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In the rodent brain the hemodynamic response to a brief external stimulus changes significantly during de-
velopment. Analogous changes in human infants would complicate the determination and use of the hemo-
dynamic response function (HRF) for functional magnetic resonance imaging (fMRI) in developing
populations. We aimed to characterize HRF in human infants before and after the normal time of birth
using rapid sampling of the Blood Oxygen Level Dependent (BOLD) signal. A somatosensory stimulus and
an event related experimental design were used to collect data from 10 healthy adults, 15 sedated infants
at term corrected post menstrual age (PMA) (median 41+1 weeks), and 10 preterm infants (median PMA
34+4 weeks). A positive amplitude HRF waveform was identified across all subject groups, with a system-
atic maturational trend in terms of decreasing time-to-peak and increasing positive peak amplitude associat-
ed with increasing age. Application of the age-appropriate HRF models to fMRI data significantly improved
the precision of the fMRI analysis. These findings support the notion of a structured development in the
brain's response to stimuli across the last trimester of gestation and beyond.

© 2012 Elsevier Inc. All rights reserved.
Introduction

In the third trimester of gestation and the first months of postnatal
life, the human brain undergoes a dramatic but structured sequence of
maturation resulting in the establishment of the cortex and its associat-
ed framework of structural and functional connectivity (de Graaf-Peters
and Hadders-Algra, 2006; Rutherford, 2001). The importance of this pe-
riod is highlighted by the marked increase in neurological dysfunction
seen in children born preterm (less than 37 weeks gestation), where
untimely exposure to ex-uterine factors apparently interfereswith neu-
ral development such that brain structure and function are adversely af-
fected throughout later life (Volpe, 2009). Although multi-modal
neuro-imaging studies in immature animals have begun to characterize
the biochemical and neurophysiological processes underlying the es-
tablishment of functional neural activity, largely due to their invasive
nature, these studies have not been performed in-vivo on human sub-
jects (Blankenship and Feller, 2010; Corlew et al., 2004; Felleman and
Van Essen, 1991; Harris et al., 2011).
, Imperial College London, 5th
Cane Road, London, W12 0NN,

Edwards).
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Blood Oxygen Level Dependent (BOLD) contrast functional
Magnetic Resonance Imaging (fMRI) is non-invasive and can identify
patterns of activation across the whole brain (Kwong et al., 1992;
Ogawa et al., 1992). Developmental studies of the early rat brain have
found that positive BOLD contrast responses can be elicited fromaround
postnatal day 11–13, which equates to approximately 28–32 weeks in
human gestation (Colonnese et al., 2008). Increasing age is character-
ized by a systematic increase in the peak amplitude of BOLD responses,
larger and more widespread responses, and co-activation of the ipsilat-
eral cortex and supplementary areas in addition to the primary sensory
areas (Chan et al., 2010; Colonnese et al., 2008). In addition, coupled
local field potential (LFP) recordings and BOLD contrast have also
been found to show a progressive decrease in the time to peak response
with increasing age (Colonnese et al., 2008). Developmental increases
in the upregulation of carbonic anhydrase activitywere found to be fun-
damental to the observed maturational trends, suggesting that resting
cerebral blood flow (CBF) control plays a key role in these changes
(Colonnese et al., 2008).

fMRI has not beenwidely applied to the human neonatal population
due to a history of methodological challenges and inconsistent results
(Seghier et al., 2006). Central to these difficulties has been the uncer-
tainty about the polarity of the elicited functional responses, with
some studies suggesting that in contrast to the canonical adult

http://dx.doi.org/10.1016/j.neuroimage.2012.06.054
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response, sensory stimulation induces a decrease in BOLD signal (often
termed ‘negative BOLD’) during a transitory developmental stage in
early infancy (Born et al., 2000; Heep et al., 2009; Seghier et al., 2004;
Yamada et al., 2000). This ambiguity is further compounded by the
use of sedative medication and/or anesthesia, which is often necessary
for neonatal subjects during MRI examination to reduce distress and
motion artifact (Marcar et al., 2006; Seghier et al., 2006).

The apparent inconsistencies in fMRI studies during the newborn
period could be caused by developmental differences in the hemody-
namic response to stimulation. In the adult human brain, the mor-
phology of the Hemodynamic Response Function (HRF) has been
well characterized and found to be reproducible and consistent across
different populations (Aguirre et al., 1998; Glover, 1999; Handwerker
et al., 2004), but even subtle inter-subject HRF variability has been
found to significantly affect the identification of functional activity
(Handwerker et al., 2004; Lindquist et al., 2009; Monti, 2011). The
morphology of the HRF during human infancy has only been de-
scribed in a single 3 month old infant following a large perinatal
stroke, where a negative waveform was observed using a visual stim-
ulus (Seghier et al., 2004). Of particular significance, key physiological
parameters known to affect the HRF, including CBF and the cerebral
metabolic rate of oxygen (CMRO2), show marked developmental
changes during the perinatal period (Chen and Parrish, 2009; Chen
and Pike, 2009a, 2010a; Miranda et al., 2006; Roche-Labarbe et al.,
2011).

In this study we systematically characterized the ontogeny and
morphology of the hemodynamic response to neural stimulation be-
fore and after the normal time of birth using an event-related exper-
imental design and a somatosensory stimulus, and investigated the
possible confounding effects of oral sedative medication by measur-
ing global CBF. We hypothesized that the neonatal HRF differs from
the canonical adult waveform; that there is a systematic maturational
trend; and that application of an age-appropriate HRF in the analysis
of fMRI data would significantly improve the identification of func-
tional responses.
Methods

The work was approved by the NHS research ethics committee,
and written subject (or parental in the case of neonatal subjects) con-
sent was obtained prior to all sessions of data acquisition.

fMRI study population
All neonatal subjects were recruited from the Neonatal Intensive

Care Unit and Postnatal wards at the Queen Charlotte and Chelsea
Hospital, London, UK during a period of 18 months between 2010
and 2011. A total of 19 preterm infants and 22 infants at term equiv-
alent Post-Menstrual Age (PMA) were scanned. Data sets were ex-
cluded from the analysis if the sequence was not able to be
completed (due to the subject waking), or due to excessive motion.
The final study group (see Table 1) therefore consisted of 10 preterm
infants scanned at median 34+4 weeks PMA (range 32+3 to
35+3 weeks) (9 male; median age at delivery 33+2 weeks PMA
(26–34+3 weeks); median weight 1890 g (1560–2360); and medi-
an head circumference (HC) 30.07 cm (28–33)); and 15 infants
scanned at term equivalent PMA (median age at scan 41+1 weeks
Table 1
Subjects included in the hemodynamic response function (HRF) characterization analysis.

Group Number of subjects
(male)

Post-menstrual age at scan
(median, range)

G
(m

Preterm infant 10 (9) 34+4 weeks (32+3–35+3) 33
Term infant 15 (5) 41+1 weeks (38+1–44+0) 34
Adult 10 (5) 31.5 years (22–54) n
PMA (38+1 to 44+0 weeks)) (5 male; median age at delivery
34+1 weeks (26+3–41+1); median weight 3035 g (2385–4770);
median HC 35 cm (31–36.8). 12 of the infants studied at term equiv-
alent age had previously been born prematurely. In addition, 10
healthy adult volunteers (median age 31.5 years (22–54 years), 5
male, all right-handed) were scanned using the same sequence and
stimulation paradigm as those used in the neonatal subjects. Clinical
details including antenatal, birth and postnatal care were recorded for
each infant subject, and a detailed neurological assessment was carried
out on all term-corrected age subjects by an experienced practitioner
(Mercuri et al., 2005). Infants with extensive intraventricular hemor-
rhage on cranial ultrasound examination (grade 3with ventricular dila-
tation, or grade 4 with parenchymal involvement), a history of poor
condition at birth who had required vigorous neonatal resuscitation,
other focal intracerebral lesions, hydrocephalus, congenital brain
malformations or diagnosed metabolic disorders were excluded from
the study group. Oral sedation (chloral hydrate 30–50 mg/kg dose)
was administered approximately 20 min before scanning to 13 of the
15 term PMA infants, but to none of the premature infants. There
were no adverse incidents during the data acquisition period.

fMRI image acquisition
MR imaging was performed on a Philips Achieva 3-Tesla system

(Best, Netherlands) with an eight channel phased array head coil.
All infants were assessed by a pediatrician prior to the scan, and the
infants' temperatures, oxygen saturations and heart rates were mon-
itored throughout the scan (Merchant et al., 2009). Ear protection
was used in all infants (dental putty and adhesive ear muffs
(Minimuffs, Natus Medical Inc, San Carlos, CA, USA)), and the head
was immobilized using a polystyrene bead filled pillow from which
the air was evacuated. High resolution T2-weighted images and 3D
MPRAGE T1-weighted images were acquired for all infants and
reviewed by a Neonatal Neuroradiologist (sequence parameters are
detailed in Merchant et al., 2009).

fMRI data was acquired with a single shot echo-planar imaging
(EPI) sequence lasting 8 min and 37 s (parameters: (TR) 500 ms;
(TE) 45 ms; (flip angle) 90°; (matrix) 64∗64; (resolution(x∗y∗z))
3.125∗3.125∗4 mm, total 1000 volumes). A relatively short TR was
chosen (with the trade-off of decreased spatial resolution) as our
goal was to characterize the BOLD signal HRF, and a faster sampling
rate has been shown to be important when characterizing the HRF
waveform particularly with respect to identifying the time to onset
(Handwerker et al., 2004). To allow for this improvement in tempo-
ral resolution, whole-brain images could not be acquired, and there-
fore only 6 axial slices were acquired with the field of view placed
above the level of the corpus callosum to give coverage of the
peri-rolandic cortex. An identical scan protocol was used for both
the adult and neonatal subjects.

fMRI experimental design
An event-related experimental design was used to acquire a sam-

pled BOLD HRF following a brief (1 s) stimulus during which the
subject's right hand was moved passively. It has previously been
shown that robust changes in BOLD contrast can be identified and
used to characterize the HRF using stimuli as brief as 0.1–0.3 ms
(Hirano et al., 2011; Yesilyurt et al., 2010). To ensure full recovery of
estational age at birth
edian, range)

Weight
(median, range)

Head circumference
(median, range)

+2 weeks (26+0–34+3) 1890 g (1560–2360) 30.07 cm (28–33)
+1 weeks (26+3–41+1) 3035 g (2385–4770) 35 cm (31–36.8)

/a Not recorded Not recorded
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the BOLD signal to baseline, a 40.5 s inter-stimulus interval was used,
during which time the BOLD signal was sampled every 500 ms. In the
1000 volumes acquired, a total of 12 complete stimulation and rest
epochs were presented. A somatosensory stimulus synchronized to
the image acquisition, was elicited with a programmable hand inter-
face, consisting of a tailor-made inflatable balloon composed of 2 layers
of latex around a nylon mesh, a control box and customizable software
(Labview v8.1 2009, National Instruments, Austin, TX USA) (full de-
scription of stimulus device are detailed in Arichi et al., 2010). The bal-
loon was sized and placed into the right hand of each subject; inflation
of the balloon resulted in passive extension of the fingers, while defla-
tion allowedflexion. Balloons of different sizeswere used for the neona-
tal and adult subject groups, and the amplitude of balloon inflation was
adjusted appropriately for hand size. It has been confirmed that the
device is MR safe and fMRI compatible (Gassert et al., 2008) and has
previously been used to demonstrate functional responses in groups
of preterm and term infants (Arichi et al., 2010).

fMRI data analysis and HRF fitting
Data was analyzed using tools implemented in the FMRIB

Software library (FSL, Oxford, UK, www.fmrib.ox.ac.uk/fsl) (Smith
et al., 2004). Each functional data set was first visually examined for
excessive motion artifact and image distortion, and data sets were
discarded accordingly. If the motion was found to be isolated to a par-
ticular time period during the acquisition, the blocks of data affected
by motion were then removed from the analysis, as systematic but
false correlations in fMRI data are seen as a result of motion artifact
despite standard registration and motion estimate regression tech-
niques (Power et al., 2012). In particular, particular attention was
placed on removing motion artifact which was associated specifically
with the timing of the stimulus, which would have markedly affected
the analysis and later model fitting. The remaining contiguous blocks
of data were only included in the final analysis if greater than 40% of
the entire data acquisition remained (representing a minimum of 5
peristimulus epochs).

Data was first processed using FEAT (fMRI Expert Analysis Tool,
v5.98) and standard pre-statistics processing steps were applied: mo-
tion correction (using MCFLIRT (FSL's intra-modal motion correction
tool), slice-timing correction, non-brain tissue removal, spatial smooth-
ing (FWHM5 mm), global intensity normalization and highpass tempo-
ral filtering (cut-off 50 s)) (Jenkinson et al., 2002;Woolrich et al., 2001).
Head motion parameters were not included as confound regressors in
the analysis, as additional data de-noising was performed using
MELODIC (Model-free FMRI analysis using Probabilistic Independent
Component Analysis (PICA, v3.0) (Beckmann and Smith, 2004)). Inde-
pendent components assessed by their spatial representation and fre-
quency power spectrum to represent physiological noise or motion
artifact were filtered from the data prior to further statistical analysis.
Time-series statistical analysis in FEATwas carried out using FMRIB's im-
proved linear model (FILM) with local autocorrelation correction
(Woolrich et al., 2001). A general linearmodel (GLM)was used to define
the observed data using a convolution of the experimental design and
an optimal basis set representing a dispersion range of possible HRF
waveforms generated using FLOBS (FMRIB's linear optimal basis sets,
v1.1) (Woolrich et al., 2004). For the generation of the basis set, this ap-
proach utilized a pre-specified range of parameters (in this case
allowing for a greater range in the delay and height of the HRF than
that typically seen in adults) to randomly generate possible HRF wave-
forms, fromwhich principal component analysis was then used to iden-
tify an “optimal” basis set of 3 functions which maximally spanned a
constrained HRF subspace of sensible waveforms (Woolrich et al.,
2004). Parameter estimates for each of the explanatory variables and
basis functions were then convolved in the GLM, converted to a
t-statistic image by dividing by the relevant standard error, and then
to a z-statistical score image at a threshold of 2.3with a corrected cluster
significance level of pb0.05.
The BOLD signal time-series was extracted and averaged from a re-
gion of interest (ROI); defined as voxels above the 90th centile in
z-score within the cluster of activation in the contralateral primary so-
matosensory cortex identified with the GLM analysis and the complete
fit of the data derived from an F-test of the parameter estimates from
the individual basis functions (Fig. 1). The time-series was averaged
across the peristimulus period and then converted to a percentage sig-
nal change (relative to the baseline, defined as the time-points across
the 2 s prior to stimulus onset). For each individual subject and the
group analysis, the converted peristimulus data was then fitted with a
double gamma distribution function (robust non-linear least squares
fit, trust-region algorithm) to model a subject-specific and population
age specific HRF using the curve-fitting toolbox implemented in
MATLAB (2009b, The Mathworks, Natick, MA USA). The use of two
gamma distribution functions for modeling the HRF has been widely
described in the literature, and has been found to provide a reasonable
characterization of all of the key positive (positive peak) and negative
(initial dip and undershoot) features of the HRF (Boyton et al., 1996;
Friston et al., 1998).

Global CBF estimation

Animal and adult fMRI work have demonstrated that changes in the
HRF peak amplitude and time to peak can be artificially induced by the
experimental manipulation of baseline CBF (Chen and Parrish, 2009;
Chen and Pike, 2009a; Cohen et al., 2002; Colonnese et al., 2008). To in-
vestigate if the administration of chloral hydrate could be responsible
for any observed differences in HRF morphology, global CBF was mea-
sured from a separate cohort of 14 healthy term born infants who
were then subdivided into two groups (those who were sedated with
lowdose chloral hydratemedication (30–50 mg/kg/dose) prior to scan-
ning, and those who were not) (see Table 2). Infants who had required
neonatal resuscitation or had any abnormalities (as described above in
the fMRI study population) were ineligible for this study. The infants
were paired by PMA at the time of scan, as it has previously been
shown that CBF increases in the months following delivery (Greisen,
1986, Varela et al., 2012).

Cerebral blood flow measurement data was acquired using an op-
timized Phase Contrast Angiography (PCA) sequence (Varela et al.,
2012). A multi-slice inflow arteriogram ((TR) 21 ms; (TE) 6 ms; (ma-
trix) 160∗132; (resolution(x∗y∗z)) 1∗1∗1 mm) was performed for
geometrical planning of the PC flowmeasurement sequence. The acqui-
sition plane was positioned at the level of the sphenoid bone, where the
internal carotid and basilar arteries are approximately parallel and si-
multaneous flow measurements can be done using a single imaging
plane and encoding velocity along the through-plane direction (Buijs
et al., 1998; Varela et al., 2012). Flowdatawas acquired using a sequence
optimized for neonatal subjects ((TR) 7 ms; (TE) 4.2 ms; (flip angle)
10o; (resolution(x∗y∗z)) 0.6∗0.6∗4.0 mm; (maximal encoding velocity
(vENC)) 120 cm/s) (Varela et al., 2012). Instantaneous flux was mea-
sured for each cardiac phase and artery, using a time-resolved ROImeth-
od (Q-flow Philips image analysis package, release 2.3.5.0 (Philips
Corporation, Best, Netherlands)). The mean velocity across the ROI
was multiplied by vessel area to give an estimate of instantaneous
flux, and flow in the vessel calculated from the mean of the instanta-
neous flux across the cardiac cycle. Total flow to the brain was obtained
by summing blood flow in the two internal carotid arteries and the bas-
ilar artery. Whole brain volume was measured from high resolution
T2-weighted images, following tissue segmentation using in-house soft-
ware. Each subjects’ T2-weighted images were first bias-field corrected
using FAST v4.1 (FMRIB's automatic segmentation tool (Zhang et al.,
2001)). The corrected image was then aligned to a 4D neonatal atlas
using non-linear registration as implemented in IRTK (Image Registration
Toolkit; www.doc.ic.ac.uk/~dr/software/) (Kuklisova-Murgasova et al.,
2011; Rueckert et al., 1999). The CSF and extra-cerebral tissue was
subtracted from the segmented image, and then whole brain volume

http://www.fmrib.ox.ac.uk/fsl
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Fig. 1. Identified clusters of functional activation following passive motor stimulation of the right hand, in a 32+3 PMA week preterm infant (top row: figures a,b,c); a term equiv-
alent (PMA 41+1 weeks) infant (middle row: figures d,e,f), and a healthy 24 year old adult (bottom row: figures g,h,i). A thresholded statistical map with a corrected cluster sig-
nificance of pb0.05 has been overlaid on the subject T2-weighted image.
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was then computed inmm3. Global CBF inml/100 g/minwas then calcu-
lated by dividing the total flow to the brain by the brain volume with a
further correction for brain density (1.05 g/ml in neonates) (Delpy et al.,
1987).

Application of population specific HRF models to experimental data

To test the value of the HRF waveforms derived in the main study,
they were applied into the GLM analysis of 6 preterm (median age
34+0 weeks PMA (32+2–34+5) and 6 term equivalent (median
age 40+5 weeks PMA (39+0–43+3) infant data sets from a previ-
ously collected study group (Arichi et al., 2010). A block experimental
design had been utilized with periods of somatosensory stimulation
lasting 24 s, interleaved with rest periods of 24 s (image acquisition
and experimental design described in Arichi et al., 2010). The exper-
imental design was convolved with the age-specific HRF waveform
into the GLM for analysis, using the parameters derived from the
HRF characterization studies. Standard pre-processing steps and
data analysis (as described previously) were performed using FEAT
v5.98, and z-statistical score images were generated with a threshold
of 2.3 and corrected cluster significance of pb0.05. Each of the individ-
ual subject statistical maps were then registered to a custom-made
neonatal template for higher level analysis using linear registration
Table 2
Infant subjects included in the global cerebral blood flow (CBF) estimation analysis.

Group Post-menstrual age at scan
(median, range)

Weight
(median, range)

Head
(medi

Sedated (n=7) 41+3 weeks (38+1–43+4) 3700 g (3115–3920) 35.5 c
Unsedated (n=7) 40+3 weeks (38+4–43+0) 3500 g (2652–3944) 35.5 c
(Arichi et al., 2010; Jenkinson et al., 2002; Smith et al., 2004). A
fixed-effects model was then applied to identify group means, and per-
form a paired t-test on the lower-level statistical images.

Results

HRF characterization

Following passive motor stimulation of the right hand lasting 1
second, clusters of functional activation were identified in the contra-
lateral (left) primary somatosensory cortex in all 3 subject groups
(Fig. 1). As observed in previous work and in the developing rat
brain, a trend towards co-activation of the ipsilateral primary so-
matosensory cortex and associated sensori-motor areas such as the
supplementary motor area was seen with increasing age (Arichi
et al., 2010; Colonnese et al., 2008). To maintain consistency across
subject groups, HRF characterization was therefore performed using
the BOLD signal time-series from a region of interest (ROI) in the con-
tralateral cortex only.

A clear developmental trend in the shape parameters of the HRF
was identified, characterized by a reduction in the time to positive
peak and an increase in positive peak amplitude with increasing age
(Table 3). In the adult group, the parameters and morphology of the
circumference
an, range)

Brain volume
(median, range)

Global cerebral blood flow
(median, range)

m (34–36.5) 400.8 ml (368.0–444.0) 22.40 ml/100 g/min (19.15–26.78)
m (34–36.7 cm) 388.0 ml (324.0–446.5) 20.78 ml/100 g/min (19.20–28.87)
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sampled HRF waveforms were in agreement to those described in the
literature (Glover, 1999; Handwerker et al., 2004); with a median
time to the positive peak of 5.38 seconds (range 4.5 to 9), a median
peak amplitude of 1.63 % signal change (range 0.78 to 2.93) (relative
to the pre-stimulus baseline BOLD signal), and median positive peak
to undershoot ratio 0.23 (range 0 to 0.69) (Fig. 2a). In comparison,
theHRFwaveform in the termequivalent post-menstrual age (PMA) in-
fant group (Fig. 2b) was found to have a significantly longer time to
peak of 7.0 seconds (range 3 to 9) (pb0.05: Mann–Whitney–Wilcoxon
test, Holm–Bonferroni correction for multiple comparisons), with a sig-
nificantly smaller peak amplitude peak of 0.54% signal change (range
0.27 to 1.42) (pb0.01) (Fig. 3a), and significantly deeper negative un-
dershoot period with a ratio to the positive peak of 0.49 (range 0 to
3.31) (Fig. 3b). The median positive peak amplitude (0.52%, range
0.19 to 0.99) of the preterm infants was similar to those of the term in-
fants (p=0.5235), although a proportionately shallower undershoot
period was seen (ratio 0.15 (range 0 to 0.62)) (Fig. 2c). A significant
lengthening in the median time to peak at 11.25 s (range 8.5 to 16)
was seen in the preterm infants in comparison to both the adult and
term infant groups (pb0.01) (Fig. 3c). An inverse exponential trend
was observed with increasing PMA associated with a decrease in the
time taken to reach the positive peak of the HRF (Fig. 3d). The median
ratio of the undershoot to positive peak amplitudewas significantly dif-
ferent between the term infant group with both the preterm (pb0.05)
and adult groups (pb0.05) (Fig. 3b). Therewas no significant difference
between the adult group and preterm infant group in the undershoot to
positive peak ratio (p=0.8331).

Global cerebral blood flow estimation

Global CBF data was acquired from a total of 14 term born infants
who were then subdivided into two paired groups (those who were
sedated for scanning and those who were not) by postmenstrual age
at the time of scan. There were no significant differences between the
two groups in the age of the infants at scan (Mann–Whitney–Wilcoxon
test: p=0.5198); the weight (Wilcoxon signed rank test: p=0.3750);
occipito-frontal head circumference (p=0.8438); or brain volume
(p=0.1562). No significant difference was identified in the global CBF
between the paired sedated (median: 22.40 ml/100 g/min) and
unsedated groups (median: 20.78 ml/100 g/min) (Wilcoxon paired
signed rank test: p=0.4688). These CBF values are in good agreement
with those previously described using diverse measurement techniques
(Edwards et al., 1988; Greisen, 1986; Varela et al., 2012).

Application of population specific HRF models to experimental data

To test the value of the derived HRF models the empirical wave-
forms were then convolved into the GLM analyses of data collected
from 12 further infants, using a block paradigm of somatosensory
stimulation (Arichi et al., 2010). In 6 preterm subjects, a fixed effects
GLM analysis following convolution of a preterm age-appropriate HRF
waveform into the lower level subject analyses identified a large but
well localized cluster of positive signal functional activation in the
primary somatosensory cortex contralateral to the side of stimulation
(left hemisphere) (Fig. 4a). In contrast, when the same analysis was
performed with convolution of the empirical adult HRF, only small
Table 3
Measured parameters of the hemodynamic response function in the 3 subject groups. (*pb
Bonferroni correction for multiple comparisons).

Group n Time to positive peak
(median, range; seconds)

P
(

Preterm infant 10 11.25 (8.5–16)** 0
Term equivalent infant 15 7.0 (3–9)* 0
Adult 10 5.38 (4.5–9) 1
areas of negative signal change were identified in the left peri-rolandic
region, with no significant areas of positive signal activation (Fig. 4b).
In agreement with these findings, a direct comparison of the two types
of analysis (paired t-test on the effect-size estimates) identified a signif-
icant andwell localized cluster in the left primary somatosensory cortex
(Fig. 4c). This difference can be seen in an exemplar study (Fig. 5a)
where convolution of the experimental design with the preterm infant
HRF is shown to markedly improve themodel fitting to the BOLD signal
data from the identified cluster of activation with correlation coefficient
0.8407 and sumof squared errors (SSE) 1.9013, in comparison to the ca-
nonical adult HRF (correlation coefficient 0.3496, SSE 8.0755).

This process was repeated in a group of 6 infants at term corrected
PMA on whom data had been collected using an identical experimen-
tal paradigm. In an exemplar study (Fig. 5b) convolution with the
term infant HRF waveform can be seen to improve the fit to the
data with a correlation coefficient of 0.9096 and SSE 1.5775, in com-
parison to 0.9055 and SSE 3.0254 using the canonical adult HRF. Con-
volution of the term infant derived HRF and adult subject derived HRF
with the experimental model identified similar clusters of positive
functional activation most significantly in the left somatosensory cor-
tex, but with co-activation of the ipsilateral right somatosensory cor-
tex (Figs. 4d,e). A paired t-test did not identify any significant areas of
difference between the two forms of analysis (Fig. 4f).

Discussion

Using a combination of optimized fMRI scanning parameters, an
appropriate and precise somatosensory stimulus, and an event-
related experimental design, we have been able to characterize the
morphology of the BOLD contrast HRF waveform in the developing
human brain. As described in the rat brain, a systematic maturational
change in the morphology and parameters of the HRF was seen
(Colonnese et al., 2008), both in terms of the time-to-peak and overall
magnitude of the response. In addition, we provide data showing that
at term corrected PMA, global CBF is unchanged by low-dose pharma-
cological sedation suggesting that the observed differences cannot be
ascribed to the use of sedation but are secondary to developmental
changes in cerebro-vascular physiology. The potential improvements
in accuracy yielded from the use of an age-appropriate HRF model
convolved into the GLM analysis are demonstrated in two infant
groups, with a significant effect seen when applied to preterm infant
functional data.

Developmental changes in neurovascular coupling

In comparison to the canonical form seen in the mature adult
brain, the amplitude of the HRF positive peak was found to be signif-
icantly less in the developing neonatal brain. In addition, the time
taken to attain the positive peak amplitude of the HRF was found to
decrease significantly with increasing age. The physiological reasons
underlying these differences are likely multi-factorial, and involve
many stages of the neurovascular coupling cascade which ultimately
culminates in the hemodynamic changes responsible for the BOLD
contrast response (Cauli and Hamel, 2010; Harris et al., 2011). Due
to limitations inherent to studying the in-vivo human infant brain,
the effects of developmental changes on these processes have not
0.05, **pb0.001 Mann–Whitney–Wilcoxon test in comparison to adult group, Holm–

ositive peak amplitude
median, range; % BOLD signal change)

Undershoot to positive peak ratio
(median, range)

.52 (0.19–0.99)** 0.15 (0–0.62)

.54 (0.27–1.42)** 0.49 (0–3.31)*

.63 (0.78–2.93) 0.23 (0–0.69)



Fig. 2. Peristimulus timeseries plots for the (a) adult; (b) term equivalent infant; (c) preterm infant groups. Stimulation occurred at time point 0, lasting a total of 1 s. The mean %
BOLD signal change (relative to the pre-stimulus signal) at each timepoint (circles) is shown fitted with a double gamma probability distribution function. Error bars represent 2
SEM. (d) A decrease in the time to peak of the HRF, and an increase in peak amplitude is seen with increasing age.

668 T. Arichi et al. / NeuroImage 63 (2012) 663–673
been extensively investigated; and many of the detailed measures
common to calibrated fMRI experiments in adult subjects and animal
models are not applicable to this population (Gaillard et al., 2001).

Of note, robust electrophysiological responses to simple somato-
sensory stimuli can be elicited at a significantly younger age than re-
liable BOLD signal responses have been described in both animal and
human subjects (Vanhatalo and Lauronen, 2006). Although it is un-
likely that neural activity in very immature subjects is occurring with-
out the vascular provision of the required metabolic substrates, it
does suggest that marked differences in the dynamic coupling of the
neural activity and vascular response must underlie some of the
trends identified in this study. The neurovascular coupling cascade
is thought to involve multiple signaling pathways encompassing
perivascular astrocytes, vasoactive chemical agents, and direct neuro-
nal connections (Cauli and Hamel, 2010; McCaslin et al., 2011).
Changes in astrocyte-mediated processes may be of particular signif-
icance as animal studies have found marked increases in number, size
and local connectivity at an age which corresponds to the human age
groups studied in this work (Harris et al., 2011; Kaur et al., 1989).

Trends in cerebral hemodynamics in early human development
A localized increase in CBF is known to be the key to the positive

peak of the BOLD response through the change in signal which results
from an increase in local oxygenated hemoglobin (Hb) (Buxton et al.,
2004; Chen and Pike, 2009a, 2009b; Hillman et al., 2007). Arterial
Spin Labeling (ASL) experiments have demonstrated that the local
CBF time course following stimulation closely mirrors that of the
BOLD HRF, and furthermore have suggested that a feedback mecha-
nism may contribute to a post-stimulus suppression in CBF which
correlates with the HRF undershoot (Chen and Pike, 2009a, 2009b).
Global decreases in CBF following caffeine administration have been
shown to lower the baseline BOLD signal, increase the percentage sig-
nal change of BOLD responses and shorten the time to peak (Chen and
Parrish, 2009; Liu et al., 2004; Perthen et al., 2008); while increases in
CBF caused by the cerebral vasodilating effects of carbon dioxide have
been shown to result in the converse (Chen and Pike, 2010a, 2010b;
Cohen et al., 2002). These alterations are known to occur in the con-
text of unchanged neurophysiological and metabolic parameters
(Chen and Pike, 2010a; Matsuura et al., 2000) and are therefore
thought to be primarily due to the linking of arteriolar compliance
as a function of baseline CBF (Liu et al., 2004).

Global CBF is known to increase dramatically during early human
development, with preterm infant brain values approximately half
that of a full term infant, with a further twofold increase in adult
life (Edwards et al., 1988; Greisen, 1986; Roche-Labarbe et al., 2011;
Varela et al., 2012). Given that such a systematic rise in baseline CBF
would be expected to induce HRF changes similar to hypercapnia,
the observed trends are therefore likely secondary to developmental
changes in the capacity of the local arterioles to increase local CBF
through the neurovascular coupling cascade. This would be in keep-
ing with histological studies which suggest that the human fetal
cortical microvasculature develops radially from the superficial
leptomeningeal vessels, with muscularization of the extrastriatal ar-
terioles and capillary beds not established until close to term equiva-
lent PMA (Kamei et al., 1992; Kuban and Gilles, 1985; Norman and
O'Klusky, 1986). Moreover, cerebral vessel density and volume has
been shown to approximately double from the newborn to adult pri-
mate cortex, with the bulk of this change occurring at the capillary
level, which may also translate to a faster and higher amplitude
local CBF response (Risser et al., 2009).

image of Fig.�2


Fig. 3. (a) A significant difference was seen between both the preterm and term infant groups and adult subjects in the amplitude of the HRF positive peak. (Boxplots: box repre-
sents 25th and 75th centiles and central line the group median; outliers denoted by ‘+’ symbol; Mann–Whitney–Wilcoxon test with Holm–Bonferroni correction for multiple com-
parisons, pb0.05*, pb0.01**)). (b) The ratio of the negative HRF undershoot to the amplitude of the positive peak was significantly deeper in the term infant group in comparison to
both the preterm and adult groups. (c) A significant maturational trend towards a reduction in the time taken to achieve the positive HRF peak was identified across the three pa-
tient groups. (d) In the neonatal subjects only, an inverse exponential relationship between increasing post-menstrual age (in weeks) and the time to the HRF peak (in seconds)
was identified (r2=0.6479; dashed lines represent 95% population confidence intervals).
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Near-Infrared Spectroscopy (NIRS) studies have shown that quan-
titative measures of cerebral blood volume (CBV) remain unchanged
both throughout the preterm period and during the first weeks after
full term gestation (Franceschini et al., 2007; Roche-Labarbe et al.,
2011; Wyatt et al., 1990). This would suggest that the empirical
steady-state relationship (Grubb's power law) between whole brain
CBV and global CBF seen in adults may differ or does not have a con-
stant exponent during the preterm and neonatal period (Buxton et al.,
2004; Grubb et al., 1974). A constant CBV coupled to an increasing
CBF through the late preterm to term infant period would lead to a
shortening in the mean transit time (MTT) of oxygenated Hb; as the
Stewart-Hamilton principle states that CBV can also be represented
as the product of CBF and MTT (Elwell et al., 1997; Meier and
Zierler, 1954). A change in MTT may therefore in part explain the
shortening of the time taken to achieve the positive peak of the HRF
seen with increasing PMA.

A proportionately deeper post-stimulus undershoot was seen in
the term infant subjects, despite a similar positive peak amplitude
throughout the neonatal period. It has been suggested that the under-
shoot period may reflect a transient increase in deoxygenated-Hb due
to a temporal mismatch between the CBF and draining venous CBV
response due to differences in vessel wall compliance (Buxton et al.,
1998, 2004; Chen and Pike, 2009b). In the context of established bio-
mechanical models such as the Balloon Model, a deep post-stimulus
undershoot can be explained by an initially stiff post-capillary-bed
venous compartment which becomes compliant after prolonged ex-
pansion, leading to the volume outflow of the system resembling a
hysteresis loop (Buxton et al., 1998, 2004). Alternatively, there is
also recent evidence to suggest that transient decoupling between
the CBF and a sustained post-stimulus increase in the local cerebral
metabolic rate of oxygen (CMRO2) results in deoxygenated Hb accu-
mulation and therefore a decrease in BOLD signal (Dechent et al.,
2011; Hua et al., 2011). In the neonatal brain, the latter effect may
predominate as marked increases in neuronal density and integration
occur in the late preterm to term infant period, and these changes are
associated with a significant maturational rise in CMRO2 (Altman
et al., 1988; Chugani and Phelps, 1986; Roche-Labarbe et al., 2011).

The possible effects of sedative medication

In this study, induced sedation with chloral hydrate was given in
the majority of the term infant subjects, who are more prone to mo-
tion and may become distressed during image acquisition in com-
parison to preterm infants. Although functional responses and
patterns of resting state connectivity can be identified in naturally
sleeping infants, the increased head motion inherent to these sub-
jects may lead to the systematic identification of false patterns of
functional activity (Power et al., 2012; Satterthwaite et al., 2012;

image of Fig.�3


Fig. 4. Preterm infant group (top row): (a) A large cluster of positive activation was identified in the contralateral somatosensory cortex when an age-specific HRF model was con-
volved into the GLM analysis in a group of 6 preterm infants; (b) this was not seen when the analysis was repeated using the canonical adult t-test analysis was performed on the
statistical maps derived from the lower level analyses. Term equivalent infant group (bottom row): (d) Significant clusters of functional activity were identified when both
age-specific and (e) canonical adult HRF models were convolved into the GLM analysis of 6 infants at term corrected PMA; (f) There was no significant difference between the
two forms of analysis on a paired t-test analysis.
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Van Dijk et al., 2012). In contrast, sedation with chloral hydrate
does not affect either the identification or topology of resting
state networks in neonatal subjects (Doria et al., 2010). Further
HRF characterization studies may be possible in unsedated infants
if novel motion-resistant image acquisition and analysis techniques
can be optimized.

Electrophysiological studies have shown that the amplitude and
character of neural responses are not affected by mild to moderate
doses of induced sedation (such as used in this study with chloral
Fig. 5. Example peristimulus timeseries data derived from clusters of activation (inset pictu
term infant, the age-specific HRF can be seen to greatly improve the model fit (green), as the
(Error bars represent 1SD from the mean) (b) In an infant at term corrected PMA, the age-sp
seen following the positive peak.
hydrate) (Avlonitou et al., 2011; Sisson and Siegel, 1989). It has also
been suggested that sedative medication may alter baseline CBF,
thereby explaining the inconsistent findings in previous infant fMRI
studies (Lindauer et al., 1993; Rivkin et al., 2004; Seghier et al.,
2006). We found that sedation did not affect global mean CBF in
paired samples of healthy term infants. In the rat brain, correlated
alterations in both the BOLD fMRI and local field potentials have
been described to a somatosensory stimulus during urethane and
alpha-chloralose anesthesia, suggesting that tight neurovascular
res, red) identified following passive motor stimulation of the right hand. (a) In a pre-
peak in contrast occurs much later than would be predicted using the adult HRF (blue).
ecific HRF improves the model fit (red), by incorporating the deeper undershoot period

image of Fig.�4
image of Fig.�5
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coupling is preserved even during induced anesthesia (Huttunen et
al., 2008). Although we cannot completely exclude a possible effect
of chloral hydrate on local hemodynamics, animal data suggests that
very high doses of the active compound 2,2,2-trichloroethanol act as
an agonist of non-classical K+ channels in smooth muscle cells, in-
creasing local CBF and leading to uncoupling with an unchanged
CMRO2 (Parelkar et al., 2010; Uematsu et al., 2009). This effect
would not be in keeping with the deep negative undershoot period
observed in the sedated term infants.

Study design and further work
Although an event-related fMRI design with a widely-spaced con-

stant inter-stimulus interval is relatively inefficient at both detecting ac-
tivity and HRF estimation (Dale and Buckner, 1997; Handwerker et al.,
2004; Murphy et al., 2007), it was chosen in this study as particular
assumptions could not be made, in particular whether overlapping
impulses would sum in a linear fashion (Bandettini and Cox, 2000;
Buxton et al., 2004; Gu et al., 2005). Data was initially analyzed using
a basis set to allow flexible HRF modeling; this approach is particularly
suitable in subjects where alterations may occur due to physiological
and/or clinical factors, although at the risk of fitting physiologically
implausible HRF shapes leading to fewer degrees of freedom and a
decrease in power (Monti, 2011; Steffener et al., 2010; Woolrich et al.,
2004).

The term equivalent age study group consisted mostly of infants
who had been born prematurely (12/15), and although previous
work has suggested that the functional activity is well localized re-
gardless of the gestational age at birth (Arichi et al., 2010), further
work will be required to identify any more subtle effects on HRF mor-
phology which may result from preterm birth. The somatosensory
cortex was used as the substrate for this study, as robust responses
are seen with a variety of imaging modalities including fMRI in both
preterm and term neonates (Arichi et al., 2010; Erberich et al.,
2006; Kusaka et al., 2011; Vanhatalo and Lauronen, 2006). HRF char-
acterization studies in the adult brain have demonstrated that subtle
differences exist in distinct brain regions using different stimulus
types, and that significant differences are identified when this varia-
tion is incorporated into the GLM analysis (Handwerker et al., 2004;
Miezin et al., 2000). Further work to characterize this inter-region
variability will be of particular importance in the neonatal brain, as
resting state fMRI studies have shown that different neural networks
appear to develop at different rates; with the auditory system matur-
ing before others (Doria et al., 2010).

Implications for future fMRI studies of neonatal subjects
The benefits of an age-appropriate HRF for convolution into the GLM

have been demonstrated here in two example preterm and term infant
groups. This effectwasmostmarked in the preterm infant group,where
a cluster of positive activation in the primary somatosensory cortexwas
only identified when an age-appropriate HRF was used in the GLM de-
sign model, incorporating the significantly longer time taken to achieve
the positive peak. In the term infant group, a large area of positive func-
tional activation was identified irrespective of the HRF model used, and
a significant difference was not seen when comparing the age-specific
and adult canonical HRF models. This is explained by the relative simi-
larity in the time to the positive peak for the term infant and adult
groups, which will lead to a similar positive overshoot time regardless
of the proportionately deeper undershoot period. However, at shorter
inter-stimulus intervals than used in this work, the rise rate and ampli-
tude of BOLD signal change would be significantly reduced should the
next period of stimulation occur during the undershoot (McClure
et al., 2005). It is notable that no significant areas of negative BOLD
response were identified in either subject group using an age-
appropriate HRF model. Negative BOLD responses have been more
commonly reported in later infancy (approximately 3 months of age
and above) where it has been postulated that increasing neuronal
energy demands exceed the available supply of oxygenated hemoglo-
bin (Seghier et al., 2004; Yamada et al., 2000). The results of our work
suggest that further systematic characterization of BOLD responses
throughout childhood would be required before this hypothesis could
be conclusively accepted.

Conclusions

In summary, we provide characterization of the HRF in the healthy
human brain before and around the normal time of birth, and demon-
strate a developmental trend in early human HRF morphology similar
to that seen in the rodent brain. Moreover, the data provide evidence
that the marked changes in brain structure known to occur in the
third trimester of human development are also accompanied by a se-
quence of maturation in the brain's hemodynamic responses to stim-
ulation. These maturational changes are likely to be due to both
probable developmental alterations in the underlying neurovascular
coupling and known changes in cerebrovascular physiology. These
findings demonstrate that BOLD fMRI responses can be reliably iden-
tified in neonatal subjects, and offer the potential to improve the ac-
curacy of analysis in studies involving this population. Although the
effects of sedation cannot be completely excluded, the described
HRF parameters still remain relevant, and can be applied to much
needed future fMRI studies in this vulnerable population.
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