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Abstract

Simultaneous PET-MR imaging has recently emerged into routine clinical use, with signifi-
cant role in diagnosis and treatment. The high sensitivity of a PET scanner, combined with
the anatomical and functional information given by MR can focus to a molecular level and
provide simultaneous information about individual but correlated parameters. The combi-
nation of these modalities has also brought new opportunities. One of these is the potential
for the MRI to capture and measure patient motion during PET scanning. This motion infor-
mation, in the form of motion fields can be applied back to the PET and correct any motion
artefacts created. For the success of this study many methodological problems have to be
resolved. This thesis investigates the methodology for motion correction of PET data by
appropriate use of MR motion information, which could in due course become a standard
motion correction method for both pre-clinical and human studies. In particular, this study
utilized prototype pre-clinical MR-compatible PET inserts.

Following the phantom development and during the experimental procedures, various
prototype simultaneous MR-compatible PET small-diameter scanners, in conjunction with
a 3T clinical MR scanner, were used to validate the phantom and evaluate several different
approaches to motion correction. All scanner combinations used were a combination of a
removable PET insert operating within a clinical MR scanner so it was necessary to develop
robust methods to ensure spatial alignment and temporal synchronization. The data obtained
from simultaneous PET and MR acquisition was arranged into gates and reconstructed by

deriving motion transformations from the MR data and using this to correct the PET data



for the effects of motion using several PET reconstruction approaches. The experimental
results obtained with various PET-MR systems demonstrate the feasibility of this approach
and the degree of motion correction that can realistically be expected in pre-clinical PET-

MR investigations.
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Chapter 1

Introduction

1.1 Positron Emission Tomography

Positron Emission Tomography (PET) has an established role for the imaging and evalua-
tion of cancer and also in cardiology and neuropsychiatric diseases. It is also widely used
for clinical research in these areas. The use of PET with the proper radio-labelled molecule
can give information about the function of an organism and can highlight abnormal func-
tion. The information obtained by PET gives the intensity of normal or abnormal metabolic
activity inside the human body. For that reason, the best possible image quality is essen-
tial. Diagnosis of abnormalities is done by expert physicians and after visual inspection,
their conclusions are recorded. Also, some tools are used for the better understanding and
quantitative assessment of the radiotracer distributions. The most common is the use of
a standardized uptake value (SUV). This is usually defined as the concentration of activ-
ity in the region of interest divided by the the average activity concentration in the entire
body. SUV gives a numerical representation of which areas may be considered as lesions
(in case of cancer). These numbers though are affected by external factors, such as photon
attenuation and motion of the patient.

These factors can be faced as individual or interrelated, where motion brings alterations
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to the physical structure of the organism and therefore also to the attenuation map. These
effects change the measured SUV of the patient. The final image spreads over a larger area
and the image intensity is blurred as a consequence of motion. The clinical result can be the
underestimation of potentially malignant areas inside the image and underestimation of the

disease severity.

1.1.1 Motion Capture

To capture the motion that is to be used as an input to any motion correction methodol-
ogy requires the appropriate hardware and an established methodology. The most important
motions are respiratory motion and the cardiac cycle. These motions are periodic and most
likely to cause blurring to the PET images. Methods to capture respiratory motion include
the use of respiratory flow meters, pressure belts or infra-red cameras to capture the rib
cage extension or 4 dimensional Computed Tomography (CT) for the cinematic capture of
respiratory motion. Another modality capable of capturing motion information is Magnetic
Resonance Imaging (MRI). This modality, free of extra radiation, can provide motion infor-
mation in every direction within the patient and continuously for long periods. This ability

is a very beneficial factor, as it can be exploited in hybrid PET-MR systems.

1.2 Simultaneous PET-MR

PET is a modality that provides functional information and not anatomical. For that reason,
the common anatomical modality used in conjunction with PET imaging is a sequentially
acquired anatomical CT scan. A recent development in preclinical and clinical imaging
is PET-MR; a hybrid system, capable of acquiring with both modalities simultaneously or
sequentially. A direct benefit of this procedure is the reduction of administrated radiation

dose to the patient. Along with the development of applications for this system, motion
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capture can be used for the compensation of displacement during respiratory motion.

1.3 PET Motion Correction

Errors due to motion can be corrected with the use of specialized algorithms, which allow
motion information to be incorporated into the PET reconstruction. Motion correction usu-
ally requires the PET data grouped into different clusters, sharing a similar characteristic.
These are called "gates". Each gate corresponds to a certain phase or amplitude of a motion
cycle. After that, algorithms can correct the data, according to motion information provided

by the complementary modality, in this case dynamic MR.

1.4 Achievements described in the thesis

This thesis is concerned with the experimental development of hardware and methodologies
to compensate motion information during simultaneous PET-MR acquisition.

A promising application for the simultaneous PET-MR is PET motion correction which
requires to be developed and validated upon practical and technical issues in a controlled
environment. In this thesis, many of these technical difficulties emerged during the uti-
lization of a novel, non-rigid and deformable phantom. The purpose of this phantom is to
mimic the PET-MR imaging and elastic properties of human tissue. For this development,
a methodology has been generated to produce deformable phantoms, in a variety of shapes
and with several distribution patterns of PET radiotracer, for simultaneous PET-MR imag-
ing. The deformation of these phantoms is utilized by MR compatible motor units that can
be programmed to perform a variety of motion patterns. During this thesis, multiple MR-
compatible PET scanners have been used and features like temporal synchronization and
spatial alignment had to be established prior to any motion correction experiment. Never-

theless, the experiments follow an incremental rise of complexity and realism for PET and
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MR acquisition protocols. These experiments demonstrate the quantitative improvements

of PET motion correction using MR motion data, even though these are limited due to the

quality of PET data acquired on the small prototype PET scanners used.

The products of this study include:

The introduction of a novel concept, where the PET phantom is flexible MR visible

and compatible.

The creation of a novel phantom, in solid but elastic form, capable of supporting

motion correction studies with simultaneous PET-MR systems.

Development of preparation methods to prepare, label and use this phantom.

Exploration of multiple roles of this phantom, where PET-MR was in the epicentre,

followed by other imaging modalities.

Demonstration of the physical properties of this phantom; in particular elasticity and

non-compressibility.

Development of motor units, functional within MR environment, capable of repro-

ducing realistic motion patterns.

The establishment of a new acquisition methodology for truly simultaneous PET-MR

scans, with continuous real time motion for three generations of PET inserts.

The assessment and solution of many practical issues, regarding the implementation
and assessment of PET-MR motion correction, such as temporal synchronization and
spatial alignment and the impact of motion correction on the final reconstructed image

quality.

The following is a summary, organized by chapter of the objectives and the necessary

steps taken towards these achievements.
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Chapter 2 gives a brief analysis of the physics behind PET imaging and MR imaging
including the possibilities and the limitations of the modalities.

Chapter 3 is concerned with the creation of non rigid phantoms. The phantom technical
characteristics are characterized in detail and optimized.

Chapter 4 describes simultaneous 2D PET-MR acquisition with use of the PANDA 2-
D MR compatible PET scanner. This experimental procedure marks the initial step for
understanding the implications of a simultaneous acquisition of a continuously moving non-
rigid phantom, and subsequent MR-based motion correction.

Chapter 5, extends this work to a 3D PET-MR scanner; the HYPERimage MR-compatible
PET insert. In this chapter, methods for creating variable motion of a non-rigid PET-MR
visible phantom and imaging this simultaneously with PET and MR are developed, requir-
ing many practical issues to be solved in order to prepare the data for motion correction.
Motion correction is then performed and assessed, using two established algorithms.

Chapter 6, contains the resulting data for simultaneous PET-MR acquisitions with use
of Hyperion-1I”, a new generation digital SiPM PET insert with improved performance
and much longer axial field of view. In this chapter, motion correction is applied to PVA
phantom, where all the previous practical solutions being applied for maximum accuracy,
prior to MR-based motion correction using the RTA algorithm.

Chapter 7, provides a general discussion upon the results and general conclusion with
future perspectives.

Finally, The Appendix contains the source code, used to generate motion with the stepper

and servo motor.

1.5 Contributors to the Thesis

This thesis is the work of the candidate, though some areas were aided by specialized people

or software. In hardware, Dr J. E. MacKewn provided her knowledge and experience upon
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the use of the PANDA II PET insert. Her contribution includes the acquisition handling of
PET and signal processing until the production of the sinograms. Dr Paul Schleyer provided
his assistance to perform the CT scans for the characterization of the PVA phantom, with
the clinical PET/CT scanner. Mr Philip Halsted contributed into the design and production
of experimental components.

Philips GmbH Innovative Technologies Aachen provided the HYPERimage PET insert,
the Hyperion-II?, and support was provided by Prof Volkmar Schulz, Mr Bjoern Weissler,
Mr Pierre Gebhardt, Dr Ch. Lerche and Mr R. Ayres during the experiments. The origi-
nal code for conversion of HYPERimage listmode to sinogram was generated by Dr J. E.
MacKewn in " Interactive Data Language" (IDL) and translated by the candidate into C++
and implemented as a STIR library.

Prof Tobias Schaeffter and Dr Christian Buerger provided the basic MR sequences used
for the dynamic PET-MR experiments. The sequence for relaxation time properties of PVA
was developed by Professor Rene Botnar and executed by Dr Alkystis Phinikaridou. SPEC-
T/CT acquisitions were performed by Ms S. M. Gould and Dr Lefteris Livieratos.

In software contributions, the open source Software for Tomographic Image Reconstruc-
tion (STIR) library (Thielemans et al. 2012) was used for the data simulations and recon-
structions (http://stir.sourceforge.net/). The reconstruction for Hyperion-II” PET insert was
developed by Dr Andree Salomon. Rigid registration was performed with use of Image
Registration toolkit (IRTK)(http://www.doc.ic.ac.uk/ dr/software/). The non-rigid registra-
tion of the MR data was performed with use of an open access software (Buerger et al.
2011) availiable online (https://www.isd.kcl.ac.uk/internal/hyperimage/). Dr Charalampos
Tsoumpas and Dr Irene Polycarpou contributed their knowledge about motion correction

using MR data.
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Chapter 2

Theory and Background

Medical imaging modalities and methods help the diagnosis and treatment for various types
of diseases. The continuous improvement and adaptation of these systems is important to in-
crease their effectiveness. Positron Emission Tomography (PET) and Magnetic Resonance
Imaging (MRI) are two methods of imaging, aiming towards the extraction of valuable in-
formation for the patient. PET imaging targets physiology and metabolism. MR can provide
such information as well but with complementary anatomical information. In the past PET
and MR have started as individual systems, with distinct roles. The technological evolution
of solid state photo-detector has resulted in a hybrid system, capable of performing both
PET and MR simultaneously. PET-MR systems can be used primarily for cancer imaging,
but also other applications, such as imaging of heart and brain. A potentially important ben-
efit is motion estimation, as it is captured by MR. This chapter describes the two imaging
systems, including the physics background, the current instrumentation and future perspec-
tives of this field of imaging. Because the components of a hybrid PET-MR scanner do not
share a long history of coexistence, both PET and MR will be described as independent

systems before the combining of the technologies is discussed.
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2.1 Nuclear Physics

2.1 Nuclear Physics

2.1.1 The positron

In the 1920s the English theoretical physicist Paul Dirac (1902-1984) developed a version
of quantum mechanics that incorporated special relativity. This theory explains the origin
of the electron’s spin and its magnetic moment. However, Dirac’s relativistic wave equation
required solutions corresponding to both positive and negative energies for free electrons.
This is observed from the expression for the total relativistic energy of an electron, which

has both positive and negative roots.

E =++/p*c? +m2c* (2.1)

where E is the energy, p is a particle’s energy state, c is the constant speed of light and
m, is the mass of the particle. The electron’s antiparticle, the positron, has a rest energy of
0.511 MeV and a positive charge of +1.60 x 10~!° C (Dirac, 1931). An experimental obser-
vation was performed by Carl Anderson in 1932. In this experiment, Anderson observed the
positron, as predicted by Dirac (Anderson, 1932). Positrons can result from pair production
or radioactive decay. During pair production, a high energy gamma-ray photon interacts
with a nucleus, and an electron-positron pair is created. Because the total rest energy of the

electron — positron pair is:

2mec? = 1.02MeV (2.2)

The photon must have at least this energy to create an electron-positron pair. In accor-
dance with Einstein’s relationship E = mc?, the excess energy of the gamma-ray photo is
transferred as kinetic energy to the produced particles. The reverse process can also occur.

Under the proper conditions, an electron and a positron can annihilate each other to produce
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2.1 Nuclear Physics

two gamma-ray photons with a combined energy of 1.02 MeV (Sodickson et al., 1961).

Radioactive decay is another method of positron production, resulting from nuclear in-
stability. The stability of a nucleus is determined by the combination of protons and neu-
trons. The "line of stability" is indicated when the neutron-proton ratio is around 1 for low Z
nuclide and 1.5 for high. The higher neutron-proton ratio in heavier elements is to offset the
Coulombic repulsive forces between protons by increasing the separation. Nuclei with odd
neutron and proton number tend to be unstable where the opposite gives frequently stability
(Bushberg, 1994).

In an unstable state, an atom can decay to another, more stable state. During this pro-
cedure, the nucleus of the atom transforms into a different element and excess energy or
particles are emitted to the environment. This process is called radioactive decay. The prod-
ucts of this decay may include alpha, beta or gamma radiation, including the corresponding
antiparticles. The decay process can be repeated multiple times, until the nucleus reaches a
stable state. Also, each nucleus has a certain decay rate. The definition of this rate can be
given from the half-life. Half-life (7] ) is the time required for a radionuclide to decay to
50% of its initial activity levels. The relationship correlation between decay and Half life

can be described in the following equations in correlation with the decay constant A.

With this information given, a positron emitting isotope can be used for the production of
annihilation photons. In Table 2.1 we present a selection of positron emitting radionuclides
(Cherry et al., 2012).

The distance covered by the positron, between the emission and the annihilation is re-

lated with its emission energy. The maximum energy of emission among clinically used
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Radionuclide | Half-life | Maximum B Energy Production
¢ 20.4 min 960 keV Cyclotron
BN 9.96 min 1.19 MeV Cyclotron
5o 123 s 1.72 MeV Cyclotron
53 110 min 635 keV Cyclotron

©2Cu 9.74 min 2.94 MeV Generator (%2Zn)
%4Cu 12.7 hr 580 keV Cyclotron
8Ga 68.3 min 1.9 MeV Generator (®3Ge)
T6Br 16.1 hr 3.7 MeV Cyclotron
82Rb 78 s 3.35 MeV Generator (32Sr)
24 4.18 days 1.5 MeV Cyclotron

Table 2.1 Positron emitting radionuclides

radio-nuclide ranges from 0.5 to 5 MeV. The emission energy of positrons though is de-
scribed by an energy spectrum. The range of a positron is comparable with an electron of
the same energy. Also, like the electron, the positron’s path can be described as convoluted
with multiple deflections. The final positron range is calculated as the distance between the
emission and annihilation position of a positron. This may vary, according to the emission

energy and the material of the medium (Serway and Jewett, 2004).

2.1.2 Interaction of gamma radiation with matter

The interaction of the 511 keV gamma photons with the environment will determine the
path and use of them. The most common interactions of a 511 keV gamma photon with
matter are presented in figure 2.1.

1) Photoelectric: During the interaction, the entire energy of the photon is absorbed by
an atom. With the photon fully absorbed, the energy is transferred to an ejected electron.
This electron is called photoelectron.

2) Compton scattering: It describes the interaction between a photon and an outer shell
electron of an atom (i.e. essentially unbound). During this interaction, the photon does

not disappear. It is deflected by an angle 0 and part of its energy is transferred to the recoil
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a) Ejected photoelectron b) ~ Scattered photon

y photon y photon

* Ejected electron

Fig. 2.1 Dominant interactions of 511 keV gamma photons with atoms a) photoelectric and
b) Compton scatter

electron. The energy of the scattered photon is related to the scattering angle and the original

energy. The mathematical formula is:

o E
Ese = H—(Eo/mgczo)(l —cos ) (2:5)

where E;., c 1s the constant for the speed of light and E( are the scattered and initial photon

energies in electron volts respectively, and c is the constant for the speed of light.

2.1.3 Attenuation Coefficient

For a photon beam passing through matter, any interaction with it depends upon the initial
photon energy as well as the composition of the medium. This decay of intensity is the
attenuation effect. Attenuation is a probabilistic effect. Thickness, atomic mass, atomic
number Z and density are the key factors to determine the intensity losses. When the photon

beam is monoenergetic, the loss of intensity can be described with an exponential equation:

I(x) = 1(0) "~ 2.6)

where I(x) is the beam intensity after crossing x mm of the medium, 7(0) is the intensity
before the crossing through the medium and p; is the linear attenuation coefficient (cm™!).

The attenuation coefficient therefore is a factor providing the means to predict any losses of
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2.2 Positron Emission Tomography

intensity due to interaction of gamma photons with matter.

2.2 Positron Emission Tomography

In the previous section we described positron annihilation and the generation of two anti-
parallel photons of 511 keV. Coincidence detection of these gamma rays is the key principle
of Positron Emission Tomography (PET). A PET scanner consists of a ring of detectors,
surrounding the subject of study. The main purpose of this ring is to detect in coincidence
pairs of annihilation photons originating from a positron annihilation event during the ac-
quisition. After tomographic reconstruction of data, an image is created that represents the
original distribution of the positron emitting radionuclide inside the subject.

The design of a standard PET scanner is presented in figure 2.2. The basic component
and building block of a PET scanner is the detection module that detects individual 511 keV
gamma rays. The detection module is presented in figure 2.3. From the crystal component to
the electronics readout and storage system, each component of a PET scanner is optimized

for optimum performance (Cherry et al., 2012).

2.2.1 PET scanner building blocks

The instrumentation of most PET systems can be divided into 3 main elements; the scin-
tillation crystal, the photodetector and the readout/data recording system. The scintillation
crystal and photodetector have the most influence on the properties and performance of the

system. The following paragraphs give a brief description of these components.

2.2.1.1 Scintillation crystal

The first step in the detection of a 511 keV gamma ray is ionization within the scintilla-

tor. When ionization occurs inside a material, the electron causes neighbouring atoms and
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Fig. 2.2 Transparent representation of a PET scanner
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Fig. 2.3 PET scanner basic components

37



2.2 Positron Emission Tomography

molecules to an excitation state. During the de-excitation energy is released. In certain ma-
terials such as scintillators, this energy is released as light inside the visible light spectrum.
The most common form of scintillator in PET imaging is an inorganic crystal with high
atomic number and high density. In any application of nuclear medicine, when a scintilla-
tion event takes place, the total yield of light from the interaction is proportional to the total
energy deposited during the interaction. The outcome of this event is a limited number of
photons, ready to be detected by the photomultiplier or other types of photodetector.

In Positron Emission Tomography, a photon has energy of 511 keV. This energy is higher
than the common 140 keV of a SPECT camera or 120 keV peak in CT. Therefore, Nal, the
most common crystal for nuclear medicine is not suitable for use. The crystals have to fulfil
the criteria of high stopping power, sufficient light yield, and fast response time. Even if
Nal has high light yield, the stopping power and the response time at 511 keV are poor.
Bismuth Germanate (BGO) crystals have higher stopping power but the light yield is lower
and response time are slower, by comparison with other crystals. Lutetium oxyorthosilicate
(LSO) provides good stopping power, acceptable light yield and fast response time and this
has become the most widely used scintillator for PET. Similar characteristics are observed

in lutetium-yttrium oxyorthosilicate (LYSO) crystal.

2.2.1.2 Photodetectors

The photodetector is responsible for the conversion of an optical signal from the scintillation
into an electrical signal. The most common photodetector in nuclear medicine is the pho-
tomultiplier. Figure 2.4 gives a graphical representation of a cross-section. The important
parts of a photomultiplier are: the photocathode, the dynodes and the anode. The conversion
process begins with the first interaction of an optical photon with the photocathode and the
creation of one or more photo-electrons. These photo-electrons escape the photocathode

and collide with the first dynode as they are attracted by the high voltage. The repetition
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of this process brings a situation of multiplication between dynodes, producing a substan-
tial amount of electrons and signal that can be measured by the readout electronics. Many
pre-clinical PET scanners tend to use position sensitive photomultipliers as they are very
compact.

-HV

R1 R2

Photons|

v
M

Dynodes

Photoelectrons

<— Photocathode

Photomultiplier

Fig. 2.4 Cross section of a photomultiplier

There is a trend to replace photomultipliers with solid state photo-detectors in PET,
initially with the use of an avalanche photodiode (APD) photo-detector. The APD is a
promising tool because of its compact size, the possibility of mass production and cost
reduction. A disadvantage is the small sensitive area and the very low gain compared to
the photomultiplier tubes. The APD is used mostly in linear mode, with the possibility of
achieving Geiger mode by increasing the bias voltage above the breakdown voltage (Renker,
2002). Finally, an advantage of an APD is the capability to function inside a magnetic field.
Studies have investigated the possibility of using APD inside strong magnetic fields with
acceptable degradation of the acquired data (Pichler et al., 1998).

The advanced version of an APD is the silicon photomultiplier (SiPM). It consists of an
array of small APDs. The density to this detector is from 500 to 4000 APDs per mm?. Each
of these APDs is operated in Geiger mode, with voltage above the breakdown voltage. With
a single optical photon interaction, the cell triggers, by producing an avalanche current.
Finally, the current is limited by a resistor connecting the cell and the conductive grid on the

front side. The final signal is the superposition of all the firing cells. Because the number
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of cells to fire corresponds to the number of photons detected, this compensates the lack
of the dynamic range of each single APD. This setup results in an intrinsic gain which is
between 10° to 10° and is more stable with respect to temperature compared to the APD
(Buzhan et al., 2006). The most advanced version of SiPM until now is the Digital SiPM.
The Digital SiPM, by integrating the signal digitization into the detector eliminates the need

of a readout ASIC (Frach et al., 2009).

2.2.2 Scatter and random events

In addition to the true coincidences there are also scattered and random coincidences, as
shown in Figure 2.5. Both of these can be corrected for, but they still reduce the signal to

noise ratio (SNR) in PET images.
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Fig. 2.5 Photon pair detection, where A) is a true pair detection, B) is a false (red line) after
single scatter (red dot) and C) is false (red line) after two random photon detections

2.2.2.1 Data readout

Each coincidence pair corresponds to detection along a given line of response (LOR) be-
tween two detectors. We can store these data in two ways: as a histogram, where each
element corresponds to a LOR, or by recording each coincidence pair individually in a long

list. These two methods are referred as sinogram or list-mode acquisition.
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2.2.2.2 Sinogram format

A sinogram is the most common method to store PET data. Figure 2.6 gives a representation
of the sinogram. Given that in the middle of the scanner there is an emitting object. The
emission is approximately isotropic. In the simple case of a 2D scanner, each LOR can
be represented by the polar coordinates (x’,0). 0 is defined as the angle of the LOR with
the x axis of the Cartesian plane and x’ as the distance of the LOR from the centre of the
Cartesian plane. Each angle 6 corresponds to different row in the sinogram, and each x’
to each column. The numbers in a sinogram represent the total number of interactions that
happen along the given LOR. There is a 2D sinogram like this for every 2D imaging plane
in the scanner, For 3D acquisition additional sinograms are required to store data acquired

in angled planes between scanner rings.

Projection
v
y \ /
Object g 0] ¢
! E_M ’

Sinogram Sinogram

Fig. 2.6 Forward projection of an object and generation of a sinogram

2.2.2.3 Listmode format

Listmode acquisition is a data storage method, applied for clinical and preclinical PET sys-
tems. The difference with sinogram is that every event is stored as an individual event and

it is not histogrammed as in the sinogram. The listmode file format has the advantage that
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the user may choose to obtain additional information about each coincidence pair such as
photon energies, time difference between photons arrival or global time of the PET sys-
tem. Listmode also allows the data to be divided up into time frames that are chosen after
the acquisition has been completed. Naturally, listmode files contain information about the
detected LOR either with format similar to sinograms ( x’, 8) or by directly storing the coor-
dinates (or a label) of each detector. The reconstruction algorithm must have the information

on how to interpret a given listmode format to geometrical information.

2.2.2.4 Reconstruction

The information gathered and stored either in sinograms or listmode files can be used for
the reconstruction of the distribution inside the field of view. Figure 2.7 gives a simple
representation of PET reconstruction with the backprojection algorithm with 6 views. The

equation of backprojection for N views is described by:

N
f(x,y) = jl\, Y p(xcos6+ysinb,0) (2.7)
i=1

where 0 represents the projection angle, p(r, ) is the sinogram and f’(x,y) is the ap-
proximation of the true radioactivity distribution.

The simple backprojection gives a very blurred reconstruction. Pre-filtering of the sino-
grams leads to filter back projection (FBP), a common reconstruction algorithm. The filter-
ing removes the backprojection lines leaving an accurate image of the object itself.

The second method of reconstruction is iterative reconstruction. Iterative reconstruction
benefits against analytic are; the improvement signal to noise ratio, where the reconstructed
image does not have the streak artefacts of an analytic reconstruction. Also, iterative recon-
struction allows the incorporation of corrections, such as the detection efficiency map, the
attenuation correction or Point Spread Function (PSF) correction algorithms (Vandenberghe

et al., 2001). This method proceeds by iterations. In one iteration, it forward projects an
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v

Sinogram

Fig. 2.7 Reconstruction of object with use of back projection

estimate of the object and compares the produced sinogram with the acquired data. The
result of this comparison is used to create a better estimate of the object, which is the input
for the next iteration. The final goal is to maximize the convergence with the acquired data.
This is the basis of the Expectation Maximization (EM) algorithm.

The most common iterative reconstruction algorithm on clinical scanners is the Ordered
Subsets Expectation Maximization (OSEM) algorithm. The difference of it with the simple
EM is the grouping of projection data into different subsets. A pass through all the specified
subsets is an iteration. The use of subsets improves the execution time, comparing with
standard EM (Hudson and Larkin, 1994). Also, images created with the use of OSEM tend
to have less noise than FBP. The extra benefit is that with iterative reconstruction, motion

modelling can be included to the reconstruction (Manjeshwar et al., 2006).
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2.3 Magnetic Resonance Imaging

Nuclear Magnetic Resonance (NMR) of hydrogen nuclei at certain frequencies is the ba-
sis of MRI or Magnetic Resonance Imaging - a method to obtain information about the
surrounding environment and not the nuclei. This section is focused upon the physics be-
hind MR, the image acquisition methodology and instrumentation, and its potentials and

limitations. The basic components of an MR scanner are given in figure 2.8.

Fig. 2.8 MRI cross section

2.3.1 Larmor frequency

Hydrogen has the smallest atomic mass, with one proton. The hydrogen atom acts like a
magnet. In normal environmental conditions shown in figure 2.9 the magnetic poles of each
hydrogen atom have random orientations. When a strong, static magnetic field is introduced,
hydrogen nuclei tend to align their magnetic poles with the lines of this magnetic field. The

nuclei align parallel or anti-parallel with the magnetic field in two different energy states.

44



2.3 Magnetic Resonance Imaging

The ratio of protons aligning parallel or anti-parallel to the magnetic field depends on the
strength of the field and the thermal energy of the nuclei.
o @
z
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Fig. 2.9 Hydrogen’s magnetic behavior A) without magnetic field and B) within a magnetic
field

In this state of alignment with the magnetic field, hydrogen nuclei move around the
magnetic field direction in a motion known as precession. The graphical representation of a
precessing Hydrogen nucleus can be observed in figure 2.10 where the proton spin follows

a path with specific frequency called the precessional frequency.

Precessmré;\

Nucleus

Fig. 2.10 Precession of the hydrogen nucleus

The precessional frequency is determined by the Larmor equation:

wp=Byx7y (2.8)
where By is the magnetic field strength. 7y is the gyro-magnetic ratio, which expresses the
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relationship between the angular momentum and the magnetic moment of the nucleus. The
gyro-magnetic ratio for hydrogen is 42.57MHz/T. The gyro-magnetic ratios of other nuclei
differ with that of hydrogen, even at the same field. The Larmor frequency of hydrogen in a
3 Tesla magnet is 127.68 MHz.

When a nucleus is exposed to RF radiation with the same frequency as the Larmor
frequency, it gains energy. Therefore, in this example a radio frequency (RF) of 127.68 MHz
can resonate the hydrogen atoms. This RF pulse, depending on its duration and amplitude,
can flip the angle of alignment between the nucleus and By, from the lower to higher energy
level. During the return from the excited level (relaxation), the absorbed energy is released
as an RF signal. This is transformed in to voltage through read out coils and this is the MR
signal. The frequency is the same with the Larmor frequency.

During this relaxation period two factors influence the output signal. The relaxation
times 7/ and 72. T1 and T2 vary across different tissues leading to contrast between different
types of tissue. In 7'/, the energy released to the surrounding lattice causes nuclei to recover
the longitudinal magnetization. 7/ relaxation times are on the order of 500 to 1500 ms for
tissues other than water. 72 decay is the result of decayed transverse magnetization. For

tissues other than liquids 72 decay time is less than 100 ms (Westbrook and Kaut, 1998).

2.3.2 Spatial localization and image acquisition

During an MR acquisition, gradient coils are used to provide linear magnetic field gradients
in X, y, and z directions. These gradient magnetic fields are complementary to the By mag-
netic field. Applying a gradient to the B field results a change in the Larmor frequency as a
function of position. The gradient coils are assigned for slice selection, frequency encoding

and phase encoding. Figure 2.11 demonstrates the basic gradient echo sequence.
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RF pulse — I
G I
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phase-encode

G frequency- encode

Signal

Fig. 2.11 Basic gradient-echo MR imaging sequence. The combination of slice selection,
phase encoding and frequency encoding allow the creation of a 2D image in the selected
slice

2.3.2.1 Slice selection

A slice selection gradient field is applied during the RF pulse. It is applied along a selected
axis; most likely Z axis. A gradient applied during the RF excitation ensures the alteration

of the ideal Larmor frequency in every other area, except the slice where AB, = 0.

2.3.2.2 Phase encoding

The phase encoding gradient field is applied after the RF excitation. The graduated magnetic
field is applied along the remaining dimension, not covered by the slice selection and fre-
quency encoding gradients. With the application of this gradient, the precessional frequency
changes in linear fashion, along the applied gradient. When the gradient stops,the preces-
sional frequencies returns the initial state, before the excitation, but variations in phase have
been created during this application. The same slice is acquired multiple times, with the
same frequency encoding and slice selection gradient. The variation comes to the phase
encoding gradient which is varied with a different gradient strength each time. The total

number of iterations corresponds to the total number of picture elements along this axis.
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2.3.2.3 Frequency encoding

After the excitation of a specific slice and the application of phase encoding gradient, a
frequency encoding gradient is applied along with the signal readout. The application of
the gradient along this axis alternates the precessional frequency in linear fashion along the

applied axis, creating a frequency shift.

2.3.3 Contrast agents

As for the other imaging modalities during an MR acquisition common practice is the use
of contrast agents for enrichment of the information obtained from a region of interest. In
MR, the contrast agent influences the T1 and T2 relaxation times of hydrogen. The most
common contrast agent is Gadolinium, a metallic element with ferromagnetic properties
(Lentschig et al., 1998). The effect of gadolinium in MR is the shortening of relaxation time
T1 within tissue where it is taken up. For that reason, T1 weighted images of these tissues
are recommended for maximum signal enhancement. Another group of contrast agents is
the SPIO (Super-Paramagnetic Iron Oxide), used for carcinoma detection (Nakamura et al.,
2000). Also other chemical elements are used as contrast agents such as Superparamagnetic
iron platinum particle (SIPP) or Paramagnetic Manganese (Taylor et al., 2008, 2011). With

wide variety of formulations it reduces the T2 values adjacent to it (Lee, 2000).

24 PET-MR

Instrumentation and methodology for combined PET and MR has progressed slowly and
only very recently it has become possible for PET-MR to be used for clinical imaging of
humans with emerging applications in cancer imaging. The brain insert and the whole body
scanner can provide simultaneous acquisition and consequently new imaging methodologies

can be developed. In addition to applications in humans, innovative methodologies, have
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been developed for small animal imaging.

The initial research results for physical combination of PET detectors within an MR
environment began in 1994 (Hammer et al., 1994). In this experiment, a pair of photodiodes
were used to demonstrate the improvement in PET spatial resolution with and without the
presence of a strong magnetic field. Cherry et al. (1996), for the purposes of the microPET
(PET-only scanner) development, coupled an 8 by 8 crystal array to a 64 pixel position
sensitive photomultiplier with use of optical fibres (Cherry et al., 1996). This concept was
adapted to create an MR-compatible PET scanner(Garlick et al., 1997; Shao et al., 1997).
These scanners were used for simultaneous imaging of perfused rat hearts inside 9.4 Tesla
NMR. The concept of using optical fibres to transfer the light outside the magnetic field
influence have also been revisited with the design of the microPET - MR (Lucas et al., 2006),
PANDA Il insert (Mackewn et al., 2005) and the APD based PET insert (Catana et al., 20006).
The introduction of APD as a photodetector, led to the creation of the first human PET/MR
insert for simultaneous brain imaging (Kolb et al., 2012) and finally, the creation of the
biograph mMR, whole body PET-MR scanner (Delso et al., 2011). During that period, the
SiPM technology was introduced for PET-MR applications with the HYPERimage small
animal PET insert (Schulz et al., 2009) and the SiPM small animal PET insert by (Yoon
etal., 2012).

During the last few years of development, a common design has been established for the
integration of PET with MR. Figure 2.12 describes the main design adopted for simultane-
ous PET-MR scanners, where the PET scanner is enclosed inside the MR. The RF coil is
placed within the PET scanner so it is closer to the subject for better signal recovery.

The current uses of a preclinical PET-MR include the evaluation of bimodal agents,
visible with PET and MR (de Rosales, 2014) and dynamic acquisitions in cancer imaging
for small animals (Judenhofer and Cherry, 2013). The use of clinical PET-MR systems,

includes brain metabolism with use of the brain PET insert. Furthermore, cancer imaging
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|

Fig. 2.12 Design concept of a simultaneous PET-MR scanner

utilizes the PET-MR to investigate a range of malignancies, such as pancreatic, lung, col-
orectal or ovarian cancer. An advantageous application of PET-MR is its use for paediatric
studies because of the reduced radiation dose, compared to PET/CT (Herrmann et al., 2013).

A limiting factor for the PET-MR is that an accurate attenuation map is not available.
Research points out the use either of Ultrashort Echo Time (UTE) sequences for bone imag-
ing (Keereman et al., 2010) or use of Tissue atlas and template attenuation maps (Malone

etal., 2011).

24.1 PET-MR data processing

PET-MR is an integrated system, and it has to perform in unity. This aspect brings many
new challenges to data processing, among them, the need for accurate spatial alignment via
registration, attenuation correction and temporal synchronization. These areas of investiga-

tion are explained in detail in the following paragraphs.
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2.4.1.1 Spatial alignment

Accurate spatial alignment of images among different modalities is necessary for the extrac-
tion of complementary information. Whilst PET-MR images are acquired simultaneously
in the same gantry, this does not ensure that the images are spatially aligned. Thus, a cali-
bration procedure is required. The phantoms developed for PET/CT may not be compatible
with the new system of PET-MR. This led to the re-engineering of the alignment phantom.
A viable solution was proposed by Ng et al. (2010). His study proposed the use of small
tubes filled with water and PET radiotracer. The system used for this evaluation was a PET
insert for the Bruker Biospin 7T magnett, fitted with a Bruker B-GA12 gradient coil set.
The PET insert consists of Lutetium Oxyorthosilicate (LSO) crystals and Position-sensitive
Avalanche Photomultiplier Diode (PSAPD) detectors. During the experiment, the rods were
filled with 50 uCi of '8F-deoxyglucose (!3F-FDG). The rods were made of glass with ex-
ternal diameter 1.2 mm and internal 0.68 mm. Both ends of each tube were sealed. All PET
acquisitions were reconstructed with a maximum a posteriori algorithm. The arrangement
of the tubes is given in figure 2.13. After registration ( see chapter 2.4.1.2), registration error
for this phantom was between 0.12 mm in the centre of the Field of View to 0.28 mm at 12

mm from the centre of the field of view (Ng et al., 2010).

Fig. 2.13 PET/MR FOV alignment phantom, a) graphical representation of the 5 rods of the
phantom, b) PET/MR phantom image overlay (Ng et al., 2010).
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2.4.1.2 Image Registration

The means for spatial alignment in PET-MR is given by image registration. Image regis-
tration is a technique to combine spatially two images of the same object and can be used
to find the transformations used for motion correction. The registration algorithm aligns
these images by warping the one to the other. The registration can be performed with two
images of the same modality (intramodality registration) or between different modalities (

intermodality registration) The components to achieve registration are the following:

1. Similarity: The calculation of the similarity between the image being transformed and

the target.

2. Transformation: This controls whether the deformation is rigid or non-rigid and to

what degree.

3. Optimization: Registration is achieved by finding the transformation that maximizes

the similarity measurements.

In the Cartesian coordinate system (X,y,z), rigid transformation allows 3D translation
and 3D rotation, which in total is 6 degrees of freedom. This registration algorithm is used
for simple motion models.

Affine transformation allows twelve degrees of freedom with 3 scale and 3 shear com-
ponents added to the previous stage.

Moreover, more complex, non-rigid transformations are usually required. Many algo-
rithms have been developed for this. One method is to base on transformation of control
points and afterwards, interpolated motion fields are applied to the entire image (Crum
et al., 2007).

Another method is to combine local and global transformations like rigid and/or affine(Little

1996). In the hierarchical multiple local registration methods, the image is subdivided into
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rectangular blocks and within each block a transformation takes place. The hierarchical
splitting occurs while dividing the single blocks into smaller equally spaced blocks.

The optimisation of these algorithms depends on the adaptivity of the box selection. In
the method of Buerger et al. (2011) studies, a hierarchical adaptive local affine registration
algorithm is created, which, as it progresses with the registration, subdivides the images
to areas with similar motion. With this technique, areas with small motion amplitude can
be considered as rigid, and large deformation can be processed as a group (Buerger et al.,

2011).

2.4.1.3 Attenuation correction

The artefacts and loss of accuracy due to attenuation can be restored partially with attenua-
tion correction. The attenuation correction takes under account the attenuation coefficient of
the subject. Until this point, CT could provide the equivalent attenuation coefficient factors
for the scanned subject of study. The use of MR imaging may have improved the imag-
ing of soft tissue but the transmission methodology of the CT was capable to provide the
attenuation information, something that MR cannot provide.

Different approaches have been executed for the generation of attenuation maps from
MR data. An approach is the classification of tissue to different known categories. For ex-
ample, one approach uses a 2-point Dixon sequence (Siemens inc.) in order to discriminate
fat from water. The produced images generate a fussed attenuation map, using known at-
tenuation coefficient values previusly derived CT. This methodology can image soft tissue
but not bones, which aren not visible on MR images (Martinez-Moller et al., 2009). The
lack of bones imaging can be addressed by the use of Ultrashort Echo Time (UTE) acquisi-
tions.With this scanning methodology, bone structures are visible, where the T2* relaxation
time is very short (0.05 - 2 ms). Finally, another approach is to use an atlas of the region of

interest. This atlas derived for example from a library of CT images is registered to fit the
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acquired MR image and the corresponding attenuation matrix is used for the correction.

2.4.1.4 Temporal synchronization

PET-MR is the first truly simultaneous imaging. This brings the challenge of exactly syn-
chronizing the PET and MR acquisitions. In the early stages of PET-MR imaging, the
synchronization is performed with coordinated manual initiation of the two acquisitions.
Catana et al. (2011), in his studies describes the methodology to synchronize the brainPET
prototype scanner with the MR. In this study, an output trigger pulse was provided to the
PET module by the MR. This trigger pulse was repeated every 0.2 ms were an MR motion

estimate was obtained (Catana et al., 2011).

2.5 Motion in PET-MR

Subject motion can affect both PET and MR image quality for human and preclinical stud-
ies. Motion can introduce artefacts and reduce the accuracy of quantification. It can also
reduce the possibility of identifying small regions of uptake such as small tumours. One of
the possible advantages of simultaneous PET-MR acquisition is the use of simultaneous MR
images to correct PET images for these effects of motion. There are many different aspects

to the problem of motion correction which are described below.

2.5.1 Motion in humans

In the human body, muscles are responsible for the motion in each part of it. Musculoskele-
tal, smooth and cardiac muscles are the main factors for human mobility. This motion is
defined as systematic (motion of vital organs of the subject i.e. heart, lungs, diaphragm) or
spontaneous (musculoskeletal, spontaneous, non-repetitive motion i.e. head motion, peri-

stalsis or random body movements).
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During torso scanning, the heart and the respiratory system normally consist the most
significant systematic motion sources in humans and rodents. The heart follows two dif-
ferent patterns of motion. The first is defined by its own function, where the contacting
ventricles pump the contained blood through the circulatory system. The other motion is
defined by respiration. The motion of the diaphragm creates a deformation and dislocation
of the internal formation of the surrounding organs. Liver, stomach, kidneys and heart are
all organs affected by respiratory motion. The basic principles of respiratory motion depend
on the mode of respiration pattern. Motion of the human diaphragm and the effects of this
motion on the surrounding organs have been studied extensively for two different patterns
of respiration by Langen and Jones (2001). These patterns are normal and deep breathing
((Langen and Jones, 2001). By this study the average motion of the diaphragm ranges from
9.1 + 2.4 mm to 17 = 3 mm for normal breathing and from 43 4+ 10 mm to 103 + 22
mm for deep breathing. Similarly, the motion of the liver varies from 8 £+ 2 mm to 25 mm
for normal breathing and by 37 + 8 mm to 55 mm for deep breathing. The amplitude of
motion varies a lot between individual patients. In addition to the displacement of each
structure during motion, the volume and shape of the organs may change. For example,
Liu et al. (2007) characterized tumours as solid, semi-solid and diffused (Liu et al., 2007).
Furthermore, Rietzel et al. (2005) provides quantitative features of the tumour deformation,
for liver and lung tumours. For a single study, inside liver, the volume deformation is about
3% and inside lung, the volume deformation is about 30.4% (Rietzel et al., 2005). Stud-
ies about the breathing pattern revealed a variation of motion path between inspiration and
expiration. More than two forces are applied to each position in the thoracic cavity, dur-
ing breathing. These forces match in frequency but vary in phase. This leads to variations
of motion and an ellipsoidal pattern is created for each cycle. This phenomenon is called

intra-cycle variability or hysteresis.
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2.5.2 Motion of Small animals

Human and rodent anatomy share features behaving in a similar way with respect to motion.
In particular, diaphragm and cardiac motion function similarly; though in different spatial
and time scales. Artefacts occur to the obtained images because of the systematic motion
of the animal’s organs. An additional factor is the increase of motion frequency. According
to Segars et al. (2004), during regular mouse breathing, diaphragm motion is about 1 mm
and the rib cage expansion is at 0.7 mm. From the same study, data is presented from MR
mouse scans, placing the maximum diaphragm motion at 1.2 mm (Segars et al., 2004). As
a graphical representation, Figure 2.14.a demonstrates the respiratory pattern, as described
by Segars et al. (2004). Figure 2.14.a corresponds to the respiratory pattern of a rat under
isoflurane anaesthesia, as presented by Bartling et al. (2007). The explanation for the respi-
ratory pattern difference is an effect of Isoflurane/Oxygen anaesthesia, which makes rodents
gasp (Bartling et al., 2007).

In literature, there are PET studies where the rodent is awake (Kyme et al., 2014). Nev-
ertheless, the standard procedure is to anesthetize the rodent for minimization of motion
artefacts. Studies have provided information about the behaviour of rodents under anaesthe-
sia. Figure 2.14 presents the respiration of a human (a) and of a rodent under anaesthesia.

The need of anaesthesia brings an alteration between the respiratory pattern of humans
and animals. If that part of respiratory motion is excluded by the data acquisition with

gating, the total signal loss will be less than 10%.

2.5.3 Motion effects in MR and PET imaging.

Motion during PET studies can result in artefacts in the final image. This paragraph is
concentrated on data from human applications. Figure 2.15 is an example, where the end
inspiration and end expiration positions of a tumour from a 4D CT match with the extremi-

ties of the stretched volume, as PET obtains it.
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Fig. 2.14 Respiratory pattern, a) of human and b) a rat under Isoflurane anaesthesia

End Inspiration End Expiration

Fig. 2.15 End inspiration phase of 4D-CT, end-expiration phase of 4D-CT, and PET images
of moving lung tumour in human. All images are coronal slices. Note the blurred appear-
ance of the moving tumour in the PET image, which is acquired over several breathing
cycles (Riegel et al., 2010)
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In PET imaging, data is typically acquired for several minutes per bed position, which
leads to time averaging for many breathing cycles. The respiratory motion will blur the
image and degrade contrast leading to overestimated volumes and poor quantification. Fig-
ure 2.16 demonstrates such artefacts for an oscillating point source where motion simulates
that of breathing. The result of this motion is the spread of counts, the volume increases
artificially and eventually, the SUV is underestimated. Also, the attenuation correction is
possibly wrong, due to the fact that is a product of a static image instead of a dynamic

moving PET image (Dawood et al., 2006).

Act. Conc. (KBg/cc)
Act. Conc. (KBg/cc)

Fig. 2.16 (A) Apparent activity concentration for a stationary point source showing the ex-
pected Gaussian distribution. (B) The apparent activity concentration is "stretched" when
the point source is oscillating, resulting in overestimation of the object volume and under-

estimation of SUV (Nehmeh and Erdi, 2008).

For MR imaging, motion brings artefacts to the image. As White et al. (2010). state, in
short sequences such as dynamic 2D or echo planar imaging, the in between scans motion
can introduce significant variance to the voxel time courses and disrupt the spin excitation
history of the acquisition (White et al., 2010). The motion causes artefacts on scans, with the
nature of ‘ghost’ images along the phase-encoding direction. The number and the sensitivity
of ghost images depends on the regularity of the motion, ranging from just a few high-

intensity ghosts of the chest wall, to a generalized low-intensity blurring due to the non-
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periodic motion of the bowels. In figure 2.17 a simple example of motion artefacts along

the phase-encoding direction is presented.

Fig. 2.17 Gross motion artefacts due to patient moving continuously throughout a scan

2.5.4 PET motion capture

Due to the artefacts described previously, it is necessary to correct for the motion and pro-
vide an artefact free image. The first objective is to track the motion.
External devices have been used in the past for PET/CT studies, where the patient had

to be connected with one or more of the following systems:

i. Pressure sensor, capable to be connected with an elastic belt. The tension created by
the respiratory motion is captured by the pressure sensor and translated into displacement.
Pressure sensors have been used in radiotherapy (Dietrich et al., 2006; Li et al., 2006a),

4D-CT (Kubo and Hill, 1996) and PET (Martinez-Moller et al., 2007).
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il. Also, a spirometer can provide the necessary information for motion estimation. Instead
of motion amplitude variation, spirometer provides volume variation. Also, the data are
stored in a computer, along with the PET acquisition for motion estimation uses. It has been
also used in radiotherapy (Kubo and Hill, 1996; Zhang et al., 2003), CT (Kalender et al.,
1990) and PET imaging(Martinez-Méller et al., 2007).

ili. As an alternative method of tidal volume measurement, the temperature variation from
the air flow indicates the respiration cycle of the patient. This is a method also used in

radiotherapy (Kubo and Hill, 1996) and PET (Martinez-Moller et al., 2007).

iv. Visual capture of the respiratory motion can be performed with Real-time Position
Management system (RPM). The RPM introduces a camera, which tracks the motion of a
marker placed upon the patient’s thorax. This method has been used for radiotherapy, 4D-
CT, respiratory-gated CT and respiratory-gated PET (Nehmeh and Erdi, 2008). Markers
have been used for small animal tracking during PET. Kyme et al. (2008), in his study de-
scribes the marker design and camera setup for motion tracking and use of this information

for motion correction.

v. Use of markers in combination with video tracking is not the only way. Kyme et al.
(2014) developed a method to track motion information by physical landmarks upon rat’s
head. For human use, Alnowami et al. (2010) proposed a method of respiration tracking,

with video capture of the torso and use of a B-spline model for parametrization of it.

vi. MR is also capable of tracking and measuring respiratory motion (Shechter et al.,
2004). By use of navigator echoes, it tracks the displacement of the diaphragm. Typically,
the navigation echo is extracted by the right hemidiaphragm, at the lung-liver interface.
While the patient breathes freely, navigator echoes track the craniocaudial motion of the

diaphragm over time, with no interference with the simultaneously obtained images.
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The techniques above provide a one dimensional signal, representing the respiratory
phase. The need is to generate a 3D volume, which will be used for the extraction of motion
fields of the deformation. 4D CT is a method, where 1-D signal can be used to rebin the
acquired 4-D data into the corresponding gates. The reconstructed gates create a cinematic
representation of the respiratory motion in multiple positions. These images can be used
afterwards for motion correction of any complementary acquisitions (Nehmeh et al., 2004).
MR imaging can follow the methodologies developed for CT. To be more specific, Cao
et al. (2003) proposes a method where the MR acquires fast 2D axial images in random res-
piratory positions which are sorted retrospectively to the corresponding respiratory phases,
depending on the respiration amplitude (Cao et al., 2003). The sequence selection criteria
are the short acquisition time and optimization of image quality.

The effects of motion in PET images can be addressed with motion correction given by
a sequential scanner. Until now, the only available method was the use of CT and especially
4D-CT. 4D-CT 1is based on data acquisition over several respiratory cycles which is then
sorted into different groups (gates) according to the respiratory phase. A subsequent PET
acquisition is then sorted to the same number of gates. A disadvantage of this method is
the poor spatial alignment because of the registration errors. Temporal miss-alignment is
an effect of respiratory motion, where a typical scan for the CT is 15 s (i.e. for few breath
cycles) and for PET is several minutes per bed position. Another issue related with the
image quality is the respiratory pattern. Variations can be observed in period or amplitude
of each separate breath. Therefore, the patients are instructed to have free tidal breathing
during the PET scan with the same pattern as reasonably achievable .

Recent investigations presented the possibility of PET motion correction, using the same
dataset. Schleyer et al. (2014) in his study proposed a method, where the PET data are
handled in the frequency domain to locate the regions within raw PET data that are subject

to respiratory motion and to generate the respiratory curve.
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Tsoumpas et al. (2010) proposed a method for motion data acquisition and correction by
use of simultaneous PET-MR system. The benefits of this method are the lack of additional
radiation to the patient and the fact that the motion information can be obtained simulta-
neously with the PET data, giving an advantage against the sequential PET/CT system (or
PET/MR). Also the motion fields derived by the MR can be used to correct the PET data

(Tsoumpas et al., 2010).

2.5.5 Motion estimation

The capture of motion is the first step. The second step is the estimation of the internal
motion and use of this information for correction of PET data. In a study by Abd Rahni
et al. (2011), the motion of organs, estimated with a low-dose 4D-CT and combined with
the motion information by a markers grid, is used to create a motion model. The application
of this model to the markers grid motion leads to organ motion estimation.

In MR, a method proposed by Buerger et al. (2011) proposed a method, where a free-
breathing dynamic scan, combined with the local affine registration algorithm, can be used
for motion estimation during the acquisition. Given the nature of the acquisition, each MR
dynamic frame has a finite temporal resolution. The method to estimate motion alterations
with shorter temporal resolution than the one proved by a scan is by motion modelling. The
first step is to acquire a dataset of the respiratory cycle with low temporal resolution but high
spatial. This dataset is used to train the motion model algorithm. Afterwards, pencil beam
navigators, single 2D slices or multiple 2D slices are acquired with high temporal resolution.
The image features are correlated with the motion model and the 3D estimate is produced.
Use of motion models can improve the temporal resolution of MR and consequently PET

frames (King et al., 2012; Smith et al., 2013).
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2.5.6 PET gating

Gating is a common method to handle respiratory motion. In order to gate the data, a respi-
ratory cycle is divided into a number of gates. These gates share a common characteristic,
and are confined to a smaller threshold, compared to the entirety of data. There are two
main types of gating. Phase and amplitude gating.

In phase gating, the respiratory cycle is divided in equal time intervals and coincidences
that correspond with the time interval are rebinned to the corresponding gate. This method
ensures the equal counts distribution among the gates. In studies though the phase correla-
tion of motion changes over time thus may not represent the motion amplitude correctly for
all the respiratory cycles (Ozhasoglu and Murphy, 2002).

Amplitude gating splits the respiratory cycle based on the motion amplitude, while
breathing. Motion amplitude may vary for each respiratory cycle. Dawood et al. (2009)
demonstrated that using amplitude gating could result in noise reduction, but under regular

breathing both amplitude and phase gating performed similarly.

2.5.7 PET motion correction

After acquiring motion information, synchronizing and spatially aligning PET and MR data,
and data rebinning into gates, motion correction can be applied to PET data. Motion infor-
mation is estimated either from CT or MR images. Algorithms used for motion estimation
measure the deformation between gates and motion fields are estimated. The two main ap-
proaches to applying known motion information to correct the PET data are Reconstruct
Transform Average (RTA) and Motion Compensated Image Reconstruction (MCIR).

In RTA, an image for each gate is reconstructed with a standard reconstruction algo-
rithm and after that, the relevant transformation is applied to each gate. Various registration
algorithms can be used to obtain the transformations with respect to respiratory motion

correction, Dawood et al. (2006) used an optical flow method calculated and rebinned the
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PET data to the corresponding gates and performed motion correction of the reconstructed
images. During RTA, the non-linearity of the reconstruction is not taken under account,
because is a post-reconstruction process. Even though, RTA remains a practical approach
in PET motion correction because there is no need to modify the standard reconstruction
algorithms (Dawood et al., 2006; Picard and Thompson, 1997).

On the other hand, In MCIR, the image transformations are incorporated directly into
the reconstruction algorithm and the data from all gates are processed simultaneously to
create a single motion corrected image(Lamare et al., 2007; Li et al., 2006b; Qiao et al.,

2000).
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Chapter 3

PolyVinyl alcohol phantom for

simultaneous PET-MR applications

3.1 Introduction

In the previous chapter, we introduced the necessity of motion correction in PET and the
currently available tools. The development of a new platform for PET motion correction
investigations has to be established. The motivation behind this is to increase motion realism
and complexity to resemble the sort of respiratory motion seen for the liver for example.
Therefore, there is a need for the development of an MR compatible PET-MR phantom with
non-rigid motion and programmable motion patterns. This phantom, has to be compatible
with all the modalities used, predictable and reproducible and to cover as many realistic
cases as possible.

In the case of a PET-MR scanner, as already discussed, the platform for the develop-
ment and evaluation of motion correction has to contribute equally to both of the systems.
Also, new parameters of realism have to be introduced into motion correction evaluation
platforms. A robust and reliable platform of evaluation in any system is a phantom. A

controlled environment, determined by the user for performance evaluation. This chapter
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describes the utilization of PolyVinyl Alcohol (PVA) cryogel as a PET-MR phantom for

motion correction (Soultanidis et al., 2013a).

3.2 PVA cryogel for construction of deformable PET- and
MR-visible phantoms

Recent phantom investigations indicate that it is possible to measure motion through se-
quential PET/CT (Bai and Brady, 2011; Gigengack et al., 2012; Wollenweber et al., 2012;
Yang et al., 2012) or simultaneous PET-MR systems (Chun et al., 2012; Tsoumpas et al.,
2010). For example, Tsoumpas et al. (2010) used a locally rigid moving phantom visible
in both PET and MR constructed from Perspex, and Guerin et al. (2011) used a rigid PET
source inside a deformable medium (Guerin et al., 2011). Finally, a human torso phantom
was presented by Fieseler et al. (2013). There are indications from literature that the mo-
tion of a lesion inside the human body is not limited to rigid-body spatial displacement but
also can include general non-rigid deformations. The deformation of tumors has been in-
vestigated by Kyriakou and McKenzie (2012), who showed evidence of deformation during
respiratory motion inside the lungs (Kyriakou and McKenzie, 2012). This physical property
of the tumors and the need for even higher accuracy in designing even more realistic phan-
toms prompted the design of a phantom capable of containing a radioactive source that can
deform along with the medium when motion occurs. Until now, the vast majority of motion
experiments use rigid phantoms, but there is some progress towards deformable phantoms.
To show what makes a deformable phantom more realistic, we examine the behaviour of an
entire organ under respiratory motion. In this case, the liver is the organ under examination
because of its location. It is located beneath lung and it follows the motion of it. The motion
of it is not either rigid or linear. Fig 3.1 provides a graphical representation of liver surface

deformation according to location (Nguyen et al., 2008).
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Fig. 3.1 A colour scale representation of deformation map of a liver (Nguyen et al. (2008),
© IEEE 2008)
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Fig. 3.2 Trajectories of a motion field grid inside the liver caused by respiratory motion
(Von Siebenthal, 2008).

Furthermore, the direction of the motion is not constant either. In Figure 3.2, it is under-
stood that the motion fields do not follow the same direction within a plane (Von Siebenthal,
2008). This is evidence that motion production and simulation of solid organs has to be
performed with use of deformable phantoms.

More specifically, studies performed by Tsoumpas et al. (2013) describe the maximum
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Fig. 3.3 Respiratory motion of human torso, where A) shows motion fields derived from
a dynamic MR sequence and B) Shows the three liver lesions to which these motions are

applied (Tsoumpas et al., 2013).

motion amplitude of multiple lesions of a computational human torso phantom. The motion
fields of this torso phantom are derived by real MR motion acquisitions. Figure 3.3 is a gives
a visual representation of these motion fields and the lesions we are going to focus upon.
Table 3.1 provides information about the maximum displacement of each lesion. Inside the
same organ it is observed that there is difference of displacement for the closely spaced,
maximum to be 6.5 mm. Through these studies, it is clear that an organ does not follow a
rigid displacement during a respiratory cycle but it is deformed non-rigidly.

Standard PET and MR phantoms usually contain uniform radioactivity distributions,
i.e. liquid filled volumes, that can undergo only very simple and unrealistic deformations

(Madsen and Fullerton, 1982; Mathur-De Vre et al., 1985; Muehllehner et al., 1981). Such
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3.2 PVA cryogel for construction of deformable PET- and MR-visible phantoms

Table 3.1 Maximum lesion displacements

Inferior-superior (mm) | Posterior-anterior (mm) | Left-right (mm)
1*" lesion 11.9 3.5 8.4
2" Jesion 15.4 1.8 7.6
3 Jesion 16.9 2.7 1.9

uniform liquid filled volumes also result in very unrealistic MR images leading to untypical
behavior of image registration algorithms and incorrect estimates of motion fields.

There is great interest in using mass-preservation as a constraint in image registration
algorithms, particularly when used in motion correction schemes (Gigengack et al., 2012).
Most currently used non-rigid image registration algorithms however, do not have this fea-
ture, so even though most tissues (with the notable exception of the lung) are approximately
non-compressible, this is usually not accounted for in the registration process resulting in
physically unrealistic motion fields.

There is therefore a need for phantoms that can simulate realistic mass-preserving non-
rigid deformations and that are both PET and MR visible. Whilst the simple configuration
described here does not represent of any particular organ, the technique allows the pro-
duction of (independent) PET and MR visible distributions that undergo complex non-rigid
deformations. This will be of value in the assessment and further development of accu-
rate corrections for non-rigid motion, which is an area that is still at a very early stage of
development.

MR phantoms are usually water based. One of the materials from which MR phantoms
are constructed is the Poly-Vinyl alcohol (PVA) cryogel. A cryogel is a material that consists
of water and a polymer, in this case, polyvinyl alcohol. Freezing and thawing is the method
used to cross-link the hydroxyl groups on PVA molecules by hydrogen bonding (Chu and
Rutt, 1997). The product of this procedure is an elastic material with a high concentration

of water. Cryogel has been characterized as an ’ideal’ MR phantom for elastography, where
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for a 10% by weight solution, T1 and T2 relaxation times are 718 — 1034 ms and 108 — 175
ms, respectively (Surry et al., 2004).

PVA cryogel can be generated by a procedure described in the literature (Surry et al.,
2004). This procedure guarantees excellent stability and homogeneity of the material. The
first step is to mix PVA powder with water. An autoclave is used to heat the PVA at 121 °C
for 30 min. The cooled solution is then poured into a mould and frozen at —20 °C for 12
hours. Then, the freezer is unplugged and the material is allowed to thaw naturally over 8
to 9 hours after which time it is stored in de-ionized water.

The procedure above results in a material with elastic properties which can be used for
the creation of a phantom capable of volume deformation. This study aims to investigate
different aspects of adapting cryogel for PET-MR purposes by creating a structured phantom
that is both PET- and MR-visible introducing radioactivity and MR contrast into the cryo-
gel. The impact of the various modifications made to the standard production procedure is

investigated below.

3.3 Materials and methods

3.3.1 Preparation of cryogel phantom
3.3.1.1 Phantom structure

The elasticity of cryogel gives the opportunity to fabricate a phantom that can be repeatedly
deformed by an applied force. The phantom also has structural complexity which makes its
visualization more similar to the structure of human tissue. The design used for this study
consists of an "active’ cylinder contained within a ’cold’ cylinder where the internal cylinder
contains PVA, radioactivity and gadolinium solution, as shown in Figure 3.4. The diameter

of the phantom is similar to the diameter of a rat (4 ¢m in approximation).
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Fig. 3.4 Cryogel phantom with dimensions dedicated for small animal imaging systems;
(A) and a cross-section of a phantom (B), where the external part is 10% p.w. PVA and the
internal, coloured part contains also 2.25 MBg/ml of '®F-FDG and 50 u! /ml of Gadolinium
solution. (Soultanidis et al. (2013a), © IEEE 2013)

3.3.1.2 Determination of optimum PVA concentration

A range of PVA concentrations are referred to in the literature, from 10% to 20% by weight
(Chu and Rutt, 1997; Fromageau et al., 2007; Surry et al., 2004). We examined three differ-
ent concentrations: 5%, 10% and 15% by weight of PVA in water. The most appropriate of
these was used in the subsequent procedures described below. The success of the phantom
will be evaluated using two criteria; the preservation of its shape, without additional load

and the motor unit’s efficiency to compress it without extreme stress.

3.3.1.3 Introduction of contrast agents into the phantom

The radioactive solution and contrast agents could be introduced in the phantom using dif-
ferent approaches. The first method investigated was the soaking of the phantom in a solu-
tion containing the radiotracer or gadolinium until it is absorbed. An indication of diffusion
was obtained from published literature. The diffusion of Fe>* was measured in a 20% per
weight PVA cryogel and it was found to be 0.14 mm?> h~' (Chu et al., 2000). Therefore,
the approach was rejected because the speed of diffusion is very slow. Nevertheless, an
experiment has been performed in order to determine the diffusion rate. A cylinder of PVA

cryogel with diameter of 14 mm was created. The goal is to determine the progression of
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1% sample
2nd sample

2 hr. after immersion 20 hr. after immersion

Fig. 3.5 10% PVA cryogel after 2 and 20 hours of immersion in 5% ink concentration
solution.

the ink into the cryogel against time. The time points determined to be 2 hours after the
immersion and 20 hours after the immersion. After this time period, slices from the centre
of each cylinder where sliced and observed. Figure 3.5 gives an optical evaluation of the
color progress after 2 and 20 hours. Clearly, 2 hours after the immersion, is about 1 mm.
Another approach is to inject the phantom with liquid contrast agents’ solution or a
second PVA solution containing radioactivity and / or MR contrast agents. However, the
solution leaks when the phantom is compressed. The only viable method to create a ra-
dioactive phantom within reasonable time period is to mix the PVA solution prior to the
freeze-thaw process. During this method, due to the high viscosity of PVA, care must be

taken to ensure the solution is uniformly mixed to create a homogeneous tracer distribution.

3.3.1.4 Modifications to freeze-thaw production process

The standard cryogel production procedure has been described above. The total preparation
time is about 20 to 21 hours. As the half-life of Fluoride-18 is approximately 2 hours, the
standard preparation procedure is impractical. The solution is to decrease the freeze-thaw
time. The first approach is to freeze the PVA cryogel with liquid nitrogen. Nitrogen boils at -
196 ¢ C. The use of this compound could ensure fast freezing process. The first experiments
were performed without presence of radioactivity for structural integrity check. A 10%

concentration PVA container was immersed into liquid nitrogen for 1 min. The freezing
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process was successful with no obvious problems. During the thaw process though, the
phantom had shattered structure with cracks everywhere, destroying the phantom.

An alternative solution is to decrease the time of the freeze-thaw process to 6 hours
with use of freezers. The initial results of a freezer use is that the phantom does not have
structural integrity issues. The initial structure of the phantom is created by freezing a first
layer of the PVA that is used as a base (or external compartment) for a second layer of
PVA (the internal compartment). This enables a partition to be created within the phantom.
The compartmentalization of the phantom, as shown in Figure 3.4, enables the phantom
to be realized in two freezing stages and a single thaw time period. In the first stage, the
PVA solution is introduced into a plastic mould and the external compartment is frozen for
12 hours at =20 °C. After that period, the PVA solution with the radioactive molecules is
introduced and the whole phantom is frozen for 3 hours at =80 °C. Finally, the phantom is
removed from the freezer and thawed within 3 hours. The thaw process is natural and not

accelerated by an external factor.
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Fig. 3.6 Temperature progression for different freeze-thaw methods where; method 1 is with

solid line; method 2 with e ; and method 3 with dotted line. (Soultanidis et al. (2013a), ©
IEEE 2013)
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3.3.2 Young’s modulus measurements

An alteration to the procedure is likely to affect the elasticity of the cryogel which can be
characterized in terms of its Young’s Modulus. Duboeuf et al. (2009) proposed a simple
mechanism, along with the methodology to measure Young’s modulus of a PVA cryogel
phantom (Duboeuf et al., 2009). The first sample was made according to the standard pro-
duction procedure, hereafter named as method 1. The second sample represents the external
compartment-freezing pattern, named as method 2, with 12 hours of freezing at —20 °C,
3 hours freezing at —80 °C and 3 hours of thaw. The third sample represents the internal
compartment freezing pattern, named as method 3, where it freezes at —80 °C for 3 hours
followed by 3 hours of thaw. A graphical representation of the freeze-thaw process is given
in Figure 3.6. Two sample phantoms were created for each procedure. These samples have
the same dimensions and cylindrical shape. Stress over strain was measured and the Young’s

modulus was calculated with the Eq. 3.1.

_o_ F/A
E=2= e 3.0
where F' is the force applied to the phantom, Ay is the initial area where the force is applied,
Ly is the initial height of the phantom and AL is the variation of length. Eq. 3.2 gives
regularization of the area A, in order to eliminate the "barrel" effect. The barrel effect is the
expansion of the central part of the PVA while the top and bottom diameter remains small

(Duboeuf et al., 2009).
L;
OLi—AL;

A=A 3.2)

Where L; is the height after compression and AL, is the variation of height. The same set
of measurements have been applied to each phantom for 4 times in order to have an estimate

of the standard deviation upon Young’s modulus.
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3.3.3 Diffusion of the radiotracer

The phantom developed in this study has no physical boundary between the two cylindri-
cal volumes. This fact, combined with the large amount of water may lead to diffusion
of radioactive and gadolinium molecules through the phantom. Hence the labelled areas
of the phantom might change over time due to diffusion. For this investigation, phantoms
have been created, following the methodology presented above. The radiotracer used was
8F_-FDG, diluted inside a 10% per weight PVA cryogel phantom. The concentration of '8F-
FDG inside the phantom was 2.5 MBg/ml at the beginning of the experiment. A dynamic
PET scan was performed with the NanoPET/CT™ preclinical PET scanner (Bioscan Inc.,
Mediso Ltd.), where 12 acquisitions of 10 min were obtained every 15 min period (Szanda
et al., 2011). The alignment of acquisitions was ensured by not moving the phantom be-
tween every 10 min acquisition. The reconstruction used for these data was a Single Slice
Re-Binning (SSRB) OSEM algorithm with 8 iterations and 6 subsets per iteration. This
reconstruction algorithm does not perform any post filtering. The data were corrected for
physical decay of '8F and attenuation correction. Scatter correction was not applied to the
data. The progression of diffusion can be captured as the radiotracer diffuses into previ-
ously unoccupied or unevenly distributed areas. Samples with same volume are examined

for changes cause by diffusion.

3.3.4 Relaxation values of PVA cryogel

The MR properties of the phantom were determined. In this experiment, a 10% PVA cryo-
gel phantom was used. The phantom was divided into two compartments, with the external
compartment containing 10% PVA and 90% water. The internal compartment has an addi-
tional 50 wu!//ml gadolinium solution (Gadopentetic acid). The experiment was performed
in a 3T MR Philips Achieva with use of 3 dimensional T1, T2 and T2* mapping sequences.

The coil used for this experiment is the head and neck sense coil. T1 mapping was per-
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Fig. 3.7 Hydraulic motor unit for the cryogel. The rotational motion of the stepper motor
is translated to regressing motion to the piston (A), which deforms the phantom from a
position without stress (B) into full stress position (C). (Soultanidis et al. (2013a), © IEEE
2013)

Fig. 3.8 Graphical representation of the method for "motor unit error" (€,,) and the "phan-
tom deformation error" (€,4) calculation. (Soultanidis et al. (2013a), © IEEE 2013)
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formed with the use of a sequence that employs 2 non-selective inversion pulses with inver-
sion times ranging from 20 to 2000 ms, followed by 8 segmented readouts for 8 individual
images. The 2 imaging trains resulted in a set of 16 images per slice with increasing in-
version times. For T1 mapping, the acquisition parameters were as follows: 3D fast-field
multi-echo sequence with FOV = 50 x 50 x 62 mm, matrix = 64 x 51, in-plane resolution
= 0.8 x 1.2 mm, measured slice thickness = 2 mm, slices = 25, repetition time/echo time
= 3/1.6 ms, flip angle = 10°. T1 values were computed on a pixel-by-pixel basis with the
use of in-house Matlab software (Blume et al., 2009; Makowski et al., 2011). T2* mapping
was performed using a 3D coronal fast-field multi-echo sequence. transverse images were
acquired with TR = 107 ms, TE = 4.6 ms, echo spacing = 6.9 ms, 6 echoes, flip angle =
35°, FOV =50 x 50 x 62 mm, acquired matrix = 64 x 61, acquired resolution = 0.8 x 1 mm,
slice thickness = 1 mm, slices = 50, averages = 1. T2 mapping was performed using a coro-
nal turbo spin echo sequence with multiple echoes with, TR = 380 ms, TE = 14 ms, echo
spacing = 14 ms, 5 echoes, FOV = 50 x 50 x 62 mm, acquired matrix = 64 x 61, acquired
resolution = 0.8 x 1 mm, slice thickness = 1 mm, slices = 50. Multiple regions of interest

were classified according to compartment and relaxation values were obtained.

3.3.5 Motor unit and motion reproducibility

In this experiment a motor unit is designed to compress the phantom in order to deform it
in a controllable and reproducible manner. An inexpensive hydraulic system, as presented
in Figure 3.7, comprises the main part of the motor unit so that it remains MR compatible.
For that purpose, a stepper motor (Sanyo Denki CO., Ltd.) is used to produce a continuous
rotation, which is then translated into a sinusoidal motion by a piston. The motion pattern
could be sinusoidal or more complex as long as it is programmed by the user. Utilization of
long water-filled tubes transfers the compression into a second piston located inside the MR

bore, which then applies the force to the phantom. A computer interface board controls the
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stepper motor (PhidgetStepper bipolar 1-motor controller, Phidgets Inc.). This motor unit is
capable of providing continuous sinusoidal motion or stop & shoot acquisition. During the
experiments, the maximum compression achieved was about 17 mm. The experiment is set
up accordingly, so not to reach the compression threshold.

The reproducibility of motion is estimated by measuring the error of positioning repro-
ducibility. The experimental set-up included the motor unit, along with a 10% PVA ho-
mogeneous cryogel. The phantom was repositioned consecutively, from uncompressed to
full compression for 12 times and scanned with a 3T MR Philips Achieva. A gradient echo
sequence for dynamic acquisitions with 1.2 mm isotropic spatial resolution was acquired
. The scan duration was 15.45 s (TR / TE 2.4 ms / 0.85 ms, 20° flip angle). The images
were classified according to the position (compressed - uncompressed). A large amount of
1D profiles were used to evaluate the deformation reproducibility. Figure 3.8 represents the
methodology to measure the error in motor unit and deformation of the phantom, for one
profile at each case. The edge of the phantom was defined by calculating the position of the
half maximum intensity (in mm). The error is derived by averaging the standard deviations

of the edge positions and shown in Eq. 3.

M N
E= AL/[ . \/1%] ZO(XW' —fi)z (3.3)

where x; ; is the edge of the phantom at each profile (in mm, i) upon sequential images (j).
Even if the deformation is identical, the errors introduced by the motor unit may affect the
homogeneity of the distribution. For that reason the measurements of error are divided in
two parts. The first source of error is the motor unit (g,,). It is assessed by comparing
multiple line profiles at the compression surface (upper part of the cylinder). The second
source of error comes from the deformation of the phantom (€,4). This aspect is assessed

by comparing multiple line profiles at the cylindrical surface.
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3.3.6 Compressibility of PVA cryogel

This part of the study evaluates the compressibility of the cryogel. For that purpose, a Com-
puted Tomography (CT) experiment was performed. The goal was to measure the variation
of volume between uncompressed and fully compressed phantom. For this experiment, a ho-
mogeneous 10% PVA cryogel phantom was created, following the internal compartment’s
preparation process. The scanner used was a General Electric Discovery STE PET/CT. By
using the CT unit with 140 £V and 500 mAs we obtained images with 0.2 x 0.2 x 0.62 mm
voxel size for the PVA phantom in two states; uncompressed and with 1 ¢m compression
approximately. The total volume was then measured by use of ITK-SNAP (version 2.2,
itksnap.org), along with the mean and standard deviation. The calculation of the volume’s
variation is performed with multiple volumetric estimations. A variation of the volume will

indicate if the density has changed by compression (Yushkevich et al., 2006).

3.3.7 Use of PVA cryogel for SPECT/CT acquisitions

As a nuclear medicine phantom, PVA cryogel phantom can been used for image quantifi-
cation experiments in SPECT imaging. SPECT imaging belongs to the family of nuclear
medicine, where the radiomolecules emit gamma radiation. In SPECT, projections of the
single photons are acquired in multiple angles and the reconstructed image presents the
distribution of the radiomolecules inside the compound object.

In this experiment, spherical moulds were created for the generation of spherical phan-
toms. These phantoms contain 10% PVA, !"’Lutetium colouring and water. The sphere
diameters are 5 mm, 10 mm, 15 mm, 20 mm, 30 mm and 40 mm as shown in Figure 3.9.
The activity concentration is approximately 0.3 MBqg/ml. The scans were performed with
the Philips Precedence system (dual-head gamma camera with 5/8 Nal detector crystals and
a diagnostic 16-slice CT scanner) using a protocol for 177Lu-Dotatate therapy dosimetry

imaging: 128 projections (64 angles per camera head) at 20 seconds per projection with a
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matrix of 128 x 128 and a zoom of 1.18.

3.3.8 Acquisition of simultaneous PET and MR data

A demonstration experiment has been performed for the PVA cryogel with a simultaneous
PET-MR system. The acquisition was performed with the use of the HYPERimage scanner
and the 3T MR Philips Achieva (Schulz et al., 2009). The HYPERimage scanner, which
will be described in the next chapter with more details, contains an integrated 2-channel
T/R coil for the MR. In this experimental setup a stop and shoot acquisition was followed
with 9 different positions of compression. For each of these 9 positions of the phantom, an

MR scan was performed using a gradient echo sequence for dynamic acquisitions with 1.2

Fig. 3.9 The PVA cryogel moulds. The sphere diameters are: 5 mm, 10 mm, 15 mm, 20 mm,
30 mm and 40 mm
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mm isotropic spatial resolution and 0.515 s temporal resolution for a total volume acquisition
(TR /TE 2.4 ms /0.85 ms 20° flip angle). The purpose of using this sequence is to emulate
any dynamic acquisition in a real time PET-MR motion tracking experiment (Soultanidis
et al., 2011). Each PET acquisition lasted 3 min. 2D filtered back projection (FBP-2D) for
each gate of PET data has been performed using the STIR library (Thielemans et al., 2012).
The phantom itself consists of 10% PVA cryogel, combined at the interior volume with 2.25
MBg/ml of '8F-FDG and 50 ul/ml of Gadolinium solution (Gadopentetic acid). The latter

was used to enhance MR contrast and create more realistic tissue non-uniformities.

3.4 Results

3.4.1 Preparation of cryogel phantom

The purpose of this first step of the study was to determine the optimum percentage of PVA.
Three options were evaluated: 5% 10% and 15% by weight PVA. A phantom constructed
using the 5% option was not capable of sustaining its shape, therefore it was rejected. Using
10% PVA the phantom sustains its original shape. The 15% PVA cryogel could sustain the
original shape of the phantom, but our motor unit did not have the power to overcome its
resistance. Therefore, the most appropriate percentage of PVA concentration for our exper-
imental design was determined to be 10% by weight. By applying the new methodology,
a phantom was constructed, with well-defined shape and size appropriate for small animal
imaging. This phantom has an internal compartment which follows the motion of the exter-
nal cell and contains the radiotracer that makes it visible to PET as well. The combination of
the radiotracer with the gadolinium solution gives complementary information needed for
motion correction and a new approach to the design of PET-MR phantoms for simultaneous

experiments.
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Fig. 3.10 Stress as a function of the strain where marked with Bl is the standard process with
12 hours freezing and 8 to 9 hours process (method 1), with 8 is the 3 hours freezing at —80
°C with 3 hours thaw (method 2) and with ¢ is a 10 hours freezing at —20 °C followed by
a 3 hours freezing at —80 °C and 3 hours thaw (method 3). (Soultanidis et al. (2013a), ©
IEEE 2013)
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Table 3.2 Young’s modulus in kPa

method 1 | method 2 | method 3

1*" phantom | 17.4+0.2 | 7.9+0.8 | 10.8+0.5
2"d phantom || 14.74£2.0 | 92402 | 11.1£0.5

3.4.2 Young’s Modulus

An example of stress over strain results is presented in Figure 3.10 for the phantom made of
10% PVA and the Young’s modulus are presented in Table 3.2. Error values are extracted
by calculating standard deviation of multiple measurements. The reproducibility of the
elasticity results is measured by comparing the phantoms created with the same method.
The difference of elasticity between methods 2 and 3 is not as big as the variation when
using method 1. The large measurement variation in method 1 can be explained by the
increased roughness of the phantom’s mounting surface, obstructing a clean measurement
of Young’s modulus. The fast freezing procedure of water creates lumps on the free surface
of the phantom. Thus, the compression mechanism does not force uniformly the surface

leading to inaccurate measurements.

3.4.3 Diffusion of the radiotracer

In Figure 3.11 an example of the two images is presented from the dynamic scans with a
difference of 45 min between each scan start time, with the radiation decay taken under con-
sideration. It is observed that higher concentration areas lose activity, which is redistributed
to low concentration areas (dark areas in the subtraction image). From the line profiles cre-
ated and by investigating various positions through the phantom, the edge of the distribution
advanced approximately 2 mm h~!.

Over a time span of 3 hours, 12 PET scans were performed. Two samples of the entire

image for total intensity were taken by the 1% and 12/ scan. Results are presented in Table
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Fig. 3.11 Example of 10 min acquisitions for investigation of diffusion inside a phantom:
(A) is the acquisition between 0 and 10 min; (B) is the acquisition between 45 and 55 min;
(C) is the line profile for (A) and (B); (D) is the difference of distribution between (A) and

(B). (Soultanidis et al. (2013a), © IEEE 2013)
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Table 3.3 Total image uptake

Uptake of 1*" scan (0-10 min)

Uptake of 12/ scan (165-175 min)

Variation (%)

181583

178647

1.63

Table 3.4 Radioactivity concentration over time

Sample number line equation R | variation of uptake per hour
1% sample y=0.023x+15.57 | 0.94 0.67
2 sample y=—0.017x+25.93 | 0.96 -0.52
3" sample y=0.019x+1.10 | 0.99 0.58

3.3. It is important to remind that decay correction is active for this experiment. Samples

of mean intensity in three position for each 12 scans were taken. These samples are cubic

with edge size of 5 mm. The positions were selected to reflect the heterogeneity seen in the

phantom. One position with high concentration, one with low concentration and one outside

of the active area. These positions and the corresponding amplitude variations through time

are presented in Figure 3.12. Trend-line equations for these three samples are presented

in Table 3.4, with the predicted variation of intensity per hour, as it is calculated by the

trend-line equations.

3.4.4 Relaxation values for PVA cryogel

From the images obtained, relaxation times were measured for multiple regions of interest.

The overall mean values of relaxation measurements are given in Table 3.5.

Table 3.5 Relaxation Values For 10% PVA Cryogel

Compartment | T1 (ms) | T2 (ms) | T2* (ms)
External 1317+£23 | 98+8 191£36
Internal 10616 | 122+30 | 4.5+0.56
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Fig. 3.12 A) Three samples of same volume in locations with various concentration. B)

Activity concentration over 3 hours period.
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3.4.5 Motor unit and motion reproducibility

In total, 296 profiles have been generated and the corresponding errors were calculated. Of
those, 168 1D profiles were used for the motor unit error (&,,,) and 128 1D profiles for the

phantom deformation error (€,,). The values are given in Table 3.6.

Table 3.6 Error of Motion Reproducibility

Uncompressed | Compressed

Motor unit - (&) 0.88 mm 0.26 mm

Deformation - (&) 0.26 mm 0.14 mm

3.4.6 Compressibility of PVA cryogel

The 3 dimensional surface renders of an uncompressed and a compressed phantom are pre-
sented in Figure 3.13, where the maximum compression of the phantom is about 1 ¢m. The
variation in volume is given in Table 3.7. It is calculated that the variation of volume be-
tween these two states is about 0.2% of the initial volume (i.e it is negligible) and there is
no significant difference in Hounsfield units (H.U.) and attenuation coefficients at 511 keV

(1) between the two states.

Table 3.7 Volume variation through compression

Uncompressed Compressed
Volume (cm?) 40.2+0.3 40.1+0.3
H.U. (mean + std) 20.5+3.9 21.3+4.2
u (em™1) 0.0941 £0.0002 | 0.0942 4+0.0002

3.4.7 Use of PVA cryogel for SPECT/CT acquisitions

Picture 3.14 presents the results of two different scans with the same spheres. The first step

is to scan the PVA cryogel spheres in air. This experiment gave the recovery curve of the
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Fig. 3.13 CT acquisition of PVA cryogel in two states; (A) uncompressed and (B) com-
pressed, with 3D volume rendering and coronal slice of the phantom. (Soultanidis et al.
(2013a), © IEEE 2013)

spheres. The next step is to submerge the spheres within water. The diffusion is prevented
by use of liquid latex. the spheres are scanned with the SPECT/CT and the result of this

scan is given in figure 3.14.c.

3.4.8 Simultaneous Acquisition of PET and MR data

Data from the simultaneous acquisition are shown in Figure 3.15. The two compartments of
the PVA phantom are visible. Except from the discretized compartments, the texture of the
external compartment is heterogeneous, which is a realistic feature as it mimics the appear-
ance of real tissue in MR experiments. This effect is a result of the alterations regarding the
preparation procedure and the use of moulds. There appears to be a decrease of counts at
the final compression point even with decay correction. This might indicate the alteration
of attenuation characteristics of the phantom during the motion.

By analysing the figure 3.15 line profile, a Full Width at Half Maximum can be esti-
mated. By acquiring this information it is realized that the phantom is compressed by 11.2

mm in the vertical axis.
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Table 3.8 Axial FWHM for extreme PET positions

Gate No || FWHM (mm)

Gate 1 35.4 mm
Gate 9 24.2 mm

3.5 Discussion

The protocol followed was: a rat sized (i.e. 4 cm diameter), 10% PVA cryogel phantom,
introduced with the most common radio-molecule ('®F-FDG) and with the time of prepara-
tion reduced by 14 hours to 6 hours. It has been demonstrated that the elastic properties are
reproducible following multiple repetitions of the preparation procedure. The modification
of the standard production procedure resulted in a reduction of elasticity up to 50%, which

is acceptable for our purposes.
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Fig. 3.14 (a) The recovery curve produced for the ‘in air’ data; (b) The position of the
PVA spheres in the torso phantom; (c) A slice through the SPECT/CT image of the spheres
in the torso phantom; (d) The maximum intensity projection (MIP) of the SPECT image
windowed to show that the smallest sphere, indicated by the red arrow, is just visible
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The stability of the elastic properties after repeated compressions was evaluated. The

maximum deviation is observed in method 1 with the standard deviation 17% of the mean

A

0.4

Gate 1
— — - Gate 9| |

0.3}

Amplitude

0 5 10 15 2 25 3

length (mm)
Fig. 3.15 The PVA cryogel in a simultaneous acquisition where, (A) and (B) are the PET
extremities, (E) and (F) are the MR extremities and (C) with (D are) the fused extremities

for the PET-MR acquisition. (G) is the line profile of PET data when uncompressed (Gate
1) and fully compressed (Gate 9). (Soultanidis et al. (2013a), © IEEE 2013)
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value. Methods 2 and 3 have 15% and 3% deviation respectively. Moreover, the elas-
ticity variation between the various preparation methods is not large, indicating a similar
behaviour for the two compartments in the phantom during compression.

The examined PVA cryogel has Young’s modulus between 8 to 11 kPa. It is found that
it has a higher elastic modulus than liver, which varies between 0.6 to 1.73 kPa (Yeh et al.,
2002). By comparing with other soft tissues, PVA cryogel has a lower Young’s modulus
than normal breast tissue which varies from 18 kPa to 35 kPa with mild pre-compression
of the tissue (5%) and prostate which varies between 55 kPa and 65 kPa (Krouskop et al.,
1998). Finally, literature indicates a large difference in Young’s modulus which is between
the currently studied PVA cryogel and a healthy vascular adventicia, which is about 80 kPa
(Fromageau et al., 2003).

PVA cryogel is created with 90% water, a poorly compressible liquid (8 = 4.6 x 10710),
Consequently, density changes under compression are most unlikely to happen. The com-
pressibility experiment results confirm this expectation, and the volume of the phantom does
not change significantly when a load is applied.

For this protocol, the measured rate of diffusion of 8 F-FDG was 2 mm/hr. This means
that the phantom cannot be used for long experiments involving many hours of acquisition.
However, diffusion is relatively small for PET experiments with the acquisition time up to
approximately 30 minutes. Any alteration of the preparation protocol is likely to change
the diffusion characteristics of the phantom. Consequently the diffusion rate needs to be
measured in phantoms made with different sizes, structures, PVA concentration, contrast /
labelling agents, or freeze-thaw procedures.

In addition to the diffusion observed inside the PVA, the evaporation of water is another
factor that affects the long-term use of PVA cryogel. Given that diffusion is accelerated
inside water, the PET-MR phantom cannot be stored in a liquid medium as is common for

MR phantoms. After exposure to room temperature and humidity for three to four hours,
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the effects of drying are clearly visible on the external surface of the phantom. The external
surface dries out. This leads to the conclusion that the phantom has to be used as soon as
it has been produced and then safely disposed. In case the procedure requires radionuclide
with long half-life (i.e. ®*Cu), various techniques have to be applied to conserve humidity
such as the refreezing of the phantom after each use. This procedure has been performed
by others with MR PVA phantoms but in this case an increase of Young’s modulus was
observed (Duboeuf et al., 2009).

The reproducibility of motion is satisfactory. In particular, the deformation error is
lower than 1 mm. On the other hand, the motor unit introduces additional errors at the fully
uncompressed position. This indicates that the repositioning of the uncompressed phantom
is less accurate at the edges. For that reason, it is recommended to keep the phantom with a
small compression during scan (e.g. 2 mm).

The alteration of the freeze-thaw process contributed to the creation of a compartmen-
talized phantom, capable of performing non-rigid motion and visible by PET and MR. Fur-
thermore, because of the variations to the preparation procedures of this phantom, an het-
erogeneous signal is observed in the MR images. The additional structure provides a more
realistic environment to validate registration algorithms for motion correction. Eventually,
the use of a long half-life isotope such as 64Cy, could avoid the need to alter the standard
protocol, with dehydration remaining a limiting factor.

The size of the PET-MR PVA cryogel phantom is an important aspect. The current
protocol is oriented towards the use of PVA inside small animal imaging systems. The
diameter of the PVA cryogel is comparable with the diameter of a rat. In order to consider
constructing a phantom for a human scanner, the stability of the material under its own
weight must be considered. There are several options, of which two appear to be the most
favourable: (i) The use of higher PVA concentration, or (ii) the use of rigid supporting

materials. Of these, the second is more realistic as it more closely represents the anatomy of
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a living organism, where the soft tissue is supported by stronger connective tissue and the
entire structure is located upon a rigid structure.

The use of the PVA cryogel phantom for PET-MR studies is the initial step. The most
significant part of this study has been to overcome the limitations of using locally rigid
moving phantoms, which was the classical method used in a number of previous studies.
The nature of tissue deformation and how this is modelled, e.g. by a process involving
a registration algorithm, maybe useful in the development of procedures to correct PET
images for the effects of motion using MR-derived motion fields (Gigengack et al., 2012).
After applying this deformable motion inside MR - a hostile environment for motor units -
the potential use of it could be expanded in SPECT-MR/CT and Ultrasound/MR for motion
studies. The possibility of mixing PET-SPECT-MR-CT contrast agents or even the change
of PVA concentration could lead to creation of customizable phantoms with a vast range
of structures. An additional advantage of this phantom is the geometrical reproducibility
which results from using the same moulds. With a reproducible structure, the experimental
results will also be more reproducible.

Artefacts upon MR image are important to be acknowledged and accessed. The biggest
artefact upon an MR image is at the bottom of the phantom. This is visible in MR (Figure
3.15) but the corresponding CT image does not give any deterioration (Figure 3.13). There
are no evidence of how it is formed. The same effect is visible in all the phantoms created
with this mould. In order to answer this conclusively, more investigation has to be performed
upon the freezing-thaw process.

An aspect of a PVA cryogel phantom that can be investigated in further detail is the size
of the smallest object we can create. This aspect requires future studies.

The potential uses of PVA cryogels have grown in a number of imaging modalities and
it is also used in MR for temperature dosimetry (Lukas et al., 2001) and even in radio-

therapy for internal dosimetry (Hill et al., 2002). The field of radiotherapy moves towards
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4D treatment planning with dose painting of the target region (Ling et al., 2000). Towards
this goal, PVA cryogel could be used for imaging with PET-MR/CT or ultrasound and 4D

radiotherapy treatment planning.

3.6 Conclusions

We created a phantom with simple but realistic structure based on PVA cryogel material.
This, PET-MR compatible phantom, can be utilized for evaluation of motion correction al-
gorithms. The upgrade of the standard MR phantom to be PET visible led to modifications
of the preparation procedure. The effects of the changes have been measured and taken into
account for further investigations. This procedure can be applied with various alterations.
Diverse structures with numerous shapes and sizes can potentially be created. Furthermore,
this phantom has the advantage of being deformable in a reproducible manner, an important
aspect for an investigation of motion correction of soft tissue structures. The free cus-
tomization of the cryogel phantom combined with the low cost of production provides a
valuable tool for use in applications of motion correction for a variety of simultaneous and
/ or sequential multi-modality experiments with PET-MR and beyond (e.g. SPECT, CT and

ultrasound).
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Chapter 4

Motion correction of 2D PET-MR data

with continuous motion

4.1 Introduction

The aim of the experiments described in this chapter was to develop the methods for acquir-
ing simultaneous PET and MR images from an object that is subject to non-rigid deforma-
tion continuously and demonstrate the feasibility of motion correction of PET images using
motion information calculated from the MR data. Data from a similar phantom has been
reconstructed before (Tsoumpas et al., 2010). However, this experiment was performed in
a stop and shoot mode, the data were collected over very long scan times and there was
no intra-frame motion. By controlling the motion automatically, the aim is to perform the
acquisition in real time, with realistic data rates and realistic MR sampling times and to

include intra-frame motion.
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4.2 Materials and Methods

4.2.1 PANDA II PET insert

PANDA stands for PET and NMR Dual Acquisition (Garlick et al., 1997). This original
system uses the technology of indirect detection of scintillation light. The light is transferred
from scintillation crystals in the imaging ring out of the MR magnetic field influence with
the use of 3 metre long optic fibres. There, non-MR compatible photomultipliers can be
used for the signal detection.

PANDA was upgraded to PANDA II which is constructed with 4 rings of Lutetium Oxy-
orthosilicate (LSO) crystals (Mackewn et al., 2005). This upgrade brought higher sensitivity
to the system. With the increased sensitivity, the ring diameter could increase, leading to a
ring with an interior diameter of 75.5 mm and transaxial field of view about 60 mm. The
axial field of view contains only one ring and the axial field of view is 3 mm. The resolution
of the scanner close to the centre was 1.5 mm and it dropped to 2.5 mm towards the edge of
the field of view. The scanner was used in conjunction with a Philips Achieva 3T clinical
MR scanner. The optical light is detected by 8 Position Sensitive Photomultipliers with 64
channel each. The read out is processed and stored as list mode events. These listmode
events contained the two crystal coordinates and the time stamp for each coincident event.
The coil used for this scanner was a Philips sense head 8 channel coil. Figure 4.1 presents

the PANDA PET insert and the placement of the object to be imaged is shown in figure 4.2 .

4.2.2 Phantom and Motor unit

A PET-MR phantom capable of non-rigid deformation was used (Tsoumpas et al., 2010).
This phantom, as presented in figure 4.3, consists of a rotational part (external ring) and a
static part (internal disk). The external ring rotates rigidly, but the overall deformation of the

phantom follows a non-rigid transformation. The phantom is divided into three groups of
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PET front
endin MR

3.5m long optical
fibres

RF shielded box
containing PET
PMTs

Fig. 4.1 PANDA 1l insert with the Philips Achieva 3T MR scanner. (Mackewn et al. (2005),
© IEEE 2005)
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Fig. 4.2 Concept design of a PANDA II acquisition. (Mackewn et al. (2005), © IEEE 2005)

rods with diameters of 3, 4 and 5 mm. For this study the phantom is filled with '3Fluoride,

water and colouring ink.
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Fig. 4.3 CAD representation and physical image of the rotational phantom. In this phantom
the exterior part rotates freely around the interior static part with 360 ° freedom

The system has been modified such that continuous variable motion can be transmitted
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during PET-MR acquisitions. This is achieved with the use of a carbon fibre rod and a
stepper motor (Sanyo Denki CO., Ltd.). This stepper motor gets the signal from a Phidgets
stepper driver, which is controlled via USB by a Macbook Pro. A specific C++ function was
created for this study, where the Phidgets stepper motor dictates the period and the amplitude
of the motion. For this experiment, the motion applied is rotational with the angle varying
in a sinusoidal pattern, with period of 5 s and total rotation of 20°. This displacement
corresponds to 8 mm average displacement for the hot rods. The stepper motor is placed
at the edge of the MR table, firmly attached to the carrying trolley for MR safety reasons.
Because the stepper motor cannot work inside the magnetic field, it was placed as far as
possible from the MR scanner. A 3.5 m carbon fibre rod was used to connect the rotational
part of the phantom to the stepper motor and motion is transferred through it as Figures 4.4

and 4.5 illustrated.

MRI he&d coil

WY

[ Stepper
motor

Carbon fiber shaft

J

Y

35m

Fig. 4.4 Experimental setup for the rotational phantom, the phantom is shown in the inset
box. The PANDA scanner encloses the rotational phantom where, through the carbon fibre
rod, a sinusoidal motion is provided by the stepper motor to the external ring of the phantom.
(Soultanidis et al. (2011), © IEEE 2011)
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Fig. 4.5 PET-MR experimental setup with the PANDA II insert, the Philips Achieva 3T
scanner and the rotational phantom, driven by a 3.5 m carbon fibre rod. (Soultanidis et al.
(2011), © IEEE 2011)

4.2.3 Synchronization and alignment of PET and MR co-ordinate sys-

tems

Temporal synchronization was not performed at the hardware level for the PANDA 11 insert.
The method used to synchronize the acquisitions was simply to initiate the PET and MR
scanning at the same time, manually.

The alignment of the PET and MR co-ordinate systems was performed with use of the
rigid registration algorithm of IRTK applied to the phantom data itself. The registration
target area included only the non-rotating interior of the phantom itself. This transformation

was then used to align all images before motion correction was applied.

4.2.4 MR and PET acquisition

The MR acquisition was performed with the sense 8 channel receiver head and neck coil.

The spatial resolution of 1 x 1 x 10 mm, was achieved with TR/TE of 3.4 ms/1.5 ms and
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60 ° flip angle. The temporal resolution achieved with this MR scan for one dynamic image
frame is 0.133 5. The acquisition lasted for 30 min in total, where PET and MR images
were obtained simultaneously. The PET and MR data were gated according to phase into
16 different gates. Because the sinusoidal motion had a fixed period of 5 s, PET and MR
data were segmented every 0312.5 ms (16 gates x 0312.5 ms = 5 s) and rebinned into
the corresponding gates. Phase gating ensured the equal distribution of time consumed
for each frame, leading to no need to take under account the acquisition duration during
motion correction. By keeping steady sinusoidal signal with the stepper motor, positioning
reproducibility within phase is secured. The PET images were reconstructed with use of
filtered back projection (FBP), provided by the STIR Library.

The method followed for motion correction is the Reconstruct-Transform-Average (RTA)
with FBP reconstruction . The motion information was extracted from the MR with use of
the hierarchical adaptive local affine registration toolkit, developed by Buerger et al. (2011).
The applied methodology is described in figure 4.6. The data were divided into 16 different
gates. Verification of synchronization between PET and MR is obtained by comparison of
the reconstructed PET and MR images. After the verification that PET and MR are in the
same phase, each MR gate is registered with the reference MR gate (position zero) in order
to obtain the transformation matrix, required to correct the corresponding PET gate. The

corrected PET gates were then averaged to obtain the final motion corrected image.

4.3 Results

Figure 4.7 gives some examples of the motion correction for a single PET and MR gate. This
process has been applied to 16 gates and the corrected gates were averaged are presented
in figure 4.8. In figure 4.8, the results of the motion correction can be compared, not only
with the uncorrected PET image but with a similar, motionless acquisition. Line profiles are

drawn through the three regions of interest for this picture and presented in figure 4.9.
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Fig. 4.6 Motion correction methodology
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The motion correction can be characterized by measuring the peak to valley ratio in line
profiles through the hot rods. The peak to valley ratios for static, blurred and corrected

images and for different rod diameters are shown in Tables 4.1, 4.2 and 4.3.

Gate 1 Referencs

Registration

Corrected
Gate 1

Fig. 4.7 Demonstration of a single frame motion correction, where MR Gate 1 is registered
to the reference MR gate to obtain the motion field. The transformation is then applied to
the corresponding PET gate

Fig. 4.8 PET images of the (a) uncorrected, and blurred PET data, compared with the (b)
corrected PET, after using MR motion information and (c) similar acquisition, without mo-
tion. (Soultanidis et al. (2011), © IEEE 2011)

103



4.3 Results

Intensity

— Static
—— blurred
—— Corrected

50 60 70 80 90
mm

Fig. 4.9 Line of profile for the Smm diameter cylinders
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Fig. 4.10 Line of profile for the 4mm diameter cylinders
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Fig. 4.11 Line of profile for the 3mm diameter cylinders
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Table 4.1 Peak-Valley Intensity Ratio for 5 mm diameter

Mean | Std Error
static 2.60 0.28
blurred 0.99 0.07
Corrected || 1.64 0.09

Table 4.2 Peak-Valley Intensity Ratio for 4 mm diameter

Mean | Std Error
static 2.07 0.32
blurred 1.03 0.11
Corrected || 1.35 0.09

Table 4.3 Peak-Valley Intensity Ratio for 3 mm diameter

Mean | Std Error
static 1.53 0.27
blurred 1.05 0.07
Corrected || 1.07 0.06

4.4 Discussion

In this experiment, the main goal is to explore the methodology for a simultaneous PET-MR
experiment with continuous motion. The first goal was to generate controlled motion. The
motor unit has been developed to be compatible with the magnetic field and for that reason,
it was placed as far away from the magnet as the photomultiplier box. The continuous
motion of the phantom generates motion artefacts and intra-frame motion. This intra-frame
motion is visible in figure 4.7, where the cylinders of the MR image in Gate 1 are slightly
blurred.

Because we used a sinusoidal motion pattern, the post processing of the data was an
easy task, because the phase was predetermined, and the necessary step was to create the

temporal segments (i.e. gates). For that reason, we chose to perform the gating according to
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phase and not amplitude.

The limitations of the scanner do not give the opportunity to use iterative reconstructions
and investigate alternative methods of reconstruction and motion correction. For that reason,
we followed the RTA methodology for correction. By taking into account visual representa-
tion and the peak-valley ratio, motion correction is mostly successful for the 5 mm rods, less
successful with 4 mm rods and not successful with the 3 mm rods. Even if some recovery
of the intensity of the rods is visible in the individual reconstructed images, the blurring
due to the averaging of multiple gates brings blurring to the corrected images. Furthermore,
according to calculations, the phantom’s maximum velocity is 5 mm/s approximately. This
means that a frame of 312.5 ms, the cylinders travel for 1.57 mm. This, intra-frame motion
contributes to the elongation of the cylinders in the direction of motion, and it is not possi-
ble to correct for this. The method to overcome this problem could be the increase of the
number of gates, but each gate would have poorer statistics and the final motion correction
would not be usable. Probably, motion compensated image reconstruction could provide
better perspectives (Qiao et al., 2006). Nevertheless, the final results are comparable with
the results presented by Tsoumpas et al. (2010), by using the same scanner in a stop and

shoot experiment.

4.5 Conclusions

In this section was performed an experiment with continuous motion. This helped to es-
tablish an experimental methodology, for more realistic simultaneous PET-MR experiments
which includes hardware and data handling methodologies, and emphasize important as-
pects such as the synchronization by hardware and accurate spatial alignment of structures
not identically visualized with these modalities. Motion correction was applied at the PET
data and an improved delineation of the longer diameter structures is clearly seen. Improve-

ment can also be seen in line profiles, but again this is less clear for the smaller features .
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This is attributed mainly to the fairly poor signal to noise ratio with the PET scanner and the

intra-frame motion.
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Chapter 5

Motion correction for 3D PET-MR data

with a limited field of view PET insert

5.1 Introduction

The aim of work described in this chapter is to demonstrate the implementation and eval-
uation of simultaneously acquired MR motion information to motion correct dynamic PET
images, taking into account a more realistic 3D motion acquisition and correction. Exper-
iments have been performed using the non-rigid phantoms described in the chapter 3 and
using the HYPERimage PET insert. This builds on the experiment designed in chapter 4
and extends it to doing a fully 3D dynamic acquisition and using an elastically deformable

phantom.
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5.2 Materials and Methods

5.2.1 Scanner

The HYPERimage scanner is an MR-compatible PET insert designed to be paired with the
table of a Philips Achieva 3T MR scanner (Schulz et al., 2009). The purpose of the insert is
the establishment and development of studies with small animals for simultaneous PET-MR

acquisition.

Fig. 5.1 HYPERimage PET insert

The PET element of the scanner consists of Lutetium Yttrium Orthosilicate ( LYSO )
crystals, coupled with Silicon Photomultiplier (SiPM) detectors, for higher magnetic com-
patibility. The crystals used are composed of a matrix of small elements, bound together.
This is a 22 x 22 crystal array where each element’s dimensions are 10 x 1.3 x 1.3 mm?.
The basic component of the PET system is the stack. Each stack of the scanner consists of
three components. The crystal block, the ASIC tile and the interface tile - FPGA module. A

group of 6 stacks makes up one ‘module’ and the PET annulus is made up of 10 modules.

In the prototype system used, each module is only populated with two stacks out of the
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Fig. 5.2 HYPERimage PET insert inside the Philips Achieva 3 Tesla MR scanner

maximum capacity of six stacks. Signals are transferred to and from modules via optical
fibre for minimum magnetic interference. Each module is shielded with a 50 pm thick cop-
per RF - screen. The transverse field of view is 160 mm diameter. The potential axial field
of view for this scanner is 99 mm but, as the modules are only populated with two stacks
each, the axial field of view for PET is only 33 mm. The spatial resolution of the scanner is
about 1.6mm or better (Schulz et al., 2011). Recent experiments Literature mention that the
FWHM is just under 2.3 mm in the transaxial direction when single slice rebinning (SSRB)
and 2D filtered back-projection (FBP) is used for reconstruction, and 1.3 mm FWHM when
resolution modeling is employed (Mackewn et al., 2015). The electronic parts are cooled
with liquid and air cooling. Compressed air of 1 bar pressure flows around the electronics
and the stacks are cooled down with continuous flow of cooling liquid at 15 ° C. The com-
ponents of the insert inside the MR room include in addition to the PET itself, the power
unit, providing individual power to each SPU. The long optic fibres lead the signal outside
the MR room to the control room, where no magnetic interference is present. Also, outside

the MR room is the water cooling system and the data acquisition computer. The air cooling

112



5.2 Materials and Methods

is provided by the hospital supply, inside the MR room.

. | Stack: SlPM/ASIC/Interface-Tlle\
| Fluid Cooling }

Housing |

Fig. 5.3 HYPERimage module with one stack installed. (Schulz et al. (2009), ©IEEE 2009)

Raw data from the PET insert is passed to a DELL server (128 GByte RAM, 4 x AMD
Quad Core CPU). The data are stored and processed in order to give a data stream of detec-
tion coincidences in listmode format. This listmode format contains information regarding
the crystal/stack/module of origin, along with timing and energy information. The file is
formatted as a binary file with no header file. For information about crystal, stack or mod-
ule, a short integer is reserved. A floating point, 32 bit number is reserved for the timing
information. In total, 20 Bytes are reserved for each event. The acquisition and monitoring
of the scanner is performed with "HYPERION’ - software designated for this generation of
PET inserts. Through HYPERION, the user can perform all necessary functions the scanner
can provide and also monitor the system. This software is located in a PC, separate from
the DELL server but connected through Ethernet cable.

The RF-coil used with this PET scanner is attached to the scanner between the perspex
bed and the PET modules. It is equipped with a 2-channel, 16 element transmit/receive
birdcage coil. The transaxial field of view of the coil is 140 mm and the axial 120 mm. The
signal is transferred to the MR with a custom made acquisition unit. Because of the large

field of view, this MR coil is particularly suitable for imaging rabbits.
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For simultaneous acquisitions, the scanner is placed on top of the MR patient bed and
secured with use of plastic screws. With the use of the MR positioning lasers, the centre
of the PET scanner’s field of view is aligned approximately with the magnet isocentre. Af-
ter placing the PET scanner inside the MR gantry, further MR table movement is avoided.
This helps the conservation of alignment of PET with MR during the various experiments.
Because of the nature of the scanner, an alignment test should be repeated in each experi-
ment. The complete system with the power supply and optic fibres connected is presented
in figure 5.2. Figure 5.4 is a representative image of a simultaneous acquisition for the HY-
PERimage scanner. The phantom contains small spheres and it has been reconstructed with
OSEM reconstruction ( 5 subsets, 7 iterations). Resolution modelling was used during the

reconstruction (Mackewn et al., 2012, 2015).

Fig. 5.4 Simultaneously acquired images of a phantom containing four small spheres with
internal diameters of 3.95 mm, 4.95 mm, 6.23 mm and 7.86 mm. a) MR image, b) fused
PET/MR image and c) PET image

5.2.2 Importing HYPERimage raw data into the STIR library

STIR reads sinograms in interfile format or ECAT files. The lack of sinogram output by
the HYPERimage scanner led to the need to convert the data to this format. The data con-
version from the raw hyperimage listmode file format to sinograms, compatible with STIR
library (version 2.2), was achieved by customizing the relevant sub-routines of the STIR

library. The modified function is based upon the algorithm that converts GATE data into
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Fig. 5.5 3D representation of HYPERimage’s stacks and modules. (Salomon et al. (2012),
©IEEE 2012)
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STIR sinogram format. The implementation includes the creation of a lookup table, which
converts the crystal/stack/module orientation into sinogram coordinates and maps each Line
of Response to the corresponding sinogram location. During this conversion of the listmode
data, the gap between modules must be taken into account and this was addressed by creat-
ing additional non-active crystals in order to fill the gaps. The gaps are treated in this way
because of limitations in the reconstruction algorithm. STIR assumes that a PET scanner
has a cylindrical form, where the detectors are equally spaced around the perimeter of each
ring. If the areas with no crystals are not included, crystals will be assigned to locations
where there should be gaps, and the final geometry is deformed. Therefore, the areas with-
out detection crystals are also considered part of the scanner and the geometry. The gap
between each module is 6.56 mm, as it is presented in 5.5. Given that each crystal has 1.3
width, the best approximation is the addition of 5 ”inactive” crystals into the sinogram be-
tween modules, in order to preserve the scanner’s geometry in reconstruction. The effect
of having "virtual" crystals that do not acquire any data must be dealt within the rest of the

reconstruction process.

5.2.3 Normalization of PET data

A common problem with the PET detectors in general is the non homogeneity of the de-
tection process. Some of the detectors may be more sensitive than others. This fluctuation
of sensitivity has to be compensated and corrected during PET reconstruction. The recon-
struction provided with the PET insert is optimized for self normalization. This feature is
not available in STIR algorithms, where the normalization scan has to be taken into ac-
count. For this scanner therefore, a normalization sinogram has been constructed with the
following method.

As figure 5.6 describes, a homogeneous phantom with diameter of 94 mm and width 40

mm was scanned. The phantom is presented in figure 5.7. The phantom was placed in the
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Fig. 5.6 Workflow for the production of normalization sinogram

isocentre of the scanner. The known dimensions of this phantom were used for the genera-
tion of a computational phantom which is forward projected with fwdtest STIR utility. By
forward projecting the ideal emission and attenuation factors, we simulate an ideal acquisi-
tion of the phantom. The normalization sinogram is created by dividing the real acquisition
of the homogeneous phantom with the ideal phantom. An addition to this procedure is the
gap treatment during the normalization phase. A high value of normalization will suppress
any signal from the gap areas and it will enhance the surrounding signal. For STIR, the
value of the gaps is recommended to be higher than 5 x 10°.

This sinogram is used for the normalization of PET sinograms during the reconstruction.

It is simply multiplied with the attenuation coefficient of the sinogram under normalization.
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Fig. 5.7 Homogeneous phantom for normalization scan

5.2.4 Creation of phantom motion within the PET-MR field of view

In order to evaluate effectiveness of simultaneously acquired MR to correct for effects of
motion on PET images , it is necessary to acquire PET-MR data from a moving non-rigid
phantom within the PET-MR field of view. Various approaches to this problem were im-
plemented in the experiments performed with both the PANDA and Hyperimage scanners.
The motion generation is a key factor of the methodology and a computer controlled mo-
tor unit can help apply specific motion patterns to the phantom, capable for methodology
evaluation. A motor unit is not only responsible to provide a pattern of motion but also to
imitate realistic motion patterns. The realism is determined by the similarity of a motion
pattern with one observed in humans. Furthermore, the MR environment is inhospitable for
ferromagnetic and conducting equipment, including electrical motors. The goal of each of
these motor units is to transfer motion inside the MR, with high precision and as safely as

possible, causing negligible interference to the PET or MR operation.
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For the HYPERimage PET insert, PVA cryogel phantom acquisitions are the most ap-
propriate. As described in a previous chapter, the motion of the PVA cryogel cannot be
considered as rigid. The motor unit for this case has to provide and maintain the appropri-
ate deformation to the phantom. The motion can provide a crushing effect, as described in
Chapter 3, or any other stress, as deemed necessary for the experiment.

The initial step requires the use of a stepper motor. Where continuous motion is not
important, motors with low torque could be utilized for stop and shoot acquisitions. In these
acquisitions the motor has to get to a certain position and stay there for an amount of time.
The stepper motor used was a Sanyo Denki at 1A functional current. This motor unit has
been described in Chapter 3. The main purpose of this stepper motor for the PVA phantoms
is the stabilization in different positions and the acquisition of various static MR and PET
images. The transfer of motion is performed with use of a hydraulic system.

For reproduction of continuous motion, a servo motor has been utilized. The experi-
mental setup includes a Parker servo motor (N series, 3 A. current, VAC) driven by a Parker
Gemini GV servo driver. By providing one digital pulse to the servo driver, the motor moves
for one step. A data stream of pulses can generate continuous motion of the motor. The mo-
tion signal is given by an Arduino MEGA 2560 (D’ausilio, 2012), a USB based hardware
I/0 unit with digital and analogue interface capabilities. It is programmable and can perform
autonomous tasks, without continuous connection with a computer. Here, the Arduino was
programmed to receive via USB the target position and calculate speed, number of iterations
and execute the data transmission to the servo driver. More specifically; Arduino receives a
4 bytes integer number every 0.1 s. This number is the target position for the servo motor.
By already knowing the origin and the destination point, the Arduino calculates the number
of necessary steps or revolutions, as known to servo motors and divides the number with the
time interval of 0.1 s in order to find the period of each step. The orientation of rotation is

calculated also by subtracting the origin and destination position. Finally, the Arduino trans-
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mits the step action signal, along with the orientation of rotation. The code for the Arduino
can be found in Appendix A.2. The 4 byte coordinates are finally transmitted to the Arduino
by a homemade Java script via USB. These coordinates are given by a pre-produced wave-
form, depending on the experimental needs. The signal transfer was repeated every 0.1 s.
This setup can reproduce any custom motion patterns with time interval of 0.1 s per step.
However, this time interval may change depending the requirements. Also the Java script
can be found in Appendix A.3. Figure 5.8 shows the chain of information passing from the
computer to the motor unit.

The servo motor transfers the motion to the phantom through a hydraulic pump, de-
scribed in Figure 5.9. The design of this pump is similar to a "pump jack", and transforms
the circular motion from the servo motor into reciprocating motion. For highest durability,
the frame of this pump is made out of metal. As a hydraulic pump, 10 ml syringe has been
used and mounted upon the metallic structure. This pump was connected with a long 5 m
PVC tube, capable to transfer the hydraulic pressure inside the MRI gantry. This PVC tube
was 4 mm thick wall thickness of 1 mm. The hydraulic fluid used in this occasion was
deionized water.

The use of hard plastic coated tube keeps the compression losses to a minimum. The
use of similar water pistons at both ends of the hydraulic system ensures a 1 to 1 ratio
of displacement. Figure 5.10 represents the two different receiver models used for these
experiments. The main principal is the translation of pressure into deformation of the target.
The first design was used for cylindrical phantoms with small diameter and the main motion
can be characterized by expansion of the walls while compressed. The second design is for
phantoms with large diameter. In this case, the structure helps the imitation of diaphragm

motion.
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Fig. 5.8 All the stages for signal transfer. From the computer to Arduino, to the Parker
Gemini GV servo driver to the servo motor and the hydraulic pump
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Fig. 5.10 Hydraulic pump for the two different phantom designs
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5.2.5 Phantom and design adaptation

Figure 5.10 presents the two different phantoms generated for these experiments. Phantom
A, used in the stop-and-shoot experiment, is similar to the one presented in previous studies
with a hot radioactive lesion in the centre of it and a non-radioactive background. Phantom
B, used in the continuous motion experiment, has a different design. The diameter is bigger,
the height is smaller and it contains different sizes of small spheres from 3 to 7 mm in di-
ameter. Each sphere has four times higher radioactivity concentration than the background.
The two phantoms also undergo different motor-driven deformation patterns. phantom A
undergoes a simple compression, whilst phantom 2 undergoes a non-uniform compression
(similar to the motion of the diaphragm) with the centre of the phantom moving with the
highest amplitude. Figure 5.10 demonstrates each type of phantom and the corresponding

deformation under compression
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Fig. 5.11 Cryogel phantom with dimensions dedicated for small animal imaging systems
with (A) a single hot region phantom with non-radioactive background and (B) a multiple
lesion phantom and 4 to 1 lesion to background ratio
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5.3 First experiment: 3D PET-MR with stop-and-shoot ac-
quisition

As an early step into the use of the HYPERimage scanner and prior to the synchronization
and registration methodology was available, the stop and shoot experiment was performed.
In this solution, a cylindrical phantom, with diameter of 4 cm and height of 5 to 6 cm
has been placed in different degrees of compression and measured with the HYPERimage
scanner. The resulting PET and MR images have been used for motion correction with two

correction methodologies.

5.3.1 Experimental set-up

For this experiment, the HYPERimage PET insert was used along with the Philips Achieva
3T MR. No specific motion pattern was necessary because of the nature of the experiment.
As in previous demonstrations, a stepper motor (Sanyo Denki CO., Ltd.) was used to gen-
erate the increments of the motion, from uncompressed to fully compressed status. Totally,
9 gates were acquired in both PET and MR. The PET acquisition for each gate lasted two
minutes, after this time period, the phantom was moved to the next position and the next
acquisition was initiated for PET and MR. For each of these 9 positions of the phantom, an
MR scan was performed using a gradient echo sequence for dynamic acquisitions with 1.2
mm isotropic spatial resolution and 0.515 s temporal resolution for a total volume acquisi-
tion (TR / TE 2.4 ms / 0.85 ms 20° flip angle). Spatial alignment of PET and MR co-ordinate
systems was performed manually, with use of visual landmarks upon the phantom such as a
1 mm diameter glass rod, visible in both PET and MR. After acquisition, decay was taken

into account and used to correct the intensity of each acquisition.
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5.3.2 Motion correction

The motion estimation from the MR gates was performed with use of the hierarchical adap-
tive local affine registration toolkit, developed by Buerger et al. (2011). The methodology
followed the motion estimation and lead to PET motion correction is described in Tsoumpas
et al. (2013) with use of STIR library (version 2.2). Eight of the nine MR gates are regis-
tered to the reference gate and the resulting motion fields were used for motion correction
of the PET images. The flow chart of actions required for motion correction is presented
in figure 5.24. From this flow chart, some features are absent in this experiment. These
are the spatial alignment and the temporal registration. In this experiment, the automatic
synchronization hardware was not introduced and the synchronization was performed with
synchronised initiation of the acquisition. Temporal registration will be analysed in detail

in chapter 5.4.3.

5.3.3 Results

After reconstructing and registering PET and MR data, the fused image is visible in figure
5.12 in the reference position. Figure 5.13 provides visual representation of the phantom in
extreme positions. The motion correction with RTA and MCIR provided the results shown
in figure 5.14. The images provided are generated after 3 iterations of the OSEM. The 3
iterations were chosen as a standard stopping limit for typical clinical PET data.

As presented in table 5.1, in this case the most extended position of the phantom has been
taken as the reference. The effect of motion and the effectiveness of the motion correction
algorithm is quantified here by measuring the FWHM (full width at half maximum) and
FWTM (full width at tenth maximum) of the radiotracer distribution in the direction of
the highest motion amplitude. Both RTA and MCIR clearly recover the FWHM from the
reduced value in the blurred image back to that of the reference image. The FWTM was

also the same in the reference and corrected image, but it was not reduced in the blurred

125



5.3 First experiment: 3D PET-MR with stop-and-shoot acquisition

PET PET-MR MRI

Fig. 5.12 Stop-and-shoot PET-MR acquisition at Gate 1. (Soultanidis et al. (2011), ©IEEE
2011)

Uncompressed compressed

RTA MCIR

Fig. 5.14 Motion correction of stop-and-shoot PET data, with representation of a single gate
(reference gate), the blurred by motion gate and the motion corrected PET with RTA and
MCIR
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Fig. 5.15 line profiles for motion correction

Table 5.1 profile line FWHM and FWTM

FWHM | FWTM

ref 18.2 mm | 25.1 mm
blurred || 16.7 mm | 25.2 mm
RTA 18.2 mm | 25.9 mm
MCIR || 18.5 mm | 25.1 mm

5.4 Second experiment: 3D PET-MR with continuous mo-
tion

The objective of this experiment is to perform simultaneous acquisition of a moving PET-
MR phantom with both modalities and determine the the accuracy of motion correction
in terms of image quality, quantification and creation of artefacts. The phantom selected
for this experiment was the Polyvinyl Alcohol for its elastic properties and deformation
abilities. The motor unit for this experiment is the PARKER servo motor, controlled by an
Arduino MEGA for realistic and continuous transfer of motion. Finally, the scanner for this

experiment is the HYPERimage scanner inside the Philips Achieva 3T MR.
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5.4.1 Motion pattern

This real time continuous motion experiment has a variety of applied patterns. Whereas a
sinusoidal motion can be created easily, real cases tend to have variations in repetition period
and amplitude. Studies have been conducted of human respiratory motion patterns and the
obtained information has been used as an input for these experiments. In particular, a study
by Liu et al. (2007) investigates the common features of a human breathing pattern, during a
PET scan. In order to investigate the effect of different displacement versus time profiles, the
applied motion patterns are extracted from respiratory motion of human patient during PET
acquisitions. These respiratory patterns are representative of three categories. The effects
of each motion pattern and the effectiveness of motion correction upon these have been
investigated on simulated datasets by Polycarpou et al. (2014). Figure 5.16 demonstrates
three different motion patterns. The first motion pattern ( pattern A) consists of 60% of
the population and is characterized by long quiescent motion periods. The second motion
pattern ( pattern B) has regular quiescent motion periods and the third pattern ( pattern C)

has more random and baseline shifts (Polycarpou et al., 2014).

5.4.2 Spatial alignment

For an MR-compatible PET system that is not permanently integrated with in the MR scan-
ner, the spatial alignment between the PET and MR may change slightly each time the PET
insert is installed. The placement of the insert into the MR first determined by visual assess-
ment. The centre of the PET insert field of view will not be always aligned with the centre
of the MR field of view. Hence, for each experiment a new transformation matrix has to be
created by a registration phantom. The process for acquiring registered data with a 3D PET
insert is to use a registration phantom with no need for accurate placement of the PET inside
the MR. After the registration phantom acquisition, the obtained transformation is applied

to the experimental data. Therefore, the important components are a suitable phantom and
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Fig. 5.16 Representation of breathing curves (top) and frequency plot (bottom) for (a) long
quiescent motion periods, (b) regular quiescent motion periods and (c¢) for random baseline
shifts (Polycarpou et al., 2014)

the registration methodology.

A phantom design for registration is presented in Chapter 2.4.1.2, where Ng et al. (2010)
method is analysed. Each of these tubes is very fragile because of its small diameter and
individual fill all of these tubes increase make the preparation very complex. For simplifi-
cation, we connected the ends of each glass tube with rubber tubes. This method simplified
the filling process, allowing every tube to be filled simultaneously and with a uniform con-
centration. With this concept and the use of a syringe mounting tube, spillage probabilities
are minimized. The result is presented in Figure 5.17.

The straight glass tubes are made of glass with 1 mm inner diameter, and individual
angles between each tube vary in order to give a non-repetitive pattern of cross-sections in
PET and MR imaging. The phantom can be injected with radiotracer and MR contrast agent
with total volume of 1 ml. The MR contrast agent is important for this scanner because the
volume of liquid is very low and the coil incorporated into the HYPERimage insert ( and

which must be used for this alignment measurement) cannot collect a meaningful signal for
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this small volume of water alone.

In the alignment procedure we have used here, the PET and MR fields of view, as defined
by the co-ordinate systems in the PET and MR reconstructed images, have different origins
and orientations relative to each other. The centre of the PET field of view is a fixed point
defined by the detectors. The MR on the other hand can obtain a 3D volume wherever within
the field of view as determined by the user. The offset of this centre is known during the MR
acquisition. Furthermore, the orientation of image in MR is determined by the user for each
acquisition. The MR user is free to acquire data with any orientation possible with axial,
tangential or coronal slice selections. The PET and MR images may have a large distance
between them and their views might be rotated. If a rigid registration algorithm is applied
directly to this case, a mis-registration is possible to happen. The registration algorithm may
rotate the images in a way that the registration would not provide any sensible result. With
the help of the registration phantom, the first step is to align visually the PET image with
the MR according to the centre of the field of view and the orientation. After the application
of the first transformation, a second step is the registration of PET with MR by using rigid
registration algorithm. With this registration phantom, mutual information is utilized for the
registration between PET and MR. All the transformations are applied to the MR images.
Every step described previously is performed with use of the IRTK software (Schnabel et al.,
2001).

The two transformation steps are applied to each of the MR images. Additionally, be-
cause the centre of MR acquisition might have an offset comparing to the MR images of the

registration, the difference is implemented to the MR image as an additional transformation.

5.4.3 Temporal synchronization of PET and MR acquisitions

Accurate temporal alignment of the acquisition from PET and MR is essential for MR-based

PET motion correction. In the case of a PET insert, the modalities are operated indepen-
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Fig. 5.17 Spatial alignment phantom and sample images. (Soultanidis et al. (2013b), ©IEEE
2013)
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dently and are controlled by different computers. A communication protocol between the
two modalities could share the timing information. The solution is to include the temporal
information from one modality to the next. If the systems do not provide an electrical in-
terface, the temporal information has to pass into the acquisition data stream that allows the

independent PET and MR acquisitions to be synchronized (Weissler et al., 2015b).
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Fig. 5.18 PET module and detection coil. Exploded view with the details of the coil.
(Weissler et al. (2015b), ©IEEE 2015)

Each module of the HYPERimage scanner has a detection coil for gradient variations.
When the variation of the MR gradient field reaches a threshold, a trigger pulse is stored
by the PET insert with a time-stamp telling the exact time the gradient change occurred.
By acquiring this information, we have the capability to allocate the gradient change and
correlate the PET time-stamp. Figure 5.19 demonstrates the correlation between a standard
gradient echo sequence and the outcome, as captured by the gradient sensors inside the PET
insert.

The experiment performed here has a specific complication. The MR protocol cannot

capture more than 300 dynamic images per acquisition, because of hardware safety reasons.
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Fig. 5.19 Detail of sequence diagram (top) from a standard gradient echo survey sequence
and corresponding data of the gradient detection circuit from one SPU (bottom)

Given the fact that each dynamic frame lasts for 0.515 s, each acquisition can last a maxi-
mum of 154.5 s (almost 3 min). Therefore, multiple acquisitions for each experiment have
to be performed for a sufficient experiment. In the MR, none of the existing file formats,
dicom or PARREC, has the possibility of storing the time stamps accurately. This is solved
by synchronizing each MR acquisition individually with the PET acquisition. As figure
5.20 describes, with a continuous PET scan, multiple MR scans can be initialized in parallel
with a limiting factor being the gradient capture at the beginning of each acquisition. We
switch on the gradient sensor for 10 s and during this time period we start the MR. The
first gradient change of this acquisition corresponds to the beginning of a new dynamic ac-
quisition. The use of a 10 s time window for the gradient sensors serves another purpose.
The firmware of the scanner provides higher priority to sensor measurements than the ac-
tual photon acquisitions. With the gradient sensor active, 50 % of the PET events are not
transmitted.

The validation of synchronization is obtained from the comparison of the PET and MR
motion information. Where as the MR provides motion information through an image anal-

ysis procedure (Schleyer et al., 2013), PET provides motion information through the total
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Fig. 5.20 Protocol for synchronizing PET and MR acquisition — the sensor in the PET
scanner that detects the MR gradient is only switched on at the start of each simultaneous
acquisition

number of counts per frame. For each MR frame, the motion amplitude was calculated with
a cross-correlation technique (Sachs et al., 1994). For the corresponding PET frame, the
total number of coincidences was obtained from the listmode file. Figure 5.21 demonstrates
the motion, as captured by MR and PET. The amplitude alignment is not so important as the
temporal alignment of local minima. Even no viable analysis can be produced reliably by
this plot, for these 50 second it ha been found that the local minima of PET and MR derived
signal had maximum difference of 1.03 s.

The immediate correlation of motion amplitude and number of counts is presented in
Figure 5.22. The trendline upon the plot is a 4" degree polynomial equation, where the
coefficient of determination R 2 is the highest at 0.534. This value is not high enough for
several reasons. Initially, it can be observed that the increase of counts does not follow
the increase of displacement above 6 mm. Additionally, PET data are scattered and any
correlation of them becomes difficult. Therefore, this method fails to provide a rigorous
validation of synchronization between PET and MR because of the high noise levels in
PET data and data behaviour. However, an interesting observation illustrated in Figure 5.21
is the relatively good correlation between motion signals that could be extracted from the
counts and the motion amplitude. However, PET datasets are very noisy in order to deduce

a correlation coefficient, thus this observation requires additional experimental evidence
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Fig. 5.21 Motion amplitude as it is captured by PET (top) and MR (bottom)

before any conclusions are drawn. A potential cause of this result may be the scanner’s
sensitivity. This scanner, as described by Mackewn et al. (2015) has a sensitivity of 0.6%
in the centre of the scanner. This sensitivity drops more than 50% for every cm outside
the centre. Therefore, the cause might be that the higher concentration volumes crossed
the areas with the highest sensitivity at 6 mm of displacement and moved towards lower
sensitivity areas.

This method cannot give an absolute validation of synchronization between PET and
MR because of the high noise levels but it is clear that the correlation between the motion

signals, captured with PET and MR is very good.
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Fig. 5.22 Scatter plot of motion amplitude against number of counts per time frame.

5.4.4 PET and MR acquisition

The PET insert used for this experiment is the HYPERimage. The MR images were captured
with the use of the Philips Achieva 3T scanner and a two-channel, transmit-receive coil. The
motion measurement was based upon dynamic 3D images. The phantom was scanned with
temporal resolution of 0.601 s for a total volume acquisition, matrix size 240 x 240 x 162
and spatial resolution of 0.81 x 0.81 x 1.2 in mm (TR / TE 2.4 ms / 0.85 ms, 20° flip angle).

This sequence was repeated for 1200 times (721.2 s total).

5.4.5 Gating of MR and PET Data

The first acquired gradient trigger signifies the beginning of the MR dynamic acquisitions.

Once the synchronization time stamp is known, the PET data are divided according to the
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corresponding MR frames. With the duration of each frame stable and known, the time
interval for each PET frame is calculated and the corresponding events are sorted into their
corresponding frame. With this step, synchronized PET and MR images can be assigned
to gates. For this experiment, the data were divided into 8 different gates using amplitude
gating. The assignment to gates was performed by a pencil beam navigator, with motion
amplitude determined from the MR images. Theoretically, any one-dimensional array inside
a 3D image can serve as a pencil beam navigator, with no special acquisition. The pencil
beam navigator is placed parallel to the central motion plane for maximum displacement
per gate. The pencil beam navigator is extracted for each MR frame from the centre of
the phantom and the amplitude of motion is calculated with a cross-correlation algorithm
against a reference frame with the use of Matlab.

After taking into account the motion amplitude any MR images and the corresponding
PET sinograms were divided into eight different gates. Finally, we acquired the average MR
image and the total PET sinogram for each gate.

As additional information, for each MR gate, an attenuation image was created to be
used for attenuation correction. The attenuation coefficient of the PVA is known from pre-
vious studies and the phantom mask is created by applying a threshold to the MR images.
Within Matlab, knowing the shape of the original phantom, we measured the smallest MR
intensity value in a static MR image of the phantom and set this value to be threshold to
discriminate between the phantom and background. The phantom was assigned a value of
1, where the background had value equal to 0. The phantom was multiplied with the value
of the attenuation coefficient for PVA, given the Table 3.7. Figure 5.23 shows an example

of the segmented MR image.
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MRI Segmented

Fig. 5.23 An example of image segmentation for extraction of attenuation coefficient vol-
ume.

5.4.6 Motion Correction

The motion estimation from of MR gates and subsequent PET motion correction is per-
formed with use of the hierarchical adaptive local affine registration toolkit, developed by
Buerger et al. (2011) and STIR library. Seven of the eight MR gates are registered to the
reference gate and the produced motion fields were used for motion correction of the PET
images. The flow chart of actions required for motion correction are presented in figure 5.24,
starting from the phantom and finishing at the reconstruction and correction methodologies.

The motion correction of PET data was performed with two methods. The first is called
Reconstruct-Transform-Average (RTA) and the second is called Motion Compensated Im-
age Reconstruction (MCIR). For motion correction with RTA the images are individually
reconstructed and the motion correction is applied to the images which are then averaged.
In MCIR the motion correction procedure is integrated with the reconstruction, therefore
the correction is applied directly to the sinograms. The relative benefits of each motion
correction technique are described in a recent study by Polycarpou et al. (2012). The re-
construction of the PET data has been performed with use of the open source STIR library,
release 2.4 which includes both RTA and MCIR as developed by Tsoumpas et al. (2013).
The reconstruction algorithm used for this study is the OSEM (7 subsets, 5 iterations) with

the scanner normalization and the attenuation correction included (Soultanidis et al., 2013b).
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5.4 Second experiment: 3D PET-MR with continuous motion
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Fig. 5.24 Motion correction work flow for simultaneous PET and MR data with RTA and
MCIR
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5.4 Second experiment: 3D PET-MR with continuous motion

Table 5.2 Statistics of static PET acquisition

mean intensity within ROI | Standard deviation | Standard error | Volume (cm?>)

Static 1.931 0.436 0.005 0.237

5.4.7 Results

The motion reproduced inside the PET-MR system was not equally distributed between
the 8 gates. Figure 5.25 shows the frequency of occurrence of each gate, for each of the
three motion patterns, as obtained from the MR measurements. These reflect the expected

programmed motion patterns.
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Fig. 5.25 Motion estimation with use of MR data

As can be seen in figure 5.28 the 7 mm object is visible in the phantom, but the 5 and
3 mm objects are not visible. This may be attributed to the phantom production procedure,
but also in part is due to the poor SNR in these images, as obtained from the HYPERimage
scanner. The PET images were reconstructed and presented after 3 iterations. This number
of iterations is common within clinical practice as a stopping point.

Figure 5.26 gives the long acquisition of a static phantom in PET and the line profile
in the centre of the hot lesion. Table 5.2 provide the statistical information about this long
acquisition.

Figures 5.28, 5.30 and 5.32 demonstrate the effect of motion for each motion pattern and

the motion correction of it. Also, for each method, a line profile has been drawn through
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5.4 Second experiment: 3D PET-MR with continuous motion

Fig. 5.26 Static PET acquisition
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Fig. 5.27 Motion Pattern A (long quiescent period)

the centre of the hot lesion and intensity statistics have been extracted with use of PMOD
analysis software (version 3.4) !. For each image acquired and processed, a volumetric
analysis was performed, where the hot lesion was segmented with the use of PMOD. This
software gave the opportunity to segment the PET images into volumes by threshold, which
was set at 50% of the maximum value inside the volume. From this volumetric analysis, we
had the opportunity to get the mean value of the intensity, standard deviation and standard

€I1of1.

5.4.7.1 Correlation coefficients

A statistical method to calculate the effectiveness of motion correction is to correlate the

obtained images with a motionless acquisition. This can be performed with use of the

'PMOD has been developed by PMOD Technologies Ltd. www.pmod.com
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5.4 Second experiment: 3D PET-MR with continuous motion

Table 5.3 Statistics of hot area in Motion Pattern A (long quiescent period)

mean intensity within ROI

Standard deviation

Standard error

Volume (cm?)

Static 1.931 0.436 0.005 0.237
Blurred 1.048 0.157 0.001 0.610
RTA 1.478 0.199 0.003 0.147
MCIR 1.232 0.175 0.02 0.196

Table 5.4 Statistics of hot area in Motion Pattern B (regular quiescent period)

mean intensity within ROI

Standard deviation

Standard error

Volume (cm?)

Static 1.931 0.436 0.005 0.237
Blurred 1.171 0.163 0.001 0.510
RTA 1.236 0.191 0.002 0.191
MCIR 1.219 0.188 0.002 0.214

Table 5.5 Statistics of hot area in Motion Pattern C (random with base shifts)

mean intensity within ROI

Standard deviation

Standard error

Volume (cm?)

Static 1.931 0.436 0.005 0.237
Blurred 1.070 0.152 0.001 0.624
RTA 1.146 0.174 0.001 0.383
MCIR 1.180 0.181 0.062 0.285
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5.4 Second experiment: 3D PET-MR with continuous motion
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Fig. 5.28 Motion correction of motion Pattern A (long quiescent period)
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Fig. 5.29 Motion Pattern A (long quiescent period)

line profiles above and the correlation coefficient of each pairing. This coefficient can be

calculated by the following equation.

£ (50 0i-3)

i=1

5.1)

Correlation coef ficient = —= —
'21 (xi=%:)%, | X (vi—¥:)?
i

i=1
In this equation, X and Y are the line profiles under comparison and 7 is the size of
the line profile array. Correlation coefficient indicates the similarity of one-dimensional

arrays under comparison. The output varies from -1 to 1 where 1 is perfect correlation, -1

a perfect negative correlation and 0 indicates no correlation. Therefore, a comparison of all
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Fig. 5.30 Motion correction of motion Pattern B (regular quiescent period)
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Fig. 5.31 Motion Pattern B (regular quiescent period)

line profiles with the static acquisition indicates the success of the correction.
Figure 5.34 provides the success rate of motion correction, as it is derived by the line

profiles, compared with the static acquisition.

5.5 Discussion

In both experiments above, the use of PVA cryogel proven easy to use in creating a new
non-rigid 3D phantom for evaluation motion correction.

For the first experiment, motion effects upon the PET image are visible on the upper
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Fig. 5.32 Motion correction of motion Pattern C (random with base shifts)
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Fig. 5.33 Motion Pattern C (random with base shifts)

edge of the phantom, where the motion amplitude is high. The way this phantom moves
differs from any rigid phantom in that the motion amplitude is not homogeneous in the
entire phantom. Where the top part has bigger motion amplitude, the base moves slower.
This is also the reason why the line profile, of the blurred image, even if is reduced in one
edge, it gains full amplitude between 30-35 mm. As Table 5.1 indicates, motion correction
provides recovery of FWHM with both RTA and MCIR ( Figure 5.15). By comparing the
corrected images with the reference gate 1, there is sufficient recovery of the PET signal
intensity and furthermore lower noise is visible due to higher acquisition statistics. Whilst

the image of gate I alone is very noisy, the images at the full dataset appear to have good
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Fig. 5.34 Correlation coefficient of blurred, MCIR and RTA line profiles for three motion
patterns (A, B, and C)

quality with only small alterations ( some vertical streaks).

Even if the motion correction is sufficient and we have recovery of the data, it has to
be emphasized that this experiment has stop-and-shoot format. With intra-frame motion
absent and equal distribution of counts per gate, this acquisition is not realistic (also acqui-
sition times were long and at low count rates). Furthermore, the absence of background
activity generates a high contrast object, with few similarities to an in vivo scan. Neverthe-
less, his experiment gave valid information about the capabilities of PET and MR scanners.
Furthermore, it was a test of the local affine registration algorithm that was used with PVA
cryogel phantom, to obtain the motion fields. The lack of spatial registration and tempo-
ral synchronization were significant obstacles in this experiment. This realization was the
reason to get further actions towards a hardware solution for temporal synchronization, and
such a method was then implemented by our colleagues in the Sublima project (Weissler
et al., 2014).

The points above were addressed with the second experiment. Motion correction with
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5.5 Discussion

continuous motion created the need to adapt the hardware and overcome various technical
challenges, in order to perform the experiment continuously with real time motion. Also, the
resolution of temporal synchronization without the need to connect both modalities physi-
cally, made true synchronized simultaneous acquisition possible.

The increase of the complexity brought new challenges to the motion correction. After
establishing the use of PVA cryogel with the first experiment, the signal to background ratio
increased the realism of this phantom experiment. Because of this and the unsuccessful
moulding of the spheres, the 3 mm and the 5 mm spheres were not visible in images with all
3 motion patterns (although this may also be due to the poor SNR). The 7 mm sphere, even
if visible, has non-spherical shape. The comparison of the recovery percentage though can
reveal the success of the motion correction. In each case, the corrected images with both
RTA and MCIR are visibly improved over the blurred image, though difficult to see motion
pattern differences.

Due to the small FOV, the static image is very noisy. The process to extract the values
is similar with the process described above; a 50 % threshold was applied to the area of the
hot lesion and segmentation was performed. This gave a standard deviation of the hot area
at 0.436 and standard error at 0.005 as presented in Table 5.2 due to large sample size. It is
seen that we cannot get a meaningful standard error by this experiment, but the trend is that
motion reduces the mean intensity and both correction methods recover it to some extent.

All corrected images show improved recovery to the blurred images. In all patterns
though, as is presented by quantitative analysis there is not full recovery of the mean inten-
sity, in comparison with the static. In all the cases, when the image is blurred, the average
volume of the "hot" area is bigger as it would be expected. Literature explains this aspect
as the effect of volume over-estimation due to motion. With motion correction, the volume
is reduced to the value in the reference static scan. From the correlation coefficient point of

view, the data do not show full recovery but the results are all improved to at least a small
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5.6 Conclusions

extent. As it was expected by literature, the recovery is worst in motion patterns B and
C. Literature indicates that MCIR, has better responce that RTA (Polycarpou et al., 2012),
something that does not correspond to this experimental setup. This may be explained by
the fact that with the limited 3 cm axial field of view the phantom is not entirely inside the
field of view. For that reason, there might be a loss of data, due to migration of counts
outside of the field of view.

It has to be noted that due to the nature of the scanner, and the small axial field of view,
noise and reconstruction artefacts are concentrated at the edges of the FOV. This noise,
contributes to the uncertainty during data processing. As the scanner resolution is 1.6 mm it
is affected by partial volume effect and motion amplitude. With maximum motion amplitude
at 10 mm the motion is visible in PET images. Furthermore, the hot area is 4 times bigger
than the resolution. For these reasons the overall image quality is disappointing. So in the
next chapter we describe similar experiments performed on a next generation scanner with

much improved specifications.

5.6 Conclusions

This chapter has demonstrated the upgrade of motion correction complexity from simple 2D
acquisitions to 3D with a SiPM PET insert. Even if the motion correction has to face stop-
and-shoot data or data with continuous motion, the results show partial recovery of uptake
amplitude and volume inside the hot areas. Additionally, correlation coefficient demon-
strates a limited recovery of information through motion correction to the entire phantom,
despite that the overall image quality is poor for both motion correction methods and for all

motion patterns, to different amounts.
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Chapter 6

Motion correction for 3D PET-MR with

high sensitivity and resolution

6.1 Introduction

Motion correction has to be applicable to any new PET-MR system available. Therefore,
the knowledge gathered by the previous experiments can be used into the next generation
of PET-MR systems. The further development of HYPERimage, an analogue SiPM PET
insert is the digital SiPM, Hyperion-II”. The higher resolution and sensitivity provided
by this system, indicates that motion correction is necessary, even if the motion does not
have high amplitude. The new hardware, with its improvements and alterations from the

predecessor brings solutions but also additional challenges to the experimental setup.

149



6.2 Materials and Methods

6.2 Materials and Methods

6.2.1 Scanner

This PET insert is designed to be compatible with a Philips Achieva 3T MR. The use of
digital SiPMs in the Hyperion-II” system, brings some benefits to PET-insert design. The
first advantage is the smaller packaging.

Because the analogue to digital conversion board is not necessary, valuable space is
saved alowing a more compact packing. As an intermediate digitizer, with its associated
high power consumption, is not necessary in this design, it is possible to keep the tempera-

ture more stable compared to the previous system (Duppenbecker et al., 2012).

MODULE STACK

Carbon fibre shield
: ‘ <— Crystal

Stack - - SiPM

FPGA

Fig. 6.1 Stack and module with use of Digital SiPM. (Duppenbecker et al. (2012), ©IEEE
2012)

These digital SiPMs are used to create a PET insert. Figure 6.1 presents the building
blocks of the insert. The digital detectors( Philips Digital Photon Counting DLS 3200-
22, 64 sensors, 3200 cells each) are coupled with a 30x30 LYSO crystal array (1 mm
pitch, 12 mm length) and a custom made FPGA tile (Schug et al., 2014). The stacks are
grouped in clusters of 6, arranged into a 2x3 grid, creating the module. 10 modules form
the PET scanner with 216 mm transverse field of view and 96 mm axial field of view. The
electronic parts are cooled with liquid and air cooling. Compressed air of 1 bar higher
than the atmospheric pressure flows around the electronics and the stacks are cooled down

with continuous flow of cooling liquid at 5 © C (Weissler et al., 2012)(1 bar is the pressure
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6.2 Materials and Methods

within the scanner). The data communication with the processing server outside the MR
examination room is performed with plastic optic fibres. The housing of the module is
a carbon fibre screen. This shielding shows good RF shielding, it’s almost transparent to
gradients ( By magnetic field reduction is at 0.2 ppm and maximum SNR reduction is at
13 %) and it has low attenuation of gamma radiation (Wehner et al., 2014; Weissler et al.,
2015a). As with HYPERimage, the components of the insert inside the MR room include,
in addition to the PET itself, the embedded power unit, providing individual power to each
SPU. The long optic fibres lead the signal outside the MR room to the control room, where
no magnetic interference is present. Also, outside the MR room is the water cooling system
and the data acquisition computer. The air cooling is provided by the hospital supply, inside
the MR room. Hyperion-II” comes with a 12 rod bird-cage mouse Tx/Rx coil with inner
diameter of 46 mm (Weissler et al., 2012). Hyperion-II” is presented as a stand alone system

in figure 6.2. In figure 6.3, the insert is in inside the MR room.

Fig. 6.2 Hyperion-II” PET insert
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Fig. 6.3 Hyperion-II” PET insert with the Philips Achieva 3 Tesla MR scanner

The data readout methodology, is similar with HYPERimage insert with the data stored
as single events and post-processed by generating a listmode file. This listmode file is
encoded with information about the crystal/stack and module that a pair of events took
place. A difference with HYPERimage insert is the amount of bits dedicated for the timing
information, by increasing the 32 bits to 64. Therefore, each event consumes 20 bytes of
space. The use of an official Philips MR table as the base improves the versatility of the

system and ensures that the PET module is placed in the centre of the magnetic field.

6.2.2 Phantom

Use of PVA cryogel for this experiment is a good solution to simulate and capture motion
during simultaneous PET-MR acquisition. The first obstacle to surpass is the size. The RF
coil of the insert has 46 mm maximum diameter, but the minimum diameter is at 40 mm, at
the entry of the gantry. There is a need then for a phantom, to be less than 40 mm diameter,

and deformable. So, a scaled down cylindrical phantom was used. The new phantom has
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6.2 Materials and Methods

a diameter of 30 mm and height of 40 mm. Inside the phantom, a hot spherical area is
placed with a diameter of 8 mm and lesion to background ration of 4:1. Total activity of
the phantom at the beginning of the experiment was 1.4 MBq. The method of preparation
follows the steps described in chapter 3, with a few alterations as follows. The sphere is
frozen at -80 ° C for 3 hours, then it was fixed inside the liquid PVA, which serves as the
background and frozen for an additional 3 hours. Then it was removed by freezer to thaw

for 3 hours. The phantom design is presented in figure 6.4.

P N

8 mm

4 cm

R

3cm

Fig. 6.4 Cryogel phantom with dimensions dedicated for the Hyperion-II” PET insert

6.2.3 Synchronization and spatial alignment

This PET insert has similar hardware to the HYPERimage scanner. For that reason, there
is no difference in the synchronization methodology between the two systems. At the be-
ginning of each MR acquisition, the gradient sensors, attached to the PET modules, capture
and store the time stamp of the first gradient change. This time stamp, is then used to split
the PET data to temporal frames, synchronised with the MR acquisition.

The registration as well is performed with similar method. Even though, for this experi-

ment, a new phantom with smaller diameter had to be designed.
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6.2 Materials and Methods

6.2.4 Motion pattern

Following the motion patterns of the previous experiments, this time we concentrate upon
just the most common motion pattern, which represents 60% of the population and is char-
acterized by long quiescent motion periods. As with the previous experiment, for reproduc-
tion of continuous motion, a servo motor was utilized. The experimental set-up includes a
Parker servo motor (N series, 3 Amp. current, VAC) driven by a Parker Gemini GV servo
driver. By providing one digital pulse to the servo driver, the motor moves for one step. A
data stream of pulses can generate continuous motion of the motor. The motion signal is
given by an Arduino MEGA 2560 (D’ausilio, 2012). Arduino is a USB based hardware 1/O
unit with digital and analogue interface capabilities. It is programmable and can perform
autonomous tasks, without continuous connection with a computer. Here, the Arduino was
programmed to receive via USB the target position and calculate speed, number of iterations
and execute the data transmission to the servo driver. More specifically; Arduino receives a
4 bytes integer number every 0.1 s. This number is the target position for the servo motor.
By already knowing the origin and the destination point, the Arduino calculates the number
of necessary steps or revolutions, as known to servo motors, and divides the number with
the time interval of 0.1 s in order to find the period of each step. The orientation of rotation
is calculated also by subtracting the origin and destination position. Finally, the Arduino
transmits the step action signal, along with the orientation of rotation. The 4 byte coordi-
nates were finally transmitted to the Arduino by a home-made Java script in a computer via
USB. These coordinates are given by a pre-produced waveform, depending on the experi-
ment needs. The signal transfer was repeated every 0.1 s. This set-up can reproduce any
custom motion patterns with time interval of 0.1 s per step. Of course, this time interval

may change, depending the requirements.
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6.2.5 MR acquisition

The MR acquisition was performed with use of the mouse coil. For the motion estimation
in total 5 dynamic acquisitions of 300 frames each was acquired. The MR acquisition for
phantom A is a gradient echo with temporal resolution of 0.479 s, matrix size 80 x 80 x 45
and spatial resolution of 0.625 x 0.625 x 1.0 in mm (TR / TE 2.4 ms / 0.85 ms, 20° flip

angle). This sequence was repeated for 1500 times (718.5 s total).

6.2.6 Gating of MR and PET Data

After synchronization and spatial alignment, PET and MR images can be assigned to gates.
For this experiment, amplitude gating was used. The data were divided into 8 different gates,
using amplitude gating. The assignment to gates was performed by pencil beam navigator,
where motion amplitude is determined from the MR images. The pencil beam navigator is
placed parallel to the central motion for maximum displacement per gate. The pencil beam
navigator is extracted for each MR frame from the centre of the phantom and the amplitude
of motion is calculated with a cross-correlation algorithm against a reference frame with use
of Matlab.

After taking into account the motion amplitude, MR images and the corresponding PET
sinograms were divided into eight different gates. Finally, we acquired the average MR

image and the total PET sinogram for each gate.

6.2.7 Static scan

For comparison reasons, a long PET scan was performed, where during this period, the
phantom was not moving. To compensate for the activity decay, the total counts of this scan

match the counts of the motion experiment.
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6.2.8 PET reconstruction

For reconstruction, the algorithm used is a self-normalization reconstruction algorithm, cre-
ated for this particular scanner and presented by Salomon et al. (2012). This study uses a
different approach to calculate the normalization matrix by comparing first the single events
among crystals. With this approach, the scanner is calibrated constantly (Salomon et al.,
2012). The reconstruction is performed with 1 iteration of 32 sub-iterations with 8 subsets

each. After the reconsturction, PET images were filtered with a 1 mm 3D median filter.

6.2.9 Motion correction

The motion estimation of MR gates and PET motion correction is performed with use of
the hierarchical adaptive local affine registration toolkit, developed by Buerger et al. (2011)
and STIR library. Seven of the eight MR gates are registered to the reference gate and the
resulting motion fields were used for motion correction of the PET images.

For this experiment, because the reconstruction algorithm is not capable of perform-
ing motion compensated image reconstruction, the correction applied is the reconstruct-
transform-average method or RTA. In RTA, the motion fields are applied to the individual
PET reconstructed images for motion correction which are then averaged. The correction

of PET data has been performed with use of the open source STIR library, release 2.4.

6.3 Results

Figure 6.5 shows the frequency of each gate, as obtained from the MR measurements.

The MR images of the extreme gates are presented in figure 6.6. The maximum dis-
placement of this phantom is calculated to be 4.2 mm.

The motion correction results of the PET data is visible in figure 6.7.

Analysis of the images was performed with the PMOD analysis software. The analysis
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Fig. 6.5 Motion estimation with use of MR data
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Fig. 6.6 MR image of gate 1 in comparison to gate 8
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Fig. 6.7 A comparison of reconstructed PET data between a single gate, motion blurred
image, the motion corrected (with RTA) and the static image
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6.3 Results

Table 6.1 Amplitude of intensity in hot area

Mean Standard deviation | Standard error | Volume (cm?) | Contrast
intensity
within ROI
Static 1101 111 0.87 0.252 1.9
RTA 930 98 0.70 0.302 1.9
Blurred 865 102 0.63 0.393 1.59
Gate 8 979 104 0.81 0.257 1.7

Table 6.2 Volume estimates

Ideal | MRI | PET
Volume (cm?) || 0.268 | 0.272 | 0.252
Variation — 1.5% | 6.2 %

was concentrated upon the hot lesion in the centre of the phantom. The results are extracted

by automatic volume segmentation. The volume segmentation was performed by using

thresshold of 50% of the maximum value. The results of this analysis are presented in table

6.1. Results by gate 8 are normalized to fit the other results by multiplying the duration

factor of its gate. For each segmented volume total number of voxels is found. Standard

error has been calculated by dividing the standard deviation with the square root of the voxel

population. The table contains the mean, standard deviation and standard error values of the

hot area and the contrast ratio with respect to the background.

Table 6.2 provides information about the volume estimation given by the PET, the MRI

after segmentation and the ideal volume of an 8mm sphere. The MRI segmentation has been

performed by threshold of 50% of the maximum value.

159




6.4 Discussion

6.4 Discussion

The 9 cm extended field of view of this scanner increased the sensitivity of the PET ac-
quisition and decreased the noise, by comparison with the previous experiment. Also, the
extended field of view ensured that there is no transition of activity into or out of the field of
view during the motion. In the images, a difference between the blurred and the corrected
images is not clearly seen as we would like. In fact both seem to provide less clear images
than the static image. This might be due to the relatively small maximum motion amplitude
(4.2 mm) which is smaller than the diameter (8§ mm) of the hot area, so only small blurring
of the hot lesion can be seen.

The quantitative results show that due to motion blurring, the mean amplitude is reduced
by 21.4 % and the hot lesion is estimated to be increased in volume by 56%. RTA is able
to recover the amplitude partially with 15.6 % decreased amplitude and with 20% volume
overestimation which are both improved relative to the blurred image values. The additional
comparisons measurements show full recovery of the lesion to background contrast ratio,
by 1.59 to 1.9 with RTA motion correction, although this is not so clear usually from the
images.

Note that these acquisitions were performed with motion pattern A which has long qui-
escent periods. Possibly more significant differences are expected for type C.

Volumetric calculations, as presented in Table 6.2 indicate an overestimation of volume
by MRI and underestimation by PET. The estimated volume for PET and MRI is close to
the ideal. MRI is estimated 1.5 % larger than the ideal but in this case, the big voxel size,
combined with the partial volume effect might led to volume overestimation. The partial
volume effect also applies in PET data as well. For these reasons the absolute alignment of
volume with the ideal is not possible due to partial volume effect of PET and MRI images.

As it is expected, partial volume effect is present in this acquisition even if it is cor-

rected partially during the reconstruction. For this experiment we used a self-normalization
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reconstruction algorithm, created for this particular scanner and presented by Salomon et al.
(2012). In this algorithm, PSF modelling is included to the normalization matrix.

However, motion effects are the primary target of this experiment and comparing the
mean intensities is a viable method of comparison, despite the existence of partial volume
effect in all acquisitions. It is proven by Polycarpou et al. (2014) that if motion has higher
amplitude than the scanners resolution, motion effects upon the image are the most signifi-
cant. In this experiment, the resolution of this scanner is less than 1 mm and the maximum
motion amplitude is 4.2 mm. The correction of partial volume effect in correlation with
motion correction though is something to be taken into account in future PET-MR motion

experiments.

6.5 Conclusions

In this chapter, a fully equipped 3D PET insert was used for simultaneous PET-MR motion
correction with PVA cryogel. Even the impact of motion blurring is less visible in this
motion pattern, as analysed by Polycarpou et al., the effects of motion are still measured
and with motion amplitude smaller than the object itself (Polycarpou et al., 2014). Given
the fact that contrast recovery is successful with RTA, and the estimated volume is recovered
by comparison with the motion blurred, motion correction was beneficial for this phantom

experiment.
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Chapter 7

General conclusion and future

perspectives

The aim of this thesis is the introduction of novel methodologies and equipment for inves-
tigating motion correction during simultaneous PET-MR acquisitions. Motion correction is
a field of study open for investigation and improvement. The most common use of PET;
oncology, indicates that there is need for imaging of soft tissue high metabolism. Tissue
during motion is affected not only by displacement but deformation as well. One aim is to
mimic the elastic properties of tissue by introducing such properties. Just as for the rigid
phantoms used until now, compartmentalization of the phantom into a complex structure is
useful. This system moves with an appropriate MR-compatible motor unit.

The development of PVA cryogel is a solution for experiments with motion for simul-
taneous PET-MR. The phantom is visible in both modalities, it is adaptive to the needs of
the user and it has physical properties which have been measured and characterized. The
alteration of the freeze-thaw preparation resulted in some variations in elasticity, neverthe-
less, this was necessary for the utilization of short half-life isotopes and any changes in
properties are acceptable. The Young’s modulus elasticity results were acceptable for the

current motor unit systems used. A disadvantage of this system is the diffusion of the iso-
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tope inside the compound. Even if the rate is slow, the optimum would be the binding of
the radio-molecule with the phantom. However, PVA cryogel can be a valuable phantom
for simultaneous PET-MR for motion correction. It can be adapted and compartmentalized
as demonstrated with the experimental studies and it can be used in other modalities such as
SPECT.

Motion experiments though had to overcome a significant factor, which is the motion
itself. The inhospitable environment of high magnetic field does not tolerate ferromagnetic
motor units. Appropriate use of stepper motors outside the magnetic field provided the
necessary input for experiments with controlled motion. Stop-and-shoot experiments are
invaluable but aspects as intra-frame motion and motion artefacts are not considered. This
is the reason that in the upgraded experiment with use of a stepper motor we presented
successful motion correction for continuous movement. This experiment also indicated
the relevant technical issues of a simultaneous acquisition such as the need for temporal
synchronization and spatial alignment.

Following this experiment, and by progressing to the next generation PET scanners, the
experiment becomes more complicated. PVA cryogel is used for these experiments and the
success of motion correction has been investigated. The first experiment with HYPERim-
age PET insert is a stop-and-shoot acquisition and with no background activity. The short
FOV of this scanner was a limiting factor as to how big the axial dimensions of the phan-
tom could be during acquisition. Even with these technical difficulties, motion capture and
correction was successful with RTA (Reconstruct Transform Average) and MCIR (Motion
Compensated Image Reconstruction) although images of the phantom obtained with the
HYPERimage scanner were of poor quality.

The next goal was to adapt the scanner setting to the needs of the experiments. This
led to the establishment of synchronization methodology with use of gradient sensors in

the PET insert and spatial alignment using a co-registration phantom for each experiment.
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A new set of studies was initiated in which the motion pattern was fully controlled by a
servo motor and the motion pattern was derived by human respiratory motion. The phantom
design was also adapted to resemble the liver-lung boundary. In this experiment though,
there is no method to avoid motion of radioactive areas inside and outside the PET FOV,
and it is possible that this effect had an impact upon the final images. Motion correction in
these experiments is effective, despite the very noisy images, due to the small FOV of the
scanner.

Finally, the longer (9 cm) axial FOV provided by Hyperion-II” gave the possibility to
lower the noise and avoid "out of FOV" issues by having the entire phantom inside the FOV.
With use of the PVA phantom again, the experiment incorporated the most common motion
pattern and the motion correction applied is the kind of correction that can be used in any
PET-MR system. The results indicate a partial recovery of the mean values in the hot area
of the phantom with full recovery of the lesion to background ratio and also improvement
to the volume estimation although the image quality remains poor.

A common ground of poor performance for motion correction, in all experiments, and
by comparing with past studies, is the continuous motion. Intra-frame motion affects the
MR images. Consequently, the motion fields by the blurred MR images affect the outcome
of the PET motion correction.

To conclude, the use of an elastic phantom is justified by the physical properties of
the human tissue as described by literature. The means to investigate this and provide ap-
propriate solutions of correction can be explored with PVA cryogel. The phantom itself
though cannot provide all the necessary information unless handled with the appropriate
tools. Temporal synchronization is an aspect introduced by PET-MR. The accuracy of this
synchronization as well as the spatial alignment are essential for accurate motion correction.

This thesis concluded with the performance of experiments using the next generation of

MR-compatible PET insert. The future development of this work may include further de-
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velopment of the PVA cryogel with more investigation of ways to eliminate diffusion. Also,
dedicated moulds can be designed and standard operating procedures can be established for
automated phantom production. The size of PVA phantom for clinical use is also worthy of
investigation. Furthermore, there are many other polymers that can be investigated, in elas-
tic or inelastic form, creating as complex distributions as the experimental setup requires.
Finally, PVA cryogel with continuous motion could be used to determine the standards of

data handling and gating of PET-MR scanners.
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Appendix A

Motor Units Source code

A.1 Phidgets stepper motor (C++)

The Following code corresponds to the Phidgets stepper motor algorithm, This algorithm is

capable for the following actions:

* Performance of sinusoidal motion with given period and amplitude of rotation
* Performance of continuous rotation, with constant speed.

* Load text files containing motion positions and renew the position of the stepper motor

every 0.110 sec
* Load files provided by motion modelling text files

* Drive Phidgets stepper motor in parallel with Arduino by triggering of the input.

1| // Stepper motor drive
2| // Simple driving of a stepper motor, based upon the —stepper simple — <

example of phidgets library
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A.1 Phidgets stepper motor (C++)

// Created in 2011 by Georgios Soultanidis

#include <stdio.h>
#include <phidget21 .h>
#include <unistd.h>
#include <time.h>
#include <sys/time.h>

#include <math.h>

#define PI 3.14159265
#define file_size 3315

int AttachHandler (CPhidgetHandle stepper, void xuserptr)
{

int serialNo;

const char =xname;

CPhidget_getDeviceName (stepper , &name) ;
CPhidget_getSerialNumber (stepper , &serialNo);

printf ("%s %10d attached !\n", name, serialNo);

return O;

int DetachHandler (CPhidgetHandle stepper, void #userptr)
{

int serialNo;

const char =#name;

CPhidget_getDeviceName (stepper , &name) ;
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A.1 Phidgets stepper motor (C++)

int

int

CPhidget_getSerialNumber (stepper , &serialNo);
printf ("%s %10d detached !\n", name, serialNo);

return 0;

ErrorHandler (CPhidgetHandle stepper, void suserptr, int ErrorCode, <«

const char #Description)

printf ("Error handled. %d — %s\n", ErrorCode, Description);

return 0;

PositionChangeHandler (CPhidgetStepperHandle stepper, void susrptr, <

int Index, __int64 Value)

printf ("Motor: %d > Current Position: %lld\n", Index, Value);

return 0;

// Display the properties of the attached phidget to the screen. We <

int

{

will be displaying the name, serial number and version of the <«
attached device.

display_properties (CPhidgetStepperHandle phid)

int serialNo, version, numMotors;

const charx ptr;

CPhidget_getDeviceType (( CPhidgetHandle ) phid , &ptr);

CPhidget_getSerialNumber (( CPhidgetHandle ) phid , &serialNo);
CPhidget_getDeviceVersion (( CPhidgetHandle ) phid, &version);
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A.1 Phidgets stepper motor (C++)

int

{

CPhidgetStepper_getMotorCount (phid, &numMotors) ;

printf ("%s\n", ptr);

printf (" Serial Number: %10d\nVersion: %8d\n# Motors: %d\n", serialNo <

, version , numMotors) ;

return 0;

stepper_simple ()

int i,test,multiplier ,temp,temp2,result;
__int64 curr_pos ,target_pos;

const char =err;

double minAccel, maxVel;

int stopped;

// float start_time ;

clock_t start_time;

int s_value;

// Declare an stepper handle

CPhidgetStepperHandle stepper = O0;

// create the stepper object

CPhidgetStepper_create(&stepper);

// Set the handlers to be run when the device is plugged in or opened<

from software , unplugged or closed from software,
an error.

CPhidget_set_OnAttach_Handler ((CPhidgetHandle) stepper ,
» NULL) ;
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A.1 Phidgets stepper motor (C++)

CPhidget_set_OnDetach_Handler ((CPhidgetHandle)stepper , DetachHandler <
» NULL) ;

CPhidget_set_OnError_Handler (( CPhidgetHandle)stepper , ErrorHandler, ¢«
NULL) ;

// Registers a callback that will run when the motor position is <
changed .

// Requires the handle for the Phidget, the function that will be ¢«
called , and an arbitrary pointer that will be supplied to the <
callback function (may be NULL) .

CPhidgetStepper_set_OnPositionChange_Handler (stepper ,
PositionChangeHandler , NULL) ;

// open the device for connections

CPhidget_open (( CPhidgetHandle ) stepper , —1);

// get the program to wait for an stepper device to be attached
printf (" Waiting for Phidget to be attached....");

if ((result = CPhidget_waitForAttachment (( CPhidgetHandle) stepper ,

10000)))
{
CPhidget_getErrorDescription(result , &err);
printf ("Problem waiting for attachment: %s\n", err);
return O0;
}

// Display the properties of the attached device

display_properties (stepper);

//read event data

printf ("Reading ..... \n");
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A.1 Phidgets stepper motor (C++)

// This example assumes stepper motor is attached to index 0

//'Set up some initial acceleration and velocity values
CPhidgetStepper_getAccelerationMin (stepper , 0, &minAccel);
CPhidgetStepper_setAcceleration (stepper , 0, minAccel*2);
CPhidgetStepper_getVelocityMax (stepper , 0, &maxVel);
CPhidgetStepper_setVelocityLimit(stepper, 0, maxVel/2);

// display current motor position if available
if (CPhidgetStepper_getCurrentPosition (stepper, 0, &curr_pos) == ¢
EPHIDGET_OK)

printf ("Motor: 0 > Current Position: %Illd\n", curr_pos);

//keep displaying stepper event data until user input is read

printf ("Press any key to continuel\n");

// change the motor position

//we'll set it to a few random positions to move it around

//'Step 1: Position 0 — also engage stepper
printf ("Set to position O and engage. Press any key to Continue\n");

getchar () ;

CPhidgetStepper_setCurrentPosition (stepper, 0, 0);

CPhidgetStepper_setEngaged (stepper, 0, 1);

CPhidgetStepper_setCurrentLimit(stepper, 1, 2.5);

[ 1 s s st e oot sk oot sk ot s sk sk st s sk ok kot ok Rk ok
int speed,samples_number , maxi_displacement ,temp3;

float time_resol ,divider;
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A.1 Phidgets stepper motor (C++)

struct timeval tim;
char file_name [20];

FILE * tFile;

getchar () ;

printf ("give the name of the file to save data:

scanf ("%s" ,file_name) ;

printf ("\n %s \n",file_name);

tFile=fopen(&file_name ,"w");

printf("\n Case 1: sinusoidal handle \n Case 2:

")

speed handle \n Case«

3: load Paul's resp file \n Case 4: load Andy's resp file \n ¢«

Case 5: drive by Arduino trigering \n choose
scanf ("%d",&s_value) ;
switch (s_value) {
case 1:
{
printf ("\n number of samples: ");

scanf ("%d" ,&samples_number) ;

.").
o il

printf ("\n maximum displacement (revs): ");

scanf ("%d" ,&maxi_displacement) ;

printf ("\n temporal resolution (sec per sample):

scanf ("%f",&time_resol) ;
printf ("\n divider ");
scanf ("%f",&divider) ;

u),
)

fprintf (tFile ,"number of samples: %d\n maximum displacement (<

revs): %d\n temporal resolution (sec per sample): %f\n <

divider: %f\n\n" ,samples_number , maxi_displacement , <+
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A.1 Phidgets stepper motor (C++)

time_resol ,divider);

for (i=0;i<samples_number;i++)
{
start_time=clock () ;
while ((clock ()—start_time ) <(time_resol *CLOCKS_PER_SEC) )
{
}

temp=(sin(ixdivider))s*maxi_displacement;

CPhidgetStepper_getCurrentPosition (stepper , 0, &curr_pos);

gettimeofday(&tim , NULL) ;

fprintf (tFile ,"%d:%d : %d \n",tim.tv_sec ,tim.tv_usec ,¢
Curr_pos);

temp2=curr_pos;

temp3=temp—temp?2 ;

if (temp3 <0)

{
speed=temp3/(—time_resol);

}

else {
speed=temp3/time_resol;

}

// printf (" temp3: %d \n Speed: %+
d \n",temp3,speed);

CPhidgetStepper_setVelocityLimit(stepper, 0, speed);

CPhidgetStepper_setTargetPosition (stepper, 0, temp);

}
getchar () ;

break ;
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A.1 Phidgets stepper motor (C++)

}

case 2:

{
printf ("\n give speed (revs per sec): ");
scanf ("%d" ,&speed) ;
CPhidgetStepper_setVelocityLimit(stepper, 0, speed);
CPhidgetStepper_setTargetPosition (stepper, 0, 9999999999);
getchar () ;
break ;

}

case 3:

{

float resp_sign[file_size ];
FILE = pFile;
pFile = fopen ("newfile.txt","r");
for(i=0;i<file_size ;i++)
{
fscanf (pFile, "%f\n", &resp_sign[i]);

}
fclose (pFile);

printf ("\n maximum displacement (revs): ");
scanf ("%d" ,&maxi_displacement) ;
printf ("\n temporal resolution (sec per sample): ");

scanf ("%f",&time_resol);

for(i=0;i<file_size ;i++)
{

start_time=clock () ;

while ((clock ()—start_time ) <(time_resol *CLOCKS_PER_SEC) )
{
}
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A.1 Phidgets stepper motor (C++)

temp=resp_sign[i]+*maxi_displacement;

CPhidgetStepper_getCurrentPosition (stepper , 0, &curr_pos);

gettimeofday(&tim , NULL) ;

fprintf (tFile ,"%d:%d : %d \n",tim.tv_sec ,tim.tv_usec ,¢
cCurr_pos);

temp2=curr_pos;

temp3=temp—temp?2 ;

if (temp3 <0)
{
speed=temp3/(—time_resol);
}
else {
speed=temp3/time_resol;
}
// printf (" temp3: %d \n Speed: %+

d \n",temp3,speed);
CPhidgetStepper_setVelocityLimit(stepper, 0, speed);

CPhidgetStepper_setTargetPosition (stepper, 0, temp);

}
break ;
}
case 4:
{

float resp_sign[12050];
FILE =% pFile;
pFile = fopen ("phidgets_ready_group_1.txt","r");
for(1=0;1<12050;1++)
{
fscanf (pFile, "%f\n", &resp_sign[i]);
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A.1 Phidgets stepper motor (C++)

}

/[l printf("%f\n",resp_sign[i]);

fclose (pFile);

printf ("\n maximum displacement (revs):

scanf ("%d",&maxi_displacement);

printf ("\n sample resolution (sec per sample):

scanf ("%f",&time_resol);

for (i=0;i<12050;i++)

{

start_time=clock () ;

")

while ((clock ()—start_time ) <(time_resol*CLOCKS_PER_SEC) )

{
}

temp=resp_sign[i]«*maxi_displacement;

CPhidgetStepper_getCurrentPosition (stepper ,

gettimeofday (&tim, NULL);

0, &curr_pos);

fprintf (tFile ,"%d:%d : %d \n",tim.tv_sec ,tim.tv_usec ,<

Curr_pos);
temp2=curr_pos;

temp3=temp—temp?2;

if (temp3 <0)
{
speed=temp3/(—time_resol);
}
else {
speed=temp3/time_resol;
}
[/ printf (" temp3: %d \n

d \n",temp3,speed);
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A.1 Phidgets stepper motor (C++)

CPhidgetStepper_setVelocityLimit(stepper, O,

speed) ;

CPhidgetStepper_setTargetPosition (stepper, 0, temp);

break ;

case 5:

float resp_sign[12050];

FILE * pFile;

pFile = fopen ("phidgets_ready_group_1.txt","r");

for(i=0;1<12050;1++)

{
fscanf (pFile , "%f\n", &resp_sign[i]);
[/ printf("%f\n",resp_sign[i]);

}

fclose (pFile);

printf ("\n maximum displacement (revs): ");

scanf ("%d" ,&maxi_displacement) ;

printf ("\n sample resolution (sec per sample):

scanf ("%f",&time_resol) ;

int infinite =0;

int flag = PFALSE;

int status= PFALSE;

int previous_status=PFALSE;

int counter=0;

while (infinite==0 ||l counter <12050)

{
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A.1 Phidgets stepper motor (C++)

while (! flag)

{
CPhidgetStepper_getlnputState (stepper ,1,&status);
if (status!=previous_status)
{
previous_status=status ;
flag=PTRUE;
}
}

flag=PFALSE;

CPhidgetStepper_getCurrentPosition (stepper , 0, &
curr_pos);
temp=resp_sign[counter ]* maxi_displacement;
temp2=curr_pos;

temp3=temp—temp?2 ;

if (temp3 <0)
{
speed=temp3/(—time_resol);
}
else {
speed=temp3/time_resol;
}
// printf (" temp3: %d \n Speed: %+

d \n",temp3,speed);
CPhidgetStepper_setVelocityLimit(stepper, 0, speed);

CPhidgetStepper_setTargetPosition (stepper, 0, temp);

counter ++;
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A.1 Phidgets stepper motor (C++)

break ;
}
default:
break ;
}
M === = = === === == == ============ === = = = %=

getchar () ;

CPhidgetStepper_getCurrentPosition (stepper, 0, &curr_pos);

multiplier=curr_pos/3200;

// printf (" miltiplier: %d \n current position: %d\n", multiplier ,<
curr_pos);

target_pos=(multiplier *3200) ;

// printf (" target position: %d \n",target_pos);

CPhidgetStepper_setVelocityLimit(stepper, 0, 1000);

CPhidgetStepper_setTargetPosition (stepper, 0,target_pos);

getchar () ;

CPhidgetStepper_setCurrentPosition (stepper, 0, 0);

fclose (tFile);

[/ sk sk ok ok ok sk ok ok ok sk ok ok ok ok ok ok ok sk ok ok ok kR ok

stopped = PFALSE;
while (! stopped)
{

189




390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

A.2 Arduino servo drive (Python)

CPhidgetStepper_getStopped (stepper , 0, &stopped);

usleep (100000) ;

CPhidgetStepper_setEngaged (stepper, 0, 0);

printf ("Press any key to end\n");

getchar () ;

//since user input has been read, this is a signal
program so we will close the phidget and delete
created

printf ("Closing ...\n");

CPhidget_close ((CPhidgetHandle) stepper ) ;

CPhidget_delete ((CPhidgetHandle) stepper) ;

// all done, exit

return 0;

int main(int argc, charx argv/[])
{
stepper_simple () ;

return O;

to terminate the <

the object we

A.2 Arduino servo drive (Python)

This code activates the USB port and reads a 4 byte number transmitted every 0.1 sec. This

number corresponds to the target coordinates. Distance from current position to target posi-
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tion is calculated, intervals are estimated and date is transferred to servo motor by stepping

pulses.

// drive_motor_on_the_fly

// gets data every 0.1 sec and drives servo to the position

// Georgios Soultanidis

/115/03/12

#define maximum 12050;

int ledPin 11;

int dirPin 12;

int stepPin = 13;

int flagPin = 10;

int flagState=O0W,
int 1;

int time_gap;

double temp;

int incomingByte = 0;

charx val="0";

double interval usec=100000;
int counter=0;

boolean flag=true;

boolean flag2=false;

int array[6];

short previous_position;
short targ_position;

int steps;

void setup ()
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29 |
30
31
2
33
34
35
36
37
38
39
40
41
)
4
44
45
46
4
48
49
50
51
52
53
54
55
56
57
58}

59

// begin the serial communication
pinMode (2, OUTPUT) ;

pinMode (3, OUTPUT) ;

pinMode (4, OUTPUT) ;

pinMode (5, INPUT) ;

pinMode ( flagPin ,OUTPUT) ;

pinMode (dirPin , OUTPUT) ;
pinMode (stepPin , OUTPUT) ;

digitalWrite (2, HIGH);
delay (100) ;
digitalWrite (3, HIGH) ;
delay (100) ;
digitalWrite (4, HIGH) ;
delay (100);
digitalWrite (2, LOW) ;
delay (100) ;
digitalWrite (3, LOW) ;
delay (100) ;

digitalWrite (4, LOW) ;
delay (100) ;

Serial .begin (14400) ;
pinMode (ledPin , OUTPUT) ;
digitalWrite (3, HIGH);
digitalWrite (flagPin , LOW);

60 void loop ()
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62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

71

78

79

80

81

82

83

84

85

86

87

88

89

90

91

digitalWrite (3, LOW);

digitalWrite (4, HIGH) ;

while (flag==true)

{

flag2=false ;
while (flag2==false)
{
if (Serial.available ())
{
incomingByte = Serial.read();
if (incomingByte==115)
{

Serial . println (counter);
for(int 1=0;i<6;i+=1)
{

val[0] = Serial.read();

int a = atoi(val);
Serial.println (a);
array[i]=a;
Serial. flush ();
}
Serial . println("e"
previous_position=targ_position;
targ_position=array[1]%*10000+array [2]*x1000+ array [3]*x100+array<
[4]«10+array [S]*1;
steps=(targ_position —previous_position)/10;

time_gap=abs(int(interval_usec/ steps))—4;
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A.2 Arduino servo drive (Python)

Serial . println (" ");
Serial . println (steps);
Serial . println (" ");
Serial . println (time_gap);

Serial . println (" ");

flag2=true;

}
if (flagState==LOW)

{
flagState=HIGH;

else

flagState=LOW;

}
digitalWrite (flagPin , flagState);

if (steps <0)
{
digitalWrite (dirPin ,HIGH) ;
temp=abs (steps);
for (i=0;i<temp;i+=1)
{
unsigned long startMicros = micros();
digitalWrite (stepPin , HIGH) ;
delayMicroseconds (2) ;
digitalWrite (stepPin , LOW) ;

unsigned long currentMicros = micros();

194



A.2 Arduino servo drive (Python)

124 while (currentMicros —startMicros <time_gap )
125 {

126 currentMicros=micros () ;

127 }

128 }

129 1

130 else if(steps >0)

131 {

132 digitalWrite (dirPin ,LOW) ;

133 for(i=0;i<steps;i+=1)

134 {

135 unsigned long startMicros = micros();
136 digitalWrite (stepPin , HIGH) ;

137 delayMicroseconds (1) ;

138 digitalWrite (stepPin , LOW) ;

139 unsigned long currentMicros = micros () ;
140 while (currentMicros —startMicros <time_gap )
141 {

142 currentMicros=micros () ;

143 }

144 }

145 }

146 else

147 {

148 delay (100) ;

149 }

150

151

152 }

153

154}
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A.3 USB broadcast (Java)

This code is the transmitter of the coordinates, given by a text file and transmits the 4 byte

coordinates via USB to arduino.

import processing.serial .x*;

int mySwitch=0;
boolean flag2=false;
int counter=1;

char input;

char test;

String [] subtext;
String [] feedback;

Serial myPort;

void setup () {

mySwitch=1;

myPort = new Serial (this, "/dev/tty .usbmodem641", 14400);
myPort. bufferUntil( '\n");

println ("reset Arduino");

delay (5000) ;

println ("begin transmision");

void draw () {
if (mySwitch>0) {
readData("/Users/ georgiossoultanidis/arduino/resp_data/<+
ready_group_3_60%.txt");
mySwitch=0;

196



26

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

44

45

46

47

48

49

50

51

52

53

54

55

56

57

A.3 USB broadcast (Java)

}

if (counter<subtext.length)

{

myPort. write ("s");
test=subtext[counter |.charAt(0);
myPort. write (test);
test=subtext[counter+1].charAt(0);
myPort. write (test);
test=subtext[counter +2].charAt(0) ;
myPort. write (test);
test=subtext[counter +3].charAt(0) ;
myPort. write (test);
test=subtext[counter +4].charAt(0) ;
myPort. write (test);
flag2=false ;
while (flag2==false)
{
if (myPort.available () >0)
{
int inByte = myPort.read () ;
if (inByte==101)
{
flag2=true;
counter ++;
counter ++;
counter ++;
counter ++;

counter ++;
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58 else {

59 while (myPort.available () > 0)
60 {

61 int inByte = myPort.read () ;
62 char tt=char(inByte);

63 println (tt);

64 }

s}

66 }

67

68

69 /+ The following function will read from a CSV or TXT file =/
70 void readData(String myFileName) {

71

7 File file=new File (myFileName);

73 BufferedReader br=null;

74 try {

75 br=new BufferedReader(new java.io.FileReader(file));

76 String text=null;

77 /+ keep reading each line until you get to the end of the file =/

78 while ( (text=br.readLine ())!=null) {

79 /+ Spilt each line up into bits and pieces using a comma as a <
separator s/

80 subtext = splitTokens (text, ",");

81 }

2}

83 catch (java.io.FileNotFoundException e) {

84 e.printStackTrace () ;

s}

86 catch (IOException e) {
87 e.printStackTrace () ;

88 1
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