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SUMMARY

Chronic pain is a common and devastating condition
that induces well-characterized changes in neurons
and microglia. One major unanswered question is
why these changes should persist long after the
precipitating injury has healed. Here, we suggest
that some of the longer-lasting consequences of
nerve injury may be hidden in the epigenome. Cell
sorting and sequencing techniques were used to
characterize the spinal cord immune response in a
mousemodel of chronic neuropathic pain. Infiltration
of peripheral myeloid cells was found to be absent,
and RNA sequencing (RNA-seq) of central microglia
revealed transient gene expression changes in
response to nerve ligation. Conversely, examination
of microglial enhancers revealed persistent, post-
injury alterations in close proximity to transcription-
ally regulated genes. Enhancers are regions of open
chromatin that define a cell’s transcription factor
binding profile. We hypothesize that changes at en-
hancers may constitute a mechanism by which pain-
ful experiences are recorded at a molecular level.

INTRODUCTION

All of us are likely to know someone who is affected by chronic

pain: the incidence in our population is estimated to be up to

20%. With limited treatment options, many patients have long

resigned and suffer quietly with little hope of respite. The hours

of work and productivity they lose as a consequence turn their

private tragedy into a public burden, costing the United States

government an estimated $250 billion a year.

A great deal is known about the neurobiological mechanisms

associated with the development and maintenance of chronic

pain. One major characteristic is persistent hypersensitivity at

all levels of the nervous system, with inappropriate neuronal re-

sponses having been reported in peripheral sensory neurons,

spinal neurons, and top-down modulatory centers in the brain.

This maladaptive state is thought to be compounded by

abnormal immune cell function, both peripherally and centrally

(McMahon et al., 2015). Activation of microglia in particular,

the resident myeloid cells of the CNS, is known to be critical
This is an open access article under the CC BY-N
for the emergence of spinal hypersensitivity in a wide range of

animal models, including those of neuropathic pain, chemo-

therapy-induced pain, and rheumatoid arthritis pain. Evidence

in humans has been harder to come by, but pioneering imaging

studies are suggesting that abnormal microglial responses also

have a prominent role in the CNS of chronic pain patients (Loggia

et al., 2015).

One mystery that remains is why many of these alterations

persist long-term, even when the initial injury or disease remits.

There are likely to be a number of explanations, for instance

post-translational modification of ion channels or wide-spread

transcriptional changes are often put forward. And yet, the vast

majority of proteins in the brain have a half-life of <14 days

(Chee and Dahl, 1978), making it difficult to appreciate how their

abnormal function should be sustained in the long run. Here, we

examine the possibility of epigenetic remodeling in CNS immune

cells, in particular the role of enhancer deposition.

Enhancers are cis-acting regulatory regions within the DNA

that allow the binding of multiple transcription factors (TFs) to in-

fluence gene expression over variable distances, sometimes up

to several hundred kilobases (kb) away. During development, the

binding of lineage-specific TFs to distinct enhancers is thought

to be vital for the establishment of cell-type-specific transcrip-

tion by allowing local remodeling of chromatin and permanent

accessibility to selective stretches of DNA. Enhancers, therefore,

ultimately determinewhich genes can be used in a given cell type

(Heinz et al., 2015). It is thought that the enhancer profile of a cell

remains largely unaltered once established. Yet recent seminal

papers suggest that a small, but significant, number of de novo

enhancers can appear as a result of external signals, even

once development is complete. Thus in macrophages, stimula-

tion with different inflammatory mediators or activation of toll-

like receptor 4 each result in the emergence of a distinct profile

of new, so-called latent, enhancer peaks (Kaikkonen et al.,

2013; Ostuni et al., 2013). Some of these latent enhancers persist

once the initial stimulation has been removed, in effect func-

tioning as a molecular footprint of prior events. It has been

posited that these latent enhancers could constitute a mecha-

nism by which an adaptive form of immunity can be established

in innate immune cells (Quintin et al., 2014).

We have tested this idea in context of persistent pain. We per-

formed detailed characterization of the spinal cord immune

response in a well-studied model of neuropathic pain using mi-

croglial-specific flow cytometry markers. We then isolated resi-

dent microglia for genome-wide RNA-sequencing (RNA-seq)
Cell Reports 15, 1–11, May 24, 2016 ª 2016 The Author(s) 1
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Figure 1. SNL Does Not Induce Infiltration of Peripheral Macrophages

Spinal cord microglia were acutely isolated using a Percoll gradient and analyzed via flow cytometry.

(A and B) Representative dot plots illustrating the gating strategy.

(C) No significant differences were found in cell number between sham and SNLmice for any of themarkers examined: P2RY12 (resident microglia); CD3 (T cells);

CD19 (B cells); Ly6G (neutrophils); Ly6C (infiltrating macrophages). Biological n = 3. Mean frequencies and SE.

See also Figure S1 and Table S1.
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and epigenetic profiling. Our data provide evidence that periph-

eral nerve injury changes the landscape of microglial en-

hancers—a process that could maintain these cells in an

abnormal, maladaptive state over long periods of time.

RESULTS

Characterization of Spinal Cord Immune Response after
Spinal Nerve Ligation
Enhancers are highly cell-type-specific, and their study requires

a firm understanding of the different cell populations present in a

given system. A long-standing debate in the study of chronic

pain is whether the spinal cord immune response is restricted

to resident microglia or also includes peripheral macrophages.

Hitherto, this question has been difficult to resolve, as common

flow cytometrymarkers are unable to clearly distinguish between

these two myeloid populations. We used a recently described

antibody to unequivocally stain and identify yolk-sack-derived

resident microglial populations (Butovsky et al., 2014). We also

studied the proportion of other immune cells in the spinal cord,
2 Cell Reports 15, 1–11, May 24, 2016
by examining Ly6G-, Ly6C-, CD3-, and CD19-positive popula-

tions to identify neutrophils, infiltrating macrophages, T cells,

and B cells, respectively. There was no significant infiltration of

any of these cell types into the spinal cord 7 days after partial

sciatic nerve ligation (SNL) (Figure 1). The vast majority of

Percoll-isolated cells were CD45-positive immune cells (92%–

99%), and 98%–99% of those were resident microglia (n = 3,

independent samples t test, n.s., non significant; Figure 1A).

Moreover, we only found very modest numbers of neutrophils,

T cells, and B cells, and their counts did not vary with injury (Fig-

ures 1B and 1C).

Enhancers can be detected via chromatin immunoprecipita-

tion (ChIP), a technique that currently requires at least tens of

thousands of cells. We therefore investigated whether Percoll

isolation, with its 98%–99% resident microglial yield, would be

sufficiently pure to allow for subsequent ChIP sequencing

(ChIP-seq) analysis. We used an antibody to probe for a specific

chromatin modification—the presence of a single methyl group

at lysine residue four of histone three (H3k4me1)—that can be

used as a proxy measure for enhancer location (Heintzman



Figure 2. RNA-Seq of Isolated Microglia Reveal Cell-Type-Specific Changes in Gene Expression

(A) Top 40 expressed transcripts identified in adult spinal cord microglia in sham and SNL mice. Each column represents a biological replicate (n = 4), and

individual squares represent FPKM values.

(B) Top differentially expressed genes after SNL. Squares represent log2 count data (normalized to total library size).

(C and D) Validation at protein level. (C) Significantly increasedStat1 expressionwas observed usingwestern blots (one-sample t test, p = 0.034, n = 3). Plotted are

band densities normalized to tubulin as a ratio of SNL/SHAM for each blot (1–3), as well as their mean fold change and SE. (D) Flow cytometry revealed increased

MFIs after SNL for three Fc gamma receptors: Fcgr1 (PE-CD64, p = 0.07, n = 3), Fcgr3, and Fcgr2b (APC-CD16/CD32, p = 0.05, n = 3). AnMFI ratio was calculated

separately for three experiments (1–3) using constant gates between SNL and sham. Histograms are displayed after gating for live CD45+, CD11b+myeloid cells.

See also Figure S2 and Table S2.

Please cite this article in press as: Denk et al., Persistent Alterations in Microglial Enhancers in a Model of Chronic Pain, Cell Reports (2016), http://
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et al., 2007). Using fluorescence-activated cell sorting (FACS)

and ChIP-qPCR, we found no significant signal derived from

the percentage of cells that are negative for CD45 and CD11b

or indeed the cellular debris also contained in the preparation

(Figure S1). This rules out the possibility that these factors signif-

icantly contaminate our ChIP analysis of microglia.

Genome-wide Transcriptional Profile of Isolated Spinal
Cord Microglia
RNA-seq was performed on spinal microglia after SNL or sham

surgery (n = 4, each n pooled from four lumbar cords). We found

high expression of known microglial genes, such as cathepsins

(e.g., Ctss), the fractalkine receptor (Cx3cr1), and many genes

highlighted as microglial by Butovsky et al. (2014) (e.g., Cst3,

P2ry12, Fcrls, Csfr1) (Figure 2A). Of the 88 microglial markers

reported by Butovsky et al. (2014), 71 ranked in the top 20% of

transcripts we identified by expression level (Table S1; 13,873

genes identified with cut-off set to more than three samples at
fragments per kilobase of transcript per million mapped reads

[FPKM] >0.3). Comparison of a larger list of 1,330 microglial

genes to previously published datasets (Lavin et al., 2014;

Butovsky et al., 2014) indicated a strong positive correlation

in expression profiles across all three studies (Spearman’s

r = 0.61 and 0.66, p < 0.001; Figure S2).

Next, we analyzed differential gene expression between SNL

and sham microglia. Using Deseq2, we identified 17 individual

genes that were significantly upregulated in SNL samples at

adjusted p < 0.05 (Figure 2B; Table S2). A network analysis of

known and putative protein-protein interactions further revealed

that�50%of the genes upregulated at unadjusted p < 0.05 were

functionally connected (107 out of 259; Figure 3). Visually, they

could be grouped into four main categories: genes related to

microglial activation and the subsequent immune response,

genes related to interferon signaling, lysosomal genes, and

genes related to mitosis and ribosomal protein synthesis. We

confirmed these clusters using gene ontology (GO) enrichment
Cell Reports 15, 1–11, May 24, 2016 3



Figure 3. Network of Genes Found to be Significantly Upregulated after SNL
Network analysis revealed a set of 107 functionally interconnected genes with increased expression after nerve injury that broadly clustered into four categories.

The shape of each node represents the statistical confidence at which each gene was found to be upregulated using Deseq2: unadjusted p < 0.05 (circles),

unadjusted p < 0.01 (hexagons), and adjusted p < 0.05 (pink border). The functional information contained in this analysis reduces the chance of false positive

results, but please note that they cannot be completely ruled out for individual genes, especially at p < 0.05 (circles).

See also Figure S3 and Table S3.
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analysis, comparing the list of upregulated genes to our com-

plete microglial gene set. Immune response terms, including

interferon gamma (IFNɣ), interferon beta (IFNb), and complement

signaling, were significantly enriched (Table S3).

We did not observe any significant downregulation of genes in

SNL microglia; however, when using all putatively dysregulated

genes (both upregulated and downregulated at unadjusted p <

0.05) as seeds for a protein-protein interaction network, some

downregulated genes did appear in our main network clusters

as defined above (Figure S3).

Protein Level and Functional Validation of RNA-SeqData
Injury-associated gene expression increase was accompanied

by observable changes in protein levels. A western blot revealed

that Stat1 was significantly elevated in Percoll-isolated microglia

after SNL, mirroring our RNA-seq results (one sample t test,

p = 0.035, n = 3; Figure 2C). Moreover, by measuring mean fluo-
4 Cell Reports 15, 1–11, May 24, 2016
rescent intensity (MFI) of microglia via flow cytometry, we were

able to confirm the dysregulation of Fc gamma receptors, in

particular Fcgr1 (mean fold change of 1.39, one sample t test,

near significant at p = 0.07, n = 3) and Fcgr2b (mean fold change

of 1.48, one sample t test, p = 0.05, n = 3; Figure 2D).

To validate our network predictions, we moved into an in vitro

system using an undifferentiated human monocytic cell line.

Protein-protein interaction and GO analysis identified a cluster

of proteins involved in interferon signaling, including Stat1 (Fig-

ure 3), suggesting that IFNɣ might be inducing some of the

key microglial expression changes observed 7 days after

nerve injury. Indeed, mirroring our network, stimulation of our

cultured cells with IFNɣ caused a clear upregulation of

FCGR1, FCGR2B, STAT1, B2M, and CCL2, while FCGR3 was

unaffected (Figure 4A). STAT1 did not appear to play an irre-

placeable role in this process; partial knockdown of STAT1

in monocytes had no significant effect on gene regulation



Figure 4. Functional Validation of SNL-Induced Microglial Gene Network

(A) Stimulation of the undifferentiated humanmonocytic cell line THP1 revealed that IFNɣ indeed regulates many of the gene expression changes identified in our

RNA-seq analysis. As predicted by our network, FCGR1, FCGR2B, STAT1, CCL2, and B2M were significantly increased by IFNɣ, while FCGR3 was unaffected

(p < 0.05, ANOVA followed by LSD post hoc testing). siRNA knockdown of STAT1 did not have any effect. Plotted are ddCT values (mean + SD) after IFNɣ (+) or
vehicle application (�) in the presence (+) or absence (�) of STAT1 siRNA

(B) Inhibition of Stat1 in vivo using the inhibitor fludarabine did not affect mechanical hypersensitivity after nerve injury. A total of 30 mg/kg (SNL d3, SNLd7) or

100 mg/kg (SNL d16) of the compound was injected i.p. 1 hr before behavioral testing in mice that had undergone SNL 3 days, 7 days, or 16 days earlier. Mean

withdrawal thresholds are plotted in grams with their SE.

Please cite this article in press as: Denk et al., Persistent Alterations in Microglial Enhancers in a Model of Chronic Pain, Cell Reports (2016), http://
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(Figure 4A), nor did pharmacological inhibition of STAT1 in vivo

have any effect on mechanical hypersensitivity after SNL in

mice (Figure 4B).

Injury-Specific Alterations of Microglial Enhancer
Profiles
Genome-wide H3K4me1 enrichment profiles of spinal cord mi-

croglia corresponded well to those of naive cortical microglia

published recently (Lavin et al., 2014). The consensus binding

profiles of sham, SNL, and cortical microglia overlapped to a sig-

nificant extent, although, as expected, SNL microglia were the

most divergent (Figure S4A).

A significant number of peaks were found to be differentially

bound in injured microglia compared to their sham counterparts

using the DiffBind algorithmwith a false discovery rate (FDR) cut-

off of FDR <0.1 (Figures 5A and S4B; Table S4). The regionswere

annotated to their nearest transcriptional start site, as well as

their closest regulated gene (using Deseq2 differentially regu-

lated genes at unadjusted p < 0.01). Most enhancers are likely

to occur within one megabase (Mb) of their target gene (Heinz

et al., 2015), therefore any regions that were >1 Mb from a dys-
regulated gene were disregarded. This resulted in a list of 36 pu-

tative latent enhancers and 12 putative repressed regions that

emerge as a result of nerve injury. GO and pathway analyses us-

ing GREAT revealed that regions with increased H3K4me1 bind-

ing after SNL were enriched for immune and inflammatory

response terms, such as regulation of lymphocyte and leukocyte

proliferation and inflammation mediated by chemokines and cy-

tokines (Figure S4C; Table S4).

Forty percent of our putative enhancer regions were within 500

kb of genes with abnormally high levels of expression after SNL

(Figure S4D). Previous work on latent enhancers (Ostuni et al.,

2013) indicates that 80% of binding sites emerge at this dis-

tance, and many are within 250 kb or less. In our list, 16 of 36

locations found were within 200 kb of a dysregulated gene

(Figure 5B). Indeed, the closest transcriptional start sites of

9 of these 16 were genes that were found to be overexpressed

after SNL. Fam65b, C4b, Ccl12, and Fcgr2b stood out in partic-

ular, as these were among the top upregulated genes identified

via RNA-seq (Figure 5B).

To validate our findings, we performedChIP-qPCR tomeasure

H3K4me1 enrichment at selected sites in two additional, newly
Cell Reports 15, 1–11, May 24, 2016 5



Figure 5. Microglia Enhancer Profiles Are Altered after SNL

(A) Example UCSC traces of ChIP-seq data (bigwig files of H3K4me1 normalized to 10% input). Increased bindingwas found at several genomic locations. Shown

here are C4b, Fam65b, and Ccl12.

(B) Heatmap of putative latent enhancers associated with SNL. Columns are biological replicates; square boxes represent normalized read counts within a

relevant peak. Displayed is the closest transcriptional start site (TSS) as well as the distance to the closest upregulated gene (in base pairs) and the identity of

that gene.

(C) ChIP-qRT-PCR validation of altered binding. H3K4me1 signal is displayed relative to 10% input and a negative control gene desert region (mean and SE of two

separate experiments for each region; n = 4 and n = 3 and 4, respectively). SNL resulted in consistently increased binding in seven out of the eight tested locations.

*p < 0.05, #p < 0.1, heteroscedastic two-tailed t tests.

See also Figure S4 and Table S4.
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generated cohorts of neuropathic mice (2 3 n = 4), each with

their own sham controls (n = 4, n = 3). Seven out of eight sites

chosen for replication showed increased binding after SNL,

five of them significantly so as measured by independent sam-

ples t tests (Figure 5C).

Persistence of Putative Latent Enhancers 28 Days after
Nerve Injury
Our primary hypothesis is that latent enhancers might be a way

in which injury-specific changes are encoded over long periods

of time, allowing for priming of the system and ultimately the

chronification of pain. To test this, we went on to perform addi-

tional analyses of our model at later time points. RNA was ob-

tained at day 1, day 7, day 14, and day 28 after SNL. For this,

we FACS-sorted microglia from dorsal ipsilateral lumbar spinal

cord (Figure S5A), amplified the RNA using a multiple displace-

ment method, and performed high-throughput qRT-PCR using

TaqMan microfluidic cards. At day 7 after SNL, the 28 genes

deemed to pass our expression cut-off by qPCR correlated
6 Cell Reports 15, 1–11, May 24, 2016
well with our original RNA-seq (Figure 6A), serving as further

validation of the transcriptomic data presented here. Moreover,

it appeared that the transcriptional changes observed in micro-

glia were transient—the vast majority of genes had reverted

back to their pre-injury expression levels 28 days after SNL (Fig-

ures 6B and S5B). We also confirmed this at protein level:

immunofluorescent staining revealed that Fc gamma receptor

expression (CD16/C32) was still high in the ipsilateral lumbar

spinal cord at day 14, but much reduced or absent in some

cases at day 28 (Figure S6).

This was in stark contrast to what we foundwhenwe extracted

chromatin frommicroglia of mice 28 days after SNL or sham sur-

gery (n = 3). ChIP-qPCR indicated that several of the putative

latent enhancer regions we identified retained their increased

H3K4me1 binding levels at this late time point—up to amonth af-

ter pain was first induced: C4b, Ccl12, and Ccl5 all still showed

significant enrichment (Figure 6C), and binding remained high

at several other regions (Fcgr2b, Fam65b, and Ly86), although

this was not statistically significant.



Figure 6. Microglial Enhancers Persist

when Transcription Has Reverted to Base-

line

(A) Further validation of RNA-seq was conducted

using a TaqMan qRT-PCR array card for selected

genes at different time points after injury. Microglia

were isolated from lumbar ipsilateral dorsal horn

and sorted using FACS. Plotted here are the

ranked log2 fold changes (day 7, SNL versus

sham) of 28 genes obtained from the RNA-seq

(n = 4) versus those obtained from the qRT-PCR

(n = 3). They were strongly correlated (Spearman’s

rho = 0.61, p < 0.002). Genes in purple were

significantly dysregulated in the RNA-seq data at

adjusted p < 0.05, genes in blue reached statistical

significance via both methods.

(B) qRT-PCR at varying time points after injury

demonstrated that the transcriptional changes in

microglia are transient. Shown here mean ddCT

values and SE for C4b, Ccl12, and Ccl5 at day 1

(SNL d1), day 7 (SNL d7), day 14 (SNL d14), and

day 28 (SNL d28) after injury compared to sham

injured animals at day 1 (SHAM d1) and day 7

(SHAM d7). See Figure S5 for more plots. The

changes observed for C4b and Ccl12 were sta-

tistically significant (one-way ANOVA, p = 0.006

and p = 0.009, respectively).

(C) In contrast to (B), ChIP-qPCR of purified mi-

croglia at day 28 after SNL (compared to day 28

sham) demonstrated that altered H3K4me1 bind-

ing persisted at putative latent enhancers close to

C4b, Ccl12, and Ccl5 (n = 3). *p < 0.05, #p < 0.1,

heteroscedastic one-tailed t test.

See also Figure S6 and Table S5.
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DISCUSSION

We set out to test the hypothesis that neuropathic pain could

result in injury-specific alterations to the enhancer landscape.

For this, we investigated the spinal cord immune response after

peripheral SNL in mice, using techniques to analyze cell compo-

sition, genome-wide transcriptional alterations, and changes to

the enhancer-identifying histone mark H3K4me1.

Contrary to previous claims in the literature (Echeverry et al.,

2011), we found no evidence of peripheral immune cell infiltration

into the spinal cord after nerve injury. Moreover, our cell-type-

specific gene expression profile revealed the unique molecular

signature of the microglial inflammatory response, including

some surprising findings, such as the absence of Bdnf. Finally,

we found 16 putative enhancers that showed increased binding

in microglia 7 days after nerve injury, of which nine were within

250 kb of upregulated genes. Most intriguingly, many of these

potentially latent enhancer regions remained in place up to

28 days after the injury was first induced—a time point at which

we could show that the vast majority of transcriptional changes

had reverted back to normal.

Activity-dependent changes to enhancers have been

described in the context of development (Gosselin et al.,

2014), immune system function (Ostuni et al., 2013), as well as

neuronal signaling (Malik et al., 2014). These range from the

appearance of completely new binding regions in mature

macrophages to the depolarization-induced priming of existing
enhancers in neurons. Both provide a mechanism by which a

stimulus could affect the response of cells in the longer term,

by altering their ability to bind certain transcription factors in

specific locations. In the context of nerve injury, alterations to

enhancer profiles therefore present a plausible way in which

maladaptive nervous system and immune responses could be

‘‘remembered,’’ become fixed in time, and ultimately contribute

to the chronification of pain.

Our results suggest the involvement of enhancers in a model

of neuropathic pain and raise a multitude of intriguing questions:

1. What state are these injury-specific enhancers in?

Enhancers can adopt varying conformations (inactive,

primed, poised, and active), which can only be fully char-

acterized by surveying several other chromatin marks. Are

our putative enhancer regions primed for activity at day 28,

ready to mount a more vigorous transcriptional response

upon repeat activation?

2. How are they deposited? In macrophages, it has been

shown that the deposition of new enhancer peaks requires

the combined action of various TFs including Pu.1, Stat1,

and Stat6 (Ostuni et al., 2013). This is of particular interest

in the context of our dataset, where Stat1 expression was

found to be significantly increased after SNL at both RNA

and protein level.

3. Are the observed changes in enhancer profile critical for

the development of chronic pain? Studying the direct
Cell Reports 15, 1–11, May 24, 2016 7
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causal involvement of a specific enhancer is a complex

undertaking and involves tools such as the generation of

transgenic reporter lines or gene editing technologies

(Kearns et al., 2015), many of which are not yet adapted

for use in the CNS. Low cell numbers coupled with the

requirement for high levels of cell purity further complicate

study of enhancers in the neurosciences. Recent improve-

ments to small-scale ChIP-seq (Lara-Astiaso et al., 2014)

as well as the innovative method of ATAC-seq (Buenrostro

et al., 2015) may help alleviate some of themethodological

difficulties in this area.

It may be some time before the injury-specific enhancers we

identified can be fully characterized. In the meantime, our data

provide immediately useable information about spinal cord im-

mune cell composition and microglial gene expression after

injury. The dorsal horn of the spinal cord, where peripheral noci-

ceptive afferents terminate, is a highly complex tissue with many

different cell types. After spinal nerve injury, the picture is further

complicated, with prior reports in the literature claiming T cell

(Costigan et al., 2009) and peripheral macrophage infiltration

(Zhang et al., 2007). Until recently though, the field has largely

been missing the cell-type-specific tools required to examine

these issues in more detail. Flow cytometry analyses are still

rare in neuroscience research, and only since 2014 have there

been specific antibodies available that allow the distinction be-

tween resident and infiltrating myeloid cells.

Here, we used one of these markers, the purinergic receptor

P2ry12, to demonstrate that 99% of myeloid cells in the spinal

cord after peripheral spinal nerve injury are resident microglia.

Previous reports of macrophage infiltration after nerve injury

may have arisen because it was hitherto necessary to irradiate

the bonemarrow in order to introduce genetically tagged periph-

eral monocytes. This can result in a breakdown of the blood brain

barrier and artificially increase numbers of bone-marrow-derived

macrophages in the CNS. We also did not observe SNL-associ-

ated changes in B cell or T cell counts, all of which were very low.

Of course, we cannot exclude that T cell recruitment will start at a

later stage, more than 7 days after injury.

In addition to our flow cytometry analysis, we used RNA-seq to

characterize the transcriptional profile of acutely isolated micro-

glia.We identified several clearmodules of increasedactivity indi-

cating thatmicroglia are dividing and activated as expected, such

as members of the alternative complement activation pathway

(C3, Cfb C4b, C2) and their downstream receptors (Itgam

[CD11b] and Itgb2l [CD18]). One intriguing hit was the upregula-

tion of Cd244, which has previously been almost exclusively

described in the context of natural killer (NK) and memory

Tcells.Weandothers (Butovskyet al., 2014) nowfind it expressed

in naivemicroglia. Its upregulation upon injury raises the question

of what its function is in these cells, as in NK cells it has both acti-

vating and inhibitory potential (McNerney et al., 2005).

Our data also highlight the importance of only a few specific

chemokines and signaling pathways and may therefore help

direct efforts to find pharmacological targets. Cell-type-specific

RNA-seq confirmed a role for Ccl2, its mouse ortholog Ccl12,

and Ccl5, which have already been identified in previous litera-

ture (Old and Malcangio, 2012). Additionally, a network analysis
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identified IFNɣ as a potentially important upstream mediator of

SNL-induced gene regulation in microglia—a result that we

were able to validate functionally in an undifferentiated human

monocyte cell line. IFNɣ appears to regulate the expression of

Stat1, Ccl2, and fragment-crystallizable gamma ɣ receptors

(FcɣRs). FcɣRIIb (Fcgr2b, CD32b) expression was increased in

our RNA-seq data, as well as in subsequent validation experi-

ments examining both RNA and protein. CD16 (Fcgr3) was not

found to be regulated, neither in microglia nor IFNɣ-stimulated

monocytes. The role of the activating receptor FcɣRI (Fcgr1,
CD64) was less clear: it was induced by IFNɣ in monocytes,

and there was a near-significant increase in microglia after

SNL at protein, but not transcript level. FcɣRs are the main re-

ceptors for immunoglobulins, and their balanced response is

crucial for a well-adjusted innate immune response (Nimmerjahn

and Ravetch, 2008). Shifts in FcɣR function toward too much or

too little activation have been linked to a variety of diseases,

including those with a chronic pain component, such as rheuma-

toid arthritis and inflammatory bowel syndrome (Franke et al.,

2016). At least in other cell types, like neutrophils, FcɣRs, and
in particular FcɣRIIb, can also directly impact complement-

induced responses (Karsten et al., 2012).

Spinal microglia release a host of cytokines and other media-

tors as a result of peripheral neuropathic injury that negatively

affect neuronal function. Our network suggests that this

response is driven by the delicate interplay of a few pro-inflam-

matory and immunomodulatory drivers: complements, FcɣRs,
and INFs, in particular IFNɣ.
Finally, qRT-PCR follow up of our RNA-seq study clearly high-

lighted the transient nature of the gene expression changes that

take place in microglia. One month after injury, most have re-

verted back to their pre-injury expression levels. In contrast,

several of our putative latent enhancer regions were maintained

in microglia at this time—a most intriguing observation that sug-

gests that some of the more persistent consequences of nerve

injury may be hidden in the epigenome.

In summary, our study revealed several features that charac-

terize the spinal cordmicroglial response in amodel of persistent

pain. We have shown that it is primarily dependent on resident

microglia. We have presented a detailed molecular view of the

ensuing microglial-specific gene expression changes. Finally,

we have provided evidence for persistent injury-specific alter-

ations of the microglial enhancer landscape. We expect that

our findings will aid future research by providing several

genome-wide datasets, and we hope that they will ultimately

aid patients by deepening our understanding of why the nervous

system is chronically dysregulated in neuropathic pain.
EXPERIMENTAL PROCEDURES

Animal Surgeries and Behavior

All work conformed to United KingdomHome Office legislation (Scientific Pro-

cedures Act 1986). Male C57BL/6 mice were used throughout the study. SNL

surgery was performed by tying a 5.0 Vicryl suture through the sciatic nerve.

Corresponding sham surgery exposed the nerve, but left it intact. Mechanical

hypersensitivity was assessed with von Frey hairs using the up-down method

(Bonin et al., 2014). Fludarabine (S1229, Selleck Chemicals) or vehicle (0.9%

saline) was delivered intraperitoneally (i.p.) at a dose of 30 mg/kg (d3 and

d7) and 100 mg/kg (d16) 1–2 hr before the behavioral assessment. The
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compound is known to cross the blood brain barrier (Jensen et al., 2012), and

our dosing regime was based on previous literature (Chun et al., 1991; Frank

et al., 1999). The experimenter was blind to the treatment.

Microglial Isolation

Seven days after SNL or sham surgery, mice were sacrificed by overdose of

anesthetic and perfusion with ice-cold PBS. The spinal cord was extracted

using hydroextrusion, dounce homogenized in 0.2% BSA in Hank’s balanced

salt solution (HBSS), and microglia isolated using a Percoll density gradient

(37% versus 70%). Cells were counted on a hemocytometer and further pro-

cessed for RNA extraction, chromatin extraction, flow cytometry, or FACS. For

all experiments, two to eight segments of mouse cord were extracted on a

given day (2–43 sham and 2–43 SNL) and pooled onto two Percoll gradients

to make up one n for each group. For ChIP-seq, �20,000 cells were removed

to allow cytometry analysis of each sample before processing the remainder

for chromatin extraction.

Flow Cytometry

Microglia were centrifuged (200 3 g for 3 min at 4�C) and stained with Live/

Dead fixable yellow dye (L-34959, Life Technologies) in HBSS for 30 min on

ice in the dark. After a second spin, cells were stained in FACS buffer (0.4%

BSA, 15 mM HEPES, 2 mM EDTA in HBSS) with rat anti-P2RY12 antibody

(a gift from Dr. Oleg Butovsky) for 20 min on ice in the dark. After a wash in

FACS buffer, an APC-conjugated anti-rabbit secondary antibody was used

(A10931, Life Technologies). Cells were then washed once more, before being

incubated with the remaining directly conjugated primary antibodies, all raised

in rat and obtained from Biolegend: Alexa-Fluor-488-CD45 (103121), Pacific

Blue-CD11b (101223), PE-Ly6C (128007), PE/Cy7-Ly6G (127617), Brilliant

Violet-CD3 (100237), and APC/Cy7-CD19 (115529). The stained microglia

were fixed for 5 min in 4% paraformaldehyde (PFA) and kept in FACS buffer

until flow cytometry on a BD SORP Fortessa at the National Institute for Health

Research (NIHR) Biomedical Research Centre (BRC) flow core facility at King’s

College London. The following controls were employed to ensure accurate

compensation: unstained microglial cells, single-staining controls (cells for

live/dead, BD Comp beads [BD Biosciences, 552845] for all other colors),

and cells in which the primary anti-mouse P2RY12 antibody was omitted to

control for potential background arising from the APC anti-rabbit secondary

antibody. For any data analysis, gating was kept constant across conditions.

Mean fluorescent intensity (MFI) analysis was performed after staining cells

first with Live/Dead fixable yellow dye and subsequently with the following pri-

mary antibodies (all from Biolegend): Alexa-Fluor-488-CD45 (103121), Pacific

Blue-CD11b (101223), PE-CD64 (139303), and APC-CD16/C32(101325).

Experiments were conducted in biological triplicate and analyzed in a within-

experiment manner, whereby all gates were kept the same between a sham

and SNL sample pair. After the MFI was determined, a ratio of SNL/sham

was generated, which was then compared across experiments using a one-

sample t test with a test value of 1.

FACS

Microglia were centrifuged and stained with primary antibodies in FACS buffer

for 20 min on ice in the dark (Pacific Blue-CD45, 103125, APC/Cy7-CD11b,

101225, Biolegend). DAPI was used as a viability dye. Unstained cells and

single staining controls were employed as described above. Microglia were

purified on a BD FACS Aria II Cell Sorter at the NIHR BRC flow core facility

at King’s College London and collected either into RLT buffer for RNA extrac-

tion or in FACS buffer for chromatin extraction.

Chromatin Extraction

Cells were shaken in 1% formaldehyde in FACS buffer for 5 min at room

temperature and the fixation reaction terminated by the addition of 0.125 M

glycine. After a wash with PBS and proteinase inhibitors, microglia were

pelleted and stored at �80�C until lysis.

ChIP

Samples were generated in pairs of SNL and sham (each a pool from 43mice)

and stored at �80�C. Once a full experimental set was obtained (n = 4 pairs

for sequencing; n = 8, n = 7, n = 6 pairs for three separate qRT-PCR studies),
samples were lysed and pooled once more to obtain sufficient material

for downstream analysis (final n = 2 for sequencing, n = 4, n = 3 and n = 3

for 33 qRT-PCR studies). Cells for ChIP-seq and the first qPCR validation

cohort (Figure 5C) were derived from the entire lumbar enlargement, while cells

for the other two validation cohorts (Figures 5C and 6C) were derived from

ipsilateral lumbar enlargements. Chromatin was sheared in a Diagenode

bath sonicator with eight repeats of 5-min cycles (30 s on, 30 s off). Immuno-

precipitation was performed with an antibody against H3K4me1 (ab8895, lot

GR159018-1, Abcam) using the Diagenode True MicroChIP kit following man-

ufacturer’s instructions (AB-002-0016, Diagenode). Before precipitation, 10%

of the input chromatin was removed and decrosslinked. Two microliters were

used to check DNA concentrations on a Qubit fluorometer, as well as shear

sizes on an Agilent2100 Bioanalyzer DNA High Sensitivity ChIP. The remainder

was used for sequencing or qRT-PCR controls.

ChIP-qPCR

DNA obtained from ChIP was amplified on a Roche LightCycler480 using

SYBR green mastermix (04707516001, Roche) and standard run parameters.

Each sample was normalized to its own 10% input control and negative control

primer signal to account for individual differences in initial chromatin amount

and noise levels. Standard and melt curves were generated for each run to

ensure adequate primer efficiency and selectivity. See Table S5 for primer

sequences.

RNA Extraction

For RNA-seq, lumbar cords and Percoll isolation was used, in order to allow

direct comparison to our ChIP-seq dataset. For qRT-PCR validation of our

RNA-seq data, we FACS-sorted the microglia as described above, using

only dorsal ipsilateral lumbar segments. In all cases, cells were lysed in RLT

buffer with beta-mercaptoethanol, and RNA was extracted using a QIAGEN

RNeasy Micro Kit (74004) following the manufacturer’s protocol with some

minor modifications. RNA quality and quantity was assessed on an Agilent

Bioanalyzer Pico chip. For sequencing, RNA was then shipped to Oxford for

library preparation (see below). For qRT-PCR, RNA was amplified and con-

verted to cDNA using the QIAGEN Repli-G single cell WTA kit according to

the handbook instructions.

qRT-PCR

cDNA was quantified using a Qubit ssDNA assay kit, diluted to 2 ng/ml and

loaded onto TaqMan microfluidic PCR array cards. We used the ddCT

method, normalizing each sample to the average of several housekeeping

genes and the same naive microglial pool. See Table S5 for the TaqMan

probes used (Life Technologies).

Protein Extraction and Western Blotting

Isolated microglia were lysed in 0.2% SDS in water with proteinase and phos-

phatase inhibitors. The samples were reduced in 53 Laemmli buffer (50 mM

Tris, ph 6.8, 2% SDS, 10% glycerol, 0.1 M DTT, beta-mercaptoethanol) and

run on NuPage Novex 4%–12% Bis-Tris gradient gels (Life Technologies).

After transfer onto a polyvinylidene fluoride (PVDF) membrane, staining was

performed using the following antibodies: STAT1 (9172, Cell Signaling),

alpha-tubulin (T9026, Sigma Aldrich), and ECL anti-rabbit and anti-mouse

secondary antibodies (10794347 and 10094724, Fisher Scientific). The signal

was exposed using an ECL prime kit (RPN2232, Amersham) and visualized on

a UVP Biospectrum 810 Imaging System.

In Vitro Experiments

Confluent (70%–80%) THP1 cells (P3, P5, P6) were incubated for 5 hr in serum-

free DMEM, supplemented with small interfering RNA (siRNA) transfection re-

agent (jetPEI, Polyplus) pre-mixed with either scrambled (AM4611, Ambion)

or STAT1 (s279, Ambion)-validated siRNA (20 pM). Subsequently, the culture

medium was replaced with fresh DMEM and 1.5% FCS, and cells were rested

overnight. The transfection was repeated the following day, and the cells were

kept for another 24hr in fresh culturemedium.Prior to stimulation, siRNA-trans-

fected cells were serum-starved in plain DMEM for 3 hr. Finally, cells were stim-

ulated with IFNg (40 ng/ml) for 6 hr to determine acute regulation of transcripts

and avoid potential effects from cytokines synthesized and secreted by THP1
Cell Reports 15, 1–11, May 24, 2016 9
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cells following stimulation with IFNg. Cells were lysed in TRK lysis buffer

(Omega Bio-Tek), RNA was extracted using the EZNA total RNA kit I (Omega

Bio-Tek) and converted to cDNA using the high capacity RNA-to-cDNA kit

(Applied Biosystems). qRT-PCR was performed on a Roche LightCycler480

using the following pre-validated TaqMan primer/probe mixes (Applied

Biosystems): FCGR2B (Hs01634996_s1), FCGR1 (Hs00417598_m1), STAT1

(Hs01013996_m1), and CCL2 (Hs00234140_m1).GAPDHwas used as house-

keeper for ddCT calculations.

Immunohistochemistry

Mice were perfused with 0.2 M PB followed by 4% paraformaldehyde, and

lumbar spinal cords were dissected, cryoprotected in 20% sucrose, and cut

on a cryostat in 20-mm sections. Cords were collected from two separate

time points (day 14 and day 28 after nerve injury) from both SNL and SHAM

mice (n = 3 per SNL time point, n = 2 per sham time point). The tissue was

stained by blocking in 10% BSA for 1 hr, followed by incubation with the pri-

mary antibodies overnight (Iba1, 019-19741, Wako; CD16/CD32, 553142,

BD Biosciences; PE-CD64, 139303, Biolegend). After several PBS washes,

the secondary antibodies were added for 2 hr (anti-rat Alexa488, anti-rabbit

Alexa594), and the slides mounted after more washes with hard-set medium

containing DAPI (Vector Labs). Images were taken on a Zeiss confocal

microscope.

Sequencing

Sequencing was performed by the High Throughput Genomics Group at the

Wellcome Trust Centre for Human Genetics (Oxford University). RNA libraries

were prepared using a SMARTer Ultra Low Input HV kit (634820, Clontech).

ChIP-seq libraries were prepared on the automated Wafergen’s Apollo Prep

system using a PrepX ILMN 32i 96 sample library kit (400076, Wafergen Bio-

systems). All RNA libraries and all ChIP libraries were prepared together to

avoid batch effects. In both cases, custom adaptor and barcode tags were

used (50-P-GATCGGAAGAGCGGTTCAGCAGGAATGCCGAG, 50-ACACTCTT
TCCCTACACGACGCTCTTCCGATCT). Samples were amplified (18 cycles

for ChIP, 13 cycles for RNA) and multiplexed in replicate flow cells on an Illu-

mina HiSeq2500 platform to yield 50-bp paired-end reads at a depth of at least

40 M (ChIP-seq) or 20 M (RNA-seq).

RNA-Seq Data Analysis

Samples (n = 4) were sequenced, each consisting of microglia obtained from a

pool of four sham or four SNL lumbar cords. Quality control, alignment, and

expression level analyses were performed on the Galaxy server (Blankenberg

et al., 2010; Giardine et al., 2005; Goecks et al., 2010), while differential expres-

sion was performed using Bio-Linux 7 (Field et al., 2006). FastQC (http://www.

bioinformatics.babraham.ac.uk/projects/fastqc/) showed that base calls were

of high quality across the full length of the reads. Alignments were performed to

mouse mm9 using tophat2 (Kim et al., 2013) with a maximum of two multiple

alignments permitted (-g 2). Alignment rates were between 74% and 88%

(average 85.26%). The cufflinks algorithm (Trapnell et al., 2010) was run to

determine FPKM values (multiple read and effective length corrections were

used, and fragments of <150 bp in size were excluded to avoid unreliable

quantification for genes significantly shorter than the average fragment size).

Genes with an FPKM of at least 0.3 in more than three samples within a group

were considered expressed. For differential expression, count data were

generated using HT-seq (Anders et al., 2015) and fed into the Deseq2

algorithm (Love et al., 2014) in R. Network analyses were conducted using

STRING (Szklarczyk et al., 2015), allowing all active prediction methods at me-

dium confidence (default). Only nodes connected to the main network cluster

were included in the final network. Gene ontology was determined in GOrilla

(Eden et al., 2009): lists of upregulated or downregulated genes at unadjusted

p < 0.05 (Deseq2) were compared to a background list of all microglial genes

(cufflinks, FPKM cutoff of 0.3 in at least three samples). For visualizations,

heatmaps were generated using the MultiExperiment Viewer software (MeV)

and networks edited in Cytoscape.

ChIP-Seq Data Analysis

As above, FastQC and alignments were performed on the Galaxy server

(Blankenberg et al., 2010; Giardine et al., 2005; Goecks et al., 2010). Reads
10 Cell Reports 15, 1–11, May 24, 2016
were aligned to the mm9 genome using bowtie2 with the following parame-

ters: -n 0, -e 40, -m 1, -best. Various additional quality controls were per-

formed: CHANCE (Diaz et al., 2012), phantompeaks (Landt et al., 2012),

and fraction of reads in peaks analysis. Peak finding was performed using

MACS1.4.2 with default parameters (Zhang et al., 2008), and differential bind-

ing was tested with the DiffBind package in R (Ross-Innes et al., 2012).

ACCESSION NUMBERS

The accession number for the datasets reported in this paper is Gene Expres-

sion Omnibus (Edgar et al., 2002): GSE71136 (with subseries GSE71133 for

RNA-seq and GSE71134 for ChIP-seq).
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