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1 Introduction

A period of exponential expansion in the early Universe solves the horizon, flatness and
monopole problem as well as sourcing the seeds of structure formation. The spectrum of
scalar perturbations predicted from such inflationary theory has been measured many times,
most recently to an impressive accuracy by the Planck satellite [1].

The recently reported observation of primordial B-modes in the polarization of the CMB
by the BICEP2 experiment [2] may turn out to be the most convincing evidence of inflation
to date. Although the Planck data has made some steps in selecting from the various models
that can produce inflation we are still a long way from pinning down what features the precise
microscopic mechanism responsible for inflation would have to have.

What is, however, common to almost all models is the presence of a scalar inflaton. The
discovery of the Higgs boson, h, by the ATLAS [3] and CMS [4] collaborations is the first
(seemingly [5]) fundamental scalar we have detected. It is therefore natural to ask whether the
Higgs can play the role of the inflaton. A naive first answer would be that it cannot because
it is well known that for V (φ) ' 1

4λφ
4 the measured spectrum of perturbations requires1 the

quartic coupling λ'10−13 whereas the measured Higgs mass requires λ∼0.13. This, however,
neglects the effect of quantum corrections. Properly considered, these effects can lead to
substantial modifications to the tree-level potential and a significant scale dependence of λ.

For a finely chosen mass of the top quark it is possible, as shown in [6], that the effective
Higgs potential develops a flat part at large field values or even a second, local minimum,
also called a false vacuum. Remarkably these features appear at approximately the correct
scale to generate the observed perturbations which suggests the Higgs does indeed have a
role to play in inflation.

Recently there has been a lot of interest in using the Higgs as the inflaton in the context
of a non-minimal coupling to gravity [7–18]. It is worth noting that quantum corrections may
reduce the predictiveness of such models [19] and should be taken into account. Additionally,
if the recent measurement by the BICEp2 collaboration proves to be true then these models
will be put under pressure [20] (for a possible way out see the recent works [21, 22] that
rely on similar tunings of the Higgs potential). It has also been shown [23] that non-minimal
derivative couplings to gravity can give successful Higgs inflation that appears to fit well with
both Planck and BICEP2 [24]. Here we don’t consider any such couplings and so refer to it
as minimal Higgs inflation.

1This requirement is to fit the perturbations for N = 60 e-folds before the end of inflation. This model is
also in tension with Planck’s nS-r plane constraints [1], where nS is the spectral index and r is the tensor-to-
scalar ratio.
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In this paper we will investigate how the plateau or the false vacuum could be used to
explain the inflationary phase of the Universe. To do so we will first look at the situation
where there is a plateau in the potential and see whether the Higgs can inflate the Universe
on its own by slowly rolling down the plateau. The case of a false vacuum in the potential
demands a mechanism for a graceful exit from inflation. Therefore, we extend the model
and add an additional scalar field, s, which can lift the Higgs out of its local minimum. The
strong CP-problem motivates the existence of such an additional scalar field and it is worth
investigating if such a mechanism can give successful inflation.

Our calculation improves upon a previous treatment in [25] by considering the full
3-loop renormalisation group equation (RGE) improved 2-loop effective potential [26, 27],
including the 1-loop RGE’s for the new scalar field and its threshold effect at the matching
scale. Also, we account for the movement of the Higgs during inflation and further address
a degeneracy in the initial depth of the false vacuum. We will see that these improvements
can dramatically affect the conclusions.

The structure of the paper is as follows. In section 2 we discuss the RGE improved
effective potential and attempt to use the resulting plateau for inflation. In section 3 we
discuss the possibility of false vacuum inflation which is the main focus of this paper. Finally,
in section 4 we present our conclusions.

2 Plateau inflation

In [26, 27] a state of the art 3-loop RGE improved 2-loop effective potential for the Standard
Model Higgs was presented and discussed. This calculation showed that, within the current
experimental errors on the Higgs and top masses, we appear to be living in a very special Uni-
verse. In figure 5 of [26] we can see that the current experimental data places the electroweak
vacuum at the boundary between stable and meta-stable. The possibility of instability/meta-
stability, as has been much discussed [6, 26–31], is largely a result of the sizeable negative
contribution of the top yukawa coupling to the beta function of the Higgs quartic coupling,
λh, which can cause λh to become negative at some high scale, creating an additional AdS
vacuum into which we might tunnel. We appear to be safe from a catastrophic tunnelling
event, however, because the lifetime of our vacuum is much greater than the current age of
the Universe [26] (note that when the Higgs is not the inflaton, its dynamics during infla-
tion [32–35] or Planck suppressed operators [36] might drastically reduce this lifetime). The
proximity of the current experimental data to the boundary between stable and meta-stable
is a result of the peculiar fact that both λh and βλh can vanish at the same scale, which is
highly non-trivial and merits investigation. One consequence is the development of plateau
in the Higgs potential that could lead to slow roll inflation [6] and, remarkably, it appears at
approximately the correct scale to generate the observed perturbations. In figure 1 we can
see the effect of tuning the top mass on the effective potential. The figure shows that tuning
on the order of 0.1–1 MeV can interpolate between and stable and meta-stable vacuum. At
the boundary of this transition we see the appearance of a plateau. In order to test the
suitability of this scenario for inflation we can start the field above the plateau and let it roll
down the potential and calculate the e-folds. The field, h, will evolve according to the field
equations,

ḧ+ 3Hḣ =
dVeff

dh
, (2.1)

with

H =
1

Mpl

√
ρ

3
and ρ =

1

2
ḣ2 + Veff. (2.2)

– 2 –
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Figure 1. The figure shows the effective potential for Mh = 125 GeV. The top mass is tuned in order
to show the appearance of a plateau or an instability. The four curves plotted differ by 0.5 MeV in
Mt. Here Mpl = 2.345× 1018 GeV is the reduced Planck mass.

Here we have

Veff =
1

4
λeffh

4, (2.3)

where λeff contains the 3-loop RGE’s and the 2-loop corrections to the effective potential
such that when we choose h as the renormalization scale λeff becomes a function of h. The
total number of e-folds is then given by,

Ntot =

∫ tf

ti

Hdt. (2.4)

The result is shown in figure 2. We see that in order to get the required e-folds (50–60)
to solve the horizon problem we need Mh & 129 GeV which is inconsistent with the value
observed at the LHC. It is possible to try to relieve this constraint by, say, introducing another
scalar that mixes with the Higgs such that our input λh is smaller for the same Mh. This
will delay the appearance of a plateau and push it to higher scales, allowing more e-folds
for lower Mh values. This does not resolve the matter, however, because in both cases the
inflationary scale is too high to fit the amplitude of the scalar perturbations. In the slow roll
regime this amplitude is given by

As =
V

24π2εM4
pl

' 2× 10−9, (2.5)

where for slow roll εmax = 1 so we can put and upper bound on the inflationary scale of

max

(
V 1/4

Mpl

)
∼ 2.5× 10−2. (2.6)

– 3 –
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Figure 2. This figure shows the total number of e-folds of inflation caused by a Higgs rolling from
rest at 10 Mpl. The thickness in the band is set by the ±1σ error on αs(MZ) and the color bar
indicates the value of Mt required for a plateau. For smaller Mh the plateau is shorter and occurs at
a lower scale and so has only a very small effect on the rolling of the field. For larger Mh the plateau
is significant enough to cause an extended period of slow roll.

We find that whenever enough e-folds are generated by a plateau this upper bound is ex-
ceeded.

It is also possible to consider very careful choices of initial conditions such that a large
number of e-folds could be generated by the field rolling very slowly passed the inflection
point. This was addressed in the slow roll regime in [37] and it was found that satisfying
both the perturbations and the e-folds simultaneously is impossible. Finally, you could
imagine repeating the above calculation and allowing for a shallow well to slow the Higgs as
it rolls passed, producing more e-folds. It was found that in order to avoid being trapped in
the minimum by Hubble friction, the Higgs can only be slowed by a tiny amount. We found
that this impacted the e-folds less than varying αs(MZ) by 1σ.

3 False vacuum inflation

Although successful inflation cannot be achieved in the simple case of a plateau it may still
be possible that the Higgs may be connected to inflation in a slightly less minimal way. To
see this we can imagine starting with the plateau situation and increasing the top mass by a
few × 0.1 MeV. In this way we can create a false vacuum with large positive energy density
that can be used to inflate the Universe.

This is then the scenario of old inflation and we are therefore burdened with problem
of graceful exit. One possible solution [38] is to extend general relativity to a scalar-tensor
theory. This allows the expansion rate of the Universe with a constant inflaton energy
density to decrease with time, eventually becoming slow enough to allow successful exit
through tunnelling. In this paper we revisit an alternative solution, proposed in [25], that

– 4 –
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introduces an extra scalar whose dynamics during inflation slowly lifts the Universe out of
the false vacuum such that it can roll classically down to the true vacuum. At this point the
reader may worry that if we are introducing an extra scalar why we are not just letting that
extra scalar to be the inflaton with, say, a quadratic potential. While this is a reasonable
position to take, it ignores presence of the false vacuum in the Higgs potential. We also
expect that the Higgs will be coupled to any additional scalars (e.g. the scalar responsible for
Peccei-Quinn symmetry breaking) that appear above the electroweak scale through the Higgs
portal coupling regardless of whether these scalars can achieve inflation on their own. We
therefore consider the approach that the Higgs is responsible for inflation and the additional
scalar merely facilitates the graceful exit. For a recent update on false vacuum Higgs inflation
see [39], in which the dynamics for the removal of the barrier are left undiscussed.

The tree-level potential in terms of the real-fields is given by,

V =
1

4
λs
(
s2 − f2

a

)2
+

1

4
λh
(
h2 − v2

)2
+

1

4
λhs

(
s2 − f2

a

) (
h2 − v2

)
, (3.1)

where s is the real part of a possibly complex Standard Model singlet scalar field and respects
a global Z2 (real field) or U(1) (complex field) symmetry. Such a complex field, S, arises
in the context of invisible axion models, where the symmetry is identified with the U(1)
Peccei-Quinn that solves the strong CP problem. The phase of S then becomes the QCD
axion.

During inflation the tachyonic s field will roll towards its minimum 〈s〉 and the mixing
term between h and s will grow and lift the false vacuum as shown in figure 3. The end of
inflation is taken as the point at which the false minimum disappears. In reality, tunnelling
will become highly probable when the well depth is sufficiently small (when Γtunnel � H)
causing inflation to end slightly earlier. Additionally the subsequent free rolling of the field
down to the global minimum can still produce some inflation. Both of these effects however
are small and change the calculation by a negligible number of e-folds which will not alter
our conclusions and so we neglect these contributions. We therefore have a setup similar
to hybrid potential [40] in which the rolling of s triggers the waterfall field h but in this
case the false vacuum is created purely by quantum effects. It is possible to treat this as
an approximately single field model because h is trapped in the false minimum throughout
inflation. The renormalized potential can then be written2 as a function of s

Vs =
1

4
λs
(
s2 − 〈s〉2

)2
+

1

4

(
λeff −

λ2
hs

4λs

)(
〈h〉2 − v2

)2
, (3.2)

with

〈s〉 =
1√
2λs

√
M2
s + λhs (v2 − 〈h〉2) , (3.3)

where Ms is the mass of the new scalar and v = 246 GeV is Higgs vev in the true vacuum.
The position, 〈h〉, of the false vacuum will change during inflation (see figure 3) so we may
treat it as a function of s.

As h rolls to the global minimum 〈s〉 relaxes to its ground state value given by

fa = 〈s〉|〈h〉=v =
Ms√
2λs

, (3.4)

2Here we neglect the h2 term because we are interested in the large h behaviour.

– 5 –
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Figure 3. This plot shows the effect of the mixing between the singlet, s, and the Higgs, h, on the
Higgs contribution to V as s rolls towards its minimum. The singlet field manages to successfully
remove the false vacuum allowing the Higgs to roll down to true vacuum.

where fa can be interpreted as the axion decay constant for the case where S is a complex
field charge under U(1)PQ.

The total number of e-folds is then calculated using

N =
1

Mpl

∫ send

s=0

ds√
2ε
, (3.5)

with

ε =
M2

pl

2

(
V ′s
Vs

)2

. (3.6)

The amplitude of the scalar perturbations are then calculated N∗ = 50–60 e-folds before the
end of inflation using equation (2.5).

The introduction of the new scalar will modify the low energy Higgs parameters and
the RGE’s of the Standard Model. Firstly, it was shown in [41] that when the mass of the
extra scalar is much larger than the electroweak scale (as will always be the case here) it can
be integrated out to yield an effective theory below Ms. In this effective theory the Higgs
quartic coupling will be modified to that of the Standard Model as a result of the λhs mixing
term. Below Ms we must replace

λh → λ = λh −
λ2
hs

4λs
, (3.7)

where λ ∼ 0.129 is what is inferred from the Higgs mass measurement and is what enters the
SM running below Ms. At Ms we must therefore apply a threshold effect to match to the

full theory by replacing λ with λh = λ+
λ2hs
4λs

. Above Ms we must also include the s field in

– 6 –



J
C
A
P
0
6
(
2
0
1
4
)
0
3
9

the RGE’s

(4π)2βλh = (4π)2βSM
λh

+
1

2
λ2
hs, (3.8)

(4π)2βλhs =
1

4
λhs

(
12y2

t −
9

5
g2

1 − 9g2
2

)
+ λhs(6λh + 4λs) + 2λ2

hs, (3.9)

(4π)2βλs = λ2
hs + 10λ2

s. (3.10)

In order for this mechanism to work both λs and λhs will need to be very small so the RGE
contribution will be minor. The threshold effect however can still be significant because even
small changes in λh can substantially change the position of the false vacuum.

The setup for testing this model is to:

• select our 5 inputs {Mh, αs(MZ), λs, λhs,Ms},

• carefully tune Mt to generate a false vacuum in the potential (see below for more
details),

• determine send, the value of s for which the false vacuum disappears and inflation ends,

• calculate the amplitude of the scalar perturbations N∗ e-folds before the end of inflation
using equation (2.5),

• calculate the χ2 of this model point using the experimental values: the χ2 was derived
from fitting the experimental value of Mh = 125.66± 0.34 GeV (see [26] and references
therein) and Mt = 173.35 ± 0.76 GeV [43], the world average of αs(MZ) = 0.1184 ±
0.0007 [44], and observed value of As = (2.196± 0.060)× 10−9 [1].

Note, however, that there is a degeneracy in such an approach resulting from the freedom
of tuning the initial depth of the well using Mt. Different well depths will result in different
send, and hence As, values for the same set of input parameters. To resolve this we tune Mt

for each set of inputs such that the resulting well depth generates the best possible fit to As.
We therefore choose only the best possible point in the degenerate set of outputs given our
5 inputs.

The result of an extensive nested sampling scan using MultiNest [42] is shown in figure 4.
The best fit point has a χ2 = 29.4 largely due to poor fits of Mh and αs(Mz) (see figure 4).
There is a clearly visible sharp boundary in figure 4. This marks the point when the scale
of inflation exceeds the maximum value allowed by equation (2.6) preventing any chance of
achieving a good fit to As by tweaking ε. We also see that allowing a variation of αs(MZ) gives
considerably more freedom in Mt for a particular Mh while still achieving a false vacuum. The
corresponding distributions for λs, λhs, and Ms and their best fit value are shown in figure 5.
It is clear that in order to fit the scalar perturbations and the e-folds simultaneously, quite
small values for the couplings are needed, which would result in a very large (Planckian)
expectation value 〈s〉|〈h〉=v for the extra scalar field, making the case where we identify it
with the real part of the Peccei-Quinn scale less phenomenologically interesting. The sharp
line in the λs-λhs plane marks the region above which the threshold effect becomes too large
and results in a push of the false vacuum to too large scales.

Although we do not consider the spectral index, ns, or the tensor-to-scalar ratio, r, as
constraints for our fit, this model is capable of reproducing large r and ns < 1 in the region
preferred by Planck and BICEP2. This is, however, secondary to the difficulties encountered
when fitting Mh and αs(MZ).

– 7 –



J
C
A
P
0
6
(
2
0
1
4
)
0
3
9

0.117

0.118

0.119

0.120

0.121

0.122

0.123

0.124

0.125

α
s
(M

Z
)

123.0 123.5 124.0 124.5 125.0 125.5 126.0 126.5 127.0
Mh [GeV]

170

171

172

173

174

175

M
t

[G
eV

]

−2.5

−2.4

−2.3

−2.2

−2.1

−2.0

−1.9

−1.8

−1.7

−1.6

−1.5

−
lo

g
10

(χ
2
)

Figure 4. This plot shows the binned best fit point in the Mh-αs(MZ) plane (top) and the Mh-Mt

plane (bottom) for N∗ = 50. The colourbar shows − log(χ2) for each point when fitting to all 4 ob-
servables {Mh,αs(Mz),Mt, As}. For comparison the 1,2, and 3σ experimental contours for the plotted
parameters are also depicted. The global best fit point, marked with a yellow star, is inconsistent
with experiment at more than 5σ.

4 Conclusion

In this paper we have considered two possible implementations of minimal Higgs inflation. In
section 2 we tuned the Higgs potential in such a way that a plateau appears and investigated
whether this plateau can be used to inflate the Universe via a slow-rolling of the Higgs alone.
We considered the full 3-loop RGE improved 2-loop effective potential. A simultaneous fit
of the number of e-foldings and the scalar perturbations turned out to be impossible, such
that an extension of the Standard Model is necessary.

The most minimal extension was investigated in section 3 where we introduced an
additional singlet scalar field s and looked at a hybrid scenario. Such a scalar field is motivated
by the strong CP-problem. In this case, the Higgs sits in a local minimum of the potential
and s slowly rolls towards the minimum of its potential. The mutual coupling between s and
the Higgs field removes the barrier during the rolling of s such that the Higgs can then roll
towards its global minimum and successful exit is guaranteed. To ensure a correct treatment,
we included the 1-loop RGE’s for the new scalar, the threshold effect in the Higgs potential
occurring at the mass of the singlet scalar, the movement of the Higgs field during inflation
and the degeneracy in the well depth.

Our results are summarised in figure 4 where one can see that, although it is now
possible to fit As for N∗ = 50–60, these points are clearly excluded by measurements of the
Higgs mass and the strong coupling constant.
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Figure 5. This figure shows the binned best fit point for λs, λhs, and Ms with N∗ = 50. The global
best fit point is marked with a yellow star.

With standard General Relativity and Quantum Field Theory with minimal couplings
between the particles and gravity it has been shown that one cannot obtain inflation using
only the Standard Model Higgs. In this work we show that even with an additional field
allowing the Higgs to become the waterfall field of a hybrid inflation model, the coupling
between the two fields conspires to prevent good inflationary parameters. Inflation can only
be explained using either a more complicated scenario or an entirely separate field such that
the Higgs plays no role in the process.
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