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Abstract

In this thesis we study the gauge/gravity duality and exact results in supersymmetric
quantum field theories obtained using localization. We construct the gravity duals
to a broad class of N’ = 2 supersymmetric gauge theories defined on a general class of
three-manifolds. The gravity backgrounds are supersymmetric solutions of gauged
four-dimensional supergravity and encompass all known examples of such solutions.
We find that the holographically renormalized on-shell action agrees with the free
energy of the field theory, which has previously been computed via localization
of the partition function. Next, we study the Casimir energy of four-dimensional
N = 1 supersymmetric field theories in the context of the rigid limit of new minimal
supergravity. We revisit the computation of the localized partition function on
S1 x 83, and consider the same theories in the Hamiltonian formalism on R x S3.
We compute the vacuum expectation value of the canonical Hamiltonian using zeta
function regularization, and show that this interpolates between the supersymmetric
Casimir energy and the ordinary Casimir energy of supersymmetric field theories.
In general, the Casimir energy depends on the regularization scheme and is therefore
ambiguous. However, we show that for N’ = 1 supersymmetric field theories on the
cylinder R x S3, the supersymmetric Casimir energy is well-defined and scheme-
independent, provided the regularization scheme preserves supersymmetry. Finally,
we investigate the gravity duals of such N/ = 1 theories on R x S3. Specifically,
we study supersymmetric solutions of five-dimensional minimal gauged supergravity
using a known classification. We propose an ansatz based on a four-dimensional local
orthotoric Kahler metric and reduce the problem to a single sixth-order equation
for two functions, each of one variable. We find an analytic, asymptotically locally
AdS solution comprising five parameters. For a conformally flat boundary, this
reduces to a previously known solution with three parameters, representing the most
general solution of this type known in minimal gauged supergravity. We discuss the
relevance for this solution to account for the supersymmetric Casimir energy, finding

the answer to be in the negative.
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Contents of this thesis

This thesis presents work published in [1-4], and is organized as follows. We begin
in chapter 1 with an overview of supersymmetric field theories on curved back-
grounds, localization, and the gauge/gravity duality, anticipating along the way
several results of the thesis. In chapter 2 we construct the gravity duals of super-
symmetric gauge theories on three-manifolds, based on [1]. Chapter 3 concerns the
computation and proof of the scheme-independence of the supersymmetric Casimir
energy of N' = 1 field theories on R x S3. This based on [2] and [3]. In chapter
4, we construct supersymmetric solutions of five-dimensional minimal gauged su-
pergravity. We investigate whether these solutions can holographically account for
the supersymmetric Casimir energy, finding the answer to be in the negative. This
chapter is based on [4]. Chapter 5 contains concluding remarks. In addition, several

appendices are included from the above references.



Chapter 1
Introduction and summary

Quantum field theory is the framework of modern particle physics. At weak coupling,
perturbation theory in terms of Feynman diagrams has been a powerful technique,
however, this approach cannot capture the full dynamics of quantum field theory.

A remarkable tool for obtaining exact results at strong coupling and large N has
been the gauge/gravity duality. This is the conjecture that certain quantum field
theories have a dual description in terms of gravity, more precisely string theory
or M-theory. The example of the original conjecture [5] was four-dimensional N' =
4 super-Yang-Mills theory (SYM) dual to type IIB string theory on an AdSs; x
S5 background. Since N' = 4 SYM is not only maximally supersymmetric, but
also a conformal field theory (CFT), the duality is also known as the AdS/CFT
correspondence. Although there is no mathematical proof of the conjecture, there
is by now much evidence including various settings beyond the original example.

On the field theory side, one technique that has been studied extensively for NV = 4
SYM is integrability (see [6] and references therein). In the planar limit, where the
number of colours N goes to infinity, while the coupling constant gyy; goes to zero in
such a way that the 't Hooft coupling A = ¢%,;N remains finite, the large amount of
symmetry in the theory allows for exact computations. This has allowed for checks
of the gauge/gravity duality.

A more recent computational technique, which will be of interest in this thesis, is
supersymmetric localization. For supersymmetric field theories defined on compact
Riemannian manifolds, under appropriate circumstances it can be shown that path
integrals localize in field space. This reduces the infinite-dimensional path integral
to a finite-dimensional matrix integral, in many instances allowing the integral to
be computed exactly. Results obtained via localization are valid for any value of
the coupling, and in the strong-coupling limit these serve as checks or predictions
for results obtained from the gauge/gravity duality. Indeed, this has led to novel
examples of the gauge/gravity duality, where the field theory is defined on a non-
trivially curved background.

In the remainder of this chapter, we review more details of gauge/gravity duality,



localization, and the interplay between these techniques.

1.1 Gauge/gravity duality

According to the gauge/gravity duality, some quantum field theories are equivalent
to string theory or M-theory on certain backgrounds. In particular, taking in the
string theory the limit where the string coupling and o’ go to zero, the string theory
is described by classical supergravity. In the field theory this corresponds to the
limit of large N and large 't Hooft coupling .

The first example of a gauge/gravity duality was conjectured in [5], with further
details in [7,8]. The conjecture states that four-dimensional SU(N) N = 4 SYM
theory is equivalent to type IIB string theory on an AdSs x S° background. The
motivation for such a remarkable conjecture comes from brane constructions in string
theory. Type IIB string theory contains closed strings, as well as open strings whose
end points are restricted to so-called Dp-branes. These are hypersurfaces extending
in p spacelike directions. The excitations of an open string give rise to a gauge
theory living on the (p + 1)-dimensional world volume of the brane. In particular,
a stack of coincident Dp-branes gives rise to a non-Abelian gauge group, and the
gauge theory inherits supersymmetry from the string theory. On the other hand, in
an appropriate limit, Dp-branes also have a description as solutions of the equations
of motion of ten-dimensional classical supergravity.

The conjecture of [5] is motivated specifically from considering a stack of N co-
incident D3-branes. The gauge theory on the four-dimensional world volume of the
branes is AV =4 SYM with an SU(N) gauge group, while the AdSs x S° spacetime
arises as the near-horizon geometry of the branes in the supergravity solution. In
terms of the duality, the field theory is said to live on the conformal boundary of
AdSs, with the isometry group SO(2,4) acting on the four-dimensional boundary
as the conformal group. Indeed N/ = 4 SYM is a conformal field theory with van-
ishing S-function. The isometry group SO(6) ~ SU(4) of the S® corresponds to the
R-symmetry of the field theory.

Another concrete example of the gauge/gravity duality was conjectured in [9].
This work followed the construction of a three-dimensional N = 8 superconfor-
mal theory constructed by Bagger and Lambert [10,11] (see also [12]), which was
conjectured to be related to a specific theory of M2-branes for the lowest Chern-
Simons levels [13,14]. The gauge theory of [9] is a three-dimensional ' = 6 super-
conformal Chern-Simons-matter theory, known as ABJM theory. It contains two
copies of U(N) Chern-Simons theory with opposite levels, k and —k, coupled to
four matter supermultiplets in the bifundamental representation of the gauge group
U(N)g x U(N)_g. From its M2-brane origin, its gravity dual was conjectured to be

AdSy x S7/Z, in eleven-dimensional supergravity.
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A central prescription in the gauge/gravity duality is the identification of the par-
tition function of the gauge theory with that of the string/M-theory. In particular, in
the limit where the string/M-theory is well approximated by classical supergravity,
the gravity partition function will be dominated by the on-shell field configurations

in a saddle point approximation,
e*Ssugra[M} = ZCFT[&M] . (11)

Here, M is the bulk manifold with conformal boundary 0M, and Sgugya is formally
the supergravity action evaluated on-shell. From the supergravity theory, one may
then holographically compute field theory quantities, e.g correlation functions. Of
particular interest in Chapter 2 will be free energy of the field theory, which we define
as F = —log Zcpr. From (1.1), we see that the free energy at large N is formally
just the on-shell gravity action. However, in general, Squgra is a divergent quantity
involving an integral over the infinite volume of an AdS space. These divergences
can be removed using the technique of holographic renormalization, as we will see
concretely in section 2.3 below.

The gauge/gravity duality has also been applied to settings quite different from the
original conjecture, for example providing new insights in condensed matter physics.
Holographic superconductors have been constructed as AdS black holes in theories
with a Maxwell field and a charged scalar field [15,16]. Note that this case does
not rely on supersymmetry. Gravity duals have also been constructed for condensed
matter systems displaying scale-invariance, but not Lorentz-invariance [17-19].

In this thesis, we will be interested in supersymmetric quantum field theories
defined on curved backgrounds, and their gravity duals. In particular, the motiva-
tion to study this setting comes from new exact computations in field theory from
localization, requiring a supersymmetric field theory to be defined on a compact Rie-
mannian manifold. We will return to the gauge/gravity duality below, after some

discussion of supersymmetry on curved backgrounds and localization.

1.2 Supersymmetric field theories on curved spaces

Results obtained using localization motivated the study of how to construct field
theories with rigid supersymmetry on curved backgrounds. A theory can be placed
on a curved background by minimally coupling it to the metric, but in general the
theory will then no longer be supersymmetric. A more systematic approach for
obtaining theories with rigid supersymmetry was started in [20] in four dimensions.
It was then developed further for the three-dimensional case in [21-24]. We shall

now review this formalism in four and three dimensions, respectively.
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1.2.1 Four dimensions

In four dimensions, one may obtain A/ = 1 supersymmetric field theories with
an R-symmetry on curved backgrounds [20] from so-called off-shell “new minimal
supergravity” [25]. We give here an overview in Euclidean signature following [26],
while in section 3.4 below we will analytically continue this formalism to Lorentzian
signature.

The gravity multiplet of new minimal supergravity contains the metric, a gravitino
Y, an auxiliary two-form B,,, and an auxiliary vector field A, which is a gauge
field for the local chiral symmetry. Taking a rigid limit by appropriately sending the
Plank mass to infinity, one obtains a rigid supersymmetric theory containing vector
and chiral multiplets, while the gravity multiplet fields remain as non-dynamical
background fields. Rather than the two-form B

V = x4dB, where we denote by *; the Hodge dual in d dimensions. From its

.w, we will work with the one-form
definition, V' is conserved, V,V# = 0. In Euclidean signature, A, and V, may
take complex values, while we restrict the metric to be real. The real part of A,
transforms locally as a gauge field and couples to the U(1)r R-symmetry, while the
imaginary part must be a well-defined one-form. To obtain a rigid supersymmetric
theory, it is necessary that the background admits a solution ( or Z to at least one

of the Killing spinor equations,

(V=14 + iV +iVFE0,¢ = 0
(Vy+i4,) =iV, —iV" G, = 0. (1.2)

We follow here the conventions of [26]. The 2 x 2 matrices o, and 7, generate
the Clifford algebra Cliff(4,0), and the spinors ¢ and E are two-component complex
spinors of opposite chirality and with opposite charge under the gauge field A,
which couples to the R-symmetry. In Lorentzian signature, Ewould be the complex
conjugate of ¢, but in Euclidean signature the number of degrees of freedom is
doubled by allowing the two spinors to be independent.

Is it then natural to ask which manifolds admit solutions to (1.2). In Euclidean
signature one can construct from the spinors ¢ and Z" the almost complex structures,
_ A
R

J*y neLo g, = 2l (1.3)
1%

A necessary and sufficient condition for a four-dimensional Riemannian manifold to

admit a solution to (1.2) is that at least one of the almost complex structures is

integrable [23,27]. When there exists non-zero solutions ¢ and Z to both equations

(1.2), the spinor bilinear

Kt = Ccr”g, (1.4)

is a complex Killing vector, hence comprising two real Killing vectors. Moreover,
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it is holomorphic with respect to both complex structures (1.3). In Lorentzian sig-
nature, equations (1.2) admit a solution if and only if the background admits a
null Killing vector [28]. This approach of constructing spinor bilinears has previ-
ously been employed in other contexts to determine geometric restrictions imposed
by supersymmetry. In particular, this has led to classifications of supersymmetric
solutions of supergravity in terms of G-structures [29-31], and in chapter 4 we will
use the conditions derived in [32] for a solution of five-dimensional minimal gauged
supergravity to preserve supersymmetry.
The vector fields A, and V), are only defined up to shifts parametrized by a vector
Uy,
A, — A, + gU# , Vo = Vu+ Uy, (1.5)

provided U, is holomorphic, namely J#,U” = iU*, and divergenceless V,U* =
0. When the Killing vector K commutes with its complex conjugate, K*V,K" —
K"V,K" =0, then U* must in fact be of the form U* = k K*, where & is a complex
function satisfying K*0,x = 0. In chapter 3 we will take x to be a constant. Note
that the combination A} = A, — %VM is independent of the choice of U,,.

The following Lagrangian was presented in [26] for an N = 1 vector multiplet
containing a gauge field A, a pair of two-component spinors A, X of opposite chirality,

and an auxiliary scalar field D,

1 v i csy 1~ cs 1 2
ﬁvector = Tr ZFMVFM + 5/\O-MDN' A+ iAUuD“ A— ED s (16)
where F,, = 0,A, — 0,A, —i[A,,A,] and Dy =V, —iA, — igrAj; with gg the
R-charge of the field. The fields {A,,, )\,X,D} have R-charges {0,1,—1,0} and all
transform in the adjoint of the gauge group G. The vector multiplet Lagrangian

(1.6) is invariant under the supersymmetry transformations

SA, = iCo\+iCo,A
oA = Fuo"(+iD¢
oA = F,&"¢—iDC
~ 3\ e 3i
oD = —¢o" (DX~ EMA) + 36" (DA + EIVM)\> , (1.7)
with D, = V,—iA,—igrA,. In Euclidean signature, the tilded fields are independent
of the untilded. When turning to Lorentzian signature, these will be related by
conjugation. Crucially for the localization argument of [26], it was shown therein
that the Lagrangian (1.6) is itself a total supersymmetry variation.
Likewise, the chiral multiplet in [26] was also shown to be a total supersymmetry

variation. In fact, it is a sum of four such variations,
Echiral - 5(‘/1 + 5{‘/2 + 5§V:3 + 5CVU (18)
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A chiral multiplet contains two complex scalars ¢, 5, a pair of two-component com-
plex spinors 1), @Z of opposite chirality, and two complex auxiliary fields F, F. These
fields {¢,, F, 25, 1;, ﬁ} have R-charges {r,r — 1,7 — 2, —r,—r + 1,—r 4+ 2}. The
untilded fields transform in a representation R of the gauge group, while the tilded
transform in the conjugate representation R*. Again, in Euclidean signature the

tilded and untilded fields are independent. In components, the Lagrangian reads

Lawa = DudD"¢+1V"(Dyd ¢ = 6D,0) + 7 (R+6V,V") 66+ D¢ — FF

o™ D, + %wiz?aw +iV2(0M) — PAg) (1.9)

where R is the Ricci scalar of the background metric. The Lagrangian (1.9) is

invariant under the supersymmetry transformations

8¢ = V20
5 = V2FC+iv2(6"C) D,

0F = V205" (Dm - %Vm) — 2i(CA)¢

0 = Vi
S = V2FC+ivV2(6"¢)D,o
SF = iV2(o" (D#@ + %X@Z) +2i6(CN) . (1.10)

One may couple to the theory an arbitrary number of chiral multiplets, each with
different R-charge 77, and also add a superpotential [20]. We will return to the
Lagrangian (1.9) in chapter 3.

1.2.2 Three dimensions

The analysis of [20] was further developed in [21-24] for theories on Riemannian
three-manifolds. In particular, [24] constructed N/ = 2 supersymmetric gauge the-
ories with an R-symmetry on Riemannian three-manifolds, encompassing all previ-
ously known examples. Although only a linearized formulation is known for new
minimal supergravity in three dimensions, it was argued in [24] that this is sufficient
up to terms that vanish when taking the rigid limit.

The gravity multiplet contains the metric g,,, two gravitini 1&&3), ~£3), a two-form
gauge field B,S?{), and two gauge fields! AS’) and C,. While we take the metric
to be real, the gauge field may be complex. We will use the dual fields, the vector
V) = —i%3dC and the scalar field h = x3d B®), from which it follows that V“Vu(g) =

0. Again these remain as background fields. The resulting theory possesses rigid

IThe superscript (3 is intended to distinguish the three-dimensional fields from the four-
dimensional ones.
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supersymmetry if and only if the gravitini vanish and there exists a spinor y or Y

solving one of the equations

. 1. . 1
(vu - IA;SB)) X + zihyux + IV;L(B)X + _6uypvu(3)7px =0

2 2
~ 1. -1, ~
(VM + iAng)) X + §1h%X — 1Vu(3)x — 5 "VV(?’)%X = 0, (1.11)

where 7, are the Pauli matrices generating the Clifford algebra Cliff(3,0) in an
orthonormal frame.

When AE’), VH(S) , and h are real, and x solves the upper equations in (1.11), the
lower equation in (1.11) is solved by its charge conjugate x¢. This is the set-up of
the localization computation performed in [33], which we shall discuss further in the
next section.

From the spinor y we can then construct a Killing vector K®), and choosing

appropriately the coordinate ¢, this is given by
K® = waaﬂ = Oy . (1.12)

This vector defines a transversely holomorphic foliation of the three-manifold. In-
troducing a local complex coordinate z, the metric is given in terms of the functions

Q(z,2) and ¢(z, 2), and the one-form a = a(z, 2)dz + a(z, z)dz, as
ds? = Q2 (dy) +a)® + Adzdz . (1.13)

Similar to the four-dimensional case, the background fields are defined up to shifts

of the form,
A® 4B 4 30 Ve - vE kO h — h+ (1.14)
M po TR M po TR ks .
where
n =d+a, (1.15)

and the function x must satisty K, ftg)(?“m = 0. The three-manifold admits an almost
contact structure. The nowhere vanishing one-form 7 is the almost contact form on
the three-manifold? and K is the associated Reeb vector field. These satisfy

K® p =1, K®idp =0. (1.16)

For further details on almost contact structures, see for instance [34] or the appendix
of [24].

Langrangians and supersymmetry variations for Chern-Simons multiplets, Yang-

2If n A dn is nowhere vanishing then 7 is a contact form and the three-manifold has a contact
structure. This is not necessarily the case in the current context.
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Mills multiplets, and chiral multiplets on three-manifolds with the geometry de-
scribed above were given in [24]. We shall not need them explicitly here. However,
the above formulae will be recovered in section 2.2 below, as the background geom-

etry on the boundary of four-dimensional supergravity solutions.

1.3 Localization

Although localization has a longer history [35], the recent interest was sparked by ref.
[36], in which the path integral of N' = 2 super-Yang-Mills theory on the four-sphere
was computed. Results obtained via localization have served as non-perturbative
tests of conjectured dualities, e.g. mirror symmetry in three-dimensional theories
[37]. In particular, as these results are valid for any value of the coupling constant,
they may serve as checks of the gauge/gravity duality in the strong-coupling limit.

The central point of localization is that under appropriate circumstances, the
infinite-dimensional path integral can be reduced to a finite-dimensional integral.
Let us consider a supersymmetric quantum field theory defined on a compact Rie-
mannian manifold. Due to the compactness, we assume the field theory is free of

infrared divergences. The partition function is defined by the path integral as usual,

Zl¢] = /D¢e‘5[¢], (1.17)

where ¢ denotes collectively the fields of the theory. For a supersymmetric theory,
we consider a Grassmann-odd supercharge, Q, under which the action is invariant,

QS[¢] = 0. The supercharge squares to a bosonic charge B,
Q? = B, (1.18)

which may generate a linear combination of spacetime symmetries, global internal
symmetries, and gauge symmetries. We assume the integration measure in (1.17) is

Q-invariant. Consider then a deformation of the partition function,

Zil¢] = / D¢ Sl (1.19)

where V[¢] is a Grassmann-odd operator invariant under B, and ¢ is some param-
eter. The perturbed partition function is independent of ¢, which can be shown by

differentiation,

d

&Zt[gb] = —/D¢(QV)eStQV = —/Dd) Q(Ve ™™y = 0. (1.20)

In the last equality, we interpreted the integrand as a total derivative on field space,

and assumed that there are no boundary terms (or at least that the integral decays
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sufficiently fast). We can thus choose to compute (1.19) for any convenient value of
t. Clearly, for t = 0 we recover the original partition function (1.17). Assuming the
bosonic part of QV is positive semi-definite, we can consider the limit in which ¢ —
0o. In this limit, the integral will be dominated by the locus of field configurations

for which
QVip] = 0. (1.21)

For this reason, QV[¢] is known as the localizing action. In many interesting cases,
the path integral localizes to a finite-dimensional integral in this way. Further, one
may utilize this localization technique to compute the expectation value of operators
by inserting these into the path integral as usual, provided these operator are gauge
invariant and BPS. Examples includes vortex loop operators and Wilson loops in
three and four dimensions [36,38-41]. For more detailed reviews on the localization

technique, see e.g. [42,43].

Three-manifolds

There has been a number of results in three dimensions. The authors of [44] applied
localization to N = 3 superconformal Chern-Simons-matter theories on the round
three-sphere. It was shown that the exact partition function and certain Wilson
loop observables can be reduced to more manageable matrix models. The authors
also wrote down as a matrix integral the partition function Z of the N' =6 ABJM
theory [9], which was studied further in [45]. In particular, the authors of [45] showed
from the matrix integral that the free energy F = —log Z of ABJM theory scales at
large N as N3/2. This N®/? behaviour had been in need of clarification since it was
noticed more than a decade earlier from the study of N coincident M2-branes [46].

The techniques developed in [44] were extended to the partition function of N' = 2
theories in [47,48], and to Wilson loops [38,39] and vortex loops [40,41], as mentioned
above. Recall the round three-sphere has isometry group SO(4) ~ SU(2) x SU(2).
The partition function for N' = 2 theories on particular squashed three-spheres
preserving either SU(2) x U(1) or U(1) x U(1) isometry were studied in [49], while
a different squashing preserving SU(2) x U(1) isometry was later studied in [50].
Other topologies have also been considered, such as Lens spaces [51,52].

In [33], the localized partition function was computed for N' = 2 Chern-Simons
theories coupled to chiral multiplets, defined on a broad class of Riemannian three-
manifolds M3 with the topology of the three-sphere. The background Mj preserves
a U(1) x U(1) isometry and encompasses all previous such examples. The field
theory is defined on such a background as described in section 1.2.2 above. Recall
the Killing spinor solving equations (1.11) gives rise to a Killing vector K @), If all
the orbits of K close, it generates a U(1) isometry of Ms. If not, Mz must admit

at least a U(1) x U(1) isometry and therefore has a toric almost contact structure.
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We may then introduce two angular coordinates ¢, o with period 27, such that
K® = 0,0, +by0,, . (1.22)

By the localization argument, the authors of [33] reduced the full partition function

to a finite-dimensional integral. This reads

ik y ;2 . TopQ ., TOoQ iQ p(oo)
4= /dUO ebibz 170 4 sinh sinh S (_(1—7“)_ ) ;
all by by 1:[ 7\ 2 N

(1.23)

where the integral is over the Cartan of the gauge group, k denotes the Chern-

Simons level, the first product is over positive roots a € A of the gauge group, and
the second product is over weights p in the weight space decomposition for a chiral
matter field with R-charge r in an arbitrary representation of the gauge group. Also,
B = Z—; and Q = 5+ % and sp(z) is the double sine function defined by

5a(z) = H Bm—i—ﬁ_ln%—%—u

. 1.24)
- Q - (
Bm+ B7In+ 3 +iz

m,n>0

Notice in (1.23) that a factor of 1/4/biby may be absorbed into o, which is inte-
grated over. Hence, the partition function depends on the background geometry
only through one parameter, by /bs.

In the context of the gauge/gravity duality, we are particularly interested in the

free energy F = —log Z, which in the large N limit reads,

2
im 7, (il +10a)

_ 1.25
N—oo 4|blb2’ fﬁ_l ’ ( )

where F3—; is the large N limit of the free energy on the round three-sphere scaling
as N3/2 [45].

N =1 theories on S' x S3

As mentioned, the recent interest in localization began with the computation of the
partition function of N' = 2 SYM on the four-sphere [36]. Localization has been
used on other topologies in four-dimensions, such as S? x S? [53] and T? x S? [54].

In much of this thesis, we will focus on S' x S®. In ref. [26], the authors com-
puted the full partition function for N/ = 1 theories, consisting of vector multiplets
and chiral multiplets with an R-symmetry, on a background with S* x S? topol-
ogy. The theories considered in [26] are precisely those discussed in section 1.2.1
above. Analogously to the three-dimensional case above, the S® is assumed to have

a U(1)xU(1) isometry. Introducing standard 27-period toric coordinates ¢y, o, the
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supersymmetric Killing vector (1.4) can be parametrized by two coefficients, by, by
1 .
K = 5 [[713% + 528@2 — 167-] s (126)
with 7 the coordinate on S'. The partition function was found to be of the form,
Z[bl, bQ] = ei]:(bl’hQ)I(bl, [12) s (127)

where Z(by, by) is the so-called supersymmetric index [55-58], and

4m [64] + [b2] A ([by] + [b2])°
F(by,by) = — | |b by| — ——— — — (3¢ =2
o000) = 5 (I + o) = ) 0 TR e
(1.28)
with a and c the trace anomaly coefficients. These are given by
3 3 1 3
a = ﬁ(StrR - trR) | c =5 (9rR? — 5trR) | (1.29)

where R denotes the R-symmetry charge, and “tr” runs over the fermionic fields in

the multiplets, so that for IV, vector multiplets and NV, chiral multiplets,

NX
trR” = N,+ ) (rr—1)". (1.30)

I=1

We shall return to the partition function (1.27) shortly.

1.4 Gauge/gravity duality with curved boundaries

The first example of a dual gravity description of a gauge theory on a curved back-
ground appeared in [59,60]. In particular, in [60] the authors constructed a su-
pergravity solution dual to four-dimensional A = 1 pure super-Yang-Mills theory,
living in the unwrapped dimensions of a D5-brane wrapping a two-cycle inside a
Calabi-Yau three-fold?.

In ref. [45] the free energy of ABJM theory on the round three-sphere was com-
puted. The authors further compared the large-N limit of the free energy to the
holographically renormalized on-shell action of gravity on Euclidean AdS,, which

reads

gren — n
sugra 2G4 ’

where G4 is Newton’s constant in four dimensions. This gave a precise match.

(1.31)

As new exact results for supersymmetric field theories on non-trivially curved

backgrounds were obtained using localization, this prompted the study of the

3In this, and similar constructions, the unwrapped directions of the branes, on which the field
theories live, are not curved.
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gauge/gravity duality in such settings. When the field theory is defined on a confor-
mally flat Riemannian manifold, the gravity dual must be asymptotically Fuclidean
anti-de Sitter (Euclidean AAdS). More generally, the gravity dual of field theories
on non-conformally flat backgrounds will be just asymptotically locally Euclidean
anti-de Sitter (Euclidean AlAdS).

This programme was initiated in [61] where a supersymmetric Euclidean Al-
AdS solution of four-dimensional minimal gauged supergravity was proposed as
the dual to three-dimensional Chern-Simons theories defined on a one-parameter
squashed three-sphere. The localized partition function of such theories had previ-
ously been computed in [49]. Generalizations have been discussed in [62,63], and a
two-parameter squashing was presented in [64]. In all these cases, the gravity duals
are supersymmetric solutions of four-dimensional A/ = 2 minimal gauged super-
gravity in Euclidean signature. They are comprised of a negatively curved Einstein
anti-self-dual metric on the four-ball 4, with a specific choice of anti-self-dual gauge
field. The concrete check was the comparison of the holographically renormalized
on-shell action with the free energy of the field theory.

Further examples of four-dimensional gravity solutions with curved boundary,
where localization was utilized in the dual field theory, have been discussed in [65,66].
In this case, the exactly calculable quantity on both sides of the duality is the so-
called supersymmetric Rényi entropy [67], which is a simple modification of the
partition function on the ellipsoid [49] (see also [61]).

The most general example in four bulk dimensions was given in [1]. This reference
presented the gravity duals to N/ = 2 Chern-Simons theories on an arbitrary toric
metric on the three-sphere. As described in the previous section, the localized
partition function of such theories was computed in [33], leading to the free energy
(1.25). The gravity solution in [1] is again a supersymmetric AIAdS solution of
N = 2 minimal gauged supergravity, and it encompasses all known such solutions.
It has anti-self-dual Weyl tensor and is equipped with a gauge field with anti-self-
dual field strength. From the Killing spinors, one can construct as a bilinear a Killing

vector IC. In terms of the toric coordinate, ¢; and 9, this can be parametrized as

On the conformal boundary, IC becomes the Killing vector (1.22). The holographi-
cally renormalized on-shell action was shown to be
2
m (bl +[b2])

Seoora = . 1.33
sugra 2G4 4 ’ ble | ? ( )

4References [62,63] also discuss several solutions with topology different from the four-ball;
however the precise field theory duals of these remain unknown. In chapter 2, we will only be
concerned with gravity solutions with topology of the four-ball.
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with G4 Newton’s constant, precisely matching the expectation from localization
(1.25). This constitutes a quite general check of the gauge/gravity duality. The
details of this general gravity solution will be the topic of chapter 2.

In five bulk dimensions, gravity duals of A" = 1 SCFTs on S x S? with a one-
parameter squashing of the S® have been constructed in [68], and the holographically
renormalized on-shell action computed. As discussed in the next section, it remains
an open problem to holographically match the supersymmetric Casimir energy of
such field theories, a problem recently addressed in [4].

There are also results in six bulk dimensions. In [69], the gravity duals of su-
persymmetric gauge theories on a squashed five-sphere have been constructed in
Romans F'(4) gauged supergravity. The holographic free energy and BPS Wilson

loops were successfully matched to the five-dimensional localization computations.

1.5 Supersymmetric Casimir energy

In this section, we turn to discuss properties of the Casimir energy of superconformal
field theories, i.e. the energy of the vacuum. The Casimir energy can be expressed
in terms of the trace anomaly coefficients, which appear in the trace of the energy-
momentum tensor and encode universal properties of CEFTs. In two dimensions, the

trace anomaly is proportional to the central charge c,

(T,1) = —ﬁR , (1.34)
where R is the Ricci scalar of the background. The central charge c character-
izes two-dimensional CF'T's, and constrains the renormalization group flows between
them [70]. In four-dimensional CFTs, there are two trace anomaly coefficients, a
and c, and we defined them already in (1.29).

Given a CFT on R, we can use a Weyl transformation to place the theory on
R x S9! where the sphere is round. Denoting the non-compact coordinate by 7,

we define the Casimir energy Fy as

Ey, = /Sd-ldd_lx\/ﬁ<TTT>, (1.35)

where T}, is the energy-momentum tensor, and the expectation value is taken in the
ground state of the theory. The evaluation of the Casimir energy leads to infinite
sums or products which must be regularized, for example using zeta functions such
as the Riemann, Hurwitz, or Barnes zeta functions. However, the result will in
general depend on the chosen regularization scheme and is therefore ambiguous.
Another way of regarding this regularization is by adding counterterms to the

action. These may cancel the divergences, however, dimensionless counterterms
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will affect the finite part of the computation. In two dimensions there is only one

dimensionless counterterm, namely

/ d*z\/gR , (1.36)

where R is the Ricci scalar of the background. This vanishes on the cylinder, R x S*,
and therefore the Casimir energy is well-defined and scheme-independent. It is well
known that the Casimir energy for a CFT on R x S! is [71]

C

ERxsl - _
0 127’1 ’

(1.37)
where r; is the radius of the S*.

In four dimensions there are several dimensionless counterterms. A basis for
these is given by the square of the Ricci scalar R?, the square of the Weyl tensor
Wy pe WHP? | the Euler density & = R, 77 —4RWR‘“’+R2, and the Pontryagin
density & = %GW’\“R,\HMRW”". On the background R x S® the only non-vanishing

of these is R?. Hence, we may add to the action a term

b 4 2
- - 1.

with an arbitrary coefficient b. This coefficient shows up in the trace of the energy-

momentum tensor,”

1
(T = )2 (a& — cW,,,eWH° + bOR) | (1.39)

along with the trace anomaly coefficients a and ¢, and shifts the Casimir energy of

the CFT on R x S3,

ER*S® — 4%(&1— g) . (1.40)
A self-contained derivation of this result can be found in the appendix of [3].

This discussion was on general CFTs, not necessarily supersymmetric ones. How-
ever, for four-dimensional supersymmetric CFTs, a quantity can be defined dubbed
the supersymmetric Casimir energy Egusy, which is in fact free of ambiguities [3].

From the path integral on a manifold of the form S* x M3 with M3 some three-
manifold, the Casimir energy Ejy may be defined in the limit where the radius g of

the Sl is taken to inﬁnity,
Ey = — lim — log Z[83, Ms] (1.41)
1m . .

In ref. [26], the authors computed the full partition function for N' = 1 theo-

®Although the right hand side of (1.39) vanishes for the conformally flat metric on R x S3.
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ries with an R-symmetry, consisting of vector multiplets and chiral multiplets on a
background of S' x S3 topology. This led to the result (1.27) above. Here we are
particularly interested in the round sphere Ms = S where we set |b;| = |bs| = %

In this case, from equation (1.28), F simplifies to

4 4
F(B) = ﬁﬁ (a+3c) — ﬁ(a—c) : (1.42)
Inserting the supersymmetric partition function (1.27) into equation (1.41), it can
be shown that the supersymmetric index Z(f) does not contribute when taking g to

infinity. The only contribution comes from (1.42) and one finds the Casimir energy,

4
Egsy = 2—7(a+30) , (1.43)

which is the supersymmetric Casimir energy.

In chapter 3, we focus on the supersymmetric Casimir energy following [2,3]. We
consider the theories of section 1.2.1 to quadratic order in the fields, as we are con-
cerned with the vacuum energy. From both a Euclidean path integral approach on
S1x 83, as well as canonical quantization in Lorentzian signature on R x S%, adopting
a specific choice of regularization, we recover (1.43). We then argue that in fact the
supersymmetric Casimir energy is free of ambiguities, provided the regularization

scheme preserves supersymmetry.

1.5.1 Holography and the supersymmetric Casimir energy

According to the gauge/gravity duality, N' = 1 superconformal field theories on R x
S3 have a dual description in terms of supersymmetric solutions of five-dimensional
supergravity. However, the gravity dual reproducing the supersymmetric Casimir
energy (1.43) remains to be identified.

The appropriate gravity solution must admit a gauge field coupling to the R-
symmetry of the boundary field theory. For the conformally flat case of R x S?, an
obvious candidate for the gravity dual is pure AdSs. Indeed, the boundary is R x S?
and a constant gauge field A = cdt can be turned on. However, as we will further
comment on in chapter 4, the field theory requires an electric charge in the bulk, in
turn requiring a non-trivial gauge field so that the solution is only asymptotically
AdS.

The conditions for obtaining supersymmetric solutions to minimal gauged super-
gravity in five dimensions were presented about a decade ago in [32]. By assuming
the existence of a Killing spinor, the authors constructed bilinears of this spinor,
leading to constraints on the metric and graviphoton. Solutions fall in two distinct
classes depending on whether the supersymmetric Killing vector is timelike or null.

In chapter 4 we will review these constraints in the timelike case. This formalism
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was used to construct the first example of an AAdSs black hole free of closed timelike
curves [72]. Other AAdSs solutions were obtained by different methods in [73-76],
with the solution of [76] being the most general in that it encompasses the others
as special cases. The solution of [76] also contains the most general AAdSs black
hole known within minimal gauged supergravity. It was shown in [77] that in the
supersymmetric limit this black hole takes the form of the timelike class of [32]. The
formalism of [32] also led to the construction of AlAdSs solutions in the timelike
case [68,78,79] and the null case [80] (the latter based on [81]). Solutions of five-
dimensional minimal gauged supergravity with an SU(2) x U(1) x U(1) isometry
where studied in [68].

We report in chapter 4 on an attempt to match A/ = 1 superconformal field
theories on R x S® with a supersymmetric AAdSs solution. This smooth supersym-
metric solution known as a topological soliton was first found in [76]. This is based

on ref. [4].
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Chapter 2

Gravity duals of supersymmetric

gauge theories on three-manifolds

In this chapter we construct the gravity duals of supersymmetric gauge theories
on three-manifolds. In section 2.1 we present a supersymmetric solution of four-
dimensional minimal gauged supergravity in Euclidean signature, comprising a met-
ric with anti-self-dual Weyl tensor and a graviphoton with anti-self-dual field strength,
and we find explicitly the spinor e that solves the Killing spinor equation. In sec-
tion 2.2 we discuss regularity of the solution, assuming topology of the four-ball,
and show that the conformal boundary is of the form discussed in section 1.2.2, for
which the localized partition function was computed in [33]. Assuming at least a
U(1) x U(1) isometry, we compute in section 2.3 the holographically renormalized
on-shell action. We arrive at the expression advertised earlier in equation (1.33),
matching the field theory result (1.25). We then discuss in section 2.4 previously
known explicit examples, which are obtained as special cases of our solution. We
end this chapter with a discussion of possible generalizations in section 2.5. This

chapter is based on [1].

2.1 Local geometry of self-dual solutions
The action of the bosonic sector of four-dimensional N = 2 gauged supergravity [82]

in Euclidean signature is

1
= — —92A — pv 4
Ssugra 167TG4 / (R 27 FMVF )\/gd T, (2'1)

where R denotes the Ricci scalar of the four-dimensional metric g,,. Throughout
this chapter, we normalize the cosmological constant to A = —3. The graviphoton

is an Abelian gauge field A with field strength F' = dA. The equations of motion
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derived from (2.1) are

Ry + 39 = 2 (Fuvap - %;FPUFPUQW) ’
d#yF o= 0. (2.2)

This is simply Einstein-Maxwell theory with a cosmological constant. When F' is
anti-self-dual, *,F' = —F', the right hand side of the Einstein equation in (2.2) is
easily shown to vanish, so that the metric g, is necessarily Einstein.

A solution is supersymmetric provided it admits a (not identically zero) Dirac

spinor e satisfying the Killing spinor equation
) 1 i vp
VN — IAN + 51—‘# + é_lepF FM e = 0. (23)

This takes the same form as in Lorentzian signature, except that here the gamma ma-
trices generate the Clifford algebra Cliff (4, 0) in an orthonormal frame, so {T',,T",} =
2g,,. Notice that we may define the charge conjugate of the spinor € as € = Be”,
where B is the charge conjugation matrix satisfying B~'I",B = I, BB* = —1 and
may be chosen to be antisymmetric BT = —B [61]. Then provided the gauge field
A is real (as we will assume here) € satisfies (2.3) with A — —A.

In [83,84] the authors studied the local geometry of Euclidean supersymmetric
solutions to the above theory for which F' is anti-self-dual. It follows that the metric

g has anti-self-dual Weyl tensor W,

1
W;wpa = _§€MV)\HWpa>\n- (24)

Adopting a standard abuse of terminology we shall refer to such solutions as “self-
dual”. Supersymmetry also equips this background geometry with a Killing vector
field IC constructed as a bilinear of the Killing spinor. Self-dual Einstein metrics with
a Killing vector have a rich geometric structure that has been well-studied (see for
example [85]) and shown to be related by a Weyl rescaling to a (local) Kéhler metric
with zero Ricci scalar. The metric is described by a function solving a single PDE,
known as the Toda equation. This function also specifies uniquely the gauge field
A. In fact we will show that F' = dA is % times the Ricci-form of the conformally
related Kéhler metric, so that A is the natural connection on C~%/2, where C denotes
the canonical bundle of the Kahler manifold. Moreover, we will reverse the direction
of implication in [83,84] and show that any self-dual Einstein metric with a choice
of Killing vector field admits (locally) a solution to the Killing spinor equation (2.3).
This may be constructed from the canonically defined spin® spinor that exists on

any Kahler manifold.
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2.1.1 Local form of the solution

In this section we briefly review the local geometry determined in [83,84]. The
existence of a non-trivial solution to the Killing spinor equation (2.3), together with
the ansatz that F' is anti-self-dual and real, implies that the metric g,, is Einstein
with anti-self-dual Weyl tensor. There is then a canonically defined local coordinate

system in which the metric takes the form

1
dsipp = 55[13*1(d¢)+-¢)24—Z?(dy24—4ewdzd2)] : (2.5)
where
1
B = 1- §y8yw , (2.6)
d¢ = 10,Bdy A dz —i0;Bdy A dZ + 2i0,(Be")dz A dZ , (2.7)

and w = w(y, z, Z) satisfies the Toda equation
0.0:w+ 92" = 0. (2.8)

Notice that the function w determines entirely the metric. The two-form d¢ is
easily verified to be closed provided the Toda equation (2.8) is satisfied, implying
the existence of a local one-form ¢.

The vector K = 0, is a Killing vector field, and arises canonically from supersym-
metry as a bilinear K* = ie!T*I'se, where € is the Killing spinor solving (2.3) and
I's = I'p123. Notice that the corresponding bilinear in the charge conjugate spinor €©
is i(e¢)THT'5e¢ = —K#. Thus as in the discussion after equation (2.3) we may change
variables to € = ¢©, A = —A. In the tilded variables the equations of motion (2.2)
and Killing spinor equation (2.3) are identical to the untilded equations, but now
A= —Aand K = —K. Thus the sign of the instanton is correlated with a choice
of sign for the supersymmetric Killing vector, with charge conjugation of the spinor
changing the signs of both A and K.

As we shall see in the next section, the coordinate y determines the conformal
factor for the conformally related Kéahler metric, and is also the Hamiltonian function
for the vector field K = 0, with respect to the associated symplectic form. The
graviphoton field is given by

1 : .

A = —134@wm¢+¢y+i@w¢w—i@w&a (2.9)
We are of course free to make gauge transformations of A, and we stress that (2.9)
is in general valid only locally.

Having summarized the results of [83,84], in the next two sections we study this

local geometry further. In particular we show that any self-dual Einstein metric
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with Killing vector IC = 0y, which then takes the form (2.5), admits a Killing spinor
e solving (2.3), where A is given by (2.9).

2.1.2 Conformal Kahler metric

As already mentioned, every self-dual Einstein four-metric with a Killing vector is

conformally related to a scalar-flat Kéahler metric. This is given by

2 1.2 9219
dsiine = d8° = y dsipg

= By +¢)* + B (dy® + 4e”dzdz) . (2.10)
Introducing an associated local orthonormal frame of one-forms,
& = By, & = B V:dy+¢), é+ie® = 2(Be®)Vdz, (2.11)
the Kahler form is

w = % 4B, (2.12)

where we have denoted é® A é! = €% etc. That (2.12) is indeed closed follows

immediately from the expression for d¢ in (2.7). The Ké&hler form is self-dual with

0123

respect to the natural orientation on a Kahler manifold, namely é above, and it

is with respect to this orientation that the curvature F' and Weyl tensor are anti-
self-dual. We denote the corresponding orthonormal frame for the self-dual Einstein
metric (2.5) as e* =y~ 1é% a=0,1,2,3.

Next we introduce the Hodge type (2,0)-form

Q = (%+ie) A (2 +ie?) (2.13)
and recall that the metric (2.10) is Kéhler if and only if
dQ = iPAQ, (2.14)

where P is then the Ricci one-form, with Ricci two-form R = dP. Recall that

R = %prawm where pra denotes the Riemann tensor for the Kahler metric.

It is straightforward to compute d€2 for the metric (2.10), and one finds that
P = 24, (2.15)

where A is given by (2.9). Thus the gauge field is the natural connection on C~/2,

where C denotes the canonical line bundle for the Kahler metric. The curvature is
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correspondingly F' = dA = %R. A computation gives

—2RNw = Biew [0.0:w + 8§e“’} el (2.16)
so that the Kéhler metric is indeed scalar flat if the Toda equation holds. Since
the Ricci two-form is Hodge type (1,1) and the metric is scalar flat, it follows
immediately that F' = %R is anti-self-dual. This is because the anti-self-dual two-
forms on a Kéhler four-manifold are precisely the primitive (1, 1)-forms (i.e. having
zero wedge product with w, as in (2.16)), so A? & A[()l’l). An explicit computation
shows that with respect to the frame (2.11)

Fo= =0, [B o] (" — )+ g [i60. — 0B 0] (&7 + )

8610/2
(0. + 0:)[B Lo, w] (&% — ) } , (2.17)

which is then manifestly anti-self-dual. One can also derive the formula
F = —(GydC+y’KAJK) (2.18)

where here we mean by K = g,,,K”da# the one-form dual to the Killing vector I (in
the self-dual Einstein metric), and J is the complex structure tensor for the Kahler
metric (2.10). A further short computation leads to
F (1'85 ) Lioay + = (Ay) (2.19)

= (—-i00y = —i00y + —(Ay)w , .

y y 4y
where 0 denotes the standard operator on a Kéhler manifold, the superscript “—” in
(2.19) denotes anti-self-dual part, and A denotes the scalar Laplacian for the Kéhler
metric.

Let us note that the Kahler form is explicitly
w = dyA(dy + ¢)+ 2iBe¥dz AdZ . (2.20)

Thus dy = —0y.w, which identifies the coordinate y as the Hamiltonian function
for the Killing vector K = 9. Of course, y? is also the conformal factor relating the

self-dual Einstein metric to the Kéhler metric in (2.10).

2.1.3 Killing spinor: sufficiency

In this section we show that a self-dual Einstein metric with Killing vector K =
Oy, which necessarily takes the form (2.5), admits a solution to the Killing spinor
equation (2.3) with gauge field given by (2.9). The key to this construction is to

begin with the canonically defined spin® spinor that exists on any Kéahler manifold.
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The positive chirality spin bundle on a Kahler four-manifold takes the form S, =
C'? @ C~'/2, where C denotes the canonical bundle. The spin bundle then exists
globally only if the latter admits a square root, but the spin® bundle S, ® C~/? =
1®C~" always exists globally. In particular the first factor in S, ®C~ 2 =2 1®C ' is
a trivial complex line bundle, whose sections may be identified with complex-valued

functions, and there is always a section ( satisfying the spin® Killing spinor equation
(Va=iP)¢ = 0. (2.21)

Here the hat denotes that we will apply this to the conformal Kahler metric (2.10)
in the case at hand, and P is the Ricci one-form potential we encountered above.
The connection term in (2.21) precisely corresponds to twisting the spin bundle S
by C~/2. Using the result earlier that P = 2A the spin® equation (2.21) may be

rewritten as
(Vi—idu) ¢ = 0, (2.22)

which may already be compared with the Killing spinor equation (2.3).

More concretely, the solution to (2.21), or equivalently (2.22), is simply given by
a constant spinor ¢, so that 9, = 0. This equation makes sense globally as ( may
be identified with a complex-valued function. To see this it is useful to take the

following projection conditions

~

¢ = 0o, Ty¢ = il (2.23)

following e.g. reference [31]. Here fa, a = 0,1,2,3, denote the gamma matrices in
the orthonormal frame (2.11).} The covariant derivative of ¢ is then computed to
be

3 L. e i~ ~ -
V. = <8H + 1% ’Tl,p) ¢ = Ou(+35 (wfl +w#23) ¢ = 0,0+1A,¢, (2.29)

where w,”” is the spin connection of the conformal Kahler metric. We used here the
expression (2.9) for A, as well as the explicit form of the spin connection given in
the appendix of [1]. It follows that simply taking ¢ to be constant, 9,( = 0, solves
(2.21). This is a general phenomenon on any Kéhler manifold.
Using the canonical spinor ( we may construct a spinor e that is a solution to the
Killing spinor equation (2.3). Specifically, we find
1

<= o (1 + B—1/2f0> c. (2.25)

1Strictly speaking the hats are redundant, but we keep them as a reminder that in this section
the orthonormal frame is for the Kahler metric.
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To verify this one first notes that the spin connections of the Kahler metric and the

self-dual Einstein metric are related by
. 1.
VMC = V,uC + §Fu (au log y)C ’ (2'26)

where f# = yI', in a coordinate basis. The Killing spinor equation then takes the

form

0+ 70,7y — 51,0, logy) —iA,+ %f,,, +FL I, e = 0. (22
To verify this is solved by (2.25) one simply substitutes (2.25) directly into the left-
hand-side of (2.27). Using the explicit expressions for the spin connection, the gauge
field, the field strength, as well as the projection conditions on the canonical spinor
¢ and (2.21), one finds that (2.27) indeed holds.

From this analysis we can conclude that the self-dual Einstein metric (2.5) and the
gauge field (2.9), which are solutions to Einstein-Maxwell theory in four dimensions,
yield a Dirac spinor € that is a solution to the Killing spinor equation (2.3). This
implies that these self-dual Einstein backgrounds are always locally supersymmetric
solutions of Euclidean N' = 2 gauged supergravity. We turn to global issues in the

next section.

2.2 Asymptotically locally AdS solutions

In this section and the next we will assume that we are given a complete (non-
singular) self-dual Einstein metric with a Killing vector, which then necessarily
takes the local form (2.5). Moreover, we shall assume this metric is asymptotically
locally Euclidean AdS,? and in later subsections also that the four-manifold M, on
which the metric is defined is topologically a ball. A two-parameter family of such
self-dual solutions on the four-ball, generalizing all previously known solutions of
this type, was constructed in [64]. In section 2.4 we shall review these solutions,
and also introduce a number of further generalizations. In particular, the results
of the current section allow us to deform the choice of Killing vector (which was
essentially fixed in previous results), and we will also explain how to generalize to
an infinite-dimensional family of solutions satisfying the above properties, starting
with the local metrics in [86].

With the above assumptions in place, we begin in this section by showing that
if the Killing vector K = 0, is nowhere zero in a neighbourhood of the conformal
boundary three-manifold M3 then it is a Reeb vector field for an almost contact

structure on Mj3. We then reproduce the same geometric structure on Mz studied

2Since the metric has Euclidean signature one might more accurately describe this boundary
condition as asymptotically locally hyperbolic, which is often used in the mathematics literature.
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from a purely three-dimensional viewpoint in [24] and reviewed in section 1.2.2.
In particular the asymptotic expansion of the Killing spinor € leads to a Killing
spinor equation of the form (1.11). This is important, as it shows that the dual field
theory is defined on a supersymmetric background of the form studied in [24], for
which the exact partition function of a general N’ = 2 supersymmetric gauge theory
was computed in [33] using localization. Having studied the conformal boundary
geometry, we then turn to the bulk in section 2.2.4. In particular we show that, with
an appropriate restriction on the Killing vector I, the conformal Kahler structure
of section 2.1.2 is everywhere non-singular. This allows us to prove in turn that
the instanton and Killing spinor defined by the Kahler structure are everywhere
non-singular.

In particular this means that each of the self-dual Einstein metrics in section 2.4
leads to a one-parameter family (depending on the choice of Killing vector K) of
smooth supersymmetric solutions. In other words, if the self-dual Einstein metric
depends on n parameters, the complete solution will depend on n 4 1 parameters.
We emphasize that in the previously known solutions the only example of this phe-
nomenon is the solution of [61]. There the Einstein metric was simply AdS,, which

doesn’t have any parameters.

2.2.1 Conformal boundary at y =0

We are interested in self-dual Einstein metrics of the form (2.5) which are asymp-
totically locally Euclidean AdS (hyperbolic), in order to apply to the gauge/gravity
duality. From the assumptions described above there is a single asymptotic region

. 2 .
where the metric approaches % +r2dsﬁ43 as r — 0o, where M3 is a smooth compact

three-manifold. In fact the metrics (2.5) naturally have such a conformal boundary
at y = 0. More precisely, we impose boundary conditions such that w(y, z, Z) is

analytic around y = 0, so
w(y,z,2) = woy(z 2) +yway(z, 2) + 1y°we) (2, 2) + O°) . (2.28)
It follows that
B(y,z2) = 1-gywn)(z,2) — 59°we(z,2) + Oy°) (2.29)
and that the metric (2.5) is

dy? 1
dsipp = [1+ O(y)] y—yQ + " [(dY + ¢())* + 4e“@dzdz + O(y)] . (2.30)

Here we have also expanded the one-form tangent to M3

0y, 2,2) s = 00)(2,2) +ydu)(z,2) + O°). (2.31)
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In fact by expanding (2.7) one can show that ¢y = 0. Setting » = 1/y this is to

leading order

d 2
Ao = 5 7 (A0 + 9))? + de"0dzdz] (2.32)

as r — 00, so that the metric is indeed asymptotically locally Euclidean AdS
around y = 0. Of course, as usual one is free to redefine the radial coordinate
r — rO(1, 2z, z), where O is any smooth, nowhere zero function on M3, resulting in
a conformal transformation of the boundary metric ds3;, — ©°ds},,. However, in
the present context notice that r = 1/y is a natural choice of radial coordinate.

With the analytic boundary condition (2.28) for w it follows automatically that
K = 0y is nowhere zero in a neighbourhood of the conformal boundary y = 0. As we
shall see, this will reproduce the same structure on Mj as [24], but we should stress
that this is not the general situation. For example, one could take the standard
hyperbolic metric for Euclidean AdS, conformally embedded as a unit ball in R*,
and take K to be the Killing vector that rotates the first factor in R? @ R? = R4,
The ansatz (2.28) is thus certainly a restriction on the class of possible globally
regular solutions, although all examples in section 2.4 have choices of Killing vector
for which this expansion holds.

Returning to the case at hand, the conformal boundary is a compact three-
manifold M3 (by assumption), and from the above discussion a natural choice of

representative for the metric is
dsy, = (Y + d))* +4e"0dzdz . (2.33)

Notice that the form of the metric (2.33) is precisely of the form (1.13), as studied

in [33]. As discussed in section 1.2.2, an important role is played by the one-form
n = dy+ o) , (2.34)
which has exterior derivative
dn = doy = 2i0y(Be") |y=o dz N dZ = iwm)e"@dz AdZ . (2.35)

The form 7 is a global almost contact one-form on Ms, see equation (1.15).
The Killing vector K = 0y, is the Reeb vector for the almost contact form 7, as

follows from the equations
Km = 1, Kidn = 0. (2.36)

The orbits of K thus foliate M3, and moreover this foliation is transversely holomor-

phic with local complex coordinate z. When the orbits of K all close it generates a
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U(1) symmetry of the boundary structure, and the orbit space M3/U(1) is in general
a compact orbifold surface, on which z may be regarded as a local complex coor-
dinate. These are generally called Seifert fibred three-manifolds in the literature.
On the other hand, if K has at least one non-closed orbit then, since the isome-
try group of a compact manifold is compact, we deduce that M3 admits at least
a U(1) x U(1) symmetry, and the structure defined by 7 is a toric almost contact
structure. In this case we may introduce standard 2m-period coordinates @1, 3 on
the torus U(1) x U(1) and write

IC - 3,;, - b18¢1+b28¢2 . (237)

From (2.35) we deduce that the Taylor coefficient w is a globally defined basic
function on M; — that is, it is invariant under K = d,,. Moreover, the almost contact
form 7 is a contact form precisely when the function w(y) is everywhere positive. We
shall see later that there are examples for which 7 is contact and not contact. On
the other hand, the coefficient w(g) is in general only a locally defined function of
z,Z, as one sees by noting that the transverse metric gr = e*©dzdz is a global
two-tensor, but in general the complex coordinate z is defined only locally.® It will

be useful in what follows to define a corresponding transverse volume form
volr = 2ie"OdzAdz . (2.38)
Again, this is a global tensor on Mj3, with
dnp = d¢ = ——volr . (2.39)

2.2.2 Boundary Killing spinor

In this section we show that the Killing spinor € induces a Killing spinor y on the
conformal boundary Mj that solves the Killing spinor equation (1.11).

For the self-dual Einstein metric (2.5) we take the orthonormal frame
0 L iy 1 L1y 2, :.3 2 w12
el = —BYdy, e = —-B /(dY+¢), e +ie’ = —(Be¥)/3dz. (2.40)
Y Y Y

Correspondingly, we take the following frame for the metric (2.33) on the three-

dimensional boundary;,

elyy = di+ ¢ , el + ey = 2e"©/%dz (2.41)

3For example, for Euclidean AdS, realized as a hyperbolic ball and with K = 9, generating
the Hopf fibration of the boundary S® then gr is the standard metric on the round two-sphere,
implying that w(z, 2) = —2log(1 + |2|?) which blows up at z = oo (which is a smooth copy of
St Ms = 53)
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and will use indices 4, j, k = 1,2, 3 for this orthonormal frame.

We next expand the four-dimensional Killing spinor equation (2.3) as a Taylor
series in y. One starts by noting that I'* = e/, I'* = O(y). But as I'), = ¢*,I', =
O(1/y) and the field strength expands as F' = Flg) + yF(1) + O(y?) we see that

i
TR, = Oy) (2.42)

The Killing spinor equation becomes

. 1 1 i
[Vf’) - IA(O)M + 2—y (1 + Zyw(1)> 6(3)“<Fi — Fz(]> + O(y) e =0 y (243)
where = 1, z, Z, and where
1
A(O) = ——w(1)€(3)—|— g _’LU(O)/Q(a a) 6(3) — ge_w(o)/ (a +a) 0)6 (3) s (244)

is the lowest order term in the expansion of A given by (2.9). We emphasize again
that this expression for A is in general only valid locally. The Killing spinor e

then expands as

1 1
¢ = |1+ To+ quua T+ Ol )]Co, (2.45)

where (j is the lowest order (y-independent) part of the Kéhler spinor . Substituting
this into (2.43) gives a leading order term that is identically zero. The subleading

term then reads
{(VEP’) — i) (14 To) + éwu)(no - n)} G = 0. (2.46)
The projections (2.23), in the current context, read
¢ = iloCo, 3o = 1200 - (2.47)
We may choose the following representation of the gamma matrices:

0 0 il
r, — T r, = ? (2.48)
Vi 0 —112 O

with 7; the Pauli matrices. The projection conditions then force (; to take the form

G = X where y = Xo . (2.49)

0 Xo

Here y is a two-component spinor and Yy is simply a constant. The three-dimensional

35



Killing spinor equation then becomes
(VE?’) — iA(O)i - éw(l)%)X = 0. (2'50)

Clearly, this equation is of the form (1.11), with* A®) = A), h = —iw(), and
V@) = 0. It is indeed important that our Killing spinor equation reproduces equation
(1.11), so that the conformal boundary admits the A' = 1 field theories considered
in [24], for which the localized partition function was computed in [33].

As already mentioned below (2.32), supersymmetry singled out a natural repre-
sentative of the conformal class of the boundary metric. However, one is free to
change the radial coordinate as r — Or, resulting in a conformal transformation
of the boundary metric ds3,, — ©ds},,. This also shifts the fields A® VG and
h appearing in the Killing spinor equation (2.50). For further details on this see
appendix B of [1].

2.2.3 Non-singular gauge

In a neighbourhood of the conformal boundary, the Kahler metric is defined on
[0, €) X Mj, for some € > 0. This follows since via the conformal rescaling (2.10) the

Kahler metric asymptotes to
ds%(éhler = dy2 +d5?\43 ) (251)

near to the conformal boundary y = 0. In particular the Kahler structure is smooth
and globally defined in a neighbourhood of this boundary. Recall also that the gauge
field A is a connection on C~/2. Since every orientable three-manifold is spin, the
canonical bundle C admits a square root in this neighbourhood, and so A restricts
to a bona fide connection one-form on Mjs. The corresponding U(1) principal bundle
can certainly be non-trivial for generic topology of Mj. In this section we analyze the
simpler case where Mj = S®. Here A necessarily restricts to a global one-form A
on the conformal boundary, but as we shall see, the explicit representative (2.44) is
in a singular gauge. Correspondingly, since the boundary Killing spinor y is a spin®
spinor, the solution (2.49) to (2.50) is similarly in a singular gauge. In this section
we correct this by writing A as a global one-form on Mz = S 3,

The expression (2.44) for the restriction of A to the conformal boundary is of
course only well-defined up to gauge transformations. We may rewrite the expression
in (2.44) as

1 i 1
local =
Al = —Zw(l)(d@b + ¢o) + Zﬁzw(g)dz — Zﬁgw(o)dz , (2.52)
“Note that the superscript on A®) is that of section 1.2.2 to remind that A®) is a three-
dimensional field, while the subscript on A (g refers to the lowest order in the asymptotic expansion
of the graviphoton (2.9). We hope this does not cause confusion.

36



adding the superscript label “local” to emphasize that in general this is only a local
one-form. The first term is —}lw(l)n, which is always a global one-form on M3,
independently of the topology of Ms. However, the last two terms are not globally
defined in general. We may remedy this in the case where M3 = S® by making a

gauge transformation, adding an appropriate multiple of d,
A L + o |dv + 0wz — s dz (2.53)
= —-w — o, wydz — —wpdz| |, :
(0) JranTe 40 (0) 40 (0)
with o a constant. This is then a global one-form on M; = S3 if and only if

the curvature two-form of the connection in square brackets lies in the same basic

cohomology class as dn = d¢g. Concretely, we write

ody) + i@zw(o)dz — i@zw(o)dz = odvp+=Z = on+a, (2.54)
and compute
= = —%aﬁzw(o)dz Ndz = (why + we) e %dz Adz
= i (wiy + we)) volr (2.55)

where we used the Toda equation (2.8) and Taylor expanded. Since 7 is a global one-
form on Mz = S3 it follows that (2.53) is a global one-form precisely if « defined
via (2.54) is a global basic one-form, d.e. « is invariant under Lp, and satisfies

Opoa = 0. In this case we have

1
/ nA-dz = / nAdn, (2.56)
M3 % M3

(M3) = R lie in the

same basic cohomology class. Indeed, this is the case if and only if %dE and dn differ

which may be interpreted as saying that [%dE] = [dn] € H}

asic

by the exterior derivative of a global basic one-form.

The integral on the right hand side of (2.56) is the almost contact volume of Ms:

Vol, = / nAdn :/ m77/\VolT :/ &\/deth3d3x.(2.57)
Ms My 2 My 2

This played an important role in computing the classical localized Chern-Simons
action in [33], which contributes to the field theory partition function on Mj. Using
(2.55), (2.56) and (2.57) we see that A in (2.53) is a global one-form if we choose

the constant p via

1
4o Ms

(wiyy +we) Vdet g, d’x = Vol, . (2.58)
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We shall return to this formula in section 2.2.5

2.2.4 Global conformal Kahler structure

Recall that at the beginning of this section we assumed we were given a complete
self-dual Einstein metric with Killing vector £ = 0y, of the local form (2.5). We
would like to understand when the conformal Kahler structure, studied locally in
section 2.1.2, is then globally non-singular. As we shall see, this is not automatically
the case. Focusing on the case of toric metrics on a four-ball (all examples in section
2.4 are of this type), with an appropriate restriction on I we will see that the
conformal Kéhler structure is indeed everywhere regular. It follows in this case that
the Kahler spin® spinor and instanton F' = %R are globally non-singular, and thus
that the Killing spinor e given by (2.25) is also globally defined and non-singular.
Before embarking on this section, we warn the reader that the discussion is a little
involved, and this section is probably better read in conjuction with the explicit
examples in section 2.4. In fact the Euclidean AdS,; metric in section 2.4.1 displays
almost all of the generic features we shall encounter.

The self-dual Einstein metrics of section 2.4 are all toric, and we may thus

parametrize a choice of toric Killing vector I as
K = b0, +b20,, , (2.59)

where we have introduced standard 27-period coordinates 1, @2 on the torus U(1) x
U(1). It will be important to fix carefully the orientations here. Since the metrics
are defined on a ball, diffeomorphic to R* & R? @& R? with U(1) x U(1) acting in
the obvious way, we choose 0, so that the orientations on R? induce the given
orientation on R* (with respect to which the metric has anti-self-dual Weyl tensor).
This fixes the relative sign of b; and by. Given that we have also assumed that K has
no fixed points near the conformal boundary, we must also have b; and by non-zero.
Thus by /by € R\ {0}, and its sign will be important in what follows.

Since the self-dual Einstein metric is assumed regular, the one-form K and its
exterior derivative dIC are both globally defined and regular. The self-dual two-form

¥ = (dK)" = Z(dK 4+ *dK) , (2.60)

DN | —

is a twistor [86], and the invariant definition of the function/coordinate y in section
2.1 is given in terms of its norm by
2
Y2

1 v
= Y| = 5. (2.61)
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The complex structure tensor for the conformal Kahler structure is correspondingly

Jr, o=y, (2.62)
where indices are raised and lowered using the self-dual Einstein metric. It is then
an algebraic fact that J? = —1. The conformal Kahler structure will thus be every-
where regular, provided the functions y and 1/y are not zero. Of course y = 0 is
the conformal boundary (which is at infinity, and is not part of the self-dual Ein-
stein space). We are free to choose the sign when taking a square root of (2.61),
and without loss of generality we take y > 0 in a neighbourhood of the conformal
boundary at y = 0. Since everything is regular, in particular the norm of the twistor
U cannot diverge anywhere (except at infinity), and thus y # 0 in the interior of the
bulk Mjy. It follows that y is everywhere positive on Mjy.

The Killing vector K is zero only at the “NUT”, namely the fixed origin of R* &
R? @ R%2. At this point the two-form dX, in an orthonormal frame, is a skew-
symmetric 4 X 4 matrix whose weights are precisely the coefficients by, by in (2.59).5
It follows from the definitions (2.60) and (2.61), together with a little linear algebra

in such an orthonormal frame, that

1
YNnurT = o (2.63)

b1 + ba|

The conformal Kahler structure will thus be regular everywhere, except poten-
tially where 1/y = 0. Suppose that 1/y = 0 at a point p € My \ {NUT}. Then
K =9y |,# 0, and thus from the metric (2.5) we see that 1/(By?) |, # 0. It follows
that the function B must tend to zero as 1/y? as one approaches p. We may thus
write B = 5 + O(1/y?), where ¢ = ¢(z, z) is non-zero at p. Using the definition of
B in terms of w in (2.6) we thus see that d,w = % — 5—5 + O(1/y*). There are then
various ways to see that the corresponding supersymmetric supergravity solution
is singular. Perhaps the easiest is to note from the Killing spinor formula (2.25),

together with the fact that we may normalize (T = 1, we have

1
efe = % (1+B7), (2.64)
which from the above behaviour of B then diverges as we approach the point p. It
follows that the Killing spinor € is divergent at p, and the solution is singular.
The solutions are thus singular on M, \ {NUT} if and only if {1/y = 0} \ {NUT}
is non-empty. Since ynur = 1/|by + be|, the analysis will be a little different for
the cases by /by = —1 and by /by # —1. We thus assume the latter (generic) case

5This is perhaps easiest to see by noting that to leading order the metric is flat at the NUT,
so one can compute d in an orthonormal frame at the NUT using the flat Euclidean metric on
R? @ R2.
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for the time being. As in the last paragraph, let us suppose 1/y [,= 0. Due to the
behaviour of B and w near p, it follows from the form of the metric (2.5) that p
must lie on one of the axes, i.e. at p; = 0 or at ps = 0, where (p;, ;) are standard
polar coordinates on each copy of R2ZGR? = R* = M,, i = 1,2.% In either case there
is then an S* > p locus of points where 1/y = 0, as follows by following the orbits
of the Killing vector d,, or d,,, respectively.

To see when this happens, our analysis will be based on the fact that, since the
Killing vector has finite norm in the interior of My, one can straightforwardly show
that y diverges if and only if ||dy|| = 0. It is then convenient to consider the
function y restricted to the relevant axis, i.e. y |{p,=01= y2(p2) OF ¥ |{pe=0} = Y1 (p1)-
We have 3;(0) = y2(0) = ynur > 0. Suppose that y;(p) (for either ¢ = 1,2) starts
out decreasing along the axis as we move away from the NUT. Then in fact it
must remain monotonic decreasing along the whole axis, until it reaches y = 0 at
conformal infinity where p = co. The reason for this is simply that if y;(p) has a
turning point then” dy = 0, which we have already seen can happen only where y
diverges, but this contradicts the fact that y;(p) is decreasing from a positive value
at p = 0 (and is bounded below by 0). On the other hand, suppose that y;(p) starts
out increasing at the NUT. Then since at conformal infinity y;(cc) = 0, it follows
that y;(p) must have a turning point at some finite p > 0. At such a point y will
diverge, and from our above discussion the solution is singular.

This shows that the key is to examine dy at the NUT itself. Recall that the coor-
dinate y is a Hamiltonian function for the Killing vector IC, i.e. dy = —K_w. From
(2.62), we also know that w is related to the two-form ¥ = (dK)* by w = —y3¥,
yielding dy = 3°KL(dK)". At the NUT we may again use the polar coordinates
(pi, pi) for the two copies of R?, where the metric is to leading order the metric on
flat space. In the usual orthonormal frame for these polar coordinates, using the
above formulae we then compute to leading order

—(blf’r—IbQ)Q sign(by + ba)p1

0
(dy)Ivur =~ . : (2.65)
— G sign(by + b2)ps

0

Thus when by /by > 0 we see that y;(p) starts out decreasing at the NUT, for both
i = 1,2, and from the previous paragraph it follows that the solution is then globally
non-singular! On the other hand, the case by /by < 0 splits further into two subcases.
For simplicity let us describe the case where by > 0 (with the case by < 0 being
similar). Then when b; /by < —1 we have ys(p) starts out increasing at the NUT,

SNotice that when by /by = —1 in fact 1/y = 0 at the NUT itself, p; = py = 0.
"Notice that dy necessarily points along the axis, given the form of the metric (2.5).
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which then leads to a singularity along the axis p; = 0 at some finite value of po;
on the other hand, when —1 < by /by < 0 we have that y;(p) starts out increasing
at the NUT, which then leads to a singularity along the axis p, = 0 at some finite
value of p;. Notice these two subcases meet where by /by = —1, when we know that
1/y =0 at the NUT itself, p; = ps = 0.

This leads to the simple picture that all solutions with b, /by > 0 are globally
regular, while all solutions with b; /by < 0 are singular, except when by /by = —1. In
this latter case y is infinity at the NUT. As one moves out along either axis, y is then
necessarily monotonically decreasing to zero by similar arguments to those above.
Thus the b;/by = —1 solution is in fact also non-singular, although qualitatively
different from the solutions with b; /by > 0. One can show that, regardless of the
values of b; and by, the complex structure (2.62) is always the standard complex
structure on flat space at the NUT, meaning that when b;/bs > 0 the induced
complex structure at the NUT is C2?, while when b, /by = —1 the NUT becomes
a point at infinity in the conformal Kéhler metric, with the Kéhler metric being
asymptotically Euclidean. In particular the instanton is zero at the NUT in this
case, and so is regular there.

Notice that, for the regular solutions, since K is nowhere zero away from the NUT
we may deduce that also dy = —K_w is nowhere zero (as w is a global symplectic
form on M, \ {NUT}). In particular, y is a global Hamiltonian function for &, and
in particular it is a Morse-Bott function on M. This implies that y has no critical
points on M, \ {NUT}, and thus that yyyr is the mazimum value of y on M.
Moreover, the Morse-Bott theory tells us that constant y surfaces on My \ {NUT}
are all diffeomorphic to Mz = S3.

We shall see all of the above behaviour very explicitly in section 2.4 for the case
when the self-dual Einstein metric is simply Euclidean AdS;. The more complicated
Einstein metrics in that section of course also display these features, although the
corresponding formulae become more difficult to make completely explicit as the

examples become more complicated.

2.2.5 Toric formulae

In this section we shall obtain some further formulae, valid for any toric self-dual
Einstein metric on the four-ball. These will be useful for computing the holographic
free energy in the next section.

We first note that for Mz = S with Reeb vector (2.37) the almost contact volume

in (2.57) may be computed using equivariant localization to give

2 2
Vol,, = / nAdn = _(2n) . (2.66)
M; b1b2

This formula also appeared in [33]. One proves (2.66) by an analogous computation
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to the Duistermaat-Heckman formula in [87]. Specifically, we define a two-form

&

= d(rp), (2.67)

on My, where r is a choice of radial coordinate with the NUT at r = 0 and the

conformal boundary at r = oo, and notice that

Vol, = —/ efQ/Z%a) N~ (2.68)
M, !

The minus sign arises here because the natural orientation on M3 defined in our set-

up is opposite to that on the right hand side of (2.68). Specifically, y is decreasing

towards the boundary of My, so that dy points inwards from M3 = dM,, while r is

increasing towards the boundary, with dr pointing outwards.® One then evaluates the

right hand side of (2.68) using equivariant localization. Specifically, the integrand is
2
exp | =5 +ao| (2.69)

which is an equivariantly closed form for K, 7.e. is closed under d + K., since
K.o = —d(%). The Berline-Vergne equivariant integration theorem then localizes
the integral to the fixed point set of K, and one obtains precisely (2.66), with the b;
appearing as the weights of the action of K at the NUT.?

Finally, let us return to the equation (2.58). In fact there is another interpretation
of the constant o, in terms of the charge of the Killing spinor under . To see this,
recall that the solution (2.49) to the three-dimensional Killing spinor equation (2.50)
is simply constant in our frame, but that was for the case where the gauge field A )
is given by (2.52), which as we saw in section 2.2.3 is always in a singular gauge
on Ms = S3. The gauge transformation Ay = Aoy + 0dyp that we made in (2.53)
to obtain a non-singular gauge implies that the correct global spinor y has a phase

dependence

Xglobal — eigw X0

X0

, (2.70)

where X is a constant complex number. Since the frame is invariant under X = 0y,
we thus deduce that o is precisely the charge of the Killing spinor under K.
On the other hand, the total four-dimensional spinor is constructed from the

canonical spinor ¢ on the conformal Kéahler manifold, via (2.25). Thus p is also the

8Notice that we could have avoided this by choosing y to be strictly negative on the interior of
My, rather than strictly positive.

9This is then the Duistermaat-Heckman formula when @ is a symplectic form, i.e. when 7 is a
contact form.
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charge of ¢ under K. This immediately allows us to write down that

_ |b1] + |2

|o] 5

(2.71)

This formula may be fixed by looking at the behaviour at the NUT, where recall that
the complex structure is that of C2. In terms of complex coordinates z; = |z]e¥",
Zy = |z|e¥?, the Kihler spinor ¢, and hence also our Killing spinor, has charges
% under each of dy,, i = 1,2. However, one must be careful to correctly fix the
orientations, which leads to the modulus signs in (2.71). More precisely, for by /by > 0
the conformal Kéhler metric fills the interior of a ball in C?, while for by /b, = —1

instead it is the exterior — see, for example, the discussion at the end of section 2.4.1.

2.3 Holographic free energy

In this section we compute the regularized holographic free energy for a super-
symmetric self-dual asymptotically locally Euclidean AdS solution defined on the
four-ball, deriving the remarkably simple formula (1.33).

2.3.1 General formulae

The computation of the holographic free energy follows by now standard holographic

renormalization methods [88,89]. The total on-shell action is
Stegra = Stk + 8" + Shay + S8 - (2.72)

Here the first two terms are the bulk (Euclidean) supergravity action (2.1)

1

Sge = SER+SF = - /M (R +6— F,F"™) /detgd'z , (2.73)
4

evaluated on a particular solution with topology M,. The boundary term SEE; in
(2.72) is the Gibbons-Hawking-York term, required so that the equations of motion
(2.2) follow from the bulk action (2.73) for a manifold M, with boundary. This
action is divergent, but we may regularize it using holographic renormalization.
Introducing a cut-off at a sufficiently small value of y = ¢ > 0, with corresponding

hypersurface Ss = {y = §} = M3, we have the following total boundary terms

1

Sgrav + Sgrav
t
bdry C 87TG4

/ (= +2+ LR(h)) Vdet hd’z . (2.74)
Ss

Here R(h) is the Ricci scalar of the induced metric h;; on Ss, and % is the trace
of the second fundamental form of Sy, the latter being the Gibbons-Hawking-York

43



boundary term. It is convenient to rewrite the latter using

HVdethd®r = L, [ Vdethd’n (2.75)

Ss Ss

where £, is the Lie derivative along the outward pointing normal vector n to the

boundary Ss.

2.3.2 The four-ball

In this subsection we evaluate the total free energy (2.72) in the case of a supersym-

metric self-dual solution on the four-ball M, = B* =~ R*.

Gauge field contribution

The contribution from the gauge field to (2.72) is

1 1 1
St = F,F"\/detgd*z = — / FAF = / A AF ) .
167TG4 /]\/[4 K *9 o 87TG4 My 87TG4 Ms © ©
(2.76)

Here in the second equality we used the anti-self-duality *x4F" = —F. In the last
equality we used the fact that on the four-ball M, = B* ~ R* the curvature F = dA
is globally exact, and then applied Stokes’ theorem with Ms = 0My, recalling that

the natural orientation on Mj is induced from an inward-pointing normal vector,
with the conformal boundary at y = 0. Notice that the contribution from the gauge
field is finite, so for ST there is no need to introduce the cut-off and take the limit
lims_,o Ss.

It was emphasized above that the gauge field A given by (2.44) is in general
only valid locally, and in order for Ay to be a global one-form, we performed the
gauge transformation in Ay — A + od¢ in (2.53).

From the expression,
1 -
Agy = —7von+E+ ody (2.77)

with )
i

= = Z(azw(o)dz —(‘)gw(o)dé) . (278)

the integral of (2.76) can now be written

w? 1
/ Aoy NFoy = / (gn Ad=E + %7) A volpr — iw(l)n A dE) . (2.79)
M3 Mg

where we integrated by parts a term containing dw) from Flgy = dA(p. Using then
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(2.55), (2.56), (2.71), and that 1 A voly = y/detga,d*z, equation (2.76) becomes

bi| + |ba])? 1 wiy
or — _ ™ (b / 5
2G4 4b, by +87TG4 v, 32 V detgyd
1 1
871Gy /M g(w%) + weywe) )/ detg, d’ . (2.80)
3

Although the integrals in (2.80) are not evaluated, we will see below that these

combine with the other contributions to the free energy (2.72).

Bulk gravity contribution

The contribution to the free energy from the bulk gravity part of the action is

1 1
Sph = — R +6)voly = 6 vol 2.81
bulk 167G, /M;; F6)vole = 15a; /Mf vole, - (281)
where we used that on-shell R = —12. Here M? indicates that we have introduced

a cut-off along the boundary Ss = {y = d} ~ M3, which is necessary as the volume

is divergent. The volume form of interest is
voly, = %dy A (dY + @) A Be®2idz Adz . (2.82)
A computation reveals that this may be written as the exact form
—3voly = dW, (2.83)

where we have defined the three-form

1

W =
242

1
(A + ¢) Ade + —(dy + ¢) A Be"2idz Adz . (2.84)
Y
We may then integrate over M} using Stokes’ theorem. To do this let us define r to
be geodesic distance from the NUT — the origin of M, = B* = R* that is fixed by
the Killing vector K = J,. We then more precisely cut off the space also at small
r > 0 and let r — 0, so that we are integrating over Mf’r. The form W may be

written

1
2—@/2(d¢+¢)/\d¢+ﬁ(dw+¢)/\w, (2.85)

where w is the conformal Kahler form. As argued in section 2.2.4, when ynyr is finite
w is everywhere a smooth two-form, and thus in particular in polar coordinates near
the NUT at r = 0 it takes the form w ~ rdr A 3; +r?3, to leading order, where 3; and
3, are pull-backs of smooth forms on the S* = Sgr at constant r > 0. Because of
this, the second term in (2.85) does not contribute to the integral around the NUT.
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However, notice that

(2m)”
biby

| @sonas = [ @oronds = - (256)
s M=

3
NUT

follows from a simple application of Stokes’ theorem!'Y, where we have used the
almost contact volume (2.66). Using the fact (2.63) that ynur = 1/]b1 + b2| one thus

obtains

(27)2|by + bo? /
L = et gar, d° 9.
/M5 o 6biby 20 [353 452] ctgm, 7, (287)

4

so that

m |b1 + b2|2 1 1 /
Spie = : F— V/det gas, d°
bulk 2G4 2b1b2 + 87TG4 (53 M;J=0 b IMs o

3 1
L= Vdet gy AP 2.
+327TG4 52 /Mé‘_o W) elgnMs AT (2.88)

To obtain this result we used the identity

/ (w?l) + 3waywz) + U)(g)) Vdet g, d®z = 0, (2.89)
M3

which arises from Taylor expanding the Toda equation (2.8) as

0 = 8282'11}(0) + e (?1)(2 1) + w(g))
+y [0:0:w() + e"© (wi)y + Bwaywe) + w)| + O(Y°) (2.90)

Because w(y) is a smooth global function on Ms, the second line implies (2.89) after
integrating over the boundary and using Stokes’ theorem.
It remains to evaluate the boundary terms SEyy + S&™. After a computation,

and again using (2.89), one obtains

1 3
SE 4SBT = — Vdet ga, P — ———— / V/det gy, d°
bdry+ ct 871G 403 /Msy_o €lgm; AT 327 G402 20 w(1) elgm; AT

1

/ 3

Adding (2.91) to the bulk gravity term (2.88) we see that the divergent terms do
indeed precisely cancel, and further combining with (2.80) we see that the terms
involving the integrals of w;y also all cancel.

The computations we have done are valid only for globally regular solutions, and

recall these divide into the two cases by /by > 0, and by /by = —1. In the first case

10T his follows since d[(dy + ¢) A dg] = 0.
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the first term in (2.80) combines with the first term in (2.88) to give

m (] + (b))
S . = : 2.92
e TGy Albibe| (2:92)

where notice |by + bo| = |b1] + |b2]. On the other hand the isolated case with
b1/by = —1 has by + by = 0, so that the free energy comes entirely from the first
term in (2.80), which remarkably is then also given by the formula (2.92). Thus for
all regular supersymmetric solutions we have shown that (2.92) holds, which is the

result advertised in (1.33) in the introduction.

2.4 Examples

In this section we illustrate our general results by discussing three explicit families
of solutions. These consist of three sets of self-dual Einstein metrics on the four-
ball, studied previously by some of the authors in [61-64]. We begin with simply
AdS, in section 2.4.1. Although the metric is trivial, the one-parameter family of
instantons given by our general results is non-trivial, and it turns out that this
family is identical to that in [61]. The solutions in sections 2.4.2 and 2.4.3 each
add a deformation parameter, meaning that the metrics in each subsequent section
generalize that in the previous section. Particular supersymmetric instantons on
these backgrounds were found in [62-64], but our general results allow us to study the
most general choice of instanton, leading to new solutions. Furthermore, in section
2.4.4 we indicate how to generalize these metrics further by adding an arbitrary
number of parameters. Towards the end of this section, Figure 2.1 then summarizes

the connection between all the metric studied in this chapter.

2.4.1 AdS,

The metric on Euclidean AdS, can be written as

d 2
dsfags, = q2—j—1 + ¢* (dY? + cos® ¥dp? + sin® Jde3) . (2.93)

Here ¢ is a radial variable with ¢ € [0, 00), so that the NUT is at ¢ = 0 while the

'3
being the two axes of R? ® R? = R*. The AdS, metric is of course both self-dual

and anti-self-dual.

conformal boundary is at ¢ = co. The coordinate ¥ € [0, %], with the endpoints

Writing a general choice of Reeb vector field as K = 0,0,, + b20,,, as in our

general discussion (2.59), the function y is then defined in terms of K via (2.60) and
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(2.61). Using these formulae one easily computes

y(g,9) = ! L (2.94)

\/(bg +b1y/q? + 1)2cos? 9 + (by + bar/q? + 1)%sin® ¥

Notice that indeed yxyr = 1/|b1+bsl, in agreement with (2.63). Using (2.94) one can

also verify the general behaviour in section 2.2.4 very explicitly. In particular, we

see the very different global behaviour, depending on the sign of by /by. If by /by > 0
then 1/y is nowhere zero, while if b; /by < 0 instead 1/y has a zero on M. More
precisely, if —1 < by/by < 0 then 1/y = 0 at {0 = 0,q = /b3 — b3/|b1|}, while if
bi/by < —1then 1/y =0at {J = 7,q= VU2 —b3/|by|}. These are each a copy of
St at one or the other of the “axes” of R?@®R?, at the corresponding radius given by
g. In the special case that by = —by we have 1/y = 0 at the NUT itself, where the
axes meet. These comments of course all agree with the general analysis in section
2.2.4, except here all formulae can be made completely explicit.

We thus indeed obtain smooth solutions for all b /by, > 0, as well as the isolated
non-singular solution with b, /by = —1. In fact it is not difficult to check that the
former are precisely the solutions first found in [61], where the parameter b* = by /b;
(compare to the formulae at the beginning of section 2.5 of [61]). To see this we

may compute the instanton using the formulae in section 2.1, finding

(b1 + b2/ 1) dpy + (b + by /@ 1) di
2\/(b2 +b1/@% + 1)2cos2 Y + (by + bar/q? + 1)2sin* ¥

which agrees with the corresponding formula in [61]. In particular, one can check

A . (2.95)

that this gives a regular instanton when by /by > 0, with the particular cases that
b1/by = +1 giving a trivial instanton, and correspondingly the conformal Kéhler
structure is flat. We shall comment further on this below. Moreover, one can also
check that the singular instantons with b /by < 0 are singular at precisely the locus
that 1/y = 0, again in agreement with our general discussion.

In this case we may also compute all other functions appearing in sections 2.1,

2.2 and 2.3 very explicitly. For example, we find

2 2 2 2 2 2
B(q,ﬁ) _ (b2+b1\/q +1) COS 19+(b1+b2\/q +1) sin” (296)

q2(b? cos? ¥ + b3 sin? o)) ’

while the functions w(;y and wg) on My = Mz = S* appearing in the free energy
computations are given by
— 4D by —2 (30303 + b cos® ¥ + b3 sin®

= , — b7
o /0% cos2 1) + b3 sin? o) v b? cos? ¥ + b3 sin? ¥ 2-97)

Using these expressions one can verify all of the key formulae in our general analysis
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very explicitly. For example, the integrals in (2.66), (2.80), (2.88) and (2.91) are all
easily computed in closed form.

Finally, let us return to discuss the special cases by /by = +1, where recall that
the instanton is trivial and the conformal Kahler structure is flat. The latter is thus
locally the flat Kdhler metric on C?, but in fact in the two cases by /by = +1 the
Euclidean AdS, metric is conformally embedded into different regions of C2. Notice
this has to be the case, because the conformal factor y of the by /by = 41 solution
has ynut = 1/(2]b1|), while for the by /by = —1 solution instead ynyr = co. We may

see this very concretely by writing the flat Kdhler metric on C? as
dsfa, = dR® + R? (d9* + cos® 9de? + sin® 9dy3) . (2.98)

In both cases the change of radial coordinate to (2.93) is

2R
R) = ——— . 2.99
However, for the by /by = +1 case the range of R is 0 < R < 1, with the NUT being
at R = 0 and the conformal boundary being at R = 1; while for the b, /by = —1
case the range of R is instead 1 < R < oo, with the NUT being at R = oo (and the
conformal boundary again being at R = 1). In particular the two conformal factors
are

y(R) = gl R* — 1] . (2.100)

The two solutions by /by = +1 thus effectively fill opposite sides of the unit sphere
in C?, and because of this they induce opposite orientations on S®. Again, this may
be seen rather explicitly in various formulae. For example, wny = F4|b1| in the two
cases, so that the boundary Killing spinor equation (2.50) on the round S® becomes

respectively V§3)X = :F%|b1’%‘X-

2.4.2 Taub-NUT-AdS,

The Taub-NUT-AdS, metrics are a one-parameter family of self-dual Einstein met-

rics on the four-ball, and have been studied in detail in [62,63]. The metric may be

written as
r?—s? 45%Q(r)
dsf = oy @+ (* =)+ 55 (2.101)
where
Q(r) = (rFs)’[L+(rFs)(r+3s)], (2.102)
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and 71, T2, T3 are left-invariant one-forms on SU(2) ~ S3. The latter may be written

in terms of Euler angular variables as
T 4in = e (df +isinfdy) , 73 = dg + cosfdyp . (2.103)

Here ¢ has period 47, while 6 € [0, 7] with ¢ having period 27. The radial coordinate
7 lies in the range r € [s,00), with the NUT (origin of the ball 2 R*) being at r = s.
The parameter s > 0 is referred to as the squashing parameter, with s = % being
the Euclidean AdS; metric studied in the previous section. Indeed, the metric is
asymptotically locally Euclidean AdS as r — oo, with

2

d
dsi =~ % + 73 (1 + 75 + 48T (2.104)
r

so that the conformal boundary at r = oo is a biaxially squashed S3.

Using the results of this chapter we may write a general choice of Reeb vector field
as K = (by 4 b32)0, + (b1 — b2) 0, as in our general discussion (2.59), and the function
y is then defined in terms of K via (2.60) and (2.61). Using these one computes

= [2(by = b2)(r —s)s+ (b1 + ba)(1 + 2(r — s)s) cos «9]2

y(r,0)
+(by + by)* [1 4 (r — s)(r + 3s)] sin? 6 . (2.105)

Notice that indeed ynur = lim, s y(r,0) = 1/|b; + bg|. We see that if by /by > 0 or
b1/by = —1 then 1/y is indeed never zero (except at the NUT in the latter case), as
expected. In this way we obtain a two-parameter family of regular supersymmetric
solutions, parametrized by the squashing parameter s and b;/by. One can also
compute explicitly the corresponding instanton F' for a general choice of s and
b1 /b, although in practice it turns out to be more convenient to derive this as a
special limit of the Plebanski-Demianski solutions, discussed in section 2.4.3. This
is shown in the appendix of [1]. In the remainder of this subsection we shall instead
discuss further some special cases, making contact with the previous results [62,63].

While the Taub-NUT-AdS metric (2.101) has SU(2) x U(1) isometry, a generic
choice of the Killing vector I = (b + b2)0, + (b1 — b2)O, breaks the symmetry of
the full solution to U(1) x U(1). In particular, this symmetry is also broken by
the corresponding instanton A. On the other hand, in [62,63] the SU(2) x U(1)
symmetry of the metric was also imposed on the gauge field, which results in two
one-parameter subfamilies of the above two-parameter family of solutions, which are
1/4 BPS and 1/2 BPS, respectively. In each case this effectively fixes the Killing
vector K (or rather the parameter b /by) as a function of the squashing parameter

S.
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1/4 BPS solution: This solution is simple enough that it can be presented in
complete detail. The coordinate transformation to the (2.5) form for the 1/4 BPS

solution reads
r—s = 1/y, —2s3 = dvY+¢, (2.106)

and

P —s%) = e"B(1+ 2, = y’'B. (2.107)

Notice immediately that at the NUT r = s we have 1/y = 0, so that this solution
must have by = —by, as we shall find explicitly below. The metric (77 + 73) is
diffeomorphic to the Fubini-Study metric on CP* 22 S

4dzdz

2y = 2.108
T + T2 (1 + ‘Z|2)2 ( )
The metric functions then simplify to
1+ 2sy _ 1+ 4sy + 2
B = — = log ———— 2.109
(y) sy 17 w(y,z,z2) = log (EAEEER (2.109)

and it is straightforward to check these satisfy the defining equation (2.6) and Toda

equation (2.8). The conformally related scalar-flat Kéhler metric is

14 2sy 45%(1 + 4sy + y?)
2 _ 2 2, .2 2
dSksner = mdy + (L4 2sy)(m7 +73) + 1+ 2sy 73, (2.110)
with Kéahler form

w = —dyA2sm+ (14 2sy)n A = —d[(1+2sy)73] . (2.111)
Using the formula (2.9) for the gauge field A, we compute

A= fup_nri=io (2.112)
= —(4s° — T ure gauge .
2 r+s 3 p gauge ,

which we see reproduces the 1/4 BPS choice of instanton in section 3.3 of [63].!!
The supersymmetric Killing vector is K = 0y = _2_138‘? and so generates the Hopf

fibration of S3. Since ¢ = ¢; — s, Y = 1 + Y we hence find

1
o= b= - (2.113)

"Notice that in [63] the opposite orientation convention was chosen, so that that instanton
in [63] is self-dual, rather than anti-self-dual. Recall also from the discussion above equation (2.9)
that the overall sign of the instanton is correlated with the sign of the supersymmetric Killing
vector K. Here K = —2%,89 which is minus the expression in [63], hence leading to the opposite
sign for the instanton gauge field A.
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which using (2.92) yields the holographic free energy

SI‘OI’I Q

= —. 2.114
sugra 2G4 ( )

This formula matches the result of section 5.4 of [63].

1/2 BPS solution: The Taub-NUT-AdS metric (2.101) also admits a 1/2 BPS
solution [62,63]. We hence have two linearly independent Killing spinors, which may

be parametrized by an arbitrary choice of constant two-component spinor ) =

P € C?\ {0}.' The correspondong Killing vector is given by the unlikely
q
expression

K = (2s++V4s2—1) [QIm [€paldy + (|p|* — |a|” + 2Re [¢¥pq] cot 6) 84 (2.115)

+ [(|p|2 +1q/?) (% — 25 — /45?2 — 1)) — 2Re [epg](2s + V4s2 — 1) csc 0} o, .

Since multiplying x (o) by a non-zero complex number A € C* simply rescales KC by
|A|?, this leads to a CP' family of choices of Killing vector K in this case. Of course,
the vector (2.115) is not toric for generic choice of (o). Nevertheless, one can still
compute the various geometric quantities in section 2.1. In particular one can check

that the formula (2.19) for the instanton gives

A = S\/4827—1; 1 27'3 + pure gauge , (2.116)
for any choice of I in (2.115), which agrees with the expression in [62,63]. Notice
that the instanton is invariant under the SU(2) x U(1) symmetry of the metric,
even though a choice of Killing vector K breaks this symmetry. Indeed, in this case
the conformal factor y = y(r, ) for toric solutions given by (2.105) depends non-
trivially on both r and 6, thus also breaking the SU(2) symmetry of the underlying
Taub-NUT-AdS metric. This is to be contrasted with the 1/4 BPS solution, where
instead (2.105) reduces simply to y = y(r) = 1/(r — s) (see (2.106)).

The toric choices of I for these 1/2 BPS solutions correspond to the poles of the

CP! parameter space. For example, choosing p = 1, q = 0 above gives

K = (2%@) 0, + <2i8—2$—\/4327—1> 0. (2.117)

so that

1 1
by, = by = — - +2s+ VAT 1. (2.118)
S

4_5 )
12The full Killing spinor is given by substituting this into the right hand side of (2.29) of [63].
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The free energy (2.92) is thus

2 2
gren = 29 (2.119)

sugra G4

which of course matches the result obtained in section 4.4 of [63].

2.4.3 Plebanski-Demianski

The Taub-NUT-AdS metric has been extended to a two-parameter family of smooth
self-dual Einstein metrics on the four-ball in [64], which lie in the Plebanski-Demianski
class of local solutions [90] to Einstein-Maxwell theory. We will henceforth refer to

the solution of [64] as “Plebanski-Demianski”. The metric may be written as

P(q) P(p) ¢ —p? ¢ —p?
ds?,, = dr + p*do)? — dr 4 ¢?do)? + =———d¢* — dp?,
g —p2( pdo) 7 —pz( 7do) Plo) T P
(2.120)

where

P(r) = (z—=p)(@—p2)(® —ps)(x —pa) - (2.121)

The roots of the quartic P(z) can be expressed in terms of the two parameters of

the solution, a and v, as

_ 1 1/1_|_A2 2 —1 a
p1 = 5 a ve o, p3—2 a,
1 - r .

P2 = —§—|— \/1+a2_v2, Pa = §+a . (2122)

The coordinate p € [ps, p4] is essentially a polar angle variable, while ¢ € [p4, 00)
plays the role of a radial coordinate, with the conformal boundary being at ¢ = oco.
The NUT, i.e. the origin of R?, is located at p = p3, ¢ = ps. The Killing vectors o,
0, generate the U(1) x U(1) toric symmetry of the solution, with the coordinates

related to our standard 27-period coordinates ¢1, @9 via

2p3 203
T - )
P'(p:%) 1 73/@4) 72
2 + 2 (2.123)
O‘ = —_— . .
Pps) " Plpa)

In order that the metric is smooth on the four-ball, the parameters must obey
v? > 2|a|. The Taub-NUT-AdS metric of the previous subsection is obtain in the
limit @ — 0. Setting further v = 1, one recovers Euclidean AdS;.

It is straightforward, but tedious, to express the metric (2.120) in the form (2.5),
with an arbitrary choice of toric Killing vector K = 0,0, + b20,,. For the special

case of the Killing vector and instanton in the solution of [64], this is done in the
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appendix of [1].

In the (7,0) coordinates an arbitrary Killing vector may be written as

K = b;0-+0,0,, (2.124)
where
b = g iy by = — b+ by (2.125)
T Pl(p3) 1 P/(p4) 2 o P/(pg) 1 Pl(p4) 2 - .
Using (2.60) and (2.61) one can calculate
1 1 1 2P(q) , ) 5
= —— — =P b + b,
y(p, @)* 4(q2—p2)2{[<q—p @) 7)
2
2P ,
B (r(];) +P (p)) (br + bng)] —4b2P(q)P(p)(q +p)2} . (2.126)

Notice that this is a sum of two non-negative terms. Furthermore, these terms may
vanish only when evaluated at the roots p = p3, p = ps or ¢ = py, which correspond
to the axes of R* = R? ® R2. Let us calculate these limits:

1i 1 (bl + bg)UQ + 2&[)1 + b2(2q - 1) 2
im — =
p—p3 > v? + 2a ’
1 by + bo)v? — 2aby + by (2 — 1)\

fm L = (ifbe)vt = 2ab 402 = DY (2.127)
p—pa Y2 v? —2a

1 (b1 + bo)v? — 2aby + by (2p — 1)\

lim — = - )
q—pa Y> v —2a

A careful analysis of the above limits shows that 1/y does not vanish, and hence
the metric is regular, whenever b; /by > 0, while 1/y = 0 only at the NUT when
b1 /by = —1. On the other hand, the the solution is indeed singular if b; /by < 0 and
b1/ba # —1. Notice that we also easily recover the formula (2.63) for the conformal
factor at the NUT: lim, . qop, ¥y = 1/]b1 + bal.

In [64], particular supersymmetric instantons (particular choices of by /by for fixed
a and v) were studied for this two-parameter family of metrics, which by construction
lie within the Plebanski-Demianski ansatz. The results of this chapter extend these
results to a general choice of instanton on the same background, parametrized by
b1 /by, leading to a three-parameter family of regular supersymmetric solutions. The
general expression for this instanton is lengthy, but computable, and the interested

reader may find the details in the appendix of [1].
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2.4.4 Infinite parameter generalization

In each subsection we have generalized the metrics of the previous subsection by
adding a parameter, and one might wonder whether one can find more general self-
dual Einstein metrics on the four-ball. In [86] the authors studied the general local
geometry of toric self-dual Einstein metrics, which thus includes all the solutions

(locally) above. In appropriate coordinates the metric takes the form

4P (W2 + W2) — W2d , 4
A2 Swe W2(4p2 (W2 + W2) — W2)

dSforic = ds?, (2.128)

where we have defined

y*pw) = VoWlp ), (2.129)

and

can can can 2 can can can Cal'l
ds3 = (ydv + (wys™ — py)de)” + (Endv + (pye™ + @y — y™)dy)”
dp? + dw?
dsj. = — (2.130)
where dsgp is the metric on hyperbolic two-space H?, regarded as the upper half
plane with boundary at p = 0. We denote partial derivatives as W, = 9,WV,
Yy = Ony®", etc. The metric (2.128) is entirely determined by the choice of
function W = W(p, w), and the metric is self-dual Einstein if and only if this solves

the eigenfunction equation

3 3
AV = ZLW — Wop + Wew = 1 —W. (2.131)

Unlike the Toda equation (2.8) this is linear, and one may add solutions. In partic-
ular there is a basic solution
(@ =\

W(p,w;\) = NG , (2.132)

where A is any constant. Via linearity then

Z aW(p,@; \) (2.133)

also solves (2.131), for arbitrary constants «;, A;, i = 1,...,m. We refer to (2.133)
as an m-pole solution. Of course, one could also replace the sum in (2.133) by an
integral, smearing the monopoles in some chosen charge distribution.

Thus the local construction of toric self-dual Einstein metrics is very straightfor-

ward — the above gives an infinite-dimensional space. However, understanding when
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the above metrics extend to complete asymptotically locally hyperbolic metrics on a
ball (or indeed any other topology for M,) is more involved. In appendix C of [1] it
is shown that the general 2-pole solution is simply (Euclidean) AdS,, while the gen-
eral 3-pole solution is precisely the two-parameter Plebanski-Demianski solutions
of section 2.4.3. This requires taking into account the symmetries of (2.128) (in
particular the PSL(2,R) symmetry of H?), and then making a number of rather
non-trivial coordinate transformations. We refer to [1] for these details.

Some work has also been done on global properties of the metrics (2.128) in [91],
although the focus in that reference was on constructing complete asymptotically
locally Euclidean scalar-flat Kéhler metrics, which are conformal to (2.128). How-
ever, these have non-trivial Lens space boundaries S?/T', and correspondingly the
second Betti number by = dim Ho(My, R) of the filling M, is non-zero (they contain
“bolt S?s”). The corresponding complete self-dual Einstein metrics in Theorem B
of that reference then also do not have the topology of the ball. Thus it remains an
interesting open problem to understand when the general m-pole metrics extend to
complete metrics on the ball.!3

Finally, let us remark that in [92] Lebrun has constructed infinitely many self-
dual Einstein metrics on the four-ball using twistor methods. This is essentially
a deformation argument, where one starts with (the twistor space of) Euclidean
AdS,, and perturbs the twistor space. However, as such this is rather more implicit
than the toric metrics above, and in order to construct supersymmetric solutions
one needs to ensure that the resulting self-dual Einstein metric has at least one
Killing vector field. Nevertheless, this might be an alternative method for analyzing
regularity of the above m-pole solutions, at least in a neighbourhood of Euclidean

AdS, in parameter space.

2.5 Conclusions

The main result of this chapter is the proof of the formula (2.92) for the holo-
graphically renormalized on-shell action in minimal four-dimensional supergravity.
Moreover, we discussed the construction of regular supersymmetric solutions of this
theory!4, based on self-dual Einstein metrics on the four-ball equipped with a one-
parameter family of instanton fields for the graviphoton. Specifically, if the self-dual
Einstein metric admits n parameters, our construction produces an (n+1)-parameter
family of solutions. We have shown that the renormalized on-shell action does not
depend on the n metric parameters, but only on this last “instanton parameter”.
This matches beautifully the field theory results of [33].

13At the end of reference [86] it is briefly noted that one can obtain regular m-pole metrics by
deforming, for example, a given 3-pole solution. It would be interesting to examine the details of
this deformation argument further.

4These uplift to solutions of eleven-dimensional supergravity using the results of [93].
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Scalar-flat Kéhler metric (2.10)

% y? U(1)-symmetry

Self-dual Einstein metric (2.5)

U(1)2-symmetry

Toric metric (2.128)

m-pole solution (2.133)

0 paramete‘l/ xparameters

2-pole: AdSy (2.93) 3-pole: Plebanski-Demianiski (2.120)

1 parameter

3-pole: Taub-NUT-AdS, (2.101)

Figure 2.1: Overview of the metrics discussed in this chapter. The arrows point from
a metric to a special case of the metric, except the wavy arrow which corresponds
to a conformal transformation, i.e. equation (2.10).

We have also shown in section 2.4 how AdS,, Taub-NUT-AdS, and the Plebanski-
Demianski solution fit in this framework. All these previous examples in the litera-
ture can be understood as arising from an infinite-dimensional family of local self-
dual Einstein metrics with torus symmetry [86]. Figure 2.1 illustrates the relation
between all the metrics considered in this chapter. In section 2.4.4 we have suggested
that using this family of local metrics, it should be possible to construct global
asymptotically locally (Euclidean) AdS self-dual Einstein metrics on the four-ball,
thus obtaining an infinite family of completely explicit metrics. It will be interesting
to analyze these m-pole solutions in more detail.

In this chapter we have achieved a rather general understanding of the gauge/gravity
duality for supersymmetric asymptotically locally Euclidean AdS, solutions. Never-
theless, there are a number of possible extensions of our work. First, it is possible to
extend the matching of the free energy (2.92) for the class of self-dual backgrounds
we have considered to other BPS observables. In particular in [94] the Wilson loop
around an orbit of the Killing vector IC was shown to be BPS in the field theory, and
may also be computed via localization. The gravity dual is an M2-brane wrapping
a calibrated copy of the M-theory circle in the internal space [95], and computing

its renormalized action one finds an analogously simple formula to (2.92), namely

b b
lim log (W) = [ba] £ Jbo]

N—oo 2

¢-log (W), (2.134)

where (W), denotes the large N limit of the Wilson loop on the round sphere/AdS,,
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whose log scales as N'/2, and 27/ denotes the length of the orbit of K (for example,
such orbits always close over the poles of the S®, where £ = 1/|b;] or £ = 1/|by|,
respectively; notice that for these Wilson loops (2.134) is again a function only of
|b1/b2]).

One might further generalize our results by relaxing one or more of the assump-
tions we have made. For example, remaining in the context of minimal gauged
supergravity, it would be very interesting to investigate the more general class of
supersymmetric, but non-(anti-)self-dual solutions [83]. Several examples of such
solutions were constructed in [62,63], and these all turn out to have a bulk topol-
ogy different from the four-ball. This suggests that self-duality and the topology of
supersymmetric asymptotically AdS, solutions are two related issues, and it would
be desirable to clarify this. On the other hand, at present it is unclear to us what
is the precise dual field theory implication of non-trivial two-cycles in the geometry,
and therefore this direction is both challenging and interesting. Perhaps related
to this, one of our main results is that a smooth toric self-dual Einstein metric on
the four-ball with supersymmetric Killing vector K = b0, + b20,, gives rise to
a smooth supersymmetric solution only if b /by > 0 or b; /by = —1. Specifically,
for other choices of by /by the conformal factor and the Killing spinor are singular
in the interior of the bulk. Nevertheless, the conformal boundary is smooth for all
choices of by, by, and the question arises as to how to fill those boundaries smoothly
within gauged supergravity. A natural conjecture is that these are filled with the
non-self-dual solutions mentioned above.

Another assumption that should be straightforward to relax is in taking the gauge
field A to be real. In general, if A is complex the existence of one (Euclidean) Killing
spinor does not imply that the metric possesses any isometry [83]. However, we
expect that if one requires the existence of two spinors of opposite R-charge, then
there will be canonically defined Killing vectors, and therefore it should be possible

to analyze the solutions with the techniques of this chapter.
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Chapter 3

Casimir energy of supersymmetric
field theories on R x S°

In this chapter we study the Casimir energy, that is, the energy of the vacuum state,
of N' = 1 supersymmetric gauge theories on the cylinder R x S3. As discussed in
section 1.5, the Casimir energy on the four-dimensional cylinder is in general an
ambiguous quantity. However, we will show that for supersymmetric field theories
a natural generalization dubbed the supersymmetric Casimir energy is well-defined
and scheme-independent.

In section 3.1, we set up the background consisting of the round metric on St x 3
and appropriate background vector fields, and in section 3.2 we discuss the explicit
supersymmetric Langrangians. This will all be in Euclidean signature, such that we
can study the path integral in section 3.3. We Wick rotate to Lorentzian signature
in section 3.4 and study the canonical quantization of these theories on R x S3.
In section 3.5, by reducing the theory on the S3 to a one-dimensional quantum
mechanics, we show that the supersymmetric Casimir energy is in fact well-defined
and scheme-independent if one requires the regularization to be compatible with
supersymmetry. Finally, in section 3.6 we make some concluding remarks.

This chapter is based on [2, 3]

3.1 Background geometry

As described in section 1.2.1, a systematic approach for constructing N' = 1 su-
persymmetric field theories with an R-symmetry on curved backgrounds from new
minimal supergravity was put forward in [20]. Below, we set up our background

consisting of the round metric on S x S% as well as the background vector fields.
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We consider the following background metric

ds*(S' x §%) = ridr? +ds*(S?)

2
= ridr? + %’ (d6” + sin® Odyp® + (ds + cosfdy)?) ,  (3.1)

where 7 is a coordinate on the S! with radius r;, and 0,¢,¢ with 0 < § < 7,

@ ~ + 27, s ~ ¢+ 41 are coordinates on the round three-sphere! of radius r3. We

introduce the following orthonormal frame?

el = % (cos¢df + sin 0 sin ¢dy)

e? = % (—sin¢df + sin 6 cos ¢dy)

et = % (ds + cos Odyp)

et = rdr, (3.2)

where {e!,e? €3} corresponds to a left-invariant frame on S3. We now set r; = 1
and r3 = 2. We will consider a class of backgrounds admitting a solution to the new
minimal Killing spinor equation (1.2). In the coordinates (3.1), the supersymmetric

complex Killing vector K reads,

1
K = 5 (ac - 187) ) (33)

and the dual one-form is )
K =3 (e® —ie!) . (3.4)

We define the following “reference” values of the background fields

3 i 1 .
1€3+§(q—5)e‘*, Vo= e, (3:5)

A =
where we have included a constant g, which corresponds to a (large) gauge trans-
formation A — A + %da starting from the gauge choice adopted in [26]. Although
in Euclidean signature, where 7 is a compact coordinate, this yields an ill-defined
spinor, this is not true in Lorentzian signature, and the g will play a role in our
discussion in section 3.4. As discussed in [26], the vectors A and V' may be shifted

from the reference values as

.3 .
A:A+§/£K, V = V+kK. (3.6)

For 1 = 1 and r3 = 2 this metric and the other background fields can be obtained by
specializing the background discussed in appendix C of [26] to v = 1, b = —by = 1/2. Below we
will set 71 = 1 and r3 = 2, but these can be easily restored by dimensional analysis.

ZNote that this frame is different from the frame used in [26].
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where & is a constant®. We note the combination

[ J— _§ — O_§O 71 _1 4
A% = ATV = A-TV = S(a—5)e', (3.7)

which is independent of k. For generic values of k, the two-component spinor (

solving the Killing spinor equation (1.2) reads

1 0
C = Ee 247 . . (38)

The normalization is chosen such that for ¢ = 0 the square norm is |(]? = 1/2 as
n [26]. As mentioned above, since 7 is periodic in Euclidean signature, the spinor
is well-defined only* for q = 0.

For generic values of k this background preserves only an SU(2); x U(1), sub-
group of the isometry group SO(4) ~ SU(2), x SU(2), of the round three-sphere.
Two choices for k will be of special interest below. The value k = k4™ = —1/3

corresponds (for q = 0) to that in [26], namely

= %(éﬂ%&) : (3.9)

This is the particular choice of xk (for ¢ = 0) for which A is real. Another dis-

AACM _ % &3 yACM

tinguished choice is k = k% = —1, where the superscript stands for “standard”,
giving ‘ '
At = %(1+q) e, vVt = %e‘l. (3.10)

For this choice, the full SO(4) symmetry of the three-sphere is restored and equation

(1.2) admits a more general solution,

¢ = e3¢, (3.11)

for any constant spinor (.

Notice that in addition to q = 0 [26], there are two special values of the parameter
g. Namely, g = —1 for which A% in (3.10) vanishes, and q = 1/2 for which A® =0
from equation (3.7). The significance of these three values will become clearer in

the later sections.

3In general, k can be a complex function satisfying K#9,x = 0.
4 Although an appropriately quantized imaginary value of q¢ would be allowed in (3.8), for generic
R-charges we must have q = 0 for the correct periodicity of the matter fields [96].
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3.2 Lagrangians

We consider an N' = 1 supersymmetric field theory with a vector multiplet trans-
forming in the adjoint representation of the gauge group G, and a chiral multiplet
transforming in a representation R. We will restrict attention to terms in the La-
grangian quadratic in dynamical fields, as we are interested in the energy of the
vacuum.

For a chiral multiplet with R-charge r, we consider the Lagrangian

Lchiral = (5C‘/1 + 6{‘/2 + € 5CVU) |quadratic
= DD+ (V*+ (e — 1)U (iD,6 — 16D,0) +

7" ~

(R +6V,V")00
+ipa" Dy + (%w +(1— e)U“) Vo (3.12)

with D, = V, — igrA, where gr denotes the R-charges of the fields. The three
terms in first line are total supersymmetry variations and given explicitly in [26]°.
We included a parameter €, such that (3.12) can continuously interpolate between
the localizing Lagrangian used in [26] with € = 0, and the usual chiral multiplet [25]
obtained for € = 1.

The vector fields A, V}, and U, = kK, are those discussed in section 3.1, depend-
ing on the parameters q and x. A Lagrangian containing N, = |R| chiral multiplets
consists of just multiples of (3.12), and each multiplet may have different R-charge
rr, where I =1,2,..., N,.

We employ the left-invariant frame (3.2), which is useful for applying the angular

momentum formalism. The 2 x 2 sigma matrices,
ol = (7,—ily), L = (-9, —ily), (3.13)

where A = 1,...,4 is a frame index and 7 denotes the three Pauli matrices, generate
the Euclidean Clifford algebra,

OA0R + 00 = —204p , A0 +0poa = —204p . (3.14)
Inserting the values of the background fields, and writing

L g,k er) = L(a ke r) + L 4,k 6 1) (315)

fer

®Notice that at quadratic order, the term V3 in [26] vanishes.
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the bosonic part of the Lagrangian reads

Cchiral

bos (q7 K, €, T) = —aafqb + |:g(1 — 2C|) + K (gr — 6):| q~587gb — ;Z;vzvlgb

+i [;7’ —1+=k (;7’ — e)} 5Vg¢
r r

+5(1+a) [2(2—q)+m<;r—e)]$¢, (3.16)

where V; is the covariant derivative on the three-sphere, and we have omitted a

total derivative. The fermionic part of the Lagrangian reads

Caner) = G0 —idrow -y 3= tn(5r-o) |G

_% %(r —1)(1 —2q) + ; + K (gr - e)} Yy, (3.17)

where a = 1,2,3 denotes the frame index on the three-sphere. In particular, we
used the identity

IV, = 0np — 19Vt = 0nh — 190t — Z@b . (3.18)

Notice that the Lagrangians in [55,57] correspond to the values e = 1, k = —1, and
q = 1/2. Notice also that for » = 2/3 and € = 1 the total chiral multiplet Lagrangian
does not depend on k.

Let us introduce a compact notation, writing the Lagrangians above in terms of
differential operators. Denoting by ¢, the Killing vectors dual to the left-invariant
frame e, and defining the “orbital” angular momentum operators as L, = %Ea, one
finds that these satisfy the SU(2) commutation relations,

[LauLb] = ieabch; (319)

and we have® —V'V; = L[? and V. = —iL;. Similarly, we identity the Pauli ma-
trices with the spin operator as S = %7“, satisfying the same SU(2) algebra. The

Lagrangians can then be writing as

Lol = ¢Oyp = ¢ (=02 + 200+ Oh) ¢ ,
LE = §Ospp = (0, +0p) ¢, (3.20)

6Recall that here we have set 73 = 2. In general, the three-dimensional Laplace operator is

r2ViV; = 3. (0,)2.
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where

Ob 20((,[_;2 + 2&(,[/3 + %,
Oy 2oL - S + 2355 + 5 (3.21)
with the constants taking the values «a; = %,

§o= %[g(l—Qq)#—/{(;r—e)} : (3.22)

v o= — [}l(r—1)(1—2q)+§+f<§r—e>] : (3.23)

respectively.”

For the vector multiplet, the quadratic Lagrangian is

vector 1 v i CS~ 1 3~ Ccs
L‘» t = Tr [ZLFFWFM + 5)\U“Du A + 5/\O"MD/L )\:| y (324)
quadratic
where Di? =V, —igrAf;. At quadratic order, F,, is the linearized field strength,
F = dA, of the gauge field A. The gaugino A and A both transform in the adjoint
representation of the gauge group G. This is therefore the Lagrangian of N, = |G|
free vector multiplets, where we denote by N, the dimension of G.
The fermionic part of this Lagrangian can be put in the same form as the fermionic
part of the chiral multiplet Lagrangian, namely

vector _ X@;ECA — 3\/ (87' + O;ec) A , (325)

fer

where

O = 20,L- S +28,5 + 7 , (3.26)

with o, = =1, B, = 0, and v, = 3 — 1. Notice that for g = 1/2, corresponding to

A% = 0, this reduces to the standard massless Dirac operator on the three-sphere.

"Recall we denote the Pauli matrices as +y,, while we defined here parameters -, and v¢. Hope-
fully, this will not lead to confusion.

64



3.3 Path integral approach

In this section, we recover in our set-up the supersymmetric Casimir energy defined
in [26] as

_d
By = — lim @logZ(ﬂ) : (3.27)

where Z is the supersymmetric partition function, namely the path integral on
S x 83 with periodic boundary conditions for the fermions on S!, computed using
localization. Restoring the radii of S' and S®, the dimensionless parameter 3 of [26]
is given by

27T’I“1

B = . (3.28)

rs

Differently from [26], here we will not fix the value of , showing that owing to the
pairing of bosonic and fermionic eigenvalues in the one-loop determinant, the final
result will be independent of k. Although the computation in Euclidean signature
requires to fix q = 0, we start presenting the explicit eigenvalues for generic values
of . We will demonstrate that the pairing occurs if and only if ¢ = 0.

The localization computation of [26] shows that the partition function takes the

form

Z(B) = e 7IIL(pB) (3.29)

where Z(f3) is the supersymmetric index [55-58], and the pre-factor F(5) = —im (\I/((:gz—i—
‘115%2;) arises from the regularization of one-loop determinants in the chiral multiplets
and vector multiplets, respectively ( [26], see also [97]). The index Z(5) does not
contribute in the limit (3.27), so we can focus on \I/g)li and \Ilg,gl, and thus effectively
set the constant gauge field Ay = 0 in the one-loop determinants around the local-
ization locus in [26]. Since the vector multiplet (3.24) does not depend on x and
¢, and setting q = 0, its contribution to Eg,s, can simply be borrowed from [26].
Setting |by| = |bo| = B/(27) = r1/r3, where we used (3.28), one obtains

O (ﬁ - @) N, . (3.30)

vee 6 T3 1

For the chiral multiplet, we first work out the eigenvalues of the operators O, and
Oy for arbitrary s and e. The eigenvalues can be obtained with elementary methods
from the theory of angular momentum in quantum mechanics [44]. See appendix A
for a summary of the relevant spherical harmonics on the three-sphere. We denote

the eigenvalues as

O = Eid, Opp = A\ (3.31)

From the scalar harmonics, we have the eigenvalues

E? = %w +2) 4 28m 4+ (3.32)
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where g(g + 1) for £ = 0,1,2,... are the eigenvalues of L2, and m = —é, ,é are

the eigenvalues of L3. Each eigenvalue has degeneracy (¢ + 1), due to the SU(2),
symmetry.

We distinguish two types of eigenvalues of Oy. For any ¢ = 1,2, 3, .. we have

2
6] (6]
o, = —7f+7fi \/Zf(€+1)2+afﬁf(1+2m)+ﬁ]%, (3.33)
where here the quantum number m takes the values m = —%, e %— 1. Furthermore,

for any ¢ = 0,1, 2, ..., we have the two special eigenvalues
special+ ay
Y = 76 + Br+ 5 - (3.34)

Again, each eigenvalue has degeneracy (¢ + 1), due to the SU(2), symmetry. Ex-
panding the fields in Kaluza-Klein modes on the S! as

dx) = Y e "0, ¢,9) (3.35)

kEZ

and similarly for 1, we obtain the following eigenvalues for each mode,

Ovpr = (K — 2ipk + E}) ¢ ,
Opbr, = (—ik + ) ¥y, . (3.36)

For generic values of the quantum numbers ¢,m, we say that the eigenvalues of the

operators 61; and (’3f are paired, if for all k we have
(—ik+ A7) (mik+ A7) = — (K —2ipk + Ef) . (3.37)

Inserting the values of the parameters given in (3.22) and (3.23) we find that the
eigenvalues pair if and only if ¢ = 0, in which case they pair for any x,¢,r. Let us
set ¢ = 0 in the rest of this section. Restoring generic values of the radius r3 of the

53, the one-loop determinant for a fixed k is

~ o 2 _ s l +
o a0y [T (=i + 2X7) [T (<ik + 237) .
1-loop det®, HEb (kg _ %i,uk—l— T%Eg) 5
3

where the products are over all the bosonic and fermionic eigenvalues, including the
special ones. However, using the condition (3.37) all the paired eigenvalues cancel
out.® For m = (/2 the generic fermionic eigenvalues do not exist. Thus there

are unpaired bosonic eigenvalues remaining the denominator of (3.38). These are

8Up to an irrelevant sign.
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obtained setting m = ¢/2 in (3.32), which reads
2 ired ay 2 2
(F2)ympaired _ <7(€ +1)+ 5f) 2, =012 . (3.39)

In the numerator of (3.38) remain the special fermionic eigenvalues. Thus the one-

loop determinant for fixed k, including the degeneracies, reads,

k d n0+1—|—7"3ik’—7’ "o
Zf—)loop = H ( ) ) (340)

ng— 1 —rsik +1r
no=1 \70 31k +

where we defined ng = ¢ + 1 and used that ay = —1 and

Br+p = %(1 —r). (3.41)

Upon obvious identifications, this coincides with the one-loop determinant of an
N = 2 chiral multiplet on the round three-sphere, originally derived in [47] and [48],
although our operators O, and Oy are slightly more general and interpolate between

those used in these references. In particular, the Lagrangian used in [47] corresponds

to k = —1/3 and € = 0, precisely as in [26], while those used in [48] correspond to
k= —1 and € = 1. Recall that in all cases we have set q = 0.
Defining .
ML (3.42)
1

where we restored the radius r; of the S!, one finds Z (®)

1—100p(2) = sp—1(iz), where

sp(x) is the double sine function (1.24). Alternatively, (3.40) can be written in terms
of special functions by integrating the differential equation

d
&logZﬁ)loop = —mzcot(mz) , (3.43)

where the Hurwitz function has been used to regularize the infinite sum [47] (see
appendix B).
In order to take the limit § — oo, it is more convenient to write (3.40) as an

infinite product over two integers, namely

oo oo 1
_ HHnl—l—n2+ +Z‘ (344)
n+nyg+1—=2

7 (k)

1—loop

n1=0ngo=0

The full partition function is obtained as as product over the Kaluza-Klein modes,

Zl—loop = HZYi)loop . (345)

keZ

Following the regularization in [26], we write the one-loop determinant in terms of
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triple gamma functions,

o0

H /{:+u(n1+n2+2—r).k—i—l—u(nl—i—ng—i—Q—T)
k+u(ny +ng+ 1) kE+1—u(ng+ng+r)

Zlfloop

k,n1,n2=0

U3 (ur!l, u, u)u3(1 —ur|l, —u, —u)

_ , 3.46
ug(w(2 — 7)1 u, u)us (1 — w(2 — 7)1, —u, —u) (3.46)
where u = iry /r3. From equations (6.4) and (5.24) in [98], this leads to
Zl—loop = eiTr\Ilig)i’ve (ir_l'ra iT_la W_1> ) (347>
rs T3 T3

with _
b _ %[ﬂ(r_l)s_ (E+E> <r—1>] | (3.48)

3 ™ 3

2miw

where T, (w, p,q) = I, (e?miw, 2P e2m1) ig the elliptic gamma function,

1 _ pm+1qn+1w—1

Le(w, p, = 3.49
(wpq) = [] — e (3.49)
m,n>0
From this, one finds the contribution of a chiral multiplet to (3.27) to be
chiral 1 3
E = —(2(r-1°-(r—1)) . (3.50)

susy 12

This is exactly the contribution of a chiral multiplet with R-charge r to the total
supersymmetric Casimir energy computed in [26], although we emphasize that here
this has been derived for arbitrary values of the parameters s and e.

Combining the contributions from the vector multiplets (3.30) and the chiral

multiplets we recover the result

4
Easy = 2—7(a—|—3c) ; (3.51)

with the anomaly coefficients defined as
3 3 1 3
a = o (3trR — trR) , c =3 (9trR — 5trR) , (3.52)

where R denotes the R-symmetry charge, and “tr” runs over the fermionic fields in
the multiplets, so that for NV, vector multiplets and N, chiral multiplets,
Nx
tR” = N,+ ) (rr—1)". (3.53)

I=1

In the next section we will show that (3.51) is also equal to the expectation value
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of the BPS Hamiltonian Hy,s, appearing in the supersymmetric index
I(B) = Tr(=1)"e Mo, (3.54)

Therefore we now turn to the Hamiltonian formalism, working in a background with

a non-compact time direction, thus with 5 — oo from the outset.

3.4 Hamiltonian formulation

In this section we study the theories defined in section 3.2 in a background R x S? in
Lorentzian signature, obtained from the geometry in section 3.1 by a simple analytic

continuation. In particular, we take the metric
ds*(R x %) = —dt* + ds*(S?) (3.55)

where ¢ denotes the time coordinate on R, and ds?(S?) is the metric on the round S3,
equation (3.1). Below we continue to set 73 = 2. The background fields are obtained
from those of the previous section by setting A, = —iA,, V, = —iV,, and K, = —iK,.
We must have k € R, such that the background fields are real. Moreover, the

dynamical fields in Lorentzian signature obey {5 = ¢! and @Z = 1. The o-matrices

generating the appropriate Clifford algebra are obtained setting 09, = iol, = 1,4
and 00, = iol. = 1,4, with the remaining components unchanged, such that
0A0B +0BOs = —2nap , 040 +0R0A = —21Nap, (3.56)

where now A =0, ...,3 and nap = diag(—1,1,1,1). The Lorentzian spinor ¢ solving

equation (1.2) for generic & is then

e (3.57)
v2 1) '
again with a more general solution for the special value k = k™ = —1 [55,99].

3.4.1 Conserved charges

In the following we consider a chiral multiplet and we will drop the superscript
“chiral” from all quantities. The Hamiltonian density H = Hpos + Hfer, associated to
the chiral multiplet Lagrangian (3.12), is obtained as usual by defining the canonical

momenta

Il = 8p—ipg, Il = Go+ing, 7 = it 7 =0, (3.58)

69



and its bosonic and fermionic parts read

Hbos — H8t¢_'_ﬁat;£_ Echiral 7

bos

Hiee = w000 + RO — LT (3.59)

respectively. In terms of the operators O, and Oy defined in equations (3.21), we

have

Hpos = I —ip(le — 1) + 6 (O + 4?) ¢ ,
Hiw = —0Os0) . (3.60)

The Hamiltonian is then obtained by integrating® over the spatial S3,

H = /\@d%ﬂ. (3.61)

The R-symmetry current J§ can be derived either from the Noether procedure or

as the functional derivative of the action with respect to A,, namely

1 05
V=904, "’

JE = (3.62)

and it reads
Jh =ir(D"¢ ¢ — dD ) + 2r(VF + k(e — 1)K")¢d + (r — 1)a"h . (3.63)

This is conserved, i.e. V,Ji = 0, and the corresponding conserved charge R is
obtained by contracting it with the time-like Killing vector 0;, and integrating on

the S3, which yields
R = / Vosdx (w(&s’ﬁ_ ¢Il) + (r — 1)J5t¢). (3.64)

Rotational symmetry along the Killing vector 0., which belongs to the SU(2), part
of the isometry group of the sphere, gives rise to a conserved current with the

corresponding conserved angular momentum

Jy = —i / Vasd®e ((Lsg) T+ (L) T+ 00 (L + S5) ) (3.65)
Finally, supersymmetry gives rise to the conserved supercurrent

Tl = —V20"5"D,¢ . (3.66)

9The integral is over the spatial S® with the metric ds?(S%) in (3.1). We define d®z = dfdcdep,
and g3 = sin? @ denotes the determinant of this metric.
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Using the equations of motion for the dynamical fields, after some calculations, one
can verify that

V. (CJh

susy

) = 0. (3.67)

Note that V,( # 0, and therefore J¥_ is not conserved by itself, as is the case in

susy

the standard flat-space computation. Contracting (Jf, with the time-like Killing

vector 0;, we obtain the conserved supercharge

Q = V2 [y (coll-i0Opw) (3.68)

where we defined

O; = 2aS-L+285+7, (3.69)
with
- ~ 3 . Kk (3 3

In summary, applying the Noether procedure to the Lagrangian (3.12), we have
derived expressions for the Hamiltonian H, R-charge R, angular momentum J3, and
supercharge Q. These will provide the relevant operators in the quantized theory.

Let us briefly discuss other currents that can be considered, which however are
not conserved generically. In particular, the usual energy-momentum tensor, defined

as
-2 95

Tl/ = T
S L

is mot conserved in the presence of non-dynamical fields. This remains true even if

(3.71)

T,, is contracted with a vector field that generates a symmetry of the metric and
the other background fields. Thus, for example, T};; does not define a conserved
quantity, and in particular it does not coincide with the canonical Hamiltonian.
Denoting generic non-dynamical vector fields as A!, with F'/ = dA!, and the associ-
ated currents as J¥, in general the energy-momentum tensor (3.71) obeys the Ward

identity

Vi, = Y (FLJE— ANV, (3.72)

I

In the present case, after a tedious computation, one finds that the energy-

momentum tensor satisfies

3
VMT/W = (dA)VuJIl{ - §(dv)vu=]#z + (dK)vuJIM(

3
+5VoViudty = KVl (3.73)
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where Jlﬂfz is the Ferrara-Zumino current

2 1 48
po— 2 2 74
and 168
Jh = —— (3.75)

J—g0K,

Neither Jf, nor Jj are conserved. Explicit expressions for T, Ji,, and Jj are
given in appendix C. Note that in this context, we must formally treat K, as a
background field, although it was introduced in the Lagrangian as a shift of the
original fields A, and V. For the usual chiral multiplet Lagrangian with ¢ = 1,
however, one has Ji, = 0.

For a generic Killing vector &, that is also a symmetry of the background fields,

LeA = LV =0, we can define a conserved current as
3
Y& =& (TW + JRAY — §J§ZV” + J[‘;K”) : (3.76)

One can show that indeed VuYg“ = 0. In particular, for & = 0;, one finds that the

conserved charge is the Hamiltonian density
H = -Y;, (3.77)

up to a total derivative on the three-sphere.

3.4.2 Canonical quantization

We now expand the dynamical fields in terms of creation and annihilation operators.
Let us first focus on the scalar field. In order for the field ¢ to solve its equation of

motion, we expand it as

Z )3 (a0 )+t @) BT

with!0

1 .
ugt) (z) = L wewfmtmaﬁ), (3.79)
m

where Y™ (Z) are the scalar spherical harmonics on a three-sphere of unit radius

(see appendix A for further details), and

Wi = p+ \/%W +2) £ 2Bym 4y + (3.80)

10 Although none the eigenvalues relevant to us depend on the SU(2), C SO(4) quantum number
n, we keep track of this in the spherical harmonics and in the expansions.
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The canonical commutation relations

(¢, 7),TI(1, 7)) = ﬁ ST - '),

[o(t,7),0(t,2")] = [I(£,2), (¢, 7)) = 0, (3.81)

with 08 (F—Z') = 6(0—0")5(0—¢')d(s —¢'), hold by taking the oscillators to satisfy
the usual
[aémna az/m/n/] = [bhmm bz’m’n’] = 5@,@’5m,m’§n,n’ . (382>

From (3.60) it follows that the Hamiltonian of the scalar field reads

Hyos = = E E wgm (aémnagmn + agmnaémn>

2= mon=—L

H

5 Z Z wfm (bém” Imn + bfmnbfmn) . (383)

(=0 mn——§

Notice that we have used the Weyl ordering prescription, as this is the correct one
for comparison with the path integral approach.
For the fermion, we expand the field ¥ in terms of the spinor spherical harmonics

Sztmn. As discussed in appendix A, these are eigenspinors of the operator Oy,

Of tmn )\i Si

Imn

(3.84)

with the eigenvalues )\ - given in equation (3.33). In addition, there are the “special”

spherical harmonics,
special+ speciald+ gspecialt+
OsS,,, = N S , (3.85)

with AP given in equation (3.34). We expand the field 1 as

S Z Z i+ Z Z & vema s (3.86)

£=0 n——§ m————l =1 n——— m——f
with
U a(Z) = ——ePiST () Vormal(T) = — et (7).
mn o 2\/§ mn o ) mn o 2\/5 Imn «
(3.87)
Here we included S*P°“#* in the sums by defining
— _ special+ — _ special+
S,., = Spe Ao, = A :
— _ special— — _ special—
S£77£71’n = Sgﬁ 9 )\e,fgfl,n p— )\ZEL . (3.88)
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Of course, by imposing the anti-commutation relations

{Cfmnac;mn} = {démmd};mn} - 6@,[’5m,m’5n,n’, (389>

one finds the field v, and the conjugate momentum 7% = ivzd?ro @@ gatisfy the canon-

ical relations

{Wa(t, 2),7°(1, ')} = 0T —7") 04",
{wa(t75)a¢ﬂ(tvf/)} = {Wa(tvf)’ﬁﬂ(tvf/)} = 0. (390)

The mode expansion (3.86) can now be inserted into the conserved charges of the
previous subsection, recalling that these have to be Weyl ordered. For example, the
Hamiltonian density in (3.60) becomes

Hiewe = = ((Op0)) —YOs)) . (3.91)

N | —

Inserting the mode expansion and integrating over the S? yields the quantized Hamil-

tonian

Nl

err = _Z Z Z )\ém <C€mncgmn C};mncﬂmn)

£=0 n*—%m_———l
__Z Z Z >\ (demn fmn d};mndﬂmn> . (392)
l= 1n*——m7—7

In the next subsection we will turn to the computation of the expectation values of
these Hamiltonians, and we will show that the infinite sums can be evaluated with
(Hurwitz) zeta function regularization in two special cases. One case is obtained
for ¢ = 0, for which we can use the pairing of bosonic and fermionic eigenvalues
discussed in section 3.3 to evaluate the vev of H = Hy, + Hg,. Another case is
obtained for 8y = (5, = 0, where we will be able to evaluate the vevs of Hj.s and
Hi,, separately.

Thus, for simplicity in the remainder of this subsection we restrict to 8y = 3, =
0. Using the mode expansions of the fields, and after Weyl ordering, we obtain

expressions for the remaining conserved charges. For the R-charge, equation (3.64),
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this leads to

[SIES
Nl

R = 52 Z (aémna};mn—i_aZmnaZmn) - Z Z (bemnbﬁmn"i_bﬂmnbgmn)

£=0 m,n:—g =0 m,n:—é

r—1 : :
o S DD S (I,
£

£=0 nz—i m:—g—l

Lol Z Z Z (el = Al ) (3.93)
=1 ,—

— = m__,

N3

For the J3 angular momentum, equation (3.65), we get

SIS

J3 = % i m(afm”a’};mn + azmnaém”)
_|_% Z Z Z (bgmnbémn + bfmnbﬁmn)
1 o) 2 2 1
520 D (’"* 5) (comChmn = Chnncon)
51 E ()t tt) o
=—£im

and finally the supercharge (3.68) reads

Q = —izz Z \/—+m+1a€mnqmn

0=0 p—_¢
00 % 5—1 /
= (—1)*“"0*”,/5 — 0 byl (3.95)

By direct computation, one can now verify the following commutation relations

Ho = -lo. mo =0 =30 (9%

3

where we restored the radius 73 of the S®. Note that the Hamiltonian commutes
with @ only for ¢ = 0, which from equation (3.37) is the value required for the

pairing of eigenvalues. By conjugating equation (3.95), one can further verify that

{Q o} = H+ (1+q)R+ J3 , (3.97)
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where : : denotes normal ordering. Let us set r3 = 1 in (3.97) and (3.96) and
comment on the special values of the parameter ¢ discussed in the literature. Setting

q = 0 we have

%{Q,QT} = :H+R+2J3: ,
[H,9] = 0, (3.98)

corresponding'! to the relations in equation (5.9) of [20], where H|,—o coincides
with H in that reference. For this reason we refer to H|—y = Hsusy as the BPS
Hamiltonian.

Setting q = 1/2 we have

1 3
5{Q,QT} = H+gR+2J5:

[H,Q] = —%Q : (3.99)

which coincide for example with equation (7) of [57] as well as with equation (6.11)
in [20], where H|q—1 /2 corresponds to A in the latter reference.

Finally, setting q = —1 we have

1
é{Q,QT} = H+2J5:
[H,Q] = Q, (3.100)

corresponding to equation (5.6) of [20], where H|,—_; corresponds to P in that
reference.

Although these commutation relations are here written for the chiral multiplet, it
is straightforward to verify that they hold also for the vector multiplet, and hence
for the total Hioy = H + Hyec, and similarly for the other operators. It was noticed
in [68] that these may be formally derived from the abstract supersymmetry algebra

of new minimal supergravity.

3.4.3 Casimir energy

We are now ready to compute the vacuum expectation value of the Hamiltonian.
This yields infinite sums which we regularize using the zeta function method. Thus,

for an operator A, we define its vacuum expectation value as

(A) = sll@lCA(S)7 (3.101)

Here and below, the equations correspond to those referenced, up to convention dependent signs
of R and J3, as well a possible factor v/2 in the supercharge Q, descending from the definition of
the supersymmetry variations.
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where, denoting with A2 the set of all the eigenvalues (here n is a multi-index) of A

and with d2 their degeneracies, the generalized zeta function is defined as

Cals) = TrA™ =Y din)—. (3.102)

Notice that if A = B + C, with corresponding eigenvalues denoted as A2 and \¢,
then

Jim (;m °+ ;(AS) ) # slggl;uf +A0) (3.103)
This lack of additivity is related to the lack of associativity of functional determi-
nants, det(BC') # det(B)-det(C), which is known as “multiplicative anomaly”. See

g. [100].

In the present context, we use the following prescription for dealing with the
infinite sums: for each given operator, we sum independently the eigenvalues corre-
sponding to every different field. In particular, we define the vev of each operator as
the sum of the vevs of the terms containing the fields ¢, 1, A, and A, respectively.

Therefore, for example,
<H> = <Hbos> + <err> ) (3104)

and similarly for R, Js, and Q. This recipe is in accordance with [101], and we will
show below that this yields the supersymmetric Casimir energy computed in [26].

The vevs of the scalar and fermion Hamiltonians of the chiral multiplet, (3.83)

and (3.92), are

¢
1 2
(Hpos) = Sl_iEll 52 Z (W)™ Z Z (W) |

= - e 0 ymn=—=%

(Hir) = lim i Z Z )|, (3.105)

s——1

DO | =
NE
-
[\DI)—\

é

~
Il
o

-1

SIS

—_ __ ¢ 4
n= m=-—z 2

respectively. However, due to the square roots appearing in both sets of eigenvalues

wgm and AE | the vevs in (3.105) cannot in general be separately regularized with

m>
any'? zeta function and written in closed form.
In the special case q = 0, we can take advantage of the pairing as discussed in

section 3.3 to compute the vev of the Hamiltonian of the chiral multiplet, H =

12F.g. Hurwitz, Barnes, Shintani, Epstein zeta functions.
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Hyos + Hgep. Thus, setting ¢ = 0 one has

4 l
wh = =, bréZl,—§§m§§—1.@m®

+
Wom = A

Im

The eigenvalues not included in equation (3.106) are the “special” fermion eigenval-

ues, which we can write as
special+ 1
NP = ()£ B, €20, (3.107)
and the “unpaired” bosonic eigenvalues

1 1
wieo= WA =Brtp,  w, = WD) =Br-p, €20 (3.108)

[SIEN

Here we used that ay < 0 and assumed [y < —% in order simplify the square roots

in w, and w, .. Due to the pairing, equation (3.106), all eigenvalues containing

63 3
square roots exactly cancel against each other in (3.104), and we are left with

(H)g=o = Sl_i>n_ll Z Z Zg T+ Z Z w
Z 0 n_,é é 0 n_,,
+ = Z i )\spe(:1al+ Z i )\spemal ]
e 0 p=—= e 0 p=—=%
= lim —Zk(k—2(ﬁf+ﬂ))_s—}l k(k+2(8f + p)) ]
k=1 k=1
1
= B +n) (1—8(8s +p)?) - (3.109)

Notice that the first and third term in the first line further exactly cancelled and in
the last step we regularized separately the two remaining sums using the Hurwitz
zeta function'. To summarize, since for ¢ = 0 one has 2(8; + p) = 1 — r, the vev

of the Hamiltonian of a chiral multiplet with R-charge r is

<H>q=0 =

1%51—m(y—ﬂ1—ﬂ%, (3.110)
where we restored r3. This result is valid for any value of r, x, and €. Notice that if
we were to combine the two sums in the middle line of (3.109), before regularization,
we would get a different result.

Turning to the vector multiplet, the Casimir energy of the gauge field A does
not depend on any of our parameters and is simply given by the result for an

Abelian gauge field (Hgauge) = ﬁ (see e.g. [42,102]) multiplied by the dimension

13See appendix B for details on the Hurwitz zeta function.
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of the gauge group N,. For the gaugino A, the Casimir energy is computed as for

the fermion 1 in equation (3.105), but using the eigenvalues of the operator O3

1
120r3?

multiplied by N,. It is now simple to combine this with the contributions from the

in equation (3.26). For q = 0 this gives simply (Hgaugino) = again to be
chiral multiplets and vector multiplet, and recover'* the supersymmetric Casimir

energy Eg.y in equation (3.51),

(Hiot)g—o = 1%13 (2uR® — rR) = %(a +3c) = %Esusy . (3.111)

Asin (3.51), this result is valid for arbitrary values of x and €. Indeed this is exactly

the same BPS Hamiltonian defining the path integral, and therefore the free field

result should have agreed with the localization result, that is valid for any value of
the couplings.

Next, we consider the special case 8, = fy = 0. This corresponds to setting

k = —1 and € = 1, but leaving arbitrary q. In this case, both sums in (3.105) can be

separately regularized using Hurwitz zeta function, as the square roots in wgtm and
)\fm are absent, namely
+ 1 - 1
wS = §(£+2—r(1+q)) , w, = §(€+r(1+q)) : (3.112)
and
— special+ 1 + 1
A=A = —§(£+2—r(1+q)+q) , A= §(€+r(1+q)—q) , (3.113)

where we dropped the subscript m, as this quantum number becomes degenerate.
Thus, regularizing the sums as described at the beginning of this subsection using

the Hurwitz zeta function, we obtain the finite Casimir energies

(Huos) = io[1—1o(r(1+q)—1)4] , (3.114)

and

(Hie) 10+ 1) (14 9) (r = 1)

240
+20(q + 1)3(r — 172 — 10(q + 1)(r — 1) — 1] . (3.115)

Adding (3.114) and (3.115), we obtain the Casimir energy of a chiral multiplet

14The quantity Fsysy defined in [26] is dimensionless. Therefore, when writing the radius of the
three-sphere explicitly, this has to be compared with the dimensionless combination 73(Hiot) q=0-

79



with R-charge r

() = —5[at+ 2@+ g )6 - 1P
+602(q+ 1)2(r — 1)> + (q+ 1) (40> + 1) (r — 1)] . (3.116)

This generalizes straightforwardly to an arbitrary number of chiral multiplets. As
before, we can include easily an arbitrary number N, of vector multiplets as well. In
this case, for the gaugino, the Casimir energy can be obtained by formally setting

r= 2= in equation (3.115), and reads

14q
1
<Hgaugino> = Sin (10 (Cl4 - 2q3 + q) - 1) . (3117)
240
Combining these results, we find that (for kK = —1, € = 1) using our regularization,

the Casimir energy of a supersymmetric gauge theory with N, vector multiplets and

N, chiral multiplets with R-charges r; is given by the following expression

(Hiot) = 1];[;’3 (0" — 20" +a+1) — 15 (' + (49* +1) (@ + 1) = 1)
+60%(a + 1)2(rs = 1) + 220 = (a + 1)*(rs = 1)°) | (3.118)

where we restored the radius 73 of the three-sphere. Setting q = 0 as in [26], and
recalling the definition (3.52) of the anomaly coefficients a and ¢, we see that (3.118)
reduce to

4
Hioso = ——(a+3c), 3.119
< t t>q 0 27r3(a+ C) ( )

in agreement with (3.111).
In general, however, equation (3.118) cannot be written as a linear combination
of a and c. In the special case ¢ = 1/2 and r; = 2/3, corresponding to the usual

conformally coupled scalars, Weyl spinors, and gauge fields, the Casimir energy
(3.118) reduces to

1 1
<Ht0t)q:%7”:% = 192713(21N7J—|—5NX) = 4—743(a+2c) , (3.120)
in accordance with standard zeta function computations (see e.g. [42]'°). In par-
ticular, notice that for theories with N, = 3N, so that a = ¢, such as N' = 4
super-Yang Mills, this becomes simply %a. However, the agreement with the CFT

result of [103] for the Casimir energy is accidental [102,103]. Finally, we note that

1"Equation (5.60) of [42] gives the Casimir energy of ng scalar, ny /5 Weyl fermions, and n; vector
fields. Agreement with (3.120) is found setting ng = 2Ny, n1/2 = Ny + Ny, and ny = N,.
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for ¢ = —1, the Casimir energy is independent of the R-charges and reads

1
127”3

(Hiot)q=—1 (BN, — N,) . (3.121)
This is simply because in this case A = 0 from equation (3.10), and therefore the
Lagrangian does not depend on the R-charges.

We can also compute the vevs of the supercharge Q and R-symmetry charge R.
It is simple to see from its mode expansion (3.95) that Q annihilates the vacuum,
and so the vev of Q is zero. The same is true for the supercharge of the vector
multiplet, which is explicitly given by Quec = 1 [ (/gzd’x Ca“&”JOXFW. From the
mode expansion (3.93) of R for the chiral multiplet, it is clear that the scalar field
does not contribute. Furthermore, since the fermionic eigenvalues are constant, they
do not fit in the regularization scheme of eqns. (3.101) and (3.102) as they do not

give rise to a zeta function. In [2], the regularization proceeds by noting that only

the eigenvalues from the “special” modes, for which m = —g —land m = é, do not
cancel,
. £ £ oo £ L1
r—1 2 2 r—1 -
(B) = ——5=2.2. 2 =522 2.1
0=0 e Loy L4 =1 e Loy L
2 2 2
= (1-r)) (L+1)
=0
r—1
= 3.122
— (3122)
where in the last step we used the Riemann zeta function, (g(—1) = —1—12. Similarly,

L
127

vev of the total R-charge operator Ry, = R + Rye. presented in [2] is

for the vector multiplet (Rye.) = -5, where only the gaugino contributes. Thus, the

(Ruy) — %(a—c). (3.123)

It was clarified in [3], however, that this regularization of (R) does not respect
supersymmetry. As we will see below in section 3.5, the correct regularization yields
(R) = —r3(Hsusy), where Hyyey = H|q—0.

The results discussed in this section rely on the fact that the operators we are

using are not normal ordered. See also [104] for a similar discussion.
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3.5 Reduction to supersymmetric quantum me-

chanics

In this section we continue the study of the Casimir energy of N’ = 1 field theories
on R x 83, where the S? is round. We perform a manifestly supersymmetric analysis.
By expanding all dynamical fields in spherical harmonics on the S®, we reduce the
problem to a supersymmetric quantum mechanical problem.

As discussed in section 1.5, the regularization of the partition function can be
described in terms of the addition of counterterms to the action. In general, this can
be done in different ways, leaving the finite part scheme-dependent and ambiguous.
Different renormalization schemes differ by some local counterterm, that is, the
addition to the action of some local term constructed from the background fields,
[ d*z\/GLet(guvs Aps V). In particular, dimensionless counterterms!® affect the finite
part of the computation, accounting for the ambiguity mentioned above. Below we
argue that if the regularization is required to be compatible with supersymmetry,
no such counterterm can shift the value of the supersymmetric Casimir energy.

This section is based on [3].

3.5.1 Consequences of the supersymmetry algebra

In the following we consider the special choice of the parameter x = % = —1,
discussed around (3.10). The background preserves four supercharges, and we set
q = 0 so that the supercharges are time-independent, see (3.11). Since the Hamilto-
nian commutes with the supercharges in this case (from equation (3.96)), we denote
Hgsy = Hlq—0. Due to the flat gauge field A along the Euclidean time direction,
the Hamiltonian Hy,s, is shifted with respect to what we would get from radial

quantization as'’

1
Hoysw = A+ —R, 3.124
y + 2T3 ( )

where A is the time translation operator obtained by mapping the dilatation oper-

ator in flat space to the cylinder.

The superalgebra preserved on this background [55] is

T3 181 _ B 1 2 ip i
3(00, Q") = 0 Humy + - R) + =970

) 1 )
[Hsus}’7 Qa] = 07 [R7 Qa] = Qa, [J;,Qa] = _§Q572ﬁa, (3125)

where again 7" are the Pauli matrices, R is the R-symmetry charge, J; are the gen-

6That is, counterterms of the form fd4a:\/§£m(gW,AM,VM) where the integrand is of mass
dimension four. Such counterterms are called marginal in [96].

1"For consistency with the previous section, we changed here the sign of the R-charge operator
R and angular momentum J* compared to [3,55].
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erators of the SU(2), C SU(2), x SU(2), isometry of the sphere. The supercharges
Qu., @ = 1,2 form a doublet under SU(2);, while the subgroup SU(2), subgroup
does not appear in the superalgebra.

A first remark is that we assume the vacuum |VAC) does not break supersymme-
try. Suppose the vacuum were not supersymmetric, in which case either Q; or Qs
(or both) would not annihilate the vacuum. Then Q|VAC) is a new state with the
same value of Hg,y, but contributing with opposite sign to the index or partition
function. Therefore if supersymmetry were broken, the index on R x S? would not
receive a contribution from the unit operator. In the case of SCFTs, the fact that
supersymmetry is unbroken on R x S? follows from radial quantization.

Another simple observation from (3.125) is that J; = J? annihilates the vacuum,
J3|VAC) = 0. Indeed, J3 appears with different signs on the right hand side of
{Q;, O} and {Q,, Q}}. Hence, if both Q; and Q, annihilates the vacuum, so must
Js.

It is useful to focus on the algebra of one specific supercharge, say Q1,

r 1 2
_3{Q17Q11-} = Hsusy+_R+_J3 ) Q% =0
2 T3 r3

[Howsy, Q1] = [R+2J3,Q] = 0. (3.126)

Since @7 and J3 annihilate the vacuum, the first line implies

(Haw) = ==-(R) (3.127)
Note the consistency of (3.126) with (3.96) and (3.97). This also shows that the
regularization of (R) in the previous section leading to (3.123) does not respect
supersymmetry, as we remarked at that point.

The supersymmetry algebra does not fix (Hg,sy) entirely, as (3.126) is invariant
under shifts of Hg,s, and R. Our approach for determining (Hg,sy) will be to reduce
the theory on the three-sphere. In this way, we obtain a quantum mechanics theory
with infinitely many degrees of freedom. The theory has four supercharges O,
Q,, and their Hermitian conjugates. The R-symmetry group is SU(2), x U(1) and
the supercharges transform in the (2,1) representation. The SU(2), symmetry is a

global symmetry of the quantum mechanics theory.

3.5.2 Supersymmetric quantum mechanics

Let us model the situation in (3.126) as

(0,0} = 2H+%), @Q* =0,
[H.,Q] = [£,Q] =0, (3.128)
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where H generates time translations, while > is some Hermitian conserved charge.
We could just redefine H by X, however, in order to connect more easily with the
reduction over S%, we will keep the algebra in this form.

We can now define two types of multiplets: a chiral multiplet (¢,1), and a Fermi
multiplet (X, f), where ¢, f are complex and commuting while ¥, A are complex and
anti-commuting. These two multiplets have the following supersymmetry transfor-

mations,

chiral :  d¢ = V20, o = —V2i¢"D,g
Fermi : 60X = V20f+pvV2To,  6f = —V2DA—pv2cty . (3.129)

where on all the fields we define D, = 0; — io, with o the charge of the field under
Y. The complex parameter ( is independent of time and uncharged under ¥. In
the variations of the Fermi multiplet there appears a parameter p. When p = 0, the
chiral and Fermi multiplets are independent of each other. We will refer to each of
the decoupled multiplets as “short”. When instead p # 0 the two multiplets form
one reducible but indecomposable representation of supersymmetry. Thus, for p # 0
we call the combined chiral and Fermi multiplets a “long” multiplet.

On each component of a multiplet with charge o, the transformations (3.129) give

{61,623 = —2i(¢{¢2 + ¢J¢) Dy (3.130)

which is consistent with the algebra (3.128) when H is represented as —i0;.

The supersymmetric Lagrangian of a long multiplet takes the form

L = |Dig? —iv(¢Dp" — ¢'Dyp) + i)' Dy — 2v4pyt
HA DA 4 | f?

—P*ol* — p(M" + wAT) (3.131)

where v is an additional free parameter, giving a mass to ¢). For p = 0, the first and
second lines are the Lagrangians of a free chiral and Fermi multiplet, respectively,
and are separately supersymmetric.

We now pass to Hamiltonian formalism and quantize the theory. The canonical

momenta are
I, = (D;+iv)e', Iy = —igl, I, = —ixt, I; = 0. (3.132)
The canonical (anti-)commutation relations are

[¢7H¢] =1, {wvl_[?/i} = —i{@bﬂ/ﬁ} = -1, {)\,H)\} = _i{)‘v AT} = -1,
(3.133)
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together with their Hermitian conjugates.

The Hamiltonian reads

H = |y +i(v+0)Iep — ¢'Ty) + 128> + (o + 2v)pap!
+ o
+ 2|6 + p(At + AT + & | (3.134)

where again when p = 0 the first line gives the Hamiltonian of a chiral multiplet,
while the second line is the Hamiltonian of a Fermi multiplet. The field f has been
set to zero by its equation of motion. Note that we have introduced a constant a,
parametrizing the usual ordering ambiguity.

In terms of canonical variables, the charge ¥ reads
S = —io(ygp — ¢'Tly) — o (Yl + M) — | (3.135)
where o parametrizes the ordering ambiguity in this operator. The supercharge is
Q = V2iy(Il, —ivgh) + V2poia, (3.136)

and is free of ordering ambiguities. Evaluating {Q, Q} we find that (3.128) is upheld
provided we take
a =a—2v. (3.137)

Hence supersymmetry fixes the ordering ambiguity in H + ¥. Of course, after
having solved for a we still have the freedom to shift H and X by an equal amount,
corresponding to the remaining parameter a. Without additional assumptions, this
freedom would have remained in the framework of ordinary quantum mechanics in
one dimension.

In order to explain how to fix the ordering ambiguity that is left, it is useful
to recall that we are computing the coefficient of a CS term in the low-energy 1d

effective action. This term takes the form
k;/thE : (3.138)

where AF is the background gauge field associated to the charge . A single
fermion of mass m and charge q shifts the coefficient of the Chern-Simons term
by 3sgn(m) [105]. We can think about this as if we are starting from some theory
in the UV with Chern-Simons coefficient k., and then we integrate out the massive

fermion leading to a Chern-Simons coefficient in the infrared ;. (this interpretation
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was elaborated upon in [21])'®

ki — kuy = —gsgn(m) . (3.141)

From the point of view of the quantum mechanics, the arbitrariness in the charge
of the vacuum corresponds to the arbitrariness in the UV coefficient k,,. However,
our theory arises from a higher-dimensional model. As already observed, it is easy
to convince oneself that a term like (3.138) cannot be generated by dimensional

reduction of a four-dimensional local term. So we must take
kuw =0, (3.142)

i.e. no Chern-Simons contact term in the UV generating functional. This key re-
quirement fixes the ordering ambiguity in H. Together with (3.141), this implies
that multiplets containing pairs of fermions with masses of opposite sign do not
contribute to the Casimir energy. We will see below that as long as the Hamiltonian
is bounded from below, a long multiplet necessarily contains fermions with masses
of opposite sign. As a result, the choice of the ordering coefficient must be such that
H and ¥ vanish in the ground state of a long multiplet. This leads to the conclusion

that the correct choice of the ordering constant is
a=—20. (3.143)

We will use this choice in the following and one can verify that in all cases the results

are consistent with (3.142). Incidentally, it turns out that (3.143) also corresponds

to Weyl ordering for the Hamiltonian.®

18 A simple way to derive (3.141) is as follows. First, from dimensional analysis and the fact that
m and k are odd under charge conjugation we infer

ki — kuy = xsgn(m) | (3.139)

where x is a coefficient, independent of m. To fix = we can consider a free fermion with mass m and
charge q with a constant background gauge field AF. This has Hamiltonian H = (m+qA}) (¢! +
&), where & is an arbitrary ordering constant. The partition function is given by

7 _  e-Bmtard)a (H_efﬂ(erqA?)) _ (3.140)

The idea now is that we can keep the ultraviolet fixed and consider two different RG flows, one
with positive m and one with negative m. By subtracting the resulting Chern-Simons terms in
the infrared (which we will read out from the charge of the vacuum), we will find 2z. If m > 0
then taking m — oo we can read off the CS term (i.e. charge) in the IR to be q& [ dtAy. On the
other hand, if m < 0 we read out the CS term in the IR by taking the limit m — —oo and we find
q(@+ 1) [dtA7. Subtracting these yields 2z = —q.

9This explains why the final result is identical to that of section 3.4 (from [2]) for the VEV
of H. But, unlike [2], our result for the VEV of ¥ in the vacuum manifestly respects the BPS
condition H = —X..

86



3.5.3 Spectrum of the Hamiltonian

We now study the spectrum of the Hamiltonian (3.134) and determine the vacuum
state.

Long multiplet

Let us start from the bosonic sector of (3.134):
Hyos = |Tol* +i(v + 0)(Tg¢ — ¢'Tyi) + (v* +p?)|¢*| —v — 0, (3.144)

where we have included half of the ordering constant appearing there (the other half
will enter in the fermionic sector). This ensures Weyl ordering. We can introduce

creation operators af, b' and annihilation operators a, b via

(2 +p2)_1/4 i(v? +p2)1/4

V2 V2

The canonical commutation relations between ¢ and 11, (and their Hermitian conju-
gates) imply that these satisfy [a, a'] = [b,b1] = 1, [a,b] = [af, b] = [a, b] = [af, b] =

0. Then the bosonic Hamiltonian can be written as

¢ = (a+b"), T, = (af D) . (3.145)

Hyos = Vv +p*(ala+b'+1) + (0 +v)(b'b— dla)
= VAP () + (0B + 5o+ ()~ {aa)), (3146)

where in the second line we have emphasized that Hy.s is Weyl ordered. The state
annihilated by a and b has energy /12 + p2. Acting on this with (a")™(b)" (with

m,n positive integers) we obtain a state with energy

Hpos(m,n) = /12 +p>+m(V/r2+p*—v—0)+n(V/12+p>+v+o). (3.147)

We see that in order for the Hamiltonian to have a spectrum that is bounded from
below we need to assume /v2 + p? > |v+0].2° Hence the state of minimum energy
in the bosonic sector is the one with m =n = 0.

Next we address the fermionic sector. The Hamiltonian reads

Hie = pOT + X)) + Qv+ )t + oM\ —v — o

+
AN B I L I (3.148)

P o Af

where we have kept the ordering constant that ensures Weyl ordering. We can

20 Allowing for \/v2 + p? = |v + o| yields a Hamiltonian bounded from below but introduces a
degenerate vacuum. Let us discard this case.
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make a unitary U(2) rotation to diagonalize the above matrix. This preserves the

anti-commutation relations. The eigenvalues are

Ty = v+ox\v2+p?. (3.149)

Denoting the eigenvectors u,,u_, ui, uT,, the Hamiltonian is thus

T

He, = x+u+ul +r_u_u. —v—o

= % [u+7u3—] + % [u,, qu_] ) (3150)

with {us,ul,} = 1. The charge operator ¥ takes the form

Yber = a(u+u1 +u_ul — 1)

= olup,ul]+ou_,ul]. (3.151)

Starting with the state |0) which is annihilated by both ul,, we can act with u_, u,

or u_uy. The spectrum therefore consists of four states with the following energy

and charge:
state 0) u_|0) u4]0) uyu_|0)
energy | —v—o  —\/12+p? /12 +p? v+o (3.152)
charge —0 0 0 o

Since we assumed /v2 + p? > |v + 0|, the state of lowest energy is u_|0).
We now combine the information obtained studying the bosonic and fermionic
sectors of the Hamiltonian and identify a state with minimum energy that respects

supersymmetry. Adding Hy.s and Hy.,, the complete Hamiltonian is

H = V2+p*(dla+bb+1)+ (o +v)(b'b—a'a)

+ziuul o uul —v—o. (3.153)

One can also check that the full charge operator reads
Y = —o(blb—ala+ upul 4+ u_ul — 1) . (3.154)
From the discussion above, the state with minimum energy is clearly

IVAC) = m=0,n=0,z_) , (3.155)

where m = 0, n = 0 indicates that no bosonic oscillators are excited, and by x_ we
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mean that we excite one fermionic oscillator with eigenvalue z_. Its total energy is

H = \J/U2+p>2—/v2+p> = 0, (3.156)

and thus vanishes due to an exact cancellation between the bosonic and the fermionic
contributions. Since we have just one fermionic oscillator the charge is ¥ = 0, hence
the relation (H + X)|VAC) = 0 is satisfied and supersymmetry is unbroken in the
vacuum, as expected.

We conclude that the long multiplets yield a vanishing contribution to the vacuum

energy and charge:

(Hiong) = (Ziong) = 0. (3.157)

Note that this is a consequence of our choice of ordering constant, and as argued at
the end of the previous subsection this is the correct choice for a quantum mechanics
arising from a higher-dimensional theory.

If we had a theory of long multiplets only, the vacuum energy would just be zero.

However, if short multiplets are also present, this is not the case, as we now show.

Fermi multiplet

Consider the Fermi multiplet. Then the supercharge identically vanishes. The

Hamiltonian and the charge generator take the same form,

1
HFermi - _EFermi - 0-<)\)\T_§) . (3158)

The only two states have energy —%O‘ and —1—%0. The contribution of a Fermi mul-

tiplet to the vacuum energy and charge is thus

o
<HFermi> = _<2Fermi> = _%- (3159)

Chiral multiplet

The bosonic sector of the chiral multiplet can be treated as we did for the long
multiplet, setting p = 0. The full Hamiltonian and charge operator can thus be

written as

Hepirat = |v|(a’a+0'0+1) + (0 +v)(b'b—a'a) + (2v + o)yl — v — % , (3.160)

1
Venirat = —0 (Vb —ala) — o)’ + S0 . (3.161)

Since p = 0, the condition for the Hamiltonian to be bounded from below becomes

v| > |v+o]|. (3.162)
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In the vacuum all bosonic oscillators are zero. Then we have two possible states:
1. the state annihilated by ', with H = [v| —v — Jo and ¥ = +30;
2. the state with an oscillator ¢ excited, with H = |v| +v + 20 and ¥ = —10 .

Which state has minimum energy depends on the values of v and o. Note that
(3.162) requires v and o to have opposite signs. If v > 0, 0 < 0, then (3.162)
implies —2v < ¢ < 0, and the state number 1 has minimum energy H = —%a; since
H = -3, this state is supersymmetric, while the state 2 is non-supersymmetric.
Conversely, if v < 0 and ¢ > 0, then from (3.162) we deduce 0 < 0 < —2v, hence
the state number 1 now has higher energy and the state 2 is the supersymmetric
vacuum, with H = Zo.

Thus, a chiral multiplet contributes to the vacuum energy and charge as

o]

<Hchiral> = _<Zchiral> — 7 . (3163)

In conclusion, the analysis in supersymmetric quantum mechanics establishes that
a long multiplet yields a vanishing contribution to the vacuum energy and charge,
that a Fermi multiplet contributes as in (3.159), while a chiral multiplet contributes
as in (3.163).

3.5.4 Dimensional reduction of a 4d chiral multiplet

Consider a free four-dimensional chiral multiplet (¢, ), F)) on RxS3. The Lagrangian
and supersymmetry transformations can be found in [20]. The only parameter
appearing in the Lagrangian is the charge r under the background R-symmetry
gauge field. Here we will restrict to 0 < r < 2.2 This range is compatible with the
inequalities mentioned in the previous subsection, ensuring that the spectrum of the
Hamiltonian is bounded from below. Expanding in appropriate spherical harmonics,
the chiral multiplet reduces to a one-dimensional theory with infinitely many fields.
These organize in one-dimensional multiplets with different values of the parameters
v, p, o introduced above. Some have p # 0 and are thus long multiplets, while some
others have p = 0 and are thus short multiplets, either chiral or Fermi.

More explicitly, we can expand the scalars in spherical harmonics Y,"", discussed
in appendix A. The quantum number /¢ is a non-negative integer. For a fixed ¢, the
quantum numbers m, n of the scalar harmonic Y,”" range in —g <m,n < é . So we

can write

¢ = > Y™, (3.164)

Lmmn

21Qutside this range there are complications, see [106], for example, the cancellation previously
discussed for long multiplets would fail.
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and similarly for the auxiliary field F'. The fermionic field v, can be expanded in
spinorial harmonics.

Integrating over S® and using the orthonormality of the spherical harmonics, the
action of a four-dimensional chiral multiplet gives rise to a one-dimensional action
for an infinite number of fields. These arrange in multiplets of supersymmetric
quantum mechanics labeled by ¢, m,n, and one can check that the Lagrangian of
each of these multiplets takes the form (3.131). Here we do not need to present all
details of the reduction. All we need to know is how the R-charge r and the quantum
numbers ¢, m,n map into the parameters o, p, v entering in (3.131) and characterize
each multiplet in the supersymmetric quantum mechanics. Actually, the discussion
in subsection 3.5.3 shows that for the purpose of determining the vacuum energy
we just need to know when a multiplet is shortened (namely when p = 0), if it is a
chiral or a Fermi multiplet, and what is the value of its charge o.

By comparing the four-dimensional algebra (3.126) with (3.128), we deduce that
we must identify (restoring the S® radius r3) ¥ = ;-(R+ 2J}), and therefore

1
o = —(r+2m). (3.165)
T3

Moreover, reducing the four-dimensional Lagrangian to one dimension, one finds??

P’ = %(6—2m)(€+2+2m) ,
3

v o= —%(2m+ 0, (3.166)
hence the shortening condition p = 0 is satisfied if and only if m = £/2 or m =
—{¢/2 — 1. In the former case a chiral multiplet is obtained with charge o = %(f +
r). In the latter case a Fermi multiplet is obtained with charge o = —%(E +2 -
r). Recalling (3.159), (3.163) we conclude that the respective contribution to the

vacuum energy is:

chiral (m = %) : (Hepiral) = %(f +7),
(3.167)
Fermi (m=-%f—1): (Hpam) = —ﬁ(f +2—7).

The expectation value of the Hamiltonian is obtained by adding up the contributions

22More generally, one could easily restore the dependence on the parameter x. This affects only
v but not p? and . In the notation of section 3.2, one finds that the parameter v is related to the

parameters in the four-dimensional Lagrangian as r3v = —2m — 3r — k(3r —¢).
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of all chiral and Fermi multiplets:

<Hsusy> — Z <Hchiral> + Z <HFermi>

chiral Fermi
1 1
- Z%(H D(C+r) =) 2—m(€+ D(l+2—r), (3.168)
>0 >0

where the (¢ + 1) factor comes from the degeneracy associated with SU(2),.
To regularize the sum, we dress the terms in the sum with some decreasing weights.
To do this in a supersymmetric fashion, we can decompose H as a sum of Hamilto-

nians acting on the Hilbert space of a single free 1d multiplet

Hsusy = ZHl,me (3169)

£m.n

and regularize the sum with a function of the H,,,, operators, for instance

Hsusy = Z Hﬂ,m,ne_ztm‘H&m’”‘ , (3170)

lm,n

with t a positive number. This yields

(Housy) = Zi(f—l—l)(ﬁ—i—r)e’t(”’")—z 2i(€+1)(£+2—r)et<”2’">. (3.171)

>0 2r3 >0 °"3
Taking the small ¢ limit and dropping the diverging term in ¢72,2% we obtain a
regularized result for the vacuum energy,
4
Easy = (Hsusy) = %(a—i—?)c), (3.172)

in agreement with the result (3.51) obtain above using the Hurwitz zeta function.

One could consider a supersymmetric regularization with a different function
f(tHymn) of the Hy,,,, operators. It can be shown, using an Euler-MacLaurin
expansion that for all smooth functions f such that f(0) = 1 (and such that the
series converges), one obtains the same result for the finite piece in the small ¢ ex-
pansion (see appendix C of [3] for a related application). This is in agreement with
the fact that the supersymmetric Casimir energy is unambiguous.

It is possible to contrast our results with several previous works in which localiza-
tion techniques on S' x S were utilized. Comparing with [26] (see also [97] and [107]
where similar localization techniques are used in other topologies), one finds agree-
ment regarding the vacuum energy. However, as was discussed in the appendix

of [3], the regularization scheme of [26] in fact does not preserve supersymmetry, as

23The diverging term can be associated to the four-dimensional Einstein-Hilbert counterterm.
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it violates certain SUSY Ward identities in the small circle limit.

3.6 Conclusions

In this chapter, we studied the supersymmetric Casimir energy of N/ = 1 theories
on the background R x S3) as introduced in [26], in the simplest case where the
partition function only depends on one fugacity.

Firstly, by revisiting the localization computation in [26], we have verified explic-
itly that its value does not depend on the choice of the parameter x, characterizing
the background fields A and V', as expected. Secondly, we reproduced it by evalu-
ating the expectation value of the BPS Hamiltonian that appears in the definition
of the supersymmetric index, as anticipated in [108]. Our computations also clarify
the relation of the supersymmetric Casimir energy with the Casimir energy of free
conformal fields theories, demonstrating that these two quantities arise as the expec-
tation values of two different Hamiltonians, evaluated using the same zeta function
regularization method.

We then showed in section 3.5, that in fact the supersymmetric Casimir energy
is free of ambiguities, provided the chosen regularization scheme is compatible with
supersymmetry. We considered in this chapter only the case R x S3 (and St x S3)
where the three-sphere is round. In fact, [3] further included a proof that the
supersymmetric Casimir energy can be computed unambiguously on a deformed
three-sphere. In this case, the explicit spherical harmonics and eigenvalues are not
available, however, due to the shortening condition analogous to (3.157), the full
reduction on the three-sphere is not needed. The result obtained in this generalized
setting is shown to be consistent with the computations of this chapter on the round
sphere.

In the next chapter we address the issue of the holographic dual gravity description

of the theories considered above on the round R x S3.
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Chapter 4

Supersymmetric solutions of
five-dimensional minimal gauged

supergravity

In this chapter, we study supersymmetric solutions of five-dimensional minimal
gauged supergravity. We begin in section 4.1 by reviewing the formalism of [32],
where all supersymmetric solutions of this theory were classified. We will focus here
on the timelike class. Next, in section 4.2, we start from an ansatz with an ortho-
toric Kahler base metric, finding a five-dimensional AIAdSs5 solution comprising five
non-trivial parameters. When two of the parameters are set to zero, the solution
is AAdS; and is related to that of [76] by a change of coordinates. For specific
values of the parameters of [76] this change of coordinates becomes singular. We
interpret this in section 4.2.5 in terms of a scaling limit of the orthotoric ansatz,
leading to certain non-orthotoric Kahler metrics previously employed in the search
for supergravity solutions. This proves that our orthotoric ansatz, together with its
scaling limits encompasses all known supersymmetric solutions to minimal gauged
supergravity in the timelike class.

In section 4.3 we focus on certain non-trivial geometries with no horizon contained
in the solution of [76], called “topological solitons”. These are a priori natural can-
didates to describe pure states of an N’ =1 SCFTs. We investigate whether among
these solutions we can match holographically the vacuum state of an A/ =1 SCFT
on the cylinder R x S3, and in particular the non-vanishing supersymmetric vacuum
expectation values of the energy and R-charge, as presented in chapter 3. Some
basic requirements following from the supersymmetry algebra lead us to consider
a 1/2 BPS topological soliton presented in [109]. Although a direct comparison of
the charges shows that this fails to describe the vacuum state of the dual SCFT,
in the process we clarify some aspects of these topological solitons. In section 4.4
we make some concluding remarks on this chapter. Appendix D includes a proof of

the uniqueness of a supersymmetric solution of minimal gauged supergravity with
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SO(4) symmetry.
This chapter is based on [4], and we work in (— 4+ 4+ + +) signature.

4.1 Supersymmetric solutions from Kahler bases

In this section we briefly review the conditions for bosonic supersymmetric solu-
tions to five-dimensional minimal gauged supergravity found in [32], focusing on the

timelike class. The bosonic action of minimal gauged supergravity is

1 1 1
S = — Rs+12¢°) %51 — —F AssF + ——=AANFAF 4.1
2/@'?,/{(“ g)wsl =gl nsl+om @)
where Rj is the Ricci scalar of the five-dimensional metric g,,,, A is the graviphoton
U(1) gauge field, F' = dA is its field strength, g > 0 parametrizes the cosmological
constant, and G5 is Newton’s constant. The Einstein and Maxwell equations of

motion are

1 1
REE/) + 4929#1/ D) w0V + EgqunAFm = 0,

1
d«s F——FANF = 0. 4.2
5 \/g ( )
A bosonic background is supersymmetric if there is a non-zero Dirac spinor e

satisfying

v _ !
H 8\/§

where the gamma-matrices obey the Clifford algebra {I',,I',} = 2g,,,. By assuming

(D =400 B = S (04 VBiA) [e = 0, (43)

the existence of such a Killing spinor €, the authors of [32] showed that all such
solutions admit a Killing vector )V constructed as a bilinear in € that is either timelike
or null. Here we will discuss the timelike class.

By choosing coordinates in which V = 0/0t, the five-dimensional metric can be
put in the form

ds? = —f2(dt+w)> + f1ds%, (4.4)

where ds% denotes the metric on a four-dimensional base B transverse to VV, while
f and w are a positive function and a one-form on B, respectively. Supersymmetry
requires B to be Kahler. This means that B admits a real non-degenerate two-
form X! that is closed, i.e. dX*! = 0, and such that X!,," is an integrable complex
structure (m,n denote curved indices on B, and we raise the index of X! with

the inverse metric on B). It will be useful to recall that a four-dimensional Kéhler
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manifold also admits a complex two-form € of type (2,0) satisfying
Vo Sp + 1Py = 0, (4.5)

where P is a potential for the Ricci form, i.e. R = dP. The Ricci form is a closed
two-form defined as R,,, = %Rmnpq(X Dpa | where Rinnpq is the Riemann tensor on
B. Moreover, splitting Q = X? +1iX3, the triple of real two-forms X!, I = 1,2, 3,

satisfies the quaternion algebra:

lepXJpn — _5[J5mn +€IJKXKmn ) (46)
We choose the orientation on B by fixing the volume form as volg = —3 X' A X,
It follows that the X' are a basis of anti-self-dual forms on B, i.e. ¥ X! = —X'.

The geometry of the Kahler base B determines the whole solution, namely f and
w in the five-dimensional metric (4.4), and the graviphoton field strength F. The

function f is fixed by supersymmetry as

244>
= — 4.7
f=-2, (@.7)
where R is the Ricci scalar of ds%; this is required to be everywhere non-zero.
The expression for the Maxwell field strength is
1
F = —\/3d|f(dt +w)+—P| . (4.8)

39

Note that the Killing vector V also preserves F', hence it is a symmetry of the
solution.

It remains to compute the one-form w. This is done by solving the equation
dw = fHGT+G), (4.9)

where the two-forms G, satisfying the (anti)-self-duality relations *pG* = +G*,

are determined as follows. Supersymmetry states that G be given as

Gt = —%(R—%Xl) . (4.10)

Expanding G~ in the basis of anti-self-dual two-forms as!

- 1 1y1 2 y2 3yv3
= — AV X + XX X 4.11
G7 = 5 pVX AT NN (4.11)

LOur M are rescaled by a factor of 2gR compared to those in [32].
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one finds that the Maxwell equation fixes \! as

1 2 1
A= —VPR+ SR, R™ — —R? 4.12
5V R+ L (4.12)
where V? and R,,, are the Laplacian and Ricci tensor on B, respectively. The
remaining two components, A2, A3, only have to be compatible with the requirement
that the right hand side of (4.9) be closed,

d[f(GT+GT)] = 0. (4.13)

Inserting (4.7), (4.10), and (4.12) into (4.13) and taking the Hodge dual, one arrives
at the equation
Im [Q,,"(0n + iPn) (N +1A)] + 2, = 0, (4.14)

where

1 2 1

Acting on (4.14) with I1,9X?;™ where II = 1 (1 + iX") is the projector on the (1,0)

part, one obtains the equivalent form
DA +ix%) + 000 = ¢ (4.16)

where DY = I1,,"(V,, + iP,) is the holomorphic Kéhler covariant derivative, and
we defined O = I1,"X3,7Z,. Equation (4.16) determines A2 + iA®, and hence
G, up to an anti-holomorphic function. This concludes the analysis of the timelike
case as presented in [32].

It was first pointed out in [79] that for equation (4.13) to admit a solution, a
constraint on the Kéhler geometry must be satisfied. Hence not all four-dimensional
Kahler bases give rise to supersymmetric solutions. While in [79] this was shown for
a specific family of Kahler bases, here we provide a general formulation as it first

appeared in ref. [4]. Taking the divergence of (4.14) and using (4.5) we find
Vs, = 0, (4.17)

that is . 5 .
& (§V2R + ngquq — §R2> + V™R 0"R) = 0. (4.18)

We thus obtain a rather complicated sixth-order equation constraining the Kéahler
metric.? We observe that the term (V?)2R+2V™(R,,,0" R) corresponds to the real

part of the Lichnerowicz operator acting on R, which vanishes for extremal Kéhler

2Tt can also be derived starting from the observation that since D9 is a good differential,

namely (D(l’o))2 = 0, equation (4.16) has the integrability condition D(:0@(19) = (. The latter
is an a priori complex equation, however one finds that the real part is automatically satisfied while
the imaginary part is equivalent to (4.18).
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metrics (see e.g. [110, sect.4.1]). Thus in this case (4.18) reduces to V2 (2R,,,RP? — R?) =
0. If the Kahler metric has constant Ricci scalar, the constraint simplifies further

to V2(R,,RP?) = 0. Finally, if the Kéahler metric is homogeneous, or Einstein, then

= = 0 and the constraint is trivially satisfied.

To summarize, the five-dimensional metric and the gauge field strength are deter-
mined by the four-dimensional Kahler geometry up to an anti-holomorphic function.
The Kéhler metric is constrained by the sixth-order equation (4.18). Moreover, one
needs R # 0. The conditions spelled out above are necessary and sufficient for ob-
taining a supersymmetric solution of the timelike class. The solutions preserve at

least 1/4 of the supersymmetry, namely two real supercharges.

4.2 Orthotoric Kahler basis

4.2.1 The ansatz

In this section we construct supersymmetric solutions following the procedure de-

scribed above. We start from a very general ansatz for the four-dimensional base,

given by a class of local Kéahler metrics known as orthotoric. These were introduced

in ref. [111], to which we refer for an account of their mathematical properties.®
The orthotoric Kéhler metric with toric Killing vectors 0/0®, 0/0V¥ reads

g?dsy = udg"? + &(dcp Fopdl)? 4 LS gan + M(ol<1> +£dU)? | (4.19)

F(6) n—< G(n) n—¢
where F (&) and G(n) are a priori arbitrary functions. The Ké&hler form has a uni-

versal expression, independent of F (&), G(n):
1
X' = ?d[(n+§)dq> +néEdY] . (4.20)

The term orthotoric means that the momentum maps 1 + £ and né for the Hamil-
tonian Killing vector fields 0/0® and 0/0V, respectively, have the property that
the one-forms d§, dn are orthogonal. As a consequence, the Kahler metric does not

contain a dnd¢ term.

3This ansatz was also considered in [112], however only the case F(z) = —G(x), where these
are cubic polynomials, was discussed there. In this case the metric (4.19) is equivalent to the
Bergmann metric on SU(2,1)/S(U(2) x U(1)). Orthotoric metrics also appear in Sasaki-Einstein
geometry: as shown in [113], the Kéhler-Einstein bases of LP*%" Sasaki-Einstein manifolds [114]
are of this type.
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It is convenient to introduce an orthonormal frame

1 1 )
B o= J1"S E, =~ d® + nd¥
S Fe ¢ 2= g\ g—g 4 )
L [n—=¢ 1 /Gn)
Eys=—,]1—>9q E, =~ dd + €4V 4.
3 s\ G n, 4 o\ = f( +£dv) (4.21)

with volume form volg = —FE; A E3 A Es A E4. Then the Kahler form can be written
as
X' = EENEy+ EsANE, . (4.22)

For the complex two-form {2 we can take
Q = X*+iX? = (B, —iEy) A (B3 —iEy) . (4.23)

This satisfies the properties (4.5), (4.6), with the Ricci form potential given by

F(E)(dP +nd¥) + G'()(d® +£dY)

P = 4.24
NE— 1) (424)

Other formulae that we will need are the Ricci scalar

f// 1
§—n
and its Laplacian
g2

VPR = —= : [0:(F 0:R) + 0,(G 0, R)] . (4.26)

4.2.2 The solution

To construct the solution we insert our orthotoric ansatz into the supersymmetry

equations of section 4.1. Equation (4.7) gives for the function f,

__24m=9)
F(E) +6"(n)

(4.27)

In order to solve eq. (4.9) for w, we need to first construct G* and G~. From
eq. (4.10) we obtain

1
G+ - @(8&% - 8,77-[) (El VAN EQ - Eg N E4) 5 (428)

where we introduced the useful combination

L FO+00)

H(n.§) = — (4.29)
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We recall that G~ = ﬁ 57 M X! and we have to compute the functions A1, A2, A3
Equation (4.12) gives

1 2
A= §V2R — 3 O0HOM (4.30)

where V2R was expressed in terms of orthotoric data above. In order to solve for
A2 A3 we have to analyze the constraint (4.18) on the Kéahler metric. Plugging our

ansatz in, we obtain the equation

Oc [F OcH Oc(0H + 0,H) + F 9 (VPR — 4 9:H 0, H)]

+ 0,[G0,MHO,(OH+0H)+ GO, (V’R—20HO,H)] = 0. (4.31)

This is a complicated sixth-order equation for the two functions F(&) and G(n).
In ref. [4] the general solution to equation (4.31) was not found, however, a cubic

polynomial solution was presented,

Gn) = gin—91)(n—g2)(n—93) ,
F(&) = =G+ hH(E+ f), (4.32)

comprising six arbitrary* parameters ¢, ..., g4, fo, fi. We thus continue assuming
that F and G take the form (4.32). We can then solve eq. (4.14) for A%, \3. Assuming

a dependence on 7, ¢ only, the solution is

W FUAG G + gt

Nk =g (n—¢&)? F(Gm)

(4.33)
with cg, c3 real integration constants. One can promote ¢y 4 ic3 to an arbitrary anti-
holomorphic function, however we will not discuss such generalization here (see [79]
for an example where this has been done explicitly).

We now have all the ingredients to solve eq. (4.9) and determine w. The solution

is

F " + g/// 1 1 m 2
w = m{ [F(©&) + (=€) (3F(€) = i7" fo+ )] (d® +nd¥)
+G0)a0 +&0)} - 277 (0 + 0w+ g
Co fdf 77d77
~1sg (1 7y * gy 4Y)
_408_39 (I, — )d® + (I3 — I,)AV] + dX | (4.34)

4This includes the case where g4 — 0 and one or more roots diverge, so that the cubic G
degenerates to a polynomial of lower degree. Similarly for F.
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where

_dn. & _ [ ndn _ [ Lk

"“=lew "l e T )ew T/ Fe

(4.35)
Moreover, dX is an arbitrary locally exact one-form. In the five-dimensional metric
this can be reabsorbed by a change of the ¢ coordinate. For F and G as in (4.32),

the integrals I4,...,I; can be expressed in terms of the roots of the polynomials.
We have:

g1log(n — g1)
94(91 - 92)(91 - 93)

log(n — g1)
91(g1 — g2)(g1 — g3)

I, = +cycl(1,2,3), I3 = +cycl(1,2,3),

(4.36)
and similarly for I, and I, (although the roots of F in (4.32) expressed in terms of
the parameters g1, ...,94, fo, f1 are less simple). Here, cycl(1,2,3) denotes cyclic
permutations of the roots.

Note that if ¢ # 0 then w explicitly depends on one of the angular coordinates
¢, W, hence the U(1) x U(1) symmetry of the orthotoric base is broken to a single
U(1) in the five-dimensional metric.

To summarize, we started from the orthotoric ansatz (4.19) for the four-dimensional
Kéhler metric, studied the sixth-order constraint (4.18) and found a solution in terms
of cubic polynomials F, G containing six arbitrary parameters, cf. (4.32). We also
provided explicit expressions for P, f and w (cf. (4.24), (4.27), (4.34)), with the
solution for w containing the additional parameters cs, c3. Inserting these expres-
sions in the metric (4.4) and Maxwell field (4.8), we thus obtain a supersymmetric
solution to minimal gauged supergravity controlled by eight parameters. We now
show that three of the six parameters in the polynomials are actually trivial in the

five-dimensional solution.

4.2.3 Triviality of three parameters

As a first thing, we observe that one is always free to rescale the four-dimensional
Kahler base by a constant factor. This is because the spinor solving the super-
symmetry equation (4.3) is defined up to a multiplicative constant, and the spinor

bilinears inherit such rescaling freedom. This leads to the transformation

X' — e X! f—ef, t—oelt,

dsh — edsy | P—=P, w—elw, (4.37)
where ¢ is a non-zero constant. Clearly this leaves the five-dimensional metric (4.4)
and the gauge field (4.8) invariant.

Let us now consider a supersymmetric solution whose Kéhler base metric ds% is

in the orthotoric form (4.19), with some given functions F(§) and G(n). Then we
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can use the symmetry above to rescale these two functions. Indeed after performing
the transformation we have (ds%)°d = e (ds%)™", and the new Kéhler metric is

again in orthotoric form, with the redefinitions

fold — E—lf'new gold — 6—1gnew q)old —c (I)new \I;old = ¢ \Ijnew
) ) ’ :
(4.38)
Hence the overall scale of F and G is irrelevant as far as the five-dimensional solution

is concerned. A slightly more complicated transformation that we can perform is

gold — 62gnew 4 €3, nold — 8277new + £3
\IIOld — 6182\;[jnew ’ (I)old =g (8§(I)new - 5283\I]new) 7
fold(gold) — Eflfnew<£new) ’ gold(nold) — 8flgnew(nnew) . (439)

with arbitrary constants &, # 0, €5 # 0 and €3, such that g3 = €. It is easy to

"eW is again orthotoric, though with different cubic

see that the new metric (ds%)
functions F and G compared to the old ones.
We conclude that a supersymmetric solution with orthotoric Kahler base is locally

equivalent to another orthotoric solution, with functions
FrV(E) = erF e +e3) G (1) = £1G%(ean +€3) - (4.40)

Using this freedom, we can argue that three of the six parameters in our orthotoric
solution are trivial. In the next section we will show that the remaining ones are

not trivial by relating our solution with ¢y = ¢3 = 0 to the solution of [76].

4.2.4 Relation to [76]

The authors of [76] provide a four-parameter family of AAdS solutions to minimal
five-dimensional gauged supergravity. The generic solution preserves U(1)xU (1) xR
symmetry (where R is the time direction) and is non-supersymmetric. By fixing one
of the parameters, one obtains a family of supersymmetric solutions, controlled by
the three remaining parameters a, b, m. This includes the most general supersym-
metric black hole free of closed timelike curves (CTC’s) known in minimal gauged
supergravity, as well as a family of topological solitons. Generically, the super-
symmetric solutions are 1/4 BPS in the five-dimensional theory, namely they pre-
serve two real supercharges. For b = a or b = —a, the symmetry is enhanced to
SU(2) x U(1) x R.

We find that upon a change of coordinates the supersymmetric solution of [76]
fits in our orthotoric solution, with polynomial functions F, G of the type dis-
cussed above. In detail, the five-dimensional metric and gauge field strength of [76]

match (4.4) and (4.8), with the data given in the previous section and ¢; = ¢35 = 0.
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The change of coordinates is

lccp = ¢
1
Occp = 5 arccos1]
2 Ly 2\ ~ 1 - 1 9 -
TocLp = E(a —b)mf+E[(a+b)m+a+b+abg]+§(a+b)m,
1-— a2g2
= gt —4—-—— (0 —-VU
$ccrp g (a2 — 02)g%m ( )
1 —b%g?
= gt —d s (P W 4.41
Yeerp 9 (a® — b2)g?m (®+9), (4.41)

where “CCLP” labels the coordinates of [76]. Here, we found convenient to trade
m for
- mg
= —1 4.42
T @ )+ ag) (T +bg)(1+ag+bg) (4.42)

which is defined so that the black hole solution of [76] corresponds to m = 0. The
cubic polynomials F(&) and G(n) read

60) =~ (1) (=) )+ (1= P =)
FO = -6 4= (B ) (1.43)

and are clearly of the form (4.32).> The function X in (4.34) is X = —3—7‘%. The
Killing vector arising as a bilinear of the spinor € solving the supersymmetry equa-
tion (4.3) is

0 0 0 0

v = 9 _ + + -
ot OtcoLp ga¢CCLP galeCLP

We conclude that for c; = c3 = 0, the family of supersymmetric solutions we have

(4.44)

constructed is (at least locally) equivalent to the supersymmetric solutions of [76].

When either ¢y or ¢z (or both) are switched on, the boundary metric is no more
conformally flat, hence the solution becomes AlAdSs and is not diffeomorphic to
the ¢y = ¢3 = 0 case. Thus, as presented in [4], this is thus a new two-parameter
AlAdS5 deformation of the AAdS5 solutions of [76]. Choosing ¢y # 0,¢3 = 0 and X
in (4.34) as X = —;—; + 4%29[1[4, the boundary metric appears to be regular and of
type Petrov III like that of [32,78].5 Tts explicit expression in the coordinates of [76]
is (below we drop the label “CCLP” on the coordinates 6, ¢, and v):

ds}?)dry = dSdery,CCLP +dszg ) (445>

SNote that the present orthotoric form of the solution in [76], which is adapted to supersym-
metry, does not use the same coordinates of the Plebariski-Demiariski-like form appearing in [115].
6See [116] for a discussion of the Petrov type of supersymmetric boundaries.
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where the undeformed boundary metric of [76], obtained sending gr — oo, is

AV 1 /dé? sin®0 cos? 0
dSpa cor = —= = Ao + (A_ +—=—d¢" + ——dy? ), (4.46)
—a=b g 0 Za Zb
with 2, = 1 — a?¢? =, = 1 — b?¢? and
Ag=1—a*¢*cos®§ — b*g*sin® 0 | (4.47)

while the deformation is linear in ¢y and reads

2,52 (2 2\2

g m®(a” —b - = - -

153(6:3:3 (gtcerp(Za + Ep) — Zpd — Zat))
—a—b

x (= gdtccrp (Ba — Z) — Spded + Z,d0))
X (—(Ea cos® 0 + Zysin” 0)g dtcerp + Z, cos” 0dy + =y sin® Hdgb) . (4.48)

2 _
ds;, = ¢

It would be interesting to study further the regularity properties of these deforma-
tions and see if they generalize the similar solutions of [32,78,79].

Note that both the change of coordinates (4.41) and the polynomials (4.43) are
singular in the limits m — 0 or b — a, while they remain finite when b — —a.
(When we take b — =+a, it is understood that we keep m, and not m, fixed). We

clarify the singular limits in the next section.

4.2.5 A scaling limit

In the following we show that a simple scaling limit of the orthotoric metric yields
certain non-orthotoric Kéahler metrics, that have previously been employed to con-
struct supersymmetric solutions. We recover on the one hand the base metric con-
sidered in [79], and on the other hand an SU(2) x U(1) invariant K&hler metric. This
proves that our orthotoric ansatz captures all known supersymmetric solutions to
minimal five-dimensional gauged supergravity belonging to the timelike class. The
procedure will also clarify the singular limits pointed out at the end of the previous
subsection.

We start by redefining three of the four orthotoric coordinates {n, £, ®, ¥} as
b=co, U=cq, E=—c1p, (4.49)

where ¢ is a parameter that we will send to zero. For the metric to be well-behaved

in the limit, we also assume that the functions F, G satisfy
Gn) =<'Gm) +0(1),  F(&) = F(p)+ 0%, (4.50)

where G (n), F (p) are independent of € and thus remain finite in the limit. Plugging
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these in the orthotoric metric (4.19) and sending € — 0 we obtain

. F(p) d? | ~
2452, = ¢*lim ds2. = =—dp? + 22 (d¢ + ndy)? + (N 4G d2>.
g dsp = g lim dsg,y, 70 p ) (do +ndy)”+p G (n) 1(/}451)

This is a Kéhler metric of Calabi type (see e.g. [111]), with associated K&hler form

X' = = (o ndv)] (4.52)

At this stage the functions F(p) and G(n) are arbitrary. Of course, for (4.51) to
be the base of a supersymmetric solution we still need to impose on F(p), G(n) the
equation following from the constraint (4.18).

We next consider two subcases: in the former we fix 7 and recover the metric
studied in [79], while in the latter we fix G and obtain an SU(2) x U(1) invariant

metric.

Case 1. We take F (p) = 4p3+ p* and subsequently redefine p = isinh2(ga). Then
(4.51) becomes
2

ds% = do® + % sinh?(go) ( gn + g~(77)d1/12 + cosh?(go) (de + 77d1/1)2> , (4.53)
4g G(n)

which is precisely the metric appearing in eq. (7.8) of [79] (upon identifying n = «
and G(n) = H(z)). In this case our equation (4.18) becomes

(G2g"" = o, (4.54)

that coincides with the constraint found in [79]. As discussed in [79], this Kéahler
base metric supports the most general supersymmetric black hole solution free of
CTC’s that is known within minimal five-dimensional gauged supergravity. This is
obtained from the supersymmetric solutions of [76] by setting m = 0. In fact, the
limit m — 0 in the map (4.41), (4.43) is an example of the present ¢ — 0 limit,
where the resulting G() is a cubic polynomial [77,79].”7 Particular non-polynomial
solutions to eq. (4.54) were found in [79], however in the same paper these were

shown to yield unacceptable singularities in the five-dimensional metric.

"This can be seen starting from (4.41), (4.43) and redefining m = —(a%jﬂ)e and r? = 3 +4a?p,

2
where we are denoting o? = rg + maﬁijbg) and r = w. It follows that & = e~ 1p + O(1).
Then implementing the scaling limit described above we get F (p) = 4p> + p? and g(n) = %(1 —

n?) [A + A3 + (A} — A3)n] with A? = 1;2“292 and A3 = 1;’292. This makes contact with the

a? a?

description of the supersymmetric black holes of [76] given in [77,79].
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Case 2. If instead we take G(n) = 1 — 5% and redefine n = cos 6, then the metric
(4.51) becomes

F(p)

Pdsy = =L—dp? + LA + cos0di) + p (62 + sin® 6dy?) | (4.55)
F(p) P
with Kéhler form .
X = — p d [p(de + cos 0de))] . (4.56)

This has enhanced SU(2) x U(1) symmetry compared to the U(1) x U(1) invariant
orthotoric metric. It is in fact the most general Kahler metric with such symmetry
and is equivalent, by a simple change of variable, to the metric ansatz employed
in [72] to construct the first supersymmetric AAdS black hole free of CTC’s. The
constraint (4.18) becomes a sixth-order equation for F (p). This is explicitly solved
if F(p) satisfies the fifth-order equation

16(F)2 + 4p* (67" + (F')? = 20F ) 4 2pF (=24 — AF" — 4pF D 4 352 F )
3 (<164 8F" = 8pF @ - 42 F D — ' FO) — 0. (4.57)

Upon a change of variable, the latter is equivalent to the sixth-order equation pre-
sented in [72, eq. (4.23)]. It was proved there that a solution completely specifies
an SU(2) x U(1) invariant five-dimensional metric and graviphoton. We find that a

simple solution to (4.57) is provided by a cubic polynomial

Flp)=fo+ fip+ fap* + fsp® . suchthat f7+3fo(1—f2) =0.  (458)

Supersymmetric AAdS solutions with SU(2) xU(1) symmetry were also found in [75]
and further discussed in [109]. It is easy to check that after scaling away a trivial
parameter, the five-dimensional solution determined by (4.58) in fact reproduces®
the two-parameter “case B” solution given in [109, sect. 3.4]. In turn, the latter
includes the black hole of [72], and a family of topological solitons for particular
values of the parameters.

The special case f; = 0, fo = 1 yields the most general Kahler-Einstein metric
with SU(2) x U(1) isometry; this has curvature R = —6g¢?f3 and is diffeomorphic
to the Bergmann metric only for fo = 0. The corresponding SU(2) x U(1) invariant
five-dimensional solution is “Lorentzian Sasaki-Einstein”: for f, = 0 this is just
AdSs, while for fy # 0 it features a curvature singularity at p = 0.

In [68], a different solution of equation (4.57) was put forward, leading to a smooth
AlAdS five-dimensional metric. The non-conformally flat boundary is given by a

squashed S x R, where the squashing is along the Hopf fibre and thus preserves

8In the case the charges are set equal, so that the two vector multiplets of the U(1)® gauged
theory can be truncated away and the solution exists within minimal gauged supergravity.
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Kaéhler metric ¢ AN Orthotoric base, AN SU(2) x U(1)
of [79] scaling eqn. (4.19) scaling invariant
limit 1 limit 2
Black hole of [76] Solution of [76], generic a, b, m Case B of [109]
, 0+ m b—a
b—a: N b— —a: includes black
Black hole of [72] Case A of [109] hole of [72]

Figure 4.1: Kéhler base metrics (above) and corresponding known AAdS solutions
(below), with relevant references.

SU(2) x U(1) symmetry.

A particular example of this ¢ — 0 limit is given by the b — a limit in the
map (4.41), (4.43) relating the solution of [76] and the one based on our orthotoric
ansatz.? In fact, taking b = a in the solutions of [76] yields precisely the solutions
presented in [109, sect. 3.4].

Note that since the black hole of [72] is obtained from the general solution of [76]
by taking m = 0 and b = a, it belongs both to our cases 1 and 2.

In figure 4.1 we summarise the relation between different Kahler metrics and the

corresponding AAdS solutions in five dimensions.

4.3 Topological solitons

In this section we focus on a sub-family of the solution of [76], known as “topo-
logical solitons” with non-trivial geometry but no horizon. A priori, these may be
considered as candidate gravity dual to pure states of SCFTs defined on R x S3.
In section 4.3.1 we consider the non-vanishing vacuum expectation values of the
energy and R-charge of such theories, and we look for a possible gravity dual. The
constraints from the superalgebra naturally lead us to consider a 1/2 BPS topo-
logical soliton, however a direct comparison of the charges with the SCF'T vacuum
expectation values shows that these do not match. In section 4.3.2 we argue that in
the dual SCFT certain background R-symmetry field must be turned on, implying
a constraint on the R-charges and suggesting that the state dual to the topological

soliton is different from the vacuum.

9This can be seen starting from (4.41), (4.43), redefining b = a + 8(1 — a%g?) [W-%z;’% -

2agz] ¢ after having re-expressed m as in (4.42), and implementing the scaling limit. This gives
G(n) =1 —n? and a cubic polynomial F(p) satisfying (4.58).
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4.3.1 Comparison with the supersymmetric Casimir energy

In this section we assess the possible relevance of the supergravity solutions discussed
above to account for the vacuum state of dual four-dimensional N' = 1 SCFTs
defined on the cylinder R x S3, discussed in chapter 3. We consider the conformally
flat background with the round S®. Moreover, the background includes a non-
dynamical flat gauge field A coupling to the R-current. This is chosen such that
half of the eight supercharges in the superconformal algebra commute with the
Hamiltonian generating time translations on the cylinder. This ensures that the
four charges are preserved when Euclidean time is compactified to a circle.

Recall from section 3.5 that the Hamiltonian Hy,gy, is related to the operator A
generating dilatations in flat space as Hy,gy = A + %R, where R is the R-charge
operator. We found in that section the vacuum expectation values of the bosonic

charges,

(Hasy) = (A) +5—(R) = ——(R) = (a+3c),

(J3) = 0, (4.59)

where a, c are the trace anomaly coefficients, and J3 is the conserved charge of the
left U(1), € SU(2); x SU(2), isometry group. As was discussed in chapter 3, the
a priori divergent anomaly coefficients a, ¢ are free of ambiguities as long as their
regularization does not break supersymmetry.

Based on the above information we infer that the five-dimensional gravity dual
should be AAdS; and preserve (at least) four supercharges. It should allow for a
graviphoton A behaving as A — cdt at the boundary, where ¢ is a constant cho-
sen such that the asymptotic Killing spinors generating the supersymmetry algebra
(3.125) are independent of time. Indeed, the general Killing spinor of AdSs that
solves the Killing spinor equation (4.3) reduces to a Weyl spinor on the boundary

of the form,

c e — (gr)l/Q (e%(\/gchl)gtC+e%(\/§C*1)th> ’ (4.60)

7—00

where ¢ and x are spinors independent of ¢ and the radial coordinate r. We see
that choosing ¢ = :ELS, half the spinors are independent of time. Note that if we
Wick rotate t — —i7 and compactify the time coordinate, the other half is not well-
defined. Hence we should regard Euclidean AAdSs spaces (including pure AdSs)
with compact S* x S? boundary as preserving at most four supercharges.

In the context of type IIB supergravity on Sasaki-Einstein five-manifolds, we can

translate the value of the vacuum energy and R-charge given in (4.59) into gravity

units using the standard dictionary a = ¢ = g?{;. We shall also fix the radius of the

boundary S® to r3 = 1/g for simplicity. Finally, we map the field theory vevs into
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supergravity charges as (A) = FE, (R) = \%}g@ and (J3) = Jieg,, where E is the total
gravitational energy, () the electric charge under the graviphoton and J.g the left
angular momentum. We thus obtain the following expected values for the charges

of the dual gravity solution:'°

7T2

8
E=-3Q=g Jett = 0. (4.61)

9*K3 "
The relation between E and () and the vanishing Ji., are indeed consistent with the

anticommutation relation for the preserved AdS supercharges [109]

V3

3 .
{qugraa Qlugra} = F + TQ + 2.gO-ZJlZeft . (462)

The generators Jygn, of SU(2), appears instead in the anticommuntator of the broken
supercharges. While there exists different prescriptions for the computation of the
energy in asymptotically AdS spacetimes, here we will require F to be related to )
as dictated by the superalgebra. We evaluate the charge ) by the standard formula

Q = %2/53 x5 F (4.63)
where the integral is over the three-sphere at the boundary. In general, (4.63)
contains an additional A A F' term, but in the present case such a term does not
contribute, since we take F' — 0 asymptotically.

The obvious candidate to describe the vacuum of the dual SCFT is global AdSs.
Indeed, the boundary is R x S3, and one may turn on a constant component for
the graviphoton A; = ¢. However, since I’ = 0 everywhere, clearly () = 0 from
(4.63). One possible solution to this mismatch with (4.61) may come from a careful
analysis of how the evaluation of charges is compatible with supersymmetry. Here
we will not address this question further. Instead we will consider a supersymmetric
solution among those discussed in this chapter with a graviphoton so that (4.63)
yields a non-vanishes charge. Although we do not find agreement for the holographic
charges below, we do clarify certain aspects of such solutions.

As we consider the asymptotically flat boundary R x S3, this sets c; = ¢3 = 0. In
this case the solutions in this chapter reduce to the supersymmetric solutions of [76],
controlled by the three parameters a,b, m. To match the SCFT on the boundary,
the solution should preserve four supercharges, that is, it should be 1/2-BPS. For
the solution in [76], this was shown to be the case when a + b = 0.1 This identifies

a two-parameter family of solutions with SU(2) x U(1) invariance, originally found

10 Recall that E is not the same as Eqsy = (Hsusy), but the two quantities are related as
E=(A)= %<Hsusy> = %ESUSy-

HTn fact, it was shown in [4] that while the solution of [76] also contains a 1/4-BPS topological
soliton, this is plagued by conical singularities. Only the 1/2-BPS topological soliton with a+b = 0

is completely regular.
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in [74] and further studied in [109]'2.
As mentioned previously, the change of coordinates (4.41) remains finite in the
limit b — —a at fixed m. However, we will use the coordinates {t, 8, ¢,1,r} of [109],

related to the orthotoric coordinates as

2 3 3
t=t, n=cosf, g:;—g, @z%(gﬁ—k?gt), xpz%w, (4.64)

where we renamed the parameters,

2 2 9\2
a=2 m=@Zog)l (4.65)
q q
In these coordinates, the five-dimensional metric reads
2 U dr? 2 1.5 2 | w2 2
dsj = =g dt+ =+ B(dy+cos 0dg+fdt)* + 7 (r* +q) (4% +sin” 0de?) , (4.66)
where
Y 212 + q)% — g?a? 5 _ (r +q)° — o? P 2012
o r2(r2+q) ) o 4(7’2 +q)2 ’ a2 = (r2+q)3 ’
(4.67)
and the graviphoton is
1
A = TQ\/EQ <q dt — e (dv) + cos 9d¢)> +cdt. (4.68)

Here, 0 € [0, 7], ¢ € [0,27), ¢ € [0,47) are the standard Euler angles parametrizing
the three-sphere of R x S% at the boundary at r» — oo.
We can now discuss the charges. From (4.63), the charge under the graviphoton

is found to be
2

Q = —4V/3¢— . (4.69)
ks
The angular momentum conjugate to a rotational Killing vector k* is given by the
Komar integral J = ﬁ f 5 x5dk, where k = k,dz#. For the angular momentum Jieg
conjugate to 0/0¢, we get

Jiett = 0, (4.70)
while Jyigne, conjugate to 0/0v, is controlled by «,

2

Toghe = 20— | (4.71)
Ks

The energy was computed in [109] by integrating the first law of thermodynamics,

12See the “case A” in section 3.3 of [109], wih all the charges set equal ¢; = g2 = g3 = ¢, so that
the solution fits with minimal gauged supergravity.
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yielding

\/g 2

T
E = -Y20 = 60— 4.72
5@ 6%3’ (4.72)

which is in agreement with the superalgebra (4.62). Whether (4.72) matches the
expectation from (4.61) depends on the parameter q. To see how ¢ should be fixed,
we need to discuss the global structure of the solution.

Let us first observe that by setting the rotational parameter v = 0, the SU(2) x
U(1) symmetry of (4.66), (4.68) is enhanced to SO(4). This solution was originally
found in [73] and contains a naked singularity for any value of ¢ # 0. So while
the @ = 0 limit provides the natural symmetries to describe the vacuum of an
SCFT on R x S3, it yields a solution that for any ¢ # 0 is pathological, at least
in supergravity. In appendix D we prove that there are no other supersymmetric
solutions with R x SO(4) symmetry within minimal gauged supergravity.

It was shown in [109] that the two-parameter family of solutions given by (4.66),
(4.68) contains a regular topological soliton (while there are no black holes free of

CTC’s). This is obtained by tuning the rotational parameter « to the critical value
o = ¢, (4.73)

Then the metric (4.66) has no horizon, is free of CTC’s, and extends from r = 0 to
infinity. In addition, for the r, 1 part of the metric to avoid a conical singularity as
r — 0, one has to impose
1
= —. 4.74
1= 5 (4.74)
In this way one obtains a spin® manifold with topology R x (O(—1) — S?), where
the first factor is the time direction, and the second has the topology of Taub-
Bolt space [109]. Since %ggA is a connection on a spin® bundle, as it can be seen
from (4.3), one must also check the quantization condition for the flux threading
the two-cycle at r = 0. This reads
13 1
—— F e Z+ -, 4.75
o 2 7 o 3 (4.75)
where the quantization in half-integer units arises because the manifold is spin®
rather than spin. One can check that
13 3 1
— = F = Zgq¢'/? = = 4.76

hence the condition is satisfied.

We can then proceed to insert (4.74) into (4.69). This gives

V3

2

7T2

E =

0 - ; , (4.77)

2,2
g~ Ky
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which is different from (4.61). In field theory units, this gives (R) = —5a # —32a,
where the latter is the vev of the R-charge in a supersymmetric vacuum [3] (recall
footnote 10). We conclude that although this 1/2 BPS topological soliton is smooth
and seemingly fulfills the requirements imposed by the field theory superalgebra,
it is not dual to the vacuum state of an SCFT on the R x S? background. Below
we will give further evidence that this solution cannot describe the supersymmetric

vacuum state of a generic SCFT on R x S3.

4.3.2 Further remarks on supersymmetric topological soli-

tons

We found above that a direct comparison of the holographic charges of the 1/2-BPS
topological soliton with the charges of SCFTs on R x S% did not provide a match.
We now briefly discuss further arguments that this gravity solution cannot be the
dual of such field theories.

Firstly, we note that the non-trivial topology of the solution presents an obstruc-
tion to its embedding into string theory, precisely analogous to the situation of
the “bolt solutions” found in [63]. Locally, all solutions to five-dimensional mini-
mal gauged supergravity can be embedded into type IIB supergravity on a Sasaki-
Einstein five-manifold [117], however, one may encounter global obstructions when
the topology of the external space has non-trivial topology. It was noted in [109]
that the topological soliton cannot be uplifted on S°. An uplift on the Lens space
S?/Z, was discussed in the appendix of [4], including examples. We refer to this
reference for the details.

In the present context, the global uplift provides further evidence that the 1/2-
BPS topological soliton is not the gravity dual of SCFTs on R x S3. In the
gauge/gravity correspondence, different SCFTs on R x S? are dual to gravity so-
lutions uplifted on different internal manifolds. While the topological soliton can
be uplifted only on specific internal manifolds, the vacuum state of the SCFTs con-
sidered in [3] leading to (4.59) exists for any such SCFTs. Therefore the gravity
solution cannot be the correct dual description.

Furthermore, it was shown in [4] that the R-charges ¢g of fields in an SCFT on the
boundary of the 1/2-BPS topological soliton must satisfy a quantization condition
qr € 27Z. This condition follows since it is necessary to cover the topological soliton
by two gauge patches. Again such a constraint on the R-charges is not present for
the SCFTs on R x S2, leading to the conclusion that the topological soliton is not

the correct gravity dual.
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4.4 Conclusions

In this chapter we studied supersymmetric solutions to minimal gauged supergravity
in five dimensions via the approach of [32]. We derived the general expression (4.18)
for the sixth-order constraint that must be satisfied by the Kahler base metric in the
timelike class. We then considered a general ansatz comprising an orthotoric Kahler
base (4.19), for which the constraint reduced to a single sixth-order equation for two
functions, each of one variable. We succeeded in finding an analytic solution to this
equation, yielding a family of AIAdS solutions with five non-trivial parameters. We
showed that after setting two of the parameters to zero, such that the solution is
AAdS, the solution reduces to that of [76]. Hence, this ansatz encompasses all known
supersymmetric AAdSs solutions of minimal gauged supergravtiy in the timelike
class (taking into account the scaling limits mentioned at the end of section 4.2.4).
This highlights the role of orthotoric Kahler metrics in providing supersymmetric
solutions to five-dimensional gauged supergravity. For general values of the five non-
trivial parameters, we obtained an AIAdS generalization of the solutions of [76], of
the type previously presented in [32,78,79] in more restricted setups. There exists
a further generalization by an arbitrary anti-holomorphic function [32]; it would be
interesting to study regularity and global properties of these AIAdS solutions.

It would also be interesting to investigate further the existence of solutions to our
“master equation” (4.31), perhaps aided by numerical analysis. In particular, our
orthotoric setup could be used as the starting point for constructing a supersym-
metric AIAdS solution dual to SCFT’s on a squashed R x S3 background, where
the squashing of the three-sphere preserves just U(1) x U(1) symmetry. This would
generalize the SU(2) x U(1) invariant solution of [68].

Finally, we have discussed the possible relevance of the solutions above to ac-
count for the non-vanishing supersymmetric vacuum energy and R-charge of a four-
dimensional A/ = 1 SCFT defined on the cylinder R x S®. The most obvious
candidate for the gravity dual to the vacuum of an SCFT on R x S% is AdSs in
global coordinates; however this comes with a vanishing R-charge. In appendix D
we have performed a complete analysis of supersymmetric solutions with R x SO(4)
symmetry, proving that there exists a unique singular solution, where the charge is
an arbitrary parameter [73]. We then focused on the 1/2 BPS smooth topological
soliton of [109], however, a direct evaluation of the energy and electric charge showed
that these do not match the SCFT vacuum expectation values.

We cannot exclude that there exist other solutions, possibly within our orthotoric
ansatz, or perhaps in the null class of [32], that match the supersymmetric Casimir
energy of a four-dimensional A = 1 SCFT defined on the cylinder R x S3. It would
also be worth revisiting the evaluation of the charges of empty AdS space, and see if
suitable boundary terms can shift the values of both the energy and electric charge,

in a way compatible with supersymmetry.
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Chapter 5
Conclusions

This thesis includes work on both sides of the gauge/gravity duality. We constructed
in chapter 2 the gravity duals of supersymmetric field theories defined on a broad
class of three-manifolds. These gravity duals are supersymmetric solutions of four-
dimensional minimal gauged supergravity, comprising a self-dual Einstein metric on
the four-ball and the anti-self-dual graviphoton. We computed the holographically
renormalized on-shell action (2.92), finding that it depends on the background only
through one parameter, b;/bs, describing the supersymmetric Killing vector. The
concrete check was the match with the field theory free energy (1.25), obtained
previously using localization.

This work widens the class of known examples of the AdS,;/CFT}3 duality, and it
would be interesting to study in more detail the explicit m-pole solutions described
in section 2.4.4. A number of generalizations are discussed in section 2.5. One may
relax the conditions that the graviphoton is both real and anti-self-dual. Indeed,
while the boundary is smooth for any choice of b /by, we found that the gravity
solution is regular only if b1 /by > 0 or b;/by = —1. It is natural to expect that
for the remaining choices of by /by the boundaries can be filled by gravity solutions
with non-self-dual graviphoton. Beyond this, one may consider geometries of more
general topology. One related development is the holographic computation of the
entropy of a class of supersymmetric asymptotically AdS, black holes [118]. These
black holes are solutions of four-dimensional ' = 2 gauged supergravity coupled to
vector multiplets, and were first found analytically in [119]. In [118], the entropy is
computed from a topologically twisted index for ABJM theory on S! x .52 in the large
N limit, providing for the first time a microscopic interpretation for the entropy of
an AAdS black hole. It would interesting to extend this to other supersymmetric
black holes in four and other dimensions.

On the field theory side, we studied in chapter 3 the Casimir energy of N = 1
field theories. By canonically quantizing the Hamiltonian, we clarified that the
Casimir energy of free CFTs and the supersymmetric Casimir energy Fg,s, arise as

the expectation values of two different Hamiltonians using the same zeta function
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regularization. By reducing the theory on S® to a one-dimensional theory, we then
showed that in fact Ey.s, is unambiguously defined, provided the regularization
scheme preserves supersymmetry.

There has recently been further work on the supersymmetric Casimir energy.
Ref. [120] studied SCFTs on backgrounds of topology S* x S%! with d = 2,4, 6,
where it was conjectured that the supersymmetric Casimir energy can be computed
using the equivariant anomaly polynomial. For the four-dimensional NV = 1 field
theories discussed in section 1.2.1, the connection of Ey,s, to anomaly polynomials
on S x S% was recently explained in [121]. This paper studied such theories on
more general backgrounds S* x Ms, with M; a compact three-manifold, and it was
found that the supersymmetric Casimir energy is computed as a limit of the index-
character counting holomorphic functions. Besides these developments, it would be
interesting to apply the approach of chapter 3 to the six-dimensional case R x S5,
and squashed versions thereof. It should also be possible to consider more general
topologies R x Ms5. For example, the localized partition function for five-dimensional
super-Yang-Mills defined on toric Sasaki-Einstein manifolds Y5 has been computed
in [122]. From this result it should be possible to obtain the partition function
for six-dimensional theories on S x Y3 and subsequently study the supersymmetric
Casimir energy.

As a physical quantity, the supersymmetric Casimir energy should have a holo-
graphic interpretation. With this in mind, we constructed in chapter 4 new super-
symmetric AIAdS5 solutions of five-dimensional minimal gauged supergravity from
an ansatz based on an orthotoric Kahler metric. It would be interesting to study
further the properties of these solutions. Our solution also recovered (including the
scaling limits) all known supersymmetric AAdS; solutions of this theory. However,
our investigation of whether the 1/2-BPS topological soliton could be the gravity
dual of N' = 1 field theories on the conformally flat R x S? led to the conclusion that
this is not the case. It thus remains an open problem to account holographically for
the supersymmetric Casimir energy. There could exist more general supersymmet-
ric solutions in the timelike class of five-dimensional minimal gauged supergravity.
In this case, such solutions must solve the general constraint (4.18), first presented
in [4]. Alternatively, one may have to consider solutions in the null class, or perhaps

even a revision is needed of the way holographic charges are computed.
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Appendix A

Spherical harmonics on S°

A.1 Scalar spherical harmonics

In this appendix we give some details on the scalar and spinor spherical harmonics
on the three-sphere, following [99,123]. We can obtain the metric on the unit three-

sphere by considering a parametrization on R* ~ C? with the metric,
dsg. = dudu + dvdv . (A1)
The three-sphere of unit radius is then defined by
ut+vo = 1. (A.2)

The isometry group is SO(4) ~ SU(2); x SU(2),, with generators® L} and L”, with
a=1,2,3, satisfying

(LY L] = iewcLl (LI L)) = ieqpell [LL,Ly] = 0. (A.3)
As usual, we define raising and lowering operators,
Ly, = Lt +iLh Ly, = Lt +il}y . (A.4)

In the (u,v)-coordinates, these are represented by

L' = —udy+vd,, L' = ud,—v0,,
L' = —ud,+v0;, L. = udy—v0,, (A.5)
while
Ly = 50t~ w0y —10) , L = o (ud,— vd, — W0, +005) (A6)

l

n the main text, we use the operators L!, but drop the superscript 1.

116



In terms of these operators, the scalar Laplacian is
~V,V' = 4LllLl = 407" . (A7)
The spherical harmonics Y,”" are constructed starting from the highest weight state,

L {41
7Y bV (A.8)

272

SIS

which is annihilated by the raising operators L, and L”.. The number m (n) can
be lowered by L' (L"), so that

(SIS

£
2

Y (L) (L) YRR (A.9)
and take values —é <m,n < é Recall the operator O, of equation (3.21),
Oy = 20, L% + 2B, L%+ . (A.10)
The spherical harmonics are eigenfunctions of this operator
Oy = B, E? = %£(€+2) +28m 4+ (A.11)

and also
LYY™ = mY;™ LiY;™ = nY™ . (A.12)

We normalize the spherical harmonics as [123]

—a.t_p

Y% 4 (_u)é'f‘k—a—b,ak‘vb—k’@a—k
)4

- NgabZk:k!(Hk_a_b)g(a_k)!(b—k)! :

(A.13)

where the sum is over all integer values of k£ for which the exponents are non-negative,

and
(¢ + 1)a!bl(¢ — a)!(¢ — b)!
Nyp = : A.14
fab \/ 272 ( )
Now specifically taking v = isin gei(wﬂ)ﬂ and v = cos ge*i@“)ﬂ, one finds the
metric |

dsss = 1 (d6” + sin® 0dp® + (ds + cos 0dg)?) (A.15)

and
Ly = i0, Ly = —id, . (A.16)

With the above normalization, the spherical harmonics satisfy

/ Jad3zym (nm") = Gppdmm s (A.17)

117



and
D N P (A18)

as well as the completeness relation,

SV 0 (L) = i) (A9)
£m,n

where 6 (Z — 2') = 5(0 — 0)6(o — ¢")o(s — ).

A.2 Spinor spherical harmonics

The spinor spherical harmonics can be constructed from the scalar harmonics. These

are eigenspinors of the operator
Of = 20éfl_:'§+ 2Bf53+’7f y <A20)

where L, are the left-invariant operators of the previous subsection, and S, = %,
where 7, are the Pauli matrices. For §; = 0, the spinor spherical harmonics can be
constructed as [99]

Cos I/Z Y,

SE = , (A.21)
‘ sin VK YmHn
where
: (+1+(2m+1) (+1F(2m+1)
+ _ = . (A22
S Vem jF\/ 20+1) 0 Vm \/ 2(0+1) (A.22)
For Sjmn, one has ¢ > 1 and —g <m — 1, while for S, one has ¢ > 0 and

. The spinor spherical harmonics satisfy

IA A
NS NS

—5—1§m§§. In both cases —%gn

the completeness relation
Z T Loy
Emna Kmn(x»d = A7 Qnﬁ ]]-aa ) <A23)

with n = ¢(¢ + 1) and n, = (¢ + 2)(¢ + 1). Further, using the properties of Y;"",

one can show the identities

5 [Sinal) (S @)+ Sinmal®) (Saunle)}] = 500 @ 7) T
o (A.24)
and

/ T . /
/d3x\/_ Zmna( )(Sz’tmn(x>)d]1aa = 5€7£/§m,m'(5ﬂ7n/5i7i ’ <A25)
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where the integral is on the unit three-sphere. Using that

1
LY = SVl+2) = dm(m + 1Y

1
LYyt = §¢e<e +2) —4m(m + 1)Y,™ (A.26)

one can verify that

with
No= —%(€+2)+7f, A, = %Wrw- (A.28)

When f; # 0, the spinor spherical harmonics given by (A.21) are not eigenspinors

of the operator Oy, except the special cases

thn
SspeciaH— = 9- _ Yf Sspecial— = §- . 0
In - Lin 0 ! In I S Y—%,n ’
L
ial+ ial+ fal+ alt [ Of
Ofszze(:la _ )\;pema Szgema : Azpema _ <7£iﬁf+7f) . (A29)

For the generic harmonics, the eigenspinors of Oy for general 3¢ are obtained by an
SO(2) rotation,

Simn | _ [ Ru Ra Son (A.30)
Stmn Rar Rao Stmn

The rotation matrix is given by

(%(6 +2)+ A\ — Br —7¢) cos v
(50— N + Bp +75) - cosy,
(—a—2f€ + Xow — Br =) cosv,,

Ryt = Rog—n , A.31
21 (=80 +2) — N, + Br +5) cos v, (A-31)

R12 = 7?111

with

2
6% «
o = —7f+7fi \/Zf(€+1)2+af,6f(1+2m)+ﬁ]%. (A.32)

Requiring the matrix to be SO(2) fixes all the R;;, with a choice of overall sign fixed
by requiring the matrix to be the identity matrix for gy = 0. We then have

O;SE. = A\ ST (A.33)

fmn Imn

for ¢>1, -£<m<—

N

— 1, and —

N s

<m<

N s
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Appendix B

Hurwitz zeta function

In this appendix we include the definition of the Hurwitz zeta function and some
useful properties. This is defined as the analytic continuation to complex s # 1, of

the following series

Cu(s,a) = 3 (nia)s , (B.1)

n=0

which is convergent for any Re(s) > 1. Notice that

Cu(s,1) = ((s) (B.2)

corresponds to the Riemann zeta function.
For s = —k, where £ = 0,1,2,..., the Hurwitz zeta function reduces to the

Bernoulli polynomials

_ Bi11(a)

B.3
E+1 7 (B-3)

CH(_kv a) =

defined as

i 3 (o o

n=0

where b,, are the Bernoulli numbers. The first few ones read

Bg(a) =1 y

1
Bi(a) = a-— 3

1

Bg(a) = CL2 —a+ 6 5

3 1
Bs(a) = a®— §a2 + 3%

1

By(a) = a*—2a*+a* - 0 (B.5)
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The following formulas used in chapter 3 are easily proved,

— k
.
and
k(k+1)
; (k+a)y Cal(s —2,a) + (1 —2a)¢u(s — 1,a) +a(a — 1)Cu(s,a) . (B.7)
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Appendix C

Energy-momentum tensor and
other currents of four-dimensional

theories on curved backgrounds

In this appendix we provide explicit expressions for the energy-momentum tensor
and other currents obtained from the (quadratic) chiral multiplet Lagrangian (3.12)
from new minimal supergravity. Denoting with S the corresponding action, the

energy-momentum tensor is defined as

. =258
M gogn

A straightforward but tedious computation yields

(C.1)

T = (25,8, —g,wgfﬂ)[Dpanw AR
+Vy 4w (e =) K,) (iDrd 6~ i6Dx0) }
R, -t R 5¢+f[ Y,V (6) — V.V ($¢)}
9 iy 29W 9 Guv'Vop nwVYv

i ~_ 1 ~_ 1 ~_
5 Dl = 57Dt — ( 3V + (1= K. ) Foyw (€2

where the lower parenthesis denote symmetrization of the indices. Recall that we
defined D, =V, —igrA,, with ¢r the R charges of the fields [26].
Below we collect some useful formulas for deriving this expression. For the bosonic

part we used the variation of the Ricci tensor,

g""0R,, = guV’V,(0¢") -V, V,(5g"), (C.3)
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and we note that for any vector field X*#,
V., V] X* = R,X". (C4)

For the femionic part, the variation of the action with respect to the metric gives
st = [ dte [symg o+ vmgacge] = [ atevmg o, ()

where in the second equality we used that £ vanishes on-shell. The variation

of the Lagrangian can be expressed in terms of variations of the vielbein and of the

spin connection and reads
. ~_ 1 1 ~_
sLghiral — q)gh (iDM + §Vu + k(1 — e)KM) et — %@/JU“UAB@D dwuan , (C.6)

where A =0,1,2,3 is a frame index.

Using the property that the vielbein is covariantly constant,
0= Ve, = 0, — I‘Zl,epA +w, e, (C.7)
we read off the variation of the spin connection
dwpap = 0L eapep” — es”V,(6ea,) . (C.8)
Further, using the variation of the Christoffel symbol

1
oI, = §9uA9upVU(59Ap ) = 92V (0977) (C.9)

and

Sear = —0upeaadg™” + gudea” (C.10)

we can write the variation of the spin connection as
0 =V Yep,0 A”Jrl §Y0g™ — ep,0"0eq” (C.11)
WuAB = Vu | Gur€lA €B]p0Jd 2€A>\6Bp e €Bp0,0€A4 . .
Using this, the second term of (C.6) can be written as,

—%@Z&MJABT/) dwyap = —@Z&A (iDu + %Vu + k(1 - E)KM) W de st
i T~ T~ 1%
+1 [0 = 05,D,0) 69"

1

-5 (%vﬂ + k(1 — e)Ku) VG, 5gh (C.12)

up to a total divergence. Substituting this back into (C.6), the terms containing de 4
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cancel. The remaining terms are all proportional to dg"” and give the fermionic part
of the energy-momentum tensor (C.2).

We also used the following identities for the o-matrices in Lorentzian signature

GAGBGC = _pABGC | pACGB _ BOGA | ABCD
5’40'350 — _77ABa:C 4 nACa:B _ 77BCB:A _ iEABCDgD ’ (013>
with €”12® = —1, and the identities
1 AB 0 1 ~AB
[V,ua vll] w = _QRMVABO. w 5 [v;uvl/] ¢ = _éRuuABU w ) (Cl4>

valid for generic spinors v, zz

One can easily compute the Ferrara-Zumino current

2 1 948

Jbz = —3 =70 C.15
FZ 3 \/__gavu ’ ( )

and the current L s
= ——a C.16
T VEgOK, (C.16)

These read
2( .~ .Y ~ 1~_

Jb, = 3 (1D“¢¢ —ipD ¢ + 3rVHep — Ewa“l/z) , (C.17)
T = k(1= o)(iD"66 — 6D 6 + Y5"v) | (C.18)

and are not conserved. Starting with the expressions above, a further computation
yields (3.73).
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Appendix D

SO(4)-symmetric solutions of
minimal gauged supergravity in

five dimensions

In this appendix, we present an analysis of solutions to five-dimensional minimal
gauged supergravity possessing R x SO(4) symmetry. In particular, we prove that
the only supersymmetry-preserving solution of this type is the singular one found
long ago in [73]. To the knowledge of the authors of [4], where this proof of unique-
ness was given, it had not previously appeared in the literature.

For simplicity, the notation of this appendix is independent of the rest of the
thesis.

The most general ansatz for a metric and a gauge field with R x SO(4) symmetry

is
ds* = —U(r)dt* + W(r)dr® + 2X (r)dtdr + Y (r)dQ; , (D.1)

A = A(r)dt, (D.2)

where d23 is the metric on the round S® of unit radius,

a5 = (o3 +ad) .
oy = —sinydf + cosysinfde ,
oy = cosydf +sinysinfde ,
o3 = dip+cosfde . (D.3)

The crossed term X (r)dtdr in the metric can be removed by changing the ¢ coordi-

nate, so we continue assuming X (r) = 0. We will make use of the frame

1
e = VUadt, et?? = 5\/?01,273, et = VWWdr. (D.4)
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Equations of motion

We proceed by first solving the equations of motion and then examining the addi-
tional constraint imposed by supersymmetry. The action and equations of motion
are given by equations (4.1) and (4.2). With the ansatz (D.2), the Maxwell equation

is

v " 1 / & I
0= V,F & 0= A+ oA (log g ) - (D.5)

, [ow
At = W, (D6)

with ¢; a constant of integration. The Einstein equations read (using frame indices)

This can be integrated to

A/)2
Roy = —Ru — 4g% + )
00 44 g+ 3SUW
A/)Z
Rii = Ry — Ry — —dg?+ A0 D.7
11 22 33 g+ CUW (D.7)
where the Ricci tensor components are
U// U/W/ 3U/Y/ U/2
Rop = - + - ;
2UW  4AUW?  AUWY  AU*W
UIY/ W/Y/ Y/I Y/2 2
Ry = Ry = R33 = — — — il
H 2 % WwWY Ty awy  awyE vy
U// U/W/ U/2 3wlyl 3yll 3yl2
Ry = — — . D.8
u 2UW T AW T auEw T awEY 2wy | awy? (D-8)
To solve these, let us define
T(r) = Ur)W(r)Y(r) . (D.9)
Combining two of the Einstein equations yields,
3U lAVdi 1"
0 = Roo+ Ry = ﬁ(TY —2TY") | (D.10)
which can be integrated to
T(r) = cY'?(r), (D.11)

with co # 0 a constant of integration. Using this, the angular components of the
Einstein equations can be integrated, yielding
C%CQ

1
= 4 4eo’Y + — 4= D.12
U(r) C2 +4eag”Y + ez + y? ( )

with a third constant of integration c3. This solves all the equations of motion.
We can now use the freedom to redefine the radial coordinate to choose one of

the functions. In particular, we can choose the function W(r) so that WU = 4s?,
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where we take s > 0. From (D.9) and (D.11) we then obtain

dy \ 2 452 52
- = Y = 1% = 2 D.13
( dr ) Co (r) o T ( )

where we used the freedom to shift r to set to zero an integration constant. Finally,

after performing the trivial redefinitions r°4 = ‘/(:2 new - yold — ge,mew qnew —

2./ct° we arrive at the solution

ds* = —U(r)dt2+ i )dr2+r2dQ§ : (D.14)
with
UGr) = 14g%2 -3 4 9 (D.16)
"= gr 4 27"2 12747 .

and c4 another arbitrary constant. Hence, the solution depends on three constants:
¢1, which is essentially the charge, the ratio c¢3/ce, and ¢4 which is quite trivial but
may play a role in global considerations.

Supersymmetry

The integrability condition of the Killing spinor equation (4.3) is

1 1
0 = Zye = ~Ruml™e+ ——= (T, +4I76),) V, F
€ 7 e €+ 4\/3( Wt ) A€
1
+ 5 (B F" T,y + AF 0 F T — 6F, F ™ 4+ 4F 0 Fy L)) €

] 2
ig . . g
+ —4\/3 (F AFMW —4F .Uy — 6Fu”) €+ 5 e, (D.17)

where we used [V, V,]e = iRWHAT“Ae. The I'-matrices can be taken to be

0 1 0 o; 1 0
FO = ) Fl = ) F4 = ’ (D18)
-1 0 o; 0 0 -1

with o; the three Pauli matrices.

A necessary condition for the solution to preserve supersymmetry is that
detcig Zy = 0 for all u,v (D.19)

where the determinant is taken over the spinor indices.For the R x SO(4) invariant
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solution one finds (in flat indices a, b):

0 1 1 1 81
. )2 1 011 1
9 (16¢7c5 — 3¢3)

detong Zapy = 12 3 D.20
et Zap GYEIsT 1 101 1 (D.20)

1 110 1

81 1 1 1 0

ab
Hence, the supersymmetry condition is
4

S, (D.21)

Cy \/§

where we fixed a sign without loss of generality. Plugging this back into (D.16), we

have

2
Ur) = <1 - 2\%ﬂ) +g°r* . (D.22)
This recovers a solution first found in [73]. It is also obtained from (4.66)—(4.68) by
setting a = 0 and changing the radial coordinate.

Therefore we conclude that in the context of minimal gauged supergravity, the
most general supersymmetric solution possessing R x SO(4) symmetry is the one-
parameter family found in [73]. This preserves four supercharges and has a naked

singularity.
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