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The Efficacy of Interaction Behavior and Internal Stiffness Control for
Embodied Information Gain in Haptic Perception

Nantachai Sornkarn and Thrishantha Nanayakkara

Abstract— Haptic perception in biological systems not only
depends on the environmental conditions, but also on the
behavioral state and the internal impedance of the embodiment
because proprioceptive sensors are embedded in the muscle
and tendons used for actuation. A simple example of such a
phenomenon can be found when people are asked to palpate a
soft tissue to identify a stiff-inclusion. People tend to perform
a variety of palpation strategies depending on their previous
knowledge and the desired information. Does this mean that the
probing behavioral variables and internal muscle impedance
parameters and their interaction with given environmental
conditions play a role in the perception information gain during
the estimation of soft tissue’s properties? In this paper, we
use a two-degree of freedom laboratory-made variable stiffness
and indentation probe to investigate how the modulation of
probing behavioral and internal stiffness variables can affect the
accuracy of the depth estimation of stiff inclusions in artificial
silicon phantom tissue using information gain metrics based on
prior knowledge in form of memory primitives.

I. INTRODUCTION

In an open surgery, a surgeon has direct access to targeted
patient’s tissues to perform direct diagnosis and desirable
surgical activities with minimum constraint in the operations,
which provides surgeons with a sense of touch at the finger
tips to perceive the physical properties of the tissues. How-
ever, this method suffers from the long recovery time and
pain caused to the patients. Therefore, in the past decades,
different surgical operations, if permitted, are performed
using a ’Minimally Invasive Surgery’ (MIS) technique, which
involves the insertion of tools through small trocar ports
around the diagnosed area. As opposed to the traditional
method, the surgeon only receives visual feedback of the
environment through an endoscopic camera in an MIS. While
this suffices to a certain extent in some surgical activities;
it is desirable for the surgeon to receive a sense of touch
in MIS [1]. A final verification of surgical site is essential
before any surgical site decision despite the availability of
the MRI images, as the tissue can still move due to posture
changes of the patient.

Due to the aforementioned reasons, in the past years, we
have witnessed a growing interest in robotic probes for soft
tissue palpation in robot-assisted minimally invasive surgery
(RMIS). Several types of rigid probe for stiff-inclusion
identification in soft tissue with different types of tactile
sensors situated at the tip have been proposed, such as the
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optical tactile array probe [2], and force/stiffness-feedback
probe [3], [4]. Given this direct measurement from the rigid
probes, the capability of the sensing system is nevertheless
constrained by its fixed morphology [5].

On the other hand, active sensing in humans does not
solely involve the haptic feedback but also includes the mod-
ulation of proprioceptive feedback from spindles and tendons
embedded in each muscle in order to enhance perception
[6]. Previous studies suggest that humans use a variety of
force/velocity control strategies during manual palpation [7],
[8]. The strategies include the movement of finger in various
trajectories, velocities, and frequencies; and the regulation of
applied force [9]. The physical properties of the environment
can be extracted by implicating appropriate strategy com-
binations, [10]–[12], i.e. surgeons can directly localize and
extract the physical properties of the stiff-inclusions inside an
artificial silicon phantom. There is evidence to suggest that
the modulation of the internal state of the body and behavior
accompany changes in the proprioceptive sensors [13]–[15].

Resently, we have shown in [16] that there is a relation-
ship between the entropy of perception information and the
internal impedance of the body. In this paper, we investigate
the individual and collective role of internal impedance
and behavioral variables in the accuracy of estimating an
environmental variable using a controllable stiffness probe.
We pose the hypothesis that a controllable stiffness robotic
probe can use prior experience of its proprioceptive sensors
in known environments to improve the accuracy of estimating
an environmental variable (the depth of a buried nodule in
a soft tissue in this case), by exploring both in behavioral
(i.e. probing velocity and indentation) as well as internal
impedance (stiffness of a Mckibben type joint in this case)
spaces to maximize information gain in a Bayesian infer-
encing framework. We found that 1) The information gain
(transfer entropy) in a Bayesian inferencing framework leads
to a monotonic increase of estimation accuracy across trials
irrespective of the sequence of recruiting different combi-
nations of stiffness, indentation, and speed of the probe,
2) Exploration in morphological (stiffness) and behavioral
(indentation and speed) space of the probe leads to better
accuracy of estimating the depth of the nodule than a fixed
combination across trials, 3) The internal stiffness of the soft
probe plays a statistically significant role in the accuracy
of nodule’s depth estimation, 4) Information gain (transfer
entropy) across trials and across morphological (stiffness)
and behavioral (indentation and speed) combinations can be
used to improve the efficiency of exploration.



II. EXPERIMENTAL SETUP

A. Design

The design of the variable stiffness probe used in this
experiment is developed from the probe’s design in our
previous studies. The probe, as shown in Figure 1 (a)
comprises of two rigid links - tip link of length l1 = 80 mm,
and base link l2 = 70 mm made from ABS plastics. The
joint coupled between these two links contains a variable
stiffness mechanism with two linear ENTEX No.3552 stock
springs from Advanex Europe Ltd. each with rating of
0.24N/mm. Inside the base link (shown in Figure 1 (b)),
there are two chambers dedicated for the linear springs which
are connected between the pivot joint at the connecting
point (the relative angle of the connecting point and the
vertical axis of the tip link is zero) and the anchor ring
via a microfilament thread. The stiffness of the joint can
be mechanically controlled by changing the position of the
anchor ring. The anchor ring is mounted on to the end-
effector of a linear actuator L12-50-210-06-I from Firgelli
Technologies Inc., which controls its position.
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(d) Fig. 1. (a) Design of this robotic probe comprises of two Firgelli L12
linear actuators to control the indentation and stiffness of the probe and
the ATI Nano17 F/T transducer mounted at the top-end of the base link to
measure the torque during the interaction with artificial soft tissue. (b) Two
springs located inside the spring chambers are attached with the anchor ring
and the pivot joint through a microfilament thread. (Note that the springs
shown here are for illustrative purpose only) (c) Photo of the complete
experimental platform’s design comprising of the variable stiffness probe
mounted on XY-stage. (d) A soft silicon phantom replicating a soft tissue
with a spherical plastic bead of size 15mm diameter embedded inside at
different depths.

An ATI Nano17 6-axis force/torque transducer is mounted
at the base of the probe to capture torque data during
palpation. On top of the force sensor at the end of the
base link, there is a connector to another 30mm-stroke-length
linear actuator L12-30-100-06-I from Firgelli Technologies
Inc. for controlling the indentation level, i. The length from
the upper end of the base link to the mounting side of the
probe is denoted by lo and has the initial value of 143 mm.
The total length of this probe when q = 0 is 293 mm. The
probe structure is mounted on a flipped ANT130 XY-stage
from Aerotech Inc. in the experimental setup as shown in
Figure 1 (c), which allows the planar movement in X and Y
direction of the probe.

In the experiment, we used soft silicon phantoms with
an embedded hard nodule to replicate the soft tissue with
stiff-inclusion. Silicon phantom is made from a soft clear
silicon elastomer gel RTV27905 from Techsil. Three silicon
phantoms were used as samples where the nodules are
embedded at the depth of 2, 4, and 8mm from the top surface
of the phantom to the top of a nodule.

B. Numerical analysis of variable joint stiffness mechanism

From Figure 1(b), the rest length of both springs are
denoted by r. The change of the length of both springs ∆r1,
and ∆r2, are the result from the change in the displacement
of anchor point, ra, and the change in linear displacement
∆rp due to the change in angular displacement of the probe,
q, where ∆rp = qR. R is the radius of the pivot joint at
which the microfilament is attached to. Hence:

∆r1 = ra − qR and ∆r2 = ra + qR. (1)

Given that the identical springs are used inside both spring
chambers with spring constant of ks, the force contribution
from each spring can be computed as follows:

~fsi = ∆riks. (2)

The torque provided from both springs due to the change of
joint’s angular displacement and the position of the anchor
ring is:

τsi = ~fsi ×R = ~fsi⊥R, (3)

where ~fsi⊥ is the force perpendicular to the rotational axis;
and i = 1, and 2.

~fsi⊥ = fsi sin (q). (4)

Therefore, the total torque developed due to both springs can
be computed from Equation (2) to (4) as follows:

τs = τs1 + τs2

= Rks sin (q)(∆r1 + ∆r2) (5)

and the stiffness at the joint, Ks, is the derivatives of torque
produced with respect to the angular displacement of the
pivot joint, q, from Equation (5)

Ks =
∂τs
∂q

= 2raRks cos (q). (6)



The following figures depict simulated joint torque and
joint’s stiffness generated from following parameters: ra =
[0...15]mm, R = 6.8mm, q = [−90...90]◦, and ks =
0.24N/mm.
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Fig. 2. Torque (a) and the stiffness (b) produced at the pivot joint due
to the changes in the displacement of the anchor ring, ra, and the angular
displacement of the joint, q

Figure 2(a) illustrates the landscape of joint torque, τs
due to the changes of both q and ra. It is shown here
that the shape of the landscape representing the relationship
between τs and q depends on ra. Taking the derivatives of
this landscape of τs with respect to q results in the stiffness
profile, Ks, of the joint in relation to ra and q as shown in
Figure 2(b). The relationship between Ks and q becomes
almost linear as the anchor ring approaches its origin at
ra = 0. Since the profile of joint-angle-dependent stiffness,
Ks(q) can be controlled by changing ra, for the rest of this
paper, the joint stiffness level is determined by the position
of the anchor ring, ra.

III. EXPERIMENTS AND RESULTS

A. Construction of Memory Primitives

In this experiment, we explore whether a probe with con-
trollable stiffness and variable probing behavior can exploit
its past memory of palpation by varying its own internal
stiffness and probing behavioral variables to maximize in-
formation gain or perceiving the depth of embedded nodule
inside a soft tissue. Here we present the past memory of
palpation in a form of memory primitives of the measured
torque as a function of all varying behavioral and internal
stiffness variables. In this section we illustrates how the
experimental data are collected during the training phases
and how these can be used to construct the probability
distribution for different combinations of internal stiffness
and behavioral variable.

The XY-Table is programmed to move the probe in a
straight line along the probing path over the surface of
the soft silicon phantom as shown in Figure 1 (d). The
torque generated due to the interaction with soft tissue was
measured at the rate of 1000Hz around the F/T transducer’s
x-axis given different combinations of probe’s joint stiffness,
represented by ra, probe’s indentation i, probing velocity
vprobe, and depth of nodule d, as shown in Table I. For each
given combination, 25 palpation trials were repeated in order
to generate the probability distribution of torque to construct

TABLE I
EXPERIMENTAL CONDITIONS

Experimental variables Sym. Values Units
Probe’s stiffness
(anchor position) ra {0, 4, 8, 12, 16} mm

Relative distance between the
tip of the probe at rest and
the surface of tissue, i.e.
inwards tissue (indentation)

i {3, 5, 7, 9, 11} mm

Probe’s velocity vprobe {10, 20, 30} mm/s
Nodule’s depth d {2, 4, 8} mm
Distance between the
XYplate and bottom of tissue lt 320 mm

the memory primitives, which can be used in the statistical
approach described in the next section, in order to allow the
estimation of the nodule’s depth.

Each measured torque from the F/T transducer was de-
noised for 5 levels using wavelet decomposition technique
with a Daubechie’s db10 mother wavelet. From all 25 trials
for each interaction condition, the probability distribution
of torque, P (τf |d, i, ra, vprobe), can be constructed under
different nodule’s depth, d, given different combination of
probe’s indentation, i, probe’s stiffness, ra, and probing
velocity, vprobe as shown in Table I. This results in total of
225 different interaction conditions. Here, only 81 interaction
conditions are chosen to depict how the constructed memory
primitives look like as shown in Figure 3 (a), (b), and (c).

B. Experimental results and analysis

1) Bayesian Inference in Estimating the Nodule’s depth:
In this section, we use Bayesian Inference approach in
analysing the real-time torque data captured during the sweep
of the probe over the area where a nodule is embedded inside
an artificial tissue at different depths, in order to exploit the
existing memory primitives to estimate the potential depth of
the nodule. Here the iterated equation for Bayesian Inference
is as following:

Pt(d|τf ) =
P (τf |d,γ)Pt−1(d)∑m

n=1 P (τf |dn,γ)Pt−1(dn)
, (7)

where t is the current estimation iteration, n is the index of
d, and m = 3 is the number of possible depth’s estimation.
Pt(d|τf ) represents the posterior probability distribution of
nodule’s depth given the measured torque, τf computed from
the prior distribution Pt−1(d) and the sampling or likelihood
probability distribution of torque, P (τf |d,γ) given depths
and different set of internal stiffness variable and probing
behaviors, γ ∈ {ra, i, vprobe} presented in the memory prim-
itives, ϕ. The posterior computed at each trial or iteration is
then used to update the probability distribution of the depth
as a prior distribution in the next iteration. The initial prior
of the function Pt=0(d) has a flat distribution across different
depths, reflecting the equal probability.

Here, we assess the performance of using Bayesian Infer-
ence to estimate the nodule’s depth across iterations, given
different interaction conditions, γ, shown in Table I. The
procedure for the assessment can be found in Algorithm 1.



Fig. 3. Examples of memory primitives computed as probability function of the de-noised torque profiles from 25 trials given different interaction
conditions shown in Table I. The sample of memory primitives shown here consist of those when the probing velocity, vprobe = 10, 20, and 30, in
subfigures (a,b,c-1), (a,b,c-2), and (a,b,c-3), for the indentation level, i, of 3, 7, and 11mm, and the stiffness of the joint denoted by ra, of 0, 4, and 16mm.

Algorithm 1: Nodule’s depth estimation algorithm using
Bayesian Inference

1 function DepthEstimation (τf t=1..5(dr,γ));
Input : Real time torque reading, τf t=1..5(dr,γ)
Output: Depth estimation accuracy

2 Define Pt=0(d) as a flat distribution across different d;
3 for each set of probe’s behavior, γ, and actual nodule’s

depth, dr do
4 for each Estimation trial t ∈ 1..5 do
5 Retrieve and process new τf given known

probe’s bahavior γ from the sensor reading. ;
6 Compute P (τf |d,γ) from ϕ.;
7 Recall prior distribution of hypothesis of

nodule’s depth Pt−1(d). ;
8 Compute Pt(d|τf ) using Equation 7. ;
9 Store posterior distribution as a prior

distribution for the next iteration. ;
10 dest = argmax

m
(Pt(d|τf ));

11 end
12 Compute the nodule’s depth estimation accuracy.
13 end

Results of using 5-iterations Bayesian Inference to es-
timate the depth of the nodule given different interaction
conditions are shown in Figure 4. In Figure 4, each subplot
contains the mean and standard errors of estimated depth
across all probe’s indentation from first to fifth Bayesian
inference iterations for vprobe = 10, 20, and 30mm/s are
shown in red, green, and blue curves respectively for a given
probe’s stiffness, ra. Each column and row represents the
given probe’s stiffness, ra, and the actual nodule’s depth
respectively.

The accuracy in depth estimation is shown in Figure

5. The estimation accuracy increases to around 84% as
the number of Bayesian inference iteration increases from
1 to 5. From Figure 5, we can see that the estimation
accuracy is higher when the nodule is buried closer to the
tissue’s surface. At the final iteration, the estimation accuracy
when the actual nodule’s depth, dr = 2, 4, and 8mm are
approximately 85.3%, 84%, and 82.7% respectively. The
estimation accuracy for all depth ranges tends to increase as
the number of iteration increases. However, higher number of
iteration would average out the data which mostly represent
in the test sample itself. Hence, the number of iteration is
limited to maximum of 5, in this case.

Additionally, as shown in Figure 4, the convergence rate of
the distribution of the nodule’s depth estimation is different
for different interaction conditions. Some converges at faster
rate than the other. This leads to the question as to how
we can determine or quantify the sufficiency of the number
of iterations or explorations required to make an estimation
about the depth. This problem can be addressed by the
measurement of transfer entropy based on the information
gain metrics, which is explained in Subsection III-B.2.

2) Kullback-Liebler Transfer Entropy: Information trans-
fer entropy can be used to observe the directed information
exchanges between two systems/variables, which quanti-
fies the common influences of two coupled systems/factors
[17]. In other words, mutual information between probing
behavior (random variable A (RV-A)) and torque sensor
reading (random variable B (RV-B)) doesn’t change with the
exchange of variables, whereas, the transfer entropy from
RV-A to RV-B is different from the transfer entropy from
RV-B to RV-A. Kullback-Liebler (KL) divergence quantifies
this transfer entropy. In this context, KL-divergence can be
used to determine whether the nodule’s depth estimation
procedure require any further measurements to make an
accurate estimation.

If we consider a set of Pt(d|τf ) as the hypothesis of the
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depth estimation, its entropy for a given torque measurement,
τf , is dependent on a set of probe’s stiffness and probing
behavior, γ, i.e. ra, i, and vprobe. KL-divergence defined
in equation (8) represents the additional information gained,
G, about the relationship between the hypothesis of depth
estimation, Pt(d), and τf across iterations of Bayesian In-
ference as well as across different sets the probe’s stiffness
and palpation’s behavior. Therefore, KL-divergence is a good
measure to quantify the gain of different actions underlying
the changes in the behavior.

Gt = Pt(d|τf ) log
Pt(d|τf )

Pt=0(d)
, (8)

Pt(d|τf ) represents the probability distribution of depth
estimation obtained from Equation (7) at tth iteration, and
Pt=0(d) represents the base hypothesis about the nodule’s
depth estimation.

KL-divergence is implemented in addition to the Bayesian
Inference method to determine the number of measurement
required to estimate the nodule’s depth by computing the
correlation distance, δ, between information gain of the
current hypothesis, Gt, and that of the prior hypothesis,
Gt−1, in relation to the base prior distribution, Pt=0(d). The
palpation process stops at the point where the correlation
distance is less than empirically specified threshold, T =
0.0005, signifying that there is none to little change in the
information gained across iterations. The depth estimation
procedure is shown in Algorithm 2.

Algorithm 2: Nodule’s depth estimation algorithm using
Bayesian Inference and KL divergence

1 function DepthEstimation (τf t=1..5(dr,γ));
Input : Real time torque reading, τf t=1..5(dr,γ)
Output: Depth estimation accuracy

2 Create memory primitives;
3 for each set of probe’s behavior, γ, and actual nodule’s

depth, dr do
4 Assign correlation distance, δ = 1; while δ > T do
5 t = t+ 1;
6 Follow step 5-9 in Algorithm 1;
7 Compute Gt using Equation 8;
8 Compute correlation distance, δ, between Gt

and Gt−1. ;
9 end

10 dest = argmax
m

(Pt(d|τf ));

11 end
12 Compute the nodule’s depth estimation accuracy.

Through the implementation of KL-divergence, the nod-
ule’s depth estimation procedure requires on average of
only 3.8 iterations with standard deviation of 1.2 itera-
tions. Nonetheless, the overall depth estimation accuracy is
approximately 84% as shown in Figure 6 (orange bars),
comparable to the process with fixed 5- iterations. And the
accuracy of nodule’s depth estimation for each actual depth
are approximately 87%, 85%, and 80% for dr = 2, 4, and
8mm respectively. From the results, it can be interpreted that
applying this method allows the procedure to dynamically
minimize the number of exploration that would be sufficient
to make an estimation about the depth of the nodule with
comparable performance to those with static 5-iterations.

Up to this point, the nodule’s depth estimation procedure is
constrained by the exploitation of a single memory primitives
across iterations for each exploration, i.e. no change in
probe’s stiffness and probing behavior across iterations. Next,



we explore whether the accuracy of nodule’s depth estima-
tion can be enhanced by the modulation of combination of
probe’s stiffness and probing behavioral variables, γ. That is
to allow the estimation procedure to explore multiple mem-
ory primitives. In order to assess this, we perform a similar
procedure to that shown in Algorithm 2, but instead of a set
of pre-defined probing behaviors, the probe’s stiffness and
probing behavioral variables are randomly selected across
iterations. This process is repeated for 100 trials for each
artificial soft tissues, in which the nodule is embedded at dr
= 2, 4, and 8mm.
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(shown in green), 2) the Bayesian Inference together with the KL-Transfer
Entropy with fixed probe’s stiffness and probing behavioral variables (shown
in orange), and 3) the Bayesian Inference together with the KL-Transfer
Entropy with random probe’s stiffness and probing behavioral variables
(shown in blue).

The overall average accuracy from 100 trials of nodule’s
depth estimation using Bayesian Inference with KL-Transfer
Entropy with random probing behavior across iterations
reaches almost 95% as shown in Figure 6 in pale blue bar.
The estimation accuracy from all individual actual depths
are also higher in comparison to those with pre-defined γ.
Furthermore, this also results in on average slightly lower
number of Bayesian Inference iteration, with the average
of 3.5 iterations with standard deviation of 1.2 iterations,
required to gain sufficient information for making an esti-
mation.

All in all, the implementation of information gain metrics
allows the information across each iteration of Bayesian
Inference to be quantified. The results from both depth
estimation procedures suggest that this allows the estimation
process to stop when there is sufficient information for nod-
ule’s depth estimation, i.e. no new information is gained by
taking any further action. The first analysis of this subsection
shows that it is not necessary, in some cases, to perform up
to 5 iterations to obtain the equivalent estimation accuracy

to the previous section shown in Figure 5. Furthermore, by
allowing the probing behavior to randomly modulate across
iterations, the average depth estimation accuracy increases to
almost 95%. Being able to change γ across iteration allows
the exploration of multiple memory primitives, which can
lead to global optimum.

IV. DISCUSSION AND CONCLUSION

This paper has explored the individual and collective role
of internal stiffness of the probe and probing behavioral
variables in the accuracy in estimating an environmental
variable using a controllable stiffness probe. Firstly, we
designed and fabricated a two link robotic probe with a
controllable stiffness joint and a mechanism to control the
indentation level. Then, we posed the problem of using only
torque data measured real-time during a palpation trial over
an artificial soft tissue with a nodule embedded inside to
estimate the depth of the nodule under different probing
behaviors. We conducted experiments across 3 levels of
probing velocity, 5 levels of indentation, and 5 levels of
joint stiffness, for 3 depths of the nodule, with 25 trials per
combination. In total 5625 probing trials were performed
using an automated experimental setup.

Our experimental results show that the information gain
under Bayesian inferencing framework leads to improvement
in the accuracy of estimating the environmental parameter
(in this case the depth of the buried nodule) irrespective
of how the probing behavior and internal stiffness of the
probe are controlled across trials. However, the results show
that not all combinations of probing behaviors and probe
stiffnesses render the same accuracy of estimating all the
depths of the nodule. This informs the practice of manual
and robotic probing behaviors as well as providing useful
design guidelines for soft robotic probes with controllable
stiffness. In addition, the exploration in probe’s stiffness
and probing behavioral (indentation and probing velocity)
spaces results in higher nodule’s depth estimation accuracy.
Information gain (transfer entropy) across trials and across
morphological (stiffness) and behavioral (indentation and
speed) combinations can be used to improve the efficiency
of exploration. The experimental results also show that the
stiffness of the embodiment plays a statistically significant
role in embodied perception.

In biological counterpart like in human manual palpation,
we witnessed different probing behaviors such as the vibra-
tion, sliding, and changes in various behavioral variables.
Based on the experimental results presented in this paper, it
is fair to predict that the reasons behind those behaviors are
the exploration in the memory primitives collected from past
experience across different morphological and behavioral
spaces to explore the properties of diagnosed soft-tissues.
Human may also employ the combinations of statistical
strategies similar to those proposed in this paper in making
accurate estimation.

This paper has provided important guidelines to design
variable behavior probe inclusive of stiffness and indentation
level regulation function and the construction of internal



memory primitives to estimate the depth of the nodule using
Bayesian Inference together with information gain metrics.
Certainly, this probe used in the experiment cannot yet be
realized in the real operation scenario as in palpation, there
are many other varying critical factors such as the shape and
roughness of the surface, the friction of the surface, stiffness
of the tissues, and etc. Nonetheless, this paper underlies the
important perspective that the internal stiffness of the body
as well as the behavior of an agent can influence how the
agent perceive the environment. These findings contribute to
our understanding in biological active perception or active
sensing, where an action is required to accurately perceive
the environment, because the perception and action are
mediated by a shared embodiment. Therefore, it is important
to note that biological haptic perception does not only depend
on the environmental conditions, but also on the behavioral
state of the agents. In the next stage, it would be interesting to
implement reinforcement learning algorithm in such system
to allow not only on-line nodule’s depth estimation but also
real-time learning and enriching of the memory primitives.
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