

King’s Research Portal

DOI:
10.1016/j.dam.2016.04.009

Document Version
Peer reviewed version

Link to publication record in King's Research Portal

Citation for published version (APA):
Badkobeh, G., Bannai, H., Goto, K., I, T., Iliopoulos, C. S., Inenaga, S., Puglisi, S. J., & Sugimoto, S. (2016).
Closed factorization. DISCRETE APPLIED MATHEMATICS. Advance online publication.
https://doi.org/10.1016/j.dam.2016.04.009

Citing this paper
Please note that where the full-text provided on King's Research Portal is the Author Accepted Manuscript or Post-Print version this may
differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version for pagination,
volume/issue, and date of publication details. And where the final published version is provided on the Research Portal, if citing you are
again advised to check the publisher's website for any subsequent corrections.

General rights
Copyright and moral rights for the publications made accessible in the Research Portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognize and abide by the legal requirements associated with these rights.

•Users may download and print one copy of any publication from the Research Portal for the purpose of private study or research.
•You may not further distribute the material or use it for any profit-making activity or commercial gain
•You may freely distribute the URL identifying the publication in the Research Portal
Take down policy
If you believe that this document breaches copyright please contact librarypure@kcl.ac.uk providing details, and we will remove access to
the work immediately and investigate your claim.

Download date: 19. Oct. 2024

https://doi.org/10.1016/j.dam.2016.04.009
https://kclpure.kcl.ac.uk/portal/en/publications/d0a6baac-69c9-4e9e-8c1e-111b20b60ae1
https://doi.org/10.1016/j.dam.2016.04.009

Closed FactorizationI

Golnaz Badkobeh1, Hideo Bannai2, Keisuke Goto2, Tomohiro I3,
Costas S. Iliopoulos4, Shunsuke Inenaga2, Simon J. Puglisi5, Shiho Sugimoto2

Abstract

A closed string is a string with a proper substring that occurs in the string as a
prefix and a suffix, but not elsewhere. Closed strings were introduced by Fici (Proc.
WORDS, 2011) as objects of combinatorial interest in the study of Trapezoidal and
Sturmian words. In this paper we present algorithms for computing closed factors
(substrings) in strings. First, we consider the problem of greedily factorizing a string
into a sequence of longest closed factors. We describe an algorithm for this problem
that uses linear time and space. We then consider the related problem of computing,
for every position in the string, the longest closed factor starting at that position.
We describe a simple algorithm for the problem that runs in O(n log n/ log log n)
time, where n is the length of the string. This also leads to an algorithm to compute
the maximal closed factor containing (i.e. covering) each position in the string in
O(n log n/ log log n) time. We also present linear time algorithms to factorize a
string into a sequence of shortest closed factors of length at least two, to compute
the shortest closed factor of length at least two starting at each position of the
string, and to compute a minimal closed factor of length at least two containing
each position of the string.

Keywords: closed strings, borders, suffix trees, range successor queries,
Manhattan skyline problem

1. Introduction

A closed string is a string with a proper substring that occurs as a prefix and a
suffix but not elsewhere in the string. Closed strings were introduced by Fici [1] as
objects of combinatorial interest in the study of Trapezoidal and Sturmian words.
Since then, Badkobeh, Fici, and Liptak [2] have proved a tight lowerbound for the
number of closed factors (substrings) in strings of given length and alphabet size.

In this paper we initiate the study of algorithms for computing closed factors.
In particular we consider the following algorithmic problems.

IThis research is partially supported by the Academy of Finland through grants 258308 and
by the Japan Society for the Promotion of Science.

Email addresses: g.badkobeh@sheffield.ac.uk (Golnaz Badkobeh),
bannai@inf.kyushu-u.ac.jp (Hideo Bannai), keisuke.gotou@inf.kyushu-u.ac.jp (Keisuke
Goto), tomohiro.i@cs.tu-dortmund.de (Tomohiro I), c.iliopoulos@kcl.ac.uk
(Costas S. Iliopoulos), inenaga@inf.kyushu-u.ac.jp (Shunsuke Inenaga),
puglisi@cs.helsinki.fi (Simon J. Puglisi), shiho.sugimoto@inf.kyushu-u.ac.jp (Shiho
Sugimoto)

1Department of Computer Science, University of Sheffield, United Kingdom
2Department of Informatics, Kyushu University, Japan
3Department of Computer Science, TU Dortmund, Germany
4Department of Informatics, King’s College London, United Kingdom
5Helsinki Institute for Information Technology, Department of Computer Science, University

of Helsinki, Finland

Preprint submitted to Discrete Applied Mathematics March 1, 2016

Longest closed factorization problem This problem is to factorize a given string
into a sequence of longest closed factors (we give a formal definition of the
problem below, in Section 2). We describe an algorithm for this problem that
uses O(n) time and space, where n is the length of the given string.

Longest closed factor array problem This problem requires us to compute the
length of the longest closed factor starting at each position in the input string.
We show that this problem can be solved in O(n logn

log logn) time with O(n) space,
using techniques from computational geometry.

Maximal closed factor array problem This problem asks us to compute the
length of a longest closed factor containing (i.e. covering) each position in the
input string. We show that this problem can also be solved in O(n logn

log logn)

time with O(n) space.

Shortest closed factorization problem This is the problem of factorizing a given
string into a sequence of shortest closed factors of length at least two. We
show this can be solved in O(n) time and O(σ) space, where σ is the alphabet
size.

Shortest closed factor array problem This problem requires us to compute
the length of the shortest closed factor of length at least two starting at each
position in the input string. We solve this problem in O(n) time and space.

Minimal closed factor array problem This problem asks us to compute, for
each position in the input string, the length of the shortest closed factor of
length at least two containing the position. We present an O(n)-time and
space algorithm for this problem.

This paper proceeds as follows. In the next section we set notation, define the
problems more formally, and outline basic data structures and concepts. Section 3
describes an efficient solution to the longest closed factorization problem and Sec-
tion 4 then considers the longest closed factor array and the maximal closed factor
array. In Section 5, we present efficient algorithms for computing the shortest closed
factorization, the shortest closed factor array, and the minimal closed factor array.
Reflections and outlook are offered in Section 6.

Some of these results appeared in a preliminary version of this paper [3].

2. Preliminaries

2.1. Strings and Closed Factorization

Let Σ denote a fixed alphabet of |Σ| distinct letters (or characters). An element
of Σ∗ is called a string. For any strings W,X,Y,Z such that W = XYZ, the strings
X,Y,Z are respectively called a prefix, substring, and suffix of W. The length of
a string X will be denoted by |X|. Let ε denote the empty string of length 0, i.e.,
|ε| = 0. For any non-negative integer n, X[1, n] denotes a string X of length n. A
prefix X of a string W with |X| < |W| is called a proper prefix of W. Similarly, a
suffix Z of W with |Z| < |W| is called a proper suffix of W. For any string X and
integer 1 ≤ i ≤ |X|, let X[i] denote the ith character of X, and for any integers
1 ≤ i ≤ j ≤ |X|, let X[i..j] denote the substring of X that starts at position i and
ends at position j. For convenience, let X[i..j] be the empty string if j < i. For any
strings X and Y, if Y = X[i..j], then we say that i is an occurrence of Y in X.

If a non-empty string X is both a proper prefix and suffix of string W, then, X
is called a border of W. A string W is said to be closed, if there exists a border X of
W that occurs exactly twice in W, i.e., X = W[1..|X|] = W[|W| − |X| + 1..|W|] and

2

X 6= W[i..i+ |X| − 1] for any 2 ≤ i ≤ |W| − |X|. We define a single character C ∈ Σ
to be closed, assuming that the empty string ε occurs exactly twice in C. A string
X is a closed factor of W, if X is closed and is a substring of W. Throughout we
consider a string X[1..n] on Σ. We define the longest closed factorization of string
X[1..n] as follows.

Definition 1 (Longest Closed Factorization) The longest closed factorization
of string X[1..n], denoted LCF(X), is a sequence (G0,G1, . . . ,Gk) of strings such that
G0 = ε, X[1, n] = G0G1 · · ·Gk and, for each 1 ≤ j ≤ k, Gj is the longest prefix of
X[|G0 · · ·Gj−1|+ 1..n] that is closed.

Example 1 For string X = ababaacbbbcbcc, LCF(X) = (ε, ababa, a, cbbbcb, cc).

We remark that a closed factor Gj in an LCF is a single character if and only if
|G1 · · ·Gj−1|+ 1 is the rightmost (last) occurrence of character X[|G1 · · ·Gj−1|+ 1]
in X.

We also define the longest closed factor array of string X[1..n].

Definition 2 (Longest Closed Factor Array) The longest closed factor array
of string X[1..n] is an array LNG[1..n] of integers such that for any 1 ≤ i ≤ n,
LNG[i] = ` if and only if ` is the length of the longest prefix of X[i..n] that is closed.

Example 2 For string X = ababaacbbbcbcc, LNG = [5, 4, 3, 5, 2, 1, 6, 3, 2, 4, 3, 1, 2, 1].

Clearly, given the longest closed factor array LNG[1..n] of string X, LCF(X) can
be computed in O(n) time. However, the algorithm we describe in Section 4 to
compute LNG[1..n] requires O(n logn

log logn) time, and so using it to compute LCF(X)

would also take O(n logn
log logn) time overall. In Section 3 we present an optimal O(n)-

time algorithm to compute LCF(X) that does not require LNG[1..n].

Definition 3 (Maximal Closed Factor Array) The maximal closed factor ar-
ray of string X[1..n] is an array MAX[1..n] of integers such that for any 1 ≤ i ≤ n,
MAX[i] = ` if and only if ` is the length of a longest closed factor of X that contains
position i.

Example 3 For string X = ababaacbbbcbcc, MAX = [5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 3, 2].

As counterparts of the longest closed factorization and the longest closed factor
array, we respectively define the shortest closed factorization and the shortest closed
factor array of string X[1..n] below. If single characters are allowed to be used as
closed factors, then the problems of computing the shortest closed factorization
and the shortest closed factor array become trivial. To make the problems more
interesting, we only consider closed factors of length at least 2.

Definition 4 (Shortest Closed Factorization) The shortest closed factorization
of string X[1..n], denoted SCF(X), is a sequence (F0,F1, . . . ,Fh) of strings such that
F0 = ε, X[1..n] = F0F1 · · ·Fh and, for each 1 ≤ j ≤ h, Fj is the shortest prefix of
X[|F0 · · ·Fj−1|+ 1..n] that is closed and is of length at least 2.

Example 4 For string X = ababaacbbbcbcc, SCF(X) = (ε, aba, baacb, bb, bcb, cc).

3

15 5 3 1 6 4 2 8 9 10 12 1311714

a
c
b
b
b
c
b

c
c

$

a
c
b
b
b
c
b

c
c

$

b
a

b
c
b

c
c

$

c
b

c
c

$

b

c
c

$

c

$

a
b

c

b
b
c
b

c
c

$

c
c

$

b

$ c

$a
c
b
b
b
c
b

c
c

$

b
aa

c
b
b
b
c
b

c
c

$

b
a

c
b
b
b
c

b

c
c

$

a
c
b
b
b
c
b

c
c

$

a b

c

$

Figure 1: The suffix tree of string X = ababaacbbbcbcc$, where each leaf stores the beginning
position of the corresponding suffix. All the branches from an internal node are sorted in ascending
lexicographical order, assuming $ is the lexicographically smallest. The suffix array SA of X is
[15, 5, 3, 1, 6, 4, 2, 8, 9, 10, 12, 14, 7, 11, 13], which corresponds to the sequence of leaves from left to
right, and thus can be computed in linear time by a depth first traversal on the suffix tree.

Definition 5 (Shortest Closed Factor Array) The shortest closed factor array
of string X[1..n] is an array SHT[1..n] of integers such that for any 1 ≤ i ≤ n,
SHT[i] = ` if ` is the length of the shortest prefix of X[i..n] that is closed and is of
length at least 2, and SHT[i] = null if there are no prefixes of X[i..n] that are closed
and are of length at least 2.

Example 5 For string X = ababaacbbbcbcc, SHT = [3, 3, 3, 5, 2, null, 5, 2, 2, 3, 3, null, 2, null].

Definition 6 (Minimal Closed Factor Array) The minimal closed factor ar-
ray of string X[1..n] is an array MIN[1..n] of integers such that for any 1 ≤ i ≤ n,
MIN[i] = ` if ` is the length of a shortest closed factor of X of length at least 2 that
contains position i if it exists, and MIN[i] = null otherwise.

Example 6 For string X = ababaacbbbcbcc, MIN = [3, 3, 3, 3, 3, 5, 5, 2, 2, 2, 3, 3, 2, 2].

2.2. Tools

The suffix array [4] SAX (we drop subscripts when they are clear from the con-
text) of a string X is an array SA[1..n] which contains a permutation of the integers
[1..n] such that X[SA[1]..n] < X[SA[2]..n] < · · · < X[SA[n]..n]. In other words,
SA[j] = i iff X[i..n] is the jth suffix of X in ascending lexicographical order.

The suffix tree [5] of a string X[1..n] is a compacted trie consisting of all suffixes
of X. Suffix trees can be represented in linear space, and can be constructed in linear
time for integer alphabets [6]. Figure 1 illustrates the suffix tree for an example
string.

For a node w in the suffix tree let pathlabel(w) be the string spelt out by the
letters on the edges on the path from the root to w. If there is a branch from node
u to node v and u is an ancestor of v then we say u = parent(v). Assuming that
every string X terminates with a special character $ which occurs nowhere else in
X, there is a one-to-one correspondence between the suffixes of X and the leaves of
the suffix tree of X. We assume the branches from a node u to each child v of u
are stored in ascending lexicographical order of pathlabel(v). When this is the case,

4

SA is simply the leaves of the suffix tree when read during a depth-first traversal.
At each internal node v in the suffix tree we store two additional values v.s and
v.e such that SA[v.s..v.e] contains the beginning positions of all the suffixes in the
subtree rooted at v.

3. Greedy Longest Closed Factorization in Linear Time

In this section, we present an algorithm to compute the closed factorization
LCF(X) of a given string X[1..n]. Our high level strategy is to build a data structure
that helps us to efficiently compute, for a given position i in X, the longest closed
factor starting at i. The core of this data structure is the suffix tree for X, which
we decorate in various ways.

Let S be the set of the beginning positions of the longest closed factors in LCF(X).
For any i ∈ S, let G = X[i..i+ |G| − 1] be the longest closed factor of X starting at
position i in X.

Let G′ be the unique border of the longest closed factor G starting at position i
of X, and bi be its length, i.e., G′ = G[1..bi] = X[i..i+bi−1] (if G is a single character,
then G′ = ε and bi = 0). The following lemma shows that we can efficiently compute
LCF(X) if we know bi for all i ∈ S.

Lemma 1 Given bi for all i ∈ S, we can compute LCF(X) in a total of O(n) time
and space independently of the alphabet size.

Proof. If bi = 0, then G = X[i]. Hence, in this case it clearly takes O(1) time and
space to compute G.

If bi ≥ 1, then we can compute G in O(|G|) time and O(bi) space, as follows. We
preprocess the border G′ of G using the Knuth-Morris-Pratt (KMP) string matching
algorithm [7]. This preprocessing takes O(bi) time and space. We then search for
the first occurrence of G′ in X[i + 1..n] (i.e. the next occurrence of the longest
border of G[1..m] to the right of the occurrence X[i..i+ bi− 1]). The location of the
next occurrence tells us where the end of the closed factor is, and so it also tells
us G = X[i..i + |G| − 1]. The search takes O(|G|) time — i.e. time proportional to
the length of the closed factor. Because the sum of the lengths of the closed factors
is n, over the whole factorization we take O(n) time and space. The running time
and space usage of the algorithm are clearly independent of the alphabet size. �

What remains is to be able to efficiently compute bi for a given i ∈ S. The
following lemma gives an efficient solution to this subproblem.

Lemma 2 We can preprocess the suffix tree of string X[1, n] in O(n) time and
space, so that bi for each i ∈ S can be computed in O(1) time.

Proof. In each leaf of the suffix tree, we store the beginning position of the suffix
corresponding to the leaf. For any internal node v of the suffix tree of X, let max(v)
denote the maximum leaf value in the subtree rooted at v, i.e.,

max(v) = max{i | X[i..i+|pathlabel(v)|−1] = |pathlabel(v)|, 1 ≤ i ≤ n−|pathlabel(v)|−1}.

We can compute max(v) for every v in a total of O(n) time total via a depth
first traversal. Next, let P[1..n] be an array of pointers to suffix tree nodes (to be
computed next). Initially every P[i] is set to null. We traverse the suffix tree in
pre-order, and for each node v we encounter we set P[max(v)] = v if P[max(v)] is
null. At the end of the traversal P[i] will contain a pointer to the highest node w in

5

root

u

v

i j

X
i j

pathlabel(v)

pathlabel(u)

G

Figure 2: Illustration for Lemma 2. We consider the longest closed factor G starting at position
i of string X. We retrieve node P[i] = v, which implies max(v) = i. Let u be the parent of v.
The black circle represents a (possibly implicit) node which represents X[i..i + |pathlabel(u)| − 1],
which has the same set of occurrences as pathlabel(v). Hence bi = |pathlabel(u)|, and therefore
G = X[i..j + |pathlabel(u)| − 1], where j is the leftmost occurrence of pathlabel(u) with j > i.

the tree for which i is the maximum leaf value (i.e., i is the rightmost occurrence of
pathlabel(w)).

We are now able to compute bi, the length of the unique border of the longest
closed factor starting at any given i, as follows. First we retrieve node v = P[i].
Observe that, because of the definition of P[i], there are no occurrences of substring
X[i..i+ |pathlabel(v)| − 1] to the right of i. Let u = parent(v) (note v cannot be the
root because it has non-empty pathlabel). There are two cases to consider:

• If u is not the root, then observe that there always exists an occurrence of
substring pathlabel(u) to the right of position i (otherwise i would be the
rightmost occurrence of pathlabel(u), but this cannot be the case since u is
higher than v, and we defined P[i] to be the highest node w with max(w) = i).
Let j be the the leftmost occurrence of pathlabel(u) to the right of i. Then,
the longest closed factor starting at position i is X[i..j + |pathlabel(u)| − 1]
(this position j is found by the KMP algorithm as in Lemma 1).

• If u is the root, then it turns out that i is the rightmost occurrence of character
X[i] in X. Hence, the longest closed factor starting at position i is X[i].

The thing we have not shown is that |pathlabel(u)| = bi. This is indeed the case,
since the set of occurrences of X[i..j + |pathlabel(u)| − 1] (i.e., leaves in the subtree
corresponding to the string) is equivalent to that of pathlabel(v), any substring
starting at i that is longer than |pathlabel(u)| does not occur to the right of i and
thus bi cannot be any longer. Hence |pathlabel(u)| = bi. (See also Figure 2).

Clearly v = P[i] can be retrieved in O(1) time for a given i, and then u =
parent(v) can be obtained in O(1) time from v. This completes the proof. �

The main result of this section follows is the following theorem.

Theorem 1 Given a string X[1..n] over an integer alphabet, the longest closed
factorization LCF(X) = (G0,G1, . . . ,Gk) of X can be computed in O(n) time and
space.

Proof. G0 = ε by definition and so does not need to be computed. We compute
the other Gj in ascending order of j = 1, . . . , k. Let si be the beginning position
of Gi in X, i.e., s1 = 1 and si = |G1 · · ·Gi−1| + 1 for 1 < i ≤ k. We compute
G1 in O(|G1|) time and space from bs1 using Lemma 1 and Lemma 2. Assume we
have computed the first j − 1 factors G1, . . . ,Gj−1 for any 1 ≤ j < k − 1. We then

6

compute Gj in O(|Gj |) time and space from bsj , again using Lemmas 1 and 2. Since∑k
j=1 |Gj | = n, the proof completes. �

The following is an example of how the algorithm presented in this section
computes LCF(X) for a given string X.

Example 7 Consider the running example string X = ababaacbbbcbcc$, and see
Figure 1, which shows the suffix tree of X.

1. We begin with node P[1] representing ababaacbbbcbcc$, whose parent repre-
sents aba. Hence we get b1 = |aba| = 3. We run the KMP algorithm with
pattern aba and find the first factor G1 = ababa.

2. We then check node P[6] representing a. Since its parent is the root, we get
b2 = 0 and therefore the second factor is G2 = a.

3. We then check node P[7] representing cbbbcbcc$, whose parent represents cb.
Hence we get b3 = |cb| = 2. We run the KMP algorithm with pattern cb and
find the third factor G3 = cbbbcb.

4. We then check node P[13] representing cc$, whose parent represents c. Hence
we get b4 = |c| = 1. We run the KMP algorithm with pattern c and find the
fourth factor G4 = cc.

5. We finally check node P[15] representing $. Since its parent is the root, we
get b5 = 0 and therefore the fifth factor is G5 = $.

Consequently, we obtain LCF(X) = (ababa, a, cbbbcb, cc, $), which coincides with
Example 1.

4. Longest Closed Factor Array

A natural extension of the problem in the previous section is to compute the
longest closed factor starting at every position in X in linear time — not just those
involved in the factorization. Formally, we would like to compute the longest closed
factor array of X, i.e., an array LNG[1..n] of integers such that LNG[i] = ` if and
only if ` is the length of the longest closed factor starting at position i in X.

Our algorithm for closed factorization computes the longest closed factor starting
at a given position in time proportional to the factor’s length, and so does not
immediately provide a linear time algorithm for computing LNG; indeed, applying
the algorithm näıvely at each position would take O(n2) time to compute LNG. In
what follows, we present a more efficient solution.

Theorem 2 Given a string X[1..n] over an integer alphabet, the longest closed
factor array of X can be computed in O(n logn

log logn) time and O(n) space.

Proof. We extend the data structure of the last section to allow LNG to be com-
puted in O(n logn

log logn) time and O(n) space. The main change is to replace the KMP
algorithm scanning in the first algorithm with a data structure that allows us to
find the end of the closed factor in time independent of its length.

We first preprocess the suffix array SA for range successor queries, building the
data structure of Yu, Hon and Wang [8]. A range successor query rsqSA(s, e, k)
returns, given a range [s, e] ⊆ [1, n], the smallest value x ∈ SA[s..e] such that x > k,
or null if there is no value larger than k in SA[s..e]. Yu et al.’s data structure allows
range successor queries to be answered in O(logn

log logn) time each, takes O(n) space,

and O(n logn
log logn) time to construct.

Now, to compute the longest closed factor starting at a given position i in X
(i.e. to compute LNG[i]) we do the following. First we compute bi, the length of the

7

border of the longest closed factor starting at i, in O(1) time using Lemma 2. Recall
that in the process of computing bi we determine the node u having pathlabel(u) =
X[i..i+ bi − 1]. To determine the end of the closed factor we must find the smallest
j > i such that X[j..j+bi−1] = X[i..i+bi−1]. Observe that j, if it exists, is precisely
the answer to rsqSA(u.s, u.e, i). (See also the left diagram of Figure 2. Assuming
that the leaves in the subtree rooted at u are sorted in the lexicographical order,
the leftmost and rightmost leaves in the subtree correspond to the u.s-th and u.e-th
entries of SA, respectively. Hence, j = rsqSA(u.s, u.e, i)). For each LNG[i] we spend
O(logn

log logn) time and so overall the algorithm takes O(n logn
log logn) time. The space

requirement is clearly O(n). �

We note that recently Navarro and Neckrich [9] described range successor data
structures with faster O(

√
log n)-time queries, but straightforward construction

takes O(n log n) time [10], so overall this does not improve the runtime of our
algorithm.

Given the longest closed factor array LNG of string X, we can compute the
maximal closed factor array MAX of X in linear time, by a simple scan on LNG.
Thus the next corollary follows from Theorem 2.

Corollary 1 Given a string X[1..n] over an integer alphabet, the maximal closed
factor array of X can be computed in O(n logn

log logn) time and O(n) space.

5. Shortest Closed Factors

In this section, we consider the problems related to shortest closed factors of
length at least 2 in a given string. The following simple lemma is a key to our
algorithms.

Lemma 3 Any shortest closed factor of length at least 2 of string X has a unique
border of length 1.

Proof. For any position i in X, let X[i..j] be the shortest closed factor of length
at least 2 starting at position i. Since j − i + 1 ≥ 2 and X[i..j] is the shortest
closed factor starting at position i, X[i..j] must have a unique border of length at
least 1. Assume, for the sake of contradiction, that the border of X[i..j] is of length
k ≥ 2. If X[j − k + 1..j − 1] occurs exactly twice in X[i..j − 1], then X[i..j − 1] is
also closed. On the other hand, if it occurs twice or more, let X[p..p+ k − 2], with
i < p < j − k + 1, be the first occurrence in X[i+ 1..j − 2]. Then X[i..p+ k − 2] is
also closed. However, both cases contradict that X[i..j] is the shortest closed factor
starting at position i. Hence the unique border of X[i..j] is of length 1, namely, a
single character. �

We now have the following theorem.

Theorem 3 Given a string X[1..n] over an integer alphabet of size σ, the shortest
closed factor array SHT can be computed in O(n) time and O(σ) space,

Proof. For any position i in X, let X[i] = c. Let j be the smallest position in X such
that i < j and X[j] = c, if it exists. It follows from Lemma 3 that SHT[i] = j− i+ 1
if j exists, and SHT[i] = null otherwise. Hence SHT can be computed in O(n) time
by a simple scan on X, using O(σ) space. �

The next corollary is immediate from Theorem 3.

8

Corollary 2 Given a string X[1..n] over an integer alphabet of size σ, the shortest
closed factorization SCF(X) = (F0,F1, . . . ,Fh) can be computed in O(n) time and
O(σ) space if it exists.

Now we consider the problem of computing, for each position i of a given string,
the length of a shortest closed factor containing i. The following lemma is useful to
solve this problem.

Lemma 4 (Min-Variant of the Manhattan Skyline Problem [11]) Let S be
a set of O(n) integer subintervals of an interval [1..n] each with an associated non-
negative integer height of size O(n); the height value for interval [i..j] ∈ S is de-
noted height([i..j]). Then, we can compute a table T such that, for any 1 ≤ t ≤ n,
T [t] = min{height([i..j]) | t ∈ [i..j], [i..j] ∈ S} in O(n) time and space.

Theorem 4 Given a string X[1..n] over an integer alphabet, the minimal closed
factor array MIN can be computed in O(n) time and space.

Proof. We first compute the shortest closed factor array SHT of X in O(n) time
and O(σ) space by Theorem 3. For each 1 ≤ i ≤ n, we associate SHT[i] to the
interval [i..i + SHT[i] − 1] as its height. Now, the problem of computing the MIN
array is equivalent to the min-variant of the Manhattan skyline problem (defined
above). Hence, the MIN array can be computed in O(n) time and space by Lemma 4.

�

6. Concluding Remarks

We have considered several problems on closed factors here, and many others
remain. For example, how efficiently can one compute all the closed factors in a
string (or, say, the closed factors that occur at least k times)? Relatedly, what is
the maximum number of closed factors a string can contain? What is the average
number?

One also wonders if the longest closed factor array can be computed in lin-
ear time, by somehow avoiding range successor queries. Another open question is
whether the maximal closed factor array can be computed in linear time, without
using the longest closed factor array.

References

[1] G. Fici, A classification of trapezoidal words, in: Proc. 8th Inter-
national Conference Words 2011 (WORDS 2011), Electronic Proceed-
ings in Theoretical Computer Science 63, 2011, pp. 129–137, see also
http://arxiv.org/abs/1108.3629v1.

[2] G. Badkobeh, G. Fici, Z. Lipták, A note on words with the smallest number
of closed factors, http://arxiv.org/abs/1305.6395 (2013).

[3] G. Badkobeh, H. Bannai, K. Goto, T. I, C. S. Iliopoulos, S. Inenaga, S. J.
Puglisi, S. Sugimoto, Closed factorization, in: Proc. PSC 2014, 2014, pp. 162–
168.

[4] U. Manber, G. W. Myers, Suffix arrays: a new method for on-line string
searches, SIAM Journal on Computing 22 (5) (1993) 935–948.

[5] P. Weiner, Linear pattern matching, in: IEEE 14th Annual Symposium on
Switching and Automata Theory, IEEE, 1973, pp. 1–11.

9

[6] M. Farach, Optimal suffix tree construction with large alphabets, in: Proceed-
ings of the 38th Annual Symposium on Foundations of Computer Science, 1997,
pp. 137–143.

[7] D. E. Knuth, J. H. Morris, V. R. Pratt, Fast pattern matching in strings, SIAM
J. Comput. 6 (2) (1977) 323–350.

[8] C.-C. Yu, W.-K. Hon, B.-F. Wang, Improved data structures for the orthogonal
range successor problem, Computational Geometry 44 (3) (2011) 148–159.

[9] G. Navarro, Y. Nekrich, Sorted range reporting, in: Proc. Scandinavian Work-
shop on Algorithm Theory, LNCS 7357, Springer, 2012, pp. 271–282.

[10] G. Navarro, Y. Nekrich, personal Communication.

[11] M. Crochemore, C. S. Iliopoulos, M. Kubica, J. Radoszewski, W. Rytter,
T. Walen, Extracting powers and periods in a word from its runs structure,
Theoretical Computer Science 521 (2014) 29–41.

10

