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Abstract

In this thesis we study the gauge/gravity duality and exact results in supersymmetric

quantum field theories obtained using localization. We construct the gravity duals

to a broad class ofN = 2 supersymmetric gauge theories defined on a general class of

three-manifolds. The gravity backgrounds are supersymmetric solutions of gauged

four-dimensional supergravity and encompass all known examples of such solutions.

We find that the holographically renormalized on-shell action agrees with the free

energy of the field theory, which has previously been computed via localization

of the partition function. Next, we study the Casimir energy of four-dimensional

N = 1 supersymmetric field theories in the context of the rigid limit of new minimal

supergravity. We revisit the computation of the localized partition function on

S1 × S3, and consider the same theories in the Hamiltonian formalism on R × S3.

We compute the vacuum expectation value of the canonical Hamiltonian using zeta

function regularization, and show that this interpolates between the supersymmetric

Casimir energy and the ordinary Casimir energy of supersymmetric field theories.

In general, the Casimir energy depends on the regularization scheme and is therefore

ambiguous. However, we show that for N = 1 supersymmetric field theories on the

cylinder R × S3, the supersymmetric Casimir energy is well-defined and scheme-

independent, provided the regularization scheme preserves supersymmetry. Finally,

we investigate the gravity duals of such N = 1 theories on R × S3. Specifically,

we study supersymmetric solutions of five-dimensional minimal gauged supergravity

using a known classification. We propose an ansatz based on a four-dimensional local

orthotoric Kähler metric and reduce the problem to a single sixth-order equation

for two functions, each of one variable. We find an analytic, asymptotically locally

AdS solution comprising five parameters. For a conformally flat boundary, this

reduces to a previously known solution with three parameters, representing the most

general solution of this type known in minimal gauged supergravity. We discuss the

relevance for this solution to account for the supersymmetric Casimir energy, finding

the answer to be in the negative.
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Contents of this thesis

This thesis presents work published in [1–4], and is organized as follows. We begin

in chapter 1 with an overview of supersymmetric field theories on curved back-

grounds, localization, and the gauge/gravity duality, anticipating along the way

several results of the thesis. In chapter 2 we construct the gravity duals of super-

symmetric gauge theories on three-manifolds, based on [1]. Chapter 3 concerns the

computation and proof of the scheme-independence of the supersymmetric Casimir

energy of N = 1 field theories on R × S3. This based on [2] and [3]. In chapter

4, we construct supersymmetric solutions of five-dimensional minimal gauged su-

pergravity. We investigate whether these solutions can holographically account for

the supersymmetric Casimir energy, finding the answer to be in the negative. This

chapter is based on [4]. Chapter 5 contains concluding remarks. In addition, several

appendices are included from the above references.
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Chapter 1

Introduction and summary

Quantum field theory is the framework of modern particle physics. At weak coupling,

perturbation theory in terms of Feynman diagrams has been a powerful technique,

however, this approach cannot capture the full dynamics of quantum field theory.

A remarkable tool for obtaining exact results at strong coupling and large N has

been the gauge/gravity duality. This is the conjecture that certain quantum field

theories have a dual description in terms of gravity, more precisely string theory

or M-theory. The example of the original conjecture [5] was four-dimensional N =

4 super-Yang-Mills theory (SYM) dual to type IIB string theory on an AdS5 ×
S5 background. Since N = 4 SYM is not only maximally supersymmetric, but

also a conformal field theory (CFT), the duality is also known as the AdS/CFT

correspondence. Although there is no mathematical proof of the conjecture, there

is by now much evidence including various settings beyond the original example.

On the field theory side, one technique that has been studied extensively forN = 4

SYM is integrability (see [6] and references therein). In the planar limit, where the

number of colours N goes to infinity, while the coupling constant gYM goes to zero in

such a way that the ’t Hooft coupling λ = g2
YMN remains finite, the large amount of

symmetry in the theory allows for exact computations. This has allowed for checks

of the gauge/gravity duality.

A more recent computational technique, which will be of interest in this thesis, is

supersymmetric localization. For supersymmetric field theories defined on compact

Riemannian manifolds, under appropriate circumstances it can be shown that path

integrals localize in field space. This reduces the infinite-dimensional path integral

to a finite-dimensional matrix integral, in many instances allowing the integral to

be computed exactly. Results obtained via localization are valid for any value of

the coupling, and in the strong-coupling limit these serve as checks or predictions

for results obtained from the gauge/gravity duality. Indeed, this has led to novel

examples of the gauge/gravity duality, where the field theory is defined on a non-

trivially curved background.

In the remainder of this chapter, we review more details of gauge/gravity duality,
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localization, and the interplay between these techniques.

1.1 Gauge/gravity duality

According to the gauge/gravity duality, some quantum field theories are equivalent

to string theory or M-theory on certain backgrounds. In particular, taking in the

string theory the limit where the string coupling and α′ go to zero, the string theory

is described by classical supergravity. In the field theory this corresponds to the

limit of large N and large ’t Hooft coupling λ.

The first example of a gauge/gravity duality was conjectured in [5], with further

details in [7, 8]. The conjecture states that four-dimensional SU(N) N = 4 SYM

theory is equivalent to type IIB string theory on an AdS5 × S5 background. The

motivation for such a remarkable conjecture comes from brane constructions in string

theory. Type IIB string theory contains closed strings, as well as open strings whose

end points are restricted to so-called Dp-branes. These are hypersurfaces extending

in p spacelike directions. The excitations of an open string give rise to a gauge

theory living on the (p + 1)-dimensional world volume of the brane. In particular,

a stack of coincident Dp-branes gives rise to a non-Abelian gauge group, and the

gauge theory inherits supersymmetry from the string theory. On the other hand, in

an appropriate limit, Dp-branes also have a description as solutions of the equations

of motion of ten-dimensional classical supergravity.

The conjecture of [5] is motivated specifically from considering a stack of N co-

incident D3-branes. The gauge theory on the four-dimensional world volume of the

branes is N = 4 SYM with an SU(N) gauge group, while the AdS5 × S5 spacetime

arises as the near-horizon geometry of the branes in the supergravity solution. In

terms of the duality, the field theory is said to live on the conformal boundary of

AdS5, with the isometry group SO(2, 4) acting on the four-dimensional boundary

as the conformal group. Indeed N = 4 SYM is a conformal field theory with van-

ishing β-function. The isometry group SO(6) ' SU(4) of the S5 corresponds to the

R-symmetry of the field theory.

Another concrete example of the gauge/gravity duality was conjectured in [9].

This work followed the construction of a three-dimensional N = 8 superconfor-

mal theory constructed by Bagger and Lambert [10, 11] (see also [12]), which was

conjectured to be related to a specific theory of M2-branes for the lowest Chern-

Simons levels [13, 14]. The gauge theory of [9] is a three-dimensional N = 6 super-

conformal Chern-Simons-matter theory, known as ABJM theory. It contains two

copies of U(N) Chern-Simons theory with opposite levels, k and −k, coupled to

four matter supermultiplets in the bifundamental representation of the gauge group

U(N)k ×U(N)−k. From its M2-brane origin, its gravity dual was conjectured to be

AdS4 × S7/Zk in eleven-dimensional supergravity.
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A central prescription in the gauge/gravity duality is the identification of the par-

tition function of the gauge theory with that of the string/M-theory. In particular, in

the limit where the string/M-theory is well approximated by classical supergravity,

the gravity partition function will be dominated by the on-shell field configurations

in a saddle point approximation,

e−Ssugra[M ] = ZCFT[∂M] . (1.1)

Here, M is the bulk manifold with conformal boundary ∂M , and Ssugra is formally

the supergravity action evaluated on-shell. From the supergravity theory, one may

then holographically compute field theory quantities, e.g correlation functions. Of

particular interest in Chapter 2 will be free energy of the field theory, which we define

as F = − logZCFT. From (1.1), we see that the free energy at large N is formally

just the on-shell gravity action. However, in general, Ssugra is a divergent quantity

involving an integral over the infinite volume of an AdS space. These divergences

can be removed using the technique of holographic renormalization, as we will see

concretely in section 2.3 below.

The gauge/gravity duality has also been applied to settings quite different from the

original conjecture, for example providing new insights in condensed matter physics.

Holographic superconductors have been constructed as AdS black holes in theories

with a Maxwell field and a charged scalar field [15, 16]. Note that this case does

not rely on supersymmetry. Gravity duals have also been constructed for condensed

matter systems displaying scale-invariance, but not Lorentz-invariance [17–19].

In this thesis, we will be interested in supersymmetric quantum field theories

defined on curved backgrounds, and their gravity duals. In particular, the motiva-

tion to study this setting comes from new exact computations in field theory from

localization, requiring a supersymmetric field theory to be defined on a compact Rie-

mannian manifold. We will return to the gauge/gravity duality below, after some

discussion of supersymmetry on curved backgrounds and localization.

1.2 Supersymmetric field theories on curved spaces

Results obtained using localization motivated the study of how to construct field

theories with rigid supersymmetry on curved backgrounds. A theory can be placed

on a curved background by minimally coupling it to the metric, but in general the

theory will then no longer be supersymmetric. A more systematic approach for

obtaining theories with rigid supersymmetry was started in [20] in four dimensions.

It was then developed further for the three-dimensional case in [21–24]. We shall

now review this formalism in four and three dimensions, respectively.
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1.2.1 Four dimensions

In four dimensions, one may obtain N = 1 supersymmetric field theories with

an R-symmetry on curved backgrounds [20] from so-called off-shell “new minimal

supergravity” [25]. We give here an overview in Euclidean signature following [26],

while in section 3.4 below we will analytically continue this formalism to Lorentzian

signature.

The gravity multiplet of new minimal supergravity contains the metric, a gravitino

ψµ, an auxiliary two-form Bµν , and an auxiliary vector field Aµ which is a gauge

field for the local chiral symmetry. Taking a rigid limit by appropriately sending the

Plank mass to infinity, one obtains a rigid supersymmetric theory containing vector

and chiral multiplets, while the gravity multiplet fields remain as non-dynamical

background fields. Rather than the two-form Bµν , we will work with the one-form

V = ∗4dB, where we denote by ∗d the Hodge dual in d dimensions. From its

definition, V is conserved, ∇µV
µ = 0. In Euclidean signature, Aµ and Vµ may

take complex values, while we restrict the metric to be real. The real part of Aµ

transforms locally as a gauge field and couples to the U(1)R R-symmetry, while the

imaginary part must be a well-defined one-form. To obtain a rigid supersymmetric

theory, it is necessary that the background admits a solution ζ or ζ̃ to at least one

of the Killing spinor equations,

(∇µ − iAµ)ζ + iVµζ + iV µσµνζ = 0

(∇µ + iAµ)ζ̃ − iVµζ̃ − iV µσ̃µν ζ̃ = 0 . (1.2)

We follow here the conventions of [26]. The 2 × 2 matrices σµ and σ̃µ generate

the Clifford algebra Cliff(4, 0), and the spinors ζ and ζ̃ are two-component complex

spinors of opposite chirality and with opposite charge under the gauge field Aµ,

which couples to the R-symmetry. In Lorentzian signature, ζ̃ would be the complex

conjugate of ζ, but in Euclidean signature the number of degrees of freedom is

doubled by allowing the two spinors to be independent.

Is it then natural to ask which manifolds admit solutions to (1.2). In Euclidean

signature one can construct from the spinors ζ and ζ̃ the almost complex structures,

Jµν =
2i

|ζ|2
ζ†σµνζ , J̃µν =

2i

|ζ̃|2
ζ̃†σ̃µν ζ̃ . (1.3)

A necessary and sufficient condition for a four-dimensional Riemannian manifold to

admit a solution to (1.2) is that at least one of the almost complex structures is

integrable [23, 27]. When there exists non-zero solutions ζ and ζ̃ to both equations

(1.2), the spinor bilinear

Kµ = ζσµζ̃ , (1.4)

is a complex Killing vector, hence comprising two real Killing vectors. Moreover,
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it is holomorphic with respect to both complex structures (1.3). In Lorentzian sig-

nature, equations (1.2) admit a solution if and only if the background admits a

null Killing vector [28]. This approach of constructing spinor bilinears has previ-

ously been employed in other contexts to determine geometric restrictions imposed

by supersymmetry. In particular, this has led to classifications of supersymmetric

solutions of supergravity in terms of G-structures [29–31], and in chapter 4 we will

use the conditions derived in [32] for a solution of five-dimensional minimal gauged

supergravity to preserve supersymmetry.

The vector fields Aµ and Vµ are only defined up to shifts parametrized by a vector

Uµ,

Aµ → Aµ +
3

2
Uµ , Vµ → Vµ + Uµ , (1.5)

provided Uµ is holomorphic, namely JµνU
ν = iUµ, and divergenceless ∇µU

µ =

0. When the Killing vector K commutes with its complex conjugate, Kν∇νK̄
µ −

K̄ν∇νK
µ = 0, then Uµ must in fact be of the form Uµ = κKµ, where κ is a complex

function satisfying Kµ∂µκ = 0. In chapter 3 we will take κ to be a constant. Note

that the combination Acs
µ ≡ Aµ − 3

2
Vµ is independent of the choice of Uµ.

The following Lagrangian was presented in [26] for an N = 1 vector multiplet

containing a gauge field Aµ, a pair of two-component spinors λ, λ̃ of opposite chirality,

and an auxiliary scalar field D,

Lvector = Tr

[
1

4
FµνF

µν +
i

2
λσµDcs

µ λ̃+
i

2
λ̃σ̃µDcs

µ λ−
1

2
D2

]
, (1.6)

where Fµν = ∂µAν − ∂νAµ − i[Aµ,Aν ] and Dcs
µ = ∇µ − iAµ − iqRA

cs
µ with qR the

R-charge of the field. The fields {Aµ, λ, λ̃, D} have R-charges {0, 1,−1, 0} and all

transform in the adjoint of the gauge group G. The vector multiplet Lagrangian

(1.6) is invariant under the supersymmetry transformations

δAµ = iζσµλ̃+ iζ̃ σ̃µλ

δλ = Fµνσ
µνζ + iDζ

δλ̃ = Fµν σ̃
µν ζ̃ − iDζ̃

δD = −ζσµ
(
Dµλ̃−

3i

2
Vµλ̃

)
+ λ̃σ̃µ

(
Dµλ+

3i

2
Vµλ

)
, (1.7)

withDµ = ∇µ−iAµ−iqRAµ. In Euclidean signature, the tilded fields are independent

of the untilded. When turning to Lorentzian signature, these will be related by

conjugation. Crucially for the localization argument of [26], it was shown therein

that the Lagrangian (1.6) is itself a total supersymmetry variation.

Likewise, the chiral multiplet in [26] was also shown to be a total supersymmetry

variation. In fact, it is a sum of four such variations,

Lchiral = δζV1 + δζV2 + δζV3 + δζVU . (1.8)
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A chiral multiplet contains two complex scalars φ, φ̃, a pair of two-component com-

plex spinors ψ, ψ̃ of opposite chirality, and two complex auxiliary fields F, F̃ . These

fields {φ, ψ, F, φ̃, ψ̃, F̃} have R-charges {r, r − 1, r − 2,−r,−r + 1,−r + 2}. The

untilded fields transform in a representation R of the gauge group, while the tilded

transform in the conjugate representation R∗. Again, in Euclidean signature the

tilded and untilded fields are independent. In components, the Lagrangian reads

Lchiral = Dµφ̃D
µφ+ iV µ

(
Dµφ̃ φ− φ̃Dµφ

)
+
r

4

(
R + 6VµV

µ
)
φ̃φ+ φ̃Dφ− F̃F

+iψ̃σ̃µDµψ +
1

2
V µψ̃σ̃µψ + i

√
2
(
φ̃λψ − ψ̃λ̃φ

)
, (1.9)

where R is the Ricci scalar of the background metric. The Lagrangian (1.9) is

invariant under the supersymmetry transformations

δφ =
√

2ζψ

δψ =
√

2Fζ + i
√

2(σµζ̃)Dµφ

δF = i
√

2ζ̃ σ̃µ
(
Dµψ −

i

2
Vµψ

)
− 2i(ζ̃ λ̃)φ

δφ̃ =
√

2ζ̃ψ̃

δψ̃ =
√

2F̃ ζ̃ + i
√

2(σ̃µζ)Dµφ̃

δF̃ = i
√

2ζσµ
(
Dµψ̃ +

i

2
Vµψ̃

)
+ 2iφ̃(ζλ) . (1.10)

One may couple to the theory an arbitrary number of chiral multiplets, each with

different R-charge rI , and also add a superpotential [20]. We will return to the

Lagrangian (1.9) in chapter 3.

1.2.2 Three dimensions

The analysis of [20] was further developed in [21–24] for theories on Riemannian

three-manifolds. In particular, [24] constructed N = 2 supersymmetric gauge the-

ories with an R-symmetry on Riemannian three-manifolds, encompassing all previ-

ously known examples. Although only a linearized formulation is known for new

minimal supergravity in three dimensions, it was argued in [24] that this is sufficient

up to terms that vanish when taking the rigid limit.

The gravity multiplet contains the metric gµν , two gravitini ψ
(3)
µ , ψ̃

(3)
µ , a two-form

gauge field B
(3)
µν , and two gauge fields1 A

(3)
µ and Cµ. While we take the metric

to be real, the gauge field may be complex. We will use the dual fields, the vector

V (3) = −i ∗3dC and the scalar field h = ∗3dB(3), from which it follows that∇µV
(3)
µ =

0. Again these remain as background fields. The resulting theory possesses rigid

1The superscript (3) is intended to distinguish the three-dimensional fields from the four-
dimensional ones.
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supersymmetry if and only if the gravitini vanish and there exists a spinor χ or χ̃

solving one of the equations

(
∇µ − iA(3)

µ

)
χ+

1

2
ihγµχ+ iV (3)

µ χ+
1

2
εµ
νρV (3)

ν γρχ = 0(
∇µ + iA(3)

µ

)
χ̃+

1

2
ihγµχ̃− iV (3)

µ χ̃− 1

2
εµ
νρV (3)

ν γρχ̃ = 0 , (1.11)

where γa are the Pauli matrices generating the Clifford algebra Cliff(3,0) in an

orthonormal frame.

When A
(3)
µ , V

(3)
µ , and h are real, and χ solves the upper equations in (1.11), the

lower equation in (1.11) is solved by its charge conjugate χc. This is the set-up of

the localization computation performed in [33], which we shall discuss further in the

next section.

From the spinor χ we can then construct a Killing vector K(3), and choosing

appropriately the coordinate ψ, this is given by

K(3) ≡ χ†γµχ∂µ = ∂ψ . (1.12)

This vector defines a transversely holomorphic foliation of the three-manifold. In-

troducing a local complex coordinate z, the metric is given in terms of the functions

Ω(z, z̄) and c(z, z̄), and the one-form a = a(z, z̄)dz + a(z, z̄)dz̄, as

ds2
3 = Ω2 (dψ + a)2 + c2dzdz̄ . (1.13)

Similar to the four-dimensional case, the background fields are defined up to shifts

of the form,

A(3)
µ → A(3)

µ +
3

2
κΩηµ V (3)

µ → V (3)
µ + κΩηµ , h → h+ κ , (1.14)

where

η = dψ + a , (1.15)

and the function κ must satisfy K
(3)
µ ∂µκ = 0. The three-manifold admits an almost

contact structure. The nowhere vanishing one-form η is the almost contact form on

the three-manifold2 and K(3) is the associated Reeb vector field. These satisfy

K(3)y η = 1 , K(3)y dη = 0 . (1.16)

For further details on almost contact structures, see for instance [34] or the appendix

of [24].

Langrangians and supersymmetry variations for Chern-Simons multiplets, Yang-

2If η ∧ dη is nowhere vanishing then η is a contact form and the three-manifold has a contact
structure. This is not necessarily the case in the current context.
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Mills multiplets, and chiral multiplets on three-manifolds with the geometry de-

scribed above were given in [24]. We shall not need them explicitly here. However,

the above formulae will be recovered in section 2.2 below, as the background geom-

etry on the boundary of four-dimensional supergravity solutions.

1.3 Localization

Although localization has a longer history [35], the recent interest was sparked by ref.

[36], in which the path integral of N = 2 super-Yang-Mills theory on the four-sphere

was computed. Results obtained via localization have served as non-perturbative

tests of conjectured dualities, e.g. mirror symmetry in three-dimensional theories

[37]. In particular, as these results are valid for any value of the coupling constant,

they may serve as checks of the gauge/gravity duality in the strong-coupling limit.

The central point of localization is that under appropriate circumstances, the

infinite-dimensional path integral can be reduced to a finite-dimensional integral.

Let us consider a supersymmetric quantum field theory defined on a compact Rie-

mannian manifold. Due to the compactness, we assume the field theory is free of

infrared divergences. The partition function is defined by the path integral as usual,

Z[φ] =

∫
Dφ e−S[φ] , (1.17)

where φ denotes collectively the fields of the theory. For a supersymmetric theory,

we consider a Grassmann-odd supercharge, Q, under which the action is invariant,

QS[φ] = 0. The supercharge squares to a bosonic charge B,

Q2 = B , (1.18)

which may generate a linear combination of spacetime symmetries, global internal

symmetries, and gauge symmetries. We assume the integration measure in (1.17) is

Q-invariant. Consider then a deformation of the partition function,

Zt[φ] =

∫
Dφ e−S[φ]−tQV [φ] , (1.19)

where V [φ] is a Grassmann-odd operator invariant under B, and t is some param-

eter. The perturbed partition function is independent of t, which can be shown by

differentiation,

d

dt
Zt[φ] = −

∫
Dφ (QV )e−S−tQV = −

∫
DφQ

(
V e−S−tQV

)
= 0 . (1.20)

In the last equality, we interpreted the integrand as a total derivative on field space,

and assumed that there are no boundary terms (or at least that the integral decays
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sufficiently fast). We can thus choose to compute (1.19) for any convenient value of

t. Clearly, for t = 0 we recover the original partition function (1.17). Assuming the

bosonic part of QV is positive semi-definite, we can consider the limit in which t→
∞. In this limit, the integral will be dominated by the locus of field configurations

for which

QV [φ] = 0. (1.21)

For this reason, QV [φ] is known as the localizing action. In many interesting cases,

the path integral localizes to a finite-dimensional integral in this way. Further, one

may utilize this localization technique to compute the expectation value of operators

by inserting these into the path integral as usual, provided these operator are gauge

invariant and BPS. Examples includes vortex loop operators and Wilson loops in

three and four dimensions [36,38–41]. For more detailed reviews on the localization

technique, see e.g. [42, 43].

Three-manifolds

There has been a number of results in three dimensions. The authors of [44] applied

localization to N = 3 superconformal Chern-Simons-matter theories on the round

three-sphere. It was shown that the exact partition function and certain Wilson

loop observables can be reduced to more manageable matrix models. The authors

also wrote down as a matrix integral the partition function Z of the N = 6 ABJM

theory [9], which was studied further in [45]. In particular, the authors of [45] showed

from the matrix integral that the free energy F = − logZ of ABJM theory scales at

large N as N3/2. This N3/2 behaviour had been in need of clarification since it was

noticed more than a decade earlier from the study of N coincident M2-branes [46].

The techniques developed in [44] were extended to the partition function of N = 2

theories in [47,48], and to Wilson loops [38,39] and vortex loops [40,41], as mentioned

above. Recall the round three-sphere has isometry group SO(4) ' SU(2)× SU(2).

The partition function for N = 2 theories on particular squashed three-spheres

preserving either SU(2)× U(1) or U(1)× U(1) isometry were studied in [49], while

a different squashing preserving SU(2) × U(1) isometry was later studied in [50].

Other topologies have also been considered, such as Lens spaces [51,52].

In [33], the localized partition function was computed for N = 2 Chern-Simons

theories coupled to chiral multiplets, defined on a broad class of Riemannian three-

manifolds M3 with the topology of the three-sphere. The background M3 preserves

a U(1) × U(1) isometry and encompasses all previous such examples. The field

theory is defined on such a background as described in section 1.2.2 above. Recall

the Killing spinor solving equations (1.11) gives rise to a Killing vector K(3). If all

the orbits of K(3) close, it generates a U(1) isometry of M3. If not, M3 must admit

at least a U(1)× U(1) isometry and therefore has a toric almost contact structure.
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We may then introduce two angular coordinates ϕ1, ϕ2 with period 2π, such that

K(3) = b1∂ϕ1 + b2∂ϕ2 . (1.22)

By the localization argument, the authors of [33] reduced the full partition function

to a finite-dimensional integral. This reads

Z =

∫
dσ0 e

iπk
b1b2

Trσ2
0

∏
α∈∆+

4 sinh
πσ0α

b1

sinh
πσ0α

b2

∏
ρ

sβ

(
iQ

2
(1− r)− ρ(σ0)√

b1b2

)
,

(1.23)

where the integral is over the Cartan of the gauge group, k denotes the Chern-

Simons level, the first product is over positive roots α ∈ ∆+ of the gauge group, and

the second product is over weights ρ in the weight space decomposition for a chiral

matter field with R-charge r in an arbitrary representation of the gauge group. Also,

β ≡
√

b1
b2

and Q ≡ β + 1
β

and sβ(z) is the double sine function defined by

sβ(z) ≡
∏
m,n≥0

βm+ β−1n+ Q
2
− iz

βm+ β−1n+ Q
2

+ iz
. (1.24)

Notice in (1.23) that a factor of 1/
√
b1b2 may be absorbed into σ0, which is inte-

grated over. Hence, the partition function depends on the background geometry

only through one parameter, b1/b2.

In the context of the gauge/gravity duality, we are particularly interested in the

free energy F = − logZ, which in the large N limit reads,

lim
N→∞

Fβ =
(|b1|+ |b2|)2

4|b1b2|
Fβ=1 , (1.25)

where Fβ=1 is the large N limit of the free energy on the round three-sphere scaling

as N3/2 [45].

N = 1 theories on S1 × S3

As mentioned, the recent interest in localization began with the computation of the

partition function of N = 2 SYM on the four-sphere [36]. Localization has been

used on other topologies in four-dimensions, such as S2 × S2 [53] and T 2 × S2 [54].

In much of this thesis, we will focus on S1 × S3. In ref. [26], the authors com-

puted the full partition function for N = 1 theories, consisting of vector multiplets

and chiral multiplets with an R-symmetry, on a background with S1 × S3 topol-

ogy. The theories considered in [26] are precisely those discussed in section 1.2.1

above. Analogously to the three-dimensional case above, the S3 is assumed to have

a U(1)×U(1) isometry. Introducing standard 2π-period toric coordinates ϕ1, ϕ2, the
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supersymmetric Killing vector (1.4) can be parametrized by two coefficients, b1, b2

K =
1

2
[b1∂ϕ1 + b2∂ϕ2 − i∂τ ] , (1.26)

with τ the coordinate on S1. The partition function was found to be of the form,

Z[b1, b2] = e−F(b1,b2)I(b1, b2) , (1.27)

where I(b1, b2) is the so-called supersymmetric index [55–58], and

F(b1, b2) =
4π

3

(
|b1|+ |b2| −

|b1|+ |b2|
|b1b2|

)
(a− c) +

4π

27

(|b1|+ |b2|)3

|b1b2|
(3c− 2a) ,

(1.28)

with a and c the trace anomaly coefficients. These are given by

a =
3

32

(
3trR3 − trR

)
, c =

1

32

(
9trR3 − 5trR

)
, (1.29)

where R denotes the R-symmetry charge, and “tr” runs over the fermionic fields in

the multiplets, so that for Nv vector multiplets and Nχ chiral multiplets,

trRn = Nv +

Nχ∑
I=1

(rI − 1)n . (1.30)

We shall return to the partition function (1.27) shortly.

1.4 Gauge/gravity duality with curved boundaries

The first example of a dual gravity description of a gauge theory on a curved back-

ground appeared in [59, 60]. In particular, in [60] the authors constructed a su-

pergravity solution dual to four-dimensional N = 1 pure super-Yang-Mills theory,

living in the unwrapped dimensions of a D5-brane wrapping a two-cycle inside a

Calabi-Yau three-fold3.

In ref. [45] the free energy of ABJM theory on the round three-sphere was com-

puted. The authors further compared the large-N limit of the free energy to the

holographically renormalized on-shell action of gravity on Euclidean AdS4, which

reads

Sren
sugra =

π

2G4

, (1.31)

where G4 is Newton’s constant in four dimensions. This gave a precise match.

As new exact results for supersymmetric field theories on non-trivially curved

backgrounds were obtained using localization, this prompted the study of the

3In this, and similar constructions, the unwrapped directions of the branes, on which the field
theories live, are not curved.
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gauge/gravity duality in such settings. When the field theory is defined on a confor-

mally flat Riemannian manifold, the gravity dual must be asymptotically Euclidean

anti-de Sitter (Euclidean AAdS). More generally, the gravity dual of field theories

on non-conformally flat backgrounds will be just asymptotically locally Euclidean

anti-de Sitter (Euclidean AlAdS).

This programme was initiated in [61] where a supersymmetric Euclidean Al-

AdS solution of four-dimensional minimal gauged supergravity was proposed as

the dual to three-dimensional Chern-Simons theories defined on a one-parameter

squashed three-sphere. The localized partition function of such theories had previ-

ously been computed in [49]. Generalizations have been discussed in [62, 63], and a

two-parameter squashing was presented in [64]. In all these cases, the gravity duals

are supersymmetric solutions of four-dimensional N = 2 minimal gauged super-

gravity in Euclidean signature. They are comprised of a negatively curved Einstein

anti-self-dual metric on the four-ball 4, with a specific choice of anti-self-dual gauge

field. The concrete check was the comparison of the holographically renormalized

on-shell action with the free energy of the field theory.

Further examples of four-dimensional gravity solutions with curved boundary,

where localization was utilized in the dual field theory, have been discussed in [65,66].

In this case, the exactly calculable quantity on both sides of the duality is the so-

called supersymmetric Rényi entropy [67], which is a simple modification of the

partition function on the ellipsoid [49] (see also [61]).

The most general example in four bulk dimensions was given in [1]. This reference

presented the gravity duals to N = 2 Chern-Simons theories on an arbitrary toric

metric on the three-sphere. As described in the previous section, the localized

partition function of such theories was computed in [33], leading to the free energy

(1.25). The gravity solution in [1] is again a supersymmetric AlAdS solution of

N = 2 minimal gauged supergravity, and it encompasses all known such solutions.

It has anti-self-dual Weyl tensor and is equipped with a gauge field with anti-self-

dual field strength. From the Killing spinors, one can construct as a bilinear a Killing

vector K. In terms of the toric coordinate, ϕ1 and ϕ2, this can be parametrized as

K = b1∂ϕ1 + b2∂ϕ2 . (1.32)

On the conformal boundary, K becomes the Killing vector (1.22). The holographi-

cally renormalized on-shell action was shown to be

Sren
sugra =

π

2G4

· (|b1|+ |b2|)2

4|b1b2|
, (1.33)

4References [62, 63] also discuss several solutions with topology different from the four-ball;
however the precise field theory duals of these remain unknown. In chapter 2, we will only be
concerned with gravity solutions with topology of the four-ball.
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with G4 Newton’s constant, precisely matching the expectation from localization

(1.25). This constitutes a quite general check of the gauge/gravity duality. The

details of this general gravity solution will be the topic of chapter 2.

In five bulk dimensions, gravity duals of N = 1 SCFTs on S1 × S3 with a one-

parameter squashing of the S3 have been constructed in [68], and the holographically

renormalized on-shell action computed. As discussed in the next section, it remains

an open problem to holographically match the supersymmetric Casimir energy of

such field theories, a problem recently addressed in [4].

There are also results in six bulk dimensions. In [69], the gravity duals of su-

persymmetric gauge theories on a squashed five-sphere have been constructed in

Romans F (4) gauged supergravity. The holographic free energy and BPS Wilson

loops were successfully matched to the five-dimensional localization computations.

1.5 Supersymmetric Casimir energy

In this section, we turn to discuss properties of the Casimir energy of superconformal

field theories, i.e. the energy of the vacuum. The Casimir energy can be expressed

in terms of the trace anomaly coefficients, which appear in the trace of the energy-

momentum tensor and encode universal properties of CFTs. In two dimensions, the

trace anomaly is proportional to the central charge c,

〈Tµµ〉 = − c

24π
R , (1.34)

where R is the Ricci scalar of the background. The central charge c character-

izes two-dimensional CFTs, and constrains the renormalization group flows between

them [70]. In four-dimensional CFTs, there are two trace anomaly coefficients, a

and c, and we defined them already in (1.29).

Given a CFT on Rd, we can use a Weyl transformation to place the theory on

R × Sd−1, where the sphere is round. Denoting the non-compact coordinate by τ ,

we define the Casimir energy E0 as

E0 =

∫
Sd−1

dd−1x
√
g〈Tττ 〉 , (1.35)

where Tµν is the energy-momentum tensor, and the expectation value is taken in the

ground state of the theory. The evaluation of the Casimir energy leads to infinite

sums or products which must be regularized, for example using zeta functions such

as the Riemann, Hurwitz, or Barnes zeta functions. However, the result will in

general depend on the chosen regularization scheme and is therefore ambiguous.

Another way of regarding this regularization is by adding counterterms to the

action. These may cancel the divergences, however, dimensionless counterterms
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will affect the finite part of the computation. In two dimensions there is only one

dimensionless counterterm, namely ∫
d2x
√
gR , (1.36)

where R is the Ricci scalar of the background. This vanishes on the cylinder, R×S1,

and therefore the Casimir energy is well-defined and scheme-independent. It is well

known that the Casimir energy for a CFT on R× S1 is [71]

ER×S1

0 = − c

12r1

, (1.37)

where r1 is the radius of the S1.

In four dimensions there are several dimensionless counterterms. A basis for

these is given by the square of the Ricci scalar R2, the square of the Weyl tensor

WµνρσW
µνρσ, the Euler density E = RµνρσR

µνρσ−4RµνR
µν+R2, and the Pontryagin

density P = 1
2
εµν

λκRλκρσR
µνρσ. On the background R× S3 the only non-vanishing

of these is R2. Hence, we may add to the action a term

δS = − b

12(4π)2

∫
d4x
√
gR2 , (1.38)

with an arbitrary coefficient b. This coefficient shows up in the trace of the energy-

momentum tensor,5

〈Tµµ〉 =
1

(4π)2
(aE − cWµνρσW

µνρσ + b2R) , (1.39)

along with the trace anomaly coefficients a and c, and shifts the Casimir energy of

the CFT on R× S3,

ER×S3

0 =
3

4r3

(
a− b

2

)
. (1.40)

A self-contained derivation of this result can be found in the appendix of [3].

This discussion was on general CFTs, not necessarily supersymmetric ones. How-

ever, for four-dimensional supersymmetric CFTs, a quantity can be defined dubbed

the supersymmetric Casimir energy Esusy, which is in fact free of ambiguities [3].

From the path integral on a manifold of the form S1 ×M3 with M3 some three-

manifold, the Casimir energy E0 may be defined in the limit where the radius β of

the S1 is taken to infinity,

E0 = − lim
β→∞

d

dβ
logZ[β,M3] . (1.41)

In ref. [26], the authors computed the full partition function for N = 1 theo-

5Although the right hand side of (1.39) vanishes for the conformally flat metric on R× S3.
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ries with an R-symmetry, consisting of vector multiplets and chiral multiplets on a

background of S1 × S3 topology. This led to the result (1.27) above. Here we are

particularly interested in the round sphere M3 = S3 where we set |b1| = |b2| = β
2π

.

In this case, from equation (1.28), F simplifies to

F(β) =
4

27
β (a + 3c)− 4

3β
(a− c) , (1.42)

Inserting the supersymmetric partition function (1.27) into equation (1.41), it can

be shown that the supersymmetric index I(β) does not contribute when taking β to

infinity. The only contribution comes from (1.42) and one finds the Casimir energy,

Esusy =
4

27
(a + 3c) , (1.43)

which is the supersymmetric Casimir energy.

In chapter 3, we focus on the supersymmetric Casimir energy following [2,3]. We

consider the theories of section 1.2.1 to quadratic order in the fields, as we are con-

cerned with the vacuum energy. From both a Euclidean path integral approach on

S1×S3, as well as canonical quantization in Lorentzian signature on R×S3, adopting

a specific choice of regularization, we recover (1.43). We then argue that in fact the

supersymmetric Casimir energy is free of ambiguities, provided the regularization

scheme preserves supersymmetry.

1.5.1 Holography and the supersymmetric Casimir energy

According to the gauge/gravity duality, N = 1 superconformal field theories on R×
S3 have a dual description in terms of supersymmetric solutions of five-dimensional

supergravity. However, the gravity dual reproducing the supersymmetric Casimir

energy (1.43) remains to be identified.

The appropriate gravity solution must admit a gauge field coupling to the R-

symmetry of the boundary field theory. For the conformally flat case of R× S3, an

obvious candidate for the gravity dual is pure AdS5. Indeed, the boundary is R×S3

and a constant gauge field A = c dt can be turned on. However, as we will further

comment on in chapter 4, the field theory requires an electric charge in the bulk, in

turn requiring a non-trivial gauge field so that the solution is only asymptotically

AdS.

The conditions for obtaining supersymmetric solutions to minimal gauged super-

gravity in five dimensions were presented about a decade ago in [32]. By assuming

the existence of a Killing spinor, the authors constructed bilinears of this spinor,

leading to constraints on the metric and graviphoton. Solutions fall in two distinct

classes depending on whether the supersymmetric Killing vector is timelike or null.

In chapter 4 we will review these constraints in the timelike case. This formalism
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was used to construct the first example of an AAdS5 black hole free of closed timelike

curves [72]. Other AAdS5 solutions were obtained by different methods in [73–76],

with the solution of [76] being the most general in that it encompasses the others

as special cases. The solution of [76] also contains the most general AAdS5 black

hole known within minimal gauged supergravity. It was shown in [77] that in the

supersymmetric limit this black hole takes the form of the timelike class of [32]. The

formalism of [32] also led to the construction of AlAdS5 solutions in the timelike

case [68, 78, 79] and the null case [80] (the latter based on [81]). Solutions of five-

dimensional minimal gauged supergravity with an SU(2) × U(1) × U(1) isometry

where studied in [68].

We report in chapter 4 on an attempt to match N = 1 superconformal field

theories on R×S3 with a supersymmetric AAdS5 solution. This smooth supersym-

metric solution known as a topological soliton was first found in [76]. This is based

on ref. [4].
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Chapter 2

Gravity duals of supersymmetric

gauge theories on three-manifolds

In this chapter we construct the gravity duals of supersymmetric gauge theories

on three-manifolds. In section 2.1 we present a supersymmetric solution of four-

dimensional minimal gauged supergravity in Euclidean signature, comprising a met-

ric with anti-self-dual Weyl tensor and a graviphoton with anti-self-dual field strength,

and we find explicitly the spinor ε that solves the Killing spinor equation. In sec-

tion 2.2 we discuss regularity of the solution, assuming topology of the four-ball,

and show that the conformal boundary is of the form discussed in section 1.2.2, for

which the localized partition function was computed in [33]. Assuming at least a

U(1) × U(1) isometry, we compute in section 2.3 the holographically renormalized

on-shell action. We arrive at the expression advertised earlier in equation (1.33),

matching the field theory result (1.25). We then discuss in section 2.4 previously

known explicit examples, which are obtained as special cases of our solution. We

end this chapter with a discussion of possible generalizations in section 2.5. This

chapter is based on [1].

2.1 Local geometry of self-dual solutions

The action of the bosonic sector of four-dimensional N = 2 gauged supergravity [82]

in Euclidean signature is

Ssugra = − 1

16πG4

∫
(R− 2Λ− FµνF µν)

√
g d4x , (2.1)

where R denotes the Ricci scalar of the four-dimensional metric gµν . Throughout

this chapter, we normalize the cosmological constant to Λ = −3. The graviphoton

is an Abelian gauge field A with field strength F = dA. The equations of motion
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derived from (2.1) are

Rµν + 3gµν = 2
(
F ρ
µ Fνρ − 1

4
FρσF

ρσgµν
)
,

d ∗4 F = 0 . (2.2)

This is simply Einstein-Maxwell theory with a cosmological constant. When F is

anti-self-dual, ∗4F = −F , the right hand side of the Einstein equation in (2.2) is

easily shown to vanish, so that the metric gµν is necessarily Einstein.

A solution is supersymmetric provided it admits a (not identically zero) Dirac

spinor ε satisfying the Killing spinor equation(
∇µ − iAµ +

1

2
Γµ +

i

4
FνρΓ

νρΓµ

)
ε = 0 . (2.3)

This takes the same form as in Lorentzian signature, except that here the gamma ma-

trices generate the Clifford algebra Cliff(4, 0) in an orthonormal frame, so {Γµ,Γν} =

2gµν . Notice that we may define the charge conjugate of the spinor ε as εc ≡ Bε∗,

where B is the charge conjugation matrix satisfying B−1ΓµB = Γ∗µ, BB∗ = −1 and

may be chosen to be antisymmetric BT = −B [61]. Then provided the gauge field

A is real (as we will assume here) εc satisfies (2.3) with A→ −A.

In [83, 84] the authors studied the local geometry of Euclidean supersymmetric

solutions to the above theory for which F is anti-self-dual. It follows that the metric

gµν has anti-self-dual Weyl tensor W ,

Wµνρσ = −1

2
εµν

λκWρσλκ . (2.4)

Adopting a standard abuse of terminology we shall refer to such solutions as “self-

dual”. Supersymmetry also equips this background geometry with a Killing vector

field K constructed as a bilinear of the Killing spinor. Self-dual Einstein metrics with

a Killing vector have a rich geometric structure that has been well-studied (see for

example [85]) and shown to be related by a Weyl rescaling to a (local) Kähler metric

with zero Ricci scalar. The metric is described by a function solving a single PDE,

known as the Toda equation. This function also specifies uniquely the gauge field

A. In fact we will show that F = dA is 1
2

times the Ricci-form of the conformally

related Kähler metric, so that A is the natural connection on C−1/2, where C denotes

the canonical bundle of the Kähler manifold. Moreover, we will reverse the direction

of implication in [83, 84] and show that any self-dual Einstein metric with a choice

of Killing vector field admits (locally) a solution to the Killing spinor equation (2.3).

This may be constructed from the canonically defined spinc spinor that exists on

any Kähler manifold.
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2.1.1 Local form of the solution

In this section we briefly review the local geometry determined in [83, 84]. The

existence of a non-trivial solution to the Killing spinor equation (2.3), together with

the ansatz that F is anti-self-dual and real, implies that the metric gµν is Einstein

with anti-self-dual Weyl tensor. There is then a canonically defined local coordinate

system in which the metric takes the form

ds2
SDE =

1

y2

[
B−1(dψ + φ)2 +B

(
dy2 + 4ewdzdz̄

)]
, (2.5)

where

B = 1− 1

2
y∂yw , (2.6)

dφ = i∂zBdy ∧ dz − i∂z̄Bdy ∧ dz̄ + 2i∂y(Bew)dz ∧ dz̄ , (2.7)

and w = w(y, z, z̄) satisfies the Toda equation

∂z∂z̄w + ∂2
ye
w = 0 . (2.8)

Notice that the function w determines entirely the metric. The two-form dφ is

easily verified to be closed provided the Toda equation (2.8) is satisfied, implying

the existence of a local one-form φ.

The vector K = ∂ψ is a Killing vector field, and arises canonically from supersym-

metry as a bilinear Kµ ≡ iε†ΓµΓ5ε, where ε is the Killing spinor solving (2.3) and

Γ5 ≡ Γ0123. Notice that the corresponding bilinear in the charge conjugate spinor εc

is i(εc)†ΓµΓ5ε
c = −Kµ. Thus as in the discussion after equation (2.3) we may change

variables to ε̃ = εc, Ã = −A. In the tilded variables the equations of motion (2.2)

and Killing spinor equation (2.3) are identical to the untilded equations, but now

Ã = −A and K̃ = −K. Thus the sign of the instanton is correlated with a choice

of sign for the supersymmetric Killing vector, with charge conjugation of the spinor

changing the signs of both A and K.

As we shall see in the next section, the coordinate y determines the conformal

factor for the conformally related Kähler metric, and is also the Hamiltonian function

for the vector field K = ∂ψ with respect to the associated symplectic form. The

graviphoton field is given by

A = −1

4
B−1∂yw(dψ + φ) +

i

4
∂zwdz − i

4
∂z̄wdz̄ . (2.9)

We are of course free to make gauge transformations of A, and we stress that (2.9)

is in general valid only locally.

Having summarized the results of [83, 84], in the next two sections we study this

local geometry further. In particular we show that any self-dual Einstein metric
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with Killing vector K ≡ ∂ψ, which then takes the form (2.5), admits a Killing spinor

ε solving (2.3), where A is given by (2.9).

2.1.2 Conformal Kähler metric

As already mentioned, every self-dual Einstein four-metric with a Killing vector is

conformally related to a scalar-flat Kähler metric. This is given by

ds2
Kähler ≡ dŝ2 = y2ds2

SDE

= B−1(dψ + φ)2 +B
(
dy2 + 4ewdzdz̄

)
. (2.10)

Introducing an associated local orthonormal frame of one-forms,

ê0 = B1/2dy , ê1 = B−1/2(dψ + φ) , ê2 + iê3 = 2(Bew)1/2dz , (2.11)

the Kähler form is

ω = ê01 + ê23 , (2.12)

where we have denoted ê0 ∧ ê1 = ê01, etc. That (2.12) is indeed closed follows

immediately from the expression for dφ in (2.7). The Kähler form is self-dual with

respect to the natural orientation on a Kähler manifold, namely ê0123 above, and it

is with respect to this orientation that the curvature F and Weyl tensor are anti-

self-dual. We denote the corresponding orthonormal frame for the self-dual Einstein

metric (2.5) as ea = y−1êa, a = 0, 1, 2, 3.

Next we introduce the Hodge type (2, 0)-form

Ω ≡ (ê0 + iê1) ∧ (ê2 + iê3) , (2.13)

and recall that the metric (2.10) is Kähler if and only if

dΩ = iP ∧ Ω , (2.14)

where P is then the Ricci one-form, with Ricci two-form R = dP . Recall that

Rµν = 1
2
R̂µνρσω

ρσ where R̂µνρσ denotes the Riemann tensor for the Kähler metric.

It is straightforward to compute dΩ for the metric (2.10), and one finds that

P = 2A , (2.15)

where A is given by (2.9). Thus the gauge field is the natural connection on C−1/2,

where C denotes the canonical line bundle for the Kähler metric. The curvature is
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correspondingly F = dA = 1
2
R. A computation gives

−2R∧ ω =
1

Bew
[
∂z∂z̄w + ∂2

ye
w
]
ê0123 , (2.16)

so that the Kähler metric is indeed scalar flat if the Toda equation holds. Since

the Ricci two-form is Hodge type (1, 1) and the metric is scalar flat, it follows

immediately that F = 1
2
R is anti-self-dual. This is because the anti-self-dual two-

forms on a Kähler four-manifold are precisely the primitive (1, 1)-forms (i.e. having

zero wedge product with ω, as in (2.16)), so Λ2
−
∼= Λ

(1,1)
0 . An explicit computation

shows that with respect to the frame (2.11)

F = −1

4
∂y
[
B−1∂yw

] (
ê01 − ê23

)
+

1

8ew/2

[
i(∂z − ∂z̄)[B−1∂yw]

(
ê02 + ê13

)
−(∂z + ∂z̄)[B

−1∂yw]
(
ê03 − ê12

) ]
, (2.17)

which is then manifestly anti-self-dual. One can also derive the formula

F = −
(

1
2
ydK + y2K ∧ JK

)−
, (2.18)

where here we mean by K = gµνKνdxµ the one-form dual to the Killing vector Kµ (in

the self-dual Einstein metric), and J is the complex structure tensor for the Kähler

metric (2.10). A further short computation leads to

F =
(1

y
i∂∂̄y

)−
=

1

y
i∂∂̄y +

1

4y

(
∆̂y
)
ω , (2.19)

where ∂̄ denotes the standard operator on a Kähler manifold, the superscript “−” in

(2.19) denotes anti-self-dual part, and ∆̂ denotes the scalar Laplacian for the Kähler

metric.

Let us note that the Kähler form is explicitly

ω = dy ∧ (dψ + φ) + 2iBewdz ∧ dz̄ . (2.20)

Thus dy = −∂ψyω, which identifies the coordinate y as the Hamiltonian function

for the Killing vector K = ∂ψ. Of course, y2 is also the conformal factor relating the

self-dual Einstein metric to the Kähler metric in (2.10).

2.1.3 Killing spinor: sufficiency

In this section we show that a self-dual Einstein metric with Killing vector K =

∂ψ, which necessarily takes the form (2.5), admits a solution to the Killing spinor

equation (2.3) with gauge field given by (2.9). The key to this construction is to

begin with the canonically defined spinc spinor that exists on any Kähler manifold.
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The positive chirality spin bundle on a Kähler four-manifold takes the form S+
∼=

C1/2 ⊕ C−1/2, where C denotes the canonical bundle. The spin bundle then exists

globally only if the latter admits a square root, but the spinc bundle S+ ⊗ C−1/2 ∼=
1⊕C−1 always exists globally. In particular the first factor in S+⊗C−1/2 ∼= 1⊕C−1 is

a trivial complex line bundle, whose sections may be identified with complex-valued

functions, and there is always a section ζ satisfying the spinc Killing spinor equation(
∇̂µ − i

2
Pµ
)
ζ = 0 . (2.21)

Here the hat denotes that we will apply this to the conformal Kähler metric (2.10)

in the case at hand, and P is the Ricci one-form potential we encountered above.

The connection term in (2.21) precisely corresponds to twisting the spin bundle S+

by C−1/2. Using the result earlier that P = 2A the spinc equation (2.21) may be

rewritten as (
∇̂µ − iAµ

)
ζ = 0 , (2.22)

which may already be compared with the Killing spinor equation (2.3).

More concretely, the solution to (2.21), or equivalently (2.22), is simply given by

a constant spinor ζ, so that ∂µζ = 0. This equation makes sense globally as ζ may

be identified with a complex-valued function. To see this it is useful to take the

following projection conditions

Γ̂1ζ = iΓ̂0ζ , Γ̂3ζ = iΓ̂2ζ , (2.23)

following e.g. reference [31]. Here Γ̂a, a = 0, 1, 2, 3, denote the gamma matrices in

the orthonormal frame (2.11).1 The covariant derivative of ζ is then computed to

be

∇̂µζ =

(
∂µ +

1

4
ω̂ νρ
µ Γ̂νρ

)
ζ = ∂µζ + i

2

(
ω̂ 01
µ + ω̂ 23

µ

)
ζ = ∂µζ + iAµζ , (2.24)

where ω̂ νρ
µ is the spin connection of the conformal Kähler metric. We used here the

expression (2.9) for A, as well as the explicit form of the spin connection given in

the appendix of [1]. It follows that simply taking ζ to be constant, ∂µζ = 0, solves

(2.21). This is a general phenomenon on any Kähler manifold.

Using the canonical spinor ζ we may construct a spinor ε that is a solution to the

Killing spinor equation (2.3). Specifically, we find

ε =
1√
2y

(
1 +B−1/2Γ̂0

)
ζ . (2.25)

1Strictly speaking the hats are redundant, but we keep them as a reminder that in this section
the orthonormal frame is for the Kähler metric.
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To verify this one first notes that the spin connections of the Kähler metric and the

self-dual Einstein metric are related by

∇̂µζ = ∇µζ +
1

2
Γ̂ ν
µ (∂ν log y)ζ , (2.26)

where Γ̂µ = yΓµ in a coordinate basis. The Killing spinor equation then takes the

form[
∂µ +

1

4
ω̂ νρ
µ Γ̂νρ −

1

2
Γ̂ ν
µ (∂ν log y) − iAµ +

1

2y
Γ̂µ +

i

4
yFνρΓ̂

νρΓ̂µ

]
ε = 0 . (2.27)

To verify this is solved by (2.25) one simply substitutes (2.25) directly into the left-

hand-side of (2.27). Using the explicit expressions for the spin connection, the gauge

field, the field strength, as well as the projection conditions on the canonical spinor

ζ and (2.21), one finds that (2.27) indeed holds.

From this analysis we can conclude that the self-dual Einstein metric (2.5) and the

gauge field (2.9), which are solutions to Einstein-Maxwell theory in four dimensions,

yield a Dirac spinor ε that is a solution to the Killing spinor equation (2.3). This

implies that these self-dual Einstein backgrounds are always locally supersymmetric

solutions of Euclidean N = 2 gauged supergravity. We turn to global issues in the

next section.

2.2 Asymptotically locally AdS solutions

In this section and the next we will assume that we are given a complete (non-

singular) self-dual Einstein metric with a Killing vector, which then necessarily

takes the local form (2.5). Moreover, we shall assume this metric is asymptotically

locally Euclidean AdS,2 and in later subsections also that the four-manifold M4 on

which the metric is defined is topologically a ball. A two-parameter family of such

self-dual solutions on the four-ball, generalizing all previously known solutions of

this type, was constructed in [64]. In section 2.4 we shall review these solutions,

and also introduce a number of further generalizations. In particular, the results

of the current section allow us to deform the choice of Killing vector (which was

essentially fixed in previous results), and we will also explain how to generalize to

an infinite-dimensional family of solutions satisfying the above properties, starting

with the local metrics in [86].

With the above assumptions in place, we begin in this section by showing that

if the Killing vector K = ∂ψ is nowhere zero in a neighbourhood of the conformal

boundary three-manifold M3 then it is a Reeb vector field for an almost contact

structure on M3. We then reproduce the same geometric structure on M3 studied

2Since the metric has Euclidean signature one might more accurately describe this boundary
condition as asymptotically locally hyperbolic, which is often used in the mathematics literature.
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from a purely three-dimensional viewpoint in [24] and reviewed in section 1.2.2.

In particular the asymptotic expansion of the Killing spinor ε leads to a Killing

spinor equation of the form (1.11). This is important, as it shows that the dual field

theory is defined on a supersymmetric background of the form studied in [24], for

which the exact partition function of a general N = 2 supersymmetric gauge theory

was computed in [33] using localization. Having studied the conformal boundary

geometry, we then turn to the bulk in section 2.2.4. In particular we show that, with

an appropriate restriction on the Killing vector K, the conformal Kähler structure

of section 2.1.2 is everywhere non-singular. This allows us to prove in turn that

the instanton and Killing spinor defined by the Kähler structure are everywhere

non-singular.

In particular this means that each of the self-dual Einstein metrics in section 2.4

leads to a one-parameter family (depending on the choice of Killing vector K) of

smooth supersymmetric solutions. In other words, if the self-dual Einstein metric

depends on n parameters, the complete solution will depend on n + 1 parameters.

We emphasize that in the previously known solutions the only example of this phe-

nomenon is the solution of [61]. There the Einstein metric was simply AdS4, which

doesn’t have any parameters.

2.2.1 Conformal boundary at y = 0

We are interested in self-dual Einstein metrics of the form (2.5) which are asymp-

totically locally Euclidean AdS (hyperbolic), in order to apply to the gauge/gravity

duality. From the assumptions described above there is a single asymptotic region

where the metric approaches dr2

r2
+r2ds2

M3
as r →∞, where M3 is a smooth compact

three-manifold. In fact the metrics (2.5) naturally have such a conformal boundary

at y = 0. More precisely, we impose boundary conditions such that w(y, z, z̄) is

analytic around y = 0, so

w(y, z, z̄) = w(0)(z, z̄) + yw(1)(z, z̄) + 1
2
y2w(2)(z, z̄) +O(y3) . (2.28)

It follows that

B(y, z, z̄) = 1− 1
2
yw(1)(z, z̄)− 1

2
y2w(2)(z, z̄) +O(y3) , (2.29)

and that the metric (2.5) is

ds2
SDE = [1 +O(y)]

dy2

y2
+

1

y2

[
(dψ + φ(0))

2 + 4ew(0)dzdz̄ +O(y)
]
. (2.30)

Here we have also expanded the one-form tangent to M3

φ(y, z, z̄) |M3 = φ(0)(z, z̄) + yφ(1)(z, z̄) +O(y2). (2.31)
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In fact by expanding (2.7) one can show that φ(1) = 0. Setting r = 1/y this is to

leading order

ds2
SDE ' dr2

r2
+ r2

[
(dψ + φ(0))

2 + 4ew(0)dzdz̄
]
, (2.32)

as r → ∞, so that the metric is indeed asymptotically locally Euclidean AdS

around y = 0. Of course, as usual one is free to redefine the radial coordinate

r → rΘ(ψ, z, z̄), where Θ is any smooth, nowhere zero function on M3, resulting in

a conformal transformation of the boundary metric ds2
M3
→ Θ2ds2

M3
. However, in

the present context notice that r = 1/y is a natural choice of radial coordinate.

With the analytic boundary condition (2.28) for w it follows automatically that

K = ∂ψ is nowhere zero in a neighbourhood of the conformal boundary y = 0. As we

shall see, this will reproduce the same structure on M3 as [24], but we should stress

that this is not the general situation. For example, one could take the standard

hyperbolic metric for Euclidean AdS, conformally embedded as a unit ball in R4,

and take K to be the Killing vector that rotates the first factor in R2 ⊕ R2 ∼= R4.

The ansatz (2.28) is thus certainly a restriction on the class of possible globally

regular solutions, although all examples in section 2.4 have choices of Killing vector

for which this expansion holds.

Returning to the case at hand, the conformal boundary is a compact three-

manifold M3 (by assumption), and from the above discussion a natural choice of

representative for the metric is

ds2
M3

= (dψ + φ(0))
2 + 4ew(0)dzdz̄ . (2.33)

Notice that the form of the metric (2.33) is precisely of the form (1.13), as studied

in [33]. As discussed in section 1.2.2, an important role is played by the one-form

η ≡ dψ + φ(0) , (2.34)

which has exterior derivative

dη = dφ(0) = 2i∂y(Bew) |y=0 dz ∧ dz̄ = iw(1)e
w(0)dz ∧ dz̄ . (2.35)

The form η is a global almost contact one-form on M3, see equation (1.15).

The Killing vector K = ∂ψ is the Reeb vector for the almost contact form η, as

follows from the equations

Kyη = 1 , Kydη = 0 . (2.36)

The orbits of K thus foliate M3, and moreover this foliation is transversely holomor-

phic with local complex coordinate z. When the orbits of K all close it generates a
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U(1) symmetry of the boundary structure, and the orbit space M3/U(1) is in general

a compact orbifold surface, on which z may be regarded as a local complex coor-

dinate. These are generally called Seifert fibred three-manifolds in the literature.

On the other hand, if K has at least one non-closed orbit then, since the isome-

try group of a compact manifold is compact, we deduce that M3 admits at least

a U(1) × U(1) symmetry, and the structure defined by η is a toric almost contact

structure. In this case we may introduce standard 2π-period coordinates ϕ1, ϕ2 on

the torus U(1)× U(1) and write

K = ∂ψ = b1∂ϕ1 + b2∂ϕ2 . (2.37)

From (2.35) we deduce that the Taylor coefficient w(1) is a globally defined basic

function on M3 – that is, it is invariant under K = ∂ψ. Moreover, the almost contact

form η is a contact form precisely when the function w(1) is everywhere positive. We

shall see later that there are examples for which η is contact and not contact. On

the other hand, the coefficient w(0) is in general only a locally defined function of

z, z̄, as one sees by noting that the transverse metric gT = ew(0)dzdz̄ is a global

two-tensor, but in general the complex coordinate z is defined only locally.3 It will

be useful in what follows to define a corresponding transverse volume form

volT ≡ 2iew(0)dz ∧ dz̄ . (2.38)

Again, this is a global tensor on M3, with

dη = dφ(0) =
w(1)

2
volT . (2.39)

2.2.2 Boundary Killing spinor

In this section we show that the Killing spinor ε induces a Killing spinor χ on the

conformal boundary M3 that solves the Killing spinor equation (1.11).

For the self-dual Einstein metric (2.5) we take the orthonormal frame

e0 =
1

y
B1/2dy , e1 =

1

y
B−1/2(dψ + φ) , e2 + ie3 =

2

y
(Bew)1/2dz . (2.40)

Correspondingly, we take the following frame for the metric (2.33) on the three-

dimensional boundary,

e1
(3) = dψ + φ(0) , e2

(3) + ie3
(3) = 2ew(0)/2dz , (2.41)

3For example, for Euclidean AdS4 realized as a hyperbolic ball and with K = ∂ψ generating
the Hopf fibration of the boundary S3 then gT is the standard metric on the round two-sphere,
implying that w(0)(z, z̄) = −2 log(1 + |z|2) which blows up at z = ∞ (which is a smooth copy of
S1 ⊂M3

∼= S3).
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and will use indices i, j, k = 1, 2, 3 for this orthonormal frame.

We next expand the four-dimensional Killing spinor equation (2.3) as a Taylor

series in y. One starts by noting that Γµ = eµaΓ
a = O(y). But as Γµ = eaµΓa =

O(1/y) and the field strength expands as F = F(0) + yF(1) +O(y2) we see that

i

4
FνρΓ

νρΓµ = O(y) . (2.42)

The Killing spinor equation becomes[
∇(3)
µ − iA(0)µ +

1

2y

(
1 +

1

4
yw(1)

)
ei(3)µ(Γi − Γi0) +O(y)

]
ε = 0 , (2.43)

where µ = ψ, z, z̄, and where

A(0) = −1

4
w(1)e

1
(3) +

i

8
e−w(0)/2(∂z−∂z̄)w(0)e

2
(3)−

1

8
e−w(0)/2(∂z +∂z̄)w(0)e

3
(3) , (2.44)

is the lowest order term in the expansion of A given by (2.9). We emphasize again

that this expression for A(0) is in general only valid locally. The Killing spinor ε

then expands as

ε =
1√
2y

[
1 + Γ0 +

1

4
yw(1)Γ0 +O(y2)

]
ζ0 , (2.45)

where ζ0 is the lowest order (y-independent) part of the Kähler spinor ζ. Substituting

this into (2.43) gives a leading order term that is identically zero. The subleading

term then reads[(
∇(3)
i − iA(0)i

)
(1 + Γ0) +

1

8
w(1)(Γi0 − Γi)

]
ζ0 = 0 . (2.46)

The projections (2.23), in the current context, read

Γ1ζ0 = iΓ0ζ0 , Γ3ζ0 = iΓ2ζ0 . (2.47)

We may choose the following representation of the gamma matrices:

Γi =

 0 γi

γi 0

 , Γ0 =

 0 i12

−i12 0

 , (2.48)

with γi the Pauli matrices. The projection conditions then force ζ0 to take the form

ζ0 =

χ
0

 where χ =

χ0

χ0

 . (2.49)

Here χ is a two-component spinor and χ0 is simply a constant. The three-dimensional
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Killing spinor equation then becomes(
∇(3)
i − iA(0)i −

i

8
w(1)γi

)
χ = 0 . (2.50)

Clearly, this equation is of the form (1.11), with4 A(3) = A(0), h = −1
4
w(1), and

V (3) = 0. It is indeed important that our Killing spinor equation reproduces equation

(1.11), so that the conformal boundary admits the N = 1 field theories considered

in [24], for which the localized partition function was computed in [33].

As already mentioned below (2.32), supersymmetry singled out a natural repre-

sentative of the conformal class of the boundary metric. However, one is free to

change the radial coordinate as r → Θr, resulting in a conformal transformation

of the boundary metric ds2
M3
→ Θ2ds2

M3
. This also shifts the fields A(3), V (3), and

h appearing in the Killing spinor equation (2.50). For further details on this see

appendix B of [1].

2.2.3 Non-singular gauge

In a neighbourhood of the conformal boundary, the Kähler metric is defined on

[0, ε)×M3, for some ε > 0. This follows since via the conformal rescaling (2.10) the

Kähler metric asymptotes to

ds2
Kähler ' dy2 + ds2

M3
, (2.51)

near to the conformal boundary y = 0. In particular the Kähler structure is smooth

and globally defined in a neighbourhood of this boundary. Recall also that the gauge

field A is a connection on C−1/2. Since every orientable three-manifold is spin, the

canonical bundle C admits a square root in this neighbourhood, and so A restricts

to a bona fide connection one-form on M3. The corresponding U(1) principal bundle

can certainly be non-trivial for generic topology of M3. In this section we analyze the

simpler case where M3
∼= S3. Here A necessarily restricts to a global one-form A(0)

on the conformal boundary, but as we shall see, the explicit representative (2.44) is

in a singular gauge. Correspondingly, since the boundary Killing spinor χ is a spinc

spinor, the solution (2.49) to (2.50) is similarly in a singular gauge. In this section

we correct this by writing A(0) as a global one-form on M3
∼= S3.

The expression (2.44) for the restriction of A to the conformal boundary is of

course only well-defined up to gauge transformations. We may rewrite the expression

in (2.44) as

Alocal
(0) = −1

4
w(1)(dψ + φ0) +

i

4
∂zw(0)dz −

i

4
∂z̄w(0)dz̄ , (2.52)

4Note that the superscript on A(3) is that of section 1.2.2 to remind that A(3) is a three-
dimensional field, while the subscript on A(0) refers to the lowest order in the asymptotic expansion
of the graviphoton (2.9). We hope this does not cause confusion.
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adding the superscript label “local” to emphasize that in general this is only a local

one-form. The first term is −1
4
w(1)η, which is always a global one-form on M3,

independently of the topology of M3. However, the last two terms are not globally

defined in general. We may remedy this in the case where M3
∼= S3 by making a

gauge transformation, adding an appropriate multiple of dψ,

A(0) = −1

4
w(1)η + %

[
dψ +

i

4%
∂zw(0)dz −

i

4%
∂z̄w(0)dz̄

]
, (2.53)

with % a constant. This is then a global one-form on M3
∼= S3 if and only if

the curvature two-form of the connection in square brackets lies in the same basic

cohomology class as dη = dφ0. Concretely, we write

%dψ +
i

4
∂zw(0)dz −

i

4
∂z̄w(0)dz̄ ≡ %dψ + Ξ ≡ %η + α , (2.54)

and compute

dΞ = − i

2
∂z∂z̄w(0)dz ∧ dz̄ =

(
w2

(1) + w(2)

)
ew(0)

i

2
dz ∧ dz̄

=
1

4

(
w2

(1) + w(2)

)
volT , (2.55)

where we used the Toda equation (2.8) and Taylor expanded. Since η is a global one-

form on M3
∼= S3, it follows that (2.53) is a global one-form precisely if α defined

via (2.54) is a global basic one-form, i.e. α is invariant under L∂ψ and satisfies

∂ψyα = 0. In this case we have∫
M3

η ∧ 1

%
dΞ =

∫
M3

η ∧ dη , (2.56)

which may be interpreted as saying that [1
%
dΞ] = [dη] ∈ H2

basic(M3) ∼= R lie in the

same basic cohomology class. Indeed, this is the case if and only if 1
%
dΞ and dη differ

by the exterior derivative of a global basic one-form.

The integral on the right hand side of (2.56) is the almost contact volume of M3:

Volη ≡
∫
M3

η ∧ dη =

∫
M3

w(1)

2
η ∧ volT =

∫
M3

w(1)

2

√
det gM3 d3x . (2.57)

This played an important role in computing the classical localized Chern-Simons

action in [33], which contributes to the field theory partition function on M3. Using

(2.55), (2.56) and (2.57) we see that A(0) in (2.53) is a global one-form if we choose

the constant % via

1

4%

∫
M3

(
w2

(1) + w(2)

) √
det gM3 d3x = Volη . (2.58)
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We shall return to this formula in section 2.2.5

2.2.4 Global conformal Kähler structure

Recall that at the beginning of this section we assumed we were given a complete

self-dual Einstein metric with Killing vector K = ∂ψ, of the local form (2.5). We

would like to understand when the conformal Kähler structure, studied locally in

section 2.1.2, is then globally non-singular. As we shall see, this is not automatically

the case. Focusing on the case of toric metrics on a four-ball (all examples in section

2.4 are of this type), with an appropriate restriction on K we will see that the

conformal Kähler structure is indeed everywhere regular. It follows in this case that

the Kähler spinc spinor and instanton F = 1
2
R are globally non-singular, and thus

that the Killing spinor ε given by (2.25) is also globally defined and non-singular.

Before embarking on this section, we warn the reader that the discussion is a little

involved, and this section is probably better read in conjuction with the explicit

examples in section 2.4. In fact the Euclidean AdS4 metric in section 2.4.1 displays

almost all of the generic features we shall encounter.

The self-dual Einstein metrics of section 2.4 are all toric, and we may thus

parametrize a choice of toric Killing vector K as

K = b1∂ϕ1 + b2∂ϕ2 , (2.59)

where we have introduced standard 2π-period coordinates ϕ1, ϕ2 on the torus U(1)×
U(1). It will be important to fix carefully the orientations here. Since the metrics

are defined on a ball, diffeomorphic to R4 ∼= R2 ⊕ R2 with U(1) × U(1) acting in

the obvious way, we choose ∂ϕi so that the orientations on R2 induce the given

orientation on R4 (with respect to which the metric has anti-self-dual Weyl tensor).

This fixes the relative sign of b1 and b2. Given that we have also assumed that K has

no fixed points near the conformal boundary, we must also have b1 and b2 non-zero.

Thus b1/b2 ∈ R \ {0}, and its sign will be important in what follows.

Since the self-dual Einstein metric is assumed regular, the one-form K and its

exterior derivative dK are both globally defined and regular. The self-dual two-form

Ψ ≡ (dK)+ ≡ 1

2
(dK + ∗dK) , (2.60)

is a twistor [86], and the invariant definition of the function/coordinate y in section

2.1 is given in terms of its norm by

2

y2
= ‖Ψ‖2 ≡ 1

2!
ΨµνΨ

µν . (2.61)
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The complex structure tensor for the conformal Kähler structure is correspondingly

Jµν = −yΨµ
ν , (2.62)

where indices are raised and lowered using the self-dual Einstein metric. It is then

an algebraic fact that J2 = −1. The conformal Kähler structure will thus be every-

where regular, provided the functions y and 1/y are not zero. Of course y = 0 is

the conformal boundary (which is at infinity, and is not part of the self-dual Ein-

stein space). We are free to choose the sign when taking a square root of (2.61),

and without loss of generality we take y > 0 in a neighbourhood of the conformal

boundary at y = 0. Since everything is regular, in particular the norm of the twistor

Ψ cannot diverge anywhere (except at infinity), and thus y 6= 0 in the interior of the

bulk M4. It follows that y is everywhere positive on M4.

The Killing vector K is zero only at the “NUT”, namely the fixed origin of R4 ∼=
R2 ⊕ R2. At this point the two-form dK, in an orthonormal frame, is a skew-

symmetric 4× 4 matrix whose weights are precisely the coefficients b1, b2 in (2.59).5

It follows from the definitions (2.60) and (2.61), together with a little linear algebra

in such an orthonormal frame, that

yNUT =
1

|b1 + b2|
. (2.63)

The conformal Kähler structure will thus be regular everywhere, except poten-

tially where 1/y = 0. Suppose that 1/y = 0 at a point p ∈ M4 \ {NUT}. Then

K = ∂ψ |p 6= 0, and thus from the metric (2.5) we see that 1/(By2) |p 6= 0. It follows

that the function B must tend to zero as 1/y2 as one approaches p. We may thus

write B = c
y2

+O(1/y3), where c = c(z, z̄) is non-zero at p. Using the definition of

B in terms of w in (2.6) we thus see that ∂yw = 2
y
− 2c

y3
+O(1/y4). There are then

various ways to see that the corresponding supersymmetric supergravity solution

is singular. Perhaps the easiest is to note from the Killing spinor formula (2.25),

together with the fact that we may normalize ζ†ζ = 1, we have

ε†ε =
1

2y

(
1 +B−1

)
, (2.64)

which from the above behaviour of B then diverges as we approach the point p. It

follows that the Killing spinor ε is divergent at p, and the solution is singular.

The solutions are thus singular on M4 \ {NUT} if and only if {1/y = 0} \ {NUT}
is non-empty. Since yNUT = 1/|b1 + b2|, the analysis will be a little different for

the cases b1/b2 = −1 and b1/b2 6= −1. We thus assume the latter (generic) case

5This is perhaps easiest to see by noting that to leading order the metric is flat at the NUT,
so one can compute dK in an orthonormal frame at the NUT using the flat Euclidean metric on
R2 ⊕ R2.
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for the time being. As in the last paragraph, let us suppose 1/y |p= 0. Due to the

behaviour of B and w near p, it follows from the form of the metric (2.5) that p

must lie on one of the axes, i.e. at ρ1 = 0 or at ρ2 = 0, where (ρi, ϕi) are standard

polar coordinates on each copy of R2⊕R2 ∼= R4 ∼= M4, i = 1, 2.6 In either case there

is then an S1 3 p locus of points where 1/y = 0, as follows by following the orbits

of the Killing vector ∂ϕ2 or ∂ϕ1 , respectively.

To see when this happens, our analysis will be based on the fact that, since the

Killing vector has finite norm in the interior of M4, one can straightforwardly show

that y diverges if and only if ||dy|| = 0. It is then convenient to consider the

function y restricted to the relevant axis, i.e. y |{ρ1=0}≡ y2(ρ2) or y |{ρ2=0}≡ y1(ρ1).

We have y1(0) = y2(0) = yNUT > 0. Suppose that yi(ρ) (for either i = 1, 2) starts

out decreasing along the axis as we move away from the NUT. Then in fact it

must remain monotonic decreasing along the whole axis, until it reaches y = 0 at

conformal infinity where ρ = ∞. The reason for this is simply that if yi(ρ) has a

turning point then7 dy = 0, which we have already seen can happen only where y

diverges, but this contradicts the fact that yi(ρ) is decreasing from a positive value

at ρ = 0 (and is bounded below by 0). On the other hand, suppose that yi(ρ) starts

out increasing at the NUT. Then since at conformal infinity yi(∞) = 0, it follows

that yi(ρ) must have a turning point at some finite ρ > 0. At such a point y will

diverge, and from our above discussion the solution is singular.

This shows that the key is to examine dy at the NUT itself. Recall that the coor-

dinate y is a Hamiltonian function for the Killing vector K, i.e. dy = −Kyω. From

(2.62), we also know that ω is related to the two-form Ψ = (dK)+ by ω = −y3Ψ,

yielding dy = y3Ky (dK)+. At the NUT we may again use the polar coordinates

(ρi, ϕi) for the two copies of R2, where the metric is to leading order the metric on

flat space. In the usual orthonormal frame for these polar coordinates, using the

above formulae we then compute to leading order

(dy)|NUT '


− b1

(b1+b2)2
sign(b1 + b2)ρ1

0

− b2
(b1+b2)2

sign(b1 + b2)ρ2

0

 . (2.65)

Thus when b1/b2 > 0 we see that yi(ρ) starts out decreasing at the NUT, for both

i = 1, 2, and from the previous paragraph it follows that the solution is then globally

non-singular! On the other hand, the case b1/b2 < 0 splits further into two subcases.

For simplicity let us describe the case where b2 > 0 (with the case b2 < 0 being

similar). Then when b1/b2 < −1 we have y2(ρ) starts out increasing at the NUT,

6Notice that when b1/b2 = −1 in fact 1/y = 0 at the NUT itself, ρ1 = ρ2 = 0.
7Notice that dy necessarily points along the axis, given the form of the metric (2.5).
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which then leads to a singularity along the axis ρ1 = 0 at some finite value of ρ2;

on the other hand, when −1 < b1/b2 < 0 we have that y1(ρ) starts out increasing

at the NUT, which then leads to a singularity along the axis ρ2 = 0 at some finite

value of ρ1. Notice these two subcases meet where b1/b2 = −1, when we know that

1/y = 0 at the NUT itself, ρ1 = ρ2 = 0.

This leads to the simple picture that all solutions with b1/b2 > 0 are globally

regular, while all solutions with b1/b2 < 0 are singular, except when b1/b2 = −1. In

this latter case y is infinity at the NUT. As one moves out along either axis, y is then

necessarily monotonically decreasing to zero by similar arguments to those above.

Thus the b1/b2 = −1 solution is in fact also non-singular, although qualitatively

different from the solutions with b1/b2 > 0. One can show that, regardless of the

values of b1 and b2, the complex structure (2.62) is always the standard complex

structure on flat space at the NUT, meaning that when b1/b2 > 0 the induced

complex structure at the NUT is C2, while when b1/b2 = −1 the NUT becomes

a point at infinity in the conformal Kähler metric, with the Kähler metric being

asymptotically Euclidean. In particular the instanton is zero at the NUT in this

case, and so is regular there.

Notice that, for the regular solutions, since K is nowhere zero away from the NUT

we may deduce that also dy = −Kyω is nowhere zero (as ω is a global symplectic

form on M4 \ {NUT}). In particular, y is a global Hamiltonian function for K, and

in particular it is a Morse-Bott function on M4. This implies that y has no critical

points on M4 \ {NUT}, and thus that yNUT is the maximum value of y on M4.

Moreover, the Morse-Bott theory tells us that constant y surfaces on M4 \ {NUT}
are all diffeomorphic to M3

∼= S3.

We shall see all of the above behaviour very explicitly in section 2.4 for the case

when the self-dual Einstein metric is simply Euclidean AdS4. The more complicated

Einstein metrics in that section of course also display these features, although the

corresponding formulae become more difficult to make completely explicit as the

examples become more complicated.

2.2.5 Toric formulae

In this section we shall obtain some further formulae, valid for any toric self-dual

Einstein metric on the four-ball. These will be useful for computing the holographic

free energy in the next section.

We first note that for M3
∼= S3 with Reeb vector (2.37) the almost contact volume

in (2.57) may be computed using equivariant localization to give

Volη =

∫
M3

η ∧ dη = −(2π)2

b1b2

. (2.66)

This formula also appeared in [33]. One proves (2.66) by an analogous computation
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to the Duistermaat-Heckman formula in [87]. Specifically, we define a two-form

ω̃ ≡ 1
2
d(r2η) , (2.67)

on M4, where r is a choice of radial coordinate with the NUT at r = 0 and the

conformal boundary at r =∞, and notice that

Volη = −
∫
M4

e−r
2/2 1

2!
ω̃ ∧ ω̃ . (2.68)

The minus sign arises here because the natural orientation on M3 defined in our set-

up is opposite to that on the right hand side of (2.68). Specifically, y is decreasing

towards the boundary of M4, so that dy points inwards from M3 = ∂M4, while r is

increasing towards the boundary, with dr pointing outwards.8 One then evaluates the

right hand side of (2.68) using equivariant localization. Specifically, the integrand is

exp

[
− r2

2
+ ω̃

]
, (2.69)

which is an equivariantly closed form for K, i.e. is closed under d + Ky, since

Kyω̃ = −d( r
2

2
). The Berline-Vergne equivariant integration theorem then localizes

the integral to the fixed point set of K, and one obtains precisely (2.66), with the bi

appearing as the weights of the action of K at the NUT.9

Finally, let us return to the equation (2.58). In fact there is another interpretation

of the constant %, in terms of the charge of the Killing spinor under K. To see this,

recall that the solution (2.49) to the three-dimensional Killing spinor equation (2.50)

is simply constant in our frame, but that was for the case where the gauge field A(0)

is given by (2.52), which as we saw in section 2.2.3 is always in a singular gauge

on M3
∼= S3. The gauge transformation A(0) → A(0) + %dψ that we made in (2.53)

to obtain a non-singular gauge implies that the correct global spinor χ has a phase

dependence

χglobal = ei%ψ

χ0

χ0

 , (2.70)

where χ0 is a constant complex number. Since the frame is invariant under K = ∂ψ,

we thus deduce that % is precisely the charge of the Killing spinor under K.

On the other hand, the total four-dimensional spinor is constructed from the

canonical spinor ζ on the conformal Kähler manifold, via (2.25). Thus % is also the

8Notice that we could have avoided this by choosing y to be strictly negative on the interior of
M4, rather than strictly positive.

9This is then the Duistermaat-Heckman formula when ω̃ is a symplectic form, i.e. when η is a
contact form.
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charge of ζ under K. This immediately allows us to write down that

|%| =
|b1|+ |b2|

2
. (2.71)

This formula may be fixed by looking at the behaviour at the NUT, where recall that

the complex structure is that of C2. In terms of complex coordinates z1 = |z1|eiψ1 ,

z2 = |z2|eiψ2 , the Kähler spinor ζ, and hence also our Killing spinor, has charges
1
2

under each of ∂ψi , i = 1, 2. However, one must be careful to correctly fix the

orientations, which leads to the modulus signs in (2.71). More precisely, for b1/b2 > 0

the conformal Kähler metric fills the interior of a ball in C2, while for b1/b2 = −1

instead it is the exterior – see, for example, the discussion at the end of section 2.4.1.

2.3 Holographic free energy

In this section we compute the regularized holographic free energy for a super-

symmetric self-dual asymptotically locally Euclidean AdS solution defined on the

four-ball, deriving the remarkably simple formula (1.33).

2.3.1 General formulae

The computation of the holographic free energy follows by now standard holographic

renormalization methods [88,89]. The total on-shell action is

Sren
sugra = Sgrav

bulk + SF + Sgrav
bdry + Sgrav

ct . (2.72)

Here the first two terms are the bulk (Euclidean) supergravity action (2.1)

Ssugra = Sgrav
bulk + SF ≡ − 1

16πG4

∫
M4

(R + 6− FµνF µν)
√

det g d4x , (2.73)

evaluated on a particular solution with topology M4. The boundary term Sgrav
bdry in

(2.72) is the Gibbons-Hawking-York term, required so that the equations of motion

(2.2) follow from the bulk action (2.73) for a manifold M4 with boundary. This

action is divergent, but we may regularize it using holographic renormalization.

Introducing a cut-off at a sufficiently small value of y = δ > 0, with corresponding

hypersurface Sδ = {y = δ} ∼= M3, we have the following total boundary terms

Sgrav
bdry + Sgrav

ct =
1

8πG4

∫
Sδ

(
−K + 2 + 1

2
R(h)

)√
deth d3x . (2.74)

Here R(h) is the Ricci scalar of the induced metric hij on Sδ, and K is the trace

of the second fundamental form of Sδ, the latter being the Gibbons-Hawking-York
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boundary term. It is convenient to rewrite the latter using∫
Sδ

K
√

deth d3x = Ln
∫
Sδ

√
deth d3x , (2.75)

where Ln is the Lie derivative along the outward pointing normal vector n to the

boundary Sδ.

2.3.2 The four-ball

In this subsection we evaluate the total free energy (2.72) in the case of a supersym-

metric self-dual solution on the four-ball M4
∼= B4 ∼= R4.

Gauge field contribution

The contribution from the gauge field to (2.72) is

SF =
1

16πG4

∫
M4

FµνF
µν
√

det g d4x = − 1

8πG4

∫
M4

F∧F =
1

8πG4

∫
M3

A(0)∧F(0) .

(2.76)

Here in the second equality we used the anti-self-duality ∗4F = −F . In the last

equality we used the fact that on the four-ball M4 = B4 ' R4 the curvature F = dA

is globally exact, and then applied Stokes’ theorem with M3 = ∂M4, recalling that

the natural orientation on M3 is induced from an inward-pointing normal vector,

with the conformal boundary at y = 0. Notice that the contribution from the gauge

field is finite, so for SF there is no need to introduce the cut-off and take the limit

limδ→0 Sδ.
It was emphasized above that the gauge field A(0) given by (2.44) is in general

only valid locally, and in order for A(0) to be a global one-form, we performed the

gauge transformation in A(0) → A(0) + %dψ in (2.53).

From the expression,

A(0) = −1

4
w(1)η + Ξ + %dψ , (2.77)

with

Ξ =
i

4

(
∂zw(0)dz − ∂z̄w(0)dz̄

)
. (2.78)

the integral of (2.76) can now be written∫
M3

A(0) ∧ F(0) =

∫
M3

(
%η ∧ dΞ +

w3
(1)

32
η ∧ volT −

1

2
w(1)η ∧ dΞ

)
, (2.79)

where we integrated by parts a term containing dw(1) from F(0) = dA(0). Using then
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(2.55), (2.56), (2.71), and that η ∧ volT =
√

detgM3d
3x, equation (2.76) becomes

SF = − π

2G4

· (|b1|+ |b2|)2

4b1b2

+
1

8πG4

∫
M3

w3
(1)

32

√
detgM3d

3x

− 1

8πG4

∫
M3

1

8

(
w3

(1) + w(1)w(2)

)√
detgM3d

3x . (2.80)

Although the integrals in (2.80) are not evaluated, we will see below that these

combine with the other contributions to the free energy (2.72).

Bulk gravity contribution

The contribution to the free energy from the bulk gravity part of the action is

Sgrav
bulk = − 1

16πG4

∫
Mδ

4

(R + 6) vol4 =
1

16πG4

∫
Mδ

4

6 vol4 , (2.81)

where we used that on-shell R = −12. Here M δ
4 indicates that we have introduced

a cut-off along the boundary Sδ = {y = δ} 'M3, which is necessary as the volume

is divergent. The volume form of interest is

vol4 =
1

y4
dy ∧ (dψ + φ) ∧Bew2idz ∧ dz̄ . (2.82)

A computation reveals that this may be written as the exact form

−3 vol4 = dW , (2.83)

where we have defined the three-form

W ≡ 1

2y2
(dψ + φ) ∧ dφ+

1

y3
(dψ + φ) ∧Bew2i dz ∧ dz̄ . (2.84)

We may then integrate over M δ
4 using Stokes’ theorem. To do this let us define r to

be geodesic distance from the NUT – the origin of M4
∼= B4 ∼= R4 that is fixed by

the Killing vector K = ∂ψ. We then more precisely cut off the space also at small

r > 0 and let r → 0, so that we are integrating over M δ,r
4 . The form W may be

written

W =
1

2y2
(dψ + φ) ∧ dφ+

1

y3
(dψ + φ) ∧ ω , (2.85)

where ω is the conformal Kähler form. As argued in section 2.2.4, when yNUT is finite

ω is everywhere a smooth two-form, and thus in particular in polar coordinates near

the NUT at r = 0 it takes the form ω ' rdr∧β1 +r2β2 to leading order, where β1 and

β2 are pull-backs of smooth forms on the S3 = S3
NUT at constant r > 0. Because of

this, the second term in (2.85) does not contribute to the integral around the NUT.
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However, notice that∫
S3
NUT

(dψ + φ) ∧ dφ =

∫
My=0

3

(dψ + φ) ∧ dφ = −(2π)2

b1b2

, (2.86)

follows from a simple application of Stokes’ theorem10, where we have used the

almost contact volume (2.66). Using the fact (2.63) that yNUT = 1/|b1 + b2| one thus

obtains ∫
Mδ

4

vol4 =
(2π)2|b1 + b2|2

6b1b2

+

∫
My=0

3

[ 1

3δ3
+
w(1)

4δ2

]√
det gM3 d3x , (2.87)

so that

Sgrav
bulk =

π

2G4

· |b1 + b2|2

2b1b2

+
1

8πG4

· 1

δ3

∫
My=0

3

√
det gM3 d3x

+
3

32πG4

· 1

δ2

∫
My=0

3

w(1)

√
det gM3 d3x . (2.88)

To obtain this result we used the identity∫
M3

(
w3

(1) + 3w(1)w(2) + w(3)

)√
det gM3 d3x = 0 , (2.89)

which arises from Taylor expanding the Toda equation (2.8) as

0 = ∂z∂z̄w(0) + ew(0)
(
w2

(1) + w(2)

)
+y
[
∂z∂z̄w(1) + ew(0)

(
w3

(1) + 3w(1)w(2) + w(3)

)]
+O(y2) . (2.90)

Because w(1) is a smooth global function on M3, the second line implies (2.89) after

integrating over the boundary and using Stokes’ theorem.

It remains to evaluate the boundary terms Sgrav
bdry + Sgrav

ct . After a computation,

and again using (2.89), one obtains

Sgrav
bdry + Sgrav

ct = − 1

8πG4δ3

∫
My=0

3

√
det gM3 d3x− 3

32πG4δ2

∫
My=0

3

w(1)

√
det gM3 d3x

+
1

256πG4

∫
M3

(
3w3

(1) + 4w(1)w(2)

)√
det gM3 d3x . (2.91)

Adding (2.91) to the bulk gravity term (2.88) we see that the divergent terms do

indeed precisely cancel, and further combining with (2.80) we see that the terms

involving the integrals of w(i) also all cancel.

The computations we have done are valid only for globally regular solutions, and

recall these divide into the two cases b1/b2 > 0, and b1/b2 = −1. In the first case

10This follows since d[(dψ + φ) ∧ dφ] = 0.
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the first term in (2.80) combines with the first term in (2.88) to give

Sren
sugra =

π

2G4

· (|b1|+ |b2|)2

4|b1b2|
, (2.92)

where notice |b1 + b2| = |b1| + |b2|. On the other hand the isolated case with

b1/b2 = −1 has b1 + b2 = 0, so that the free energy comes entirely from the first

term in (2.80), which remarkably is then also given by the formula (2.92). Thus for

all regular supersymmetric solutions we have shown that (2.92) holds, which is the

result advertised in (1.33) in the introduction.

2.4 Examples

In this section we illustrate our general results by discussing three explicit families

of solutions. These consist of three sets of self-dual Einstein metrics on the four-

ball, studied previously by some of the authors in [61–64]. We begin with simply

AdS4 in section 2.4.1. Although the metric is trivial, the one-parameter family of

instantons given by our general results is non-trivial, and it turns out that this

family is identical to that in [61]. The solutions in sections 2.4.2 and 2.4.3 each

add a deformation parameter, meaning that the metrics in each subsequent section

generalize that in the previous section. Particular supersymmetric instantons on

these backgrounds were found in [62–64], but our general results allow us to study the

most general choice of instanton, leading to new solutions. Furthermore, in section

2.4.4 we indicate how to generalize these metrics further by adding an arbitrary

number of parameters. Towards the end of this section, Figure 2.1 then summarizes

the connection between all the metric studied in this chapter.

2.4.1 AdS4

The metric on Euclidean AdS4 can be written as

ds2
EAdS4

=
dq2

q2 + 1
+ q2

(
dϑ2 + cos2 ϑdϕ2

1 + sin2 ϑdϕ2
2

)
. (2.93)

Here q is a radial variable with q ∈ [0,∞), so that the NUT is at q = 0 while the

conformal boundary is at q = ∞. The coordinate ϑ ∈ [0, π
2
], with the endpoints

being the two axes of R2 ⊕ R2 ∼= R4. The AdS4 metric is of course both self-dual

and anti-self-dual.

Writing a general choice of Reeb vector field as K = b1∂ϕ1 + b2∂ϕ2 , as in our

general discussion (2.59), the function y is then defined in terms of K via (2.60) and
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(2.61). Using these formulae one easily computes

y(q, ϑ) =
1√

(b2 + b1

√
q2 + 1)2 cos2 ϑ+ (b1 + b2

√
q2 + 1)2 sin2 ϑ

. (2.94)

Notice that indeed yNUT = 1/|b1+b2|, in agreement with (2.63). Using (2.94) one can

also verify the general behaviour in section 2.2.4 very explicitly. In particular, we

see the very different global behaviour, depending on the sign of b1/b2. If b1/b2 > 0

then 1/y is nowhere zero, while if b1/b2 < 0 instead 1/y has a zero on M4. More

precisely, if −1 < b1/b2 < 0 then 1/y = 0 at {ϑ = 0, q =
√
b2

2 − b2
1/|b1|}, while if

b1/b2 < −1 then 1/y = 0 at {ϑ = π
2
, q =

√
b2

1 − b2
2/|b2|}. These are each a copy of

S1 at one or the other of the “axes” of R2⊕R2, at the corresponding radius given by

q. In the special case that b1 = −b2 we have 1/y = 0 at the NUT itself, where the

axes meet. These comments of course all agree with the general analysis in section

2.2.4, except here all formulae can be made completely explicit.

We thus indeed obtain smooth solutions for all b1/b2 > 0, as well as the isolated

non-singular solution with b1/b2 = −1. In fact it is not difficult to check that the

former are precisely the solutions first found in [61], where the parameter b2 = b2/b1

(compare to the formulae at the beginning of section 2.5 of [61]). To see this we

may compute the instanton using the formulae in section 2.1, finding

A =

(
b1 + b2

√
q2 + 1

)
dϕ1 +

(
b2 + b1

√
q2 + 1

)
dϕ2

2
√

(b2 + b1

√
q2 + 1)2 cos2 ϑ+ (b1 + b2

√
q2 + 1)2 sin2 ϑ

, (2.95)

which agrees with the corresponding formula in [61]. In particular, one can check

that this gives a regular instanton when b1/b2 > 0, with the particular cases that

b1/b2 = ±1 giving a trivial instanton, and correspondingly the conformal Kähler

structure is flat. We shall comment further on this below. Moreover, one can also

check that the singular instantons with b1/b2 < 0 are singular at precisely the locus

that 1/y = 0, again in agreement with our general discussion.

In this case we may also compute all other functions appearing in sections 2.1,

2.2 and 2.3 very explicitly. For example, we find

B(q, ϑ) =
(b2 + b1

√
q2 + 1)2 cos2 ϑ+ (b1 + b2

√
q2 + 1)2 sin2 ϑ

q2(b2
1 cos2 ϑ+ b2

2 sin2 ϑ)
, (2.96)

while the functions w(1) and w(2) on ∂M4 = M3
∼= S3 appearing in the free energy

computations are given by

w(1) =
−4b1b2√

b2
1 cos2 ϑ+ b2

2 sin2 ϑ
, w(2) =

−2
(
3b2

1b
2
2 + b4

1 cos2 ϑ+ b4
2 sin2 ϑ

)
b2

1 cos2 ϑ+ b2
2 sin2 ϑ

.(2.97)

Using these expressions one can verify all of the key formulae in our general analysis
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very explicitly. For example, the integrals in (2.66), (2.80), (2.88) and (2.91) are all

easily computed in closed form.

Finally, let us return to discuss the special cases b1/b2 = ±1, where recall that

the instanton is trivial and the conformal Kähler structure is flat. The latter is thus

locally the flat Kähler metric on C2, but in fact in the two cases b1/b2 = ±1 the

Euclidean AdS4 metric is conformally embedded into different regions of C2. Notice

this has to be the case, because the conformal factor y of the b1/b2 = +1 solution

has yNUT = 1/(2|b1|), while for the b1/b2 = −1 solution instead yNUT =∞. We may

see this very concretely by writing the flat Kähler metric on C2 as

ds2
flat = dR2 +R2

(
dϑ2 + cos2 ϑdϕ2

1 + sin2 ϑdϕ2
2

)
. (2.98)

In both cases the change of radial coordinate to (2.93) is

q(R) =
2R

|R2 − 1|
. (2.99)

However, for the b1/b2 = +1 case the range of R is 0 ≤ R < 1, with the NUT being

at R = 0 and the conformal boundary being at R = 1; while for the b1/b2 = −1

case the range of R is instead 1 < R ≤ ∞, with the NUT being at R =∞ (and the

conformal boundary again being at R = 1). In particular the two conformal factors

are

y(R) = 1
2|b1| |R

2 − 1| . (2.100)

The two solutions b1/b2 = ±1 thus effectively fill opposite sides of the unit sphere

in C2, and because of this they induce opposite orientations on S3. Again, this may

be seen rather explicitly in various formulae. For example, w(1) = ∓4|b1| in the two

cases, so that the boundary Killing spinor equation (2.50) on the round S3 becomes

respectively ∇(3)
i χ = ∓ i

2
|b1|γiχ.

2.4.2 Taub-NUT-AdS4

The Taub-NUT-AdS4 metrics are a one-parameter family of self-dual Einstein met-

rics on the four-ball, and have been studied in detail in [62,63]. The metric may be

written as

ds2
4 =

r2 − s2

Ω(r)
dr2 + (r2 − s2)(τ 2

1 + τ 2
2 ) +

4s2Ω(r)

r2 − s2
τ 2

3 , (2.101)

where

Ω(r) = (r ∓ s)2[1 + (r ∓ s)(r ± 3s)] , (2.102)
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and τ1, τ2, τ3 are left-invariant one-forms on SU(2) ' S3. The latter may be written

in terms of Euler angular variables as

τ1 + iτ2 = e−iς(dθ + i sin θdϕ) , τ3 = dς + cos θdϕ . (2.103)

Here ς has period 4π, while θ ∈ [0, π] with ϕ having period 2π. The radial coordinate

r lies in the range r ∈ [s,∞), with the NUT (origin of the ball ∼= R4) being at r = s.

The parameter s > 0 is referred to as the squashing parameter, with s = 1
2

being

the Euclidean AdS4 metric studied in the previous section. Indeed, the metric is

asymptotically locally Euclidean AdS as r →∞, with

ds2
4 ≈

dr2

r2
+ r2(τ 2

1 + τ 2
2 + 4s2τ 2

3 ) , (2.104)

so that the conformal boundary at r =∞ is a biaxially squashed S3.

Using the results of this chapter we may write a general choice of Reeb vector field

as K = (b1 + b2)∂ϕ+ (b1− b2)∂ς , as in our general discussion (2.59), and the function

y is then defined in terms of K via (2.60) and (2.61). Using these one computes

1

y(r, θ)2
= [2(b1 − b2)(r − s)s+ (b1 + b2)(1 + 2(r − s)s) cos θ]2

+(b1 + b2)2 [1 + (r − s)(r + 3s)] sin2 θ . (2.105)

Notice that indeed yNUT = limr→s y(r, θ) = 1/|b1 + b2|. We see that if b1/b2 > 0 or

b1/b2 = −1 then 1/y is indeed never zero (except at the NUT in the latter case), as

expected. In this way we obtain a two-parameter family of regular supersymmetric

solutions, parametrized by the squashing parameter s and b1/b2. One can also

compute explicitly the corresponding instanton F for a general choice of s and

b1/b2, although in practice it turns out to be more convenient to derive this as a

special limit of the Plebański-Demiański solutions, discussed in section 2.4.3. This

is shown in the appendix of [1]. In the remainder of this subsection we shall instead

discuss further some special cases, making contact with the previous results [62,63].

While the Taub-NUT-AdS metric (2.101) has SU(2) × U(1) isometry, a generic

choice of the Killing vector K = (b1 + b2)∂ϕ + (b1 − b2)∂ς breaks the symmetry of

the full solution to U(1) × U(1). In particular, this symmetry is also broken by

the corresponding instanton A. On the other hand, in [62, 63] the SU(2) × U(1)

symmetry of the metric was also imposed on the gauge field, which results in two

one-parameter subfamilies of the above two-parameter family of solutions, which are

1/4 BPS and 1/2 BPS, respectively. In each case this effectively fixes the Killing

vector K (or rather the parameter b1/b2) as a function of the squashing parameter

s.
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1/4 BPS solution: This solution is simple enough that it can be presented in

complete detail. The coordinate transformation to the (2.5) form for the 1/4 BPS

solution reads

r − s = 1/y , − 2sτ3 = dψ + φ , (2.106)

and

y2(r2 − s2) = ewB(1 + |z|2)2 ,
r2 − s2

Ω(r)
= y2B . (2.107)

Notice immediately that at the NUT r = s we have 1/y = 0, so that this solution

must have b1 = −b2, as we shall find explicitly below. The metric (τ 2
1 + τ 2

2 ) is

diffeomorphic to the Fubini-Study metric on CP1 ∼= S2:

τ 2
1 + τ 2

2 =
4dzdz̄

(1 + |z|2)2
. (2.108)

The metric functions then simplify to

B(y) =
1 + 2sy

1 + 4sy + y2
, w(y, z, z̄) = log

1 + 4sy + y2

(1 + |z|2)2
, (2.109)

and it is straightforward to check these satisfy the defining equation (2.6) and Toda

equation (2.8). The conformally related scalar-flat Kähler metric is

ds2
Kähler =

1 + 2sy

1 + 4sy + y2
dy2 + (1 + 2sy)(τ 2

1 + τ 2
2 ) +

4s2(1 + 4sy + y2)

1 + 2sy
τ 2

3 , (2.110)

with Kähler form

ω = −dy ∧ 2sτ3 + (1 + 2sy)τ1 ∧ τ2 = −d [(1 + 2sy)τ3] . (2.111)

Using the formula (2.9) for the gauge field A, we compute

A =
1

2
(4s2 − 1)

r − s
r + s

τ3 + pure gauge , (2.112)

which we see reproduces the 1/4 BPS choice of instanton in section 3.3 of [63].11

The supersymmetric Killing vector is K = ∂ψ = − 1
2s
∂ς and so generates the Hopf

fibration of S3. Since ς = ϕ1 − ϕ2, ϕ = ϕ1 + ϕ2 we hence find

b1 = −b2 = − 1

4s
, (2.113)

11Notice that in [63] the opposite orientation convention was chosen, so that that instanton
in [63] is self-dual, rather than anti-self-dual. Recall also from the discussion above equation (2.9)
that the overall sign of the instanton is correlated with the sign of the supersymmetric Killing
vector K. Here K = − 1

2s∂ς , which is minus the expression in [63], hence leading to the opposite
sign for the instanton gauge field A.
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which using (2.92) yields the holographic free energy

Sren
sugra =

π

2G4

. (2.114)

This formula matches the result of section 5.4 of [63].

1/2 BPS solution: The Taub-NUT-AdS metric (2.101) also admits a 1/2 BPS

solution [62,63]. We hence have two linearly independent Killing spinors, which may

be parametrized by an arbitrary choice of constant two-component spinor χ(0) = p

q

 ∈ C2 \ {0}.12 The correspondong Killing vector is given by the unlikely

expression

K = (2s+
√

4s2 − 1)
[
2Im [eiϕpq̄]∂θ +

(
|p|2 − |q|2 + 2Re [eiϕpq̄] cot θ

)
∂ϕ

]
(2.115)

+
[
(|p|2 + |q|2)

(
1
2s
− 2s−

√
4s2 − 1)

)
− 2Re [eiϕpq̄](2s+

√
4s2 − 1) csc θ

]
∂ς .

Since multiplying χ(0) by a non-zero complex number λ ∈ C∗ simply rescales K by

|λ|2, this leads to a CP1 family of choices of Killing vector K in this case. Of course,

the vector (2.115) is not toric for generic choice of χ(0). Nevertheless, one can still

compute the various geometric quantities in section 2.1. In particular one can check

that the formula (2.19) for the instanton gives

A = s
√

4s2 − 1
r − s
r + s

τ3 + pure gauge , (2.116)

for any choice of K in (2.115), which agrees with the expression in [62, 63]. Notice

that the instanton is invariant under the SU(2) × U(1) symmetry of the metric,

even though a choice of Killing vector K breaks this symmetry. Indeed, in this case

the conformal factor y = y(r, θ) for toric solutions given by (2.105) depends non-

trivially on both r and θ, thus also breaking the SU(2) symmetry of the underlying

Taub-NUT-AdS metric. This is to be contrasted with the 1/4 BPS solution, where

instead (2.105) reduces simply to y = y(r) = 1/(r − s) (see (2.106)).

The toric choices of K for these 1/2 BPS solutions correspond to the poles of the

CP1 parameter space. For example, choosing p = 1, q = 0 above gives

K =
(

2s+
√

4s2 − 1
)
∂ϕ +

(
1
2s
− 2s−

√
4s2 − 1

)
∂ς , (2.117)

so that

b1 =
1

4s
, b2 = − 1

4s
+ 2s+

√
4s2 − 1 . (2.118)

12The full Killing spinor is given by substituting this into the right hand side of (2.29) of [63].
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The free energy (2.92) is thus

Sren
sugra =

2πs2

G4

, (2.119)

which of course matches the result obtained in section 4.4 of [63].

2.4.3 Plebański-Demiański

The Taub-NUT-AdS metric has been extended to a two-parameter family of smooth

self-dual Einstein metrics on the four-ball in [64], which lie in the Plebański-Demiański

class of local solutions [90] to Einstein-Maxwell theory. We will henceforth refer to

the solution of [64] as “Plebański-Demiański”. The metric may be written as

ds2
PD =

P(q)

q2 − p2
(dτ + p2dσ)2 − P(p)

q2 − p2
(dτ + q2dσ)2 +

q2 − p2

P(q)
dq2 − q2 − p2

P(p)
dp2,

(2.120)

where

P(x) = (x− p1)(x− p2)(x− p3)(x− p4) . (2.121)

The roots of the quartic P(x) can be expressed in terms of the two parameters of

the solution, â and v, as

p1 = −1

2
−
√

1 + â2 − v2 , p3 =
1

2
− â ,

p2 = −1

2
+
√

1 + â2 − v2 , p4 =
1

2
+ â . (2.122)

The coordinate p ∈ [p3, p4] is essentially a polar angle variable, while q ∈ [p4,∞)

plays the role of a radial coordinate, with the conformal boundary being at q =∞.

The NUT, i.e. the origin of R4, is located at p = p3, q = p4. The Killing vectors ∂τ ,

∂σ generate the U(1) × U(1) toric symmetry of the solution, with the coordinates

related to our standard 2π-period coordinates ϕ1, ϕ2 via

τ =
2p2

3

P ′(p3)
ϕ1 −

2p2
4

P ′(p4)
ϕ2 ,

σ = − 2

P ′(p3)
ϕ1 +

2

P ′(p4)
ϕ2 . (2.123)

In order that the metric is smooth on the four-ball, the parameters must obey

v2 > 2|â|. The Taub-NUT-AdS metric of the previous subsection is obtain in the

limit â→ 0. Setting further v = 1, one recovers Euclidean AdS4.

It is straightforward, but tedious, to express the metric (2.120) in the form (2.5),

with an arbitrary choice of toric Killing vector K = b1∂ϕ1 + b2∂ϕ2 . For the special

case of the Killing vector and instanton in the solution of [64], this is done in the
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appendix of [1].

In the (τ, σ) coordinates an arbitrary Killing vector may be written as

K = bτ∂τ + bσ∂σ , (2.124)

where

bτ =
2p2

3

P ′(p3)
b1 −

2p2
4

P ′(p4)
b2 , bσ = − 2

P ′(p3)
b1 +

2

P ′(p4)
b2 . (2.125)

Using (2.60) and (2.61) one can calculate

1

y(p, q)2
=

1

4

1

(q2 − p2)2

{[(
2P(q)

q − p
− P ′(q)

)
(bτ + bσp

2)

−
(

2P(p)

q − p
+ P ′(p)

)
(bτ + bσq

2)

]2

− 4b2
σP(q)P(p)(q + p)2

}
. (2.126)

Notice that this is a sum of two non-negative terms. Furthermore, these terms may

vanish only when evaluated at the roots p = p3, p = p4 or q = p4, which correspond

to the axes of R4 = R2 ⊕ R2. Let us calculate these limits:

lim
p→p3

1

y2
=

(
(b1 + b2)v2 + 2âb1 + b2(2q − 1)

v2 + 2â

)2

,

lim
p→p4

1

y2
=

(
(b1 + b2)v2 − 2âb2 + b1(2q − 1)

v2 − 2â

)2

, (2.127)

lim
q→p4

1

y2
=

(
(b1 + b2)v2 − 2âb2 + b1(2p− 1)

v2 − 2â

)2

.

A careful analysis of the above limits shows that 1/y does not vanish, and hence

the metric is regular, whenever b1/b2 > 0, while 1/y = 0 only at the NUT when

b1/b2 = −1. On the other hand, the the solution is indeed singular if b1/b2 < 0 and

b1/b2 6= −1. Notice that we also easily recover the formula (2.63) for the conformal

factor at the NUT: limp→p3, q→p4 y = 1/|b1 + b2|.
In [64], particular supersymmetric instantons (particular choices of b1/b2 for fixed

â and v) were studied for this two-parameter family of metrics, which by construction

lie within the Plebański-Demiański ansatz. The results of this chapter extend these

results to a general choice of instanton on the same background, parametrized by

b1/b2, leading to a three-parameter family of regular supersymmetric solutions. The

general expression for this instanton is lengthy, but computable, and the interested

reader may find the details in the appendix of [1].
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2.4.4 Infinite parameter generalization

In each subsection we have generalized the metrics of the previous subsection by

adding a parameter, and one might wonder whether one can find more general self-

dual Einstein metrics on the four-ball. In [86] the authors studied the general local

geometry of toric self-dual Einstein metrics, which thus includes all the solutions

(locally) above. In appropriate coordinates the metric takes the form

ds2
toric =

4ρ2(W2
ρ +W2

$)−W2

4W2
ds2
H2 +

4

W2(4ρ2(W2
ρ +W2

$)−W2)
ds2

2 , (2.128)

where we have defined

ycan(ρ,$) ≡ √
ρW(ρ,$) , (2.129)

and

ds2
2 =

(
ycan
ρ dν + ($ycan

ρ − ρycan
$ )dϕ

)2
+
(
ycan
$ dν + (ρycan

ρ +$ycan
$ − ycan)dϕ

)2
,

ds2
H2 =

dρ2 + d$2

ρ2
, (2.130)

where ds2
H2 is the metric on hyperbolic two-space H2, regarded as the upper half

plane with boundary at ρ = 0. We denote partial derivatives as Wρ ≡ ∂ρW ,

ycan
$ ≡ ∂$y

can, etc. The metric (2.128) is entirely determined by the choice of

functionW =W(ρ,$), and the metric is self-dual Einstein if and only if this solves

the eigenfunction equation

∆H2W =
3

4
W ⇐⇒ Wρρ +W$$ =

3

4ρ2
W . (2.131)

Unlike the Toda equation (2.8) this is linear, and one may add solutions. In partic-

ular there is a basic solution

W(ρ,$;λ) =

√
ρ2 + ($ − λ)2

√
ρ

, (2.132)

where λ is any constant. Via linearity then

W(ρ,$) =
m∑
i=1

αiW(ρ,$;λi) , (2.133)

also solves (2.131), for arbitrary constants αi, λi, i = 1, . . . ,m. We refer to (2.133)

as an m-pole solution. Of course, one could also replace the sum in (2.133) by an

integral, smearing the monopoles in some chosen charge distribution.

Thus the local construction of toric self-dual Einstein metrics is very straightfor-

ward – the above gives an infinite-dimensional space. However, understanding when
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the above metrics extend to complete asymptotically locally hyperbolic metrics on a

ball (or indeed any other topology for M4) is more involved. In appendix C of [1] it

is shown that the general 2-pole solution is simply (Euclidean) AdS4, while the gen-

eral 3-pole solution is precisely the two-parameter Plebański-Demiański solutions

of section 2.4.3. This requires taking into account the symmetries of (2.128) (in

particular the PSL(2,R) symmetry of H2), and then making a number of rather

non-trivial coordinate transformations. We refer to [1] for these details.

Some work has also been done on global properties of the metrics (2.128) in [91],

although the focus in that reference was on constructing complete asymptotically

locally Euclidean scalar-flat Kähler metrics, which are conformal to (2.128). How-

ever, these have non-trivial Lens space boundaries S3/Γ, and correspondingly the

second Betti number b2 = dimH2(M4,R) of the filling M4 is non-zero (they contain

“bolt S2s”). The corresponding complete self-dual Einstein metrics in Theorem B

of that reference then also do not have the topology of the ball. Thus it remains an

interesting open problem to understand when the general m-pole metrics extend to

complete metrics on the ball.13

Finally, let us remark that in [92] Lebrun has constructed infinitely many self-

dual Einstein metrics on the four-ball using twistor methods. This is essentially

a deformation argument, where one starts with (the twistor space of) Euclidean

AdS4, and perturbs the twistor space. However, as such this is rather more implicit

than the toric metrics above, and in order to construct supersymmetric solutions

one needs to ensure that the resulting self-dual Einstein metric has at least one

Killing vector field. Nevertheless, this might be an alternative method for analyzing

regularity of the above m-pole solutions, at least in a neighbourhood of Euclidean

AdS4 in parameter space.

2.5 Conclusions

The main result of this chapter is the proof of the formula (2.92) for the holo-

graphically renormalized on-shell action in minimal four-dimensional supergravity.

Moreover, we discussed the construction of regular supersymmetric solutions of this

theory14, based on self-dual Einstein metrics on the four-ball equipped with a one-

parameter family of instanton fields for the graviphoton. Specifically, if the self-dual

Einstein metric admits n parameters, our construction produces an (n+1)-parameter

family of solutions. We have shown that the renormalized on-shell action does not

depend on the n metric parameters, but only on this last “instanton parameter”.

This matches beautifully the field theory results of [33].

13At the end of reference [86] it is briefly noted that one can obtain regular m-pole metrics by
deforming, for example, a given 3-pole solution. It would be interesting to examine the details of
this deformation argument further.

14These uplift to solutions of eleven-dimensional supergravity using the results of [93].

56



Scalar-flat Kähler metric (2.10)

Self-dual Einstein metric (2.5)

Toric metric (2.128)

m-pole solution (2.133)

3-pole: Plebański-Demiański (2.120)2-pole: AdS4 (2.93)

3-pole: Taub-NUT-AdS4 (2.101)

U(1)-symmetry

U(1)2-symmetry

y2

1 parameter

2 parameters0 parameters

Figure 2.1: Overview of the metrics discussed in this chapter. The arrows point from
a metric to a special case of the metric, except the wavy arrow which corresponds
to a conformal transformation, i.e. equation (2.10).

We have also shown in section 2.4 how AdS4, Taub-NUT-AdS4 and the Plebański-

Demiański solution fit in this framework. All these previous examples in the litera-

ture can be understood as arising from an infinite-dimensional family of local self-

dual Einstein metrics with torus symmetry [86]. Figure 2.1 illustrates the relation

between all the metrics considered in this chapter. In section 2.4.4 we have suggested

that using this family of local metrics, it should be possible to construct global

asymptotically locally (Euclidean) AdS self-dual Einstein metrics on the four-ball,

thus obtaining an infinite family of completely explicit metrics. It will be interesting

to analyze these m-pole solutions in more detail.

In this chapter we have achieved a rather general understanding of the gauge/gravity

duality for supersymmetric asymptotically locally Euclidean AdS4 solutions. Never-

theless, there are a number of possible extensions of our work. First, it is possible to

extend the matching of the free energy (2.92) for the class of self-dual backgrounds

we have considered to other BPS observables. In particular in [94] the Wilson loop

around an orbit of the Killing vector K was shown to be BPS in the field theory, and

may also be computed via localization. The gravity dual is an M2-brane wrapping

a calibrated copy of the M-theory circle in the internal space [95], and computing

its renormalized action one finds an analogously simple formula to (2.92), namely

lim
N→∞

log 〈W 〉 =
|b1|+ |b2|

2
` · log 〈W 〉1 , (2.134)

where 〈W 〉1 denotes the large N limit of the Wilson loop on the round sphere/AdS4,
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whose log scales as N1/2, and 2π` denotes the length of the orbit of K (for example,

such orbits always close over the poles of the S3, where ` = 1/|b1| or ` = 1/|b2|,
respectively; notice that for these Wilson loops (2.134) is again a function only of

|b1/b2|).
One might further generalize our results by relaxing one or more of the assump-

tions we have made. For example, remaining in the context of minimal gauged

supergravity, it would be very interesting to investigate the more general class of

supersymmetric, but non-(anti-)self-dual solutions [83]. Several examples of such

solutions were constructed in [62, 63], and these all turn out to have a bulk topol-

ogy different from the four-ball. This suggests that self-duality and the topology of

supersymmetric asymptotically AdS4 solutions are two related issues, and it would

be desirable to clarify this. On the other hand, at present it is unclear to us what

is the precise dual field theory implication of non-trivial two-cycles in the geometry,

and therefore this direction is both challenging and interesting. Perhaps related

to this, one of our main results is that a smooth toric self-dual Einstein metric on

the four-ball with supersymmetric Killing vector K = b1∂ϕ1 + b2∂ϕ2 gives rise to

a smooth supersymmetric solution only if b1/b2 > 0 or b1/b2 = −1. Specifically,

for other choices of b1/b2 the conformal factor and the Killing spinor are singular

in the interior of the bulk. Nevertheless, the conformal boundary is smooth for all

choices of b1, b2, and the question arises as to how to fill those boundaries smoothly

within gauged supergravity. A natural conjecture is that these are filled with the

non-self-dual solutions mentioned above.

Another assumption that should be straightforward to relax is in taking the gauge

field A to be real. In general, if A is complex the existence of one (Euclidean) Killing

spinor does not imply that the metric possesses any isometry [83]. However, we

expect that if one requires the existence of two spinors of opposite R-charge, then

there will be canonically defined Killing vectors, and therefore it should be possible

to analyze the solutions with the techniques of this chapter.
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Chapter 3

Casimir energy of supersymmetric

field theories on R× S3

In this chapter we study the Casimir energy, that is, the energy of the vacuum state,

of N = 1 supersymmetric gauge theories on the cylinder R × S3. As discussed in

section 1.5, the Casimir energy on the four-dimensional cylinder is in general an

ambiguous quantity. However, we will show that for supersymmetric field theories

a natural generalization dubbed the supersymmetric Casimir energy is well-defined

and scheme-independent.

In section 3.1, we set up the background consisting of the round metric on S1×S3

and appropriate background vector fields, and in section 3.2 we discuss the explicit

supersymmetric Langrangians. This will all be in Euclidean signature, such that we

can study the path integral in section 3.3. We Wick rotate to Lorentzian signature

in section 3.4 and study the canonical quantization of these theories on R × S3.

In section 3.5, by reducing the theory on the S3 to a one-dimensional quantum

mechanics, we show that the supersymmetric Casimir energy is in fact well-defined

and scheme-independent if one requires the regularization to be compatible with

supersymmetry. Finally, in section 3.6 we make some concluding remarks.

This chapter is based on [2, 3]

3.1 Background geometry

As described in section 1.2.1, a systematic approach for constructing N = 1 su-

persymmetric field theories with an R-symmetry on curved backgrounds from new

minimal supergravity was put forward in [20]. Below, we set up our background

consisting of the round metric on S1 × S3 as well as the background vector fields.
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We consider the following background metric

ds2(S1 × S3) = r2
1dτ 2 + ds2(S3)

= r2
1dτ 2 +

r2
3

4

(
dθ2 + sin2 θdϕ2 + (dς + cos θdϕ)2

)
, (3.1)

where τ is a coordinate on the S1 with radius r1, and θ, ϕ, ς with 0 ≤ θ < π,

ϕ ∼ ϕ+ 2π, ς ∼ ς + 4π are coordinates on the round three-sphere1 of radius r3. We

introduce the following orthonormal frame2

e1 =
r3

2
(cos ςdθ + sin θ sin ςdϕ)

e2 =
r3

2
(− sin ςdθ + sin θ cos ςdϕ)

e3 =
r3

2
(dς + cos θdϕ)

e4 = r1dτ , (3.2)

where {e1, e2, e3} corresponds to a left-invariant frame on S3. We now set r1 = 1

and r3 = 2. We will consider a class of backgrounds admitting a solution to the new

minimal Killing spinor equation (1.2). In the coordinates (3.1), the supersymmetric

complex Killing vector K reads,

K =
1

2
(∂ς − i∂τ ) , (3.3)

and the dual one-form is

K =
1

2

(
e3 − ie4

)
. (3.4)

We define the following “reference” values of the background fields

Å =
3

4
e3 +

i

2

(
q− 1

2

)
e4 , V̊ =

1

2
e3 , (3.5)

where we have included a constant q, which corresponds to a (large) gauge trans-

formation A→ A+ i
2
qdτ starting from the gauge choice adopted in [26]. Although

in Euclidean signature, where τ is a compact coordinate, this yields an ill-defined

spinor, this is not true in Lorentzian signature, and the q will play a role in our

discussion in section 3.4. As discussed in [26], the vectors A and V may be shifted

from the reference values as

A = Å+
3

2
κK , V = V̊ + κK . (3.6)

1For r1 = 1 and r3 = 2 this metric and the other background fields can be obtained by
specializing the background discussed in appendix C of [26] to v = 1, b1 = −b2 = 1/2. Below we
will set r1 = 1 and r3 = 2, but these can be easily restored by dimensional analysis.

2Note that this frame is different from the frame used in [26].
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where κ is a constant3. We note the combination

Acs ≡ A− 3

2
V = Å− 3

2
V̊ =

i

2

(
q− 1

2

)
e4 , (3.7)

which is independent of κ. For generic values of κ, the two-component spinor ζ

solving the Killing spinor equation (1.2) reads

ζ =
1√
2

e−
1
2
qτ

 0

1

 . (3.8)

The normalization is chosen such that for q = 0 the square norm is |ζ|2 = 1/2 as

in [26]. As mentioned above, since τ is periodic in Euclidean signature, the spinor

is well-defined only4 for q = 0.

For generic values of κ this background preserves only an SU(2)l × U(1)r sub-

group of the isometry group SO(4) ' SU(2)l × SU(2)r of the round three-sphere.

Two choices for κ will be of special interest below. The value κ = κACM = −1/3

corresponds (for q = 0) to that in [26], namely

AACM =
1

2
e3 , V ACM =

1

3

(
e3 +

i

2
e4

)
. (3.9)

This is the particular choice of κ (for q = 0) for which A is real. Another dis-

tinguished choice is κ = κst = −1, where the superscript stands for “standard”,

giving

Ast =
i

2
(1 + q) e4 , V st =

i

2
e4 . (3.10)

For this choice, the full SO(4) symmetry of the three-sphere is restored and equation

(1.2) admits a more general solution,

ζ = e−
1
2
qτζ0 , (3.11)

for any constant spinor ζ0.

Notice that in addition to q = 0 [26], there are two special values of the parameter

q. Namely, q = −1 for which Ast in (3.10) vanishes, and q = 1/2 for which Acs = 0

from equation (3.7). The significance of these three values will become clearer in

the later sections.

3In general, κ can be a complex function satisfying Kµ∂µκ = 0.
4Although an appropriately quantized imaginary value of q would be allowed in (3.8), for generic

R-charges we must have q = 0 for the correct periodicity of the matter fields [96].
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3.2 Lagrangians

We consider an N = 1 supersymmetric field theory with a vector multiplet trans-

forming in the adjoint representation of the gauge group G, and a chiral multiplet

transforming in a representation R. We will restrict attention to terms in the La-

grangian quadratic in dynamical fields, as we are interested in the energy of the

vacuum.

For a chiral multiplet with R-charge r, we consider the Lagrangian

Lchiral = (δζV1 + δζV2 + ε δζVU) |quadratic

= Dµφ̃D
µφ+ (V µ + (ε− 1)Uµ)

(
iDµφ̃φ− iφ̃Dµφ

)
+
r

4
(R + 6VµV

µ)φ̃φ

+iψ̃σ̃µDµψ +

(
1

2
V µ + (1− ε)Uµ

)
ψ̃σ̃µψ , (3.12)

with Dµ = ∇µ − iqRAµ where qR denotes the R-charges of the fields. The three

terms in first line are total supersymmetry variations and given explicitly in [26]5.

We included a parameter ε, such that (3.12) can continuously interpolate between

the localizing Lagrangian used in [26] with ε = 0, and the usual chiral multiplet [25]

obtained for ε = 1.

The vector fields Aµ, Vµ and Uµ = κKµ are those discussed in section 3.1, depend-

ing on the parameters q and κ. A Lagrangian containing Nχ = |R| chiral multiplets

consists of just multiples of (3.12), and each multiplet may have different R-charge

rI , where I = 1, 2, ..., Nχ.

We employ the left-invariant frame (3.2), which is useful for applying the angular

momentum formalism. The 2× 2 sigma matrices,

σAαα̇ = (~γ,−i12) , σ̃Aαα̇ = (−~γ,−i12) , (3.13)

where A = 1, ..., 4 is a frame index and ~γ denotes the three Pauli matrices, generate

the Euclidean Clifford algebra,

σAσ̃B + σBσ̃A = −2δAB , σ̃AσB + σ̃BσA = −2δAB . (3.14)

Inserting the values of the background fields, and writing

Lchiral(q, κ, ε, r) = Lchiral
bos (q, κ, ε, r) + Lchiral

fer (q, κ, ε, r) (3.15)

5Notice that at quadratic order, the term δζV3 in [26] vanishes.
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the bosonic part of the Lagrangian reads

Lchiral
bos (q, κ, ε, r) = −φ̃∂2

τφ+

[
r

2
(1− 2q) + κ

(
3

2
r − ε

)]
φ̃∂τφ− φ̃∇i∇iφ

+i

[
3

2
r − 1 + κ

(
3

2
r − ε

)]
φ̃∇ςφ

+
r

2
(1 + q)

[
r

2
(2− q) + κ

(
3

2
r − ε

)]
φ̃φ , (3.16)

where ∇i is the covariant derivative on the three-sphere, and we have omitted a

total derivative. The fermionic part of the Lagrangian reads

Lchiral
fer (q, κ, ε, r) = ψ̃∂τψ − iψ̃γa∂aψ −

1

2

[
3

2
r − 1 + κ

(
3

2
r − ε

)]
ψ̃γςψ

−1

2

[
1

2
(r − 1)(1− 2q) +

3

2
+ κ

(
3

2
r − ε

)]
ψ̃ψ , (3.17)

where a = 1, 2, 3 denotes the frame index on the three-sphere. In particular, we

used the identity

iσ̃µ∇µψ = ∂τψ − iγa∇aψ = ∂τψ − iγa∂aψ −
3

4
ψ . (3.18)

Notice that the Lagrangians in [55,57] correspond to the values ε = 1, κ = −1, and

q = 1/2. Notice also that for r = 2/3 and ε = 1 the total chiral multiplet Lagrangian

does not depend on κ.

Let us introduce a compact notation, writing the Lagrangians above in terms of

differential operators. Denoting by `a the Killing vectors dual to the left-invariant

frame ea, and defining the “orbital” angular momentum operators as La = i
2
`a, one

finds that these satisfy the SU(2) commutation relations,

[La, Lb] = iεabcLc , (3.19)

and we have6 −∇i∇i = ~L2 and ∇ς = −iL3. Similarly, we identity the Pauli ma-

trices with the spin operator as Sa = 1
2
γa, satisfying the same SU(2) algebra. The

Lagrangians can then be writing as

Lchiral
bos = φ̃Õbφ = φ̃

(
−∂2

τ + 2µ∂τ +Ob
)
φ ,

Lchiral
fer = ψ̃Õfψ = ψ̃ (∂τ +Of )ψ , (3.20)

6Recall that here we have set r3 = 2. In general, the three-dimensional Laplace operator is
r2
3∇i∇i =

∑
a(`a)2.
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where

Ob = 2αb~L
2 + 2βbL3 + γb ,

Of = 2αf ~L · ~S + 2βfS3 + γf , (3.21)

with the constants taking the values αb = 1
2
,

βb = −1

2
+

3

4
r +

κ

2

(
3

2
r − ε

)
,

γb =
r

2
(1 + q)

[
r

2
(2− q) + κ

(
3

2
r − ε

)]
,

µ =
1

2

[
r

2
(1− 2q) + κ

(
3

2
r − ε

)]
, (3.22)

and αf = −1, βf = −βb,

γf = −
[

1

4
(r − 1)(1− 2q) +

3

4
+
κ

2

(
3

2
r − ε

)]
, (3.23)

respectively.7

For the vector multiplet, the quadratic Lagrangian is

Lvector = Tr

[
1

4
FµνF

µν +
i

2
λσµDcs

µ λ̃+
i

2
λ̃σ̃µDcs

µ λ

]
quadratic

, (3.24)

where Dcs
µ = ∇µ − iqRA

cs
µ . At quadratic order, Fµν is the linearized field strength,

F = dA, of the gauge field A. The gaugino λ and A both transform in the adjoint

representation of the gauge group G. This is therefore the Lagrangian of Nv = |G|
free vector multiplets, where we denote by Nv the dimension of G.

The fermionic part of this Lagrangian can be put in the same form as the fermionic

part of the chiral multiplet Lagrangian, namely

Lvector
fer = λ̃Õvec

f λ = λ̃
(
∂τ +Ovec

f

)
λ , (3.25)

where

Ovec
f = 2αv~L · ~S + 2βvS3 + γv , (3.26)

with αv = −1, βv = 0, and γv = q
2
− 1. Notice that for q = 1/2, corresponding to

Acs = 0, this reduces to the standard massless Dirac operator on the three-sphere.

7Recall we denote the Pauli matrices as γa, while we defined here parameters γb and γf . Hope-
fully, this will not lead to confusion.
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3.3 Path integral approach

In this section, we recover in our set-up the supersymmetric Casimir energy defined

in [26] as

Esusy = − lim
β→∞

d

dβ
logZ(β) , (3.27)

where Z is the supersymmetric partition function, namely the path integral on

S1 × S3 with periodic boundary conditions for the fermions on S1, computed using

localization. Restoring the radii of S1 and S3, the dimensionless parameter β of [26]

is given by

β =
2πr1

r3

. (3.28)

Differently from [26], here we will not fix the value of κ, showing that owing to the

pairing of bosonic and fermionic eigenvalues in the one-loop determinant, the final

result will be independent of κ. Although the computation in Euclidean signature

requires to fix q = 0, we start presenting the explicit eigenvalues for generic values

of q. We will demonstrate that the pairing occurs if and only if q = 0.

The localization computation of [26] shows that the partition function takes the

form

Z(β) = e−F(β)I(β) , (3.29)

where I(β) is the supersymmetric index [55–58], and the pre-factor F(β) = −iπ
(
Ψ

(0)
chi+

Ψ
(0)
vec

)
arises from the regularization of one-loop determinants in the chiral multiplets

and vector multiplets, respectively ( [26], see also [97]). The index I(β) does not

contribute in the limit (3.27), so we can focus on Ψ
(0)
chi and Ψ

(0)
vec, and thus effectively

set the constant gauge field A0 = 0 in the one-loop determinants around the local-

ization locus in [26]. Since the vector multiplet (3.24) does not depend on κ and

ε, and setting q = 0, its contribution to Esusy can simply be borrowed from [26].

Setting |b1| = |b2| = β/(2π) = r1/r3, where we used (3.28), one obtains

Ψ(0)
vec =

i

6

(
r1

r3

− r3

r1

)
Nv . (3.30)

For the chiral multiplet, we first work out the eigenvalues of the operators Ob and

Of for arbitrary κ and ε. The eigenvalues can be obtained with elementary methods

from the theory of angular momentum in quantum mechanics [44]. See appendix A

for a summary of the relevant spherical harmonics on the three-sphere. We denote

the eigenvalues as

Obφ = E2
bφ , Ofψ = λ±ψ . (3.31)

From the scalar harmonics, we have the eigenvalues

E2
b =

αb
2
`(`+ 2) + 2βbm+ γb , (3.32)
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where `
2
( `

2
+ 1) for ` = 0, 1, 2, ... are the eigenvalues of ~L2, and m = − `

2
, ..., `

2
are

the eigenvalues of L3. Each eigenvalue has degeneracy (` + 1), due to the SU(2)r

symmetry.

We distinguish two types of eigenvalues of Of . For any ` = 1, 2, 3, .. we have

λ±`m = −αf
2

+ γf ±

√
α2
f

4
(`+ 1)2 + αfβf (1 + 2m) + β2

f , (3.33)

where here the quantum number m takes the values m = − `
2
, ..., `

2
−1. Furthermore,

for any ` = 0, 1, 2, ..., we have the two special eigenvalues

λspecial±
` =

αf
2
`± βf + γf . (3.34)

Again, each eigenvalue has degeneracy (` + 1), due to the SU(2)r symmetry. Ex-

panding the fields in Kaluza-Klein modes on the S1 as

φ(x) =
∑
k∈Z

e−ikτφk(θ, ϕ, ς) , (3.35)

and similarly for ψ, we obtain the following eigenvalues for each mode,

Õbφk =
(
k2 − 2iµk + E2

b

)
φk ,

Õfψk =
(
−ik + λ±

)
ψk . (3.36)

For generic values of the quantum numbers `,m, we say that the eigenvalues of the

operators Õb and Õf are paired, if for all k we have

(
−ik + λ+

) (
−ik + λ−

)
= −

(
k2 − 2iµk + E2

b

)
. (3.37)

Inserting the values of the parameters given in (3.22) and (3.23) we find that the

eigenvalues pair if and only if q = 0, in which case they pair for any κ, ε, r. Let us

set q = 0 in the rest of this section. Restoring generic values of the radius r3 of the

S3, the one-loop determinant for a fixed k is

Z
(k)
1−loop =

detÕf
detÕb

=

∏
λ−

(
−ik + 2

r3
λ−
)∏

λ+

(
−ik + 2

r3
λ+
)

∏
Eb

(
k2 − 4

r3
iµk + 4

r23
E2
b

) , (3.38)

where the products are over all the bosonic and fermionic eigenvalues, including the

special ones. However, using the condition (3.37) all the paired eigenvalues cancel

out.8 For m = `/2 the generic fermionic eigenvalues do not exist. Thus there

are unpaired bosonic eigenvalues remaining the denominator of (3.38). These are

8Up to an irrelevant sign.
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obtained setting m = `/2 in (3.32), which reads

(E2
b )

unpaired =
(αf

2
(`+ 1) + βf

)2

− µ2 , ` = 0, 1, 2, ... . (3.39)

In the numerator of (3.38) remain the special fermionic eigenvalues. Thus the one-

loop determinant for fixed k, including the degeneracies, reads,

Z
(k)
1−loop =

∞∏
n0=1

(
n0 + 1 + r3ik − r
n0 − 1− r3ik + r

)n0

, (3.40)

where we defined n0 = `+ 1 and used that αf = −1 and

βf + µ =
1

2
(1− r) . (3.41)

Upon obvious identifications, this coincides with the one-loop determinant of an

N = 2 chiral multiplet on the round three-sphere, originally derived in [47] and [48],

although our operators Ob and Of are slightly more general and interpolate between

those used in these references. In particular, the Lagrangian used in [47] corresponds

to κ = −1/3 and ε = 0, precisely as in [26], while those used in [48] correspond to

κ = −1 and ε = 1. Recall that in all cases we have set q = 0.

Defining

z = 1− r +
r3ik

r1

, (3.42)

where we restored the radius r1 of the S1, one finds Z
(k)
1−loop(z) = sb=1(iz), where

sb(x) is the double sine function (1.24). Alternatively, (3.40) can be written in terms

of special functions by integrating the differential equation

d

dz
logZ

(k)
1−loop = −πz cot(πz) , (3.43)

where the Hurwitz function has been used to regularize the infinite sum [47] (see

appendix B).

In order to take the limit β → ∞, it is more convenient to write (3.40) as an

infinite product over two integers, namely

Z
(k)
1−loop =

∞∏
n1=0

∞∏
n2=0

n1 + n2 + 1 + z

n1 + n2 + 1− z
. (3.44)

The full partition function is obtained as as product over the Kaluza-Klein modes,

Z1−loop =
∏
k∈Z

Z
(k)
1−loop . (3.45)

Following the regularization in [26], we write the one-loop determinant in terms of
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triple gamma functions,

Z1−loop =
∞∏

k,n1,n2=0

k + u(n1 + n2 + 2− r)
k + u(n1 + n2 + r)

· k + 1− u(n1 + n2 + 2− r)
k + 1− u(n1 + n2 + r)

=
u3

(
ur|1, u, u

)
u3

(
1− ur|1,−u,−u

)
u3

(
u(2− r)|1, u, u

)
u3

(
1− u(2− r)|1,−u,−u

) , (3.46)

where u = ir1/r3. From equations (6.4) and (5.24) in [98], this leads to

Z1−loop = eiπΨ
(0)
chi Γ̃e

(
ir1

r3

r,
ir1

r3

,
ir1

r3

)
, (3.47)

with

Ψ
(0)
chi =

i

6

[
2r1

r3

(r − 1)3 −
(
r3

r1

+
r1

r3

)
(r − 1)

]
, (3.48)

where Γ̃e(w, p, q) = Γe
(
e2πiw, e2πip, e2πiq

)
is the elliptic gamma function,

Γe(w, p, q) =
∏
m,n≥0

1− pm+1qn+1w−1

1− pmqnw
. (3.49)

From this, one finds the contribution of a chiral multiplet to (3.27) to be

Echiral
susy =

1

12

(
2(r − 1)3 − (r − 1)

)
. (3.50)

This is exactly the contribution of a chiral multiplet with R-charge r to the total

supersymmetric Casimir energy computed in [26], although we emphasize that here

this has been derived for arbitrary values of the parameters κ and ε.

Combining the contributions from the vector multiplets (3.30) and the chiral

multiplets we recover the result

Esusy =
4

27
(a + 3c) , (3.51)

with the anomaly coefficients defined as

a =
3

32

(
3trR3 − trR

)
, c =

1

32

(
9trR3 − 5trR

)
, (3.52)

where R denotes the R-symmetry charge, and “tr” runs over the fermionic fields in

the multiplets, so that for Nv vector multiplets and Nχ chiral multiplets,

trRn = Nv +

Nχ∑
I=1

(rI − 1)n . (3.53)

In the next section we will show that (3.51) is also equal to the expectation value

68



of the BPS Hamiltonian Hsusy appearing in the supersymmetric index

I(β) = Tr (−1)F e−βHsusy . (3.54)

Therefore we now turn to the Hamiltonian formalism, working in a background with

a non-compact time direction, thus with β →∞ from the outset.

3.4 Hamiltonian formulation

In this section we study the theories defined in section 3.2 in a background R×S3 in

Lorentzian signature, obtained from the geometry in section 3.1 by a simple analytic

continuation. In particular, we take the metric

ds2(R× S3) = −dt2 + ds2(S3) , (3.55)

where t denotes the time coordinate on R, and ds2(S3) is the metric on the round S3,

equation (3.1). Below we continue to set r3 = 2. The background fields are obtained

from those of the previous section by setting At = −iAτ , Vτ = −iVτ , and Kt = −iKτ .

We must have κ ∈ R, such that the background fields are real. Moreover, the

dynamical fields in Lorentzian signature obey φ̃ = φ† and ψ̃ = ψ†. The σ-matrices

generating the appropriate Clifford algebra are obtained setting σ0
αα̇ = iσ4

αα̇ = 1αα̇

and σ̃0
αα̇ = iσ̃4

αα̇ = 1αα̇, with the remaining components unchanged, such that

σAσ̃B + σBσ̃A = −2ηAB , σ̃AσB + σ̃BσA = −2ηAB , (3.56)

where now A = 0, ..., 3 and ηAB = diag(−1, 1, 1, 1). The Lorentzian spinor ζ solving

equation (1.2) for generic κ is then

ζ =
e

1
2

iqt

√
2

 0

1

 , (3.57)

again with a more general solution for the special value κ = κst = −1 [55,99].

3.4.1 Conserved charges

In the following we consider a chiral multiplet and we will drop the superscript

“chiral” from all quantities. The Hamiltonian density H = Hbos +Hfer, associated to

the chiral multiplet Lagrangian (3.12), is obtained as usual by defining the canonical

momenta

Π = ∂tφ̃− iµφ̃ , Π̃ = ∂tφ+ iµφ , πα = iψ̃α̇σ̃
0 α̇α , π̃α = 0 , (3.58)
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and its bosonic and fermionic parts read

Hbos = Π∂tφ+ Π̃∂tφ̃− Lchiral
bos ,

Hfer = π∂tψ + π̃∂tψ̃ − Lchiral
fer , (3.59)

respectively. In terms of the operators Ob and Of defined in equations (3.21), we

have

Hbos = Π̃Π− iµ
(
Πφ− Π̃φ̃

)
+ φ̃

(
Ob + µ2

)
φ ,

Hfer = −ψ̃Ofψ . (3.60)

The Hamiltonian is then obtained by integrating9 over the spatial S3,

H =

∫
√
g3d3x H . (3.61)

The R-symmetry current JµR can be derived either from the Noether procedure or

as the functional derivative of the action with respect to Aµ, namely

JµR =
1√
−g

δS

δAµ
, (3.62)

and it reads

JµR = ir
(
Dµφ̃ φ− φ̃Dµφ

)
+ 2r

(
V µ + κ(ε− 1)Kµ

)
φ̃φ+ (r − 1)ψ̃σ̃µψ . (3.63)

This is conserved, i.e. ∇µJ
µ
R = 0, and the corresponding conserved charge R is

obtained by contracting it with the time-like Killing vector ∂t, and integrating on

the S3, which yields

R =

∫
√
g3d3x

(
ir
(
φ̃Π̃− φΠ

)
+ (r − 1)ψ̃σ̃tψ

)
. (3.64)

Rotational symmetry along the Killing vector ∂ς , which belongs to the SU(2)l part

of the isometry group of the sphere, gives rise to a conserved current with the

corresponding conserved angular momentum

J3 = −i

∫
√
g3d3x

(
(L3φ) Π + (L3φ̃) Π̃ + iψ̃ (L3 + S3)ψ

)
. (3.65)

Finally, supersymmetry gives rise to the conserved supercurrent

ζαJµsusy α = −
√

2ζσν σ̃µψDνφ̃ . (3.66)

9The integral is over the spatial S3 with the metric ds2(S3) in (3.1). We define d3x = dθdςdϕ,
and g3 = sin2 θ denotes the determinant of this metric.
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Using the equations of motion for the dynamical fields, after some calculations, one

can verify that

∇µ(ζJµsusy) = 0 . (3.67)

Note that ∇µζ 6= 0, and therefore Jµsusy is not conserved by itself, as is the case in

the standard flat-space computation. Contracting ζJµsusy with the time-like Killing

vector ∂t, we obtain the conserved supercharge

Q = −
√

2

∫
d3x
√
g3

(
ζψΠ− iφ̃ζÔfψ

)
, (3.68)

where we defined

Ôf ≡ 2α̂~S · ~L+ 2β̂S3 + γ̂ , (3.69)

with

α̂ = −1 , β̂ =
3

4
(1− r) , γ̂ = −κ

2

(
3

2
r − ε

)
− 3

4
. (3.70)

In summary, applying the Noether procedure to the Lagrangian (3.12), we have

derived expressions for the Hamiltonian H, R-charge R, angular momentum J3, and

supercharge Q. These will provide the relevant operators in the quantized theory.

Let us briefly discuss other currents that can be considered, which however are

not conserved generically. In particular, the usual energy-momentum tensor, defined

as

Tµν =
−2√
−g

δS

δgµν
, (3.71)

is not conserved in the presence of non-dynamical fields. This remains true even if

Tµν is contracted with a vector field that generates a symmetry of the metric and

the other background fields. Thus, for example, Ttt does not define a conserved

quantity, and in particular it does not coincide with the canonical Hamiltonian.

Denoting generic non-dynamical vector fields as AI , with F I = dAI , and the associ-

ated currents as JµI , in general the energy-momentum tensor (3.71) obeys the Ward

identity

∇µTµν =
∑
I

(
F I
µνJ

µ
I − A

I
ν∇µJ

µ
I

)
. (3.72)

In the present case, after a tedious computation, one finds that the energy-

momentum tensor satisfies

∇µTµν = (dA)νµJ
µ
R −

3

2
(dV )νµJ

µ
FZ + (dK)νµJ

µ
K

+
3

2
Vν∇µJ

µ
FZ −Kν∇µJ

µ
K , (3.73)
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where JµFZ is the Ferrara-Zumino current

JµFZ = −2

3

1√
−g

δS

δVµ
, (3.74)

and

JµK =
1√
−g

δS

δKµ

. (3.75)

Neither JµFZ nor JµK are conserved. Explicit expressions for Tµν , J
µ
FZ, and JµK are

given in appendix C. Note that in this context, we must formally treat Kµ as a

background field, although it was introduced in the Lagrangian as a shift of the

original fields Aµ and Vµ. For the usual chiral multiplet Lagrangian with ε = 1,

however, one has JµK = 0.

For a generic Killing vector ξ, that is also a symmetry of the background fields,

LξA = LξV = 0, we can define a conserved current as

Y µ
ξ = ξν

(
T µν + JµRA

ν − 3

2
JµFZV

ν + JµKK
ν

)
. (3.76)

One can show that indeed ∇µY
µ
ξ = 0. In particular, for ξ = ∂t, one finds that the

conserved charge is the Hamiltonian density

H = −Y t
∂t , (3.77)

up to a total derivative on the three-sphere.

3.4.2 Canonical quantization

We now expand the dynamical fields in terms of creation and annihilation operators.

Let us first focus on the scalar field. In order for the field φ to solve its equation of

motion, we expand it as

φ(x) =
∞∑
`=0

`
2∑

m,n=− `
2

(
a`mnu

(+)
`mn(x) + b†`mn(u

(−)
`mn)∗(x)

)
, (3.78)

with10

u
(±)
`mn(x) ≡ 1

4
√
ω±`m ∓ µ

e−iω±`mtY mn
` (~x) , (3.79)

where Y mn
` (~x) are the scalar spherical harmonics on a three-sphere of unit radius

(see appendix A for further details), and

ω±`m = ±µ+

√
αb
2
`(`+ 2)± 2βbm+ γb + µ2 . (3.80)

10Although none the eigenvalues relevant to us depend on the SU(2)r ⊂ SO(4) quantum number
n, we keep track of this in the spherical harmonics and in the expansions.

72



The canonical commutation relations

[φ(t, ~x),Π(t, ~x ′)] =
i√
−g

δ(3)(~x− ~x ′) ,

[φ(t, ~x), φ(t, ~x ′)] = [Π(t, ~x),Π(t, ~x ′)] = 0 , (3.81)

with δ(3)(~x−~x ′) = δ(θ−θ′)δ(ϕ−ϕ′)δ(ς−ς ′), hold by taking the oscillators to satisfy

the usual

[a`mn, a
†
`′m′n′ ] = [b`mn, b

†
`′m′n′ ] = δ`,`′δm,m′δn,n′ . (3.82)

From (3.60) it follows that the Hamiltonian of the scalar field reads

Hbos =
1

2

∞∑
`=0

`
2∑

m,n=− `
2

ω+
`m

(
a`mna

†
`mn + a†`mna`mn

)

+
1

2

∞∑
`=0

`
2∑

m,n=− `
2

ω−`m

(
b`mnb

†
`mn + b†`mnb`mn

)
. (3.83)

Notice that we have used the Weyl ordering prescription, as this is the correct one

for comparison with the path integral approach.

For the fermion, we expand the field ψ in terms of the spinor spherical harmonics

S±`mn. As discussed in appendix A, these are eigenspinors of the operator Of ,

OfS±`mn = λ±`mS±`mn , (3.84)

with the eigenvalues λ±`m given in equation (3.33). In addition, there are the “special”

spherical harmonics,

OfSspecial±
`n = λspecial±

` Sspecial±
`n , (3.85)

with λspecial±
` given in equation (3.34). We expand the field ψ as

ψα =
∞∑
`=0

`
2∑

n=− `
2

`
2∑

m=− `
2
−1

c`mnu`mnα +
∞∑
`=1

`
2∑

n=− `
2

`
2
−1∑

m=− `
2

d†`mnv`mnα , (3.86)

with

u`mnα(x) =
1

2
√

2
eitλ−`mS−`mnα(~x) , v`mnα(x) =

1

2
√

2
eitλ+`mS+

`mnα(~x) .

(3.87)

Here we included Sspecial± in the sums by defining

S−
`, `

2
,n
≡ Sspecial+

`n , λ−
`, `

2
,n
≡ λspecial+

`n ,

S−
`,− `

2
−1,n

≡ Sspecial−
`n , λ−

`,− `
2
−1,n

≡ λspecial−
`n . (3.88)
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Of course, by imposing the anti-commutation relations

{c`mn, c†`mn} = {d`mn, d†`mn} = δ`,`′δm,m′δn,n′ , (3.89)

one finds the field ψα and the conjugate momentum πα = iψ̃α̇σ̃
0 α̇α satisfy the canon-

ical relations

{ψα(t, ~x), πβ(t, ~x ′)} =
i√
−g

δ(3)(~x− ~x ′) δαβ ,

{ψα(t, ~x), ψβ(t, ~x ′)} = {πα(t, ~x), πβ(t, ~x ′)} = 0 . (3.90)

The mode expansion (3.86) can now be inserted into the conserved charges of the

previous subsection, recalling that these have to be Weyl ordered. For example, the

Hamiltonian density in (3.60) becomes

Hfer =
1

2

(
(Ofψ)ψ̃ − ψ̃Ofψ

)
. (3.91)

Inserting the mode expansion and integrating over the S3 yields the quantized Hamil-

tonian

Hfer =
1

2

∞∑
`=0

`
2∑

n=− `
2

`
2∑

m=− `
2
−1

λ−`m

(
c`mnc

†
`mn − c

†
`mnc`mn

)

−1

2

∞∑
`=1

`
2∑

n=− `
2

`
2
−1∑

m=− `
2

λ+
`m

(
d`mnd

†
`mn − d

†
`mnd`mn

)
. (3.92)

In the next subsection we will turn to the computation of the expectation values of

these Hamiltonians, and we will show that the infinite sums can be evaluated with

(Hurwitz) zeta function regularization in two special cases. One case is obtained

for q = 0, for which we can use the pairing of bosonic and fermionic eigenvalues

discussed in section 3.3 to evaluate the vev of H = Hbos + Hfer. Another case is

obtained for βf = βb = 0, where we will be able to evaluate the vevs of Hbos and

Hfer separately.

Thus, for simplicity in the remainder of this subsection we restrict to βf = βb =

0. Using the mode expansions of the fields, and after Weyl ordering, we obtain

expressions for the remaining conserved charges. For the R-charge, equation (3.64),
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this leads to

R =
r

2

∑
`=0

`
2∑

m,n=− `
2

(
a`mna

†
`mn + a†`mna`mn

)
− r

2

∑
`=0

`
2∑

m,n=− `
2

(
b†`mnb`mn + b`mnb

†
`mn

)

−r − 1

2

∞∑
`=0

`
2∑

n=− `
2

`
2∑

m=− `
2
−1

(
c`mnc

†
`mn − c

†
`mnc`mn

)

+
r − 1

2

∞∑
`=1

`
2∑

n=− `
2

`
2
−1∑

m=− `
2

(
d`mnd

†
`mn − d

†
`mnd`mn

)
. (3.93)

For the J3 angular momentum, equation (3.65), we get

J3 =
1

2

∞∑
`=0

`
2∑

m=− `
2

`
2∑

n=− `
2

m
(
a`mna

†
`mn + a†`mna`mn

)

+
1

2

∞∑
`=0

`
2∑

m=− `
2

`
2∑

n=− `
2

m
(
b†`mnb`mn + b`mnb

†
`mn

)

−1

2

∞∑
`=0

`
2∑

n=− `
2

`
2∑

m=− `
2
−1

(
m+

1

2

)(
c`mnc

†
`mn − c

†
`mnc`mn

)

+
1

2

∞∑
`=1

`
2∑

n=− `
2

`
2
−1∑

m=− `
2

(
m+

1

2

)(
d`mnd

†
`mn − d

†
`mnd`mn

)
, (3.94)

and finally the supercharge (3.68) reads

Q = −i
∞∑
`=0

`
2∑

n=− `
2

`
2∑

m=− `
2

√
`

2
+m+ 1 a†`mnc`mn

−i
∞∑
`=1

`
2∑

n=− `
2

`
2
−1∑

m=− `
2

(−1)−m−n
√
`

2
−m b`,−m,−nd

†
`mn . (3.95)

By direct computation, one can now verify the following commutation relations

[H,Q] = − q

r3

Q , [R,Q] = Q , [J3,Q] = −1

2
Q , (3.96)

where we restored the radius r3 of the S3. Note that the Hamiltonian commutes

with Q only for q = 0, which from equation (3.37) is the value required for the

pairing of eigenvalues. By conjugating equation (3.95), one can further verify that

r3

2
{Q,Q†} = : H +

1

r3

(1 + q)R +
2

r3

J3 : , (3.97)
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where : : denotes normal ordering. Let us set r3 = 1 in (3.97) and (3.96) and

comment on the special values of the parameter q discussed in the literature. Setting

q = 0 we have

1

2
{Q,Q†} = : H +R + 2J3 : ,

[H,Q] = 0 , (3.98)

corresponding11 to the relations in equation (5.9) of [20], where H|q=0 coincides

with H in that reference. For this reason we refer to H|q=0 ≡ Hsusy as the BPS

Hamiltonian.

Setting q = 1/2 we have

1

2
{Q,Q†} = : H +

3

2
R + 2J3 : ,

[H,Q] = −1

2
Q , (3.99)

which coincide for example with equation (7) of [57] as well as with equation (6.11)

in [20], where H|q=1/2 corresponds to ∆ in the latter reference.

Finally, setting q = −1 we have

1

2
{Q,Q†} = : H + 2J3 : ,

[H,Q] = Q , (3.100)

corresponding to equation (5.6) of [20], where H|q=−1 corresponds to P0 in that

reference.

Although these commutation relations are here written for the chiral multiplet, it

is straightforward to verify that they hold also for the vector multiplet, and hence

for the total Htot = H +Hvec, and similarly for the other operators. It was noticed

in [68] that these may be formally derived from the abstract supersymmetry algebra

of new minimal supergravity.

3.4.3 Casimir energy

We are now ready to compute the vacuum expectation value of the Hamiltonian.

This yields infinite sums which we regularize using the zeta function method. Thus,

for an operator A, we define its vacuum expectation value as

〈A〉 ≡ lim
s→−1

ζA(s) , (3.101)

11Here and below, the equations correspond to those referenced, up to convention dependent signs
of R and J3, as well a possible factor

√
2 in the supercharge Q, descending from the definition of

the supersymmetry variations.
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where, denoting with λAn the set of all the eigenvalues (here n is a multi-index) of A

and with dAn their degeneracies, the generalized zeta function is defined as

ζA(s) = TrA−s =
∑
n

dAn (λAn )−s . (3.102)

Notice that if A = B + C, with corresponding eigenvalues denoted as λBn and λCn ,

then

lim
s→−1

(∑
n

(λBn )−s +
∑
n

(λCn )−s

)
6= lim

s→−1

∑
n

(λBn + λCn )−s . (3.103)

This lack of additivity is related to the lack of associativity of functional determi-

nants, det(BC) 6= det(B) ·det(C), which is known as “multiplicative anomaly”. See

e.g. [100].

In the present context, we use the following prescription for dealing with the

infinite sums: for each given operator, we sum independently the eigenvalues corre-

sponding to every different field. In particular, we define the vev of each operator as

the sum of the vevs of the terms containing the fields φ, ψ, A, and λ, respectively.

Therefore, for example,

〈H〉 ≡ 〈Hbos〉+ 〈Hfer〉 , (3.104)

and similarly for R, J3, and Q. This recipe is in accordance with [101], and we will

show below that this yields the supersymmetric Casimir energy computed in [26].

The vevs of the scalar and fermion Hamiltonians of the chiral multiplet, (3.83)

and (3.92), are

〈Hbos〉 = lim
s→−1

1

2

∞∑
`=0

`
2∑

m,n=− `
2

(ω+
`m)−s +

1

2

∞∑
`=0

`
2∑

m,n=− `
2

(ω−`m)−s

 ,

〈Hfer〉 = lim
s→−1

1

2

∞∑
`=0

`
2∑

n=− `
2

`
2∑

m=− `
2
−1

(λ−`m)−s − 1

2

∞∑
`=1

`
2∑

n=− `
2

`
2
−1∑

m=− `
2

(λ+
`m)−s

 , (3.105)

respectively. However, due to the square roots appearing in both sets of eigenvalues

ω±`m and λ±`m, the vevs in (3.105) cannot in general be separately regularized with

any12 zeta function and written in closed form.

In the special case q = 0, we can take advantage of the pairing as discussed in

section 3.3 to compute the vev of the Hamiltonian of the chiral multiplet, H =

12E.g. Hurwitz, Barnes, Shintani, Epstein zeta functions.
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Hbos +Hfer. Thus, setting q = 0 one has

ω+
`m = −λ−`m , ω−`,−m = λ+

`m , for ` ≥ 1 , − `
2
≤ m ≤ `

2
− 1 . (3.106)

The eigenvalues not included in equation (3.106) are the “special” fermion eigenval-

ues, which we can write as

λspecial±
` = −1

2
(`+ 1)± βf − µ , ` ≥ 0 , (3.107)

and the “unpaired” bosonic eigenvalues

ω+

`, `
2

=
1

2
(`+ 1)− βf + µ , ω−

`,− `
2

=
1

2
(`+ 1)− βf − µ , ` ≥ 0 . (3.108)

Here we used that αf < 0 and assumed βf ≤ −αf
2

in order simplify the square roots

in ω+

`, `
2

and ω−
`,− `

2

. Due to the pairing, equation (3.106), all eigenvalues containing

square roots exactly cancel against each other in (3.104), and we are left with

〈H〉q=0 = lim
s→−1

[
1

2

∞∑
`=0

`
2∑

n=− `
2

(ω+

`, `
2

)−s +
1

2

∞∑
`=0

`
2∑

n=− `
2

(ω−
`,− `

2

)−s

+
1

2

∞∑
`=0

`
2∑

n=− `
2

(λspecial+
` )−s +

1

2

∞∑
`=0

`
2∑

n=− `
2

(λspecial−
` )−s

]

= lim
s→−1

[
1

4

∞∑
k=1

k (k − 2(βf + µ))−s − 1

4

∞∑
k=1

k (k + 2(βf + µ))−s
]

=
1

12
(βf + µ)

(
1− 8(βf + µ)2

)
. (3.109)

Notice that the first and third term in the first line further exactly cancelled and in

the last step we regularized separately the two remaining sums using the Hurwitz

zeta function13. To summarize, since for q = 0 one has 2(βf + µ) = 1 − r, the vev

of the Hamiltonian of a chiral multiplet with R-charge r is

〈H〉q=0 =
1

12r3

(1− r)
(
1− 2(1− r)2

)
, (3.110)

where we restored r3. This result is valid for any value of r, κ, and ε. Notice that if

we were to combine the two sums in the middle line of (3.109), before regularization,

we would get a different result.

Turning to the vector multiplet, the Casimir energy of the gauge field A does

not depend on any of our parameters and is simply given by the result for an

Abelian gauge field 〈Hgauge〉 = 11
120r3

(see e.g. [42, 102]) multiplied by the dimension

13See appendix B for details on the Hurwitz zeta function.
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of the gauge group Nv. For the gaugino λ, the Casimir energy is computed as for

the fermion ψ in equation (3.105), but using the eigenvalues of the operator Ovec
f

in equation (3.26). For q = 0 this gives simply 〈Hgaugino〉 = − 1
120r3

, again to be

multiplied by Nv. It is now simple to combine this with the contributions from the

chiral multiplets and vector multiplet, and recover14 the supersymmetric Casimir

energy Esusy in equation (3.51),

〈Htot〉q=0 =
1

12r3

(
2trR3 − trR

)
=

4

27r3

(a + 3c) =
1

r3

Esusy . (3.111)

As in (3.51), this result is valid for arbitrary values of κ and ε. Indeed this is exactly

the same BPS Hamiltonian defining the path integral, and therefore the free field

result should have agreed with the localization result, that is valid for any value of

the couplings.

Next, we consider the special case βb = βf = 0. This corresponds to setting

κ = −1 and ε = 1, but leaving arbitrary q. In this case, both sums in (3.105) can be

separately regularized using Hurwitz zeta function, as the square roots in ω±`m and

λ±`m are absent, namely

ω+
` =

1

2
(`+ 2− r(1 + q)) , ω−` =

1

2
(`+ r(1 + q)) , (3.112)

and

λ−` = λspecial±
` = −1

2
(`+2−r(1+q)+q) , λ+

` =
1

2
(`+r(1+q)−q) , (3.113)

where we dropped the subscript m, as this quantum number becomes degenerate.

Thus, regularizing the sums as described at the beginning of this subsection using

the Hurwitz zeta function, we obtain the finite Casimir energies

〈Hbos〉 =
1

240

[
1− 10

(
r(1 + q)− 1

)4
]
, (3.114)

and

〈Hfer〉 =
1

240

[
10(q + 1)3 (1 + q) (r − 1)4

+20(q + 1)3(r − 1)3 − 10(q + 1)(r − 1)− 1
]
. (3.115)

Adding (3.114) and (3.115), we obtain the Casimir energy of a chiral multiplet

14The quantity Esusy defined in [26] is dimensionless. Therefore, when writing the radius of the
three-sphere explicitly, this has to be compared with the dimensionless combination r3〈Htot〉q=0.
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with R-charge r

〈H〉 = − 1

24

[
q4 + 2(q + 1)3(2q− 1)(r − 1)3

+6q2(q + 1)2(r − 1)2 + (q + 1)
(
4q3 + 1

)
(r − 1)

]
. (3.116)

This generalizes straightforwardly to an arbitrary number of chiral multiplets. As

before, we can include easily an arbitrary number Nv of vector multiplets as well. In

this case, for the gaugino, the Casimir energy can be obtained by formally setting

r = 2q
1+q

in equation (3.115), and reads

〈Hgaugino〉 =
1

240

(
10
(
q4 − 2q3 + q

)
− 1
)
. (3.117)

Combining these results, we find that (for κ = −1, ε = 1) using our regularization,

the Casimir energy of a supersymmetric gauge theory with Nv vector multiplets and

Nχ chiral multiplets with R-charges rI is given by the following expression

〈Htot〉 =
Nv

12r3

(
q4 − 2q3 + q + 1

)
− 1

12r3

Nχ∑
I=1

(
q4 +

(
4q3 + 1

)
(q + 1)(rI − 1)

+6q2(q + 1)2(rI − 1)2 + 2(2q− 1)(q + 1)3(rI − 1)3
)
, (3.118)

where we restored the radius r3 of the three-sphere. Setting q = 0 as in [26], and

recalling the definition (3.52) of the anomaly coefficients a and c, we see that (3.118)

reduce to

〈Htot〉q=0 =
4

27r3

(a + 3c) , (3.119)

in agreement with (3.111).

In general, however, equation (3.118) cannot be written as a linear combination

of a and c. In the special case q = 1/2 and rI = 2/3, corresponding to the usual

conformally coupled scalars, Weyl spinors, and gauge fields, the Casimir energy

(3.118) reduces to

〈Htot〉q= 1
2
,rI= 2

3
=

1

192r3

(21Nv + 5Nχ) =
1

4r3

(a + 2c) , (3.120)

in accordance with standard zeta function computations (see e.g. [42]15). In par-

ticular, notice that for theories with Nχ = 3Nv so that a = c, such as N = 4

super-Yang Mills, this becomes simply 3
4r3

a. However, the agreement with the CFT

result of [103] for the Casimir energy is accidental [102, 103]. Finally, we note that

15Equation (5.60) of [42] gives the Casimir energy of n0 scalar, n1/2 Weyl fermions, and n1 vector
fields. Agreement with (3.120) is found setting n0 = 2Nχ, n1/2 = Nv +Nχ, and n1 = Nv.
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for q = −1, the Casimir energy is independent of the R-charges and reads

〈Htot〉q=−1 =
1

12r3

(3Nv −Nχ) . (3.121)

This is simply because in this case A = 0 from equation (3.10), and therefore the

Lagrangian does not depend on the R-charges.

We can also compute the vevs of the supercharge Q and R-symmetry charge R.

It is simple to see from its mode expansion (3.95) that Q annihilates the vacuum,

and so the vev of Q is zero. The same is true for the supercharge of the vector

multiplet, which is explicitly given by Qvec = i
2

∫ √
g3d3x ζσµσ̃νσ0λ̃Fµν . From the

mode expansion (3.93) of R for the chiral multiplet, it is clear that the scalar field

does not contribute. Furthermore, since the fermionic eigenvalues are constant, they

do not fit in the regularization scheme of eqns. (3.101) and (3.102) as they do not

give rise to a zeta function. In [2], the regularization proceeds by noting that only

the eigenvalues from the “special” modes, for which m = − `
2
− 1 and m = `

2
, do not

cancel,

〈R〉 = −r − 1

2

∞∑
`=0

`
2∑

n=− `
2

`
2∑

m=− `
2
−1

1 +
r − 1

2

∞∑
`=1

`
2∑

n=− `
2

`
2
−1∑

m=− `
2

1

= (1− r)
∞∑
`=0

(`+ 1)

=
r − 1

12
, (3.122)

where in the last step we used the Riemann zeta function, ζR(−1) = − 1
12

. Similarly,

for the vector multiplet 〈Rvec〉 = 1
12

, where only the gaugino contributes. Thus, the

vev of the total R-charge operator Rtot = R +Rvec presented in [2] is

〈Rtot〉 =
4

3
(a− c) . (3.123)

It was clarified in [3], however, that this regularization of 〈R〉 does not respect

supersymmetry. As we will see below in section 3.5, the correct regularization yields

〈R〉 = −r3〈Hsusy〉, where Hsusy = H|q=0.

The results discussed in this section rely on the fact that the operators we are

using are not normal ordered. See also [104] for a similar discussion.
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3.5 Reduction to supersymmetric quantum me-

chanics

In this section we continue the study of the Casimir energy of N = 1 field theories

on R×S3, where the S3 is round. We perform a manifestly supersymmetric analysis.

By expanding all dynamical fields in spherical harmonics on the S3, we reduce the

problem to a supersymmetric quantum mechanical problem.

As discussed in section 1.5, the regularization of the partition function can be

described in terms of the addition of counterterms to the action. In general, this can

be done in different ways, leaving the finite part scheme-dependent and ambiguous.

Different renormalization schemes differ by some local counterterm, that is, the

addition to the action of some local term constructed from the background fields,∫
d4x
√
gLct(gµν , Aµ, Vµ). In particular, dimensionless counterterms16 affect the finite

part of the computation, accounting for the ambiguity mentioned above. Below we

argue that if the regularization is required to be compatible with supersymmetry,

no such counterterm can shift the value of the supersymmetric Casimir energy.

This section is based on [3].

3.5.1 Consequences of the supersymmetry algebra

In the following we consider the special choice of the parameter κ = κst = −1,

discussed around (3.10). The background preserves four supercharges, and we set

q = 0 so that the supercharges are time-independent, see (3.11). Since the Hamilto-

nian commutes with the supercharges in this case (from equation (3.96)), we denote

Hsusy = H|q=0. Due to the flat gauge field A along the Euclidean time direction,

the Hamiltonian Hsusy is shifted with respect to what we would get from radial

quantization as17

Hsusy = ∆ +
1

2r3

R , (3.124)

where ∆ is the time translation operator obtained by mapping the dilatation oper-

ator in flat space to the cylinder.

The superalgebra preserved on this background [55] is

r3

2
{Qα,Q†β} = δβα

(
Hsusy +

1

r3

R
)

+
2

r3

γi βαJ
i
l

[Hsusy,Qα] = 0 , [R,Qα] = Qα , [J il ,Qα] = −1

2
Qβγi βα , (3.125)

where again γi are the Pauli matrices, R is the R-symmetry charge, J il are the gen-

16That is, counterterms of the form
∫

d4x
√
gLct(gµν , Aµ, Vµ) where the integrand is of mass

dimension four. Such counterterms are called marginal in [96].
17For consistency with the previous section, we changed here the sign of the R-charge operator

R and angular momentum J i compared to [3, 55].
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erators of the SU(2)l ⊂ SU(2)l × SU(2)r isometry of the sphere. The supercharges

Qα, α = 1, 2 form a doublet under SU(2)l, while the subgroup SU(2)r subgroup

does not appear in the superalgebra.

A first remark is that we assume the vacuum |VAC〉 does not break supersymme-

try. Suppose the vacuum were not supersymmetric, in which case either Q1 or Q2

(or both) would not annihilate the vacuum. Then Q|VAC〉 is a new state with the

same value of Hsusy, but contributing with opposite sign to the index or partition

function. Therefore if supersymmetry were broken, the index on R× S3 would not

receive a contribution from the unit operator. In the case of SCFTs, the fact that

supersymmetry is unbroken on R× S3 follows from radial quantization.

Another simple observation from (3.125) is that J3 = J3
l annihilates the vacuum,

J3|VAC〉 = 0. Indeed, J3 appears with different signs on the right hand side of

{Q1,Q†1} and {Q2,Q†2}. Hence, if both Q1 and Q2 annihilates the vacuum, so must

J3.

It is useful to focus on the algebra of one specific supercharge, say Q1,

r3

2
{Q1,Q†1} = Hsusy +

1

r3

R +
2

r3

J3 , Q2
1 = 0

[Hsusy,Q1] = [R + 2J3,Q1] = 0 . (3.126)

Since Q1 and J3 annihilate the vacuum, the first line implies

〈Hsusy〉 = − 1

r3

〈R〉 . (3.127)

Note the consistency of (3.126) with (3.96) and (3.97). This also shows that the

regularization of 〈R〉 in the previous section leading to (3.123) does not respect

supersymmetry, as we remarked at that point.

The supersymmetry algebra does not fix 〈Hsusy〉 entirely, as (3.126) is invariant

under shifts of Hsusy and R. Our approach for determining 〈Hsusy〉 will be to reduce

the theory on the three-sphere. In this way, we obtain a quantum mechanics theory

with infinitely many degrees of freedom. The theory has four supercharges Q1,

Q2, and their Hermitian conjugates. The R-symmetry group is SU(2)l × U(1) and

the supercharges transform in the (2,1) representation. The SU(2)r symmetry is a

global symmetry of the quantum mechanics theory.

3.5.2 Supersymmetric quantum mechanics

Let us model the situation in (3.126) as

{Q,Q†} = 2(H + Σ) , Q2 = 0 ,

[H,Q] = [Σ,Q] = 0 , (3.128)
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where H generates time translations, while Σ is some Hermitian conserved charge.

We could just redefine H by Σ, however, in order to connect more easily with the

reduction over S3, we will keep the algebra in this form.

We can now define two types of multiplets: a chiral multiplet (φ, ψ), and a Fermi

multiplet (λ, f), where φ,f are complex and commuting while ψ, λ are complex and

anti-commuting. These two multiplets have the following supersymmetry transfor-

mations,

chiral : δφ =
√

2ζψ , δψ = −
√

2iζ†Dtφ

Fermi : δλ =
√

2ζf + p
√

2ζ†φ , δf = −
√

2iζ†Dtλ− p
√

2ζ†ψ , (3.129)

where on all the fields we define Dt = ∂t − iσ, with σ the charge of the field under

Σ. The complex parameter ζ is independent of time and uncharged under Σ. In

the variations of the Fermi multiplet there appears a parameter p. When p = 0, the

chiral and Fermi multiplets are independent of each other. We will refer to each of

the decoupled multiplets as “short”. When instead p 6= 0 the two multiplets form

one reducible but indecomposable representation of supersymmetry. Thus, for p 6= 0

we call the combined chiral and Fermi multiplets a “long” multiplet.

On each component of a multiplet with charge σ, the transformations (3.129) give

{δ1, δ2} = −2i
(
ζ†1ζ2 + ζ†2ζ1

)
Dt , (3.130)

which is consistent with the algebra (3.128) when H is represented as −i∂t.

The supersymmetric Lagrangian of a long multiplet takes the form

L = |Dtφ|2 − iν(φDtψ
† − φ†Dtφ) + iψ†Dtψ − 2νψψ†

+iλ†Dtλ+ |f |2

−p2|φ|2 − p(λψ† + ψλ†) , (3.131)

where ν is an additional free parameter, giving a mass to ψ. For p = 0, the first and

second lines are the Lagrangians of a free chiral and Fermi multiplet, respectively,

and are separately supersymmetric.

We now pass to Hamiltonian formalism and quantize the theory. The canonical

momenta are

Πφ = (Dt + iν)φ† , Πψ = −iψ† , Πλ = −iλ† , Πf = 0 . (3.132)

The canonical (anti-)commutation relations are

[φ,Πφ] = i , {ψ,Πψ} = −i{ψ, ψ†} = −i , {λ,Πλ} = −i{λ, λ†} = −i ,

(3.133)
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together with their Hermitian conjugates.

The Hamiltonian reads

H = |Πφ|2 + i(ν + σ)(Πφφ− φ†Πφ†) + ν2|φ|2 + (σ + 2ν)ψψ†

+σλλ†

+ p2|φ|2 + p(λψ† + ψλ†) + α̃ , (3.134)

where again when p = 0 the first line gives the Hamiltonian of a chiral multiplet,

while the second line is the Hamiltonian of a Fermi multiplet. The field f has been

set to zero by its equation of motion. Note that we have introduced a constant α̃,

parametrizing the usual ordering ambiguity.

In terms of canonical variables, the charge Σ reads

Σ = −iσ
(
Πφφ− φ†Πφ†

)
− σ

(
ψψ† + λλ†

)
− α , (3.135)

where α parametrizes the ordering ambiguity in this operator. The supercharge is

Q =
√

2iψ
(
Πφ − iνφ†

)
+
√

2 p φ†λ , (3.136)

and is free of ordering ambiguities. Evaluating {Q,Q†} we find that (3.128) is upheld

provided we take

α̃ = α− 2ν . (3.137)

Hence supersymmetry fixes the ordering ambiguity in H + Σ. Of course, after

having solved for α̃ we still have the freedom to shift H and Σ by an equal amount,

corresponding to the remaining parameter α. Without additional assumptions, this

freedom would have remained in the framework of ordinary quantum mechanics in

one dimension.

In order to explain how to fix the ordering ambiguity that is left, it is useful

to recall that we are computing the coefficient of a CS term in the low-energy 1d

effective action. This term takes the form

k

∫
dt AΣ

t , (3.138)

where AΣ
t is the background gauge field associated to the charge Σ. A single

fermion of mass m and charge q shifts the coefficient of the Chern-Simons term

by q
2
sgn(m) [105]. We can think about this as if we are starting from some theory

in the UV with Chern-Simons coefficient kuv and then we integrate out the massive

fermion leading to a Chern-Simons coefficient in the infrared kir (this interpretation
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was elaborated upon in [21])18

kir − kuv = −q

2
sgn(m) . (3.141)

From the point of view of the quantum mechanics, the arbitrariness in the charge

of the vacuum corresponds to the arbitrariness in the UV coefficient kuv. However,

our theory arises from a higher-dimensional model. As already observed, it is easy

to convince oneself that a term like (3.138) cannot be generated by dimensional

reduction of a four-dimensional local term. So we must take

kuv = 0 , (3.142)

i.e. no Chern-Simons contact term in the UV generating functional. This key re-

quirement fixes the ordering ambiguity in H. Together with (3.141), this implies

that multiplets containing pairs of fermions with masses of opposite sign do not

contribute to the Casimir energy. We will see below that as long as the Hamiltonian

is bounded from below, a long multiplet necessarily contains fermions with masses

of opposite sign. As a result, the choice of the ordering coefficient must be such that

H and Σ vanish in the ground state of a long multiplet. This leads to the conclusion

that the correct choice of the ordering constant is

α = −2σ . (3.143)

We will use this choice in the following and one can verify that in all cases the results

are consistent with (3.142). Incidentally, it turns out that (3.143) also corresponds

to Weyl ordering for the Hamiltonian.19

18A simple way to derive (3.141) is as follows. First, from dimensional analysis and the fact that
m and k are odd under charge conjugation we infer

kir − kuv = x sgn(m) , (3.139)

where x is a coefficient, independent of m. To fix x we can consider a free fermion with mass m and
charge q with a constant background gauge field AΣ

t . This has Hamiltonian H = (m+qAΣ
t )(ψψ†+

α̂), where α̂ is an arbitrary ordering constant. The partition function is given by

Z = e−β(m+qAΣ
t )α̂
(

1 + e−β(m+qAΣ
t )
)
. (3.140)

The idea now is that we can keep the ultraviolet fixed and consider two different RG flows, one
with positive m and one with negative m. By subtracting the resulting Chern-Simons terms in
the infrared (which we will read out from the charge of the vacuum), we will find 2x. If m > 0
then taking m→∞ we can read off the CS term (i.e. charge) in the IR to be qα̂

∫
dtAΣ

t . On the
other hand, if m < 0 we read out the CS term in the IR by taking the limit m→ −∞ and we find
q(α̂+ 1)

∫
dtAΣ

t . Subtracting these yields 2x = −q.
19This explains why the final result is identical to that of section 3.4 (from [2]) for the VEV

of H. But, unlike [2], our result for the VEV of Σ in the vacuum manifestly respects the BPS
condition H = −Σ.
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3.5.3 Spectrum of the Hamiltonian

We now study the spectrum of the Hamiltonian (3.134) and determine the vacuum

state.

Long multiplet

Let us start from the bosonic sector of (3.134):

Hbos = |Πφ|2 + i(ν + σ)(Πφφ− φ†Πφ†) + (ν2 + p2)|φ2| − ν − σ , (3.144)

where we have included half of the ordering constant appearing there (the other half

will enter in the fermionic sector). This ensures Weyl ordering. We can introduce

creation operators a†, b† and annihilation operators a, b via

φ =
(ν2 + p2)−1/4

√
2

(
a+ b†

)
, Πφ =

i(ν2 + p2)1/4

√
2

(
a† − b

)
. (3.145)

The canonical commutation relations between φ and Πφ (and their Hermitian conju-

gates) imply that these satisfy [a, a†] = [b, b†] = 1, [a, b] = [a†, b] = [a, b†] = [a†, b†] =

0. Then the bosonic Hamiltonian can be written as

Hbos =
√
ν2 + p2

(
a†a+ b†b+ 1

)
+ (σ + ν)

(
b†b− a†a

)
=

1

2

√
ν2 + p2

(
{a, a†}+ {b, b†}

)
+

1

2
(σ + ν)

(
{b, b†} − {a, a†}

)
, (3.146)

where in the second line we have emphasized that Hbos is Weyl ordered. The state

annihilated by a and b has energy
√
ν2 + p2 . Acting on this with (a†)m(b†)n (with

m,n positive integers) we obtain a state with energy

Hbos(m,n) =
√
ν2 + p2 +m

(√
ν2 + p2− ν − σ

)
+ n
(√

ν2 + p2 + ν + σ
)
. (3.147)

We see that in order for the Hamiltonian to have a spectrum that is bounded from

below we need to assume
√
ν2 + p2 > |ν+σ|.20 Hence the state of minimum energy

in the bosonic sector is the one with m = n = 0.

Next we address the fermionic sector. The Hamiltonian reads

Hfer = p(λψ† + ψλ†) + (2ν + σ)ψψ† + σλλ† − ν − σ

=
(
ψ λ

) 2ν + σ p

p σ

 ψ†

λ†

− ν − σ , (3.148)

where we have kept the ordering constant that ensures Weyl ordering. We can

20Allowing for
√
ν2 + p2 = |ν + σ| yields a Hamiltonian bounded from below but introduces a

degenerate vacuum. Let us discard this case.

87



make a unitary U(2) rotation to diagonalize the above matrix. This preserves the

anti-commutation relations. The eigenvalues are

x± = ν + σ ±
√
ν2 + p2 . (3.149)

Denoting the eigenvectors u+, u−, u
†
+, u

†
−, the Hamiltonian is thus

Hfer = x+u+u
†
+ + x−u−u

†
− − ν − σ

=
x+

2
[u+, u

†
+] +

x−
2

[u−, u
†
−] , (3.150)

with {u±, u†±} = 1. The charge operator Σ takes the form

Σfer = σ
(
u+u

†
+ + u−u

†
− − 1

)
= σ [u+, u

†
+] + σ [u−, u

†
−] . (3.151)

Starting with the state |0〉 which is annihilated by both u†±, we can act with u−, u+

or u−u+. The spectrum therefore consists of four states with the following energy

and charge:

state |0〉 u−|0〉 u+|0〉 u+u−|0〉

energy −ν − σ −
√
ν2 + p2

√
ν2 + p2 ν + σ

charge −σ 0 0 σ

(3.152)

Since we assumed
√
ν2 + p2 > |ν + σ|, the state of lowest energy is u−|0〉.

We now combine the information obtained studying the bosonic and fermionic

sectors of the Hamiltonian and identify a state with minimum energy that respects

supersymmetry. Adding Hbos and Hfer, the complete Hamiltonian is

H =
√
ν2 + p2

(
a†a+ b†b+ 1

)
+ (σ + ν)

(
b†b− a†a

)
+x+u+u

†
+ + x−u−u

†
− − ν − σ . (3.153)

One can also check that the full charge operator reads

Σ = −σ
(
b†b− a†a+ u+u

†
+ + u−u

†
− − 1

)
. (3.154)

From the discussion above, the state with minimum energy is clearly

|VAC〉 ≡ |m = 0, n = 0, x−〉 , (3.155)

where m = 0, n = 0 indicates that no bosonic oscillators are excited, and by x− we
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mean that we excite one fermionic oscillator with eigenvalue x−. Its total energy is

H =
√
ν2 + p2 −

√
ν2 + p2 = 0 , (3.156)

and thus vanishes due to an exact cancellation between the bosonic and the fermionic

contributions. Since we have just one fermionic oscillator the charge is Σ = 0 , hence

the relation (H + Σ)|VAC〉 = 0 is satisfied and supersymmetry is unbroken in the

vacuum, as expected.

We conclude that the long multiplets yield a vanishing contribution to the vacuum

energy and charge:

〈Hlong〉 = 〈Σlong〉 = 0 . (3.157)

Note that this is a consequence of our choice of ordering constant, and as argued at

the end of the previous subsection this is the correct choice for a quantum mechanics

arising from a higher-dimensional theory.

If we had a theory of long multiplets only, the vacuum energy would just be zero.

However, if short multiplets are also present, this is not the case, as we now show.

Fermi multiplet

Consider the Fermi multiplet. Then the supercharge identically vanishes. The

Hamiltonian and the charge generator take the same form,

HFermi = −ΣFermi = σ
(
λλ† − 1

2

)
. (3.158)

The only two states have energy −1
2
σ and +1

2
σ. The contribution of a Fermi mul-

tiplet to the vacuum energy and charge is thus

〈HFermi〉 = −〈ΣFermi〉 = −|σ|
2
. (3.159)

Chiral multiplet

The bosonic sector of the chiral multiplet can be treated as we did for the long

multiplet, setting p = 0. The full Hamiltonian and charge operator can thus be

written as

Hchiral = |ν|
(
a†a+ b†b+ 1

)
+ (σ + ν)

(
b†b− a†a

)
+ (2ν + σ)ψψ† − ν − σ

2
, (3.160)

Σchiral = −σ
(
b†b− a†a

)
− σψψ† +

1

2
σ . (3.161)

Since p = 0, the condition for the Hamiltonian to be bounded from below becomes

|ν| > |ν + σ| . (3.162)
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In the vacuum all bosonic oscillators are zero. Then we have two possible states:

1. the state annihilated by ψ†, with H = |ν| − ν − 1
2
σ and Σ = +1

2
σ ;

2. the state with an oscillator ψ excited, with H = |ν|+ ν + 1
2
σ and Σ = −1

2
σ .

Which state has minimum energy depends on the values of ν and σ. Note that

(3.162) requires ν and σ to have opposite signs. If ν > 0, σ < 0, then (3.162)

implies −2ν < σ < 0, and the state number 1 has minimum energy H = −1
2
σ; since

H = −Σ, this state is supersymmetric, while the state 2 is non-supersymmetric.

Conversely, if ν < 0 and σ > 0, then from (3.162) we deduce 0 < σ < −2ν, hence

the state number 1 now has higher energy and the state 2 is the supersymmetric

vacuum, with H = 1
2
σ.

Thus, a chiral multiplet contributes to the vacuum energy and charge as

〈Hchiral〉 = −〈Σchiral〉 =
|σ|
2
. (3.163)

In conclusion, the analysis in supersymmetric quantum mechanics establishes that

a long multiplet yields a vanishing contribution to the vacuum energy and charge,

that a Fermi multiplet contributes as in (3.159), while a chiral multiplet contributes

as in (3.163).

3.5.4 Dimensional reduction of a 4d chiral multiplet

Consider a free four-dimensional chiral multiplet (φ, ψ, F ) on R×S3. The Lagrangian

and supersymmetry transformations can be found in [20]. The only parameter

appearing in the Lagrangian is the charge r under the background R-symmetry

gauge field. Here we will restrict to 0 < r ≤ 2.21 This range is compatible with the

inequalities mentioned in the previous subsection, ensuring that the spectrum of the

Hamiltonian is bounded from below. Expanding in appropriate spherical harmonics,

the chiral multiplet reduces to a one-dimensional theory with infinitely many fields.

These organize in one-dimensional multiplets with different values of the parameters

ν, p, σ introduced above. Some have p 6= 0 and are thus long multiplets, while some

others have p = 0 and are thus short multiplets, either chiral or Fermi.

More explicitly, we can expand the scalars in spherical harmonics Y mn
` , discussed

in appendix A. The quantum number ` is a non-negative integer. For a fixed `, the

quantum numbers m,n of the scalar harmonic Y mn
` range in − `

2
≤ m,n ≤ `

2
. So we

can write

φ =
∑
`,m,n

φ`mnY
mn
` , (3.164)

21Outside this range there are complications, see [106], for example, the cancellation previously
discussed for long multiplets would fail.
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and similarly for the auxiliary field F . The fermionic field ψα can be expanded in

spinorial harmonics.

Integrating over S3 and using the orthonormality of the spherical harmonics, the

action of a four-dimensional chiral multiplet gives rise to a one-dimensional action

for an infinite number of fields. These arrange in multiplets of supersymmetric

quantum mechanics labeled by `,m, n, and one can check that the Lagrangian of

each of these multiplets takes the form (3.131). Here we do not need to present all

details of the reduction. All we need to know is how the R-charge r and the quantum

numbers `,m, n map into the parameters σ, p, ν entering in (3.131) and characterize

each multiplet in the supersymmetric quantum mechanics. Actually, the discussion

in subsection 3.5.3 shows that for the purpose of determining the vacuum energy

we just need to know when a multiplet is shortened (namely when p = 0), if it is a

chiral or a Fermi multiplet, and what is the value of its charge σ.

By comparing the four-dimensional algebra (3.126) with (3.128), we deduce that

we must identify (restoring the S3 radius r3) Σ = 1
r3

(R + 2J3
l ), and therefore

σ =
1

r3

(r + 2m) . (3.165)

Moreover, reducing the four-dimensional Lagrangian to one dimension, one finds22

p2 =
1

r2
3

(`− 2m)(`+ 2 + 2m) ,

ν = − 1

r3

(2m+ 1) , (3.166)

hence the shortening condition p = 0 is satisfied if and only if m = `/2 or m =

−`/2− 1. In the former case a chiral multiplet is obtained with charge σ = 1
r3

(` +

r). In the latter case a Fermi multiplet is obtained with charge σ = − 1
r3

(` + 2 −
r). Recalling (3.159), (3.163) we conclude that the respective contribution to the

vacuum energy is:

chiral
(
m = `

2

)
: 〈Hchiral〉 = 1

2r3
(`+ r) ,

Fermi (m = − `
2
− 1) : 〈HFermi〉 = − 1

2r3
(`+ 2− r) .

(3.167)

The expectation value of the Hamiltonian is obtained by adding up the contributions

22More generally, one could easily restore the dependence on the parameter κ. This affects only
ν but not p2 and σ. In the notation of section 3.2, one finds that the parameter ν is related to the
parameters in the four-dimensional Lagrangian as r3ν = −2m− 3

2r − κ( 3
2r − ε).
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of all chiral and Fermi multiplets:

〈Hsusy〉 =
∑
chiral

〈Hchiral〉+
∑
Fermi

〈HFermi〉

=
∑
`≥0

1

2r3

(`+ 1)(`+ r)−
∑
`≥0

1

2r3

(`+ 1)(`+ 2− r) , (3.168)

where the (`+ 1) factor comes from the degeneracy associated with SU(2)r.

To regularize the sum, we dress the terms in the sum with some decreasing weights.

To do this in a supersymmetric fashion, we can decompose H as a sum of Hamilto-

nians acting on the Hilbert space of a single free 1d multiplet

Hsusy =
∑
`,m,n

H`,m,n , (3.169)

and regularize the sum with a function of the H`,m,n operators, for instance

Hsusy =
∑
`,m,n

H`,m,ne−2 t r3|H`,m,n| , (3.170)

with t a positive number. This yields

〈Hsusy〉 =
∑
`≥0

1

2r3

(`+1)(`+r)e−t(`+r)−
∑
`≥0

1

2r3

(`+1)(`+2−r)e−t(`+2−r) . (3.171)

Taking the small t limit and dropping the diverging term in t−2,23 we obtain a

regularized result for the vacuum energy,

Esusy = 〈Hsusy〉 =
4

27r3

(a + 3c) , (3.172)

in agreement with the result (3.51) obtain above using the Hurwitz zeta function.

One could consider a supersymmetric regularization with a different function

f(tH`,m,n) of the H`,m,n operators. It can be shown, using an Euler-MacLaurin

expansion that for all smooth functions f such that f(0) = 1 (and such that the

series converges), one obtains the same result for the finite piece in the small t ex-

pansion (see appendix C of [3] for a related application). This is in agreement with

the fact that the supersymmetric Casimir energy is unambiguous.

It is possible to contrast our results with several previous works in which localiza-

tion techniques on S1×S3 were utilized. Comparing with [26] (see also [97] and [107]

where similar localization techniques are used in other topologies), one finds agree-

ment regarding the vacuum energy. However, as was discussed in the appendix

of [3], the regularization scheme of [26] in fact does not preserve supersymmetry, as

23The diverging term can be associated to the four-dimensional Einstein-Hilbert counterterm.
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it violates certain SUSY Ward identities in the small circle limit.

3.6 Conclusions

In this chapter, we studied the supersymmetric Casimir energy of N = 1 theories

on the background R × S3, as introduced in [26], in the simplest case where the

partition function only depends on one fugacity.

Firstly, by revisiting the localization computation in [26], we have verified explic-

itly that its value does not depend on the choice of the parameter κ, characterizing

the background fields A and V , as expected. Secondly, we reproduced it by evalu-

ating the expectation value of the BPS Hamiltonian that appears in the definition

of the supersymmetric index, as anticipated in [108]. Our computations also clarify

the relation of the supersymmetric Casimir energy with the Casimir energy of free

conformal fields theories, demonstrating that these two quantities arise as the expec-

tation values of two different Hamiltonians, evaluated using the same zeta function

regularization method.

We then showed in section 3.5, that in fact the supersymmetric Casimir energy

is free of ambiguities, provided the chosen regularization scheme is compatible with

supersymmetry. We considered in this chapter only the case R× S3 (and S1 × S3)

where the three-sphere is round. In fact, [3] further included a proof that the

supersymmetric Casimir energy can be computed unambiguously on a deformed

three-sphere. In this case, the explicit spherical harmonics and eigenvalues are not

available, however, due to the shortening condition analogous to (3.157), the full

reduction on the three-sphere is not needed. The result obtained in this generalized

setting is shown to be consistent with the computations of this chapter on the round

sphere.

In the next chapter we address the issue of the holographic dual gravity description

of the theories considered above on the round R× S3.
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Chapter 4

Supersymmetric solutions of

five-dimensional minimal gauged

supergravity

In this chapter, we study supersymmetric solutions of five-dimensional minimal

gauged supergravity. We begin in section 4.1 by reviewing the formalism of [32],

where all supersymmetric solutions of this theory were classified. We will focus here

on the timelike class. Next, in section 4.2, we start from an ansatz with an ortho-

toric Kähler base metric, finding a five-dimensional AlAdS5 solution comprising five

non-trivial parameters. When two of the parameters are set to zero, the solution

is AAdS5 and is related to that of [76] by a change of coordinates. For specific

values of the parameters of [76] this change of coordinates becomes singular. We

interpret this in section 4.2.5 in terms of a scaling limit of the orthotoric ansatz,

leading to certain non-orthotoric Kähler metrics previously employed in the search

for supergravity solutions. This proves that our orthotoric ansatz, together with its

scaling limits encompasses all known supersymmetric solutions to minimal gauged

supergravity in the timelike class.

In section 4.3 we focus on certain non-trivial geometries with no horizon contained

in the solution of [76], called “topological solitons”. These are a priori natural can-

didates to describe pure states of an N = 1 SCFTs. We investigate whether among

these solutions we can match holographically the vacuum state of an N = 1 SCFT

on the cylinder R×S3, and in particular the non-vanishing supersymmetric vacuum

expectation values of the energy and R-charge, as presented in chapter 3. Some

basic requirements following from the supersymmetry algebra lead us to consider

a 1/2 BPS topological soliton presented in [109]. Although a direct comparison of

the charges shows that this fails to describe the vacuum state of the dual SCFT,

in the process we clarify some aspects of these topological solitons. In section 4.4

we make some concluding remarks on this chapter. Appendix D includes a proof of

the uniqueness of a supersymmetric solution of minimal gauged supergravity with
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SO(4) symmetry.

This chapter is based on [4], and we work in (−+ + + +) signature.

4.1 Supersymmetric solutions from Kähler bases

In this section we briefly review the conditions for bosonic supersymmetric solu-

tions to five-dimensional minimal gauged supergravity found in [32], focusing on the

timelike class. The bosonic action of minimal gauged supergravity is

S =
1

2κ2
5

∫ [
(R5 + 12g2) ∗51− 1

2
F ∧ ∗5F +

1

3
√

3
A ∧ F ∧ F

]
, (4.1)

where R5 is the Ricci scalar of the five-dimensional metric gµν , A is the graviphoton

U(1) gauge field, F = dA is its field strength, g > 0 parametrizes the cosmological

constant, and G5 is Newton’s constant. The Einstein and Maxwell equations of

motion are

R(5)
µν + 4g2gµν −

1

2
FµκFν

κ +
1

12
gµνFκλF

κλ = 0 ,

d ∗5 F −
1√
3
F ∧ F = 0 . (4.2)

A bosonic background is supersymmetric if there is a non-zero Dirac spinor ε

satisfying [
∇(5)
µ −

i

8
√

3

(
Γµ

νκ − 4δνµΓκ
)
Fνκ −

g

2

(
Γµ +

√
3 iAµ

)]
ε = 0 , (4.3)

where the gamma-matrices obey the Clifford algebra {Γµ,Γν} = 2gµν . By assuming

the existence of such a Killing spinor ε, the authors of [32] showed that all such

solutions admit a Killing vector V constructed as a bilinear in ε that is either timelike

or null. Here we will discuss the timelike class.

By choosing coordinates in which V = ∂/∂t, the five-dimensional metric can be

put in the form

ds2
5 = −f 2 (dt+ ω)2 + f−1 ds2

B , (4.4)

where ds2
B denotes the metric on a four-dimensional base B transverse to V , while

f and ω are a positive function and a one-form on B, respectively. Supersymmetry

requires B to be Kähler. This means that B admits a real non-degenerate two-

form X1 that is closed, i.e. dX1 = 0, and such that X1
m
n is an integrable complex

structure (m,n denote curved indices on B, and we raise the index of X1
mn with

the inverse metric on B). It will be useful to recall that a four-dimensional Kähler
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manifold also admits a complex two-form Ω of type (2, 0) satisfying

∇mΩnp + iPmΩnp = 0 , (4.5)

where P is a potential for the Ricci form, i.e. R = dP . The Ricci form is a closed

two-form defined as Rmn = 1
2
Rmnpq(X

1)pq, where Rmnpq is the Riemann tensor on

B. Moreover, splitting Ω = X2 + iX3, the triple of real two-forms XI , I = 1, 2, 3,

satisfies the quaternion algebra:

XI
m
pXJ

p
n = −δIJδmn + εIJKXK

m
n . (4.6)

We choose the orientation on B by fixing the volume form as volB = −1
2
X1 ∧ X1.

It follows that the XI are a basis of anti-self-dual forms on B, i.e. ∗BXI = −XI .

The geometry of the Kähler base B determines the whole solution, namely f and

ω in the five-dimensional metric (4.4), and the graviphoton field strength F . The

function f is fixed by supersymmetry as

f = −24g2

R
, (4.7)

where R is the Ricci scalar of ds2
B; this is required to be everywhere non-zero.

The expression for the Maxwell field strength is

F = −
√

3 d
[
f(dt+ ω) +

1

3g
P
]
. (4.8)

Note that the Killing vector V also preserves F , hence it is a symmetry of the

solution.

It remains to compute the one-form ω. This is done by solving the equation

dω = f−1(G+ +G−) , (4.9)

where the two-forms G±, satisfying the (anti)-self-duality relations ∗BG± = ±G±,

are determined as follows. Supersymmetry states that G+ be given as

G+ = − 1

2g

(
R− R

4
X1
)
. (4.10)

Expanding G− in the basis of anti-self-dual two-forms as1

G− =
1

2gR
(λ1X1 + λ2X2 + λ3X3) , (4.11)

1Our λI are rescaled by a factor of 2gR compared to those in [32].
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one finds that the Maxwell equation fixes λ1 as

λ1 =
1

2
∇2R +

2

3
RmnR

mn − 1

3
R2 , (4.12)

where ∇2 and Rmn are the Laplacian and Ricci tensor on B, respectively. The

remaining two components, λ2, λ3, only have to be compatible with the requirement

that the right hand side of (4.9) be closed,

d
[
f−1(G+ +G−)

]
= 0 . (4.13)

Inserting (4.7), (4.10), and (4.12) into (4.13) and taking the Hodge dual, one arrives

at the equation

Im
[

Ωm
n(∂n + iPn)(λ2 + iλ3)

]
+ Ξm = 0 , (4.14)

where

Ξm = Rmn∂
nR + ∂m

(
1

2
∇2R +

2

3
RpqR

pq − 1

3
R2

)
. (4.15)

Acting on (4.14) with Πp
qX3

q
m, where Π = 1

2
(1 + iX1) is the projector on the (1, 0)

part, one obtains the equivalent form

D(1,0)(λ2 + iλ3) + Θ(1,0) = 0 , (4.16)

where D
(1,0)
m = Πm

n(∇n + iPn) is the holomorphic Kähler covariant derivative, and

we defined Θ
(1,0)
m = Πm

nX3
n
pΞp. Equation (4.16) determines λ2 + iλ3, and hence

G−, up to an anti-holomorphic function. This concludes the analysis of the timelike

case as presented in [32].

It was first pointed out in [79] that for equation (4.13) to admit a solution, a

constraint on the Kähler geometry must be satisfied. Hence not all four-dimensional

Kähler bases give rise to supersymmetric solutions. While in [79] this was shown for

a specific family of Kähler bases, here we provide a general formulation as it first

appeared in ref. [4]. Taking the divergence of (4.14) and using (4.5) we find

∇mΞm = 0 , (4.17)

that is

∇2

(
1

2
∇2R +

2

3
RpqR

pq − 1

3
R2

)
+∇m(Rmn∂

nR) = 0 . (4.18)

We thus obtain a rather complicated sixth-order equation constraining the Kähler

metric.2 We observe that the term (∇2)2R+ 2∇m(Rmn∂
nR) corresponds to the real

part of the Lichnerowicz operator acting on R, which vanishes for extremal Kähler

2It can also be derived starting from the observation that since D(1,0) is a good differential,

namely (D(1,0)
)2

= 0, equation (4.16) has the integrability condition D(1,0)Θ(1,0) = 0. The latter
is an a priori complex equation, however one finds that the real part is automatically satisfied while
the imaginary part is equivalent to (4.18).
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metrics (see e.g. [110, sect.4.1]). Thus in this case (4.18) reduces to∇2 (2RpqR
pq −R2) =

0. If the Kähler metric has constant Ricci scalar, the constraint simplifies further

to ∇2(RpqR
pq) = 0. Finally, if the Kähler metric is homogeneous, or Einstein, then

Ξ = 0 and the constraint is trivially satisfied.

To summarize, the five-dimensional metric and the gauge field strength are deter-

mined by the four-dimensional Kähler geometry up to an anti-holomorphic function.

The Kähler metric is constrained by the sixth-order equation (4.18). Moreover, one

needs R 6= 0. The conditions spelled out above are necessary and sufficient for ob-

taining a supersymmetric solution of the timelike class. The solutions preserve at

least 1/4 of the supersymmetry, namely two real supercharges.

4.2 Orthotoric Kähler basis

4.2.1 The ansatz

In this section we construct supersymmetric solutions following the procedure de-

scribed above. We start from a very general ansatz for the four-dimensional base,

given by a class of local Kähler metrics known as orthotoric. These were introduced

in ref. [111], to which we refer for an account of their mathematical properties.3

The orthotoric Kähler metric with toric Killing vectors ∂/∂Φ, ∂/∂Ψ reads

g2 ds2
B =

η − ξ
F(ξ)

dξ2 +
F(ξ)

η − ξ
(dΦ + ηdΨ)2 +

η − ξ
G(η)

dη2 +
G(η)

η − ξ
(dΦ + ξdΨ)2 , (4.19)

where F(ξ) and G(η) are a priori arbitrary functions. The Kähler form has a uni-

versal expression, independent of F(ξ), G(η):

X1 =
1

g2
d [(η + ξ)dΦ + ηξ dΨ] . (4.20)

The term orthotoric means that the momentum maps η + ξ and ηξ for the Hamil-

tonian Killing vector fields ∂/∂Φ and ∂/∂Ψ, respectively, have the property that

the one-forms dξ, dη are orthogonal. As a consequence, the Kähler metric does not

contain a dηdξ term.

3This ansatz was also considered in [112], however only the case F(x) = −G(x), where these
are cubic polynomials, was discussed there. In this case the metric (4.19) is equivalent to the
Bergmann metric on SU(2, 1)/S(U(2)× U(1)). Orthotoric metrics also appear in Sasaki-Einstein
geometry: as shown in [113], the Kähler-Einstein bases of Lp,q,r Sasaki-Einstein manifolds [114]
are of this type.
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It is convenient to introduce an orthonormal frame

E1 =
1

g

√
η − ξ
F(ξ)

dξ , E2 =
1

g

√
F(ξ)

η − ξ
(dΦ + ηdΨ) ,

E3 =
1

g

√
η − ξ
G(η)

dη , E4 =
1

g

√
G(η)

η − ξ
(dΦ + ξdΨ) , (4.21)

with volume form volB = −E1∧E2∧E3∧E4. Then the Kähler form can be written

as

X1 = E1 ∧ E2 + E3 ∧ E4 . (4.22)

For the complex two-form Ω we can take

Ω = X2 + iX3 = (E1 − iE2) ∧ (E3 − iE4) . (4.23)

This satisfies the properties (4.5), (4.6), with the Ricci form potential given by

P =
F ′(ξ)(dΦ + ηdΨ) + G ′(η)(dΦ + ξdΨ)

2(ξ − η)
. (4.24)

Other formulae that we will need are the Ricci scalar

R = g2 F ′′(ξ) + G ′′(η)

ξ − η
, (4.25)

and its Laplacian

∇2R =
g2

η − ξ
[∂ξ(F ∂ξR) + ∂η(G ∂ηR)] . (4.26)

4.2.2 The solution

To construct the solution we insert our orthotoric ansatz into the supersymmetry

equations of section 4.1. Equation (4.7) gives for the function f ,

f =
24(η − ξ)

F ′′(ξ) + G ′′(η)
. (4.27)

In order to solve eq. (4.9) for ω, we need to first construct G+ and G−. From

eq. (4.10) we obtain

G+ =
1

8g
(∂ξH− ∂ηH) (E1 ∧ E2 − E3 ∧ E4) , (4.28)

where we introduced the useful combination

H(η, ξ) = g2 F ′(ξ) + G ′(η)

η − ξ
. (4.29)
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We recall thatG− = 1
2gR

∑3
I=1 λ

IXI , and we have to compute the functions λ1, λ2, λ3.

Equation (4.12) gives

λ1 =
1

2
∇2R− 2

3
∂ξH ∂ηH , (4.30)

where ∇2R was expressed in terms of orthotoric data above. In order to solve for

λ2, λ3, we have to analyze the constraint (4.18) on the Kähler metric. Plugging our

ansatz in, we obtain the equation

∂ξ
[
F ∂ξH ∂ξ(∂ξH + ∂ηH) + F ∂ξ

(
∇2R− 4

3
∂ξH ∂ηH

)]
+ ∂η

[
G ∂ηH ∂η(∂ξH + ∂ηH) + G ∂η

(
∇2R− 4

3
∂ξH ∂ηH

)]
= 0 . (4.31)

This is a complicated sixth-order equation for the two functions F(ξ) and G(η).

In ref. [4] the general solution to equation (4.31) was not found, however, a cubic

polynomial solution was presented,

G(η) = g4(η − g1)(η − g2)(η − g3) ,

F(ξ) = −G(ξ) + f1(ξ + f0)3 , (4.32)

comprising six arbitrary4 parameters g1, . . . , g4, f0, f1. We thus continue assuming

that F and G take the form (4.32). We can then solve eq. (4.14) for λ2, λ3. Assuming

a dependence on η, ξ only, the solution is

λ2 + iλ3 = i g4 F ′′′ + G ′′′

(η − ξ)3

√
F(ξ)G(η) + g4 c2 + ic3√

F(ξ)G(η)
, (4.33)

with c2, c3 real integration constants. One can promote c2 + ic3 to an arbitrary anti-

holomorphic function, however we will not discuss such generalization here (see [79]

for an example where this has been done explicitly).

We now have all the ingredients to solve eq. (4.9) and determine ω. The solution

is

ω =
F ′′′ + G ′′′

48g(η − ξ)2

{ [
F(ξ) + (η − ξ)

(
1
2
F ′(ξ)− 1

4
F ′′′(ξ)(f0 + ξ)2

)]
(dΦ + ηdΨ)

+G(η)(dΦ + ξdΨ)
}
− F

′′′G ′′′

288g
[(η + ξ)dΦ + ηξ dΨ]

− c2

48g

(
I1
ξdξ

F(ξ)
+ I2

ηdη

G(η)
+ ΦdΨ

)
− c3

48g
[(I1 − I2)dΦ + (I3 − I4)dΨ] + dX , (4.34)

4This includes the case where g4 → 0 and one or more roots diverge, so that the cubic G
degenerates to a polynomial of lower degree. Similarly for F .
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where

I1 =

∫
dη

G(η)
, I2 =

∫
dξ

F(ξ)
, I3 =

∫
η dη

G(η)
, I4 =

∫
ξ dξ

F(ξ)
. (4.35)

Moreover, dX is an arbitrary locally exact one-form. In the five-dimensional metric

this can be reabsorbed by a change of the t coordinate. For F and G as in (4.32),

the integrals I1, . . . , I4 can be expressed in terms of the roots of the polynomials.

We have:

I1 =
log(η − g1)

g4(g1 − g2)(g1 − g3)
+cycl(1, 2, 3) , I3 =

g1 log(η − g1)

g4(g1 − g2)(g1 − g3)
+cycl(1, 2, 3) ,

(4.36)

and similarly for I2 and I4 (although the roots of F in (4.32) expressed in terms of

the parameters g1, . . . , g4, f0, f1 are less simple). Here, cycl(1, 2, 3) denotes cyclic

permutations of the roots.

Note that if c2 6= 0 then ω explicitly depends on one of the angular coordinates

Φ,Ψ, hence the U(1) × U(1) symmetry of the orthotoric base is broken to a single

U(1) in the five-dimensional metric.

To summarize, we started from the orthotoric ansatz (4.19) for the four-dimensional

Kähler metric, studied the sixth-order constraint (4.18) and found a solution in terms

of cubic polynomials F , G containing six arbitrary parameters, cf. (4.32). We also

provided explicit expressions for P , f and ω (cf. (4.24), (4.27), (4.34)), with the

solution for ω containing the additional parameters c2, c3. Inserting these expres-

sions in the metric (4.4) and Maxwell field (4.8), we thus obtain a supersymmetric

solution to minimal gauged supergravity controlled by eight parameters. We now

show that three of the six parameters in the polynomials are actually trivial in the

five-dimensional solution.

4.2.3 Triviality of three parameters

As a first thing, we observe that one is always free to rescale the four-dimensional

Kähler base by a constant factor. This is because the spinor solving the super-

symmetry equation (4.3) is defined up to a multiplicative constant, and the spinor

bilinears inherit such rescaling freedom. This leads to the transformation

XI → εXI , f → ε f , t→ ε−1t ,

ds2
B → ε ds2

B , P → P , ω → ε−1ω , (4.37)

where ε is a non-zero constant. Clearly this leaves the five-dimensional metric (4.4)

and the gauge field (4.8) invariant.

Let us now consider a supersymmetric solution whose Kähler base metric ds2
B is

in the orthotoric form (4.19), with some given functions F(ξ) and G(η). Then we
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can use the symmetry above to rescale these two functions. Indeed after performing

the transformation we have (ds2
B)old = ε (ds2

B)new, and the new Kähler metric is

again in orthotoric form, with the redefinitions

Fold = ε−1Fnew , Gold = ε−1Gnew , Φold = εΦnew , Ψold = εΨnew .

(4.38)

Hence the overall scale of F and G is irrelevant as far as the five-dimensional solution

is concerned. A slightly more complicated transformation that we can perform is

ξold = ε2ξ
new + ε3 , ηold = ε2η

new + ε3 ,

Ψold = ε1ε2Ψnew , Φold = ε1(ε2
2Φnew − ε2ε3Ψnew) ,

Fold(ξold) = ε−1
1 Fnew(ξnew) , Gold(ηold) = ε−1

1 Gnew(ηnew) . (4.39)

with arbitrary constants ε1 6= 0, ε2 6= 0 and ε3, such that ε1ε
3
2 = ε. It is easy to

see that the new metric (ds2
B)new is again orthotoric, though with different cubic

functions F and G compared to the old ones.

We conclude that a supersymmetric solution with orthotoric Kähler base is locally

equivalent to another orthotoric solution, with functions

Fnew(ξ) = ε1Fold(ε2ξ + ε3) , Gnew(η) = ε1Gold(ε2η + ε3) . (4.40)

Using this freedom, we can argue that three of the six parameters in our orthotoric

solution are trivial. In the next section we will show that the remaining ones are

not trivial by relating our solution with c2 = c3 = 0 to the solution of [76].

4.2.4 Relation to [76]

The authors of [76] provide a four-parameter family of AAdS solutions to minimal

five-dimensional gauged supergravity. The generic solution preserves U(1)×U(1)×R
symmetry (where R is the time direction) and is non-supersymmetric. By fixing one

of the parameters, one obtains a family of supersymmetric solutions, controlled by

the three remaining parameters a, b,m. This includes the most general supersym-

metric black hole free of closed timelike curves (CTC’s) known in minimal gauged

supergravity, as well as a family of topological solitons. Generically, the super-

symmetric solutions are 1/4 BPS in the five-dimensional theory, namely they pre-

serve two real supercharges. For b = a or b = −a, the symmetry is enhanced to

SU(2)× U(1)× R.

We find that upon a change of coordinates the supersymmetric solution of [76]

fits in our orthotoric solution, with polynomial functions F , G of the type dis-

cussed above. In detail, the five-dimensional metric and gauge field strength of [76]

match (4.4) and (4.8), with the data given in the previous section and c2 = c3 = 0.
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The change of coordinates is

tCCLP = t

θCCLP =
1

2
arccos η

r2
CCLP =

1

2
(a2 − b2)m̃ ξ +

1

g
[(a+ b)m̃+ a+ b+ abg] +

1

2
(a+ b)2m̃ ,

φCCLP = g t− 4
1− a2g2

(a2 − b2)g2m̃
(Φ−Ψ) ,

ψCCLP = g t− 4
1− b2g2

(a2 − b2)g2m̃
(Φ + Ψ) , (4.41)

where “CCLP” labels the coordinates of [76]. Here, we found convenient to trade

m for

m̃ =
mg

(a+ b)(1 + ag)(1 + bg)(1 + ag + bg)
− 1 , (4.42)

which is defined so that the black hole solution of [76] corresponds to m̃ = 0. The

cubic polynomials F(ξ) and G(η) read

G(η) = − 4

(a2 − b2)g2m̃
(1− η2)

[
(1− a2g2)(1 + η) + (1− b2g2)(1− η)

]
,

F(ξ) = −G(ξ)− 4
1 + m̃

m̃

(
2 + ag + bg

(a− b)g
+ ξ

)3

, (4.43)

and are clearly of the form (4.32).5 The function X in (4.34) is X = − 2Ψ
gm̃

. The

Killing vector arising as a bilinear of the spinor ε solving the supersymmetry equa-

tion (4.3) is

V =
∂

∂t
=

∂

∂tCCLP

+ g
∂

∂φCCLP

+ g
∂

∂ψCCLP

. (4.44)

We conclude that for c2 = c3 = 0, the family of supersymmetric solutions we have

constructed is (at least locally) equivalent to the supersymmetric solutions of [76].

When either c2 or c3 (or both) are switched on, the boundary metric is no more

conformally flat, hence the solution becomes AlAdS5 and is not diffeomorphic to

the c2 = c3 = 0 case. Thus, as presented in [4], this is thus a new two-parameter

AlAdS5 deformation of the AAdS5 solutions of [76]. Choosing c2 6= 0, c3 = 0 and X
in (4.34) as X = − 2Ψ

gm̃
+ c2

48g
I1I4, the boundary metric appears to be regular and of

type Petrov III like that of [32,78].6 Its explicit expression in the coordinates of [76]

is (below we drop the label “CCLP” on the coordinates θ, φ, and ψ):

ds2
bdry = ds2

bdry,CCLP + ds2
c2
, (4.45)

5Note that the present orthotoric form of the solution in [76], which is adapted to supersym-
metry, does not use the same coordinates of the Plebański-Demiański-like form appearing in [115].

6See [116] for a discussion of the Petrov type of supersymmetric boundaries.
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where the undeformed boundary metric of [76], obtained sending gr →∞, is

ds2
bdry,CCLP = − ∆θ

ΞaΞb

dt2CCLP +
1

g2

(
dθ2

∆θ

+
sin2 θ

Ξa

dφ2 +
cos2 θ

Ξb

dψ2

)
, (4.46)

with Ξa = 1− a2g2, Ξb = 1− b2g2 and

∆θ = 1− a2g2 cos2 θ − b2g2 sin2 θ , (4.47)

while the deformation is linear in c2 and reads

ds2
c2

= c2
g2m̃2 (a2 − b2)

2

1536Ξ3
aΞ

3
b

(
gtCCLP(Ξa + Ξb)− Ξbφ− Ξaψ

)
×
(
− g dtCCLP (Ξa − Ξb)− Ξbdφ+ Ξadψ

)
×
(
−(Ξa cos2 θ + Ξb sin2 θ)g dtCCLP + Ξa cos2 θdψ + Ξb sin2 θdφ

)
. (4.48)

It would be interesting to study further the regularity properties of these deforma-

tions and see if they generalize the similar solutions of [32,78,79].

Note that both the change of coordinates (4.41) and the polynomials (4.43) are

singular in the limits m̃ → 0 or b → a, while they remain finite when b → −a.

(When we take b → ±a, it is understood that we keep m, and not m̃, fixed). We

clarify the singular limits in the next section.

4.2.5 A scaling limit

In the following we show that a simple scaling limit of the orthotoric metric yields

certain non-orthotoric Kähler metrics, that have previously been employed to con-

struct supersymmetric solutions. We recover on the one hand the base metric con-

sidered in [79], and on the other hand an SU(2)×U(1) invariant Kähler metric. This

proves that our orthotoric ansatz captures all known supersymmetric solutions to

minimal five-dimensional gauged supergravity belonging to the timelike class. The

procedure will also clarify the singular limits pointed out at the end of the previous

subsection.

We start by redefining three of the four orthotoric coordinates {η, ξ,Φ,Ψ} as

Φ = ε φ , Ψ = ε ψ , ξ = −ε−1 ρ , (4.49)

where ε is a parameter that we will send to zero. For the metric to be well-behaved

in the limit, we also assume that the functions F , G satisfy

G(η) = ε−1G̃(η) +O(1) , F(ξ) = ε−3F̃(ρ) +O(ε−2) , (4.50)

where G̃(η), F̃(ρ) are independent of ε and thus remain finite in the limit. Plugging
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these in the orthotoric metric (4.19) and sending ε→ 0 we obtain

g2ds2
B = g2 lim

ε→0
ds2

ortho =
ρ

F̃(ρ)
dρ2 +

F̃(ρ)

ρ
(dφ+ η dψ)2 + ρ

(
dη2

G̃(η)
+ G̃(η)dψ2

)
.

(4.51)

This is a Kähler metric of Calabi type (see e.g. [111]), with associated Kähler form

X1 = − 1

g2
d [ρ(dφ+ ηdψ)] . (4.52)

At this stage the functions F̃(ρ) and G̃(η) are arbitrary. Of course, for (4.51) to

be the base of a supersymmetric solution we still need to impose on F̃(ρ), G̃(η) the

equation following from the constraint (4.18).

We next consider two subcases: in the former we fix F̃ and recover the metric

studied in [79], while in the latter we fix G̃ and obtain an SU(2) × U(1) invariant

metric.

Case 1. We take F̃(ρ) = 4ρ3+ρ2 and subsequently redefine ρ = 1
4

sinh2(gσ). Then

(4.51) becomes

ds2
B = dσ2 +

1

4g2
sinh2(gσ)

(
dη2

G̃(η)
+ G̃(η)dψ2 + cosh2(gσ)(dφ+ ηdψ)2

)
, (4.53)

which is precisely the metric appearing in eq. (7.8) of [79] (upon identifying η = x

and G̃(η) = H(x)). In this case our equation (4.18) becomes

(
G̃2 G̃ ′′′′

)′′
= 0 , (4.54)

that coincides with the constraint found in [79]. As discussed in [79], this Kähler

base metric supports the most general supersymmetric black hole solution free of

CTC’s that is known within minimal five-dimensional gauged supergravity. This is

obtained from the supersymmetric solutions of [76] by setting m̃ = 0. In fact, the

limit m̃ → 0 in the map (4.41), (4.43) is an example of the present ε → 0 limit,

where the resulting G̃(η) is a cubic polynomial [77, 79].7 Particular non-polynomial

solutions to eq. (4.54) were found in [79], however in the same paper these were

shown to yield unacceptable singularities in the five-dimensional metric.

7This can be seen starting from (4.41), (4.43) and redefining m̃ = − 8α2

(a2−b2)ε and r2 = r2
0 +4α2ρ,

where we are denoting α2 = r2
0 + (1+ag+bg)2

g2 and r2
0 = a+b+abg

g . It follows that ξ = ε−1ρ + O(1).

Then implementing the scaling limit described above we get F̃(ρ) = 4ρ3 + ρ2 and G̃(η) = 1
2 (1 −

η2)
[
A2

1 +A2
2 + (A2

1 −A2
2)η
]

with A2
1 = 1−a2g2

g2α2 and A2
2 = 1−b2g2

g2α2 . This makes contact with the

description of the supersymmetric black holes of [76] given in [77,79].
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Case 2. If instead we take G̃(η) = 1 − η2 and redefine η = cos θ, then the metric

(4.51) becomes

g2 ds2
B =

ρ

F̃(ρ)
dρ2 +

F̃(ρ)

ρ
(dφ+ cos θ dψ)2 + ρ

(
dθ2 + sin2 θdψ2

)
, (4.55)

with Kähler form

X1 = − 1

g2
d [ρ(dφ+ cos θdψ)] . (4.56)

This has enhanced SU(2)×U(1) symmetry compared to the U(1)×U(1) invariant

orthotoric metric. It is in fact the most general Kähler metric with such symmetry

and is equivalent, by a simple change of variable, to the metric ansatz employed

in [72] to construct the first supersymmetric AAdS black hole free of CTC’s. The

constraint (4.18) becomes a sixth-order equation for F̃(ρ). This is explicitly solved

if F̃(ρ) satisfies the fifth-order equation

16(F̃ ′)2 + 4ρ2
(

6F̃ ′′ + (F̃ ′′)2 − 2ρF̃ (3)
)

+ 2ρF̃ ′
(
−24− 4F̃ ′′ − 4ρF̃ (3) + 3ρ2F̃ (4)

)
−3F̃

(
−16 + 8F̃ ′′ − 8ρF̃ (3) + 4ρ2F̃ (4) − ρ3F̃ (5)

)
= 0 . (4.57)

Upon a change of variable, the latter is equivalent to the sixth-order equation pre-

sented in [72, eq. (4.23)]. It was proved there that a solution completely specifies

an SU(2)×U(1) invariant five-dimensional metric and graviphoton. We find that a

simple solution to (4.57) is provided by a cubic polynomial

F̃(ρ) = f0 + f1ρ+ f2ρ
2 + f3ρ

3 , such that f 2
1 + 3f0(1− f2) = 0 . (4.58)

Supersymmetric AAdS solutions with SU(2)×U(1) symmetry were also found in [75]

and further discussed in [109]. It is easy to check that after scaling away a trivial

parameter, the five-dimensional solution determined by (4.58) in fact reproduces8

the two-parameter “case B” solution given in [109, sect. 3.4]. In turn, the latter

includes the black hole of [72], and a family of topological solitons for particular

values of the parameters.

The special case f1 = 0, f2 = 1 yields the most general Kähler-Einstein metric

with SU(2) × U(1) isometry; this has curvature R = −6g2f3 and is diffeomorphic

to the Bergmann metric only for f0 = 0. The corresponding SU(2)×U(1) invariant

five-dimensional solution is “Lorentzian Sasaki-Einstein”: for f0 = 0 this is just

AdS5, while for f0 6= 0 it features a curvature singularity at ρ = 0.

In [68], a different solution of equation (4.57) was put forward, leading to a smooth

AlAdS five-dimensional metric. The non-conformally flat boundary is given by a

squashed S3 × R, where the squashing is along the Hopf fibre and thus preserves

8In the case the charges are set equal, so that the two vector multiplets of the U(1)3 gauged
theory can be truncated away and the solution exists within minimal gauged supergravity.

106



Orthotoric base,
eqn. (4.19)

Kähler metric
of [79]

SU(2) × U(1)
invariant

Solution of [76], generic a, b,m

b → −a :
Case A of [109]

Black hole of [76]

b → a :
Black hole of [72]

Case B of [109]

includes black
hole of [72]

scaling

limit 1

scaling

limit 2

0 ← m̃ b → a

Figure 4.1: Kähler base metrics (above) and corresponding known AAdS solutions
(below), with relevant references.

SU(2)× U(1) symmetry.

A particular example of this ε → 0 limit is given by the b → a limit in the

map (4.41), (4.43) relating the solution of [76] and the one based on our orthotoric

ansatz.9 In fact, taking b = a in the solutions of [76] yields precisely the solutions

presented in [109, sect. 3.4].

Note that since the black hole of [72] is obtained from the general solution of [76]

by taking m̃ = 0 and b = a, it belongs both to our cases 1 and 2.

In figure 4.1 we summarise the relation between different Kähler metrics and the

corresponding AAdS solutions in five dimensions.

4.3 Topological solitons

In this section we focus on a sub-family of the solution of [76], known as “topo-

logical solitons” with non-trivial geometry but no horizon. A priori, these may be

considered as candidate gravity dual to pure states of SCFTs defined on R × S3.

In section 4.3.1 we consider the non-vanishing vacuum expectation values of the

energy and R-charge of such theories, and we look for a possible gravity dual. The

constraints from the superalgebra naturally lead us to consider a 1/2 BPS topo-

logical soliton, however a direct comparison of the charges with the SCFT vacuum

expectation values shows that these do not match. In section 4.3.2 we argue that in

the dual SCFT certain background R-symmetry field must be turned on, implying

a constraint on the R-charges and suggesting that the state dual to the topological

soliton is different from the vacuum.

9This can be seen starting from (4.41), (4.43), redefining b = a + 8(1 − a2g2)
[

g3m
(1+2ag)(1+ag)2 −

2ag2
]−1

ε after having re-expressed m̃ as in (4.42), and implementing the scaling limit. This gives

G̃(η) = 1− η2 and a cubic polynomial F̃(ρ) satisfying (4.58).
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4.3.1 Comparison with the supersymmetric Casimir energy

In this section we assess the possible relevance of the supergravity solutions discussed

above to account for the vacuum state of dual four-dimensional N = 1 SCFTs

defined on the cylinder R×S3, discussed in chapter 3. We consider the conformally

flat background with the round S3. Moreover, the background includes a non-

dynamical flat gauge field Acs coupling to the R-current. This is chosen such that

half of the eight supercharges in the superconformal algebra commute with the

Hamiltonian generating time translations on the cylinder. This ensures that the

four charges are preserved when Euclidean time is compactified to a circle.

Recall from section 3.5 that the Hamiltonian Hsusy is related to the operator ∆

generating dilatations in flat space as Hsusy = ∆ + 1
2r3
R, where R is the R-charge

operator. We found in that section the vacuum expectation values of the bosonic

charges,

〈Hsusy〉 ≡ 〈∆〉+
1

2r3

〈R〉 = − 1

r3

〈R〉 =
4

27r3

(a + 3c) ,

〈J3〉 = 0 , (4.59)

where a, c are the trace anomaly coefficients, and J3 is the conserved charge of the

left U(1)l ⊂ SU(2)l × SU(2)r isometry group. As was discussed in chapter 3, the

a priori divergent anomaly coefficients a, c are free of ambiguities as long as their

regularization does not break supersymmetry.

Based on the above information we infer that the five-dimensional gravity dual

should be AAdS5 and preserve (at least) four supercharges. It should allow for a

graviphoton A behaving as A → cdt at the boundary, where c is a constant cho-

sen such that the asymptotic Killing spinors generating the supersymmetry algebra

(3.125) are independent of time. Indeed, the general Killing spinor of AdS5 that

solves the Killing spinor equation (4.3) reduces to a Weyl spinor on the boundary

of the form,

ε −−−→
r→∞

ε = (gr)1/2
(

e
i
2

(
√

3c+1)gtζ + e
i
2

(
√

3c−1)gtχ
)
, (4.60)

where ζ and χ are spinors independent of t and the radial coordinate r. We see

that choosing c = ± 1√
3
, half the spinors are independent of time. Note that if we

Wick rotate t→ −iτ and compactify the time coordinate, the other half is not well-

defined. Hence we should regard Euclidean AAdS5 spaces (including pure AdS5)

with compact S1 × S3 boundary as preserving at most four supercharges.

In the context of type IIB supergravity on Sasaki-Einstein five-manifolds, we can

translate the value of the vacuum energy and R-charge given in (4.59) into gravity

units using the standard dictionary a = c = π2

g3κ5
. We shall also fix the radius of the

boundary S3 to r3 = 1/g for simplicity. Finally, we map the field theory vevs into
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supergravity charges as 〈∆〉 = E, 〈R〉 = 1√
3g
Q and 〈J3〉 = Jleft, where E is the total

gravitational energy, Q the electric charge under the graviphoton and Jleft the left

angular momentum. We thus obtain the following expected values for the charges

of the dual gravity solution:10

E = −
√

3

2
Q =

8

9

π2

g2κ2
5

, Jleft = 0 . (4.61)

The relation between E and Q and the vanishing Jleft are indeed consistent with the

anticommutation relation for the preserved AdS supercharges [109]

{Qsugra,Q†sugra} = E +

√
3

2
Q+ 2gσiJ ileft . (4.62)

The generators Jright of SU(2)r appears instead in the anticommuntator of the broken

supercharges. While there exists different prescriptions for the computation of the

energy in asymptotically AdS spacetimes, here we will require E to be related to Q

as dictated by the superalgebra. We evaluate the charge Q by the standard formula

Q =
1

κ2
5

∫
S3

∗5F , (4.63)

where the integral is over the three-sphere at the boundary. In general, (4.63)

contains an additional A ∧ F term, but in the present case such a term does not

contribute, since we take F → 0 asymptotically.

The obvious candidate to describe the vacuum of the dual SCFT is global AdS5.

Indeed, the boundary is R × S3, and one may turn on a constant component for

the graviphoton At = c. However, since F = 0 everywhere, clearly Q = 0 from

(4.63). One possible solution to this mismatch with (4.61) may come from a careful

analysis of how the evaluation of charges is compatible with supersymmetry. Here

we will not address this question further. Instead we will consider a supersymmetric

solution among those discussed in this chapter with a graviphoton so that (4.63)

yields a non-vanishes charge. Although we do not find agreement for the holographic

charges below, we do clarify certain aspects of such solutions.

As we consider the asymptotically flat boundary R×S3, this sets c2 = c3 = 0. In

this case the solutions in this chapter reduce to the supersymmetric solutions of [76],

controlled by the three parameters a, b,m. To match the SCFT on the boundary,

the solution should preserve four supercharges, that is, it should be 1/2-BPS. For

the solution in [76], this was shown to be the case when a+ b = 0.11 This identifies

a two-parameter family of solutions with SU(2)× U(1) invariance, originally found

10 Recall that E is not the same as Esusy = 〈Hsusy〉, but the two quantities are related as
E = 〈∆〉 = 3

2 〈Hsusy〉 = 3
2Esusy.

11In fact, it was shown in [4] that while the solution of [76] also contains a 1/4-BPS topological
soliton, this is plagued by conical singularities. Only the 1/2-BPS topological soliton with a+b = 0
is completely regular.
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in [74] and further studied in [109]12.

As mentioned previously, the change of coordinates (4.41) remains finite in the

limit b→ −a at fixed m. However, we will use the coordinates {t, θ, φ, ψ, r} of [109],

related to the orthotoric coordinates as

t = t , η = cos θ , ξ =
r2

αg
, Φ =

αg3

4
(φ+ 2gt) , Ψ =

αg3

4
ψ , (4.64)

where we renamed the parameters,

a =
α

q
, m =

(q2 − α2g2)2

q3
. (4.65)

In these coordinates, the five-dimensional metric reads

ds2
5 = −r

2U
4B

dt2 +
dr2

U
+B(dψ+cos θdφ+f dt)2 +

1

4
(r2 +q)(dθ2 +sin2 θdφ2) , (4.66)

where

U =
r4 + g2(r2 + q)3 − g2α2

r2(r2 + q)
, B =

(r2 + q)3 − α2

4(r2 + q)2
, f =

2αr2

α2 − (r2 + q)3
,

(4.67)

and the graviphoton is

A =

√
3

r2 + q

(
q dt− 1

2
α (dψ + cos θdφ)

)
+ c dt . (4.68)

Here, θ ∈ [0, π], φ ∈ [0, 2π), ψ ∈ [0, 4π) are the standard Euler angles parametrizing

the three-sphere of R× S3 at the boundary at r →∞.

We can now discuss the charges. From (4.63), the charge under the graviphoton

is found to be

Q = −4
√

3q
π2

κ2
5

. (4.69)

The angular momentum conjugate to a rotational Killing vector kµ is given by the

Komar integral J = 1
2κ25

∫
S3 ∗5dk, where k = kµdxµ. For the angular momentum Jleft

conjugate to ∂/∂φ, we get

Jleft = 0 , (4.70)

while Jright, conjugate to ∂/∂ψ, is controlled by α,

Jright = 2α
π2

κ2
5

. (4.71)

The energy was computed in [109] by integrating the first law of thermodynamics,

12See the “case A” in section 3.3 of [109], wih all the charges set equal q1 = q2 = q3 = q, so that
the solution fits with minimal gauged supergravity.
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yielding

E = −
√

3

2
Q = 6q

π2

κ2
5

, (4.72)

which is in agreement with the superalgebra (4.62). Whether (4.72) matches the

expectation from (4.61) depends on the parameter q. To see how q should be fixed,

we need to discuss the global structure of the solution.

Let us first observe that by setting the rotational parameter α = 0, the SU(2)×
U(1) symmetry of (4.66), (4.68) is enhanced to SO(4). This solution was originally

found in [73] and contains a naked singularity for any value of q 6= 0. So while

the α = 0 limit provides the natural symmetries to describe the vacuum of an

SCFT on R × S3, it yields a solution that for any q 6= 0 is pathological, at least

in supergravity. In appendix D we prove that there are no other supersymmetric

solutions with R× SO(4) symmetry within minimal gauged supergravity.

It was shown in [109] that the two-parameter family of solutions given by (4.66),

(4.68) contains a regular topological soliton (while there are no black holes free of

CTC’s). This is obtained by tuning the rotational parameter α to the critical value

α2 = q3 . (4.73)

Then the metric (4.66) has no horizon, is free of CTC’s, and extends from r = 0 to

infinity. In addition, for the r, ψ part of the metric to avoid a conical singularity as

r → 0, one has to impose

q =
1

9g2
. (4.74)

In this way one obtains a spinc manifold with topology R × (O(−1) → S2), where

the first factor is the time direction, and the second has the topology of Taub-

Bolt space [109]. Since
√

3
2
gA is a connection on a spinc bundle, as it can be seen

from (4.3), one must also check the quantization condition for the flux threading

the two-cycle at r = 0. This reads

1

2π

√
3

2
g

∫
S2

F ∈ Z +
1

2
, (4.75)

where the quantization in half-integer units arises because the manifold is spinc

rather than spin. One can check that

1

2π

√
3

2
g

∫
S2

F =
3

2
g q1/2 =

1

2
, (4.76)

hence the condition is satisfied.

We can then proceed to insert (4.74) into (4.69). This gives

E = −
√

3

2
Q =

2

3

π2

g2κ2
5

, (4.77)
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which is different from (4.61). In field theory units, this gives 〈R〉 = −4
9
a 6= −16

27
a,

where the latter is the vev of the R-charge in a supersymmetric vacuum [3] (recall

footnote 10). We conclude that although this 1/2 BPS topological soliton is smooth

and seemingly fulfills the requirements imposed by the field theory superalgebra,

it is not dual to the vacuum state of an SCFT on the R × S3 background. Below

we will give further evidence that this solution cannot describe the supersymmetric

vacuum state of a generic SCFT on R× S3.

4.3.2 Further remarks on supersymmetric topological soli-

tons

We found above that a direct comparison of the holographic charges of the 1/2-BPS

topological soliton with the charges of SCFTs on R × S3 did not provide a match.

We now briefly discuss further arguments that this gravity solution cannot be the

dual of such field theories.

Firstly, we note that the non-trivial topology of the solution presents an obstruc-

tion to its embedding into string theory, precisely analogous to the situation of

the “bolt solutions” found in [63]. Locally, all solutions to five-dimensional mini-

mal gauged supergravity can be embedded into type IIB supergravity on a Sasaki-

Einstein five-manifold [117], however, one may encounter global obstructions when

the topology of the external space has non-trivial topology. It was noted in [109]

that the topological soliton cannot be uplifted on S5. An uplift on the Lens space

S5/Zp was discussed in the appendix of [4], including examples. We refer to this

reference for the details.

In the present context, the global uplift provides further evidence that the 1/2-

BPS topological soliton is not the gravity dual of SCFTs on R × S3. In the

gauge/gravity correspondence, different SCFTs on R × S3 are dual to gravity so-

lutions uplifted on different internal manifolds. While the topological soliton can

be uplifted only on specific internal manifolds, the vacuum state of the SCFTs con-

sidered in [3] leading to (4.59) exists for any such SCFTs. Therefore the gravity

solution cannot be the correct dual description.

Furthermore, it was shown in [4] that the R-charges qR of fields in an SCFT on the

boundary of the 1/2-BPS topological soliton must satisfy a quantization condition

qR ∈ 2Z. This condition follows since it is necessary to cover the topological soliton

by two gauge patches. Again such a constraint on the R-charges is not present for

the SCFTs on R × S3, leading to the conclusion that the topological soliton is not

the correct gravity dual.
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4.4 Conclusions

In this chapter we studied supersymmetric solutions to minimal gauged supergravity

in five dimensions via the approach of [32]. We derived the general expression (4.18)

for the sixth-order constraint that must be satisfied by the Kähler base metric in the

timelike class. We then considered a general ansatz comprising an orthotoric Kähler

base (4.19), for which the constraint reduced to a single sixth-order equation for two

functions, each of one variable. We succeeded in finding an analytic solution to this

equation, yielding a family of AlAdS solutions with five non-trivial parameters. We

showed that after setting two of the parameters to zero, such that the solution is

AAdS, the solution reduces to that of [76]. Hence, this ansatz encompasses all known

supersymmetric AAdS5 solutions of minimal gauged supergravtiy in the timelike

class (taking into account the scaling limits mentioned at the end of section 4.2.4).

This highlights the role of orthotoric Kähler metrics in providing supersymmetric

solutions to five-dimensional gauged supergravity. For general values of the five non-

trivial parameters, we obtained an AlAdS generalization of the solutions of [76], of

the type previously presented in [32, 78, 79] in more restricted setups. There exists

a further generalization by an arbitrary anti-holomorphic function [32]; it would be

interesting to study regularity and global properties of these AlAdS solutions.

It would also be interesting to investigate further the existence of solutions to our

“master equation” (4.31), perhaps aided by numerical analysis. In particular, our

orthotoric setup could be used as the starting point for constructing a supersym-

metric AlAdS solution dual to SCFT’s on a squashed R × S3 background, where

the squashing of the three-sphere preserves just U(1)×U(1) symmetry. This would

generalize the SU(2)× U(1) invariant solution of [68].

Finally, we have discussed the possible relevance of the solutions above to ac-

count for the non-vanishing supersymmetric vacuum energy and R-charge of a four-

dimensional N = 1 SCFT defined on the cylinder R × S3. The most obvious

candidate for the gravity dual to the vacuum of an SCFT on R × S3 is AdS5 in

global coordinates; however this comes with a vanishing R-charge. In appendix D

we have performed a complete analysis of supersymmetric solutions with R×SO(4)

symmetry, proving that there exists a unique singular solution, where the charge is

an arbitrary parameter [73]. We then focused on the 1/2 BPS smooth topological

soliton of [109], however, a direct evaluation of the energy and electric charge showed

that these do not match the SCFT vacuum expectation values.

We cannot exclude that there exist other solutions, possibly within our orthotoric

ansatz, or perhaps in the null class of [32], that match the supersymmetric Casimir

energy of a four-dimensional N = 1 SCFT defined on the cylinder R×S3. It would

also be worth revisiting the evaluation of the charges of empty AdS space, and see if

suitable boundary terms can shift the values of both the energy and electric charge,

in a way compatible with supersymmetry.
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Chapter 5

Conclusions

This thesis includes work on both sides of the gauge/gravity duality. We constructed

in chapter 2 the gravity duals of supersymmetric field theories defined on a broad

class of three-manifolds. These gravity duals are supersymmetric solutions of four-

dimensional minimal gauged supergravity, comprising a self-dual Einstein metric on

the four-ball and the anti-self-dual graviphoton. We computed the holographically

renormalized on-shell action (2.92), finding that it depends on the background only

through one parameter, b1/b2, describing the supersymmetric Killing vector. The

concrete check was the match with the field theory free energy (1.25), obtained

previously using localization.

This work widens the class of known examples of the AdS4/CFT3 duality, and it

would be interesting to study in more detail the explicit m-pole solutions described

in section 2.4.4. A number of generalizations are discussed in section 2.5. One may

relax the conditions that the graviphoton is both real and anti-self-dual. Indeed,

while the boundary is smooth for any choice of b1/b2, we found that the gravity

solution is regular only if b1/b2 > 0 or b1/b2 = −1. It is natural to expect that

for the remaining choices of b1/b2 the boundaries can be filled by gravity solutions

with non-self-dual graviphoton. Beyond this, one may consider geometries of more

general topology. One related development is the holographic computation of the

entropy of a class of supersymmetric asymptotically AdS4 black holes [118]. These

black holes are solutions of four-dimensional N = 2 gauged supergravity coupled to

vector multiplets, and were first found analytically in [119]. In [118], the entropy is

computed from a topologically twisted index for ABJM theory on S1×S2 in the large

N limit, providing for the first time a microscopic interpretation for the entropy of

an AAdS black hole. It would interesting to extend this to other supersymmetric

black holes in four and other dimensions.

On the field theory side, we studied in chapter 3 the Casimir energy of N = 1

field theories. By canonically quantizing the Hamiltonian, we clarified that the

Casimir energy of free CFTs and the supersymmetric Casimir energy Esusy arise as

the expectation values of two different Hamiltonians using the same zeta function
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regularization. By reducing the theory on S3 to a one-dimensional theory, we then

showed that in fact Esusy is unambiguously defined, provided the regularization

scheme preserves supersymmetry.

There has recently been further work on the supersymmetric Casimir energy.

Ref. [120] studied SCFTs on backgrounds of topology S1 × Sd−1 with d = 2, 4, 6,

where it was conjectured that the supersymmetric Casimir energy can be computed

using the equivariant anomaly polynomial. For the four-dimensional N = 1 field

theories discussed in section 1.2.1, the connection of Esusy to anomaly polynomials

on S1 × S3 was recently explained in [121]. This paper studied such theories on

more general backgrounds S1 ×M3, with M3 a compact three-manifold, and it was

found that the supersymmetric Casimir energy is computed as a limit of the index-

character counting holomorphic functions. Besides these developments, it would be

interesting to apply the approach of chapter 3 to the six-dimensional case R × S5,

and squashed versions thereof. It should also be possible to consider more general

topologies R×M5. For example, the localized partition function for five-dimensional

super-Yang-Mills defined on toric Sasaki-Einstein manifolds Y5 has been computed

in [122]. From this result it should be possible to obtain the partition function

for six-dimensional theories on S1× Y5 and subsequently study the supersymmetric

Casimir energy.

As a physical quantity, the supersymmetric Casimir energy should have a holo-

graphic interpretation. With this in mind, we constructed in chapter 4 new super-

symmetric AlAdS5 solutions of five-dimensional minimal gauged supergravity from

an ansatz based on an orthotoric Kähler metric. It would be interesting to study

further the properties of these solutions. Our solution also recovered (including the

scaling limits) all known supersymmetric AAdS5 solutions of this theory. However,

our investigation of whether the 1/2-BPS topological soliton could be the gravity

dual of N = 1 field theories on the conformally flat R×S3 led to the conclusion that

this is not the case. It thus remains an open problem to account holographically for

the supersymmetric Casimir energy. There could exist more general supersymmet-

ric solutions in the timelike class of five-dimensional minimal gauged supergravity.

In this case, such solutions must solve the general constraint (4.18), first presented

in [4]. Alternatively, one may have to consider solutions in the null class, or perhaps

even a revision is needed of the way holographic charges are computed.
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Appendix A

Spherical harmonics on S3

A.1 Scalar spherical harmonics

In this appendix we give some details on the scalar and spinor spherical harmonics

on the three-sphere, following [99,123]. We can obtain the metric on the unit three-

sphere by considering a parametrization on R4 ' C2 with the metric,

ds2
C2 = dudū+ dvdv̄ . (A.1)

The three-sphere of unit radius is then defined by

uū+ vv̄ = 1 . (A.2)

The isometry group is SO(4) ' SU(2)l×SU(2)r, with generators1 Lla and Lra, with

a = 1, 2, 3, satisfying

[
Lla, L

l
b

]
= iεabcL

l
c , [Lra, L

r
b] = iεabcL

r
c ,

[
Lla, L

r
b

]
= 0 . (A.3)

As usual, we define raising and lowering operators,

Ll± = Ll1 ± iLl2 , Lr± = Lr1 ± iLr2 . (A.4)

In the (u, v)-coordinates, these are represented by

Ll+ = −u∂v̄ + v∂ū , Ll− = ū∂v − v̄∂u ,

Lr+ = −u∂v + v̄∂ū , Lr− = ū∂v̄ − v∂u , (A.5)

while

Ll3 =
1

2
(u∂u + v∂v − ū∂ū − v̄∂v̄) , Lr3 =

1

2
(u∂u − v∂v − ū∂ū + v̄∂v̄) .(A.6)

1In the main text, we use the operators Lla, but drop the superscript l.
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In terms of these operators, the scalar Laplacian is

−∇i∇i = 4LlaL
l
a = 4LraL

r
a . (A.7)

The spherical harmonics Y mn
` are constructed starting from the highest weight state,

Y
`
2
`
2

` =

√
`+ 1

2π2
u` , (A.8)

which is annihilated by the raising operators Ll+ and Lr+. The number m (n) can

be lowered by Ll− (Lr−), so that

Y mn
` ∝

(
Ll−
) `

2
−m (

Lr−
) `

2
−n
Y

`
2
`
2

` , (A.9)

and take values − `
2
≤ m,n ≤ `

2
. Recall the operator Ob of equation (3.21),

Ob = 2αb~L
2 + 2βbL

l
3 + γb . (A.10)

The spherical harmonics are eigenfunctions of this operator

ObY mn
` = E2

bY
mn
` , E2

b =
αb
2
`(`+ 2) + 2βbm+ γb , (A.11)

and also

Ll3Y
mn
` = mY mn

` , Lr3Y
mn
` = nY mn

` . (A.12)

We normalize the spherical harmonics as [123]

Y
`
2
−a, `

2
−b

` = N`ab

∑
k

(−u)`+k−a−būkvb−kv̄a−k

k!(`+ k − a− b)!(a− k)!(b− k)!
, (A.13)

where the sum is over all integer values of k for which the exponents are non-negative,

and

N`ab =

√
(`+ 1)a!b!(`− a)!(`− b)!

2π2
. (A.14)

Now specifically taking u = i sin θ
2
ei(ϕ−ς)/2 and v = cos θ

2
e−i(ϕ+ς)/2, one finds the

metric

ds2
S3 =

1

4

(
dθ2 + sin2 θdϕ2 + (dς + cos θdϕ)2

)
, (A.15)

and

Ll3 = i∂ς Lr3 = −i∂ϕ . (A.16)

With the above normalization, the spherical harmonics satisfy∫
√
g3d3xY mn

`

(
Y m′n′

`′

)∗
= δ`,`′δ

m,m′δn,n
′
, (A.17)
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and

(Y mn
` )∗ = (−1)m+nY −m,−n` , (A.18)

as well as the completeness relation,

∑
`,m,n

Y mn
` (θ, ϕ, ς) (Y mn

` (θ′, ϕ′, ς ′))
∗

=
1

sin θ
δ(3)(~x− ~x ′) , (A.19)

where δ(3)(~x− ~x ′) = δ(θ − θ′)δ(ϕ− ϕ′)δ(ς − ς ′).

A.2 Spinor spherical harmonics

The spinor spherical harmonics can be constructed from the scalar harmonics. These

are eigenspinors of the operator

Of = 2αf ~L · ~S + 2βfS3 + γf , (A.20)

where La are the left-invariant operators of the previous subsection, and Sa = γa
2

,

where γa are the Pauli matrices. For βf = 0, the spinor spherical harmonics can be

constructed as [99]

S±`mn =

 cos ν±`m Y
mn
`

sin ν±`m Y
m+1,n
`

 , (A.21)

where

sin ν±`m = ∓

√
`+ 1± (2m+ 1)

2(`+ 1)
, cos ν±`m =

√
`+ 1∓ (2m+ 1)

2(`+ 1)
. (A.22)

For S+
`mn, one has ` ≥ 1 and − `

2
≤ m ≤ `

2
− 1, while for S−`mn one has ` ≥ 0 and

− `
2
−1 ≤ m ≤ `

2
. In both cases − `

2
≤ n ≤ `

2
. The spinor spherical harmonics satisfy

the completeness relation

∑
m,n

S±`mnα(x)
(
S±`mn(x)

)†
α̇

=
1

4π2
n±` 1αα̇ , (A.23)

with n+
` = `(` + 1) and n−` = (` + 2)(` + 1). Further, using the properties of Y mn

` ,

one can show the identities∑
`,m,n

[
S+
`mnα(x)

(
S+
`mn(x′)

)†
α̇

+ S−`mnα(x)
(
S−`mn(x′)

)†
α̇

]
=

1

sin θ
δ(3)(~x− ~x ′)1αα̇ ,

(A.24)

and ∫
d3x
√
g3 S

±
`mnα(x)

(
S±
′

`′m′n′(x)
)†
α̇
1
αα̇ = δ`,`′δm,m′δn,n′δ

±,±′ , (A.25)
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where the integral is on the unit three-sphere. Using that

L+Y
mn
` =

1

2

√
`(`+ 2)− 4m(m+ 1)Y m+1,n

` ,

L−Y
m+1,n
` =

1

2

√
`(`+ 2)− 4m(m+ 1)Y mn

` , (A.26)

one can verify that

OfS±`mn = λ±` S
±
`mn , (A.27)

with

λ+
` = −αf

2
(`+ 2) + γf , λ−` =

αf
2
`+ γf . (A.28)

When βf 6= 0, the spinor spherical harmonics given by (A.21) are not eigenspinors

of the operator Of , except the special cases

Sspecial+
`n ≡ S−

`, `
2
,n

=

 Y
`
2
,n

`

0

 , Sspecial−
`n ≡ S−

`,− `
2
−1,n

=

 0

Y
− `

2
,n

`

 ,

OfSspecial±
`n = λspecial±

` Sspecial±
`n , λspecial±

` =
(αf

2
`± βf + γf

)
. (A.29)

For the generic harmonics, the eigenspinors of Of for general βf are obtained by an

SO(2) rotation,  S+
`mn

S−`mn

 ≡

 R11 R12

R21 R22

 S+
`mn

S−`mn

 . (A.30)

The rotation matrix is given by

R12 = R11

(
αf
2

(`+ 2) + λ+
`m − βf − γf )

(
αf
2
`− λ+

`m + βf + γf )

cos ν+
`m

cos ν−`m
,

R21 = R22

(−αf
2
`+ λ−`m − βf − γf )

(−αf
2

(`+ 2)− λ−`m + βf + γf )

cos ν−`m
cos ν+

`m

, (A.31)

with

λ±`m = −αf
2

+ γf ±

√
α2
f

4
(`+ 1)2 + αfβf (1 + 2m) + β2

f . (A.32)

Requiring the matrix to be SO(2) fixes all the Rij, with a choice of overall sign fixed

by requiring the matrix to be the identity matrix for βf = 0. We then have

OfS±`mn = λ±`mS±`mn , (A.33)

for ` ≥ 1, − `
2
≤ m ≤ − `

2
− 1, and − `

2
≤ m ≤ `

2
.
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Appendix B

Hurwitz zeta function

In this appendix we include the definition of the Hurwitz zeta function and some

useful properties. This is defined as the analytic continuation to complex s 6= 1, of

the following series

ζH(s, a) =
∞∑
n=0

1

(n+ a)s
, (B.1)

which is convergent for any Re(s) > 1. Notice that

ζH(s, 1) = ζ(s) , (B.2)

corresponds to the Riemann zeta function.

For s = −k, where k = 0, 1, 2, . . . , the Hurwitz zeta function reduces to the

Bernoulli polynomials

ζH(−k, a) = −Bk+1(a)

k + 1
, (B.3)

defined as

Bk(a) =
k∑

n=0

(
k

n

)
bk−na

n , (B.4)

where bn are the Bernoulli numbers. The first few ones read

B0(a) = 1 ,

B1(a) = a− 1

2
,

B2(a) = a2 − a+
1

6
,

B3(a) = a3 − 3

2
a2 +

1

2
a ,

B4(a) = a4 − 2a3 + a2 − 1

30
. (B.5)
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The following formulas used in chapter 3 are easily proved,

∞∑
k=1

k

(k + a)s
= ζH(s− 1, a)− a ζH(s, a) , (B.6)

and

∞∑
k=1

k(k + 1)

(k + a)s
= ζH(s− 2, a) + (1− 2a)ζH(s− 1, a) + a(a− 1)ζH(s, a) . (B.7)
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Appendix C

Energy-momentum tensor and

other currents of four-dimensional

theories on curved backgrounds

In this appendix we provide explicit expressions for the energy-momentum tensor

and other currents obtained from the (quadratic) chiral multiplet Lagrangian (3.12)

from new minimal supergravity. Denoting with S the corresponding action, the

energy-momentum tensor is defined as

Tµν =
−2√
−g

δS

δgµν
. (C.1)

A straightforward but tedious computation yields

Tµν = (2δρ(µδ
λ
ν) − gµνgρλ)

[
Dρφ̃Dλφ+

3

2
rVρVλφ̃φ

+(Vρ + κ (ε− 1)Kρ)
(

iDλφ̃ φ− iφ̃Dλφ
)]

+
r

2

(
Rµν −

1

2
gµνR

)
φ̃φ+

r

2

[
gµν∇ρ∇ρ

(
φ̃φ
)
−∇µ∇ν

(
φ̃φ
)]

+
i

2
D(µψ̃σ̃ν)ψ −

i

2
ψ̃σ̃(µDν)ψ −

(
1

2
V(µ + κ(1− ε)K(µ

)
ψ̃σ̃ν)ψ , (C.2)

where the lower parenthesis denote symmetrization of the indices. Recall that we

defined Dµ = ∇µ − iqRAµ, with qR the R charges of the fields [26].

Below we collect some useful formulas for deriving this expression. For the bosonic

part we used the variation of the Ricci tensor,

gµνδRµν = gµν∇ρ∇ρ(δg
µν)−∇µ∇ν(δg

µν), (C.3)
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and we note that for any vector field Xµ,

[∇µ,∇ν ]X
µ = RµνX

µ . (C.4)

For the femionic part, the variation of the action with respect to the metric gives

δSchiral
fer =

∫
d4x

[
δ
√
−gLchiral

fer +
√
−g δLchiral

fer

]
=

∫
d4x
√
−g δLchiral

fer , (C.5)

where in the second equality we used that Lchiral
fer vanishes on-shell. The variation

of the Lagrangian can be expressed in terms of variations of the vielbein and of the

spin connection and reads

δLchiral
fer = ψ̃σ̃A

(
iDµ +

1

2
Vµ + κ(1− ε)Kµ

)
ψ δeA

µ − i

2
ψ̃σ̃µσABψ δωµAB , (C.6)

where A = 0, 1, 2, 3 is a frame index.

Using the property that the vielbein is covariantly constant,

0 = ∇µeν
A = ∂µeν

A − Γρµνeρ
A + ωµ

A
Beν

B , (C.7)

we read off the variation of the spin connection

δωµAB = δΓρµνeAρeB
ν − eBν∇µ(δeAν) . (C.8)

Further, using the variation of the Christoffel symbol

δΓσµν =
1

2
gµλgνρ∇σ(δgλρ)− gλ(µ∇ν)(δg

λσ) , (C.9)

and

δeAν = −gνβeAαδgαβ + gµνδeA
µ , (C.10)

we can write the variation of the spin connection as

δωµAB = ∇ν

(
gµλe[A

νeB]ρδg
λρ +

1

2
eAλeBρδ

ν
µδg

λρ − eBρδνµδeAρ
)
. (C.11)

Using this, the second term of (C.6) can be written as,

− i

2
ψ̃σ̃µσABψ δωµAB = −ψ̃σ̃A

(
iDµ +

1

2
Vµ + κ(1− ε)Kµ

)
ψ δeA

µ

+
i

4

[
Dµψ̃σ̃νψ − ψ̃σ̃µDνψ

]
δgµν

−1

2

(
1

2
Vµ + κ(1− ε)Kµ

)
ψ̃σ̃νψ δg

µν , (C.12)

up to a total divergence. Substituting this back into (C.6), the terms containing δeA
µ

123



cancel. The remaining terms are all proportional to δgµν and give the fermionic part

of the energy-momentum tensor (C.2).

We also used the following identities for the σ-matrices in Lorentzian signature

σAσ̃BσC = −ηABσC + ηACσB − ηBCσA + iεABCDσD ,

σ̃AσBσ̃C = −ηABσ̃C + ηAC σ̃B − ηBC σ̃A − iεABCDσ̃D , (C.13)

with ε0123 = −1, and the identities

[∇µ,∇ν ]ψ = −1

2
RµνABσ

ABψ , [∇µ,∇ν ] ψ̃ = −1

2
RµνABσ̃

ABψ̃ , (C.14)

valid for generic spinors ψ, ψ̃.

One can easily compute the Ferrara-Zumino current

JµFZ = −2

3

1√
−g

δS

δVµ
, (C.15)

and the current

JµK =
1√
−g

δS

δKµ

. (C.16)

These read

JµFZ =
2

3

(
iDµφ̃ φ− iφ̃Dµφ+ 3rV µφ̃φ− 1

2
ψ̃σ̃µψ

)
, (C.17)

JµK = κ(1− ε)
(

iDµφ̃ φ− iφ̃Dµφ+ ψ̃σ̃µψ
)
, (C.18)

and are not conserved. Starting with the expressions above, a further computation

yields (3.73).
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Appendix D

SO(4)-symmetric solutions of

minimal gauged supergravity in

five dimensions

In this appendix, we present an analysis of solutions to five-dimensional minimal

gauged supergravity possessing R × SO(4) symmetry. In particular, we prove that

the only supersymmetry-preserving solution of this type is the singular one found

long ago in [73]. To the knowledge of the authors of [4], where this proof of unique-

ness was given, it had not previously appeared in the literature.

For simplicity, the notation of this appendix is independent of the rest of the

thesis.

The most general ansatz for a metric and a gauge field with R×SO(4) symmetry

is

ds2 = −U(r)dt2 +W (r)dr2 + 2X(r)dt dr + Y (r)dΩ2
3 , (D.1)

A = At(r)dt , (D.2)

where dΩ2
3 is the metric on the round S3 of unit radius,

dΩ2
3 =

1

4

(
σ2

1 + σ2
2 + σ2

3

)
,

σ1 = − sinψ dθ + cosψ sin θ dφ ,

σ2 = cosψ dθ + sinψ sin θ dφ ,

σ3 = dψ + cos θ dφ . (D.3)

The crossed term X(r)dtdr in the metric can be removed by changing the t coordi-

nate, so we continue assuming X(r) = 0. We will make use of the frame

e0 =
√
U dt , e1,2,3 =

1

2

√
Y σ1,2,3 , e4 =

√
W dr . (D.4)
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Equations of motion

We proceed by first solving the equations of motion and then examining the addi-

tional constraint imposed by supersymmetry. The action and equations of motion

are given by equations (4.1) and (4.2). With the ansatz (D.2), the Maxwell equation

is

0 = ∇νF
νµ ⇔ 0 = A′′t +

1

2
A′t

(
log

Y 3

UW

)′
. (D.5)

This can be integrated to

A′t = c1

√
UW

Y 3
, (D.6)

with c1 a constant of integration. The Einstein equations read (using frame indices)

R00 = −R44 = 4g2 +
(A′t)

2

3UW
,

R11 = R22 = R33 = −4g2 +
(A′t)

2

6UW
, (D.7)

where the Ricci tensor components are

R00 =
U ′′

2UW
− U ′W ′

4UW 2
+

3U ′Y ′

4UWY
− U ′2

4U2W
,

R11 = R22 = R33 = − U ′Y ′

4UWY
+

W ′Y ′

4W 2Y
− Y ′′

2WY
− Y ′2

4WY 2
+

2

Y
,

R44 = − U ′′

2UW
+

U ′W ′

4UW 2
+

U ′2

4U2W
+

3W ′Y ′

4W 2Y
− 3Y ′′

2WY
+

3Y ′2

4WY 2
. (D.8)

To solve these, let us define

T (r) = U(r)W (r)Y (r) . (D.9)

Combining two of the Einstein equations yields,

0 = R00 +R44 =
3U

4T 2
(T ′Y ′ − 2TY ′′) , (D.10)

which can be integrated to

T (r) = c2 Y
′ 2(r) , (D.11)

with c2 6= 0 a constant of integration. Using this, the angular components of the

Einstein equations can be integrated, yielding

U(r) = 4c2 + 4c2g
2Y +

1

Y
c3 +

c2
1c2

3Y 2
, (D.12)

with a third constant of integration c3. This solves all the equations of motion.

We can now use the freedom to redefine the radial coordinate to choose one of

the functions. In particular, we can choose the function W (r) so that WU = 4s2,
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where we take s > 0. From (D.9) and (D.11) we then obtain(
dY

dr

)2

=
4s2

c2

Y ⇒ Y (r) =
s2

c2

r2 , (D.13)

where we used the freedom to shift r to set to zero an integration constant. Finally,

after performing the trivial redefinitions rold =
√
c2
s
rnew , Uold = 4c2U

new, tnew =

2
√
c2t

old, we arrive at the solution

ds2 = −U(r)dt2 +
1

U(r)
dr2 + r2dΩ2

3 , (D.14)

A =
(
c4 −

c1

2r2

)
dt , (D.15)

with

U(r) = 1 + g2r2 +
c3

4c2r2
+

c2
1

12r4
, (D.16)

and c4 another arbitrary constant. Hence, the solution depends on three constants:

c1, which is essentially the charge, the ratio c3/c2, and c4 which is quite trivial but

may play a role in global considerations.

Supersymmetry

The integrability condition of the Killing spinor equation (4.3) is

0 = Iµνε ≡
1

4
RµνκλΓ

κλε+
i

4
√

3

(
Γ[µ

κλ + 4Γκδλ[µ
)
∇ν]Fκλε

+
1

48

(
FκλF

κλΓµν + 4FκλF
κ

[µΓν]
λ − 6FµκFνλΓ

κλ + 4FκλFρ[µΓν]
κλρ
)
ε

+
ig

4
√

3

(
F κλΓκλµν − 4Fκ[µΓν]

κ − 6Fµν
)
ε+

g2

2
Γµνε , (D.17)

where we used [∇µ,∇ν ]ε = 1
4
RµνκλΓ

κλε. The Γ-matrices can be taken to be

Γ0 =

(
0 1

−1 0

)
, Γi =

(
0 σi

σi 0

)
, Γ4 =

(
1 0

0 −1

)
, (D.18)

with σi the three Pauli matrices.

A necessary condition for the solution to preserve supersymmetry is that

detCliff Iµν = 0 for all µ, ν , (D.19)

where the determinant is taken over the spinor indices.For the R× SO(4) invariant
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solution one finds (in flat indices a, b):

detCliff Iab =
9 (16c2

1c
2
2 − 3c2

3)
2

244c4
2 r

16



0 1 1 1 81

1 0 1 1 1

1 1 0 1 1

1 1 1 0 1

81 1 1 1 0


ab

. (D.20)

Hence, the supersymmetry condition is

c3

c2

= − 4√
3
c1 , (D.21)

where we fixed a sign without loss of generality. Plugging this back into (D.16), we

have

U(r) =

(
1− c1

2
√

3 r2

)2

+ g2r2 . (D.22)

This recovers a solution first found in [73]. It is also obtained from (4.66)–(4.68) by

setting α = 0 and changing the radial coordinate.

Therefore we conclude that in the context of minimal gauged supergravity, the

most general supersymmetric solution possessing R × SO(4) symmetry is the one-

parameter family found in [73]. This preserves four supercharges and has a naked

singularity.
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