
 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 

 

 
 

 

 

King’s Research Portal 
 

DOI:
10.1007/978-3-319-42064-6_9

Document Version
Peer reviewed version

Link to publication record in King's Research Portal

Citation for published version (APA):
Yassipour Tehrani, S., Zschaler, S., & Lano, K. C. (2016). Requirements Engineering in Model-Transformation
Development: An Interview-Based Study. In Lecture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics): Theory and Practice of Model
Transformations (Vol. 9765, pp. 123-137). (Lecture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Vol. 9765). Springer‐Verlag Berlin
Heidelberg. https://doi.org/10.1007/978-3-319-42064-6_9

Citing this paper
Please note that where the full-text provided on King's Research Portal is the Author Accepted Manuscript or Post-Print version this may
differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version for pagination,
volume/issue, and date of publication details. And where the final published version is provided on the Research Portal, if citing you are
again advised to check the publisher's website for any subsequent corrections.

General rights
Copyright and moral rights for the publications made accessible in the Research Portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognize and abide by the legal requirements associated with these rights.

•Users may download and print one copy of any publication from the Research Portal for the purpose of private study or research.
•You may not further distribute the material or use it for any profit-making activity or commercial gain
•You may freely distribute the URL identifying the publication in the Research Portal
Take down policy
If you believe that this document breaches copyright please contact librarypure@kcl.ac.uk providing details, and we will remove access to
the work immediately and investigate your claim.

Download date: 28. Dec. 2024

https://doi.org/10.1007/978-3-319-42064-6_9
https://kclpure.kcl.ac.uk/portal/en/publications/b3481e56-808c-4eae-af66-26d5b58d573d
https://doi.org/10.1007/978-3-319-42064-6_9


Requirements Engineering in
Model-Transformation Development: An

Interview-Based Study

Sobhan Yassipour Tehrani, Steffen Zschaler, Kevin Lano

Dept of Informatics, King’s College London, Strand, London, WC2R 2LS, U.K.
E-mail: {sobhan.yassipour tehrani, steffen.zschaler, kevin.lano}@kcl.ac.uk

Abstract. Model Transformations (MT) are central building blocks of
Model Driven Engineering (MDE). The size and complexity of model
transformations grows as they see more wide-spread use in industry.
As a result, systematic approaches to the development of high-quality
and highly reliable model transformations become increasingly impor-
tant. However, because little is known about the context in which model
transformations are developed, it is very difficult to know what would
be required from such systematic approaches. This paper provides some
initial results and analysis of an interview-based study of requirements
engineering (RE) in MT developments. We have interviewed industry
experts in MT development, with the goal of understanding the con-
texts and ways in which transformations are developed and how their
requirements are established. The types of stakeholders of transforma-
tions were identified, as well as their role in the transformation develop-
ment. We also discovered a possible differentiation amongst the develop-
ment of model transformation projects and general software development
projects.

1 Introduction

Model transformations (MTs) are central to model-driven engineering (MDE)
[10]. They can be used for a range of purposes, including to improve the quality
of models, to refactor models, to migrate or translate models from one represen-
tation to another, and to generate code or other artifacts from models [6]. Model
transformations either transform one model into another or generate text (such
as code) from a model. In any case, they aim to automate repetitive development
tasks, ensuring different situations are treated in a generalised manner.

As MDE is being used more intensively [4], systematic development of the
transformations becomes more important [2]. However, as Selic argues [9]: “we
are far from making the writing of model transformations an established and
repeatable technical task”. The software engineering of model transformations
has only recently been considered in a systematic way, and most of this work
has focussed on design and verification rather than on requirements engineering
(RE).



We are interested in understanding what requirements engineering for model-
transformation development should look like. To this end, we need to understand
the context in which model transformations are typically developed and what,
if any, requirements-engineering techniques are already applied. This will help
us understand how existing RE techniques might be applied (or may have to be
adapted) for the context of MT development.

In this paper, we report on the results of an exploratory interview-based
study with five industry experts in model-transformation. We discuss the types
of projects often seen in model-transformation development, their embedding in
the context of other projects and organisations, the roles of stakeholders, and
the requirements engineering techniques employed in practice, and we consider
future research directions.

The remainder of this paper is structured as follows: After a brief discussion
of our methodology in Sect. 2 and related work in Sect. 3, we present some of
our findings from the interviews. We begin with a discussion of the types of
projects identified in Sect. 4, followed by a discussion of stakeholders involved
in Sect. 5. Section 6 discusses the requirements engineering techniques identified
by our participants, followed by a brief analysis of project outcomes in Sect. 7.
Finally, we conclude and discuss future research directions.

2 Methodology

This paper is a result of an exploratory interview-based study based on industrial
model transformation projects. The aim of this study is to explore transforma-
tion projects from a requirements engineering perspective. Specifically, we are
interested in finding out what requirements engineering techniques, if any, are
applied in model-transformation development.

We identified five participants that are experts in the MT development field
and have industrial experience. The selection was based on participants experi-
ence and the work that they have done. Our participants have between eight to
twenty years of experience in MT development. We asked participants to focus
their responses on self-selected recent projects. All participants had a leading
role in these projects. Participants were interviewed regarding the project(s) in
which they were involved (seven projects in total), and their views regarding the
requirements engineering process in relation to these projects.

We conducted semi-structured interviews of approximately one hour dura-
tion. The same questions in the same order were given to all participants. The
questions concerned the project context and scale, the stakeholders, the require-
ments engineering techniques and process used, and the project outcomes.

Our approach is, thus, qualitative investigating in depth the ‘why’ and ‘how’
of decision making for particular requirements engineering techniques and activi-
ties in model-transformation development. More information about the interview
prompts can be found via the link in footnote 1.

1 http://www.inf.kcl.ac.uk/pg/tehrani/form.pdf

http://www.inf.kcl.ac.uk/pg/tehrani/form.pdf


Threats to the validity of conclusions drawn from the interviews include:
(i) that the interviewees and examined cases are not representative of transfor-
mation developers and projects; (ii) that interviewees selected unrepresentative
projects; (iii) that interview questions were aimed at elicitating a particular re-
sponse.

We tried to avoid problem (i) by requesting interviews with a wide range of
MT experts. The candidates for interview were selected from our previous litera-
ture surveys of RE in MT. 12 candidates were approached, of whom 5 agreed to
be interviewed. These represent a diverse range of organisations, and the projects
cover a range of domains: embedded systems, finance, re-engineering, defence
and business. Regarding (ii), projects with poor outcomes, such as 3 and 6, were
included in addition to successful projects. Regarding (iii), the questionnaire
and methodology was examined by an expert committee for ethical approval.
The survey will be extended with further interview subjects and projects where
possible.

3 Related Work

There has been very limited empirical research into model-transformation de-
velopment. The only relevant studies have been based on MDE in general, such
as that of [4, 14], which used interviews as well as a questionnaire-based sur-
vey. The main aim of this study was to capture the success and failure fac-
tors for MDE based on industry evidence. They conducted 22 interviews with
MDE practitioners. The survey found that some use of MDE is made in a wide
range of companies and industry sectors, however this use tended to be based
on Domain-Specific Languages (DSLs) and modelling of narrow specialised do-
mains. Transformations were used to generate artefacts from the DSL models,
however code generation was not itself a primary benefit of MDE, instead the
benefits came from the ability to abstract system architectures and concepts into
models. The evidence from this survey suggests that transformations are often
developed based on the expert knowledge of software developers, to encode and
automate previously manual procedures. A high degree of domain knowledge ap-
pears essential for the successful construction of the transformations. The survey
of [7] considered in depth four companies adopting MDE, but did not specifically
consider requirements engineering. One concern of the companies in [7] was the
cost of developing transformations, a factor which could be improved by more
systematic RE for MT.

In our work, we focus specifically on model transformation developments,
whether as part of an MDE process or as independent developments. For MT
developments, we examine how RE techniques and the RE process is carried
out.



4 Transformation Development Projects

In this section, we will describe the MT projects which our participants focused
on in their descriptions. All of our interviewees are either the sole developers
or the lead developers for these projects. Each project has been categorised
according to the MT field that it belongs to. The scale, developers time and
effort for some of these projects will also be described.

Seven MT development projects were considered in this study:

1. Automated generation of documentation for international stan-
dards: this transformation concerns the generation of standard documenta-
tion text from meta-models, to ensure consistency of the documentation. The
source meta-models are of the order of 600 meta-classes. The development
effort was not available.

2. Reverse-engineering and re-engineering of banking systems and
web-services: the idea of this project was to build transformations to con-
struct models of existing applications, and to forward-engineer these models
to new platforms. The scale of the finance system re-engineering is approxi-
mately three million LOC extracted from 100 million LOC legacy code, the
scale of the web services re-engineering is approx 15 million LOC. The re-
engineering process must be done in a way that not only reveals the actual
functionality of the system, but also enables further analysis according to
system requirements. The development effort was not available.

3. Code-generation of embedded software from DSLs: in this project
transformations are defined to map between embedded system DSLs forming
C extensions, and from these DSLs to C code. These extensions are used by
embedded software developers. More than 25 different DSLs are involved,
and approx 30 person-years of effort.

4. Petri-net to statechart mapping: this model transformation maps Petri-
net models to statecharts, in order to analyse the Petri-nets. It involves
both refactoring and migration aspects. The transformation is intended to
map large-scale models with thousands of elements. Effort was three person-
months.

5. Big Data analysis of IMDb: the Internet Movie Database (www.imdb.com)
can be regarded as a Big Data case. It has information about the title of
movies, names of actors, rating of movies and actors playing roles in which
movies. In this case, a model transformation was developed to implement
IMDb searches by users. Effort was 3 person-months.

6. UML to C++ code generator: this case involved the construction of
a transformation for the generation of multi-threaded/multi-processor code
from UML. The transformation generates C++ code as well as providing a
run-time layer to support the generator. Effort was four person-years.

7. Reverse-engineering of a code generator: This MT project was an
example of re-engineering of an existing transformation. In this case study
an existing code-generation transformation was analysed and re-engineered
to improve its functionality. Effort was four person-months.



4.1 Type of Projects

Software development projects can be classified into several types [13]:

Greenfield vs Brownfield In a greenfield type of project, the system is com-
pletely new, therefore the developers have to start from scratch and build
the system from the beginning. On the other hand, in brownfield projects,
a system already exists but it has to be further developed and improved.

Customer vs Market Driven Software could be either a solution for a par-
ticular type of client in the market (customer driven) or a solution which
would cover the need of a large percentage of the market (market driven).
In customer-driven types of projects, the software is designed according to
the needs of a specific type of client, whereas in market-driven projects, a
larger scope of solution is considered covering more than just one particular
type of client.

In-House vs Outsourced A project could be regarded either an in-house project
where it is assigned to a particular organization in order to carry out all the
project’s life-cycle processes or it could be outsourced where it is assigned to
different companies according to different project phases. In an in-house type
of project, one team/company will carry out all the phases in the project,
whereas in an outsourced project, usually once the requirements have been
identified different teams from different companies will carry out the different
phases such as design, implementation, testing, etc.

Single Product vs Product Line The outcome of a project could have only
one version which would satisfy the customer’s need or it could have different
versions each of which would cover particular needs in a large organisation.
“In a single-product project, a single product version is developed for the
target customer(s). In a product-line project, a product family is developed
to cover multiple variants” [13].

According to our interviews, one of the seven projects can be regarded as a
brownfield project (Project 7). Six projects were greenfield as the transforma-
tion had to be written from scratch, because either the transformation project
was completely new, or because developers wanted to use their own tools and
technology.

All projects were customer-driven as they were specified for particular client(s).
All the projects were in-house, single-product projects. The projects were as-
signed to a particular company to do all the transformations, therefore there
was no need of outsourcing, and only a single version of the project was devel-
oped.

MT development often occurs within a wider software development project
(e.g., Projects 2, 4, 6, 7), although there are also cases where MT development
is the main part of software development (e.g., Projects 1, 3, 5).

As a result, it is important to differentiate explicitly between properties of
the transformation-development project and the project this was embedded in.
For example, while most of containing projects were brownfield projects, most
of the transformation-development projects were greenfield as no previous trans-
formation existed for the specific purpose required.



Fig. 1. Onion model of stakeholder general relationship [1]

5 Stakeholders

In general, the term stakeholder can be defined as an individual or an organisa-
tion/group of people who is either affected by or has an effect on the outcome
of a given project [8]. It is essential to fully identify all the stakeholders of the
project as an initial step prior to any other action, because by missing an im-
portant group of stakeholders, there is a major risk of missing a whole set of
requirements of the system. A good participation of stakeholders in the software
development cycle not only would result in a better understanding of the actual
problem, but also help to build that which is required according to the stake-
holders’ needs. The onion model of project stakeholders (e.g., [1], see Fig. 1)
has been used to describe different types of stakeholders and their relation to
the system under development. In this model, stakeholders are categorised into
three different types. Operational stakeholders have a direct interaction with the
system. Stakeholders in the containing business area somehow benefit from the
system. The wider environment area contains stakeholders which have an effect
on or interest in the system, but only an in-direct influence.

More specifically, sponsors are stakeholders that have the responsibility to
pay for the developed product. Customer(s) buy the product. Sometimes it can
be the case where the customer is also the end user of the developed product.
The normal operators are the people who will eventually operate and use the
developed product. The maintenance operators are the people from which the
maintainability requirements can be discovered. The core development team con-
sists of developers that are in charge of developing the product. Subject matter
experts could consist of “internal and external consultants, may include domain
analysts, business consultants, business analysts, or anyone else who has some
specialized knowledge of the business subject” [8].

We have adapted the onion model to classify the stakeholders in MT devel-
opment based on our participants’ descriptions. We can identify that the core
development team consisted of the transformation developers for all of the MT
projects. The customer(s) consisted of the committee that were interacting with
the transformation developers in order to explain the problem space and what
is needed. The sponsor(s) were the companies which were represented by the



Table 1. Stakeholders of model transformation projects

Case Sponsor and Customer Normal and Maintenance Operator

1 Technology standards consortium Users of the standards

2 Financial/Telecom organisations Users of re-engineered systems

3 Commercial companies Embedded software developers

4 External customer Users of the output model

5 External customer Users searching the data

6 Government & Defence industries Users of C++ application

7 Commercial client Users of the code generator

customers, and do not interact with MT developers directly. Finally, the nor-
mal and maintenance operator consisted of the people who were going to use
the result of the transformations as end users. Table 1 presents the sponsors,
customers and the operators of the MT projects.

As discussed earlier, the MT projects that we analysed are typically em-
bedded within wider projects. As a result, the role of stakeholders of the wider
project was changed according to the embedded MT project. For example, in
one case (project 2) the members of the core development team of the wider
project turned into the customers interacting with transformation developers
for technical issues. Therefore, the transformation developers were facing two
types of customer for this project: one to explain the general requirements of the
overall system and one to deal with more detailed requirements and technical
difficulties of the transformation.

Similarly, the impact of other stakeholders of the containing project (e.g.,
from the containing business or wider environment) on the transformation de-
velopment has become more indirect. Understanding fully the role of these stake-
holders in the context of transformation development seems important for suc-
cessfully developing requirements engineering techniques for MT development
and will be part of our focus for future work. For example, the indirect nature
of contact with the stakeholders of the enclosing development project is likely
to impact on the use of RE techniques that require stakeholder interaction. Fig-
ure 2 is a first attempt at showing some of the relationships amongst the MT
developers and general stakeholders in a generalised onion model.

6 Requirements Engineering Process

In this section, we will discuss our findings regarding the requirements engineer-
ing process applied in the projects we discussed in our interviews. We start by
discussing the overall RE process used, before focusing on requirements elicita-
tion and cataloguing typical RE techniques employed.



Fig. 2. Onion model of MT stakeholder relationship

6.1 Overall Requirements Engineering Process

Requirements engineering for any type of software development is specialized
and model transformation is not an exception. There are some key issues which
cause this uniqueness:

Type of system. Critical systems need a complete and consistent set of re-
quirements that can be analysed in advance. For business systems, work
can start with an outline of the requirements that are then refined during
development.

Type of development process. Plan-based processes require all requirements
to be available at the start of the project, whereas in an agile approach, re-
quirements are developed incrementally.

The environment where the system will be deployed. In some cases, users
and other stakeholders are available to provide information about the re-
quirements; in others they are not. These require different approaches to RE
to get a starting point for implementation.

The extent to which other systems are reused in a system being developed.
Generally, requirements for the reused systems are not available. Thus, the
RE process needs to reverse engineer these requirements from the existing
system [12].

Kotonya et al [11] have proposed a process model for the RE process. It is
widely accepted by researchers and professional experts. In this study, we used
this model as our template to investigate the MT projects. The following are
the most important phases of RE which have to be applied: (i) Domain analysis
and requirements elicitation; (ii) Evaluation and negotiation; (iii) Specification
and documentation; (iv) Validation and verification.

The initial step in the RE process is the act of obtaining detailed knowledge
regarding the domain of the current problem, the organization/company con-



fronting the problem and the existing system that is facing the problem. Once
the required knowledge has been acquired, a draft document could be provided
which would help the system developers to understand the context of the actual
problem as well as to identify the stakeholders’ actual needs and requirements. At
the stage of evaluation and negotiation, it is assumed that the previous stage,
requirements elicitation, has been performed effectively. The evaluation stage
identifies inconsistencies and conflicts between requirements. The likelihood of
such conflicts will increase if the requirements have been gathered from mul-
tiple and different stakeholders. Negotiation with stakeholders takes place to
resolve conflicts and potentially infeasible requirements. The specification and
documentation phase of the RE process begins with the specification process,
which makes precise a set of agreed statements by all relevant sides of the project
such as: requirements, assumptions, and system properties. Based on the speci-
fication, the requirements documentation can be drafted. At the validation and
verification stage, the specifications are analysed. They should be validated by
stakeholders to ensure that they satisfy their actual needs. Also, the specifica-
tion should be verified in order to check its consistency and to avoid conflicts
and omissions. Any potential error and flaw must be fixed during this phase and
before the actual development in order to save cost, effort and time.

Table 2 shows the requirements engineering processes that were used in the
examined MT development projects. Every MT project has been divided into
four stages (elicitation, evaluation, specification and validation) regarding the
requirements engineering process. The detailed RE process used was as follows
in each project:

Project 1: Document mining, prototyping and interviews were used to obtain
requirements. Daily meetings or conference calls with the stakeholders were used
to resolve issues. Conflict resolution was used during evaluation, and a UML and
QVT/OCL specification was defined. This was validated by inspection.

Project 2: Brainstorming and interviews were used to elicit requirements and
decide on the project scope and priorities, together with exploratory prototyp-
ing to show the customer what the MT developers intended to develop. An
agile process with frequent customer liason was used. During evaluation there
were joint requirements development sessions, and negotiation over unrealistic,
conflicting or impractical requirements. Impact analysis was used. Semi-formal
specifications were used. Testing was used for validation.

Project 3: Brainstorming and prototyping were used, but no formal RE tech-
nique was applied. Requirements were categorised and prioritised. Communica-
tion with the stakeholders via screencasts were used to resolve issues. An agile
process was followed, and implementation was commenced at an early stage.
Informal specifications were constructed, and testing used for validation.

Project 4: Document mining of the existing text requirements was used,
together with exploratory prototyping to understand the requirements. The re-
quirements were decomposed into separate mapping and refactoring scenarios,
expressed in concrete grammar sketches, and then formalised in a UML/OCL
specification. This was validated and refined by inspection and testing.



Project 5: Document mining of the existing text requirements was used,
together with exploratory prototyping to understand the requirements. The re-
quirements were categorised and prioritised. The functional requirements were
decomposed into separate mapping scenarios. Client feedback via email and a
forum enabled the refinement of these scenarios. The transformation was for-
malised in a UML/OCL specification. This was validated and refined by inspec-
tion and testing.

Project 6: Interviews and exploratory prototyping were used to elicit the
requirements, followed by goal decomposition and then confirmation with the
clients. The transformation was specified in UML. Testing was used for valida-
tion.

Project 7: Reverse-engineering of the existing transformation was used to
obtain requirements for the revised transformation. In some cases it was difficult
to identify if these were correct, and discussion with the customer was necessary.
A logical specification of the new transformation was defined, which supported
formal proof of correctness.

Table 2. Requirements engineering techniques in MT projects

Case Elicitation Evaluation Specification Validation

1 document mining, informal conflict UML/OCL inspection
prototyping, interviews resolution

2 brainstorming, interviews impact analysis, UML, graphs testing
exploratory prototyping negotiation

3 informal techniques, negotiation informal testing
prototyping

4 exploratory prototyping scenario analysis UML/OCL testing, inspection,
proof

5 exploratory prototyping scenario analysis UML/OCL testing, inspection

6 exploratory prototyping goal decomposition UML/metamodelling testing
negotiation

7 reverse-engineering goal decomposition formal/logic proof

Requirements change is a common occurrence during project development.
This can be due to stakeholder’s change of mind/circumstances or the introduc-
tion of some additional requirements to the existing one(s). Based on our study,
we realised that transformation developers experienced similar events where they
had to deal with requirements modifications, unrealistic requirements and con-
flict amongst the requirements.

“Never do what you are told, and always do what is needed” (Study
participant).

In Table 3, we have identified MT developer’s responses when confronted with
common problems that may occur during the MT development. As can be seen,



these revision activities generally require stakeholder interaction, or understand-
ing of their real needs, and hence may be more difficult for MT projects where
the project is embedded within a larger MDE project.

Table 3. Requirements revision in MT projects

Project Problem Reaction, paraphrased from participant comments

1, 2, 3, 4,
6, 7

Unrealistic
requirements

-Implementing “what is needed” rather than what is wanted
-Implementing “the underlying system”

1, 2, 3, 6,
7

Change of
requirements

-Agile provides sufficient time via weekly deployments
-Confirming the requirements at the beginning of every iteration
-Charging extra for the additional requirement(s)

1, 2, 3, 4,
5

Requirements
Conflict

-Resolving the conflict by common sense
-Trade-off amongst the conflict requirements

2, 3, 4, 5,
6, 7

Requirements
uncertainty

-Contacting the stakeholders for clarifications

6.2 Requirements Elicitation

According to our investigation, the requirements elicitation process in MT de-
velopment often begins with an initial meeting with customers. Their input is
central to the process at this stage.

“It is the process and an engagement that starts with customer” (Study
participant).

Customers often only have a very high-level view of what they need the
transformation to achieve. For instance, a customer may only be aware of the
language that his/her company want the code to be generated into or the kind
of platform.

“Stakeholders are not very technical but they know what they need to
see out of the system at the end” (Study participant).

Therefore, transformation developers can suggest joint sessions with the
stakeholders to be explicit about the system. During these sessions interviews
and brainstorming methods are applied to confirm the functional and non-
functional requirements and specifications in more detail.

Customers often leave it up to the MT developers to flesh out the nature of
those high-level requirements based on their expertise. The task of requirement
elicitation and requirements engineering in general is done by developers. Not
only are they in charge of implementation, but also eliciting the requirements
are done by them as well.

“Stakeholders give high level goals and it is for you to decide how to get
there and what to use” (Study participant).

Therefore, initially the customer provides the developers with some high-level
goals. Next, developers decompose the goals into sub requirements and once they



have analysed them then they meet the customers again for a confirmation. Once
there is an initial confirmed draft of the requirements of the overall system then
the implementation phase is started. During the implementation, at the end of
every stage developers provide prototypes for stakeholders.

“It starts with customer, proof of concept than taking some code from
the customer and presenting what can be done by prototyping, by a tool
which provide analysis on code” (Study participant).

Once the prototype is delivered to the stakeholders, they can raise an issue
in case something is wrong or missing, otherwise the next stage of implementa-
tion will start. Prototypes were very popular amongst the model transformation
projects that we analysed, as these help both developers and stakeholders to
understand the problem space.

6.3 RE Techniques

There are several methods and techniques proposed by the requirements engi-
neering community, however selecting an appropriate set of requirements engi-
neering techniques for a project is a challenging issue. Most of these methods
and techniques were designed for a specific purpose and none could cover the
entire RE process. Researchers have classified RE techniques and categorised
them according to their characteristics. For instance, Hickey et al [3] proposed
a selection model of elicitation techniques, Maiden et al. [5] came up with a
framework that provide requirements acquisition’s method and techniques. Ac-
cording to our study, in MT projects, RE techniques are selected and applied
mainly based on personal preference, or on a company policy, rather than on the
characteristics and specifications of a project.

There exist several different requirements engineering techniques from a va-
riety of sources that can be employed during MT development. Here we present
some of those that were more widely used in the MT projects. We have cate-
gorised RE techniques into groups of human communication, process technique,
knowledge development and requirements documentation. Table 4 summarises
the RE techniques that were used in the MT development projects. In the first
column a general category is defined followed by RE techniques and the MT
projects in which they were applied. In the rationale column, the selection cri-
teria of the techniques are described by interviewees.

7 Outcome

In evaluating the outcomes of the MT projects, the development effort and prob-
lems encountered are considered, together with the degree to which the delivered
transformation achieved the customer expectations. We use a qualitative five
point scale (Very Low, Low, Moderate, High, Very High) for both factors based
on the transformation size, business value and customer satisfaction. Table 5
summarises the outcomes of the different MT projects.



Table 4. RE techniques in MT projects

Category RE Technique Project Rationale

Human
communication

Online conference 1, 2, 3, 6
- Distribution of stakeholders
- Lack of accessibility
- Conveniency

Brainstorming 1, 2, 3, 6
- Clarifying both stakeholders and
developers to understand each other
as well as the requirements

Process
techniques

Joint requirements
development session

2
- Resolving any possible issue
which is not clear

Categorisation
1, 2, 3, 4
5, 6, 7

- Identifying functional and
non-functional requirements

Knowledge
development

Prototype
1, 2, 3, 4,
5, 6, 7

- Receiving feedback based on
the prototype
-Informing the stakeholders from
the progress

Negotiation 2, 3, 6
- To prioritize the requirements
- Trade-off

Requirement
documentation

Diagram
1, 2, 3, 4,
5, 6, 7

- Providing a general view of
the system

Documentation
1, 2, 3, 4,
5, 6, 7

- Presenting the system formally
- Providing a guidline for stakeholders

Project Transformation scale Development cost Customer satisfaction

1 High Moderate High

2 Very High Moderate High

3 High High: specifications too Moderate
procedural, hard to
analyse or modularise

4 Low Moderate High

5 Moderate Moderate Moderate

6 High High: complex and Moderate
detailed semantics

7 Moderate Moderate High
Table 5. Outcomes of MT projects



Of particular note are Project 2, which was the largest of the case studies
in scale, with over 1500 transformation rules, and very large scale source data.
This project also had the most systematic RE process, with good communication
between the developers/analysts and the customers, and effective negotiation
over requirements. There has been good acceptance of the project results by the
customers, so we classify this as High satisfaction.

In contrast, Project 3 was also of large scale, but the transformation language
used (a Java-based syntax tree processor) was too procedural in style, which
made analysis difficult, and in particular obstructed analysis of the semantic
interaction between different transformations (code generators) which may be
used together. There was a lack of systematic RE processes, and this led to high
costs in reworking the translators when errors were discovered. The customer
was unwilling to participate in any structured requirements engineering process.

Whilst Project 6 had a more systematic RE process than project 3, the se-
mantic complexity of the target language and platforms caused the development
effort and costs to be significantly higher than for other code generators. The
complexity of the resulting generator has hindered its adoption, which has been
limited. Thus, we give a rating of Moderate for customer acceptance in this case.

8 Conclusions and Future Work

In this paper, we have reported on the results of an exploratory study of require-
ments engineering for model-transformation development. We have reported on
our initial findings from five semi-structured interviews with industrial experts
in the field. Clearly, more research is needed, but some interesting points have
already emerged from this study and are worth closer attention: First, we have
been able to identify that model-transformation projects are typically individ-
ual projects that are embedded in wider software-development projects. We have
briefly commented on how this impacts the identification of and communication
with stakeholders in the transformation development. The projects we have dis-
cussed are almost exclusively greenfield projects, which is different from the
wider software-development reality. This may be because model transformations
are still a relatively young technology in industrial practice.

The interaction between the needs of the wider project and the highly tech-
nical nature of model-transformation development seems to have an impact on
the requirements elicitation process in particular. We have seen that while pro-
totyping and example-based generalisation seem to play an important role in
understanding the requirements on model transformations, no more systematic
process seems to be followed. Although developers apply some requirements
engineering techniques in transformation projects this is often based on their
experience and common sense as there is no specific requirements engineering
process designed for model transformation development. At the moment, the
focus of transformation development is mainly on the specification and imple-
mentation stages and the development team is responsible for all development
process activities including the requirements engineering process.



More understanding of the context in which transformations are developed
is required and we will, consequently, continue our empirical work in this area.
In parallel, we have started work on defining a more systematic process for
requirements engineering in the context of MT development [15].

References

1. Ian F. Alexander. A taxonomy of stakeholders: Human roles in system devel-
opment. International Journal of Technology and Human Interaction (IJTHI),
1(1):23–59, 2005.

2. Esther Guerra, Juan de Lara, Dimitrios S Kolovos, Richard F Paige, and Os-
mar Marchi dos Santos. transml: a family of languages to model model transfor-
mations. In Model Driven Engineering Languages and Systems, pages 106–120.
Springer, 2010.

3. Ann M Hickey and Alan M Davis. Requirements elicitation and elicitation tech-
nique selection: model for two knowledge-intensive software development processes.
In System Sciences, 2003. Proceedings of the 36th Annual Hawaii International
Conference on, pages 10–pp. IEEE, 2003.

4. John Hutchinson, Jon Whittle, Mark Rouncefield, and Steinar Kristoffersen. Em-
pirical assessment of mde in industry. In Proceedings of the 33rd International
Conference on Software Engineering, pages 471–480. ACM, 2011.

5. NAM Maiden and Gordon Rugg. Acre: selecting methods for requirements acqui-
sition. Software Engineering Journal, 11(3):183–192, 1996.

6. Tom Mens and Pieter Van Gorp. A taxonomy of model transformation. Electronic
Notes in Theoretical Computer Science, 152:125–142, 2006.

7. Parastoo Mohagheghi, Wasif Gilani, Alin Stefanescu, and Miguel A Fernandez.
An empirical study of the state of the practice and acceptance of model-driven
engineering in four industrial cases. Empirical Software Engineering, 18(1):89–116,
2013.

8. Suzanne Robertson and James Robertson. Mastering the Requirements Process
(2Nd Edition). Addison-Wesley Professional, 2006.

9. Bran Selic. What will it take? a view on adoption of model-based methods in
practice. Software & Systems Modeling, 11(4):513–526, 2012.

10. Shane Sendall and Wojtek Kozaczynski. Model transformation: The heart and soul
of model-driven software development. IEEE Software, 20(5):42–45, September.

11. Ian Sommerville and Gerald Kotonya. Requirements engineering: processes and
techniques. John Wiley & Sons, Inc., 1998.

12. Professor Ian Sommerville. private communication, 2015.
13. Axel van Lamsweerde. Requirements Engineering: From System Goals to UML

Models to Software Specifications. John Wiley & Sons, 9 Jan 2009.
14. Jon Whittle, John Hutchinson, and Mark Rouncefield. The state of practice in

model-driven engineering. Software, IEEE, 31(3):79–85, 2014.
15. Sobhan Yassipour Tehrani and Kevin Charles Lano. Model transformation ap-

plications from requirements engineering perspective. In The 10th International
Conference on Software Engineering Advances, 2015.


	Requirements Engineering in Model-Transformation Development: An Interview-Based Study

