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Abstract

Background: Ductal carcinoma in situ (DCIS) is a non-invasive form of breast cancer. It is often associated with
invasive ductal carcinoma (IDC), and is considered to be a non-obligate precursor of IDC. It is not clear to what
extent these two forms of cancer share low-risk susceptibility loci, or whether there are differences in the strength
of association for shared loci.

Methods: To identify genetic polymorphisms that predispose to DCIS, we pooled data from 38 studies comprising
5,067 cases of DCIS, 24,584 cases of IDC and 37,467 controls, all genotyped using the iCOGS chip.

Results: Most (67 %) of the 76 known breast cancer predisposition loci showed an association with DCIS in the
same direction as previously reported for invasive breast cancer. Case-only analysis showed no evidence for
differences between associations for IDC and DCIS after considering multiple testing.
Analysis by estrogen receptor (ER) status confirmed that loci associated with ER positive IDC were also associated
with ER positive DCIS. Analysis of DCIS by grade suggested that two independent SNPs at 11q13.3 near CCND1
(Continued on next page)
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were specific to low/intermediate grade DCIS (rs75915166, rs554219). These associations with grade remained after
adjusting for ER status and were also found in IDC.
We found no novel DCIS-specific loci at a genome wide significance level of P < 5.0x10-8.

Conclusion: In conclusion, this study provides the strongest evidence to date of a shared genetic susceptibility for
IDC and DCIS. Studies with larger numbers of DCIS are needed to determine if IDC or DCIS specific loci exist.

Keywords: Ductal carcinoma in situ, Association study, Genetic predisposition, Common variants

Background
Ductal carcinoma in situ (DCIS) is a non-obligate precursor
of invasive breast cancer including invasive ductal/no special
type carcinomas (IDC). Since the introduction of screening
mammography there has been a 7-fold increase in reported
DCIS incidence in the USA, primarily in postmenopausal
women [1], with about 20 % of screen-detected tumors be-
ing DCIS [2]. Approximately 45–78 % of all invasive breast
cancers are associated with DCIS [3, 4]. It is hypothesized in
the majority of these cases that the invasive component has
arisen from the DCIS as they generally share the same som-
atic genetic changes. The proportion of IDC associated with
DCIS varies depending on subtype, with luminal and hu-
man epidermal growth factor receptor 2 (HER2)-positive
IDC having more frequent DCIS (53 % and 63 %, respect-
ively) than invasive basal breast cancers (33 %) [5].
As most DCIS is treated surgically, the natural pro-

gression of untreated DCIS is not known. However, in
one small study of patients with predominantly low-
grade DCIS misdiagnosed as benign breast disease and
who received no surgical intervention, 6 out of 13 pa-
tients developed ipsilateral invasive carcinoma with
mean time to the development of invasive carcinoma be-
ing 9.0 years [6]. In two specific DCIS trials in which
DCIS was treated with breast-conserving surgery alone
with no radiotherapy, long-term follow up shows that up
to 30 % of women develop a recurrence (half of which
will be DCIS and half invasive cancer) by 10 years [7].
Methods for accurately predicting the behavior of

DCIS are poor [8]. Although grade has not been shown
to be a good predictor of recurrence many clinicians use
this classification to determine the use of radiotherapy
following breast-conserving surgery. There is a strong
correlation between the grade of the in situ and co-
existing invasive components in IDC, suggesting that
DCIS does not progress from low through to high grade
before becoming invasive [9, 10].
Most non-genetic risk factors for breast cancer have simi-

lar associations with DCIS and IDC, supporting the notion
that DCIS is a precursor of invasive cancer [11, 12]. There is
also evidence from epidemiological studies that there is an
inherited predisposition to DCIS. Women with DCIS have
been shown to be 2.4 times (95 % CI 0.8, 7.2) more likely to
have an affected mother and sister with breast cancer than

controls [13]. Furthermore, there is evidence from a study
of almost 40,000 women that the familial relative risk of
DCIS is greater than that of invasive breast cancer. For
women aged 30–49 years with a family history of breast
cancer the odds ratio (OR) for developing DCIS was calcu-
lated as 2.4 (95 % CI 1.1, 4.9) compared to 1.7 (95 % CI 0.9,
3.4) for invasive cancer. For women aged 50 years and above
the risks were slightly reduced, but still higher for DCIS
(OR= 2.2, 95 % CI 1.0, 4.2) than invasive disease (OR = 1.5,
95 % CI 1.0, 2.2) [14]. However, this was not confirmed in
the Million Women Study, in which the association with
family history was similar for DCIS and IDC [12].
A small part of this inherited predisposition is ex-

plained by BRCA1/2 mutations, as mutations in these
genes are found in a similar proportion of DCIS and
invasive breast cancer cases [15]. For low-risk common
breast cancer predisposition alleles most of the initial
breast cancer association studies have not been powered
to identify associations with DCIS, so it is not clear
whether all the low-risk susceptibility loci that have
been identified are associated with DCIS and what the
strength of any associations are.
It is now evident that some low-risk susceptibility loci are

associated with different pathological subtypes of breast
cancer and support the hypothesis that breast tumor sub-
types arise through distinct molecular pathways [16–18]. In
order to identify further low-risk susceptibility loci, it will
be necessary to look at specific morphological subtypes in-
cluding DCIS and the cytonuclear grade and estrogen re-
ceptor (ER) status of the disease. In this study we analyzed
3,078 cases of pure DCIS collected through the ICICLE
study (a study to Investigate the genetics of In situ Carcin-
oma of the ductaL subtype) and performed a meta-analysis
with 2,352 in situ cases collected through the Breast Cancer
Association Consortium (BCAC). Our aims were to assess
whether any of the known low-risk breast susceptibility al-
leles have different associations for DCIS and IDC, and to
identify if there are any DCIS-specific low-risk alleles.

Methods
Ethics statement
All studies were performed with ethical committee
approval (listed in acknowledgements) and subjects par-
ticipated in the studies after providing informed consent.
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Study populations
Cases came from ICICLE (MREC 08/H0502/4), a UK
study of DCIS, and from 37 studies forming part of the
BCAC included in the Collaborative Oncological Gene-
Environment Study (COGS) [19] (Additional file 1). The
ICICLE study recruited patients from participating cen-
ters throughout the UK with the aim of identifying
predisposition genes for DCIS. Patients aged 60 years or
less at the time of diagnosis, with a current or past his-
tory of DCIS (without invasive disease of any histological
subtype) were eligible. A total of 3,078 subjects were
recruited following identification from local pathology
reports in 97 UK hospitals. All cases were genotyped
with the iCOGS chip and compared to 5,000 UK controls
selected from four UK studies (BBCS 1,231 controls,
SBCS 704 controls, UKBGS 370 controls, SEARCH 2,695
controls) participating in BCAC (Additional file 2) and
already typed on the iCOGS chip. Controls were randomly
selected prior to analysis, and were excluded from case–
control comparisons with BCAC cases from the originat-
ing study. After excluding individuals based on genotyping
quality (see subsection “Genotyping and analysis”) and
non-European ancestry, data for the ICICLE study avail-
able for analysis included 2,715 subjects with DCIS (cases)
and 4,813 controls.
Women with all types of breast cancer were recruited

into the BCAC studies. Pathological information in BCAC
was collected in the individual studies but was also com-
bined and checked through standardized data control in a
central database. A total of 2,352 subjects with DCIS were
identified in the central BCAC pathology database (see
Additional file 3 for number of cases by study). Controls
came from the 37 BCAC studies (37,654 in total).

Genotyping and analysis
After DNA extraction from peripheral blood, ICICLE
samples were genotyped on the iCOGS custom Illumina
iSelect array (Illumina, San Diego, CA), which contains
211,155 single nucleotide polymorphisms (SNPs), at
King’s College London. The remaining cases and con-
trols were genotyped as part of the COGS project de-
scribed in detail elsewhere [19]. The ICICLE cases were
analyzed using the same quality control (QC) criteria as
the COGS project. Briefly, genotypes were called using
Illumina’s proprietary GenCall algorithm and 10,000
SNPs were manually inspected to verify the algorithm
calls. Individuals were excluded if genotypically non-
European or not female, or had an overall call rate
<95 %. SNPs were excluded with a Gen-Train score <0.4,
call rate <95 % (call rate <99 % if minor allele frequency
(MAF) was <0.1) and Hardy Weinberg equilibrium
(HWE) value of P <10-7 or evidence of poor clustering on
inspection of cluster plots. All SNPs with MAF <0.01 were
excluded. A cryptic relatedness analysis of the whole

dataset was performed using 46,789 uncorrelated SNPs
and led to the exclusion of 28 cases and 18 controls
due to relatedness between the ICICLE and BCAC sam-
ples (PIHAT >0.1875).
For ICICLE cases and controls, principal component

analysis (PCA) was carried out on a subset of 46,789
uncorrelated SNPs and individuals or groups distinct
from the main cluster (327 cases and 164 controls) were
excluded using the first five principal components (PCs)
(Additional file 4). Following removal of outliers, the
PCA was repeated and the first five PCs were included
as covariates in the analysis.
The adequacy of the case–control matching was evalu-

ated using quantile-quantile plots of test statistics and
the inflation factor (λ) calculated using 37,289 uncorre-
lated SNPs that were not selected by BCAC and were
not within one of the four common fine-mapping regions,
to minimize selection for SNPs associated with breast can-
cer (Additional file 5). As the majority of the SNPs on the
iCOGS array are associated with breast, ovarian or pros-
tate cancer, the SNPs selected for this analysis were taken
from the set of prostate cancer SNPs, with the assumption
that these SNPs were more likely to be representative of
common SNPs in terms of population structure in our
study.
For each SNP, we estimated a per-allele OR and re-

ported corresponding 95 % CI using logistic regression
analysis, including the five PCs as covariates, using PLINK
v1.07 (http://pngu.mgh.harvard.edu/~purcell/plink/).
Genotyping and analysis of BCAC studies have been

described in detail elsewhere [19]. In brief, data were an-
alyzed using the Genotype Library and Utilities (GLU)
package to estimate per-allele ORs for each SNP using
unconditional logistic regression. All analyses were per-
formed in subjects of European ancestry (determined by
PC analyses) and adjusted for study and seven principal
components.
Case–control ORs for DCIS cases vs controls from

BCAC and ICICLE were combined using inverse variance-
weighted fixed-effects meta-analysis, as implemented in
METAL [20]. Case-only analyses were also carried out to
compare genotype frequencies for (1) ER-positive (ER+) vs
ER-negative (ER–) DCIS, (2) high grade DCIS vs low and
intermediate grade DCIS, and (3) DCIS vs IDC (see
Additional file 3 for number of cases by study), (4) DCIS
diagnosis in patients <50 years of age vs DCIS diagnosis
in patients ≥50 years, and were used as a test for hetero-
geneity of ORs by tumor subtype/age (see Additional file 6
for number of cases by group). Only studies with data on
both subtypes contributed to case-only analysis com-
paring these subtypes. Similar case-only analyses were
performed for the IDC cases in these studies to assess
whether any heterogeneity evident in DCIS also occurred
in IDC.
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Novel SNPs showing the strongest evidence of associ-
ation with DCIS (P <6 × 10-6) in the meta-analysis (after
excluding previously reported loci) were genotyped in a
phase II analysis at LGC Genomics (LGC, Teddington,
UK). The phase II samples consisted of 653 DCIS cases
from the ICICLE and Breakthrough Generation Studies
and 1,882 controls from the ICICLE study not previously
genotyped on the iCOGS chip. All individuals included
in the analysis were of European ancestry (self-reported).
For the known breast cancer predisposition loci P

<0.00066 was considered statistically significant (with
Bonferroni correction for multiple testing on 76 known
loci). All of the known breast cancer susceptibility loci
were included in the iCOGS chip with the exception
of rs2284378 (20q11), which was identified as an ER–
breast cancer predisposition SNP after the iCOGS
chip was developed [21].

Assessment of grade and ER status
For the ICICLE study, information on cytonuclear
grade of DCIS was available for 2,578 cases, mostly
from the local histopathology reports. In 200 cases
where the grade data were missing from the report
but the tumor block was available, an H&E section
was cut and the DCIS was graded by the study histopath-
ologist (SEP) according to UK and College of American
Pathologists guidelines [22]. Data on grade of DCIS
were available from histopathology reports for 828 BCAC
cases.
A subset of 81 ICICLE cases, graded in the pathology

report and with a tumor block available, were examined
to assess the reliability of the cytonuclear grade provided
by the pathology reports. In the majority of cases (86.5 %)
grade was concordant with the pathology report. Nine
cases were re-graded as low/intermediate grade and two
cases as high grade. As the study pathologist re-graded the
samples on a single H&E section, rather than all the
blocks from an individual case, and in some cases on re-
excision specimens with residual disease rather than the
original excision specimen, the grade reported in the path-
ology report, if available, was used for the purposes of this
study.
ER status from local histopathology reports was avail-

able for 1,086 ICICLE cases. For the remaining 781
ICICLE cases where the tumor block was available,
immunohistochemistry was performed on 3-μM sections,
which were incubated at 60 °C for 1 h prior to automated
staining using the VENTANA®. Estrogen receptor staining
was carried out using CONFIRM™ anti-estrogen receptor
(SP1) rabbit monoclonal primary antibody (Catalog num-
ber 790-4324) with no variation to the recommended pro-
tocol. ER staining was scored by three independent
reviewers (CP, VS, DLe) using the Allred method, and any
discrepancies were reviewed by the study histopathologist

(SEP). DCIS with an Allred score ≥3 was considered
ER+ and DCIS with scores of 0–2 (approximately
equivalent to <1 % of nuclei) was regarded as ER–. ER
status was available on 965 cases from BCAC (Additional
file 6).

Results
Assessment of known breast cancer susceptibility loci for
association with DCIS
For the majority of known loci (n = 46) the risk allele for
invasive breast cancer is the minor allele. For the ORs
presented here the reference allele was set as the non-
risk allele to make it clear whether the association with
DCIS was in the same direction as previously published
for invasive breast cancer. Thus, ORs for DCIS will be
>1 if in the same direction as invasive disease and <1 if
in the opposite direction.
Of the 76 known common breast cancer susceptibility

loci genotyped on the iCOGS array, 51 were associated
with DCIS (P <0.05), with the effect in the same direc-
tion as previously reported in IDC (Fig. 1 and Additional
file 7). Sixteen SNPs were significantly associated with
DCIS (P <0.00066) with three being genome-wide sig-
nificant (P <5 × 10-8, Table 1). The strongest associations
were with for loci in FGFR2 (rs2981579: OR 1.29, 95 %
CI 1.24, 1.35; P = 9.0 × 10-30) and TOX3 (rs3803662: OR
1.15, 95 % CI 1.1, 1.21; P = 1.7 × 10-8).
The case-only analysis (DCIS vs IDC) confirmed the

shared genetic susceptibility between DCIS and IDC as
none of the heterogeneity P values (P-Het) were signifi-
cant after Bonferroni adjustment for 76 SNPs (Additional
file 7). The case-only analysis (DCIS diagnosed at <50 years
vs ≥50 years of age) revealed one SNP (rs527616, 18q11.2)
that was significantly associated with DCIS in younger
women (P-Het<50/≥50 = 0.0003) even though the overall
P value for DCIS was not statistically significant after
Bonferroni correction (OR 1.05, 95 % CI 1.01, 1.11; P =
0.020) (Additional file 8).

Assessment of known breast cancer susceptibility loci for
association with DCIS by ER status
Following immunohistochemistry for ER in the ICICLE
study samples, 1,484 cases (54 %) were classified as ER+
and 383 (14 %) as ER–. The ER data on BCAC DCIS
were less complete with 664 (28 %) ER+, 301 (13 %)
ER– and 1,387 cases (59 %) of unknown ER status
(Additional file 6). Analysis by ER status confirmed
that loci associated with ER+ IDC were also associated
with ER+ DCIS (Fig. 2 and Additional file 9). These simi-
larities were less clear for ER– DCIS and ER– IDC but this
may be due to small numbers of ER– DCIS cases. A case-
only analysis of ER+ vs ER– DCIS was not performed due
to the small numbers of ER– cases.
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Fig. 1 Known breast cancer predisposition loci for ductal carcinoma in situ plotted according to the risk allele for invasive disease. Odds ratios >1
indicate that the association is in the same direction as previously published for invasive breast cancer
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Assessment of known breast cancer susceptibility loci for
association with DCIS by grade
Grade data were available for 95 % of ICICLE DCIS
cases; 1,635 (60 %) were of high cytonuclear grade and
943 (35 %) of low/intermediate grade. The grade data on
the BCAC DCIS were less complete with data only avail-
able for 35 % of cases: 306 (13 %) high grade and 522
(22 %) low/intermediate grade cases (Additional file 6).
Case–control analysis was performed separately on the
low/intermediate and high grade subsets and a case-only
analysis of low/intermediate grade vs high grade DCIS
was performed to assess whether any of these loci were
grade-specific.
Analysis of DCIS by grade revealed that although the

majority of SNPs predispose to all grades of DCIS, some
are grade-specific (Additional files 10 and 11). The two
SNPs close to CCND1 were strongly associated with
low/intermediate grade DCIS (rs75915166, OR 1.36,
95 % CI 1.17, 1.59; P = 7.2 × 10-5; rs554219, OR 1.32,
95 % CI 1.18, 1.48; P = 8.2 × 10-7) and there was no asso-
ciation with high grade DCIS (Table 2). Case-only ana-
lysis confirmed that these loci were low/intermediate
grade-specific (rs75915166, P-Hetlow/highgrade = 0.00014;
rs554219, P-Hetlow/highgrade = 0.00013) and this was inde-
pendent of ER status (adjusted for ER status rs75915166,
P = 0.0050; rs554219, P = 0.019).
A similar-case-only analysis of IDC by grade con-

firmed that the two SNPs on 11q13.3 close to CCND1
were also invasive grade 1/2-specific in IDC (rs75915166,

OR 1.42, P = 1.7 × 10-30, P-Het = 2.8 × 10-10; rs554219, OR
1.39, P = 4.7 × 10-49, P-Het = 1.3 × 10-17) and again were
independent of ER status (P = 1.3 × 10-6, P = 1.6 × 10-6,
respectively) (Additional file 12). In addition, other grade-
specific loci were identified including three (rs2363956,
rs8170 and rs10069690) specific to grade 3 invasive dis-
ease (Additional file 13).
rs10941679, 5p12 were borderline associated with

low/intermediate grade DCIS (OR 1.26, P = 2.1 × 10-7,
P-Hetlow/highgrade = 0.0033). This locus has previously
been shown to be associated with low grade pro-
gesterone receptor (PR) + IDC [23]. There was no evi-
dence of any high grade DCIS specific loci (Additional
file 11).

Search for new DCIS predisposition loci
All SNPs that were genome-wide significant (P <5 × 10-8)
in the meta-analysis were correlated with one of the
known breast cancer predisposition loci. There were three
SNPs that were not correlated with known loci at P <6 ×
10-6 (Table 3), all with very little evidence of an association
with IDC.
Of these novel SNPs, rs12631593, 3p14.2, (an intronic

variant in FHIT, chr3: 60726844) was the most strongly
associated with DCIS (OR 1.21, 95 % CI 1.13, 1.29; P =
5.5 × 10-8). This SNP showed little association with IDC
(OR 1.01, 95 % CI 0.97, 1.05; P = 0.54) and this was
supported by the case-only analysis (P-HetDCIS/IDC =
0.0048).

Table 1 Loci showing a significant association with ductal carcinoma in situ (DCIS) at P <0.00066

Chromosome SNP Locus RAF DCIS vs controls (meta-analysis) IDC vs controls Case-only DCIS vs IDC

Controls OR (95 % CI) P OR (95 % CI) P P-Het

10 rs2981579 FGFR2 0.40 1.29 (1.24, 1.35) 9.0 × 10-30 1.24 (1.21, 1.28) 6.1 × 10-66 0.14

10 rs2981582 FGFR2 0.38 1.28 (1.23, 1.34) 1.8 × 10-27 1.23 (1.20, 1.26) 2.1 × 10-59 0.21

16 rs3803662 TOX3 0.26 1.15 (1.10, 1.21) 1.7 × 10-8 1.23 (1.20, 1.27) 1.5 × 10-50 0.69

5 rs889312 MAP3K1 0.28 1.14 (1.09, 1.20) 6.9 × 10-8 1.11 (1.08, 1.14) 2.2 × 10-14 0.13

3 rs4973768 SLC4A7 0.47 1.13 (1.08, 1.18) 9.1 × 10-8 1.09 (1.07, 1.12) 8.2 × 10-13 0.58

5 rs10941679 5p12 0.25 1.14 (1.09, 1.20) 1.3 × 10-7 1.14 (1.11, 1.18) 1.2 × 10-20 0.90

3 rs3821902 ATXN7 0.13 1.16 (1.09, 1.23) 3.0 × 10-6 1.06 (1.02, 1.09) 0.0030 0.33

19 rs4808801 SSBP4 0.65 1.12 (1.06, 1.18) 3.1 × 10-6 1.09 (1.05, 1.11) 3.5 × 10-9 0.16

10 rs10995190 ZNF365 0.85 1.16 (1.09, 1.23) 4.1 × 10-6 1.15 (1.11, 1.19) 7.5 × 10-16 0.61

2 rs13387042 2q35 0.51 1.10 (1.05, 1.15) 1.1 × 10-5 1.14 (1.11, 1.16) 8.3 × 10-25 0.34

6 rs3757318 ESR1 0.07 1.20 (1.10, 1.30) 1.4 × 10-5 1.16 (1.10, 1.21) 1.2 × 10-9 0.85

11 rs554219 CCND1 0.12 1.15 (1.08, 1.22) 2.8 × 10-5 1.27 (1.22, 1.32) 6.4 × 10-38 0.88

6 rs2046210 ESR1 0.34 1.10 (1.05, 1.15) 8.6 × 10-5 1.09 (1.06, 1.12) 4.0 × 10-10 0.32

12 rs10771399 PTHLH 0.88 1.15 (1.06, 1.23) 0.00021 1.18 (1.12, 1.22) 1.2 × 10-14 0.53

8 rs11780156 8q24.21 0.16 1.11 (1.05, 1.18) 0.00027 1.10 (1.06, 1.14) 2.3 × 10-8 0.88

16 rs17817449 FTO 0.60 1.09 (1.03, 1.14) 0.00052 1.06 (1.04, 1.10) 5.9 × 10-7 0.32

SNP single nucleotide polymorphism, IDC invasive ductal carcinoma, OR odds ratio; P-Het P value for heterogeneity; RAF risk allele frequency
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The other loci were on 22q13.2, rs73179023 (DCIS only:
OR 0.85, 95 % CI 0.79, 0.90; P = 1.1 × 10-6; IDC only: OR
0.97, 95 % CI 0.93, 1.00; P = 0.060, P-HetDCIS/IDC = 0.0099)
and 7q21.3, rs13236351 (DCIS only: OR 1.30, 95 % CI
1.16, 1.46; P = 5.7 × 10-6; IDC only: OR 1.05, 95 % CI 0.99,
1.13; P = 0.13, P-HetDCIS/IDC = 0.17).
These SNPs were genotyped in a validation study

including a further 653 DCIS cases and 1,882 controls,
however, for all three loci there was no evidence of an
association (for rs12631593, rs13236351, and rs73179023,
P = 0.49, 0.61, and 0.57, respectively) and none were
genome wide significant following a meta-analysis of all
data (P = 7.8 × 10-7, 2.9 × 10-5, and 1.7 × 10-6 respectively)
(Table 3).

Discussion
This study provides the strongest evidence to date for a
shared genetic susceptibility between DCIS and IDC,
based on 5,067 cases with pure DCIS (no invasive disease)

and 24,670 cases with IDC. It differs from previous BCAC
analyses of DCIS, as it has included an additional 3,078
DCIS cases, excluded all cases of pure LCIS and has also
compared DCIS to IDC rather than all invasive disease.
An important finding of this study is the lack of DCIS/

IDC-specific loci among the known breast cancer pre-
disposition loci. Of the five breast cancer predisposition
alleles originally reported by Easton et al. [24], three
were shown to be associated with in situ (998 cases of
DCIS and LCIS) disease (rs2981582-FGFR2, rs3803662-
TOX3, rs889312-MAP3K1) with rs889312 showing a
stronger association with DCIS (P-trend 0.007, per allele
OR 1.30 for DCIS, per allele OR 1.13 for invasive dis-
ease). However, this finding of potential DCIS-specific
loci was not confirmed in the Million women study
which found no differential association with DCIS vs
IDC for twelve breast cancer susceptibility loci, includ-
ing rs889312, although their sample size was smaller
(873 DCIS and 4,959 IDC) [12]. In the recent BCAC

a b

Fig. 2 Known breast cancer predisposition loci for estrogen receptor-positive (ER+) (black lines) and ER– ductal carcinoma in situ (gray lines). Due
to the large number of single nucleotide polymorphisms (SNPs), for better visual representation the plot is split into two different sections (a and b)
with a descending order of effect size for the ER+ group. OR odds ratio
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COGS analysis all 41 novel SNPs identified on the
iCOGS chip had comparable ORs for invasive and in situ
disease (based on data from 2,335 in situ, and 42,118 inva-
sive cases), with the exceptions of rs12493607 (TGFBR2),
and rs3903072 (11q13.1), for which associations seemed
to be restricted to invasive disease [19]; however, we found
no evidence of an IDC-specific association with these loci
after correcting for multiple testing. A recent study inves-
tigating the association between 39 of the known breast
cancer predisposition loci and breast cancer in situ (BCIS)
suggested that rs1011970 (9p21.3, CDKN2BAS) had a
stronger association with BCIS than invasive breast cancer
(BC), P-HetBCIS/BC = 0.0065. This trend remained in a
DCIS vs BC analysis (P-HetDCIS/BC = 0.021) [25]. Our data,
however, do not support this finding (DCIS OR 1.08, 95 %
CI 1.02, 1.14; P = 0.011; IDC OR 1.05, 95 % CI 1.0, 1.09;
P = 0.0025, P-HetDCIS/IDC = 0.33).
We have also shown for the first time that seven

of the known invasive breast cancer predisposition
loci not previously shown to be associated with
DCIS have comparable ORs for IDC and DCIS:
rs4973768 (SLC4A7), rs3821902 (ATXN7) [26], rs109
95190 (ZNF365), rs554219 (CCND1), rs3757318 and
rs2046210 (ESR1).
This lack of DCIS/IDC-specific loci is in contrast to

our previous study of lobular cancer in which we showed
that there are loci that are specific to invasive lobular can-
cer (ILC), showing no association with lobular carcinoma

in situ (LCIS) and there was also a suggestion of LCIS-
specific loci [16]. When we compare the DCIS data pre-
sented here to our previous LCIS analyses it reveals that
there is some overlap between loci that are associated with
ER+ DCIS and LCIS (Fig. 3 and Additional file 14). How-
ever, there are also some differences: rs6678914, LGR6
and rs865686, 9q31.2 are strongly associated with LCIS
but there is little evidence of association with ER+ DCIS
(P-HetDCIS/LCIS = 7.4 × 10-5 and 6.6 × 10-4, respectively).
We have also previously shown that rs11249433, 1p11.2
and rs11977670, 7q34 have a stronger association with in-
vasive lobular cancer than IDC [16]. These loci were only
weakly associated with LCIS and were not associated with
ER+ DCIS in this analysis.
Most association studies of invasive breast cancer in-

volve subgroup analyses based on ER status. In contrast
to invasive breast cancer, ER status in DCIS is not rou-
tinely assessed in all centers despite evidence from the
NSABP B-24 trial of benefit from endocrine therapy in
ER+ DCIS [7]. A national audit of DCIS in the UK
revealed that ER status was assessed in only 50 % of
DCIS cases and ER positivity in low and intermediate
grade DCIS was significantly more common than in high
grade DCIS (P <0.001) (ER+ high grade 69 %, intermediate
grade 94 %, low grade 99 %) [27]. In order to overcome
this issue we performed ER immunohistochemistry on
the samples from ICICLE for which ER status was
unknown. However, there was still a large amount of

Table 2 Association between rs75915166 or rs554219 and grade in ductal carcinoma in situ

Meta-analysis

OR (95 % CI) P Low/intermediate grade,
number

High grade,
number

Controls, number

rs75915166

Low/intermediate grade vs controls 1.36 (1.17, 1.59) 7.2 × 10-5 1,465 35,521

High grade vs controls 0.92 (0.79, 1.08) 0.31 1,941 32,202

Case-only high vs low/intermediate grade

Unadjusted 0.68 (0.55, 0.83) 1.4 × 10-4 1,307 1,941

unadjusted (only cases with ER status) 0.65 (0.51, 0.84) 1.1 × 10-3 791 1,360

adjusted for ER status 0.68 (0.52, 0.89) 0.0050 791 1,360

ER+ only 0.68 (0.55, 0.84) 5 × 10-4 709 985

rs554219

Low/intermediate grade vs controls 1.32 (1.18, 1.48) 8.2 × 10-7 1,465 35,521

High grade vs controls 1.02 (0.91, 1.14) 0.75 1,941 32,202

Case-only high vs low/intermediate grade

Unadjusted 0.75 (0.65, 0.87) 1.3 × 10-4 1,307 1,941

unadjusted (only cases with ER status) 0.75 (0.63, 0.88) 2.1 × 10-4 791 1,360

adjusted for ER status 0.80 (0.67, 0.96) 0.019 792 1,360

ER+ only 0.76 (0.65, 0.89) 6.7 × 10-4 709 985

OR odds ratio, ER estrogen receptor
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missing data on ER status in the BCAC cases, resulting in
only 684 ER– DCIS cases being available for analysis,
making it difficult to draw definitive conclusions about
ER– DCIS. In essence the findings are similar to invasive
breast cancer, with ER– and ER+ DCIS having different
genetic susceptibility profiles and ER+ DCIS having a very
similar profile to ER+ IDC.
Cytonuclear grade of DCIS is used by many clinicians

to select those cases most likely to benefit from radio-
therapy despite the fact that grade has not been shown
to be a good predictor of recurrence. In the UK audit of
DCIS, grade data were available for 99 % of DCIS cases,
with 59 % classified as high grade, 29 % as intermediate
and 11 % as low grade [27]. Similarly, in our study data
on grade were available for 95 % of cases in ICICLE. In
invasive disease only a minority of predisposition loci have
been shown to be grade specific; rs2981582 (FGFR2) and
rs13281615 (8q24) [28, 29] and rs10941679 (5p12) [23].
We have shown that analysis of DCIS by grade reveals
other known loci that are grade specific. The loci with the

strongest association with grade were SNPs on 11q13,
which had a stronger association with low/intermedi-
ate grade DCIS and IDC than high grade lesions. The
finding of a strong association with low and inter-
mediate grade ductal carcinomas that is independent
of ER status in both DCIS and IDC for these loci is
novel. rs614367 was the first locus on 11q13 shown
to be associated with invasive breast cancer [30]. Fine
mapping of the region subsequently identified two in-
dependent signals (rs554219 and rs78540526, r2 = 0.38),
which are the loci reported in this analysis. Functional
analyses demonstrated that the risk variants modify en-
hancer and silencer elements, with the likely target gene
being CCND1 [31].
A study of 150 cases of subsequent breast cancer

(invasive and in situ) after DCIS observed significant
association for both grade and ER status between the
index DCIS and the subsequent breast cancer (whether
ipsilateral or contralateral), suggesting that women with
DCIS are at risk of developing subsequent breast cancers

Table 3 Potential new ductal carcinoma in situ susceptibility loci

Single nucleotide polymorphism rs12631593 rs13236351 rs73179023

Chromosome 3 7 22

Position 60701884 97772513 43424477

Locus FHIT LMTK2 PACSIN2:TTLL1

Minor allele frequency 0.11 0.032 0.13

ICICLE DCIS phase I

Odds ratio (95 % CI) 1.15 (1.04, 1.28) 1.31 (1.10, 1.56) 0.83 (0.75, 0.91)

P 0.0088 0.0029 0.00020

BCAC DCIS

Odds ratio (95 % CI) 1.25 (1.14, 1.36) 1.3 (1.12, 1.51) 0.86 (0.79, 0.94)

P 1.0 × 10-6 0.00060 0.0012

Meta-analysis phase I

Odds ratio (95 % CI) 1.21 (1.13, 1.29) 1.3 (1.16, 1.46) 0.85 (0.79, 0.90)

P 5.5 × 10-8 5.7 × 10-6 1.1 × 10-6

Phase II DCIS

Odds ratio (95 % CI) 0.93 (0.76, 1.14) 0.91 (0.63, 1.31) 0.95 (0.78, 1.15)

P 0.49 0.61 0.57

Meta-analysis phase II

Odds ratio (95 % CI) 1.18 (1.10, 1.25) 1.26 (1.13, 1.41) 0.86 (0.80, 0.91)

P 7.8 × 10-7 2.9 × 10-5 1.7 × 10-6

BCAC IDC

Odds ratio (95 % CI) 1.01 (0.97, 1.05) 1.05 (0.99, 1.13) 0.97 (0.93, 1.00)

P 0.54 0.13 0.060

Case-only

DCIS vs IDC P-Het 0.0048 0.17 0.0099

DCIS ductal carcinoma in situ, IDC invasive ductal carcinoma, BCAC Breast Cancer Association Consortium, ICICLE Study to investigate the genetics of in situ
carcinoma of the ductal subtype, P-Het P value for heterogeneity
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of a similar phenotype [32]. This finding supports the
genetic predisposition data presented here, with ER and
grade-specific loci in DCIS having similar specificity in
IDC.
Although we did not identify any novel loci that

reached genome wide significance, we did identify three
potential novel DCIS predisposition loci, two of which
were DCIS-specific (rs12631593, rs73179023), and there-
fore need further investigation in other cohorts of DCIS.
As at least 45 % of patients with IDC have associated
DCIS present at diagnosis consistent with direct precur-
sor behavior, it may seem biologically implausible that
an SNP predisposes to DCIS but is not associated with
IDC. However, it is possible that there is a subset of
patients with DCIS with very low probability of progres-
sion. If the finding of DCIS-specific predisposition loci
were confirmed in other studies, identifying such a sub-
set of patients with low-risk DCIS would be clinically
valuable.

Conclusion
In conclusion this is the largest study to assess genetic
predisposition in DCIS and shows that the majority of
invasive breast cancer predisposition loci also predispose
to DCIS. It highlights that, as for invasive disease, differ-
ent SNPs predispose to ER+ and ER– DCIS. In addition it
shows the importance of grade in both DCIS and IDC.
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(gray). Due to the large number of single nucleotide polymorphisms (SNPs), for better visual representation, the plot is split into two different
sections (a and b) with a descending order of effect size for the ER+ group. OR odds ratio
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