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We construct the non-linear realisation of the semi-direct product of E11 and its vector representation 
in eleven dimensions and find the dynamical equations it predicts at low levels. These equations are 
completely determined by the non-linear realisation and when restricted to contain only the usual fields 
of supergravity and the usual spacetime we find precisely the equations of motion of eleven dimensional 
supergravity. This paper extends the results announced in hep-th/1512.01644 and in particular it contains 
the contributions to the equations of motion that involve derivatives with respect to the level one 
generalised coordinates.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Quite some time ago it was conjectured that the low energy effective action for strings and branes is the non-linear realisation of 
the semi-direct product of E11 and its vector (l1) representation, denoted E11 ⊗s l1 [1,2]. This theory has an infinite number of fields, 
associated with E11, which live on a generalised spacetime, associated with the vector representation l1.

The fields obey equations of motion that follow from the symmetries of the non-linear realisation. Although it was clear from the 
beginning [1] that the fields at low levels were just those of the maximal supergravity theories the unfamiliar nature of spacetime 
discouraged the construction of the equations of motion. The earliest attempts often used only the usual coordinates of spacetime and 
only the Lorentz part of the Ic(E11) local symmetry. As a result the full power of the symmetries of the non-linear realisation was 
not exploited and the results were incomplete. A more systematic approach was used to constructing the equations of motion of the 
E11 ⊗s l1 non-linear realisation in eleven [3] and four [4] dimensions by including both the higher level generalised coordinates and local 
symmetries in Ic(E11). These papers did find the equations of motion of the form fields but found only partial results for the gravity 
equation.

Recently the equations of motion of the non-linear realisation E11 ⊗s l1 were found for all the usual fields in the maximal supergravity 
fields, including gravity, in five and eleven dimensions [5]. The equations of motion in eleven dimensions were completely determined and 
in agreement with those of eleven dimensional supergravity when one keeps only the usual supergravity fields and the usual coordinates 
of spacetime. In this paper we will give some of the details of this calculation as well as giving the terms in the equations of motion 
that contain derivatives to the level one generalised coordinate. We will also complete the variation of the gravity equation under the 
symmetries of the non-linear realisation to show that it varies in the three form equation.

In this section we will also review the main features of the non-linear realisation. In section 2 we will formulate the eleven dimensional 
theory including the explicit forms of the Cartan forms and generalised vielbein. Section 3 derives the variations of the Cartan form under 
the symmetries of the non-linear realisation and in particular discusses an important subtilty associated with the fixing of the group 
element of the non-linear realisation using its local symmetry. Using these results in section 4 we find the equations of motion for the 
three form and gravity and show that they vary into each other. Finally we discuss some of the consequences of the result in section 5.

To fix the notation, and as it is still not that well understood, we recall from previous papers the main features of the non-linear 
realisation of E11 ⊗s l1 which is constructed from the group element g ∈ E11 ⊗s l1 that can be written as

g = gl gE (1.1)
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In this equation gE is a group element of E11 and so can be written in the form gE = e Aα Rα
where the Rα are the generators of E11 and 

Aα are the fields in the non-realisation. The group element gl is formed from the generators of the vector (l1) representation and so has 
the form ezA L A where zA are the coordinates of the generalised spacetime. The fields Aα depend on the coordinates zA . The non-linear 
realisation is, by definition, invariant under the transformations

g → g0 g, g0 ∈ E11 ⊗s l1, as well as g → gh, h ∈ Ic(E11) (1.2)

The group element g0 ∈ E11 is a rigid transformation, that is, it is a constant. The group element h belongs to the Cartan involution 
invariant subalgebra of E11, denoted Ic(E11); it is a local transformation meaning that it depends on the generalised spacetime. The action 
of the Cartan involution can be taken to be Ic(Rα) = −R−α for any root α and so the Cartan involution invariant subalgebra is generated 
by Rα − R−α .

As the generators in gl form a representation of E11 the above transformations for g0 ∈ E11 can be written as

gl → g0 gl g
−1
0 , gE → g0 gE and gE → gEh (1.3)

The dynamics of the non-linear realisation is just an action, or set of equations of motion, that are invariant under the transformations 
of equation (1.2). We now recall how to construct the dynamics of the E11 ⊗s l1 non-linear realisation using the Cartan forms which are 
given by

V ≡ g−1dg = VE + Vl, (1.4)

where

VE = g−1
E dgE ≡ dz�G�,α Rα, and Vl = g−1

E (g−1
l dgl)gE = g−1

E dz · lgE ≡ dz�E�
AlA (1.5)

Clearly VE belongs to the E11 algebra and it is the Cartan form of E11 while Vl is in the space of generators of the l1 representation and 
one can recognise E�

A = (e Aα Dα
)�

A as the vielbein on the generalised spacetime.
Both VE and Vl are invariant under rigid transformations, but under the local Ic(E11) transformations of equation (1.3) they change as

VE → h−1VEh + h−1dh and Vl → h−1Vlh (1.6)

2. The eleven dimensional theory

The theory in eleven dimensions is found by deleting the node labelled 11 of the E11 Dynkin diagram and decomposing the E11 ⊗s l1
algebra into representations of the resulting algebra which is GL(11).

⊗ 11
|

• − • − • − • − • − • − • − • − • − •
1 2 3 4 5 6 7 8 9 10

The E11 generators can be classified by a level which is the number of up minus down indices divided by three. This level is preserved 
by the E11 commutation relations. The decomposition of E11 into representations of SL(11) up to level four can be found in the book [6]. 
The positive level generators are [1]

K a
b, Ra1a2a3 , Ra1a2...a6 and Ra1a2...a8,b, . . . (2.1)

where the generator Ra1a2...a8,b obeys the condition R[a1a2...a8,b] = 0 and the indices a, b, . . . = 1, 2 . . . 11. The negative level generators are 
given by

Ra1a2a3 , Ra1a2...a6 , Ra1a2...a8,b, . . . (2.2)

The vector (l1) representation decomposes into representations of GL(11) as [2,3]

Pa, Zab, Za1...a5 , Za1...a7,b, Za1...a8 , Zb1b2b3,a1...a8 , . . . (2.3)

For the eleven dimensional theory the group element of E11 ⊗s l1 is of the form g = gl gE where

gE = . . . eha1 ...a8,b Ra1 ...a8,b
e Aa1 ...a6 Ra1 ...a6 e Aa1a2a3 Ra1a2a3 eha

b K a
b (2.4)

and

gl = exa Pa exab Zab
exa1 ...a5 Za1 ...a5

. . . = ezA L A (2.5)

The parameters of the group element gE will become the fields of the theory while the parameters of the group element gl will become 
the coordinates of the generalised spacetime on which the fields depend. The above parameterisation differs slightly from that used in 
reference [3] and this will lead to corresponding differences in some of the later equations in this paper.

The Cartan forms of E11 were defined in equation (1.4) and those of the E11 part can be written in the form

VE = Ga
b K a

b + Gc1...c3 Rc1...c3 + Gc1...c6 Rc1...c6 + Gc1...c8,b Rc1...c8,b + . . . (2.6)

We now evaluate these E11 Cartan form in terms of the field that parameterise the group element of equation (2.4), one finds that [3]
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Ga
b = (e−1de)a

b, Ga1...a3 = ea1
μ1 . . . ea3

μ3dAμ1...μ3 ,

Ga1...a6 = ea1
μ1 . . . ea6

μ6(dAμ1...μ6 − A[μ1...μ3dAμ4...μ6])
Ga1...a8,b = ea1

μ1 . . . ea8
μ8 eb

ν(dhμ1...μ8,ν − A[μ1...μ3dAμ4μ5μ6 Aμ7μ8]ν + 3A[μ1...μ6dAμ7μ8]ν
+ A[μ1...μ3dAμ4μ5μ6 Aμ7μ8ν] − 3A[μ1...μ6dAμ7μ8ν]) (2.7)

where eμ
a ≡ (eh)μ

a .
The generalised vielbein E�

A , can be evaluated from its definition of equation (1.5) to be given as a matrix by [3,7]

E = (det e)−
1
2

⎛
⎜⎝

eμ
a −3eμ

c Acb1b2 3eμ
c Acb1...b5 + 3

2 eμ
c A[b1b2b3 A|c|b4b5]

0 (e−1)[b1
μ1(e−1)b2]μ2 −A[b1b2b3(e−1)b4

μ1(e−1)b5]μ2

0 0 (e−1)[b1
μ1 . . . (e−1)b5]μ5

⎞
⎟⎠ (2.8)

3. The transformations of the Cartan forms

The Cartan forms are inert under the rigid transformations of equation (1.2) but under the local Cartan invariant involution transforma-
tion h ∈ Ic(E11) they transform as in equation (1.6). As the Cartan involution invariant subalgebra of SL(11) is SO(11) they transform under 
SO(11) for the lowest level transformations. At the next level they transform under a group element h which involves the generators at 
levels ±1 and it is of the form

h = 1 − �a1a2a3 Sa1a2a3 , where Sa1a2a3 = Ra1a2a3 − ηa1b1ηa2b2ηa3b3 Rb1b2b3 (3.1)

Under this transformation the Cartan forms of equation (1.6) change as

δVE = [
Sa1a2a3�a1a2a3 ,VE

] − Sa1a2a3d�a1a2a3 . (3.2)

These local variations of the Cartan forms are straightforward to compute, using the E11 algebra and they are given by [3]

δGa
b = 18�c1c2bGc1c2a − 2δb

a�c1c2c3 Gc1c2c3 , (3.3)

δGa1a2a3 = −5!
2

Gb1b2b3a1a2a3�
b1b2b3 − 3Gc [a1�|c|a2a3],−d�a1a2a3 (3.4)

δGa1...a6 = 2�[a1a2a3 Ga4a5a6] − 8.7.2Gb1b2b3[a1...a5,a6]�b1b2b3 + 8.7.2Gb1b2a1...a5a6,b3�
b1b2b3 (3.5)

δGa1...a8,b = −3G[a1...a6�a7a8]b + 3G[a1...a6�a7a8b] (3.6)

When carrying out the local Ic(E11) transformations one must take into account the fact that we have also used the local symmetry to 
fix the group element to have a simpler form, as we have done in equation (2.4). In most past applications this matter has usually been 
resolved by computing the compensating local subgroup transformation h required for a given rigid transformation g0 to restore the group 
element into the chosen form. This involves manipulating group elements and is often very long and cumbersome. In this paper we will 
use an alternative approach which was used in the calculations of reference [5]. The new method applies to any non-linear realisation for 
which the local subgroup is the Cartan involution invariant subalgebra, however, to be concrete we will explain it for the case of interest 
to us here, that is, the E11 ⊗s l1 non-linear realisation.

The non-linear realisation E11 ⊗s l1 has a group element g = gl gE that is subject to the two types of transformations of equation (1.2)
which are required to be symmetries of the dynamics. It is often very useful to use the local transformation to gauge away some of the 
fields in the group element gE . When the local subgroup is the Cartan involution invariant sub algebra, Ic(E11), we can use the local 
symmetry to gauge away all the fields associate with negative root generators. In fact it is desirable to keep the level zero symmetries, 
such as Lorentz symmetry, manifest and so we only remove all the fields associated with the negative roots except for those at level zero. 
Put another way we use the gauge transformations to remove all the negative level fields from the group element and then the only 
remaining local symmetries are those of level zero. We now assume we have made such a choice of group element gE .

As the group element has only positive level fields and generators, it follows that the Cartan forms constructed from it will contain 
only positive level generators. Although the Cartan forms are inert under the rigid transformations, their form is not preserve by the local 
transformations of equation (1.2), other than by the transformations of level zero. The local transformations which involves level plus and 
minus one level generators can be written in the form h = 1 − � · (R(1) − R(−1)) and this will not preserve the form of the Cartan form. 
The precise form of this transformation is given in equation (3.1) for the case of eleven dimensions. Such a transformation will result in a 
change in the Cartan forms that has a level minus one contribution. To preserve the form of the Cartan forms we set this contribution to 
zero and so find the equation

[� · R(−1),V(0)] − d� · R(−1) = 0 (3.7)

where the superscript denotes the level.
Equation (3.7) should be thought of as a constraint on the spacetime dependent parameter � and it can be solved by taking

� · R(−1) = (g(0)
E )−1�c · R(−1)g(0)

E (3.8)

where �c is a constant parameter.
For the case of eleven dimensions g(0) = eha

b Ka
b

and we find that equation (3.7) takes the form
E



A.G. Tumanov, P. West / Physics Letters B 758 (2016) 278–285 281
d�a1a2a3 − 3Gb
[a1|�b|a2a3] = 0 (3.9)

The solution to this equation is given by

�a1a2a3 = �
τ1τ2τ3
c eτ1

a1 eτ2
a2 eτ3

a3 (3.10)

where �τ1τ2τ3
c is a constant. The reader may verify that this is the same result as solving equation (3.8). We note that the local transfor-

mation is really only a rigid transformation as should indeed be the case as we have fixed the form of the group element using the local 
transformation.

We can use equation (3.9) to eliminate d�a1a2a3 from the transformations of equations (3.3), (3.5), (3.6). In fact this only affects the 
transformation of the Cartan form for the three form of equation (3.4) which now becomes

δGa1a2a3 = −5!
2

Gb1b2b3a1a2a3�
b1b2b3 − 6G(c[a1|)�c|a2a3] (3.11)

In carrying out the variation of the equations of motion we will encounter the derivative of the parameter of equation (3.10) and in 
processing these terms we must take account of the fact that only �τ1τ2τ3

c is independent of the generalised spacetime. This observation 
plays a crucial role in the calculations in this paper and those of reference [5].

The above method is equivalent to carrying out a rigid E11 transformation and finding the compensating local transformation that 
preserves the form of the group element. However, it is very much simpler and easier to implement than the old method.

The Cartan forms, discussed above, were written as forms and so they are written as Gα where Gα ≡ dz�G�,α and G�,α are the 
components. The first index � is associated with the vector representation (l1) while the second index is associated with E11. Although 
the Cartan forms when written in form notation are invariant under the rigid transformations of equation (1.2) once written in terms 
of components they are not invariant. We can remedy this by taking the first index to be a tangent index, that is, G A,α = (E−1)A

�G�,α

which is inert under the rigid E11 transformations, but transforms under the local Ic(E11) transformations. This latter transformation just 
being that for the inverse vielbein of equation (1.6). One finds that the Cartan forms, when referred to the tangent space, transform on 
their l1 index as [3]

δGa,• = −3Gb1b2
,•�b1b2a, δGa1a2

,• = 6�a1a2bGb,• (3.12)

These transformations are to be combined with the local transformations on the second E11 index given earlier in this section.

4. Eleven dimensional equations of motion

The non-linear realisation of E11 ⊗s l1 was computed at low levels in [3] where one found the equation of motion that relates the three 
form and six form fields. It will be instructive to rederive this equation so as to make clear the origin of terms in the equations of motion 
that contain derivatives with respect to the higher level coordinates.

We seek a set of equations which are first order in derivatives and are invariant under the symmetries of the non-linear realisation. 
For the equation for the three form we should consider one that has four indices as it also includes one derivative. We can also built the 
equations out of the Cartan forms of equation (2.7) as these are invariant under the rigid transformations of equation (1.2) leaving only 
the problem of finding equations that are invariant under the local transformations. At lowest level these latter transformations are just 
local Lorentz transformations. On grounds of Lorentz invariance the only equation which is first order in the Cartan forms for the three 
and six form and has four Lorentz indices must be of the generic form

G[a1,a2a3a4] − cεa1a2a3a4
b1...b7 G[b1,b2...b7] = 0 (4.1)

where c is a constant. We note that the Cartan forms do appear with all their indices totally antisymmetrised although this was not an 
initial requirement.

The real test for the equation (4.1) is if it is invariant under the transformation of Ic(E11) at the next levels and so we consider the 
variation of this equation under the transformations of equation (3.1), or equivalently equations (3.3), (3.5), (3.6) and equation (3.11). To 
find this equation it will suffice to keep only the terms that involve the three form and six form. The variation of G[a1 ,a2a3a4] of equation 
(3.11) leads to the Cartan form for the six form but it is not totally antisymmetrised in all its indices. Clearly we can only obtain an 
invariant equation if we have such a total antisymmetry. The way to resolve this problem is to consider the object

Ga1,a2a3a4 ≡ G[a1,a2a3a4] + 15

2
Gb1b2

,b1b2a1...a4 (4.2)

The variation of this object can be written in the form

δGa1,a2a3a4 = − 1

2.4!.4!εa1,a2a3a4b1b2b3c1...c4ε
c1...c4e1...e7 Ge1...e7�

b1b2b3 (4.3)

It is then straightforward to find that, up to the level we are working, the invariant equation is given by [3]

Ea1...a4 ≡ G[a1,a2a3a4] − 1

2.4!εa1a2a3a4
b1...b7 Gb1,b2...b7 = 0 (4.4)

its variation being given by

δEa1...a4 = 1
εa1...a4

b1...b7�b1b2b3 Eb4...b7 + . . . (4.5)

4!
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where + . . . denote gravity and higher level contributions.
The fact that equation (4.4) is invariant under the transformations of the non-linear realisation up to the level demanded justifies the 

one assumption made, namely that there does exist a equation that is first order in derivatives.
Rather than vary the three form equation (4.4) to find the gravity equation we will take the derivative of this equation in such a way as 

to eliminate the dual six form gauge field and then vary this equation to find the gravity equation. The variation of the first order equation 
has been given in a previous paper [3], but its unfamiliar form and derivation have meant that it has not been properly evaluated.

Taking the derivative of equation (4.4) we find the result

∂ν((det e)
1
2 G[ν,μ1μ2μ3]) + 1

2.4! (det e)−1εμ1μ2μ3τ1...τ8 G[τ1,τ2τ3τ4]G[τ5,τ6τ7τ8] = 0 (4.6)

which is the familiar second order equation of motion for the three form. We have discarded the terms which contain derivatives with 
respect to the higher level generalised coordinates as we will recover such terms when we vary equation (4.6). When we converted the 
first (l1) index on the Cartan form to be a tangent index we used the inverse vielbein computed from the vielbein given in equation (2.8). 
We notice that the inverse vielbein contains a factor of (det e)

1
2 compared to what one might normally expect. This explains the unusual 

factors of (det e)
1
2 that populate the following equations.

In order to vary equation (4.6) under the Ic(E11) transformation it is best to rewrite it in terms of the Cartan form of E11 using the 
expressions of equation (2.7). We find that it is equivalent to the equation

Ea1a2a3 ≡ Ea1a2a3(1) + Ea1a2a3(2)

≡ 1

2
Gb,d

dG[b,a1a2a3] − 3Gb,d
[a1|G[b,d|a2a3]] − Gc,b

c G[b,a1a2a3] + (det e)
1
2 eb

μ∂μG[b,a1a2a3]

+ 1

2.4!ε
a1a2a3b1...b8 G[b1,b2b3b4]G[b5,b6b7b8] = 0 (4.7)

The expression Ea1a2a3(1) contains all terms that do not involve the epsilon symbol while Ea1a2a3(2) involves the one term that does.
We will vary the equations of motion so as to keep in the variations all terms that contain ordinary spacetime derivatives. This ensures 

that we will find all such terms in the equations of motion. However, we must also find all terms in the equations of motion we are 
varying that contain derivatives with respect to the level one generalised spacetime. Indeed, if we have a term in the variation of the 
form

�τμ1μ2 Gτ ,• f •
μ1μ2 (4.8)

then using equation (3.12) we can cancel this by adding the term

−1

6
Gμ1μ2

,• f •
μ1μ2 (4.9)

to the equation of motion that is being varied. We will refer to such terms as l1 terms. The other variations of this term are of a higher 
level than we are keeping. Hence when varying a given equation of motion we will find l1 terms in this equation, but not in the new 
equation that results from the variation. The latter are then found by varying the new equation. The equations in this paper are given 
with the understanding that they have been computed up to these levels in the derivatives with respect to the generalised coordinates. 
Of course one can only add an l1 term to an equation if it has the required index structure and symmetries.

So that the reader can get a feel for the intricate way in which the calculation works we now give some indications of how the 
variations of equation (4.7) under the local Ic(E11) transformation of equations (3.3), (3.5), (3.6) and equation (3.11) are carried out. 
Varying the Cartan form G[a1,a2a3a4] contained in Ea1a2a3(1) under the Ic(E11) transformation of equation (3.11) and converting the result 
back to carry world indices we find the expression

eμ1
[a1 eμ2

a2 eμ3
a3]{3∂ν

(
(det e)ωτ,

[νμ1| − (det e)
1
2 Gτ ,

[νμ1|)�τ |μ2μ3] + 5!
2

(det e)
1
2 G[ν,μ1μ2μ3]

τ1τ2τ3�
τ1τ2τ3} (4.10)

When carrying out the variation it is important to recall the discussion of section three and, in particular, the fact that only the parameter 
�μ1μ2μ3 is a constant.

By undoing the antisymmetrisation of the four indices we can rewrite the first term as

3eμ1
[a1 eμ2

a2 eμ3
a3]∂ν

(
det eωτ,

[νμ1| )�τ |μ2μ3] = 3

2
eμ1

[a1 eμ2
a2 eμ3

a3]{∂ν

(
det eωτ,

νμ1
)
�τμ2μ3 + ∂ν

(
det eωτ,

μ1μ2
)
�τνμ4}

(4.11)

In order to process the first term of equation (4.11) we note that

eμ
a∂ν

(
det eωτ,

νμ
) = det e

(
eb

ν∂νωτ,
ba + (

eμ
a∂νec

μ
)
ωτ,

νc + (
ec

λ∂νeλ
c)ωτ,

νa + ∂νeb
νωτ,

ba
)

, (4.12)

the relations

(det e)ωμ,
abωλ,

cλ = −ωμ,
ab∂λ

(
(det e) eb

λ
)

(4.13)

and that

−ων,
a

cωμ,
cν = (det e)−

1
2
(
Ga,(cν) − Gc,(aν) − Gν,[ac]

)
ωμ,

cν = −(det e)−
1
2 Gc, νaωμ,

cν = −eb
λ∂νeλ

aωμ,
νb (4.14)
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The Ricci tensor is given by

Rμ
a = ∂μων,

abeb
ν − ∂νωμ,

abeb
ν + ωμ,

a
cων,

cbeb
ν − ων,

a
cωμ,

cbeb
ν, (4.15)

whereupon we recognise that the first term in equation (4.11) is just the first, third and fourth terms of the Ricci tensor and as a result 
we can write this term as

3

2
det e{Rτ

[a1| − ∂τ (ων,
[a1|b)eb

ν}�τ |a1a2] (4.16)

However, the second term in equation (4.11) is of the form of equation (4.9) and so it can be introduced by adding an l1 term to the 
three form equation of motion. Of course we can not from these considerations determine the coefficient of this term to be exactly as 
required to find the full Ricci tensor. However, this coefficient is fixed to the desired result once we vary the resulting gravity equation 
as was shown at the linearised level in [5]. For simplicity of presentation we will take the coefficient to be as required. The reader who 
wishes to insert an arbitrary coefficient and follow it through the remaining calculations, including the non-linear variation of the gravity 
equation, is encouraged to do so.

The second terms in both equations (4.10) and (4.11) are of the form Gτ ,•�τμν and so they can be cancelled by adding l1 terms to the 
three form equation of motion.

The variation of the second term in equation (4.7), that is, the terms in Ea1a2a3(2) can be processed by using equation (4.4) to swap the 
seven form field strength for the four form field strength. One finds the terms associated with the energy momentum tensor, further l1
terms and terms which are cancelled by the variation of Ea1a2a3(1) .

As explained, above when carrying out the variation of the three form equation we find the l1 terms that we must add to this equation. 
The result of all these calculations is that the three form equation of motion, up to the level we are calculating, now takes the form

Ea1a2a3 ≡ 1

2
Gb,d

dG[b,a1a2a3] − 3Gb,d
[a1|G[b,d|a2a3]] − Gc,b

c G[b,a1a2a3] + (det e)
1
2 eb

μ∂μG[b,a1a2a3]

+ 1

2.4!ε
a1a2a3b1...b8 G[b1,b2b3b4]G[b5,b6b7b8] − 9Gca1

,cd1d2 G[d1,d2a2a3] + 5

16
εa1a2a3b1...b8 Gb1,b2b3b4 Gc1c2

,c1c2b5...b8

+ 1

4
eμ1

[a1 eμ2
a2 eμ3

a3]∂ν

(
(det e)

1
2 Gμ1μ2

,
νμ3

)
+ 1

4
(det e)

1
2 ων,

[a1|bGa2a3]
,b

ν

+ 1

4
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,d
d(G |a3]

,c
c − Gc,

|a3]c) + 1

4
∂ν

(
(det e)

1
2 (G[a1a2|

,d
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,
|a3]ν)

)

+ 1

2
(G[a1

,c
a2 G |c|a3]

,d
d − Gc[a1

,
a2|e|Ge,c

a3]) + 15

2
eμ1

[a1 eμ2
a2 eμ3

a3]∂ν

(
(det e)

1
2 Gd1d2

,d1d2
νμ1μ2μ3

)
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2
(det e)

1
2 gτσ gμ1λ∂λGτμ2,(σμ3) − 1

2
Gτμ1

,d
dGμ2,(μ3

τ )

− 1

4
Gτμ1,(μ2

τ )Gμ3
,d

d − Gτμ1
,(τσ )Gμ2,(μ3σ ) + Gτμ1,(μ2σ )Gσ ,(τ

μ3)
)

= 0 (4.17)

Under the variation of the local transformations of equation (3.1) this equation of motion transforms as

δEa1a2a3 = 3

2
Eb

[a1|�b|a2a3] + 1

24
ea1
μ1

ea2
μ2

ea3
μ3ε

μ1μ2μ3νλ1...λ4τ1τ2τ3∂ν

(
(det e)−

1
2 Eλ1...λ4 gτ1κ1 gτ2κ2 gτ3κ3

)
�κ1κ2κ3

+ 1

24.4!ε
a1a2a3b1...b8εb1...b4c1c2c3e1...e4 Eb5...b8 G[e1,e2...e4]�c1c2c3 (4.18)

where

Ea
b ≡ (det e)Ra

b − 12.4G[a,c1c2c3]G[b,c1c2c3] + 4δb
a G[c1,c2c3c4]G[c1,c2c3c4] = 0 (4.19)

and Eλ1...λ4 is the first order in derivatives duality relation of equation (4.4). Clearly, the graviton equation of motion is equation (4.19).
We will now carry out the variation of the gravity equation under the Ic(E11) transformation of equations (3.3), (3.5), (3.6) and equation 

(3.11). This calculation requires the variation of the spin connection which we have defined to be given by

(det e)
1
2 ωc,ab = −Ga,(bc) + Gb,(ac) + Gc,[ab] (4.20)

Since the G A,α contain a factor of (det e)
1
2 this is the standard expression for the spin connection. The variation will result in only the 

four form field strength G[c1,c2c3c4] if we add to the spin connection certain l1 terms. Indeed if we define

(det e)
1
2 �c,ab = (det e)

1
2 ωc,ab − 3Gdc

,dab − 3Gd
b,dac + 3Gd

a,dbc − ηbc Gd1d2
,d1d2a + ηac Gd1d2

,d1d2b (4.21)

one then finds that

δ((det e)
1
2 �c,ab) = −18.2�d1d2

c G[a,bd1d2] − 18.2�d1d2
bG[a,cd1d2] − 18.2�d1d2

aG[c,bd1d2]
+ 8ηbc�

d1d2d3 G[a,d1d2d3] − 8ηac�
d1d2d3 G[b,d1d2d3] (4.22)

Substituting the spin connection �c,ab for the standard spin connection ωc,ab in the Riemann tensor we define

Ra
b = ea

μ∂μ�ν,
bded

ν − ea
μ∂ν�μ,

bded
ν + �a,

b
c�d,

cd − �d,
b

c�a,
cd. (4.23)
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In fact Ra
b is no longer symmetric in a and b interchange when we consider the terms that have level one derivatives in the generalised 

coordinates. We replace the Ricci tensor by the object of equation (4.23) in the equation of motion of equation (4.19). We will then require 
its variation which is given by

δ{(det e)Rab} = {36�d1d2c(ωc,a
e + ωe

,ac)G[b,ed1d2] − 36�d1d2
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e G[c,ed1d2] + 18Ge
,c
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− 8ηac G[b,d1d2d3]�d1d2d3 + 8ηabG[c, d1d2d3]�d1d2d3
)

(4.24)

Calculating the other variation of the other terms in the gravity equation of motion (4.19) we find that its variation is given by

δEab = −36�d1d2
a Ebd1d2 − 36�d1d2

b Ead1d2 + 8ηab�
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where
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c Gd1d2
,d1d2a − 3 (det e)

1
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c Gd1d2
,d1d2c = 0 (4.26)

In carrying out the variation we find the l1 terms we must add to the gravity equation which are now included above. We note that some 
of the terms in equation (4.26) are not symmetric under the interchange of a and b so compensating the same lack of symmetry in Rab .

Thus we have found that, up to the level at which we are working, the second order in derivatives three form and gravity equations 
(4.17) and (4.26) respectively rotate into each other as well as the first order duality equation (4.4). However, once we vary the latter 
equation we will find equations of motion for the higher level fields in the E11 ⊗s l1, non-linear realisation and hence the higher order 
fields can only be eliminated from the complete system by truncating in a way that destroys the E11 symmetry.

We recognise equation (4.17) and equation (4.26) as the equations of motion of the bosonic sector of eleven dimensional supergravity 
[12] once we throw away the terms that have derivatives with respect to the level one generalised coordinates.

5. Conclusion

In this paper we have constructed the dynamics that follow from the non-linear realisation of E11 ⊗s l1 in eleven dimensions for the 
low level fields and generalised coordinates. The result is unique and when we truncate it to contain only the usual fields of supergravity, 
that is, the graviton and the three form, and also take only the usual coordinates of spacetime we find the equations of motion of eleven 
dimensional supergravity. Thus we have a very direct path from the Dynkin diagram of E11 to the eleven dimensional supergravity theory. 
It is inevitable that one will find the analogous results in other dimensions. Indeed the five dimensional theory was found in reference [5]
except for some coefficients which were undetermined, however, these can be fixed to the required values from the eleven dimensional 
theory using dimensional reduction.

The E11 ⊗s l1 realisation is a unified theory in that it contains all the maximal supergravities in one theory. The theory in D dimensions 
appears by deleting node D in the E11 Dynkin digram and decomposing E11 ⊗s l1 with respect to the resulting GL(D) × E11−D algebra 
[8–10]. The E11 ⊗s l1 also includes the gauged supergravities [9–11]. Furthermore, it includes effects that are beyond the usual supergravity 
description and are know to be present in the theory of strings and branes. Since the supergravity theories themselves contain many of 
the low energy properties of strings and branes it would seem inevitable that one should replace the many different supergravity theories 
by the E11 ⊗s l1 realisation as the low energy effective theory of strings and branes.

The E11 theory is very predictive in that one can, at least as a matter of principle find how the higher level fields and coordinates enter 
into the equations of motion. It would be very interesting to find what are the physical meaning of the higher level fields and coordinates. 
Reference [5] mentions a number of avenues that one can explore in future work.
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