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Self-Normalization of 3D PET Data by Estimating
Scan-Dependent Effective Crystal Efficiencies

Martin A. Belzunce and Andrew J. Reader

Abstract—Normalization of the lines of response (LORs) or sino-
gram bins is necessary to avoid artifacts in fully 3D PET imaging.
Component-based normalization (CBN) is an effective strategy to
generate normalization factors (NFs) from short time scans of known
emission sources. In the CBN, the NFs can be factorized into time-
invariant and time-variant components. The effective crystal efficiencies
are the main time-variant component, and a frequent normalization
scan is needed to update their values. Therefore, it would be advan-
tageous to be able to estimate unique effective crystal efficiencies to
account for this time-variant component. In this work, we present a self-
normalization algorithm to estimate the crystal efficiencies directly from
any emission acquisition. The algorithm is based on the principle that
if the true image were known, the mismatch between its projections,
corrected for the time-invariant NFs, and the acquired data could
be used to estimate the effective crystal efficiencies. We show that
the algorithm successfully estimates the effective crystal efficiencies
for simulated sinograms with different levels of Poisson noise and for
different distributions of crystals efficiencies. This algorithm permits
the reconstruction of good quality images without the need for an
independent, separate, normalization scan. A key advantage of the
method is the estimation of relatively few parameters (~ 10%) compared
to the number of NFs for 3D data (~ 10°).

I. INTRODUCTION

N positron emission tomography (PET), each line of response

(LOR) has a different sensitivity due to the scanner’s geometry
and the detector properties, such as the detection profile of a block
detector or the variations in the crystal efficiencies. In order to
achieve artifact-free and good quality images, these non-uniformities
must be modelled using normalization factors (NFs) or precorrected
using normalization correction factors (NCFs). A widely used nor-
malization method is the component-based normalization (CBN),
where the number of parameters to estimate is dramatically reduced
by modelling the efficiency of each LOR as a product of multiple
factors [1].

In the CBN, the components can be separated into time-invariant
(e.g. geometry and block profile), time-variant (effective crystal
efficiencies) and acquisition-dependent (dead-time) components. The
time-variant factors are updated by a regular normalization scan. The
effective crystal efficiencies can change between normalization scans
for many reasons, including, for example, variations in temperature.
Therefore, it would be advantageous to be able to estimate the
effective crystal efficiencies directly for each unique emission scan.

In this work, we present a self-normalization algorithm to estimate
the effective crystal efficiencies directly from the emission data.
Other approaches to self-normalization have been presented before
to obtain the NFs from coincidences [2] or singles [3] data, and also
to correct for pile-up in block detectors [4]. In our method, we focus
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on a self-normalization that takes advantage of the time-invariant
correction factors and, as a consequence, the number of parameters
to estimate is reduced by a factor of 10%, as only the effective
crystal efficiencies are needed. The self-normalization algorithm was
evaluated using simulated data with four different distributions of
crystal efficiencies.

II. MATERIALS AND METHODS

We applied our method to the normalization scheme used by the
Biograph mMR, a simultaneous PET-MR scanner [5], which uses
a component-based normalization that models the geometry, the
crystal interference in the block detectors, the crystal efficiencies,
the dead-time and the axial profile [6] of the scanner. We classified
the factors as time-invariant, time-variant and acquisition-dependent:

Nc = Nrr- Nrv-Nag (D

where N are the complete normalization factors, Np; are
the time-invariant, Npy are the time-variant and Nyg are the
acquisition dependent NFs. In this work, we focus on Np; and
Nrv, hence we use Nag = 1. These NFs are stored in a diagonal
matrix with as many rows and columns as the total number of bins
in the sinogram.

A. Self-Normalization Algorithm

A reconstructed image without the correct normalization generates
artifacts and a mismatch from the true emission distribution. If the
true image were known, the mismatch between its projections (when
divided by Np;) and the acquired data can be used to estimate
the crystal efficiencies. Based on this principle, we designed an
algorithm to estimate the effective crystal efficiencies directly from
the emission data.

The algorithm needs an operator to map from NF sinograms to
crystal efficiencies. We designed an operator based on the fan-sum
algorithm [7], [8]. We define this operator using two matrices D; and
D, that identify each of the two crystal elements associated with a
given sinogram bin. The operator, hereinafter referred to as C/], uses
a combination of both matrices to reduce the statistical uncertainty
for those crystals that are partially present in each matrix:

Dinpy + DInpy @)
DT1+ D11

where D is the matrix for group 1 of the crystal elements, that has
as many rows as bins in the sinogram and as many columns as there
are crystal elements; D5 is an equivalent matrix for the second group
of crystals in the sinogram. nry is a column vector with the bins
of the time-variant normalization sinogram and 1 is a unit-valued
column vector of the same size of nyy. The result of Clnpy] is the
vector x with the effective crystal efficiencies. The diagonal matrix

Tr = C[’H,Tv} =



N7y used in the forward model for EM reconstruction is obtained
from the vector nry by:

NTV = diag(nTV) (3)

We used the operator C[] to design a self-normalization algorithm
that estimates the crystal efficiencies for each emission scan. It starts
with unit crystal efficiencies (z°) and has six steps, that must be

repeated at least twice to arrive at the solution. The steps in each
iteration are:

1) The time-variant NFs (N£,,) are generated from the current
crystal efficiencies estimate z*.

2) The complete NFs are generated with N& = Nk, .- Np;.

3) The measured emission fully 3D sinogram data b is recon-
structed into image f* with an OP-OSEM algorithm using
NE as the NFs.

4) f* is projected into a sinogram p* and the complete forward
model is applied.

5) C[| is applied to the projected (p*) and to the input (b)
sinograms.

6) The ratio between C[b] and C[p* o N + r + s] is computed
and then normalized to get a multiplicative correction factor
for the current crystal efficiencies.

The whole process is summarized with the following equation:
C[Nfy o Nrro Af* 41 + 5]

where z* is the current estimate of the crystal efficiencies, C[] is
the operator defined in (2), o is the element by elment multiplication,
b is the emission sinogram, NQIQV are the time-variant NFs in iteration
k, Ny are the time-invariant NFs, A is the geometric system matrix
and fF is the current reconstructed image.  and s are the randoms
and scatter estimates, but they were not used in this work since we
did not simulate these effects.

The N%V matrix is obtained in each iteration by applying the
equation (5) and storing the result in a diagonal matrix:

nk., = Diz* o Dozt 5)

Finally, is important to clarify that we perform the ratio in crystal
space instead of sinogram space, because this was an effective way
to reduce the number of elements used in the correction ratio; and
as a result improve the stability and robustness of the algorithm.

B. Algorithm Evaluation

To evaluate the self-normalization algorithm, we simulated 4
different sets of crystal efficiencies. The first set contains the crystal
efficiencies of a Siemens mMR normalization file (set 1). Then, we
created crystal efficiencies with a normal distribution with mean 1
and a standard deviation of 5 and 10 times that of set 1 (referred
to here as set 2 and 3 respectively). Finally, as an extreme case, we
simulated a set with a uniform distribution between O and 2 (set 4).

For each set of crystal efficiencies, we simulated 3D sinograms
by projecting a uniform cylinder in one case, and a brain phantom
[9] in a second case, and multiplying them by the complete NFs
(N¢). We created noise-free sinograms, as well as with Poisson
noise. The latter were produced by scaling the noise-free sinograms
to get mean values (A) of 1 to 100 counts in the sinogram and, then,
generating a Poisson random number of counts for each bin. We used
the geometry and sinogram dimensions (span 1) corresponding to
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Fig. 1.  SD and mean values in the putamen for each iteration of the self-
normalization algorithm for the reconstruction of noisy sinograms (A = 10). Each
pair of values is labelled with its respective iteration number. The reference values,
corresponding to the reconstruction with the true crystal efficiencies, are shown with
cross-hairs.

the Biograph mMR, where each bin of the sinogram corresponds to
an LOR between a unique pair of crystals and there are zero-valued
bins for the gaps between the block detectors.

We reconstructed the simulated sinograms using the proposed
self-normalization algorithm. In addition, standard 3D OP-OSEM
reconstructions were performed using the true crystal efficiencies
to be used as the best achievable result. In the self-normalization
algorithm, we evaluated the case where the gaps are previously
known, as well as the case where this information is not known in
advance. For each of the reconstructed images of the brain phantom,
we computed the standard deviation (SD) and the mean value in the
caudate and putamen. For the uniform cylinder, we computed the
coefficient of variation (COV) in 9 ROIs of 30 mm diameter in each
slice.

III. RESULTS AND DISCUSSION

In Fig. 1 the SD and mean values in the putamen are shown
for the reconstructed images of the brain phantom, from the noisy
sinograms with A = 10, at each iteration of the self-normalization
algorithm. These results are for the simulations using sets 1 and 4
of the crystal efficiencies and for the case where the gaps in the
sinograms were included in the initial estimate of the algorithm.
It is shown that the algorithm starts with larger SD (iteration 1)
and converges, after iteration 2, to a similar value to that of the
image reconstructed with the true crystal efficiencies. This was also
observed in the values of the crystal efficiencies. The analysed
images can be observed in Fig. 2. The crystal efficiencies of set 1 had
a small dispersion and, for that reason, there was not a meaningful
impact on the SD when not using the correct crystal efficiencies
(iteration 1). Despite the significant difference between sets 1 and 4,
both reconstructions achieved almost equivalent results. This result
shows that the algorithm depends very little on the distribution of
the crystal efficiencies.

Fig. 3 shows the reconstructed images of the noise-free sinograms
for the same set of crystal efficiencies as those in Fig. 2, but in
this case when not taking into account the gaps in the sinogram
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Fig. 2. Reconstructed images, as a function of iteration, for the self-normalization
algorithm for sets 1 and 4 of the crystal efficiencies and using noisy sinograms
(A = 10). The sinogram gaps were included in the initial estimate of the crystal
efficiencies.

Iteration 1 Iteration 2 Iteration 3

True Efficiencies

Crystal Set 1

Crystal Set 4

Fig. 3. Reconstructed images, as a function of iteration, for the self-normalization
algorithm for sets 1 and 4 of the crystal efficiencies and using the noise-free sinograms
of the brain phantom. The sinogram gaps were not included in the initial estimate of
the crystal efficiencies.
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Fig. 4. Reconstructed images, as a function of iteration, for the self-normalization
algorithm for sets 1 and 4 of the crystal efficiencies and using the low-noise sinograms

(A = 100) of the uniform phantom. The sinogram gaps were not included in the initial
estimate of the crystal efficiencies.
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in the initial estimate. It can be seen that in the first iteration, the
reconstructed images have considerable artifacts due to the effect
of not including the gaps in the normalization. After iteration 2 this
effect is compensated. The same analysis was made with the uniform
phantom (Fig. 4), where in the second iteration there are still some
artifacts due to omission of the gaps in the initial estimate, but in
the third iteration those artifacts are suppressed.

In Fig. 5, the COV in the ROIs of the uniform phantom are plotted
for each iteration of the self-normalization algorithm, for the 4 sets
of crystal efficiencies. The dashed lines mark the COV achieved
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Fig. 5. COV in the ROIs of the uniform cylinder for each iteration of the self-
normalization algorithm. The simulation with A = 10 was used. Dashed lines are
used to show the COV in the images reconstructed with the true crystal efficiencies.

when using the true crystal efficiencies in the reconstruction. The
self-normalization algorithm achieved nearly equivalent results to
using the true crystal efficiencies.

IV. CONCLUSIONS

We presented a method to estimate scan-dependent effective
crystal efficiencies. This algorithm, demonstrated on simulated data,
permits the reconstruction of good quality images without having to
perform a daily normalization scan, by exploiting the time-invariant
NFs. The method showed good results for a variety of crystal
efficiency distributions. When the gaps in the sinogram were not
assumed to be known, the algorithm could estimate them but needed
an additional iteration than when the gaps were included in the initial
estimate.
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