

King’s Research Portal

DOI:
10.1016/j.tcs.2016.04.029

Document Version
Peer reviewed version

Link to publication record in King's Research Portal

Citation for published version (APA):
Barton, C., Liu, C., & Pissis, S. (2016). Linear-time computation of prefix table for weighted strings &
applications. Theoretical Computer Science, 656, Part B, 160 - 172. https://doi.org/10.1016/j.tcs.2016.04.029

Citing this paper
Please note that where the full-text provided on King's Research Portal is the Author Accepted Manuscript or Post-Print version this may
differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version for pagination,
volume/issue, and date of publication details. And where the final published version is provided on the Research Portal, if citing you are
again advised to check the publisher's website for any subsequent corrections.

General rights
Copyright and moral rights for the publications made accessible in the Research Portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognize and abide by the legal requirements associated with these rights.

•Users may download and print one copy of any publication from the Research Portal for the purpose of private study or research.
•You may not further distribute the material or use it for any profit-making activity or commercial gain
•You may freely distribute the URL identifying the publication in the Research Portal
Take down policy
If you believe that this document breaches copyright please contact librarypure@kcl.ac.uk providing details, and we will remove access to
the work immediately and investigate your claim.

Download date: 26. Dec. 2024

https://doi.org/10.1016/j.tcs.2016.04.029
https://kclpure.kcl.ac.uk/portal/en/publications/0ff61f47-8249-4ff9-b037-f21a36cd8bf7
https://doi.org/10.1016/j.tcs.2016.04.029

Accepted Manuscript

Linear-time computation of prefix table for weighted strings & applications

Carl Barton, Chang Liu, Solon P. Pissis

PII: S0304-3975(16)30068-8
DOI: http://dx.doi.org/10.1016/j.tcs.2016.04.029
Reference: TCS 10738

To appear in: Theoretical Computer Science

Received date: 29 July 2015
Revised date: 29 March 2016
Accepted date: 25 April 2016

Please cite this article in press as: C. Barton et al., Linear-time computation of prefix table for weighted strings & applications, Theoret.
Comput. Sci. (2016), http://dx.doi.org/10.1016/j.tcs.2016.04.029

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing
this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is
published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all
legal disclaimers that apply to the journal pertain.

http://dx.doi.org/10.1016/j.tcs.2016.04.029

00 (2016) 1–15

Linear-Time Computation of Prefix Table for Weighted Strings &
Applications�

Carl Bartona, Chang Liub, Solon P. Pissisb

aThe Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
bDepartment of Informatics, King’s College London, London, UK

Abstract

The prefix table of a string is one of the most fundamental data structures of algorithms on strings: it determines the longest factor
at each position of the string that matches a prefix of the string. It can be computed in time linear with respect to the size of the
string, and hence it can be used efficiently for locating patterns or for regularity searching in strings. A weighted string is a string
in which a set of letters may occur at each position with respective occurrence probabilities. Weighted strings, also known as
position weight matrices or uncertain strings, naturally arise in many biological contexts; for example, they provide a method to
realise approximation among occurrences of the same DNA segment. In this article, given a weighted string x of length n and a
constant cumulative weight threshold 1/z, defined as the minimal probability of occurrence of factors in x, we present an O(n)-time
algorithm for computing the prefix table of x. Furthermore, we outline a number of applications of this result for solving various
problems on non-standard strings, and present some preliminary experimental results.

Keywords: algorithms on strings, weighted strings, uncertain sequences

1. Introduction

An alphabet Σ is a finite non-empty set of size σ, whose elements are called letters. A string on an alphabet Σ is a
finite, possibly empty, sequence of elements of Σ. The zero-letter sequence is called the empty string, and is denoted
by ε. The length of a string x is defined as the length of the sequence associated with the string x, and is denoted by
|x|. We denote by x[i], for all 0 ≤ i < |x|, the letter at index i of x. Each index i, for all 0 ≤ i < |x|, is a position in x

when x � ε. It follows that the i-th letter of x is the letter at position i − 1 in x.
The concatenation of two strings x and y is the string of the letters of x followed by the letters of y; it is denoted

by xy. A string x is a factor of a string y if there exist two strings u and v, such that y = uxv. Consider the strings
x, y, u, and v, such that y = uxv, if u = ε then x is a prefix of y, if v = ε then x is a suffix of y. Let x be a non-empty
string and y be a string, we say that there exists an occurrence of x in y, or more simply, that x occurs in y, when x is
a factor of y. By y[i . . j] we denote the factor y[i] . . . y[j] of string y. Every occurrence of x can be characterised by a
position in y; thus we say that x occurs at the starting position i in y when y[i . . i + |x| − 1] = x.

Single nucleotide polymorphisms, as well as errors introduced by wet-lab sequencing platforms during the process
of DNA sequencing, can occur in some positions of a DNA sequence. In some cases, these uncertainties can be

�A preliminary version of this article appeared in the Proceedings of Combinatorics on Words - 10th International Conference, WORDS 2015,
LNCS, Springer.

Email addresses: c.barton@qmul.ac.uk (Carl Barton), chang.2.liu@kcl.ac.uk (Chang Liu), solon.pissis@kcl.ac.uk (Solon P.
Pissis)

1

/ 00 (2016) 1–15 2

accurately modelled as a don’t care letter [1]. However, in other cases they can be more subtly expressed, and, at each
position of the sequence, a probability of occurrence can be assigned to each letter of the nucleotide alphabet; this
process gives rise to a weighted string or a position weight matrix. For instance, consider a IUPAC-encoded [2] DNA
sequence, where the ambiguity letter M occurs at some position of the sequence, representing either base A or base C.
This gives rise to a weighted DNA sequence, where at the corresponding position of the sequence, we can assign to
each of A and C an occurrence probability of 0.5.

A weighted string x of length n on an alphabet Σ is a finite sequence of n sets. Every x[i], for all 0 ≤ i < n, is a
set of ordered pairs (s j, πi(s j)), where s j ∈ Σ and πi(s j) is the probability of having letter s j at position i. Formally,
x[i] = {(s j, πi(s j))|s j � s� for j � �, and

∑
j πi(s j) = 1}. A letter s j occurs at position i of a weighted string x if and

only if the occurrence probability of letter s j at position i, πi(s j), is greater than 0. A string u of length m is a factor of a
weighted string if and only if it occurs at starting position i with cumulative occurrence probability

∏m−1
j=0 πi+ j(u[j]) >

0. Given a cumulative weight threshold 1/z ∈ (0, 1], we say that factor u is z-valid, or equivalently that factor u has
a z-valid occurrence, if it occurs at starting position i and

∏m−1
j=0 πi+ j(u[j]) ≥ 1/z. A position i ∈ {0, . . . , n − 1} of x is

called solid if xi contains exactly one pair (s j, πi(s j)), with πi(s j) = 1. For succinctness of presentation, for a non-solid
position i, the set of pairs is denoted by [(s j1 , πi(s j1)), . . . , (s jk , πi(s jk))]; for a solid position i it is simply denoted by
the letter s j with πi(s j) = 1.

A great deal of research has been conducted on weighted strings for pattern matching [3, 4], for computing various
types of regularities [5, 6, 7, 8], for indexing [3, 9], and for alignments [10, 11]. The efficiency of most of the proposed
algorithms relies on the assumption of a given constant cumulative weight threshold defining the minimal probability
of occurrence of factors in the weighted string.

Similar to the standard setting [12, 13], we can define the prefix table for a weighted string. Given a weighted
string x of length n and a constant cumulative weight threshold 1/z, we define the prefix table WP of x as follows:

WP[i] =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

|u| if i = 0 and u is the longest z-valid prefix of x.

|v| if 0 < i < n and v is the longest z-valid prefix of x with a z-valid
occurrence at i.

For large alphabets it makes sense to perform a simple filtering on x to filter out letters with occurrence probability
less than 1/z. This is required as if the alphabet is not of fixed size, we may have many letters with low occurrence
probability that are not of interest. We simply read the entire string and keep only those letters with probability greater
than or equal to 1/z; these are at most z for each position, so still constant. We are thus left with a data structure of
size O(zn): a weighted string consisting of n sets of ordered pairs of size O(z) each; the entire stage takes time O(σn).
For clarity of presentation, in the rest of this article, we assume that the string resulting from this stage is the input
weighted string x, and consider the following problem.

WeightedPrefixTable
Input: a weighted string x of length n and a constant integer z > 0
Output: prefix table WP of x

Example 1. Let x = aab[(a, 0.5), (b, 0.5)][(a, 0.5), (b, 0.5)]bab and z = 4. Then we have

i : 0 1 2 3 4 5 6 7

WP[i] : 8 1 0 5 1 0 1 0.

WP[3] = 5 since aabab has a z-valid occurrence at position 0 with probability 1/4 ≥ 1/4 and a z-valid occurrence at

position 3 with probability 1/4 ≥ 1/4. �

The main contribution of this article is the following.

Theorem 1. Problem WeightedPrefixTable can be solved in time O(n).

A preliminary version of this article appeared first in [14].

2

/ 00 (2016) 1–15 3

2. Auxiliary Data Structures and Properties

We first start by developing basic tools and auxiliary data structures for processing weighted strings. These tools
are interesting in their own right. We next present some properties of the prefix table of a weighted string.

2.1. Basic Tools and Auxiliary Data Structures

Fact 1. Any factor of a z-valid factor of x is also z-valid.

We perform a colouring stage on x, similar to the one before the construction of the weighted suffix tree [9], which
assigns a colour to every position in x according to the following scheme:

• mark position i black (b), if none of the occurring letters at position i has probability of occurrence greater than
1 − 1/z.

• mark position i grey (g), if one of the occurring letters at position i has probability of occurrence greater than
1 − 1/z and less than 1.

• mark position i white (w), if one of the occurring letters at position i has probability of occurrence 1.

Notice that if z ≥ 2, then at every white and grey position there is only one relevant letter since only one letter can
have probability of occurrence greater than 1 − 1/z ≥ 1/2, whereas in a black position there may be several letters to
consider. However, if z < 2 there are no valid letters with probability of occurrence at most 1−1/z since 1−1/z < 1/z
and therefore no black positions. Therefore for the rest of this article we assume z ≥ 2. This stage can be trivially
performed in time O(zn).

Lemma 1 ([9]). Any z-valid factor of x contains at most �log z/ log(z
z−1)� black positions.

From Lemma 1 we know that any z-valid factor contains a constant number of black positions; for the rest of the
article, we denote this constant by � = �log z/ log(z

z−1)�. We can also see that any z-valid factor of a weighted string is
uniquely determined by the letters it has at black positions: any white or grey position is common to all z-valid factors
that contain the same positions. Hence an occurrence of a z-valid factor of x can be memorised as a tuple < i, j, s >,
where i is the starting position in x, j ≥ i is the ending position in x, and s is a set of ordered pairs (c, p) denoting
that letter c ∈ Σ occurs at black position p, i ≤ p ≤ j. This representation requires space O(�) per occurrence by
Lemma 1; it can also be used to efficiently compute the occurrence probability of any factor of x in time proportional
to the number of black positions it contains.

We start by computing an array BP of integers, such that BP[i] stores the smallest position greater than i that
is marked black; otherwise (if no such position exists) we set BP[i] = n. We next view x as a sequence of the form
u0b0u1b1 . . . uk−1bk−1uk, such that u0, uk are (possibly empty) strings on Σ, u1, . . . , uk−1 are non-empty strings on Σ, and
b0, . . . , bk−1 are maximal sequences consisting only of black positions. We compute an array FP of factor probabilities,
such that FP[i + q] stores the occurrence probability of u j[0 . . q], for all 0 ≤ q < |u j|, 0 ≤ j ≤ k, starting at position i

of x; otherwise (if no such factor starts at position i) we set FP[i] = 0. For an example, see Table 1. Both arrays BP
and FP can be trivially computed in time O(n).

Given a range of positions in x, the black positions indices within this range, and the letters at black positions,
that is, given a tuple < i, j, s >, we can easily compute the occurrence probability of the respective factor: we take the
probability of any factor between black positions, the probability of the letters at black positions, the probability of
any leading or trailing segments, and, finally, we multiply them all together. Notice that we can deal with any leading
segments by computing the differences between prefixes via division. This takes time proportional to the number of
black positions within the factor, and is thus O(�) for any z-valid factor.

Example 2. Consider the weighted string x in Table 1 and z = 2. We wish to determine the probability of the

factor starting at position 2 and ending at position 7, with the two black positions as letters a and a; that is factor

< 2, 7, {(4, a), (7, a)} >. We determine the probability of factor tt starting at position 2 by taking FP[3]/FP[1] = 1.

We take the probability of factor tc starting at position 5, which is given by FP[6] = 1. The probability of the

two black positions are 0.5 and 0.5. By multiplying all of these together we get the occurrence probability of factor

< 2, 7, {(4, a), (7, a)} > which is 0.25. �
3

/ 00 (2016) 1–15 4

i 0 1 2 3 4 5 6 7 8 9 10
x[i] a c t t (a, 0.5) t c (a, 0.5) t t (a, 0.6)

(c, 0.5) (t, 0.5) (t, 0.4)
Colour w w w w b w w b w w g

FP 1 1 1 1 0 1 1 0 1 1 0.6
BP 4 4 4 4 7 7 7 11 11 11 11

Table 1: Weighted string x and z = 2, colouring, array FP with cumulative occurrence probabilities between black positions, and array BP with
black positions indices; the letter t at position 10 has already been filtered out since 0.4 < 1/z

We consider a maximal factor of a weighted string to be a z-valid factor that cannot be extended to the right and
preserve its validity.

Lemma 2 ([3]). At most z maximal factors start at any position of x.

Intuitively, this is because their probabilities are at least 1/z each and they sum up to at most 1.

Example 3. Consider the following weighted string x and let z = 10.

a[(a, 0.5), (c, 0.1), (g, 0.2), (t, 0.2)]t[(a, 0.5), (g, 0.5)]c.

We want to generate all maximal factors starting at position 0 of x. We start at position 0 with a. We extend at po-

sition 1 on the right and get aa, ac, ag, at. We extend at position 2 and get aat, act, agt, att. We extend at position

3 and get aata, aatg, agta, agtg, atta, attg. Note that factor act cannot be extended further on the right and pre-

serve its validity. Finally we terminate the extension at position 4 and get aatac, aatgc, agtac, agtgc, attac, attgc.

Therefore we get a total of seven maximal factors starting at position 0. These factors are:

aatac, aatgc, act, agtac, agtgc, attac, attgc.

Note that by Lemma 2, we can have no more than z = 10 maximal factors starting at position 0. �

For a weighted string x of length n, by lcve(x[i . . n − 1], x[j . . n − 1]) we denote the length of the longest common
z-valid prefix (or longest common z-valid extension) of x[i . . n − 1] and x[j . . n − 1].

Proposition 1. Given a factor v of x with two z-valid occurrences < i, j, s > and < i′, j′, s′ >, lcve(x[i . . n −
1], x[i′ . . n−1]) having v as a prefix can be computed in time O(�+�zm), where m = lcve(x[i . . n−1], x[i′ . . n−1])−|v|.

Proof Let πi and πi′ be the probability of occurrence of the common z-valid factor v, starting at positions i and i′ of
x, respectively. We can compute πi and πi′ in time O(�) using < i, j, s > and < i′, j′, s′ > with the technique outlined
above (using array FP). We may then proceed by comparing letters from positions j + 1 and j′ + 1 onwards. We have
a number of cases to consider. Suppose that of the two positions we compare:

• no position is black; then we carry on comparing the letters and updating the probabilities accordingly.

• one position is black and the other position is either white or grey; we check if the single letter at the white or
grey position occurs at the black position and update the probabilities accordingly.

• both positions are black; we consider all occurring letters that match and continue extending all corresponding
z-valid factors. By Lemma 2, the number of these combinations of letters at black positions is at most z; by
Lemma 1 the number of black positions in each combination is at most �.

We terminate this procedure when we have no match or the probability threshold is violated. It is clear to see that the
work at any position is no more than O(�z). �

4

/ 00 (2016) 1–15 5

Suppose that we want to compute lcve(x[i . . n − 1], x[i′ . . n − 1]). Proposition 1 can be implemented via maintaing
two lists Ei, Ei′ of tuples < s, π, ptr >, where s is a set of ordered pairs (c, p) denoting that letter c ∈ Σ occurs at
black position p of x, π is the occurrence probability of the z-valid factor represented by the tuple, and ptr is a pointer
from the tuple of Ei (resp. Ei′) to the tuple representing the same factor in list Ei′ (resp. Ei). Note that both lists are
maintained sorted according to element s due to the fact that the set of pairs (p, c) are ordered by the definition of the
weighted string. By Lemmas 1 and 2 the size of each list is O(�z).

Example 4. Consider the following weighted strings and let z = 16.

x[i . . n − 1] = [(a, 0.5), (c, 0.5)]a[(a, 0.5), (c, 0.5)]c[(a, 0.5), (c, 0.5)] . . .

x[i′ . . n − 1] = [(a, 0.5), (c, 0.5)][(a, 0.5), (c, 0.5)]c[(a, 0.5), (c, 0.5)]c . . .

For the first five positions the lists are as follows.

Ei =< {(a, 0), (c, 2), (c, 4)}, 1/8, 0 >, < {(c, 0), (c, 2), (c, 4)}, 1/8, 1 >
Ei′ =< {(a, 0), (a, 1), (c, 3)}, 1/8, 0 >, < {(c, 0), (a, 1), (c, 3)}, 1/8, 1 > .

Hence we know that the longest common z-valid extension is 5 up to this point. Let the next position be as follows.

x[i + 5] = [(a, 0.5), (c, 0.5)]

x[i′ + 5] = [(a, 0.5), (c, 0.5)].

We need to update the lists as follows.

Ei =< {(a, 0), (c, 2), (c, 4), (a, 5)}, 1/16, 0 >, < {(a, 0), (c, 2), (c, 4), (c, 5)}, 1/16, 1 >,
< {(c, 0), (c, 2), (c, 4), (a, 5)}, 1/16, 2 >, < {(c, 0), (c, 2), (c, 4), (c, 5)}, 1/16, 3 > (1)

Ei′ =< {(a, 0), (a, 1), (c, 3), (a, 5)}, 1/16, 0 >, < {(a, 0), (a, 1), (c, 3), (c, 5)}, 1/16, 1 >,
< {(c, 0), (a, 1), (c, 3), (a, 5)}, 1/16, 2 >, < {(c, 0), (a, 1), (c, 3), (c, 5)}, 1/16, 3 > . (2)

Hence we know that the longest common z-valid extension is 6 up to this point. �

The following crucial observation follows directly from Fact 1.

Observation 1. Let u = av, for some a ∈ Σ and some string v, be a z-valid factor of a weighted string x of length n,

starting at position i, 0 ≤ i < n − 1, of x. Then factor v starting at position i + 1 is also z-valid.

By using Observation 1, the length of the longest z-valid factor starting from each position of x for each com-
bination of letters at black positions can be easily maintained. That is, for each position i, we maintain a list Li of
tuples < s, π, len >, where s is a set of ordered pairs (c, p) denoting that letter c ∈ Σ occurs at black position p of x,
π is the occurrence probability of the z-valid factor represented by the tuple, and len is the length of the z-valid factor
represented by the tuple. List Li is sorted according to element s. List L0 can be constructed by generating all maximal
factors starting at position 0. It is sorted according to element s due to the fact that the set of pairs (p, c) are ordered
by the definition of the weighted string. We can easily obtain list Li from Li−1, for all 1 ≤ i < n, using Observation 1.
By Lemmas 1 and 2 the size of each list is O(�z). After obtaining list Li, we can sort it according to element s using
string mergesort in time O(z� + z log z) [15]. Note that we can easily remove any duplicate elements from this sorted
list if required. By Lemma 10 (see Section 3), O(z� + z log z) = O(z�). We obtain the following lemma.

Lemma 3. Lists L0, L1, . . . , Ln−1 can be computed in time and space O(z�n).

5

/ 00 (2016) 1–15 6

Example 5. Consider the following weighted string x and let z = 8.

[(a, 0.5), (c, 0.5)]a[(a, 0.5), (c, 0.5)]c[(a, 0.5), (c, 0.5)][(g, 0.5), (t, 0.5)][(a, 0.1), (t, 0.9)] . . .

List L0 is as follows.

L0 =< {(a, 0), (a, 2), (a, 4)}, 1/8, 5 >, < {(a, 0), (a, 2), (c, 4)}, 1/8, 5 >,
< {(a, 0), (c, 2), (a, 4)}, 1/8, 5 >, < {(a, 0), (c, 2), (c, 4)}, 1/8, 5 >,
< {(c, 0), (a, 2), (a, 4)}, 1/8, 5 >, < {(c, 0), (a, 2), (c, 4)}, 1/8, 5 >,

< {(c, 0), (c, 2), (a, 4)}, 1/8, 5 >, < {(c, 0), (c, 2), (c, 4)}, 1/8, 5 > . (3)

Hence we know that the longest z-valid factor starting at position 0 of x for each combination of letters at black

positions is 5. We obtain list L1 from L0 via removing the leftmost (black) position, updating the probabilities, and

extending to the right.

L1 =< {(a, 2), (a, 4), (g, 5)}, 1/8, 5 >, < {(a, 2), (c, 4), (g, 5)}, 1/8, 5 >,
< {(c, 2), (a, 4), (g, 5)}, 1/8, 5 >, < {(c, 2), (c, 4), (g, 5)}, 1/8, 5 >,
< {(a, 2), (a, 4), (t, 5)}, 1/8, 5 >, < {(a, 2), (c, 4), (t, 5)}, 1/8, 5 >,

< {(c, 2), (a, 4), (t, 5)}, 1/8, 5 >, < {(c, 2), (c, 4, (t, 5))}, 1/8, 5 > . (4)

Hence we know that the longest z-valid factor starting at position 1 of x for each combination of letters at black

positions is 5. After obtaining list L1, we can sort it according to element s using string mergesort. �

The main idea of our algorithm is based on the efficient computation of an auxiliary array P of n integers, which
for some position i stores the length of the longest common prefix (or longest common extension) of strings x[i . . n−1]
and x[0 . . n − 1] as if in all black positions of x we had a don’t care letter—a letter that does not belong in Σ and it
matches itself and any other letter in Σ.

Computing array P in a naı̈ve way could take as much as O(n2) time; the transitive properties used in the standard
setting [12] do not hold due to don’t care letters. We will show here that it is possible to compute array P in time
O(�n). The critical observation for this computation is that no entry in WP can be greater than the length of the longest
z-valid prefix of x containing at most � black positions: this is clear from Lemma 1. This means that we only need to
compute the values of P for this longest z-valid prefix; this will allow us to efficiently compute the values of WP for
all positions later on.

We now describe the method for the efficient computation of P. Let x′ be the string obtained by replacing in x:
(a) each black position with a unique letter $h not in Σ; and (b) each grey position with the only letter in that position
with probability of occurrence greater than 1 − 1/z. Hence x′ is of the form x′0b0x′1b1 . . . x

′
k−1bk−1x′

k
, such that x′0, x

′
k

are (possibly empty) strings on Σ, x′1, . . . , x
′
k−1 are non-empty strings on Σ, and b0, . . . , bk−1 are maximal sequences

consisting only of letters $h. Notice that a letter comparison involving any $h causes a mismatch since they are unique
letters that do not belong in Σ. For the weighted string x and string x′, array P can be formally defined as follows.

P[i] =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n if i = 0.
|v| if 0 < i < n and v is the longest prefix of x′ with an occurrence at i with

at most � mismatches and |v| ≤ |u|, where u is the longest z-valid prefix
of x.

∞ if 0 < i < n and v is the longest prefix of x′ with an occurrence at i with
at most � mismatches and |v| > |u|, where u is the longest z-valid prefix
of x.

For a string y of length n, by lce(y[i . . n − 1], y[j . . n − 1]) we denote the length of the longest common prefix
(longest common extension) of factors y[i . . n−1] and y[j . . n−1]. The following fact specifies a well-known efficient
data structure over y answering such queries. It consists of the suffix array with its inverse [16], the longest common
prefix array [17], and a succinct data structure for range minimum queries over the longest common prefix array [18].

6

/ 00 (2016) 1–15 7

Fact 2. Let y be a string of length n. After O(n)-time and O(n)-space preprocessing, one can compute lce(y[i . . n −
1], y[j . . n − 1]) for all 0 ≤ i < n, 0 ≤ j < n in time O(1).

Fact 2 can be applied on string x′ to efficiently compute array P. We therefore obtain the following.

Lemma 4. Array P can be computed in time O(�n) and additional space O(n).

Proof The value of P[0] is trivially set to n. The computation of the longest z-valid prefix of x can be done in time
O(zn): we pick the highest probability per position to determine this length. For any position i > 0 of array P, we
make at most � lce-queries to find subsequent mismatching positions of x′[0 . . n − 1] and x′[i . . n − 1], starting from
lce(x′[0 . . n − 1], x′[i . . n − 1]). If at least one of the letters is a $h letter we continue extending as this does not
constitute a legitimate mismatch. If both letters are in Σ we stop extending as this constitutes a legitimate mismatch.
By Fact 2 each query requires time O(1) after O(n)-time and O(n)-space preprocessing. We immediately stop if any
of the queries exceeds the boundary of x′. Otherwise, we make a final lce-query to check if the remaining parts match
exactly. If, for any position i > 0, the length of the extension becomes greater than the length of the longest z-valid
prefix of x′, we terminate the extension and set P[i] = ∞. Each entry in P is updated only once, and so we achieve the
claim. �

Lemma 5. P[i] ≥ WP[i], for all 0 ≤ i < n.

Proof For those entries in P that are ∞ the claim is obvious. Those others entries in P are computed ignoring letters
at black positions: should all those black positions match their corresponding positions and the probability threshold
is not violated then P[i] = WP[i]; should any of those positions not match or the probability threshold is violated then
P[i] > WP[i]. �

2.2. Properties of the Prefix Table

The method for computing table WP proceeds by determining WP[i] by increasing values of the position i on x.
We introduce, the index i being fixed, two values g and f that constitute the key elements of our method. They satisfy
the following relations

g = max{ j +WP[j] : 0 < j < i} (5)

and
f ∈ { j : 0 < j < i and j +WP[j] = g}. (6)

We note that g and f are defined when i > 1. We note, moreover, that if g < i we have then g = i − 1, and that on the
contrary, by definition of f , we have f < i ≤ g.

Lemma 6. Let f < i < g, u be a factor of x with two z-valid occurrences at positions 0 and f , |u| = g − f , and

WP[i − f] < g − i. Then we can compute lcve(x, x[i . . g − 1]) in time O(�z).

Proof If WP[i − f] < g − i then there exist two factors v1 and v2, possibly v1 � v2, of u, |v1| = |v2| = WP[i − f],
occurring at positions 0, f and i − f and i, respectively. By Fact 1 factors v1 and v2 are z-valid. By the definition of
table WP there does not exist another z-valid factor v, |v| > |v1|, occurring at positions 0 and i− f . Let v3 be the longest
common z-valid prefix of x and x[i . . g − 1], i.e. lcve(x, x[i . . g − 1]) = |v3|. We have two cases: v1 = v2 and v1 � v2.

In case v1 = v2, it holds that v3, |v1| ≤ |v3| ≤ g − i, occurs at positions 0 and i. By Lemmas 1 and 2, we can
determine, in time O(�z), the length of v3 using array P, |v3| ≤ P[i] (see Lemma 5), letter comparisons only at black
positions, and the sorted lists L0 and Li (see Lemma 3). Specifically, by Lemma 5 we know where is the next legitimate
mismatch, hence this deals with the white positions. This check can be done in constant time. For all black positions,
we need to make letter comparisons. This can be done in time O(�z) by the combination of Lemmas 1 and 2. After
we have decided which combination of letters at black positions match, we need to check what is the maximal length
of the factors involving these matches. As these combinations can be by the definition of the weighted string sorted
and lists L0 and Li are also sorted, this takes time no more than O(�z). This deals with the fact that we also have grey

positions which are treated as white by array P.
In case v1 � v2 letter comparisons are required to determine the length of v3. By Lemma 1 and triangle inequality,

since v1, v2, and v3 are z-valid factors, a prefix of v1 may differ to a prefix of v3 by at most 2� (black) positions: v1,
7

/ 00 (2016) 1–15 8

occurring at position 0, differs to v2, occurring at position i− f , by at most � positions; and a prefix of v2, occurring at
position i, differs to a prefix of v3, occurring at position i, by at most � positions. Each position has at most z occurring
letters. Therefore, by Lemmas 1 and 2, we can either determine the actual value of lcve(x, x[i . . g − 1]) = |v3| < |v1| or
determine that |v1| ≤ |v3| ≤ g − i in time O(�z). In case |v1| ≤ |v3| ≤ g − i, by Lemmas 1 and 2, we can determine, in
time O(�z), the length of v3 using array P, |v3| ≤ P[i] (see Lemma 5), letter comparisons only at black positions, and
the sorted lists L0 and Li (see Lemma 3).

Example 6. Consider the following weighted string x and let z = 64.

f g

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

x[i] g (a, 0.5) g (g, 0.5) (a, 0.5) g a g c g (g, 0.5) (c, 0.5) g (a, 0.5) c

(c, 0.5) (t, 0.5) (t, 0.5) (t, 0.5) (t, 0.5) (t, 0.5)

P[i] 15 5 6 5 2 9 0 7 0 5 5 4 2 2 0

WP[i] 15 0 1 3 0 3 0 7 0 1 4 0 2 0 0

Further let i = 10 < g = 14, u = gcgttga be the z-valid factor occurring at positions 0 and f = 7, |u| = g − f = 7,

and WP[i − f] = 3 < g − i = 4. Factor v1 = gcg occurs at positions 0 and f = 7 and factor v2 = ttg occurs at

positions i − f = 3 and i = 10. In this case v1 � v2. We apply Lemma 6.

Factor v1, occurring at position 0, has a black position at index 1. Factor v2, occurring at position 3, has two

black positions at indices 3 and 4. Factors v2 and v3, starting at position 10, have two black positions at indices 10
and 11. Therefore we know that we have to compare the letters at positions 0 and 1 to the letters at positions 10 and

11, respectively, and that positions 2 and 12 are white and therefore x[2] = x[12]. There exist such letters that match

and therefore the prefix of length |v1| of v3 is gcg. And since P[10] = 5, by Lemma 5, we know that |v3| ≤ 5. We can

determine |v3| via comparing black positions: 3 to 13. Therefore we determine that lcve(x, x[i . . g − 1]) = 4. �

For a graphical illustration of the proof inspect Figure 1. �
0 i − f g − f f i g n − 1

u u

(a) String x = x[0 . . n − 1], u occurs at positions 0 and f , and WP[f] = |u|
0 i − f g − f f i g n − 1

u
v1
v3

v2
u

v1 v2v3

(b) If v1 = v2 then |v3 | = lcve(x, x[i . . g − 1]) ≥ |v1 |
0 i − f g − f f i g n − 1

u
v1 v2
v3

u
v1 v2v3

(c) If v1 � v2 then letter comparisons at black positions are required to determine
the length of v3

Figure 1: Illustration of Lemma 6

Lemma 7. Let f < i < g, u be a factor of x with two z-valid occurrences at positions 0 and f , |u| = g − f , and

WP[i − f] > g − i. Then we can compute lcve(x, x[i . . g − 1]) in time O(�z).

Proof If WP[i − f] > g − i then there exists a factor v, possibly v � u, |v| = WP[i − f], occurring at positions 0 and
i− f . By the definition of WP factor v is z-valid and there does not exist another z-valid factor v′, |v′| > |v|, occurring at

8

/ 00 (2016) 1–15 9

positions 0 and i − f . Let v1 be the longest common z-valid prefix of x and x[i . . g − 1], i.e. lcve(x, x[i . . g − 1]) = |v1|.
We have two cases: v = u and v � u.

In case v = u, it holds that v1, |v1| = g − i, occurs at positions 0 and i, and hence lcve(x, x[i . . g − 1]) = |v1|.
In case v � u, letter comparisons are required to determine the length of v1. By Lemma 1 and triangle inequality,

since u, v, and v1 are z-valid factors, v1 may differ to some prefix of u by at most 2� (black) positions: the prefix of
length g − i of u, occurring at position 0, differs to the suffix of length g − i of u in at most � positions; and the suffix
of length g − i of u, occurring at position i, differs to v1 in at most � positions. Each position has at most z occurring
letters. Therefore, by Lemmas 1 and 2, and using the sorted lists L0 and Li (see Lemma 3) we can either determine
the actual value of WP[i] = lcve(x, x[i . . g − 1]) < g − i or determine that lcve(x, x[i . . g − 1]) = g − i in time O(�z).

Example 7. Consider the following weighted string x and let z = 8.

f g

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

x[i] a c g a (c, 0.5) (a, 0.5) a t c a c g a (c, 0.5) (a, 0.5) c

(t, 0.5) (g, 0.5) (t, 0.5) (g,0.5)

Further let i = 12 < g = 15, u = acgata be the z-valid factor occurring at positions 0 and f = 9, |u| = g − f = 6.

Factor v = acgat, |v| = WP[i − f] = 5 > g − i = 3, occurs at positions 0 and i − f = 3. In this case u � v. We apply

Lemma 7.

The prefix of length g − i = 3 of u = acgata, occurring at position 0, differs to the suffix of length g − i = 3 of

u in two positions. The suffix of length g − i = 3 of u, occurring at position i = 12, differs to factor v1, occurring at

positions 0 and i = 12, in two positions. Therefore we know that we have to compare the letters at positions 1 and 2
to the letters at positions 13 and 14, respectively, and that positions 0 and 12 are white and therefore x[0] = x[12].
There exist such letters that match and therefore we determine that lcve(x, x[i . . g − 1]) = g − i = 3. �

For a graphical illustration of the proof inspect Figure 2. �
0 i − f g − f f i g n − 1

u u

(a) String x = x[0 . . n − 1], u occurs at positions 0 and f , and WP[f] = |u|
0 i − f g − f f i g n − 1

u
v

v

u
v1

(b) If u = v then |v1 | = lcve(x, x[i . . g − 1])

0 i − f g − f f i g n − 1

u
v

v

u
v1

(c) If u � v then letter comparisons at black positions are required to determine the
length of v1

Figure 2: Illustration of Lemma 7

Similar to Lemma 7 we can obtain the following.

Lemma 8. Let f < i < g, u be a factor of x with two z-valid occurrences at positions 0 and f , |u| = g − f , and

WP[i − f] = g − i. Then we can compute lcve(x, x[i . . g − 1]) in time O(�z).

9

/ 00 (2016) 1–15 10

3. Algorithm

We can now present Algorithm WeightedPrefixTable for computing table WP.

Algorithm WeightedPrefixTable(x, n, 1/z)

WP[0 . . n − 1]← 0;

WP[0]← |u| where u is the longest z-valid prefix of x;

Compute lists L0, L1, . . . , Ln−1 and array P;

g← 0;

foreach i ∈ {1, . . . , n − 1} do
if i < g and lcve(x, x[i . . g − 1]) < g − i then

WP[i]← lcve(x, x[i . . g − 1]);

else
f ← i; g← max{g, i};
while g < n and there exists c ∈ Σ occurring at positions g and g − f

and there exists a common z-valid prefix, say v, |v| = g − f , of

x[0 . . n − 1] and x[i . . n − 1], such that vc is a z-valid factor starting at

position 0 and i do
g← g + 1;

WP[i]← g − f ;

return WP;

Lemma 9. Algorithm WeightedPrefixTable correctly computes table WP.

Proof The computation of WP[0] is, by definition, correct. The variables f and g satisfy Equations 5 and 6 at each
step of the execution of the loop. For i being fixed and satisfying the conditions i < g and lcve(x, x[i . . g − 1]) < g − i,
the algorithm applies the Lemmas 6-8 which produce a correct computation: lcve(x, x[i . . n−1]) = lcve(x, x[i . . g−1]).
It remains thus to check that the computation is correct otherwise. But in this case, we compute lcve(x, x[i . . n− 1]) =
|x[f . . g−1]| = g− f which is, by definition, the value of WP[i]. Therefore, Algorithm WeightedPrefixTable correctly
computes table WP. �

In [3] it was shown that � = O(z log z). Here we refine this to an exact bound.

Lemma 10. Let z ≥ 2. Then � ≤ z log z.

Proof By Lemma 1 we know that � = � log z

log(z
z−1) �. For z > 1, we must show that:

� =
⌊ log z

log(z
z−1)

⌋
=
⌊ log z

log(z) − log(z − 1)

⌋
≤ z log z. Or equivalently that:

log z(z log z − z log(z − 1) − 1)
log z − log(z − 1)

> 0.

Clearly the above is true if and only if: z log z − z log(z − 1) − 1 > 0. There is a discontinuity at z = 1; after this it is
always positive and the following holds:

lim
z→∞ z log z − z log(z − 1) − 1 = 0.

�

Lemma 11. Given a weighted string x of length n and a constant cumulative weight threshold 1/z Algorithm WeightedPrefixTable
requires time O(n).

10

/ 00 (2016) 1–15 11

Proof The computation of WP[0] can be trivially done in time O(n). Lists L0, L1, . . . , Ln−1 can be computed in time
O(n), for � = O(1), by Lemma 3 and Lemma 10. Array P can be computed in time O(n), for � = O(1), by Lemma 4
and Lemma 10. As the value of g never decreases and that it varies from 0 to at most n, we have at most O(n) times
where the condition of the inner loop is satisfied; and by applying Proposition 1 (see also Example 4) the total time
required for these checks is O(n). Each time the condition is not satisfied leads to the next step of the outer loop; and
there are at most n− 1 of them. Thus O(n) checks on the overall. All other instructions, by Lemmas 6-8, take constant
time for each value of i giving a total time of O(n). �

Lemmas 9 and 11 imply the main result of this article (Theorem 1). By Lemma 10 we obtain the following.

Corollary 1. Given a weighted string x of length n and a cumulative weight threshold 1/z Algorithm WeightedPrefixTable
requires time O(nz2 log z).

Notice that the pre-computation of lists L0, L1, . . . , Ln−1 and array P allows for a simpler formulation of this
algorithm, where for each i ∈ {1, . . . , n − 1} we compute WP[i] separately, without the use of variables g anf f . The
structure of Algorithm WeightedPrefixTable, however, allows for using previous computations (see Lemma 7) and
for an efficient (in practical terms) implementation where the information implied by lists L0, L1, . . . , Ln−1 and array
P is computed on the fly.

4. Applications

In this section, we outline a number of applications of Theorem 1 for solving various problems on non-standard

strings.

General Pattern Matching on Weighted Strings

String pattern matching is a fundamental task in text processing, bioinformatics, and numerous other applications.
It consists in finding all factors of a text string y of length n that match (or are similar to) a pattern string x of length m.
Pattern matching on weighted strings [3, 4] and the related probabilistic profile matching (for a definition, see [19])
have been considered in a number of contexts.

In particular, this kind of non-standard strings have found important applications to model probabilistic ancestral
sequences at internal nodes of a phylogenetic tree—currently the best-known method to obtain information about the
ancestral sequence [20, 21] and for generating probabilistic profiles by summarising the common regions of a set of
related sequences, which can then be used to search an entire database efficiently [22, 23].

In the literature, the authors have considered the case where either only the text is weighted or only the pattern is
weighted. Here we introduce the General Weighted Pattern Matching problem, where both the pattern and the text
may be weighted, as follows. Given a weighted string x of length m, a weighted string y of length n > m, and a
cumulative weight threshold 1/z, the problem consists in finding all positions in y where some z-valid factor of length
m of x has a z-valid occurrence. It can be solved as follows. We first compute the prefix table WP of the weighted
string xy in time O(m+ n), for constant z, by applying Theorem 1. The space complexity is also O(m+ n) for constant
z. All matching positions in y can then be found by going through WP from left to right. There exists a z-valid
occurrence of some z-valid factor of length m of x starting at position i − m in y, for all m ≤ i ≤ n, iffWP[i] ≥ m.

Prefix Table to Border Table for Weighted Strings

A border of a nonempty string x of length n is a factor u, |u| < n, of x that is both a prefix and a suffix of x. The
border table B = B[0 . . n − 1] of x gives the length B[i] of the longest border of every prefix x[0 . . i], 0 ≤ i < n, of x.
It is computed by an elegant algorithm in time O(n) [24].

The border table is a fundamental data structure used for pattern matching [25], for finding regularities [26, 27],
for computing overlaps between strings [13], and for many other applications. Here we define the border table of a
weighted string and show how it can be computed efficiently.

Given a weighted string x of length n and a cumulative weight threshold 1/z, we define a border of x to be a
z-valid factor u of x, |u| < n, that has a z-valid occurrence both as a prefix and as a suffix of x. The border table

WB = WB[0 . . n − 1] of a weighted string x gives the length WB[i] of the longest border of every prefix x[0 . . i],
11

/ 00 (2016) 1–15 12

0 ≤ i < n, of x. It can be computed as follows. We first compute table WP of the weighted string x in time O(n), for
constant z, by applying Theorem 1, and then compute table WB of x in time O(n) by using the prefix table to border
table conversion algorithm by Barton et al [13] or by Bland et al [28].

Suffix/Prefix Overlap of Two Weighted Strings

In paired-end sequencing, a fragment of DNA is sequenced forward and backwards, resulting in two short reads
with an unknown sequence in the middle of approximately known length. Paired-end reads provide some benefits of
longer read lengths without actually requiring the technology to accurately sequence reads of that length. Paired-end
reads can also simplify the detection of certain genetic variations by seeing how and where each read in the pair is
aligned. When performing paired-end sequencing it had previously been the case that the length of each read would be
less than half the length of the DNA fragment being sequenced. Recent improvements have increased the read lengths
such that when a DNA fragment is sequenced the resulting reads may overlap. The overlap between pairs means
that it is possible to merge the two reads into a single long read of high quality [29]. The chance that the sequencer
has introduced an error increases exponentially the further along the read, so merged paired-end reads allow for far
greater confidence in the latter half of the read than would normally be possible. Merging paired-end reads may
also be beneficial for reasons including correcting sequencing errors, higher quality single reads, and larger initial
fragments for de novo assembly. It is therefore important to consider the problem of finding the longest suffix/prefix
overlap between two strings [30, 31].

Using the corresponding quality scores [29], two reads can be modeled as weighted strings, where at each position
of the sequences, a probability of occurrence can be assigned to each letter of the nucleotide alphabet. Given weighted
strings x and y of lengths m and n ≥ m, respectively, and a cumulative weight threshold 1/z, the suffix/prefix overlap
problem consists in finding the longest z-valid suffix of x that has a z-valid occurrence as a prefix of y. It can be
solved as follows. We first compute table WP of the weighted string yx in time O(m + n), for constant z, by applying
Theorem 1, and then compute table WB of yx in time O(m + n) by using the prefix table to border table conversion
algorithm by Barton et al [13] or by Bland et al [28]. The longest z-valid suffix of x having a z-valid occurrence as a
prefix of y is then specified by WB[m + n − 1]. Note that we may need to trim the resulting border to ensure that it is
not longer than min{|x|, |y|}.

Prefix Table for Indeterminate Strings

An indeterminate string x of length n on an alphabet Σ is a finite sequence of n sets, such that x[i] ⊆ Σ, x[i] � ∅,
for all 0 ≤ i < n [1, 32]. Similar to weighted strings, if |x[i]| = 1, that is, x[i] represents a single letter of Σ, we say
that i is a solid position. We say that two indeterminate strings x and y match, denoted by x ≈ y, if |x| = |y| and for
each i = 0, . . . , |x| − 1, we have x[i] ∩ y[i] � ∅.

The prefix table IP = IP[0 . . n − 1] of an indeterminate string x is defined as an array of integers, such that
IP[i] = p iff p is the largest integer such that x[i . . i + p − 1] ≈ x[0 . . p − 1]. A conservative indeterminate string x is
an indeterminate string whose maximum number of non-solid positions is bounded by a constant integer k > 0. Here
we show how to compute the prefix table for conservative indeterminate strings efficiently.

Any (conservative) indeterminate string x of length n can be represented by a weighted string x′ of length n such
that (a, 1

|x[i]|) ∈ x′[i] iff a ∈ x[i] and setting z = σk. We can compute table WP of the weighted string x′ for σ = O(1),
k = O(1), and z = σk = O(1) in time O(n) by applying Theorem 1; then table WP is the prefix table IP of x. Having
computed IP, all aforementioned applications follow for conservative indeterminate strings as well.

5. Implementation and Experimental Results

Algorithm WeightedPrefixTable was implemented as a program to compute the prefix table of a weighted string.
The program was implemented in the C++ programming language and developed under GNU/Linux operating system.
The input parameters are a weighted string x of length n in the form of a σ × n matrix of probabilities, and integer
z, to be used as the cumulative weight threshold 1/z. The output is the prefix table of x. The implementation is
distributed under the GNU General Public License (GPL), and it is available at http://github.com/YagaoLiu/
WPT. The experiments were conducted on a Desktop PC using one core of Intel Core i5-4690 CPU at 3.50GHz under
GNU/Linux. The program is compiled with g++ version 4.8.4 at optimisation level 3 (-O3).

12

/ 00 (2016) 1–15 13

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 5 10 15 20 25 30

T
im

e
[s

]

Length [Mb]

WeightedPrefixTable

(a) 10% black positions

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 5 10 15 20 25 30

T
im

e
[s

]

Length [Mb]

WeightedPrefixTable

(b) 20% black positions

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 5 10 15 20 25 30

T
im

e
[s

]

Length [Mb]

WeightedPrefixTable

(c) 30% black positions

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 5 10 15 20 25 30

T
im

e
[s

]

Length [Mb]

WeightedPrefixTable

(d) 40% black positions

Figure 3: Elapsed time of Algorithm WeightedPrefixTable using synthetic DNA data (σ = 4) for black positions percentage 10% to 40% and text
length 2MB to 32MB, for z = 65, 536.

To evaluate the time performance of our implementation, synthetic DNA data (σ = 4) were used in the exper-
iments. As input datasets we used four sets of weighted strings with different black positions percentages, ranging
from 10% to 40%. For each set of strings, we used five different lengths for n: 2, 4, 8, 16, and 32 Megabytes (MB).
The weighted strings were generated using a randomised (uniform distribution) script. We used a constant threshold
z = 65, 536 in all the experiments. The results, for each black positions percentage, are plotted in Fig 3. When the
cumulative weight threshold 1/z is constant, for the weighted strings with the same black position percentage, it is
demonstrated by the results that the elapsed time grows linearly with respect to the length of weighted strings. The
experimental results confirm our theoretical findings (see Theorem 1). Given the relatively high value for z, the fast
execution of the program is explained by the randomised (uniform distribution) data generation. This generation en-
sures that it is unlikely to have too many black positions close to each other, which would then result in a high number
of z-valid factors being generated.

6. Final Remarks

In this article, we presented a linear-time algorithm for computing the prefix table for weighted strings with a
very low constant factor (Corollary 1). This implies an O(nz2 log z)-time algorithm for pattern matching on weighted

13

/ 00 (2016) 1–15 14

strings for arbitrary z, which is simple and matches the best-known time complexity for this problem [3]. Furthermore,
we showed how this structure can be of use in other problems on weighted strings such as computing the border table
of a weighted string and computing the suffix/prefix overlap of two weighted strings; as well as for computing the
prefix table of a conservative indeterminate string.

References

[1] C. S. Iliopoulos, M. Mohamed, L. Mouchard, K. Perdikuri, W. F. Smyth, A. K. Tsakalidis, String regularities with don’t cares, Nord. J.
Comput. 10 (1) (2003) 40–51.

[2] Nomenclature Committee of the International Union of Biochemistry (NC-IUB). Nomenclature for incompletely specified bases in nucleic
acid sequences. Recommendations 1984., European Journal of Biochemistry 150 (1) (1985) 1–5.

[3] A. Amir, E. Chencinski, C. Iliopoulos, T. Kopelowitz, H. Zhang, Property matching and weighted matching, in: M. Lewenstein, G. Valiente
(Eds.), Combinatorial Pattern Matching, Vol. 4009 of Lecture Notes in Computer Science, Springer Berlin Heidelberg, 2006, pp. 188–199.

[4] A. Amir, C. Iliopoulos, O. Kapah, E. Porat, Approximate matching in weighted sequences, in: M. Lewenstein, G. Valiente (Eds.), Combina-
torial Pattern Matching, Vol. 4009 of Lecture Notes in Computer Science, Springer Berlin Heidelberg, 2006, pp. 365–376.

[5] C. S. Iliopoulos, L. Mouchard, K. Perdikuri, A. K. Tsakalidis, Computing the repetitions in a biological weighted sequence, Journal of
Automata, Languages and Combinatorics 10 (5/6) (2005) 687–696.

[6] M. Christodoulakis, C. S. Iliopoulos, L. Mouchard, K. Perdikuri, A. K. Tsakalidis, K. Tsichlas, Computation of repetitions and regularities
of biologically weighted sequences, Journal of Computational Biology 13 (6) (2006) 1214–1231.

[7] C. Barton, S. P. Pissis, Optimal computation of all repetitions in a weighted string, in: C. S. Iliopoulos, A. Langiu (Eds.), International
Conference on Algorithms for Big Data (ICABD2014), no. 1146 in CEUR-WS Proceedings, Aachen, 2014, pp. 9–15.

[8] C. Barton, C. S. Iliopoulos, S. P. Pissis, Optimal computation of all tandem repeats in a weighted sequence, Algorithms for Molecular Biology
9 (21).

[9] C. S. Iliopoulos, C. Makris, Y. Panagis, K. Perdikuri, E. Theodoridis, A. Tsakalidis, The weighted suffix tree: An efficient data structure for
handling molecular weighted sequences and its applications, Fundam. Inf. 71 (2,3) (2006) 259–277.

[10] A. Amir, Z. Gotthilf, B. R. Shalom, Weighted LCS, Journal of Discrete Algorithms 8 (3) (2010) 273–281.
[11] M. Cygan, M. Kubica, J. Radoszewski, W. Rytter, T. Walen, Polynomial-time approximation algorithms for weighted LCS problem, in:

R. Giancarlo, G. Manzini (Eds.), Combinatorial Pattern Matching - 22nd Annual Symposium, CPM 2011, Palermo, Italy, June 27-29, 2011.
Proceedings, Vol. 6661 of Lecture Notes in Computer Science, Springer, 2011, pp. 455–466.

[12] W. Smyth, S. Wang, New perspectives on the prefix array, in: A. Amir, A. Turpin, A. Moffat (Eds.), String Processing and Information
Retrieval, Vol. 5280 of Lecture Notes in Computer Science, Springer Berlin Heidelberg, 2009, pp. 133–143.

[13] C. Barton, C. S. Iliopoulos, S. P. Pissis, W. F. Smyth, Fast and simple computations using prefix tables under Hamming and edit distance,
in: K. Jan, M. Miller, D. Froncek (Eds.), Combinatorial Algorithms, Vol. 8986 of Lecture Notes in Computer Science, Springer International
Publishing, 2015, pp. 49–61.

[14] C. Barton, S. P. Pissis, Linear-time computation of prefix table for weighted strings, in: D. Nowotka (Ed.), Combinatorics on Words - 10th
International Conference, WORDS 2015, Kiel, Germany, September 14-18. Proceedings, Lecture Notes in Computer Science, Springer, 2015.

[15] W. Ng, K. Kakehi, Merging string sequences by longest common prefixes, IPSJ Digital Courier 4 (2008) 69–78.
[16] J. Kärkkäinen, P. Sanders, S. Burkhardt, Linear work suffix array construction, J. ACM 53 (6) (2006) 918–936.
[17] T. Kasai, G. Lee, H. Arimura, S. Arikawa, K. Park, Linear-time longest-common-prefix computation in suffix arrays and its applications, in:

Combinatorial Pattern Matching, 12th Annual Symposium, CPM 2001 Jerusalem, Israel, July 1-4, 2001 Proceedings, 2001, pp. 181–192.
[18] J. Fischer, V. Heun, Space-efficient preprocessing schemes for range minimum queries on static arrays, SIAM J. Comput. 40 (2) (2011)

465–492.
[19] C. Pizzi, E. Ukkonen, Fast profile matching algorithms — A survey, Theor. Comput. Sci. 395 (2-3) (2008) 137–157.
[20] G. H. Gonnet, S. A. Benner, Probabilistic ancestral sequences and multiple alignments., in: R. G. Karlsson, A. Lingas (Eds.), SWAT, Vol.

1097 of Lecture Notes in Computer Science, Springer, 1996, pp. 380–391.
[21] J. Koshi, R. Goldstein, Probabilistic reconstruction of ancestral protein sequences, Journal of Molecular Evolution 42 (2) (1996) 313–320.
[22] P. Bork, T. J. Gibson, Applying motif and profile searches, in: R. F. Doolittle (Ed.), Computer Methods for Macromolecular Sequence

Analysis, Vol. 266 of Methods in Enzymology, Academic Press, 1996, pp. 162 – 184.
[23] T. Yan, D. Yoo, T. Z. Berardini, L. A. Mueller, D. C. Weems, S. Weng, J. M. Cherry, S. Y. Rhee, PatMatch: a program for finding patterns in

peptide and nucleotide sequences, Nucleic Acids Research 33 (suppl 2) (2005) W262–W266.
[24] M. Crochemore, C. Hancart, T. Lecroq, Algorithms on Strings, Cambridge University Press, New York, NY, USA, 2007.
[25] D. E. Knuth, J. H. M. Jr., V. R. Pratt, Fast pattern matching in strings, SIAM J. Comput. 6 (2) (1977) 323–350.
[26] D. Breslauer, An on-line string superprimitivity test, Inf. Process. Lett. 44 (6) (1992) 345–347.
[27] T. Flouri, C. S. Iliopoulos, T. Kociumaka, S. P. Pissis, S. J. Puglisi, W. Smyth, W. Tyczynski, Enhanced string covering, Theoretical Computer

Science 506 (2013) 102–114.
[28] W. Bland, G. Kucherov, W. F. Smyth, Prefix table construction and conversion, in: T. Lecroq, L. Mouchard (Eds.), Combinatorial Algorithms

- 24th International Workshop, IWOCA 2013, Rouen, France, July 10-12, 2013, Revised Selected Papers, Vol. 8288 of Lecture Notes in
Computer Science, Springer, 2013, pp. 41–53.

[29] J. Zhang, K. Kobert, T. Flouri, A. Stamatakis, PEAR: a fast and accurate Illumina Paired-End reAd mergeR, Bioinformatics 30 (5) (2014)
614–620.

[30] N. Välimäki, S. Ladra, V. Mäkinen, Approximate all-pairs suffix/prefix overlaps, in: A. Amir, L. Parida (Eds.), Combinatorial Pattern
Matching, Vol. 6129 of Lecture Notes in Computer Science, Springer Berlin Heidelberg, 2010, pp. 76–87.

14

/ 00 (2016) 1–15 15

[31] G. Kucherov, D. Tsur, Improved filters for the approximate suffix-prefix overlap problem, in: E. Moura, M. Crochemore (Eds.), String
Processing and Information Retrieval, Vol. 8799 of Lecture Notes in Computer Science, Springer International Publishing, 2014, pp. 139–
148.

[32] J. Holub, W. Smyth, S. Wang, Fast pattern-matching on indeterminate strings, Journal of Discrete Algorithms 6 (1) (2008) 37–50, selected
papers from AWOCA 2005 Sixteenth Australasian Workshop on Combinatorial Algorithms.

15

