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Registration of multi-view echocardiography
sequences using a subspace error metric

Devis Peressutti*, Alberto Gomez, Graeme P. Penney and Andrew P. King

Abstract—Objective: 3D+t echocardiography (3DtE) is widely
employed for the assessment of Left Ventricular anatomy and
function. However, the information derived from 3DtE images
can be affected by the poor image quality and the limited
field-of-view. Registration of multi-view 3DtE sequences has
been proposed to compound images from different acoustic
windows, therefore improving both image quality and coverage.
We propose a novel subspace error metric for an automatic and
robust registration of multi-view intra-subject 3DtE sequences.

Methods: The proposed metric employs linear dimensionality
reduction to exploit the similarity in the temporal variation
of multi-view 3DtE sequences. The use of a low dimensional
subspace for the computation of the error metric reduces the
influence of image artefacts and noise on the registration opti-
misation, resulting in fast and robust registrations that do not
require a starting estimate.

Results: The accuracy, robustness and execution time of the
proposed registration were thoroughly validated. Results on
48 pairwise multi-view 3DtE registrations show the proposed
error metric to outperform a state-of-the-art phase-based error
metric, with improvements in median/75th percentile of the target
registration error of 21%/31% and an improvement in mean
execution time of 45%.

Conclusion: The proposed subspace error metric outperforms
sum-of-squared-differences and phase-based error metrics for the
registration of multi-view 3DtE sequences in terms of accuracy,
robustness and execution time.

Significance: The use of the proposed subspace error metric
has the potential to replace standard image error metrics for a
robust and automatic registration of multi-view 3D+t echocar-
diography sequences.

Index Terms—Echocardiography, multi-view registration, di-
mensionality reduction, PCA error metric.

I. INTRODUCTION

Echocardiography imaging is routinely employed for the
assessment of Left Ventricular (LV) anatomy and function
due to its high temporal and spatial resolution, non-ionising
nature, low cost and portability. In the last decade, particular
interest has been focused on 3D+t echocardiography (3DtE),
which allows volumetric imaging of the heart for accurate
estimation of LV indices, such as mass, ejection fraction and
volume [1]. However, 3DtE suffers from characteristic image
artefacts, such as tissue inhomogeneities, multiple and off-
axis reflections and shadowing that degrade image quality [2],
[3]. Furthermore, the imaging field-of-view is typically limited
and often does not cover the whole LV anatomy. Moreover,
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LV structures appear significantly different depending on the
3DtE beam incidence angle and acoustic window, therefore
impairing the assessment of LV anatomy and function.

Compounding or fusion of multi-view 3DtE sequences has
been proposed to overcome these issues and increase both
3DtE image quality and coverage. Several studies [4], [5], [6],
[7], [8] have shown the advantages of combining 3DtE images
from multiple acoustic windows for a range of applications,
from LV segmentation to motion and strain estimation. Fusion
of multi-view 3DtE sequences requires the correct registration
of the LV geometry from different acoustic windows. The
accuracy and robustness of this registration is affected by
the 3DtE angle-dependent image quality and image artefacts,
which make standard image error metrics, such as sum-
of-squared differences (SSD) or normalised cross-correlation
(NCC), unsuitable for this task [9].

A phase-based error metric based on the monogenic sig-
nal [10] has been proposed to overcome the limitations of
intensity-based error metrics. This technique combines phase
and orientation images to derive an error metric which, unlike
intensity, is invariant to changes in brightness and contrast. As
a result, the phase-based error metric has been successfully
employed in several 3DtE compounding techniques [4], [5],
[6], [7], [8]. However, as highlighted in Grau et al.. [10], a
reasonably good starting initialisation is required to avoid local
minima during optimisation. Furthermore, the computation
and optimisation of the phase-based error metric can be
computationally expensive when considering multiple cardiac
phases.

Due to advances in medical imaging technology, 3D+t
medical images have become increasingly available for spatio-
temporal analysis of organs of interest. Registration techniques
have been accordingly adapted to exploit the additional in-
formation provided by the temporal dimension for the per-
formance of 3D+t to 3D+t image registration [11], [12].
For instance, Schreibmann et al. [11] proposed registration of
3D+t Computed Tomography (CT) datasets for radiotherapy
applications, while Peyrat et al. [12] proposed to use trajectory
constraints, also for the registration of 3D+t CT cardiac
sequences. By exploiting the temporal dimension, these 3D+t
registrations proved to be more robust than 3D to 3D reg-
istrations. However, methods relying on intensity-based error
metrics are limited by the accuracy and robustness of these
metrics when applied to echocardiography images.

In this paper, we propose a novel error metric for the intra-
subject registration of multi-view 3DtE sequences. The pro-
posed metric exploits the similarity in the temporal variation
of multi-view 3DtE sequences. In particular, 3DtE sequences
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are projected from the image domain onto a lower-dimensional
subspace defined by a Principal Component Analysis (PCA)
of the 3DtE temporal sequences. This PCA projection reduces
the influence of image artefacts and noise on the registration
optimisation, resulting in a fast and robust registration that has
a large capture range.

Dimensionality reduction techniques have been previously
employed for the extraction of spatial and temporal features
for 3D multi-modal registration [13], [14] and 3D+t image
reconstruction [15]. In Wachinger et al. [14], manifold learning
was employed to derive a structural representation of multi-
modality 3D images, such that intensity-based error metrics
could be used on the structural 3D images rather than the
original multi-modality images. Similarly, in Wachinger et
al. [15], manifold learning was employed to derive a low
dimensional representation of the image sequences for the
reconstruction of 3D+t images from 2D sequences. Although
the concept of using dimensionality reduction techniques for
the extraction of the underlying data structure is similar, our
proposed registration differs significantly from previous works
in the way the spatial and temporal similarity in variation is
simultaneously exploited for the derivation of an accurate and
robust error metric. A different approach was proposed in [16],
where the physical properties of echo imaging were exploited
by computing an error metric in a spherical coordinate system.
Our proposed approach exploits the spatio-temporal covari-
ances of the echocardiographic sequences.

The paper is structured as follows. The proposed method is
described in Section II, while the materials and experiments
used to validate the proposed technique are presented in Sec-
tion III and Section IV, respectively. Results of the validation
experiments are reported in Section V, while a discussion of
the proposed technique and the key findings is reported in
Section VI.

II. METHOD

The novelty of the proposed multi-view 3DtE sequences
registration lies in the use of linear dimensionality reduction
for the projection of the input sequences onto a lower di-
mensional subspace for the computation of the error metric.
In the following, we detail the method in the context of a
pairwise registration of two 3DtE sequences. An overview of
the proposed method is shown in Figure 1.

We denote by It = {Iti}
Nt
i=1 the target 3DtE sequence

defined over the domain ΩIt and by Is = {Isi}
Ns
i=1 the source

3DtE sequence defined over the domain ΩIs . Nt and Ns
denote the number of cardiac phases in the target and source
image sequences, respectively. The aim of the registration is
to find the optimal spatial mapping T from the source to the
target image sequence [17]. In the context of intra-subject
multi-view 3DtE registration, we assume that the domains ΩIt
and ΩIs remain constant during the sequence acquisition. In
other words, we assume that the probe remained stationary
during the acquisition of both sequences. Furthermore, we
assume that the 3DtE sequences were acquired during con-
secutive breath-holds at the same respiratory position, so a 6
degrees of freedom (DOFs) rigid-body transformation suffices

to compensate for the misalignments due to the different
probe location and orientation. Therefore, the transformation
T is parametrised by three translations and three rotations
θ = [tx, ty, tz, rx, ry, rz]. In the following, we also assume
that Nt and Ns evenly cover the entire cardiac cycle.

PCA [18] has been widely employed for linear dimension-
ality reduction and feature extraction of high dimensional data
in many scientific applications, ranging from chemistry to
medical imaging. In particular, PCA seeks to compute a low
dimensional linear subspace that preserves the variance of the
input data. An eigen-decomposition of the covariance matrix
is employed to compute the directions of maximum variation
of the data, also known as Principal Components (PCs).
Compared to the input high dimensional space, PCs better
describe the underlying phenomenon that causes variation
in the observed data, i.e. LV motion. For this reason, PCA
generates a subspace suitable for the comparison of multi-
view 3DtE sequences. The proposed error metric is computed
as follows.

If Nt 6= Ns, temporal interpolation is employed to resample
both target and source sequences to the same number N of
cardiac phases. After smoothing and resampling (see Section
IV for details), the target sequence It and the transformed
source sequence T (Is, θ) are represented as XIt ∈ RD×N and
XT (Is,θ) ∈ RD×N , where D is the number of voxels in the
overlapping domain Ω = ΩIt ∩ ΩT (Is,θ). That is, the column
vectors of XIt and XT (Is,θ) represent single vectorised 3DtE
echo images, and the number of columns is the number N of
cardiac phases. Since the dimensionality of XIt and XT (Is,θ)

is much larger than the number of observations, i.e. N �
D, a dual formulation [18] of PCA is employed to avoid the
computation of a D×D covariance matrix. After removal of
the mean value X̄It ∈ RD, the eigen-decomposition of the
Gram matrix

QIt = XIt
TXIt ∈ RN×N (1)

provides the diagonal eigenvalue matrix E ∈ RN×N and
eigenvector matrix V ∈ RN×N . By retaining only the largest
d ≤ N � D eigenvalues Ê ∈ Rd×d and associated
eigenvectors V̂ ∈ RN×d, the projection matrix is computed
as

UIt = XItV̂Ê−
1
2 ∈ RD×d. (2)

This way, the target 3DtE sequence is represented in the lower
dimensional subspace by

ZIt = UT
ItXIt ∈ Rd×N . (3)

Since It and Is are acquired using the same imaging modal-
ity, we can project XT (Is,θ) (after mean value X̄T (Is,θ) ∈ RD
removal) onto the subspace of the target sequence, obtaining
the representation of the transformed source sequence in the
target sequence subspace

ZT (Is,θ)→It = UT
ItXT (Is,θ) ∈ Rd×N . (4)
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PCA-based
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 dimensionality 

reduction

Registered 3DtE sequences

DOF
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Fig. 1. Overview of the proposed method. Principal Component Analysis is applied to the input 3DtE sequences to compute a low dimensional subspace that
captures the variation due to the LV motion. The proposed error metric is computed in the low dimensional subspace during the optimisation of the degrees
of freedom (DOF) of the transformation.

The proposed error metric is then formulated as

C(θ) = γ ·
N∑
n=1

‖zItn − zT (Isn ,θ)→It‖
2
2+

+ (1− γ) ·
(
PZIt

− PZT (Is,θ)→It

)
, (5)

where zItn ∈ Rd and zT (Isn ,θ)→It ∈ Rd are the PC weights of
the nth target and transformed source image, respectively, and
P denotes the perimeter of the closed d-dimensional polygons
having {zItn }

N
n=1 and {zT (Isn ,θ)→It}

N
n=1 as vertices. The first

term of Eq. (5) represents a measure of the distance between
the target sequence and the transformed source sequence in
the subspace, while the second term ensures that the overall
variation captured by the transformed source sequence matches
the original target sequence variation. Effectively, the second
term prevents incorrect transformations that would overlap
regions of noise only, i.e. with no cardiac motion variation.
We employed this relatively simple perimeter-based measure
to quantify the overall variation, but more complex indices
could be employed instead. The parameter γ is the only free
parameter of the proposed method and weights the contribu-
tion of the two terms. A toy example of the contributions
of the two terms to the error metric is shown in Figure 2.
It is worth noting that the standard intensity-based SSD error
metric corresponds to the first term of Eq. (5) when an identity
projection UIt = I ∈ RD×D is employed in Eq. (3).

The optimal rigid-body transformation parameters θ̂ are
found by minimising the proposed error metric

θ̂ = argmin
θ

C(θ). (6)

In this work, a simple hill-climbing algorithm is employed
for the optimisation of Eq. (6). At each iteration, a step is
taken in the direction of the DOF providing the largest gain
in the minimisation of Eq. (5).

III. MATERIALS

For the validation of the proposed multi-view 3DtE se-
quence registration, 4 healthy subjects were imaged. A iE33
3D real-time echocardiography system with a X31 3 to 1
MHz broadband matrix array transducer (Philips Healthcare)

PC2

PC1

PC3

PC2

PC1

PC3

PZt

PZT(s, θ)->t

Fig. 2. Toy example of computation of the proposed error metric. Each
red dot represents a 3DtE target image in the subspace {zItn }

5
n=1, while

blue dots represent a transformed 3DtE source image projected into the
same subspace {zT (Isn ,θ)→It}

5
n=1. In the left figure, the sum of the green

segments represents the first term of Eq. (5), while the second term in Eq. (5)
seeks to minimise the difference between the perimeters of the polygons
formed by the red dots and the blue dots (see right figure).

was employed to acquire the 3DtE sequences. Infrared light
emitting diodes were rigidly attached to the echo probe to
enable the tracking of its spatial position using an optical
tracking system (Optotrak 3020, Northern Digitial Inc.) [19],
[20]. Before image acquisition, the probe was calibrated using
the method described in [21]. For each subject, 4 to 5 3DtE
sequences were acquired from apical and modified parasternal
acoustic windows during consecutive breath-holds at end-
exhale. Images were acquired with the subject lying in a
supine position. The 3DtE sequences were cardiac gated at
late diastole by synchronising image acquisition with the
electrocardiogram signal. Over all 4 subjects, on average,
15 3DtE images were acquired for each sequence, with a
minimum of 8 and a maximum of 19 cardiac phases.

The use of optical tracking allowed computation of the
rigid-body transformation mapping the position of the probe
at a given acoustic window with respect to any other acoustic
window within a 2mm error range [19], [20]. This rigid-
body transformation was used for validation purposes only and
constituted the ground-truth for the experiments described in
Sections IV-A and IV-C.

IV. EXPERIMENTS

The aim of the experiments was to validate the proposed
technique in terms of registration accuracy, capture range
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and execution time. In order to achieve this, three separate
experiments were carried out. In the first experiment, the
proposed error metric was tested on a 2D+t echocardiography
(2DtE) sequence registration (see Section IV-A). In the second
experiment, for each subject, each 3DtE sequence was trans-
formed with a randomly generated rigid-body transformation
and the transformed sequence was registered to the original
sequence (see Section IV-B). In the third set of experiments,
for each subject, each 3DtE sequence was registered to all
other sequences from the same subject (see Section IV-C).

In order to evaluate the proposed method, the following
error metrics were compared:

NR: no registration was performed between target and source
sequence, meaning that the estimated translations and
rotations were set to 0. Given the availability of the
ground-truth transformation, this method quantifies the
difference in probe location and orientation between the
sequences being registered.

SSD: target and source 3DtE sequences were registered us-
ing the intensity-based sum-of-squared differences error
metric, computed over all images in each sequence. As
mentioned in Section II, this method corresponds to the
proposed technique when only the first term of Eq. (5)
is used and no dimensionality reduction is applied to the
input sequences (i.e. UIt = I).

PB: target and source 3DtE sequences were registered using
the phase-based error metric proposed by Grau et al. [10].
For the computation of this error metric, phase and orien-
tation images need to be computed for each cardiac phase
considered. In order to reduce the computational burden,
as suggested in [10], only the end-diastolic and end-
systolic cardiac phases were considered. For the compu-
tation of the monogenic signal, the following wavelength
of the log-Gabor filter was employed: ω = 4 · 22 [10].

PBa: same as above technique, but all cardiac phases in the
sequences were considered;

PCA: the proposed error metric. For all experiments, γ was
fixed to 0.1. This value was determined empirically on
a small randomly chosen subset of 3DtE sequences.
The influence of γ on the registration accuracy was
also investigated, as detailed in Section IV-C. The PCs
retaining 99% of the input variance were employed in
all the performed experiments, resulting in d ≈ N .
The dimension of the lower dimensional subspace d is
therefore determined by the retained variance and varies
for each echo sequence. For the experiments presented in
this paper d ranged from 8-19.

In order to allow comparison of the execution times, the
same hill climbing optimisation algorithm was employed for
all the techniques compared. The measured execution time
described the time required to optimise the error metric
only, with no consideration of the time required for the
pre-processing of the sequences. Linear interpolation was
employed to interpolate the intensities of the source sequence
at the intermediate steps of the optimisation. The algorithms
were implemented in Python using the SimpleITK open source
software library [22]. Details of each experiment are reported

in the following sections.

A. 2DtE Registration

This experiment aimed to assess the smoothness of the
variation of the proposed error metric on a simple 2D sequence
registration. Given the ground-truth transformations provided
by the optical tracking, two 3DtE sequences differing only by
a translational transformation were selected. 2D slices were
extracted from the chosen 3DtE sequences to generate two
2DtE sequences. Figure 3 shows the first cardiac phase of the
2D target and 2D source sequences, along with the ground-
truth registration. In this case, the ground-truth transformation
was given by a 20mm translation in the x direction.

The parameter space θ2D = [tx, ty, r] was evenly sampled
and values for the SSD, PB and PCA error metrics were
computed for each combination of [tx, ty, r]. In this way, the
variation of the compared error metrics could be visually as-
sessed. Results of this experiment are reported in Section V-A.

B. Same-View 3DtE Registration

This experiment aimed to validate the capture range and
execution time of the compared error metrics. For each 3DtE
sequence of each subject, 10 randomly generated transforma-
tions were used to transform the sequence to a new spatial
position and orientation. Translations in the x, y, z coordi-
nates were randomly selected from a uniform distribution
with [−20mm, 20mm] range, while rotations were randomly
sampled from a uniform distribution within a [−30◦, 30◦]
range. These ranges represent the range of probe location and
orientation typically found in a clinical setting (e.g. between
parasternal and apical views). Over all subjects, 170 registra-
tions were performed. As a pre-processing step, the original
and transformed sequences were smoothed using a Gaussian
kernel with σ2 = 1mm and subsequently resampled to an
isotropic voxel size of 2mm. An identity transformation was
used as starting estimate for all of the compared registrations.
This means that the initial overlap between the two image
sequences was 100% of the image volume, although the
‘true’ overlap (i.e. after the ground-truth transformation) was
≈ 60− 90% for the datasets used in this paper. The results of
this experiment are reported in Section V-B.

C. Multi-View 3DtE Registration

This experiment aimed to validate the accuracy and robust-
ness of the proposed technique compared to state-of-the-art
registration techniques in a realistic clinical scenario. For each
subject, each 3DtE sequence was registered to every other
3DtE sequence, so that any bias towards the chosen target se-
quence was removed from the analysis. Given the ground-truth
transformation provided by the optical tracking of the echo
probe (see Section III), we discarded from the analysis the
registrations where the ‘true’ overlap (i.e. after ground-truth
transformation) between the registered sequences was below
50% of the field-of-view. This ensured that similar LV features
and motion were sufficiently imaged by both the sequences
being registered. Following this criterion, over all subjects,



This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TBME.2016.2550487, IEEE
Transactions on Biomedical Engineering

5

(a) (b) (c)

Fig. 3. First cardiac phase of (a) the 2D target sequence, (b) the 2D source sequence. (c) Overlay of the registered sequences using the ground-truth
transformation provided by the optical tracking. In this example, a translation of 20mm in the x direction aligns the source to the target sequence.

4 out of 28 image sequence pairs were discarded, resulting
in 24 pairs. Registrations for each pair were performed in
both directions, making 48 evaluated registrations in total. As
for the previous experiment, the target and source sequences
were smoothed using a Gaussian kernel with σ2 = 1mm
and subsequently resampled to a 2mm isotropic spacing. In
the cases where the number of cardiac phases differed (i.e.
Nt 6= Ns), the sequences were temporally interpolated to
N = max{Nt, Ns} cardiac phases using a nearest neighbour
temporal interpolation. Again, an identity transformation was
used as starting estimate for all of the compared registrations,
meaning that the initial overlap between target and source
sequences was 100% of the image volume.

In an additional experiment, the influence of γ on the PCA
registration accuracy was investigated using the same multi-
view 3DtE data by varying the value of γ between 0 and 1 in
steps of 0.2.

Results of these experiments are reported in Section V-C.

V. RESULTS

This section reports results of the experiments described in
Section IV.

For the second and third experiments, given the availability
of the ground-truth rigid-body transformation, the error in esti-
mation εE = θGT −θE was computed for each of the registra-
tions compared (see Section IV) by subtracting the estimated
rigid-body transformation θE from the ground-truth rigid-body
DOFs θGT . The registration accuracy was quantified by the
norm of the estimation error εE for translations and rotations
separately. Furthermore, for the multi-view registration, target
registration errors [23] were computed using as targets the
world coordinates of each voxel in the overlapping domain of
the target sequence and the source sequence transformed with
the ground-truth transformation.

Results of the visual assessment of the smoothness of the
proposed error metric are reported in Section V-A. Results of
the same-view registration are reported in Section V-B, while
Section V-C reports results of the multi-view registration.

A. 2DtE Registration

Values of the compared error metrics, i.e. SSD, PB and
PCA, were computed over a sample of evenly distributed

points in the parameter space θ2D = [tx, ty, r]. Translations
tx, ty were sampled in the range [−30mm, 30mm] with a
5mm step size, while the rotation was sampled in the range
[−30◦, 30◦] with a 5◦ step size. Images illustrating the error
metric values within the parameter space for the SSD error
metric, PB error metric and the proposed PCA error metric
are shown in Figure 4. To allow direct visual comparison,
values for all three measures are normalised between 0 and 1.

All three compared error metrics showed a minimum value
at the correct transformation θ2D = [20mm, 0mm, 0◦]. How-
ever, differences can be noted between the distributions of the
compared error metrics. SSD shows a smoother distribution
compared to both PB and PCA, although areas with low values
of the error metric are more localised in the case of PB and
PCA. In particular, it can be noted that PCA shows a very
localised region of low metric values compared to the other
metrics (middle frames of Figure 4). This is likely to lead to
better precision of the technique. Note that, for the dataset
shown in Figure 4, the optimisations for all error metrics
converged to the global minimum.

B. Same-View 3DtE Registration

Results of the same-view registration are reported in Table I
and Figure 5.

In this experiment, the ground-truth rigid-body transforma-
tion θGT was given by the randomly generated transformation.
All the compared techniques were employed on the same
randomly transformed sequence. The norm of the translation
error is reported in mm, while the norm of the rotation error
is reported in degrees.

From Table I and Figure 5, it can be noted that the proposed
error metric provides by far the best registration results.
Considering as a failed registration one with a norm of the
translation error > 10mm or a norm of the rotation error
> 10◦, out of 170 performed registrations, SSD failed 78
times, PB failed 67 times, PBa failed 71 times while PCA
failed 7 times only. The registration based on SSD proved to
be the least robust, in accordance with the findings in [9]. This
is probably due to the influence of noise and image artefacts,
which make the optimisation of this error metric highly prone
to local minima. Similarly, phase-based registration failed in
several cases, confirming the fact that this method requires
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(a)

(b)

(c)

Fig. 4. Images showing the error metrics within the parameter space θ2D = [tx, ty , r] for the 2DtE sequence registration. Values of error metric are
normalised within the [0, 1] range. (a) SSD error metric, (b) PB error metric and (c) PCA error metric. All three metrics correctly show a minimum at the
transformation [20mm, 0mm, 0◦], as indicated by a white cross.

TABLE I
RESULTS OF THE SAME-VIEW 3DtE REGISTRATION VALIDATION. DUE TO THE SKEWNESS OF THE ERROR DISTRIBUTION (SEE FIGURE 5), THE MEDIAN
AND 75th PERCENTILE OF THE NORMS OF THE TRANSLATION AND ROTATION ERRORS ARE REPORTED. RESULTS ARE REPORTED OVER ALL SUBJECTS.

THE NORM OF THE TRANSLATION ERROR IS REPORTED IN mm, WHILE THE NORM OF THE ROTATION ERROR IS IN DEGREES. THE MEAN AND STANDARD
DEVIATION OF THE EXECUTION TIME IS REPORTED IN SECONDS. NR QUANTIFIES THE AMOUNT OF STARTING MISALIGNMENT BETWEEN SEQUENCES.

THE EXECUTION TIME OF NR IS REPORTED AS NOT APPLICABLE.

Method Norm of Translation Error Norm of Rotation Error Execution Time
median/75th percentile (mm) median/75th percentile (◦) mean/std (s)

NR 19.5/22.5 30.8/34.7 NA
SSD 0.6/102.5 0.06/33.7 656/770
PB 1.4/37.5 3.7/30.7 1228/571

PBa 1.6/38.9 4.0/30.3 7802/2063
PCA 0.4/0.6 0.04/0.05 776/265

a suitable initialisation for a correct outcome, as highlighted
in [10]. Even with the use of all cardiac phases PBa did not
produce better results compared to the use of the end-diastolic
and end-systolic phases only, but did increase the execution
time. For this reason, the PBa method was not considered in
the assessment of the multi-view registration.

In terms of execution time, the SSD registration was the
fastest, although many registrations failed and ended prema-
turely. The execution time of the proposed PCA error metric
was about half that of the PB metric.

C. Multi-View 3DtE Registration

In this experiment, the ground-truth rigid-body transforma-
tion θGT was provided by the optical tracking of the echo

probe (see Section III). The norm of the translation error is
reported in mm, the norm of the rotation error is reported in
degrees, while target registration errors are reported in mm.
Results are reported in Table II and Figure 6.

Similarly to the results reported in Section V-B, the pro-
posed PCA error metric provided the most accurate registra-
tions with a reduced computational time. Considering as a
failed registration one with a norm of the translation error
> 10mm or a norm of the rotation error > 10◦, out of 48
evaluated registrations, SSD failed 26 times, PB failed 11
times while PCA failed 6 times. Compared to PB, the proposed
technique showed an improvement in registration accuracy in
median/75th percentile of 14.7%/24.5% for the translation,
of 23.9%/31.7% for the rotation and of 20.8%/31.4% for the
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Fig. 5. Boxplots of the norm of translation error (mm), rotation error (◦) and execution time (s) for the same-view registration validation. NR quantifies
the amount of starting misalignment between sequences.

TABLE II
RESULTS OF THE MULTI-VIEW 3DtE REGISTRATION VALIDATION. THE MEDIAN AND 75th PERCENTILE OF THE NORM OF THE TRANSLATION (mm) AND
ROTATION (◦) ERRORS ARE REPORTED, AS WELL AS OF THE TARGET REGISTRATION ERRORS (mm). RESULTS ARE REPORTED OVER ALL SUBJECTS. THE

MEAN AND STANDARD DEVIATION OF THE EXECUTION TIME IS REPORTED IN SECONDS. NR QUANTIFIES THE AMOUNT OF STARTING MISALIGNMENT
BETWEEN SEQUENCES. THE EXECUTION TIME OF NR IS REPORTED AS NOT APPLICABLE.

Method Norm of Translation Error Norm of Rotation Error Registration Error Execution Time
median/75th perc (mm) median/75th perc (◦) median/75th perc (mm) mean/std (s)

NR 18.4/23.6 12.4/16.1 20.5/29.9 NA
SSD 7.2/18.9 9.0/16.1 11.2/26.2 435/237
PB 3.4/5.3 4.6/8.2 4.8/8.6 1068/409

PCA 2.9/4.0 3.5/5.6 3.8/5.9 583/281
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Fig. 6. Boxplots of the norm of translation error (mm), rotation error (◦), target registration error (mm) and execution time (s) for the multi-view registration
validation. NR quantifies the amount of starting misalignment between sequences.
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target registration error. The improvement in mean execution
time was 45.4%. The overall execution time of the SSD-based
registration was lower than the proposed PCA registration due
to the incorrect registrations that ended prematurely at a local
minimum. The average execution time of a single cost function
evaluation was 0.66ms for SSD, 0.69ms for PCA and 1.37ms
for PB. For a typical successful registration with a ground-
truth translation norm of ≈ 17mm and norm of rotation of
≈ 5◦ the SSD, PCA and PB-based methods converged to a
correct estimation in 23, 25 and 36 iterations, respectively.

The effect of γ on the PCA registration accuracy is illus-
trated in Figure 8. As mentioned in Section II, the second term
of the proposed error metric ensures that the variation captured
by the registered sequences corresponds to the variation due to
the cardiac cycle motion. We can see that using high values of
γ (i.e. using mostly the first term in Eq. (5), which measures
the distance between the imaging sequences in the subspace)
results in poor registration performance, as it produces trans-
formations that match regions with little or no cardiac cycle
motion. Lower values of γ avoid such transformations, and the
optimal value can be seen to be close to the 0.1 value used in
the main experiments.

An example of a successful PCA registration is shown in
Figure 7, while Figure 9 shows an example of the capture
range of the proposed 3DtE registration.

VI. DISCUSSION

Results of the evaluation showed the proposed PCA-based
registration to outperform state-of-the-art registration in terms
of accuracy, capture range and execution time. In the multi-
view 3DtE registration evaluation, over the 48 evaluated pair-
wise registrations, the proposed registration showed an im-
provement in registration accuracy in median/75th percentile
of 20.8%/31.4% for the target registration error compared to
a phase-based registration. Compared to the same method, the
improvement in mean execution time was 45.4%. Results for
accuracy and execution time show that the proposed technique
has potential for applications where such requirements are
paramount, as in the case of image-guided interventions [24],
[25], as well as for the fusion of multi-view 3DtE sequences.
Furthermore, our results show an improved capture range,
meaning that no starting estimate for the transformation is
required. We believe that the better capture range is due to
the fact that our technique takes advantage of the temporal
variation of the image sequences, i.e. it is able to use motion
information as well as image information in the registration.
When image artefacts are present, similarity metrics based on
intensities or on phase may be more likely to get trapped in
local minima by mistaking artefacts for boundaries. As these
artefacts may not exhibit temporal consistency, the proposed
method is less sensitive to the starting estimate.

Since the proposed technique exploits the similarity in
the temporal variation of the 3DtE sequences, it can only
be applied to image sequences and not to single cardiac
phases. However, this does not represent a limit in multi-view
3DtE registration, as 3D+t sequences that image the whole
cardiac cycle are routinely acquired in clinical practice. As the

temporal covariance between the sequences is maximised, the
error metric could be also applied for the registration of multi-
view free-breathing liver echo images, where the respiratory
motion between sequences could be exploited. However, the
greater inter-cycle variation of respiratory motion might cause
difficulties. Application of the proposed error metric to other
echography imaging, such as obstetrics or fetal echo, might
not be straightforward.

Our technique assumes that there has been no extra motion
(e.g. due to probe movement or respiratory motion) during
the acquisitions of the 3DtE sequences. If this assumption is
violated, the configurations of the volumes in the reduced PCA
subspace would be altered. This would affect the registration
and would likely produce an estimated transformation which
averages over the extra motion.

Future work will investigate the influence of the number
of cardiac phases on the registration accuracy. The proposed
method was evaluated on healthy volunteer datasets only. In
the case of diseased subjects with irregular heart beats, the
PCA error metric could be extended to deal with multiple
heart beats, therefore increasing the registration robustness.
Moreover, more sophisticated temporal interpolations will be
explored. The proposed method can also be easily extended to
provide symmetric transformations, such that the same result
is provided regardless of the choice of the target and source
sequences. Furthermore, different deformation models (e.g.
affine or non-rigid) could be employed instead of a rigid
transformation.

A further interesting area of investigation is the role of the
PCA subspace. In future work, we plan to test alternative
dimensionality reduction techniques and to investigate the
effect that different projections have on our error metric.
Possible alternatives include Independent Component Analysis
or Random Projections.

Finally, the proposed technique could be extended to deal
with inter-modality registration of cardiac imaging sequences,
such as cine Magnetic Resonance or Computed Tomography.
For this purpose, intermediate images representing the anatom-
ical structure [26], [15], [27] of the anatomy could be extracted
and the proposed error metric applied to these structural image
sequences rather than the input sequences. This will be focus
of future work.

VII. CONCLUSION

We have presented a novel PCA-based error metric for
the registration of multi-view 3DtE sequences. The proposed
method exploits the underlying temporal variation of the 3DtE
sequences due to LV motion to compute a novel error metric,
which is robust to image noise and artefacts. Results show
the proposed PCA-based registration to outperform state-of-
the-art registration of 3DtE sequences in terms of accuracy,
capture range and execution time, thus showing the potential
of replacing standard image error metrics for an automatic and
robust registration of 3DtE sequences.

DOWNLOAD

Data and ground-truth rigid transformations used for the
validation of the proposed technique in Section IV-C are
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Target

Source

GT

SSD

PB

PCA

Fig. 7. Example of successful PCA-based registration. The top two rows show three orthogonal views of the end-diastolic phase of the target and source
3DtE sequences, respectively. The other rows show the same views for, from top to bottom, the ground-truth transformation provided by the optical tracking,
SSD registration, PB registration and the proposed PCA registration. Only the PCA-based registration correctly estimated the rigid-body transformation.
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Fig. 8. Influence of γ on the PCA registration accuracy. Boxplots report the the norm of translation error (mm) and rotation error (◦) for varying values
of γ between 0 and 1 in steps of 0.2. The results reported in Table II and Figure 6 were achieved using γ = 0.1.

Fig. 9. Example of capture range of the proposed registration. Registered source 3DtE sequence (green frustum) is shown with respect to the target 3DtE
sequence (grey frustum) for the successful PCA-based registration reported in Figure 7.

available to download on the Zenodo open access repository
(http://dx.doi.org/10.5281/zenodo.30999). Python and MAT-
LAB implementations of the proposed PCA error metric are
available to download on the GitHub open access repos-
itory (https://github.com/devisperessutti/Python.git and https:
//github.com/gomezalberto/Matlab.git).

ACKNOWLEDGMENTS

This work was funded by EPSRC Grants EP/K030310/1 and
EP/K030523/1. We acknowledge financial support from the
Department of Health via the NIHR comprehensive Biomed-
ical Research Centre award to Guy’s & St Thomas’ NHS
Foundation Trust with KCL and King’s College Hospital NHS
Foundation Trust.

REFERENCES

[1] C. Jenkins, K. Bricknell, L. Hanekom, and T. H. Marwick, “Repro-
ducibility and accuracy of echocardiographic measurements of left ven-
tricular parameters using real-time three-dimensional echocardiography,”
Journal of the American College of Cardiology, vol. 44, no. 4, pp. 878
– 886, 2004.

[2] F. W. Kremkau and K. J. Taylor, “Artifacts in ultrasound imaging,”
Journal of Ultrasound in Medicine, vol. 5, pp. 227–237, 1986.

[3] A. J. Noble and D. Boukerroui, “Ultrasound image segmentation: A
survey,” IEEE Transactions on Medical Imaging, vol. 25, no. 8, pp.
987–1010, 2006.

[4] C. Szmigielski, K. Rajpoot, V. Grau, S. G. Myerson, C. Holloway, J. A.
Noble, R. Kerber, and H. Becher, “Real-time 3D fusion echocardiogra-
phy,” JACC: Cardiovascular Imaging, vol. 3, no. 7, pp. 682–690, 2010.

[5] K. Rajpoot, V. Grau, J. A. Noble, H. Becher, and C. Szmigielski, “The
evaluation of single-view and multi-view fusion 3D echocardiography
using image-driven segmentation and tracking,” Medical Image Analysis,
vol. 15, no. 4, pp. 514 – 528, 2011.

[6] K. Rajpoot, V. Grau, J. A. Noble, C. Szmigielski, and H. Becher,
“Multiview fusion 3-D echocardiography: Improving the information
and quality of real-time 3-D echocardiography,” Ultrasound in Medicine
& Biology, vol. 37, no. 7, pp. 1056 – 1072, 2011.

[7] C. Yao, J. M. Simpson, T. Schaeffter, and G. P. Penney, “Multi-view 3D
echocardiography compounding based on feature consistency,” Physics
in Medicine and Biology, vol. 56, no. 18, p. 6109, 2011.

[8] G. Piella, M. D. Craene, C. Butakoff, V. Grau, C. Yao, S. Nedjati-Gilani,
G. P. Penney, and A. F. Frangi, “Multiview diffeomorphic registration:
Application to motion and strain estimation from 3D echocardiography,”
Medical Image Analysis, vol. 17, no. 3, pp. 348 – 364, 2013.

[9] C. Wachinger, W. Wein, and N. Navab, “Registration strategies and sim-
ilarity measures for three-dimensional ultrasound mosaicing,” Academic
Radiology, vol. 15, no. 11, pp. 1404 – 1415, 2008.

[10] V. Grau, H. Becher, and J. A. Noble, “Registration of multiview real-
time 3-D echocardiographic sequences,” IEEE Transactions on Medical
Imaging, vol. 26, pp. 1154–1165, 2007.

[11] E. Schreibmann, B. Thorndyke, T. Li, J. Wang, and L. Xing, “Four-
dimensional image registration for image-guided radiotherapy,” Int. J.
Radiation Oncology Biol. Phys., vol. 71, no. 2, pp. 578–586, 2008.

[12] J. Peyrat, H. Delingette, M. Sermesant, C. Xu, and N. Ayache, “Reg-
istration of 4D cardiac CT sequences under trajectory constraints with
multichannel diffeomorphic demons,” Medical Imaging, IEEE Transac-
tions on, vol. 29, no. 7, pp. 1351–1368, July 2010.

[13] K. Abd-Elmoniem, A.-B. Youssef, and Y. Kadah, “Real-time speckle re-
duction and coherence enhancement in ultrasound imaging via nonlinear
anisotropic diffusion,” Biomedical Engineering, IEEE Transactions on,
vol. 49, no. 9, pp. 997–1014, Sept 2002.

[14] C. Wachinger and N. Navab, “Entropy and laplacian images: Structural
representations for multi-modal registration,” Medical Image Analysis,

http://dx.doi.org/10.5281/zenodo.30999
https://github.com/devisperessutti/Python.git
https://github.com/gomezalberto/Matlab.git
https://github.com/gomezalberto/Matlab.git


This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TBME.2016.2550487, IEEE
Transactions on Biomedical Engineering

11

vol. 16, no. 1, pp. 1 – 17, 2012.
[15] C. Wachinger, M. Yigitsoy, E.-J. Rijkhorst, and N. Navab, “Manifold

learning for image-based breathing gating in ultrasound and MRI,”
Medical Image Analysis, vol. 16, no. 4, pp. 806 – 818, 2012.

[16] A. Myronenko, X. Song, and D. Sahn, “Maximum likelihood motion es-
timation in 3d echocardiography through non-rigid registration in spher-
ical coordinates,” in Functional Imaging and Modeling of the Heart,
ser. Lecture Notes in Computer Science, N. Ayache, H. Delingette, and
M. Sermesant, Eds. Springer Berlin Heidelberg, 2009, vol. 5528, pp.
427–436.

[17] D. L. G. Hill, P. G. Batchelor, M. Holden, and D. J. Hawkes, “Medical
image registration,” Physics in Medicine and Biology, vol. 46, no. 3,
p. R1, 2001.

[18] I. Jolliffe, Principal Component Analisys. Springer-Verlag New York,
2002.

[19] K. Rhode, D. Hill, P. Edwards, J. Hipwell, D. Rueckert, G. Sanchez-
Ortiz, S. Hegde, V. Rahunathan, and R. Razavi, “Registration and
tracking to integrate X-ray and MR images in an XMR facility,” IEEE
Transactions on Medical Imaging, vol. 22, no. 11, pp. 1369 –1378, 2003.

[20] K. Rhode, M. Sermesant, D. Brogan, S. Hegde, J. Hipwell, P. Lambiase,
E. Rosenthal, C. Bucknall, S. Qureshi, J. Gill, R. Razavi, and D. Hill, “A
system for real-time XMR guided cardiovascular intervention,” Medical
Imaging, IEEE Transactions on, vol. 24, no. 11, pp. 1428–1440, 2005.

[21] Y. L. Ma, K. S. Rhode, G. Gao, A. P. King, P. Chinchapatnam,
T. Schaeffter, D. J. Hawkes, R. Razavi, and G. P. Penney, “Ultrasound
calibration using intensity-based image registration: for application in
cardiac catheterization procedures,” in Medical Imaging 2008: Visual-
ization, Image-guided Procedures, and Modeling, vol. 6918, 2008, pp.
69 180O–69 180O–9.

[22] B. Lowekamp, D. Chen, L. Ibez, and D. Blezek, “The design of
simpleitk.” Frontiers in Neuroinformatics, vol. 7, no. 45, 2013.

[23] J. Fitzpatrick, J. West, and J. Maurer, C.R., “Predicting error in rigid-
body point-based registration,” IEEE Transactions on Medical Imaging,
vol. 17, no. 5, pp. 694 –702, oct. 1998.

[24] A. J. Noble, N. Navab, and H. Becher, “Ultrasonic image analysis and
image-guided interventions,” Interface Focus, vol. 1, pp. 673–685, 2011.

[25] D. Peressutti, G. P. Penney, R. J. Housden, C. Kolbitsch, A. Gomez,
E.-J. Rijkhorst, D. C. Barratt, K. S. Rhode, and A. P. King, “A novel
Bayesian respiratory motion model to estimate and resolve uncertainty
in image-guided cardiac interventions,” Medical Image Analysis, vol. 17,
no. 4, pp. 488–502, 2013.

[26] G. P. Penney, L. D. Griffin, A. P. King, and D. J. Hawkes, “A novel
framework for multi-modal intensity-based similarity measures based on
internal similarity,” in Proc. of SPIE, vol. 6914, 2008.

[27] M. P. Heinrich, M. Jenkinson, M. Bhushan, T. Matin, F. V. Gleeson,
S. M. Brady, and J. A. Schnabel, “MIND: Modality independent neigh-
bourhood descriptor for multi-modal deformable registration,” Medical
Image Analysis, vol. 16, no. 7, pp. 1423 – 1435, 2012.


