon] and PC aa C28:1 [Biocrates]/1-stearoylglycerol

[Metabolon]) are likely to represent the same or related biochemical entities. The results

demonstrate the complementary nature of both platforms, and can be informative for future

studies of comparative and integrative metabolomics analyses in samples profiled on differ-

ent platforms.
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Introduction
Metabolomics aims to provide a comprehensive characterization of human metabolic path-
ways by high throughput profiling of the small molecules present in biological samples. Vari-
ous metabolomics platforms have been established to date, based on mass spectrometry (MS)
or nuclear magnetic resonance (NMR) technology. However, individual platforms can differ in
a number of features, including the set of metabolites quantified, the precision of quantifica-
tion, and its sensitivity.

Metabolomics data have been profiled in several epidemiological cohorts [1–6], offering the
potential to study the implication of metabolites in human health and disease within and across
large-scale datasets. However, individual cohorts are typically profiled using different metabo-
lomics platforms. In order to combine datasets across platforms and cohorts, there is a need to
establish the extent of overlap and complementarity across metabolomics platforms.

Several previous studies have explored metabolomics datasets across multiple platforms [7–
13]. For example, Suhre et al. [7] used multiple metabolomics platforms in a case-control study
of type-2 diabetes (T2D). They profiled 100 individuals using three different metabolomics
platforms to assess the potential of using metabolomic data in diabetes research by identifying
metabolites that associate with diabetes. The study showed good agreement between known
biomarkers of diabetes, including sugar metabolites, that could be replicated by the multiple
metabolomic platform approach. Psychogios et al. [8] aimed to characterize the human serum
metabolome by combining targeted and non-targeted NMR, GC-MS and LC-MS methods to
identify a comprehensive set of metabolites commonly detected and quantified in human
serum samples. They reported good agreement between the measured concentrations of NMR
and GC-MS. Nicholson et al. [12] and Raffler et al. [13] studied genetic influences on NMR
derived urine and plasma metabolites along with MS derived metabolites. However, these stud-
ies did not extensively compare the genome-wide findings for metabolite profiles from the
same individuals to assess whether associations from datasets across platforms overlap.

In our study, we focus on the comparison of metabolites that are quantified on targeted and
non-targeted mass spectrometry platforms and on the comparison of their genetic associations
across platforms. Two of the most commonly used high-throughput techniques in large cohort
studies apply either a targeted approach using the Biocrates platform or a non-targeted
approach using the Metabolon platform. The Biocrates method is a quantitative screen of
selected metabolites detected with multiple reaction monitoring, neutral loss and precursor ion
scans. Metabolites are then quantified by comparison to structurally similar molecules labelled
with stable isotopes added to the samples in defined concentrations as internal standards. In
contrast, a non-targeted approach such as Metabolon determines relative concentrations of as
many metabolites as possible without using internal standards for absolute quantification. The
Biocrates AbsoluteIDQ p150 kits have been applied to quantify a targeted set of 163 metabo-
lites, focusing predominantly on lipids. On the other hand, Metabolon has used ultra high-per-
formance liquid chromatography coupled to tandem mass spectrometry (UHPLC/MS/MS)
and gas chromatography coupled to mass spectrometry (GC/MS) for measuring around 500
metabolites from all major pathways including lipids, amino-acids, xenobiotics, and unknown
compounds. Although, the methods for quantifying metabolites are distinct, there is an overlap
of 43 metabolites that are measured by both platforms. Both platforms focus on different path-
ways, and combining datasets across platforms can help uncover a wide spectrum of comple-
mentary metabolites.

In this study we aimed to compare the Biocrates and Metabolon platforms by integrating
human genetic data in a genome-wide association study design. Genome-wide association
studies of metabolomic profiles (mGWAS) provide a new approach to evaluate the impact of
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genetic variation on human metabolism and its indirect link to complex diseases [12,14–20]. A
number of studies have reported strong associations between human genetic variants and
metabolites from both targeted and non-targeted metabolomics platforms [9,21–25]. The
results have identified biologically meaningful associations and in some cases have been used
to predict unknown gene function or metabolite identity. We propose to use mGWAS as a
method of assessing biologically relevant overlap and complementarity between platforms, as
the results could identify metabolites that capture shared biological processes through harmo-
nization of two metabolomics platforms.

We present mGWAS results of metabolites measured across the two platforms in the same
set of serum samples from 1,001 individuals. Our aim was to identify metabolites across plat-
forms with consistent genetic associations, which therefore appear stable and robust across
multiple platforms. The results can be used to assess how well different metabolomics profiling
methods identify identical molecules, to identify metabolites under shared genetic influences,
and ultimately to help identify potential metabolites for which data could be combined in
future studies. Our approach shows that the different technologies are predominantly comple-
mentary in the type and set of metabolites covered.

Materials and Methods

Ethics Statement
The study was approved by St. Thomas’Hospital Research Ethics Committee, and all twins
provided informed written consent.

Study Population and Sample collection
The 1,001 participants in this study were selected from the TwinsUK cohort [26]. Tests and
questionnaires applied to the participants have been described elsewhere [3]. The sample con-
sisted of 79 monozygotic (MZ) twin pairs, 215 dizygotic (DZ) twin pairs, and 413 unrelated
individuals. TwinsUK blood serum samples for Metabolon and Biocrates platform were
obtained after at least 6 hour of fasting and were inverted three times, followed by 40 min rest-
ing at 4°C to obtain complete coagulation. The samples were then centrifuged for 10 min at
2,000g. Serum was removed from the centrifuged tubes as the top yellow translucent layer of
liquid. Four aliquots of 1.5 ml were placed into skirted micro-centrifuge tubes and then stored
in a −45°C freezer until sampling.

Metabolomics Measurements
The same serum samples from 1,001 individuals in this study were profiled on two separate
MS platforms, Biocrates and Metabolon. The Biocrates metabolomics data were generated
from Helmholtz Center Munich using AbsoluteIDQ™ p150 kits provided by Biocrates Life Sci-
ences AG (Innsbruck, Austria). The Metabolon metabolomic data were generated fromMeta-
bolon Inc. (Durham, USA). Biocrates kits were applied to quantify a targeted set of 163 stable
metabolites, while Metabolon uses a non-targeted approach for measuring 499 metabolites.

The TwinsUK dataset generated on the targeted Biocrates MS platform has previously been
described [22,27,28]. Sample preparation and measurements were performed as illustrated in
[25]. Briefly, after centrifugation, 10 μL of serum was pipetted into a 96 well sandwich plate,
which contained inserted filters holding stable isotope labeled internal standards. After drying
the filters, amino acids were derivatized with 5% phenylisothiocyanate reagent (PITC). From
the dried filters, metabolites and internal standards were extracted with 5 mM ammonium ace-
tate in methanol. The solution was centrifuged and diluted with MS running solvent. Liquid
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handling was performed on a Hamilton Microlab STAR robot (Hamilton Bonaduz AG, Bona-
duz, Switzerland). The prepared samples were analyzed by Flow Injection Analysis (FIA) tan-
demMS with Electrospray Ionization (ESI) on an API 4000 mass spectrometer (AB Sciex
Deutschland GmbH, Darmstadt, Germany) using multiple reaction monitoring (MRM). The
internal standards served as references for calculating absolute metabolite concentrations in
micromolar units (μM). The Biocrates metabolomics dataset contains 163 targeted metabolites:
41 acylcarnitines [Cx:y], hydroxylacylcarnitines [C(OH)x:y] and dicarboxylacylcarnitines [Cx:
y-DC]; 14 amino acids; 1 sugar; 15 sphingomyelins [SMx:y] and sphingomyelin-derivatives
[SM(OH)x:y]; and 92 glycerophospholipids [PC and lysoPC]. Glycerophospholipids are differ-
entiated with respect to the presence of ester (a) and ether (e) bonds in the glycerol moiety,
where two letters (aa = diacyl, ae = acyl-alkyl) denote that two glycerol positions are bound to a
fatty acid residue, while a single letter (a = acyl) indicates the presence of a single fatty acid resi-
due. Lipid side chain composition is abbreviated as Cx:y, where x denotes the number of car-
bons in the side chain and y the number of double bonds. Further descriptions of the 163
Biocrates metabolites have previously been published [27–29].

The TwinsUK dataset generated on the non-targeted MS platform Metabolon has also pre-
viously been described [22,23,30] and in this study we report results from a subset of 1,001
individuals from the overall sample. Sample preparation, measurement and metabolite identifi-
cation have been performed as illustrated in [31,32]. Briefly, metabolites were extracted from
100 μl serum with 400 μl methanol (containing recovery standards) in a 96- deep well plate for-
mat. After centrifugation, the supernatant was split into four aliquots per sample: two for two
separate ultra-high performance liquid chromatography/MS (UHPLC/MS) injections, one for
gas chromatography/MS (GC/MS) injection, and one reserve aliquot. After drying, the aliquots
were reconstituted with 0.1% formic acid, for LC/MS positive ion mode, and with 6.5 mM
ammonium bicarbonate pH 8.0 for negative ion mode. The GC/MS aliquots were derivatized
for 1 h at 60°C with N, O-bistrimethylsilyl-trifluoroacetamide in a solvent mixture of acetoni-
trile:dichloromethane: cyclohexane (5:4:1), containing 5% triethylamine and retention time
markers. Pipetting was performed on a Hamilton MLStar (Hamilton Company, Salt Lake City,
UT, USA) robotics system. UHPLC/MS analysis was performed on an LTQ mass spectrometer
(Thermo Fisher Scientific Inc., Waltham, MA, USA) equipped with a Waters Acquity UPLC
system (Waters Corporation, Milford, MA, USA). Full scan mass spectra (99–1000 m/z) and
data dependent MS/MS scans with dynamic exclusion were recorded in turns. GC/MS analysis
was done on a Thermo-Finnigan Trace DSQ fast-scanning single-quadrupole mass spectrome-
ter, equipped with a 20 m x 0.18 mm GC column with 0.18 μm film phase consisting of 5%
phenyldimethylsilicone. Mass spectra in a scan range from 50–750 m/z were recorded. For
metabolite identification, the generated spectral data were compared against an in-house
library, which includes retention time (RT), and reference spectra from mass scan and frag-
mentation of molecules. For every metabolite, the raw area counts were normalized to the
median value of the run day to correct for inter-day variation of the measurements. The set of
499 quantified metabolites consists of several classes of named metabolites (amino acids, acyl-
carnitines, sphingomyelins, glycerophospholipids, carbohydrates, vitamins, lipids, nucleotides,
peptides, xenobiotics and steroids) and so-called unknown metabolites of yet unidentified
chemical structure (e.g. X-11521).

Genotyping and Imputation
Genotyping of the TwinsUK dataset was performed using a combination of Illumina arrays
(HumanHap300, HumanHap610Q, 1M-Duo and 1.2MDuo). We pooled the normalized inten-
sity data and called genotypes on the basis of the Illluminus algorithm. No calls were assigned
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if the most likely call had a posterior probability less than 0.95. We excluded SNPs with
Hardy–Weinberg (P< 1x 10−7) and and with minor allele frequency< 1%. First, the sparser
HumanHap300 dataset was imputed to the HumanHap610Q using phased TwinsUK Human-
Hap610Q haplotypes as a reference. Next, the combined panel was imputed using reference
haplotypes from the HapMap2 project (rel 22, combined CEU+YRI+ASN panels). The geno-
typing and imputation steps for TwinsUK cohort have been described in detail previously
[22,23].

Statistical Analysis
The Biocrates and Metabolon metabolomics datasets in the 1,001 serum samples first under-
went several quality control checks. Both dataset were investigated for missingness at the level
of each metabolite and individual. Metabolites or individuals with missing values greater than
15% were excluded from further analysis. Outliers at more than 4 standard deviations from the
mean of each metabolite were excluded. In total, 11 metabolites were removed from the Meta-
bolon dataset (out of 499 total) and 3 metabolite were removed from Biocrates dataset (out of
163 total)(S1 Table). We next performed Principal Component Analysis (PCA) on the metabo-
lomics profiles in each dataset and compared the first 5 principal components with potential
covariates to assess which variables should be included in downstream analyses. Sex, age and
BMI were nominally associated with at least 1 principal component and as a result were
included as covariates in the downstream analyses.

Altogether, there were 488 (Metabolon) and 160 (Biocrates) metabolites that passed quality
control checks, and of these 43 metabolites overlapped, that is, were assigned to be the same
molecule by both detection technologies. In the case of lyso-phosphatidylcholines (lysoPCs),
the two platforms actually measure not the same but similar molecules: while Metabolon can
differentiate between the position of the fatty acid residue on the glycerol backbone (e.g. 1-ara-
chidonoylglycerophosphocholine and 2-arachidonoylglycerophosphocholine), Biocrates mea-
sures the sum concentration of both molecules (e.g. lysoPC aa C20:4). Pearson correlation was
computed between the metabolite profiles across platforms to assess similarities in metabolite
measurements. Several approaches can be used to normalize metabolite data, for example, log
transformation [23], inverse normalization [19], and others. Here we used log transformation
(base 10) after quantile normalization since test of normality showed that in most cases the
normalized concentrations were closer to a normal distribution than the untransformed values.
Hierarchical clustering of the metabolites was performed using the complete linkage method
that finds similar clusters. All metabolomics quality control analyses were performed using R
3.0.1 (r-project.org).

Initial platform comparison focused on correlation analysis of the 43 metabolites across the
two platforms. Follow up platform comparisons included genetic data for biological interpreta-
tion of platform overlap. Here, we first calculated twin-based heritability of the metabolite pro-
files to identify genetically stable and robust profiles across platforms [33]. Second, we used a
GWAS approach to identify specific genetic variants that were associated with metabolite levels
across platforms.

Heritability was computed for 43 metabolites by comparing metabolite profiles in MZ and
DZ twin pairs using the ACE (additive genetic effects (A), common environment (C), and
unique environment (E)) model in the OpenMx software [34]. The goal of these analyses was
to establish the influence of genetic effects on metabolite profiles, to identify stable genetically
determined metabolites, and to relate the results to the mGWAS findings.

To further assess evidence for genetic impacts on metabolites, we performed mGWAS anal-
yses aiming to identify metabolite Quantitative Trait Loci (mQTLs), that is, genetic loci at
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which genetic variants associated with metabolite levels. We performed mGWAS using
GEMMA [35], which implements a genome-wide efficient mixed model association algorithm
specifically suitable for the analysis of related individuals, and provides exact P-values from lin-
ear mixed models. GEMMA tests for association between each metabolite and each SNP, using
one of three commonly used test statistics (the Wald test, the likelihood ratio or score). Here
we report all three statistics, but consider the Wald test when setting thresholds. We used Bon-
ferroni correction to account for multiple testing, resulting in genome-wide significance
thresholds of P = 3x10-10 for Biocrates and P = 1x10-10 for Metabolon. The mGWAS analyses
were performed using common SNPs, but both common and rare genetic variants can influ-
ence metabolite profiles. The heritability results identify metabolites that are genetically deter-
mined, and these effects can be due to either common or rare genetic variants. Therefore some
of the heritability effects, especially those underlying rare variants, may not be captured by the
mGWAS results.

Results

Platform comparison: correlation and heritability of metabolites profiles
Following quality control assessment, there were 488 (Metabolon) and 160 (Biocrates) metabo-
lites available for analysis in serum samples from 1,001 individuals. Of these, 43 were desig-
nated as overlapping molecule by both platforms (S2 Table). Comparisons of the 43
metabolites showed a mean correlation coefficient (r) of 0.44 with a maximum correlation for
octanoylcarnitine (r = 0.92), minimum correlation for 1-docosahexaenoylglycerophosphocho-
line (r = 0), and weak correlations (0<r<0.2) for 7 metabolites (S2 Table), which included lip-
ids and an amino acid. Using hierarchical clustering of the correlation matrix, we observed that
the metabolites tend to cluster first within platform, and then within type of the metabolite
(Fig 1). One clear exception is hexose (Biocrates), which clusters with glucose in the Metabolon
cluster, as expected. A second exception is carnitine C0 (Biocrates), which clusters near proline,
valine, tyrosine, and propionylcarnitine in the Metabolon cluster. Additionally, we calculated
the correlation between the 43 metabolites and all remaining metabolites on both alternative
platforms. We observed that the resulting correlations were overall much lower, and only two
pairs of metabolites across platforms had a mean correlation of 0.44 or greater; these included
octanoylcarnitine C8 (Biocrates) and the unknown metabolite X-11521 (Metabolon), and laur-
ylcarnitine C12 (Biocrates) and the unknown metabolite X-18739 (Metabolon).

Because the 1,001 individuals included twins, we were able to calculate twin-based heritabil-
ity estimates of the metabolite profiles, focusing on the 43 overlapping metabolites (S2 Table).
Of the 43 metabolites, 37 (Biocrates) and 34 (Metabolon) were at least moderately heritable in
twins (h2>0.2). There were 29 metabolites with evidence for heritability on both platforms (h2

ranging from 0.29 to 0.72, S2 Table). Of these, the 9 most heritable profiles were observed for 6
lipids (h2: 0.4 to 0.72) and 3 amino acids (h2: 0.42 to 0.7), indicating that these are stable pro-
files and highly likely to be under genetic influence.

mGWAS results: overlapping and complementary mQTLs
In total, 488 and 160 metabolites were tested separately on the Metabolon and Biocrates plat-
forms in two mGWAS analyses. All genome-wide significant association results are reported at
a stringent Bonferroni cut-off: P = 1×10−10 (5×10−8/488) for Metabolon and P = 3×10−10

(5×10−8/160) for Biocrates. Additionally a relaxed threshold for genome-wide association
(5×10−8) was used to evaluate whether a mGWAS finding on one platform was replicated on
the other platform (S3 Table). Additionally, we provide all result pairs where metabolites on
both platforms surpassed evidence for genetic association at P = 5x10e-8 (S4 Table)).
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Fig 1. Hierarchical cluster of the correlation across 43 overlappingmetabolites from both platforms. Upper colour bars represent metabolites with
mGWAS results, metabolite type, and metabolite platform. The left colour bar represents the heritability of the metabolite from red (high) to white (low).

doi:10.1371/journal.pone.0153672.g001
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In total, 61 genome-wide significant metabolite associations were identified at 26 indepen-
dent loci: 42 metabolites were associated with 25 loci on the Metabolon platform, and 19
metabolites were associated with 8 loci on the Biocrates platform (Table 1). Of the 26 indepen-
dent loci, genome-wide significant metabolite associations at 7 loci were identified on both
platforms. There were 19 loci that had associations only with metabolites from one platform
(18 loci in Metabolon and 1 locus in Biocrates).

Overlapping mQTLs: genetic associations identified on both platforms
Associations at 7 independent loci were identified in both platforms, namely with SNPs in the
regions of the ACADM, ACADL, CPS1, SLC16A9, FADS1, ACADS and SGPP1 genes (Table 2).
The 7 loci associate with 22 metabolites in total: 9 metabolites from Biocrates and 13 metabo-
lites fromMetabolon.

Of the 22 associated metabolites, 6 metabolites associated with 5 loci were named for the
overlapping compound on both platforms. These included C6 (Biocrates, P = 4.1×10−11) = hex-
anoylcarnitine (Metabolon, P = 1.6×10−13), C8 (Biocrates, P = 2.4×10−8) = octanoylcarnitine
(Metabolon, P = 4.8×10−11), glycine (Biocrates, P = 5.3×10−17) = glycine (Metabolon,

Table 1. Genome-wide significant mGWAS results.

Locia All associated metabolites Associated metabolites from set of 43 overlapping metabolitesb

Metabolon (M) 25 42 6

Biocrates (B) 8 19 7

Overlap 7 22(13M + 9B) 6

Total 26 61 (35M+12B+7M&B+7B&M) 13

aUnique loci
bMetabolites with genome-wide significant mGWAS results from the set of 43 matching metabolites only. In all cases the reciprocal platform mGWAS

result surpassed nominal significance with the same direction of association.

doi:10.1371/journal.pone.0153672.t001

Table 2. mGWAS results at 7 loci associated with metabolites in both platforms.

Locus Chr Position SNP Biocrates (P = 3×10−10) Metabolon(P = 1×10−10)

ACADM 1 75,879,263 rs211718 - *X-11421(3.8×10−8)

75,934,477 rs4949874 C6(4.1×10−11) Hexanoylcarnitine(1.6×10−13)

76,103,908 rs2172507 *C8(2.4×10−8) Octanoylcarnitine(4.8×10−11)

ACADL 2 210,764,902 rs7601356 C9(9.7×10−38) -

210,715,532 rs12612970 - X-13431(3.5×10−25)

CPS1 2 211,316,624 rs4673553 Glycine(5.3×10−17) Glycine(7.1×10−27)

211,316,624 rs4673553 - X-08988(1.6×10−11)

SLC16A9 10 61,139,544 rs1171614 C0(4.6x10-12) -

61,137,188 rs1171617 - Carnitine(2.3×10−13)

FADS1 11 61,326,406 rs174546 *PC ae C42:5(1.9×10−8) *1-Linoleoylglycerophosphoethanolamine(1.2×10−8)

61,327,359 rs174547 lysoPC a C20:4(2×10−14) *1-Arachidonoylglycerophosphocholine(2.9×10−10)

61,327,359 rs174547 - *Arachidonate(20:4n6)(5.5×10−10)

ACADS 12 119,644,998 rs2066938 C4(2.9×10−44) Butyrylcarnitine(1.8×10−114)

SGPP1 14 63,305,309 rs7157785 *PC aa C28:1(3.8×10−8) 1-Stearoylglycerol(2.8×10−14)

63,305,309 rs7157785 - *X-10510(1.4×10−9)

*Shown at a relaxed genome-wide cut-off (5x10-8)

doi:10.1371/journal.pone.0153672.t002
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P = 7.1×10−27), C0 (Biocrates, P = 4.6×10−12) = carnitine (Metabolon, P = 2.3×10−13), C4 (Bio-
crates, P = 2.9×10−44) = butyrylcarnitine (Metabolon, P = 1.75×10−114), and lysoPC a C20:4
(Biocrates, P = 2×10−14) = 1-arachidonoylglycerophosphocholine (Metabolon, P = 2.9×10−10),
as designated by Biocrates and Metabolon, respectively. For three of the 5 loci with smatching
named metabolites, there were also associations with other metabolites, which do not necessar-
ily match across platforms (Table 2).

In one case genetic variants in locus ACADL were associated with both a Biocrates metabo-
lite C9 (P = 9.7×10−38) and an unknown Metabolon metabolite (X-13431 (P = 3.5×10−25)),
which were recently shown to be identical molecules [36]. The mean correlation coefficient
between these metabolites across platforms was moderate (r = 0.54, Fig 1).

In one case, metabolite associations with genetic variants at the SGPP1 locus did not match
in name for PC aa C28:1 (Biocrates) and 1-stearoylglycerol (Metabolon) (Table 2). The mean
correlation coefficient between these metabolites across platforms is moderate (r = 0.42, Fig 1).
Both of these are lipid metabolites, and could share the C18:0 fatty acid chain.

Complementary mQTLs: genetic associations identified in only one
platform
There were 19 loci that had associations only with metabolites from one platform (18 loci in
Metabolon and 1 locus in Biocrates) and these all were associated with metabolites that were
not measured in the other platform (S3 Table).

The 18 Metabolon-specific mGWAS results included associations with 29 metabolites. Of
these 29 metabolites, 17 were unknowns, 4 were lipids and 3 were amino acids and these were
not included in Biocrates, considering that Biocrates consists mostly of lipids and amino acids.
The 5 remaining metabolites were 2 drugs, a carbohydrate, a nucleotide, and a peptide.

There was only 1 locus (DYNC1H1) where genetic variants showed genome-wide significant
mGWAS results on the Biocrates platform only with 4 metabolites, and in all 4 cases these
were with lipids that Metabolon did not measure.

Discussion
Our study is a bi-platform metabolite comparison using mGWAS with the objective of identi-
fying metabolites measured on more than one platform where signals overlap and may be com-
bined in future studies, for example for replication analysis. The key results identified 7 loci
showing robust genetic associations with metabolites on both platforms. These results were
also predominantly consistent with recent reported mGWAS [22,23,30,37], some of which are
based on results from extended cohorts that include the samples used in the current analysis.
Thus, for 6 of the 7 loci (ACADM, ACADL, CPS1, SLC16A9, FADS1, ACADS), previous
mGWAS reported associations with the same Metabolon metabolite either as a single metabo-
lite or as part of a metabolite ratio [23,30]. In contrast, SGPP1 harboured an mQTL with the
Metabolon metabolite ratio (X-08402/cholesterol), and the single metabolites X-08402 and X-
10510 in Shin et al. [28], while here we report associations with 1-stearoylglycerol and X-
10510.

Of the metabolites associated with the 7 loci, 5 metabolites (Biocrates C8, C6, C0, C4, and
glycine) had at least moderate heritability (h2>0.26) and correlation (>0.38) on both plat-
forms, confirming that these profiles are stable and reproducible across platforms. Interestingly
1 matching metabolite, lysoPC a C20:4 [Biocrates] / 1—arachidonoylglycerophosphocholine
[Metabolon], showed low heritability in one platform (0.09 in Metabolon and 0.59 in Biocrates
platform) and showed relatively low correlation (r = 0.29) across platforms, but was still identi-
fied to associate with the same locus from both platforms at genome-wide significance. This
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observation may be due to the difference in the measured compounds between the two plat-
forms: while Metabolon specifically quantifies the lysoPC with the 20:4 fatty acid chain at sn1
position of the glycerol backbone (lysoPC(20:4/0:0), Biocrates does not distinguish between the
lysoPCs with fatty acid chains at sn1 and sn2 positions and only quantifies the sum concentra-
tion of the two forms (lysoPC(20:4/0:0 and lysoPC(0:0/20:4). Moreover, the quality of measure-
ment differs for various lipids between the targeted Biocrates and the non-targeted Metabolon
platform, which might also cause lower correlation between the corresponding matching
metabolites. Notably, despite those differences inherent in the platforms both profiles give a
robust signal of genetic association for FADS1.

Further comparison of the GWAS results across platforms shows that genetic variants at 5
of the 7 loci (ACADM, CPS1, SLC16A9, FADS1, ACADS) were associated with metabolites that
were named for the overlapping compound. However, genetic variants at the ACADL and
SGPP1 loci only associate with non-overlapping metabolites or unknown metabolites from the
Metabolon platform. In these cases, our results can be used to inform the function of unknown
metabolites or identify metabolites that belong to the same or related biological pathways. For
example, variants in the ACADL locus associated with the C9 Biocrates metabolite and also
with the unknown X-13431 Metabolon metabolite, which were recently reported to be the
same molecule [34]. When we explored the results for similar association patterns, we observed
that Metabolon metabolites X-10510 and 1-stearoylglycerol shared mQTL findings within the
same locus (SGGP1) as the Biocrates metabolite PC aa C28:1. These results suggest a link
between the molecules, where the more specific Metabolon lipid chain length can hint that the
PC aa C28:1 association is possibly driven by the involvement of a 18:0 lipid chain. Alterna-
tively, the SGGP1 genetic variant (rs7157785) has also been associated with sphingomyelin
14:0 in a separate study [35]. Our platform does not include this metabolite, but X-10510 may
be also related to this sphingolipid pathway. This assumption is further supported by high par-
tial correlation between X-10510 and other Metabolon sphingolipid molecules and genetic
associations to a second sphingolipid related gene in Shin et al. [30].

We next explored the 43 overlapping metabolites on both platforms for consistencies and
potential inconsistencies across platform signals beyond their association results. As expected,
the mean correlation between the 43 matching metabolites (r = 0.44) is higher than the mean
correlation with all metabolites between the two platforms (r = 0.17). Exceptions include corre-
lations of Biocrates metabolites with Metabolon metabolites of yet unknown chemical identity.
In these cases, the high correlation could indicate matching metabolites or biochemically
related metabolites and might thus again assist in the identification of unknown metabolites.

Four lyso-phosphatidylcholine metabolites (lysoPC a C16:0, lysoPC a C18:0, lysoPC a
C18:1, lysoPC a C18:2) from the Biocrates platforms had overlapping metabolites on the Meta-
bolon platform, but neither contained matching mQTLs nor showed high heritability or corre-
lation. We conclude that in this instance the two platforms are likely measuring distinct signals
that cannot be combined or this may be due to a relatively lower quality of measurement for
these lipids on the Metabolon platform.

We applied a combination of correlation, heritability and genotypic analyses to bring
together the comparison of data from different metabolomics platforms. Our approach identi-
fied genetic associations at 7 loci with pairs of metabolites measured on the two platforms that
were named for the same compound, were highly correlated and heritable, therefore suggesting
that in these cases Biocrates and Metabolon signals overlap. In contrast, 9 pairs of known
metabolites that are not named for the same compound across platforms, but exhibit similar
levels of correlation and heritability, showed no overlapping genetic associations. The two plat-
forms are designed to focus on different metabolites, and these findings can inform on plat-
form-specific metabolites. Ultimately, combining metabolomics profiles across platforms is
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more informative than single-platform analysis because platforms are complementary. It is not
possible to assay the entire metabolome with one platform due to large differences in the phy-
siochemical properties of the different metabolites (e.g. lipophilic and hydrophilic
metabolites).

In summary, we identified genetic associations at 7 loci with metabolite profiles from both
the Biocrates and Metabolon platforms. Our results provide new information about potential
shared pathways, as well as distinct metabolite profiles, and their genetic determinants, clarify-
ing unknown metabolites. Our study demonstrates the complementary nature of both targeted
and non-targeted MS platforms and can help future studies to explore combining datasets
across platforms, especially for replication of metabolite hits when datasets are profiled on dif-
ferent platforms. The findings can help guide further research into the sources of inconsistency
and variation in the comparison of metabolite results profiled from differing platforms.
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