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form of relativistic ALPs. Generically one estimates that the number of relativistic species

grows with the number of axions in the Axiverse, in contradiction to the observations that

Neff ≤ 4. We explain this problem in detail and suggest some possible solutions to it.
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superpartner plus Standard Model particles and this severely constrains the moduli Kahler
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1 Introduction

String/M theory is a theoretical framework which predicts that there are six or seven

extra dimensions of space. Even though the energy scale of the extra dimensions might be

large, e.g. at the GUT scale, their lowest energy excitations, the moduli fields, typically

have a much smaller mass, such as the supersymmetry breaking scale. These moduli fields

appear in the low energy effective description of physics as scalar fields which couple to

matter through higher dimension operators suppressed by the Planck scale, mpl. This is

natural since the moduli are, in fact, extra dimensional gravitons. In the string/M theory

description of physics, the value of all Standard Model couplings and masses become the

vacuum expectation values of the moduli fields. As an example, the Maxwell term in

the Lagrangian, L = 1
4e2
F 2
µν becomes of the form s

mpl
F 2
µν for a particular modulus field

s. The expectation values of the moduli fields are interpreted as determining the size

and shape of the extra dimensions and the fact that most Standard Model couplings are

weak implies that the extra dimensions are moderately large compared to the fundamental

string/M theory scale, which further implies we can usually use a supergravity Lagrangian

to describe the low energy physics.

String/M theory also predicts the existence of axion like particles (ALPs) — these

are periodic, pseudo-scalars which arise as zero modes of the antisymmetric tensor fields

present in all low energy descriptions of string/M theory [1, 2]. In fact, in models with

low energy supersymmetry, which is what we will assume from here onwards, the axions

and moduli usually pair up to form the complex scalar fields which appear in the chiral

supermultiplets in four dimensional supergravity theories. For example, related to the

Maxwell term above will be a term like a
fa
FµνF̃

µν where a is an axion field and fa is the

“axion decay constant”, which is typically of order the compactification scale, and often of
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order MGUT . With this logic: for every U(1) and every simple factor in the full gauge group

we will have one modulus field and one axion. Similarly, the magnitudes and phases of the

entries of the Standard Model Yukawa matrices are respectively related to the moduli and

axion vevs. Continuing in this fashion and including supersymmetric couplings as well, we

see that the full theory could have hundreds, if not more, moduli and axions.

Since the axions arise as zero modes of antisymmetric gauge fields, the number of

axions is determined by the number of harmonic antisymmetric tensor fields on the extra

dimensions. This number is a topological invariant of the extra dimensions (a Betti num-

ber), so if the extra dimensions have a suitably rich topology there will be a large number of

axions present in the spectrum. One then assumes that “rich topologies” are generic since

simple topologies are rare. This was the argument given in [3] leading to the notion of the

string/M theory Axiverse. This is clearly consistent with the argument given above based

simply upon couplings. Note that specific examples of string/M theory compactifications

could, and do, exist with very few light axions in the spectrum. In these examples, the

topology is relatively simple and, equivalently, the axions you would expect based on the

couplings argument have obtained a large mass through a direct breaking of the axion shift

symmetries by the background geometry.

Extremely weakly coupled scalar fields like moduli and axions can have a considerable

impact on cosmological dynamics due to the “vacuum misalignment” mechanism [4–6]. At

very early times when the Hubble scale H is above the masses of these particles, the fields

are frozen at order one values (mpl for the moduli and fa for the axions). Then, as the

Universe expands and H decreases, when H becomes of order∼ ms or ma, the equation

of motion requires the field to start oscillating around the minimum with a frequency of

order ms or ma. Since the corresponding contribution to the energy density will dilute like

matter, even if the Universe was radiation dominated prior to this point, a modulus field

will quickly dominate the Universe since its energy density is comparable to radiation at the

onset of the oscillations. Next, when the Hubble scale reduces to be of order the modulus

decay width, Γs ∼ m3
s

m2
pl

, the modulus field decays. This happens during nucleosynthesis

for ms ∼TeV, which is known as the cosmological moduli problem [7, 8]. This problem

will be avoided if ms ≥ 30 TeV; one could also avoid it by assuming that the Hubble

scale after inflation is always smaller than ms or if there is a late period of inflation which

dilutes the moduli fields, however, both of these options require tuning and are presumably

not generic. Therefore, we conclude that string/M theory seems to predict that the early

Universe prior to nucleosynthesis is matter dominated.

The axions also participate in the vacuum misalignment mechanism but there are

important differences. The shift symmetries that these fields enjoy protects their masses

from perturbative contributions, hence they receive masses only from non-perturbative

effects, such as instantons, which at weak coupling are exponentially small. The resulting

very small axion masses means that the axion lifetimes are, unlike the moduli, generically

extremely long, with lifetimes that can easily be cosmologically relevant. Hence, there will

be a contribution to the energy density in the form of axion fields today, which behaves as

cold dark matter. Notice that the decay of the moduli releases a large amount of entropy

– 2 –
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which dilutes any relics which existed prior to nucleosynthesis, e.g. ten orders of magnitude

dilution is typical. This significantly weakens the upper bound on the QCD axion decay

constant, compared to radiation dominated Universes, to be of order 1015 GeV [9–12]. This

effect also significantly dilutes other relics that may have formed previously, such as domain

walls, monopoles or thermal WIMPs.

For our present study, the key point is that the moduli can decay into Standard Model

particles, into supersymmetric particles as well as axions. Since the axions are so light

and the moduli have masses in the tens of TeV regime, axions produced this way will be

relativistic with energies of order several TeV. The expansion of the Universe and precision

cosmological observables are sensitive to the relative abundance of relativistic particles.

This can be captured by the observable called Neff which is “the effective number of neutrino

species”, but is actually sensitive to all forms of relativistic matter, regardless of how such

matter couples to the Standard Model. In that sense, Neff provides a very useful probe of

additional, “hidden,” sectors beyond the Standard Model. The Standard Model prediction

for Neff at the time of recombination is 3.045, whilst measurements from CMB observations

by WMAP 9-year polarisation data [13], South Pole Telescope [14], Atacama Cosmology

Telescope [15], and Planck 2015 [16] are Neff = 3.84± 0.40 (WMAP9), Neff = 3.62± 0.48

(SPT), Neff = 2.79± 0.56 (ACT), Neff = 3.15± 0.23 (Planck2015) respectively. In a sense,

this is a surprising result since one might expect Neff to be much, much larger naively.

So, from the perspective of string/M theory or the idea of “hidden sectors” more

generally, the question actually becomes: why is Neff so small? For instance, if, as we have

already argued, there are large numbers of light axions and the moduli have significant

branching ratios into them, why isn’t Neff of order N , the number of axions? We will

investigate this question in this paper.

There have been a number of interesting prior studies on axionic dark radiation in

string theory [17–27]. These papers consider examples which have very few light axions.

Instead, our interest here is to the dependence of Neff on the number of light axions.

2 The axiverse induced dark radiation problem

We will illustrate the problem by beginning with a simple model and gradually considering

more and more general (realistic) cases as we go on.

The simplest Lagrangian involving a modulus (s), an axion (t) and a gauge field

strength Fµν is arguably of the form:

L
m2
pl

=
c

s2
∂µs∂

µs+
c

s2
∂µt∂

µt+ c̃sFµνF
µν − m̃2(s− so)2 (2.1)

where c and c̃ are constants. so reflects that s will have a non-zero vacuum expectation

value. In our conventions, s and t are dimensionless and mpl is the Planck mass.

This form of the Lagrangian arises in supersymmetric string and M theory models e.g.

the universal axio-dilaton Lagrangian or the model independent axion/modulus multiplet in

heterotic string compactifications [28]. From this Lagrangian we can canonically normalise

– 3 –
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the fields after setting s to its vacuum value and compute the partial decay widths

Γ(ŝ→ t̂t̂) =
1

64πc

m3

m2
pl

(2.2)

and

Γ(ŝ→ γγ) =
1

64πc

m3

m2
pl

(2.3)

where m = m̃〈s〉√
2c

is the physical moduli mass.

The contribution to dark radiation of axion from moduli decay can be calculated

from [17–19]

∆Neff =
43

7

Γaxions

Γvisible

(
g∗

g∗reheat

)1/3

(2.4)

We can take the decay of moduli into two photons as a model for the decay of the moduli

into Standard Model particles, so this calculation gives

∆Neff ∼ O(1) (2.5)

since ∆Neff is given by the ratio of the decay width of the modulus decay into axions versus

Standard Model particles. This illustrates the fact that the moduli couple semi-universally

to all particles (as one expects, since, after all they are extra dimensional gravitons).

In this paper we are interested in the case when there are a large number, N of

axion/moduli multiplets, (ti, si). The previous Lagrangian can then be generalised to

L = m2
pl

∑
i

(
ai
s2
i

∂µsi∂
µsi +

ai
s2
i

∂µti∂
µti + ãisiFµνF

µν − m̃2
i (s

2
i − 〈si〉2)

)
(2.6)

This Lagrangian arises from a supergravity theory containing N chiral superfields with

scalar components zj = tj + isj with Kahler potential K = −3 lnV where V = Πis
ai
i . This

Kahler potential is a typical term which would arise in string/M theory compactifications.1

Let us now calculate Neff ≡ NSM + ∆Neff . To do this we need to evaluate the N2 partial

decay widths Γ(ŝj → t̂it̂i) which can readily be calculated to be

Γ(ŝj → t̂it̂i) =
δij
64π

1

aj

m3
j

m2
pl

(2.7)

where mj =
m̃j〈s〉√

2aj
. On the other hand we also calculate

Γ(ŝj → γγ) =
1

64π

1

(
∑

i ãi〈si〉)2

ã2
j 〈sj〉2

aj

m3
j

m2
pl

(2.8)

which results in

∆Neff =
(
∑

i ãi〈si〉)2

ã2
j 〈sj〉2

=
1

(16πα)2ã2
j 〈sj〉2

(2.9)

where we used the fact that the sum which appears is related to the coupling constant of

the gauge theory and have set the numerical factors in equation (2.4) to one for simplicity.

Important points to note about this example are:

1In the next section we will study more concrete string/M theory examples.
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a) due to the diagonal mass and kinetic terms, a given modulus field ŝj decays only into

its axion partners ;

b) the moduli with the smallest masses will decay last.

When the last (and lightest) modulus decays it substantially dilutes the energy density

of particles produced from previous decays of heavier moduli. Hence, in computing ∆Neff

we are only interested in axions produced from the lightest moduli fields.

Now, in this particular case α is interpreted as the fine structure constant evaluated

when the moduli decay takes place just before BBN, so 16πα is an order one number,

independent of N . On the other hand, since 1
16πα is a sum of the N terms ãj〈sj〉, if all N

terms contribute similar amounts to the sum, we would have Neff ∼ N2 which is our first

indication of the Axiverse induced dark radiation problem. In this particular, very special

model, observational consistency requires that the value of α arises only from the modulus

sj and hence that ∆Neff is order one or smaller. Let us discuss more typical models.

In much more generality, the moduli dependent kinetic terms are not of the form ai
s2i

;

rather they will be given by more complicated functions which are homogeneous of degree

minus two. This is because the moduli Kahler potentials in string/M theory compacti-

fications can be written as logarithms of homogeneous functions of fixed degrees, which

implies that their second derivatives are homogeneous of said degree. Thus, one has a

kinetic mixing matrix Kij whose entries are homogeneous of degree minus two. Before we

discuss this most general case, we consider an intermediate, but instructive case: models

in which the kinetic coefficients are diagonal, but arbitrary functions of degree minus two,

fi. This sort of example occurs when the Kahler potential is dominated by a single term,

but which could depend on all the moduli. In this case we have, setting mpl = 1:

L = fi(∂µsi)
2 + fi(∂µti)

2 + ãisiF
2
µν +

∑
i

m̃2
i s

2
i (2.10)

Normalising the fields

si =
1√

2〈fi〉
ŝi, ti =

1√
2〈fi〉

t̂i, Aµ =
1

2
√
ãi〈si〉

Âµ (2.11)

gives the Lagrangian

L =
1

2
(∂µŝi)

2 +
1

2
(∂µt̂i)

2 +
1

4
F̂ 2
µν +

〈∂jfi〉
2
√

2
√
〈fj〉〈fi〉

ŝj(∂µt̂i)
2 +

ãj

4
√

2〈fi〉ãi〈si〉
ŝjF̂

2
µν (2.12)

This results in

Γ(ŝj → t̂it̂i) =
1

256π

1

〈fj〉
1

〈fi〉2
〈∂jfi〉2

m3
j

m2
pl

(2.13)

Γ(ŝj → Axions) =
1

256π

(
N∑
i=1

1

〈fj〉
1

〈fi〉2
〈∂jfi〉2

)
m3
j

m2
pl

Γ(ŝj → γγ) =
1

64π

1

〈fj〉
ã2
j(∑N

i=1 ãi〈si〉
)2

m3
j

m2
pl

– 5 –
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where mj =
m̃j√
2〈fj〉

. The key point here is the sum over N terms in the second of the above

equations. If the kinetic coefficient fi depends on sj then sj will be able to decay into titi
and, in the general case we will have N such decays producing light axions, giving

Neff ∝ N (2.14)

The fact that the decay width of the lightest moduli into axions is of order N is independent

of the moduli couplings to the hidden sector since it only depends on the number of fields.

It is also instructive to illustrate the N -dependence in simple examples as these demon-

strate how the Axiverse induced dark radiation problem might be solved. In the first

example we take all of the kinetic coefficients equal and to be given by

fi =
1∑
k s

2
k

=
1

s2
1 + . . .+ s2

N

≡ 1

S2
rms

(2.15)

The decay width of the j-th modulus to decay into the i-th axion is then

Γ(ŝj → t̂it̂i) =
1

64π

〈sj〉2

〈S2
rms〉

m3
j

m2
pl

(2.16)

which implies that the total decay width of the j-th modulus to decay into axions is a sum

of N terms which adds up to

Γ(ŝj → axions) =
N

64π

〈sj〉2

〈S2
rms〉

m3
j

m2
pl

(2.17)

By comparison, the decay width into gauge bosons is

Γ(ŝj → γγ) =
1

64π

ã2
j 〈S2

rms〉(∑N
i=1 ãi〈si〉

)2

m3
j

m2
pl

(2.18)

which leads to

∆Neff(sj) = N
〈sj〉2

〈S2
rms〉

(∑N
i=1 ãi〈si〉

)2

ã2
j 〈S2

rms〉
= N

〈sj〉2

〈S2
rms〉

1

(16πα)2ã2
j 〈S2

rms〉
(2.19)

Clearly, in this example, we can see that if the vev of Srms is sufficiently large in (11d units)

then one can suppress the axion contribution to the dark radiation density.

Finally, let us discuss the most general case. The following Lagrangian:

L =

N∑
i=1

N∑
j=1

CijUiksk∂µtj∂
µtj (2.20)

is the most general Lagrangian coupling moduli fields to axions with two derivatives of

the axion fields. Here, Cij arises from diagonalising the Kahler metric Kij and Uij , which

– 6 –
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we have ignored until now arises from diagonalising the moduli mass matrix. We sup-

plement this Lagrangian with typical terms coupling the moduli to Standard Model and

supersymmetric particles. The Lagrangian for moduli-gauge boson interactions is

L =

N∑
i=1

BiUikskFµνF
µν (2.21)

and the Lagrangian for moduli-scalar kinetic interactions is

L =
N∑
i=1

DiUikskDµfD
µf (2.22)

Dropping numerical factors, the decay width of sk, into various channels is:

Γaxions =
N∑
j=1

Γ(sk → tjtj)

=

N∑
j=1

(
N∑
i=1

CijUik

)2
m3
sk

M2
PL

Γgauge particles = nG

(
N∑
i=1

BiUik

)2
m3
sk

M2
PL

Γfermions/sfermions = nf

(
N∑
i=1

DiUik

)2
m3
sk

M2
PL

(2.23)

where nG and nf are the numbers of gauge bosons and fermions respectively. Even though

the most general model has so many parameters, one can see that we expect Neff ∝ N :

〈∆Neff〉 ∝
Γaxions

Γvisible
∝ N〈C〉2

nG〈B〉2 + nf 〈D〉2
∝ N (2.24)

This arises because we expect the mean values C, B and D to be comparable and that

(
∑N

i=1 Uik)
2 to be order one. This is borne out by explicit calculations, see e.g. [17–19, 29–

34]. In other words, since the moduli couplings to axions are comparable to their couplings

to the Standard Model particles, the string/M theory axiverse is in serious tension with

observed limits on the amount of dark radiation. In special examples with low numbers

of axions, one can see that it is possible to generate acceptably small amounts of dark

radiation assuming certain couplings are small enough, for example, [17–21, 24–26]. But

in general, this will be difficult to avoid.

3 String/M theory examples

3.1 Calabi-Yau compactifications

In Calabi-Yau compactifications of superstring theories to four dimensions, The moduli

and axion kinetic terms in the Lagrangian are derived from a function of the moduli fields

called the Kahler potential, K, which, up to a coefficient is given by

K = −a lnVX (3.1)

– 7 –
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Here, VX is the volume of the Calabi-Yau manifold (as a function of the moduli).

This is a sum of terms with coefficients given by the triple intersection numbers dijk. The

coefficient a takes different values, depending upon which string theory one is considering.

In the heterotic and Type IIA compactifications, the volume is given as a function of the

Kahler moduli Si as:

VX =

n∑
i=1

dijkSiSjSk (3.2)

Clearly, in a completely generic case, with many non-zero entries in dijk, VX is a sum

of many terms and Kij will not be diagonal. Hence, upon diagonalisation, when expanding

around a particular vacuum state, the matrices Cij , Uij and the coefficients Bi and Di will

be quite general and we expect Neff ∝ N .

In the LARGE volume scenario of [33, 34], there is a modulus field with a vev much

larger than that of the other moduli. In this case, the volume functional of the Calabi-Yau

threefold is approximated by

V = s
3/2
1 − s3/2

2 − . . .− s3/2
N (3.3)

K = −2 lnV (3.4)

In the limit where the s1 vev is larger than the other vevs, s1 � si, the diagonalised Kahler

metric is approximately

f1 = K11 ≈
3

4s2
1

, fi = Kii ≈
3

8s
3/2
1 s

1/2
i

(3.5)

∂1f1 = − 3

2s3
1

, ∂if1 = 0, ∂1fi = − 9

16s
5/2
1 s

1/2
i

, ∂ifi = − 3

16s
3/2
1 s

3/2
i

(3.6)

For s1, it turns out that ∆Neff ∝ N . This can be seen as follows. The decay widths to

axions are

Γ(ŝ1 → t̂1t̂1) =
1

256π

(
16

3

)
m3

m2
pl

(3.7)

Γ(ŝ1 → t̂i 6=1t̂i 6=1) =
3

256π

m3

m2
pl

(3.8)

Γ(ŝ1 → axions) =
1

256π

(
16

3
+ 3(N − 1)

)
m3

m2
pl

(3.9)

whilst the gauge boson channel gives

Γ(ŝ1 → γγ) =
1

48π

ã2
j 〈s2

1〉(∑N
i=1 ãi〈si〉

)2

m3

m2
pl

(3.10)

resulting in a dark radiation contribution of

∆Neff(s1) =

(
1 +

9

16
(N − 1)

) (∑N
i=1 ãi〈si〉

)2

ã2
1〈s2

1〉
(3.11)

– 8 –
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This is interesting, because in LARGE volume models, the vev s1 is expected to be

much larger than the other vevs, hence one expects a suppression of ∆Neff in this case,

following our discussion in section two. Furthermore, s1 is typically the lightest modulus

in this scenario [34].

For completeness, for sj 6=1, the dark radiation density doesn’t depend on N :

Γ(ŝj 6=1 → t̂j 6=1t̂j 6=1) =
1

128π

〈s1〉3/2

〈sj〉3/2
m3

m2
pl

(3.12)

Γ(ŝj 6=1 → t̂j 6=it̂j 6=i) = 0 (3.13)

Γ(ŝj 6=1 → axions) =
1

128π

〈s1〉3/2

〈sj〉3/2
m3

m2
pl

(3.14)

gauge boson channel is

Γ(ŝj 6=1 → γγ) =
1

24π

ã2
j 〈s

1/2
j 〉〈s

3/2
1 〉(∑N

i=1 ãi〈si〉
)2

m3

m2
pl

(3.15)

So the total dark radiation density is proportional to

∆Neff(sj 6=1) =
3

16

(∑N
i=1 ãi〈si〉

)2

ã2
j 〈s2

j 〉
(3.16)

3.2 Diagonal Kahler metrics

Clearly, from the above discussions, one can suppress dark radiation from moduli decays

when the Kahler metric for the moduli fields is approximately diagonal. This will be the

case when the Volume function is dominated by just one term only.

VX =

N∏
i=1

Saii , K = −3

N∑
i=1

ai lnSi (3.17)

where ai are microscopic parameters whose sum is a constant determined by the geometry

of the extra dimensions. This is unity for the Calabi-Yau case and 7
3 for G2-manifolds. To

calculate decay width, let us translate the above internal manifold into condition on decay

width coefficients particularly Cij . It can be shown that (see appendix A)

Cij =
1√
KD
ii

∂ lnKD
ii

∂sj

Bi =
α√
KD
ii

Ni (3.18)

Di =
1√
KD
ii

∂ lnKD
αα

∂si

where KD
ij is the diagonal Kahler metric. From (3.17), It is trivial to show that the

coefficients are also diagonal:

Cij = Ciδij (3.19)

– 9 –
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Following the previous analysis, this simple relation implies that ∆Neff becomes indepen-

dent of N on average.

〈∆Neff〉 ∝
〈C〉2

nG〈B〉2 + nf 〈D〉2
(3.20)

where the orthogonality of rotation matrix, (
∑N

i=1 U
2
ik) = 1, has been used.

The physical reason for this behaviour is that this particular volume form forces each

modulus to decay only into its axionic partner. If we assume further that this basis is

already physical, i.e. there is no further mixing between moduli or axions, it becomes clear

that dark radiation, regardless of N, consists of only one species of axion which is the

partner of the last modulus to decay.

The moduli mixing matrix can also play a role in suppressing dark radiation. Again,

though non-generic, this occurs when there is a relation between the moduli mass matrix

and the eigenvalues of the Kahler metric:√
KD
ii ∝ Uij (3.21)

The above relation is equivalent to

1

Ci
∝ Uik,

1

Bi
∝ Uik,

1

Di
∝ Uik (3.22)

In this case, the correlation becomes

〈∆Neff〉 ∝
N〈C〉2

nGN2〈B〉2 + nfN2〈D〉2
∝ 1

N
(3.23)

Therefore, under these very special circumstances, dark radiation can actually be sup-

pressed by the number of axions on average. This counter-intuitive result is merely the

effect of increasing N-dependence of the moduli to visible sector couplings so that dark

radiation is dominated by standard model radiation (neutrinos). Most likely, this is merely

a curious observation rather than a realistic case.

3.2.1 Mass matrix in G2 compactified M-theory

In this subsection, we put together some of these results in a concrete setting where the

moduli mass matrix is known, namely G2-compactified M theory. Again, we are assuming

that K is dominated by a single term:

K = −3 ln

(
N∏
i=1

saii

)
(3.24)

where
∑N

i=1 ai = 7
3 . From above, Neff becomes independent of the number of axions in this

model. However, regardless of this advantage, one could easily find that the typical value

of Neff , although independent of N , is actually too large in practice e.g. ∆Neff ∼ 10. We

would therefore like to investigate the possibility of further suppressing dark radiation in

this setup.

– 10 –
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We briefly recall some details of moduli stabilisation. It has been shown in [29] that

with a hidden sector with two gauge groups where first group is sQCD with 1 flavour of

quarks and second group is pure glue sQCD leads to dS vacua. The superpotential is

written as

W = A1φ
aeib1

∑N
i NiSi +A2e

ib2
∑N

i NiSi (3.25)

where φ is the meson superfield in the hidden sector. With the superpotential and Kahler

potential being specified, it is straightforward yet tedious to work out the mass mixing

matrix resulting from moduli stabilisation [30, 32].

Ukj =

√
aj+1

(
∑j

i=1 ai)(
∑j+1

i=1 ai)

√
ak , k ≤ j

Ukj = −

√√√√∑j
i=1 ai∑j+1
i=1 ai

, k = j + 1

UkN =

√
3ak
7

(3.26)

where i = 1 . . . N − 1 are the degenerate light moduli and i = N is heavy modulus. Notice

that except k = j + 1, Ukj ∝
√
ak ∝

√
Kk. Therefore, we the element Uj+1,j will be

suppressed if it turned out that:
j∑
i=1

ai � aj+1 (3.27)

As a result, one would expect 1
N suppression on dark radiation under this condition.

The modulus decay width can be calculated from [30]

ΓXj = DXj

m3
Xj

M2
Pl

DXj = α

(
N∑
k=1

U2
kj

ak

)
+ β

(
N∑
k=1

Ukj√
ak

)2

(3.28)

where α and β are index-independent parameters dependent on the microscopic details of

the G2 manifold. The first term represents the decay width into axions where the latter

represents decay width into visible particles. From (3.26) and (3.28) it is trivial to see that

total decay width of jth modulus and corresponding dark radiation are controlled by

Γj ∝
∑j

i=1 ai
aj+1

(3.29)

∆Neff(Xj) ∝
ja2
j+1 + (

∑j
i=1 ai)

2

(jaj+1 −
∑j

i=1 ai)
2

(3.30)

Applying (3.27), we clearly see that ∆Neff(Xj) ∝ 1
j and Γj becomes smallest. This is essen-

tial to the model because it guarantees that the last decay modulus exhibits 1
N behaviour.

For practical purpose, only j = N − 1 in condition (3.27) will be assumed.

– 11 –
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Figure 1. Left: result from geometric sequence configurations showing ∆Neff as a function of

N , where r = 2. Right: result from double moduli dominated configurations showing ∆Neff as a

function of N , where εN = 0.1.

Next, we will explicitly show correlations between the number of axions and Neff .

Instead of scanning the N parameters ai space, we will give systematic examples of simple

configurations of the ai which work: the first example is when n of the ai are large and the

rest small:

ai =

{
εā, . . . , εā︸ ︷︷ ︸

N−n

,
7

3n
− εā(N − n)

n
, . . . ,

7

3n
− εā(N − n)

n︸ ︷︷ ︸
n

}
(3.31)

The second is a “geometric sequence” of ai’s,

a = {a0, a0, a0r, a0r
2, . . . , a0r

N−2} (3.32)

Though these can be viewed as toy models at best, they both illustrate that, in prin-

ciple, the amount of dark radiation can actually decrease as one increases the number of

axions. This is illustrated in the two figures.

4 Conclusions and outlook

∆Neff is a very powerful probe of light degrees of freedom in the hidden sector and, some-

what surprisingly, has been constrained to be quite small, consistent with zero. The Axi-

verse induced Dark Radiation Problem arises from the plethora of light degrees of freedom

that can be present in string/M theory compactifications to four dimensions. Though we

focused on the axions, similar conclusions can be drawn from hidden photons and other

light particles in the hidden sector. We pointed out several possible mechanisms via which

this problem could be avoided: a) a relatively large modulus vev as in the LARGE volume

scenario; b) alignment between the axion kinetic and mass mixing matrices so that the

last modulus to decay does so predominantly into its axionic partner. It would be very

interesting to explore these mechanisms in more detail in various specific models. One

potential problem with the large vev solution in practice is that the large vev corresponds

– 12 –



J
H
E
P
0
4
(
2
0
1
6
)
0
0
9

1.0 1.2 1.4 1.6 1.8 2.0

r

0.5

1.0

1.5

2.0

DNeff

(a)

0.0 0.2 0.4 0.6 0.8 1.0

Ε N

0.2

0.4

0.6

0.8

1.0

1.2

1.4

DNeff

(b)

Figure 2. Left: result from geometric sequence configurations showing ∆Neff as a function of r,

where points in blue, red, yellow, green are N = 30, 50, 100, 200 respectively. Right: result from

double moduli dominated configurations showing ∆Neff as a function of εN , where points in blue,

red, yellow, green are N = 30, 50, 100, 200 respectively.

to a weak Standard Model coupling. In general, it might be difficult to make the vev large

enough without making the Standard Model coupling too small.
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A Decay coefficients

We show detail analysis for coefficients Cij , Bi and Di in this section. The kinetics terms

for moduli and axions are controlled by Kahler metric as following

L =
1

2
Kij∂

µsi∂µs
j +

1

2
Kij∂

µti∂µt
j (A.1)

After canonically normalisation of moduli and axions, we can expand Kahler metric as a

function of moduli field. After taking moduli mixing into account, the result for interaction

Lagrangian is

Ls̃k t̃i t̃i =
1

2

∑N
j=1

∂KD
ii

∂sj
Ujk

(KD
ii )3/2

s̃k∂
µt̃i∂µt̃

j (A.2)

where KD is Kahler metric after diagonalisation. s̃, t̃ are canonically normalised fields

after mixing. Straightforwardly, one can derive decay width into axions as

Γaxions =
1

32π

N∑
i=1

 N∑
j=1

1√
KD
ii

∂ lnKD
ii

∂sj
Ujk

2

m3
Xk

M2
pl

(A.3)
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For gauge sector, the Lagrangian takes the form

L = −1

4

(
N∑
i=1

Nizi

)
FµνF

µν (A.4)

After canonically normalisation of moduli and gauge fields and mixing between moduli, we

get the interaction terms between moduli and gauge fields.

L =
1

4

1(∑N
i=1Ni〈si〉

) N∑
i=1

NiUik√
KD
ii

s̃kFµνF
µν (A.5)

The moduli decay width into gauge bosons/gauginos is given by

Γgauge =
NG

32π

 N∑
i=1

α√
KD
ii

NiUik

2

m3
Xk

M2
pl

(A.6)

For matter sector, the interaction terms can be found from

L = KαβDµf
αDµfβ +Kαβ f̃

α /Df̃β (A.7)

Then, after normalisation of moduli field and fermions/sfermions fields, the interaction

terms become

L =
N∑
i=1

1√
KD
ii

∂ lnKD
αα

∂si
Uiks̃k

(
Dµf

αDµfα + f̃α /Df̃α
)

(A.8)

Therefore, the decay width into fermion can be written as

Γfermion ∝

 N∑
i=1

1√
KD
ii

∂ lnKD
αα

∂si
Uik

2

m3
Xk

M2
pl

(A.9)

Comparing to previous section, we get

Cij =
1√
KD
ii

∂ lnKD
ii

∂sj

Bi =
α√
KD
ii

Ni (A.10)

Di =
1√
KD
ii

∂ lnKD
αα

∂si
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