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Abstract: 

This systematic review aims to determine whether or not structural magnetic resonance imaging (sMRI) 

data support the DSM-5 proposal of an Autism Spectrum Disorder (ASD) diagnostic category, and 

whether or not classical DSM-IV Autistic Disorder (AD) and Asperger syndrome (AS) categories should 

be subsumed into it. The most replicated sMRI findings in patients with ASD compared with healthy 

controls are increased total brain volume in early childhood and decreased corpus callosum volume. 

Regarding the notion of a spectrum, some studies support that AS and AD are similar but “quantitatively 

different” diagnostic categories, whereas others support that they are “qualitatively different” entities with 

specific brain structural abnormalities. It seems that there are still not enough arguments from sMRI data 

for or against subsuming DSM-IV categories under a single ASD category. 
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1 Introduction 

In 1979, Wing launched the concept of the autistic continuum or spectrum (Wing & Gould, 1979) and, 

nine years later, Allen coined the term autism spectrum disorders (Allen, 1988).   However, controversy 

still surrounds Wing’s original concept of a broad autistic phenotype. In fact, clinicians and researchers 

have used the term Autism Spectrum Disorders to include Autistic Disorder (AD) (including high 

functioning autism –HFA– and low functioning autism –LFA), Asperger Syndrome (AS), and Pervasive 

Developmental Disorder Not Otherwise Specified (PDD NOS) (Levy, Mandell, & Schultz, 2009), where 

the term “spectrum” reflects the variability in symptom severity among patients. In this context, there is a 

proposal for the forthcoming DSM-5 diagnostic classification to create the broad diagnostic category of 

Autism Spectrum Disorder (ASD) (see www.dsm5.org). Nevertheless, there are still unanswered 

questions about the ASD construct, which have led to the current debate on how ASD should best be 

conceptualized in DSM-5 (Frazier et al., 2012; Happe, 2011; Mandy, Charman, & Skuse, 2012; Mattila et 

al., 2011; Pina-Camacho et al., 2012; Tanguay, 2011). One of these questions is whether ASD constitutes 

a well defined biological entity compared with the earlier Pervasive Developmental Disorders, and 

whether classic DSM-IV categories – and especially AS – should be subsumed into this broader category. 

Over the past few decades, magnetic resonance imaging (MRI), a non-invasive in vivo technique, has 

allowed access to the anatomy and physiology of the developing brain and has contributed to our 

understanding of neurodevelopment in health and illness (Giedd & Rapoport, 2010). In the late eighties, 

researchers started using structural MRI (sMRI) to examine pathological changes in the brain structure of 

pediatric and psychiatric patients (Mana, Paillere Martinot, & Martinot, 2010; Potts, Davidson, & 

Krishnan, 1993), including those with autism. Widely used sMRI techniques are summarized in Table 1. 

Initially, studies measured volume by totaling the amount of voxels in manually predefined regions of 

interest (ROIs). These methods were followed up by voxel-based approaches such as voxel-based 

morphometry (VBM) (Whitwell, 2009), which allows whole brain exploration of structural differences 

and thus does not depend on manually predefined regions. More recently, with the advent of improved 

image acquisition (e.g., higher field strength, higher isotropic voxel resolution, and improved gray-white 

matter contrast), additional morphometric measures that focus on the thickness, surface area, and 

curvature of the cortex have emerged. Furthermore, multivariate statistical analysis frameworks have 

been developed that aim to classify subjects as patients or controls based on large morphometric datasets 

(Chung, Bubenik, & Kim, 2009; Chung, Dalton, Shen, Evans, & Davidson, 2007; Chung, Robbins, & 

http://www.dsm5.org/
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Evans, 2005; Ecker, Marquand, et al.; Ecker et al., 2010; Fischl & Dale, 2000; Gorczowski et al., 2010; 

Singh, Mukherjee, & Chung, 2008; Uddin et al., 2011; Vatta & Di Salle, 2011). 

There has been a steady rise in the number of sMRI publications both in the forthcoming ASD category 

and in the classic DSM-IV categories, mainly in AD and AS (Mana et al., 2010). In these studies, the 

authors have tried to define the neurological underpinnings of these diagnostic entities and to relate brain 

structural abnormalities with associated behavioral and clinical features. However, few studies have tried 

to summarize the findings of previous sMRI reports in order to find neuroanatomic evidence for the new 

ASD diagnostic category (Chen, Jiao, & Herskovits, 2011; Stigler, McDonald, Anand, Saykin, & 

McDougle, 2011; Verhoeven, De Cock, Lagae, & Sunaert, 2010). The objective of this review is to assess 

whether or not reported sMRI findings support the proposal of subsuming DSM-IV categories under this 

new ASD category based on specific neuroanatomical substrates. 

2 Methods 

We conducted a systematic Pubmed search on structural MRI studies of ASD published in English 

between January 1990 and February 2012. The following database search strategy was used: ‘("Autism 

spectrum disorders"[All Fields] OR "Asperger syndrome"[All Fields] OR "Asperger's syndrome"[All 

Fields] OR "Autistic disorder"[All Fields]) AND ("Magnetic resonance imaging"[All Fields]) NOT 

pubstatus ahead of print’. After excluding in-press papers, as not all of them were available in full text, 

663 records were identified and screened. Of these, 256 full-text articles were eligible, as they fulfilled all 

the following inclusion criteria: a) being an original article or a review; b) including patients with ASD, 

autistic disorder (HFA or LFA), AS, PDD NOS, or childhood disintegrative disorder (CDD); and c) 

providing structural MRI data. We also identified 29 relevant studies that were referenced in these 257 

eligible studies but did not appear in the initial database search. Thus, a total of 285 studies were finally 

included in this review. A total of 407 full-text articles were excluded because a) they were not a review 

or an original article (n=44); b) they did not focus on patients with ASD, AS, or AD (n=80); c) they did 

not provide neuroimaging data (n=48); or d) they used neuroimaging techniques other than sMRI, i.e., 

functional MRI, diffusion tensor imaging, positron emission tomography, or single-photon emission 

computed tomography (n=235). We decided not to include studies using neuroimaging techniques other 

than sMRI as that was not the main objective of this review and they have been reviewed elsewhere 

(Pina-Camacho et al., 2012). We also decided not to include Rett syndrome in this review, as it has 

disappeared from the DSM-5 proposal. 
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3 Results 

 

Most studies included in this review compare patients with ASD (without distinction between DSM-IV 

subcategories) or HFA with healthy controls (HC). We found eight studies comparing patients with HFA 

and AS (Haznedar et al., 2006; Jou, Minshew, Keshavan, & Hardan, 2010; Kwon, Ow, Pedatella, 

Lotspeich, & Reiss, 2004; McAlonan et al., 2009; McAlonan et al., 2008; Toal et al., 2010; Via, Radua, 

Cardoner, Happe, & Mataix-Cols, 2011; Yu, Cheung, Chua, & McAlonan, 2011), four studies comparing 

patients with LFA, HFA, AS, and HC (Lotspeich et al., 2004; Nordahl et al., 2007; Scott, Schumann, 

Goodlin-Jones, & Amaral, 2009; Schumann et al., 2004), one study comparing patients with HFA, LFA, 

and HC (Salmond, Vargha-Khadem, Gadian, de Haan, & Baldeweg, 2007), and one study comparing 

patients with PDD-NOS, HFA, and HC (Lahuis et al., 2008). We did not find any study providing sMRI 

data on childhood disintegrative disorder (CDD). Firstly, we will summarize the main findings on 

structural abnormalities in patients with ASD and, secondly we will present those studies that focus on 

neuroanatomic differences between classic DSM subcategories, mainly between HFA and AS. 

3.1 Structural MRI studies on ASD 

Although research has highlighted the role of several specific brain regions in ASD pathogenesis 

(Volkmar & Pauls, 2003), the available literature on specific structural brain abnormalities presents 

discrepant results and may have been limited by methodological issues (Brambilla et al., 2003; Eliez & 

Reiss, 2000; Lord, Cook, Leventhal, & Amaral, 2000). The most replicated sMRI differences between 

ASD and age-matched HC were increased total brain volume (TBV) in early childhood, and increased 

cerebellar volume and decreased corpus callosum (CC) volume in patients with ASD. Volumetric studies 

on subcortical structures, such as the amygdalohippocampal system or thalamus, have shown inconsistent 

results. Finally, negative results (that is, non-significant volumetric differences) have also been reported 

between patients with ASD and HC. The main structural findings in patients with ASD compared with 

HC, classified by significant structures or regions, together with the main neuropathological and clinical 

correlates, whenever such data are available, have been provided separately in Supplementary Tables S1 

and S2.  
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3.2 Structural MRI studies comparing categories derived from DSM-IV-TR: AS, HFA, LFA, and 

PDD NOS 

Although these studies provide heterogeneous data in terms of structural abnormality patterns among 

diagnostic categories, we have classified them into two categories. Firstly, those studies that support the 

contention that LFA, HFA, and AS are similar but “quantitatively” different diagnostic entities, as they 

report similar volumetric abnormalities among these disorders along a quantitative continuum of severity; 

and secondly, those that consider that they are different diagnostic categories with “qualitatively” 

different abnormality patterns among them (as they show, for instance, different regional distributions of 

volumetric abnormalities). In all these studies, the diagnostic criteria for distinguishing individuals with 

AD (HFA and/or LFA) from those with AS, and for assigning groups, were defined a priori. 

In the first category, there is a recent meta-analysis where the authors searched published VBM studies 

measuring gray matter (GM) volume in patients with ASD and HC and describing the proportion of 

participants with AD and AS in their samples (Via et al., 2011). Ten studies were included in the meta-

analysis, and GM volume differences between diagnostic subgroups were analyzed. No significant 

differences were found in whole-brain or regional GM volume between the patients with AD (N=211) 

and the age-, sex-, and IQ-matched AS group (N=67). The authors concluded that both disorders may 

have similar neural substrates. However, the results were limited by the small number of studies included 

and by the varied diagnostic tools and criteria these studies used to assign individuals to the AD or the AS 

group (Via et al., 2011). 

Another study reported that the mean brain GM volume for the AS group was intermediate between the 

HFA and HC groups, concluding that this may indicate a quantitative “continuum” in which brain GM 

volume increases with the severity of the ASD condition (Lotspeich et al., 2004). However, when 

performing correlations of specific brain volumes with estimated intelligence quotient (IQ) scores, there 

was a negative correlation between brain GM volume and performance IQ (pIQ) within the HFA but not 

the AS group, and a positive correlation between brain white matter (WM) volume and pIQ within the AS 

but not the HFA group. Thus, the authors concluded that these findings suggested qualitative differences 

in terms of neurodevelopment between subjects with HFA and AS. Regarding the LFA group, there was 

an unusually large variance in total brain tissue, suggesting that, neuroanatomically, it may represent a 

more heterogeneous population than the HFA or AS categories (Lotspeich et al., 2004). 
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Other studies reported quantitative differences between ASD categories within specific brain regions. 

Larger caudate volumes were detected in a group with AD, and intermediate volumes in an AS group, 

compared with HC (Haznedar et al., 2006). The sample in this study was small (N=17) and heterogeneous 

(IQ range=55-125). Furthermore, patients and HC were not IQ-matched and two patients had a history of 

exposure to antipsychotics (Haznedar et al., 2006). Another study reported a 16% larger amygdala in 

young children with –both LFA and HFA regardless of IQ, whereas in those with AS it was 9% larger 

(Schumann et al., 2004). Additionally, compared with an HC group, the hippocampus was 10% larger in 

the HFA group and slightly, but not significantly, larger in the AS group (Schumann et al., 2004). 

The second group of sMRI studies reported qualitative brain volume differences (e.g., in terms of regional 

distribution) between patients with AS and HFA, thus concluding that they are qualitatively different 

diagnostic categories with specific neuroanatomical substrates, and so should not be subsumed into a 

single ASD category. As an example, there is a meta-analysis using a methodology similar to the one 

used by Via et al (Via et al., 2011) with a total of 18 studies comparing either patients with AD versus HC 

or patients with AS versus HC, using VBM methods and representing GM differences in a stereotactic 

space (Yu et al., 2011). Greater GM excess was reported in the AD group than in the AS group compared 

with HC. However, differences in the regional distribution of this GM excess were also detected. 

Whereas the AS group showed greater GM volume mainly in the left hemisphere, the AD group had a 

greater bilateral excess. Although this result could be considered a quantitative difference between the 

two disorders (greater GM excess in the AD group, with more marked changes in the left hemisphere), 

the authors concluded that this should be considered a qualitative difference because of the different 

regional distribution of this GM excess. An important limitation of this meta-analysis is that it did not 

directly compare the AS and AD groups (Yu et al., 2011). In parallel with these “hemisphere-distributed” 

GM volume differences between the two disorders, another study reported that abnormalities of WM 

systems affected mainly the left hemisphere in patients with HFA and the right hemisphere in those with 

AS (McAlonan et al., 2009). 

Another study in male children and adolescents with LFA, HFA, AS, and HC, which conducted 

morphometric and geometric MRI analyses using surface-based morphometry, identified qualitatively 

different patterns of cortical folding abnormalities in LFA, HFA, and AS, particularly in children. 

Whereas LFA and HFA individuals had similar shape abnormalities centered on the pars opercularis of 
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the left inferior frontal gyrus, which were smaller and more posterior in the HFA group, the AS group 

showed deeper intraparietal sulci bilaterally (Nordahl et al., 2007). 

In this second group of studies, the hypothesis that people with AS would have significant qualitative 

differences from those with AD in the anatomy of classic language regions has also been tested. Increased 

GM volume in the superior temporal, inferior parietal, and supramarginal gyri was reported in patients 

with AD, but not in those with AS compared with age and sex-matched HC (Toal et al., 2010). 

Additionally, one study found a higher left inferior gyrification index in a group with HFA compared to a 

AS and a HC group, being this increase more prominent in the inferior frontal regions, including Broca’s 

area (Jou et al., 2010). Moreover, a negative correlation between GM volume in Broca’s area in early 

childhood and age of language acquisition was described only in patients with HFA but not with AS 

(McAlonan et al., 2008). Different qualitative patterns of structural abnormality between ASD categories 

have also been described in other brain regions. For instance, vermal volume was found to be decreased 

in a sample of male children and adolescents with HFA compared with HC, but not in those with AS or 

LFA (Scott et al., 2009). However,  the decrease in overall vermal volume was also observed in the ASD 

group as a whole compared with HC, and sample size was small among the three LFA, HFA, and AS 

phenotypes (n=62) (Scott et al., 2009). Another study reported divergent patterns of GM volume 

abnormalities in a group of children with “low ASD” (defined as those patients with verbal IQ < 85) and 

with “high ASD” (with verbal IQ > 85, including those with a clinical diagnosis of HFA and AS) 

(Salmond et al., 2007). The low ASD group showed decreased and the high ASD group increased 

cerebellar GM volume compared with HC. The high ASD group also had no significant volume 

abnormality in the postcentral gyrus and the dorsolateral prefrontal cortex, whereas the low ASD group 

had significantly decreased GM volume in these regions compared with HC. This study had a small 

sample size (n=44), did not differentiate between children with AS and HFA, and the results may have 

been confounded by the individual’s IQ (Salmond et al., 2007). Regarding limbic and subcortical 

structures, smaller GM volumes in the caudate and thalamus (McAlonan et al., 2008) and in the body of 

the cingulate gyrus (Kwon et al., 2004) were reported in patients with AS, but not with HFA, compared 

with HC. Additionally, patients with HFA showed smaller GM volume in pallidal-frontal regions 

compared with HC, not present in individuals with AS (McAlonan et al., 2008). Concerning the PDD 

NOS category, there is only one sMRI study comparing subjects with multiple complex developmental 

disorder (MCDD), subjects with HFA, and HC where the authors considered MCDD a phenotypically 
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defined subtype of PDD NOS (Lahuis et al., 2008). Similar brain structural abnormalities in subjects with 

MCDD and AD were reported, but without enlargement of head size in the former group, suggesting 

different developmental trajectories within these two subtypes of ASD categories (Lahuis et al., 2008). 

4 Discussion 

 

Despite of the extensive literature on the use of sMRI in patients with ASD,   there are few consistent 

structural findings (Chen et al., 2011). Moreover, these findings do not always correlate with clinical, 

neuropathological, or neuropsychological features of the disorder (Eliez & Reiss, 2000; Griebling et al., 

2010; Hardan, Girgis, Adams, et al., 2006; Hardan, Girgis, Lacerda, et al., 2006; Lord et al., 2000). Thus, 

it seems that sMRI data currently do not help resolve the DSM-IV versus DSM-5 controversy. In other 

words, there are still not enough arguments for or against subsuming DSM-IV categories under a single 

ASD category. 

4.1 Structural MRI studies on ASD 

Although there are several replicated findings when comparing patients with ASD and healthy 

individuals, such as increased TBV and cerebellar volume and decreased CC volume in the former group, 

there are also contradictory or even negative findings in terms of brain structural differences between the 

two groups. 

4.2 AD and AS: similar or dissimilar disorders? 

Regarding the DSM-5 proposal for a “spectrum” and the debate on whether AS and AD are “more 

dissimilar than similar” (Ozonoff, Rogers, & Pennington, 1991; Rinehart, Bradshaw, Brereton, & Tonge, 

2002; Volkmar, Klin, Schultz, Rubin, & Bronen, 2000), sMRI results are heterogeneous. The same brain 

structure has been described as larger, smaller, or not different among the ASD clinical subgroups. For 

example, ventral temporal lobe GM volume has been found to be similar (McAlonan et al., 2008), 

increased (Yu et al., 2011), or decreased (Kwon et al., 2004) in AS and HFA compared with HC. 

Nevertheless, we can classify sMRI studies in two main groups, depending on whether or not they 

support the idea of a “spectrum” under a single ASD category. Among the former, the fact that volume 

abnormalities are similar in LFA, HFA, and AS groups, but usually more severe in LFA than in HFA, and 

in HFA than in AS, leads to the prevailing view of AS and AD as “qualitatively similar but quantitatively 
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different” diagnostic entities (Hardan et al., 2008) within a spectrum or continuum of severity. These 

findings are congruent with data from clinical and behavioral studies that do not find relevant differences 

between patients with AS and HFA (Howlin, 2003; Kaland, Mortensen, & Smith, 2007; Kamp-Becker et 

al., 2010; Klin, 2000; Manjiviona & Prior, 1995; Miller & Ozonoff, 2000; Szatmari et al., 2000), and 

support considering severity as a clinical specifier with previous subcategories subsumed under one single 

concept. On the other hand, another group of sMRI studies supports the concept that AS and AD are 

different diagnostic entities, with distinct and specific patterns of structural brain abnormalities. This 

would also be congruent with data showing qualitative differences between the two disorders in social 

skills (Gepner & Mestre, 2002; Rinehart, Bradshaw, Brereton, & Tonge, 2001; Szatmari, Archer, Fisman, 

Streiner, & Wilson, 1995), cognitive and executive functioning (Ehlers et al., 1997; Rinehart, Bradshaw, 

Moss, Brereton, & Tonge, 2000, 2001), clinical prognosis (Cederlund, Hagberg, Billstedt, Gillberg, & 

Gillberg, 2008; Howlin, Goode, Hutton, & Rutter, 2004), or burden of disease (Sanchez-Valle et al., 

2008). These may reflect differences in their etiological factors, and physiopathologic and 

neuropathologic substrates (Rinehart et al., 2002). 

Patients with HFA and AS clinically differ in language development (American Psychiatric Association, 

1994). We might expect that volume abnormalities in classic language-processing regions in patients with 

HFA would be closer to those of patients with developmental language delay (DLD) or specific language 

impairment (SLI) and not present in those with AS (Bishop, 2010). Along these lines, one study reported 

similar volume abnormalities in patients with HFA and DLD compared with HC, such as a larger total 

GM volume, WM volume, and TBV (Herbert et al., 2005), with a positive correlation between IQ and 

TBV only in the DLD group, suggesting that brain enlargement does not mark an advantageous situation 

for ASD patients (Zeegers et al., 2009). Another study that compared patients with ASD with and without 

language impairment (ALI and ANLI, respectively) with patients with SLI and HC, reported that only the 

“language-impaired” groups (i.e., ALI and SLI groups) had decreased vermis and posterolateral cerebellar 

lobule volumes relative to ANLI and HC, which correlated with poorer language performance (Hodge et 

al., 2010). Additionally, three of the above-mentioned studies reporting qualitative differences between 

HFA and AS demonstrated variability between the two groups of patients in the anatomy of areas crucial 

to language development-(Jou et al., 2010; McAlonan et al., 2008; Toal et al., 2010). Conversely, in their 

meta-analysis, Yu et al. did not find volume differences in classic language-processing regions between 
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AS and AD groups compared with HC, but  volume patterns between the two categories were not directly 

compared (Yu et al., 2011). 

4.3 Is it logical to assume a clear anatomical substrate for patients with ASD? 

Effect sizes for sMRI volumetric and morphometric differences between patients and healthy subjects or 

between phenotypically different groups of patients are usually small, not only in the sMRI studies 

included in this systematic review, but in sMRI studies of psychiatric patients in general. This may 

explain the inconsistent and sometimes contradictory findings of this review. Yet, one wonders whether 

this is due to “poor sensitivity” of sMRI techniques, methodological and design limitations of sMRI 

studies, or both. 

4.3.1 The “poor sensitivity” of sMRI techniques 

In the year 2000, the Child Neurology Society and American Academy of Neurology stated that sMRI 

was “poorly sensitive” for routine developmental screening and screening specifically for autism (Filipek 

et al., 2000; Filipek et al., 1999). Furthermore, in the past two decades, many authors have concluded that 

sMRI could not be justified for diagnostic screening in these individuals, as many of them have not found 

any pathological brain changes or have reported only subtle or unremarkable abnormalities (Battaglia & 

Carey, 2006; Ekman et al., 1991; Garber & Ritvo, 1992; Shevell, Majnemer, Rosenbaum, & 

Abrahamowicz, 2001; Sokol & Edwards-Brown, 2004). This “poor sensitivity” could be due, firstly, to 

the fact that the use of manual or semiautomated methods, which focus on previously selected regions, 

preclude the exploration of other brain regions potentially involved in the etiology and clinical course of 

ASD; secondly, to the fact that traditional VBM analyses quantify changes in GM or WM volume 

between groups in a voxel-wise manner, using a univariate approach, such that each voxel is individually 

compared, thus losing information about possible multifaceted differences; and, thirdly, to the fact that 

complex neurobehavioral disorders such as ASD may be a result of a dysfunction in brain circuitry, 

secondary to brain dyssynchrony (Wickelgren, 2005) and to aberrant cortico-cortical and cortico-

subcortical connectivity (Wass, 2011), rather than a result of volume abnormalities. However, this “poor 

sensitivity” may also be due to the fact that studies are conducted in clinically variable patient groups. 

Focal findings may be variable in different subjects (Herbert, 2004), so one wonders if it is logical to 

assume a clear anatomical substrate for such heterogenous patients (Polsek, Jagatic, Cepanec, Hof, & 
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Simic), and whether “poor sensitivity” of sMRI is a consequence of methodological and design 

limitations of this kind of studies.  

4.3.2 Methodological and design limitations of sMRI studies 

There are numerous methodology and design limitations of sMRI studies on ASD. Firstly, there is an 

absence of clearly defined hypotheses and objectives in many of the studies, as well as an absence of a 

clear definition of the AS and AD -HFA and LFA- clinical phenotype (Cohen, Volkmar, Anderson, & 

Klin, 1993). In this sense, studies use different diagnostic criteria, from DSM-III to ICD-10, combined or 

not with the administration of standardized diagnostic instruments such as the ADI-R (Autism Diagnostic 

Interview–Revised) and ADOS-G (Autism Diagnostic Observation Schedule-Generic) or different IQ cut-

off points varying from 65 to 80 to define LFA (Frazier & Hardan, 2009). These different diagnostic 

criteria, previously defined by the authors, may condition the main findings and conclusions in each 

study. Secondly, many of these studies have small sample sizes (e.g. Casanova et al., 2009; Corbett et al., 

2009; Freitag et al., 2009; Hardan, Libove, Keshavan, Melhem, & Minshew, 2009; Haznedar et al., 2006; 

Herbert et al., 2005; Hyde, Samson, Evans, & Mottron, 2010; Kates, Ikuta, & Burnette, 2009; Ke et al., 

2009; Knaus et al., 2009; Mitchell et al., 2009; Rojas et al., 2004). Thirdly, as we have already mentioned, 

there is the effect of heterogeneity of samples in terms of age, sex, IQ, psychopharmacologic treatment, 

comorbidity with known genetic disorders, etc. For instance, differences in genetic constitution may be 

associated with differences in brain structure (Miles & Hillman, 2000). Concerning the age factor, studies 

vary from those including samples with children and adolescents (Chiu et al., 2008), to those including 

adult patients only (Dziobek, Bahnemann, Convit, & Heekeren, 2010), or a wide age spectrum from 

childhood to adulthood (Courchesne, Press, & Yeung-Courchesne, 1993). This is a relevant factor 

because ASD is considered a neurodevelopmental disorder and because of the strong influence of age on 

several brain structures (amygdala, cerebellum, TBV, etc.). Additionally, brain volume deviances have 

been shown quite consistently in ASD at certain ages (Hazlett et al., 2011; Schumann et al., 2010). 

Regarding the sex factor, many authors have studied male patients only (e.g., Hardan et al., 2009; Piven et 

al., 1995) subsamples of girls being very scarce and even excluded from statistical analyses. In fact, there 

is only one recent study that has investigated the volumetric differences between a sample entirely 

composed of female children with ASD and a sample of age- and IQ-matched HC, reporting greater GM 

volume in the left superior frontal gyrus in the ASD group (Calderoni et al., 2012). This is an important 

caveat, as several studies suggest that there are sex-specific differences in etiological factors and in the 
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time course of ASD. For instance, one study reported that increased WM volume in frontoparietal, 

temporal, and cerebellar regions is more specific to females with ASD, in contrast with GM 

abnormalities, more commonly found in males (Craig et al., 2007). Another study described a “diagnosis 

x gender” effect for TBV, reporting larger volumes in autistic males but not females compared with HC 

(Piven, Arndt, Bailey, & Andreasen, 1996). Another one, comparing male and female patients with AS 

and HC reported that the typical sexual dimorphism found in HC, whereby males have larger total WM 

volume, was absent or attenuated in the AS group (Beacher et al., 2012). Finally, one study directly 

compared young boys and girls with autism, finding similar volume abnormalities in both groups but an 

age-structure volume relationship in girls compared with boys (Bloss & Courchesne, 2007). Studies using 

DTI also support sexual dimorphism in WM microstructure, which may account for the higher prevalence 

of ASD in males (Chou, Cheng, Chen, Lin, & Chu, 2011). Concerning IQ, it seems that it may be a 

confounding factor that may partly explain the different abnormality patterns between subgroups of 

patients with ASD (Salmond et al., 2007). Fourthly, many studies are cross-sectional, so they lose 

information about pathological developmental trajectories, particularly relevant in ASD. And, finally, 

sMRI studies use heterogeneous methodology in terms of measurement devices, manual tracing and data 

analysis techniques, and covariates used. 

4.3.3 Potential solutions and the future of sMRI studies 

The varied and recent sMRI applications (Stigler et al., 2011; Zeegers et al., 2006) and the combination of 

this technique with new neuroimaging approaches examining local organization and brain functional and 

structural connectivity may improve “sMRI sensitivity” (Caviness, Makris, Lange, Herbert, & Kennedy, 

2000; Deeley & Murphy, 2009). This includes DTI techniques studying volume and micro-structural WM 

abnormalities in brain regions and connection tracts (Alexander et al., 2007; Barnea-Goraly et al., 2004; 

Mengotti et al., 2011), functional MRI focusing on abnormalities of functional connectivity and neuronal 

synchronization within and between neurofunctional regions and networks (Gepner & Feron, 2009), 

proton magnetic resonance spectroscopy studies, providing information regarding in vivo brain 

metabolite concentrations (Lauvin et al., 2012), magnetoencephalographic (MEG)  studies, which can 

link neural activity to behavioral performance (Roberts et al., 2011), and electroencephalographic (EEG) 

registers, which can evaluate the efficiency of long- and short-range connections in ASD (Barttfeld et al., 

2011). These combinations have already started to clarify the underlying neuroanatomical abnormalities 
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and brain-behavior relationships in ASD and other developmental disorders (Muller, 2007, 2008; Toal, 

Murphy, & Murphy, 2005). 

Moreover, new classification methods based on machine learning methodology, are being developed in an 

attempt to overcome the limitations inherent in univariate VBM approaches, by making inferences about 

sets of brain voxels, that, in combination, can be used to discriminate between two participant groups 

(i.e., ASD or HC, HFA or AS, etc.) (Ecker, Marquand et al.; Ecker, Rocha-Rego et al.; Neeley et al., 

2007; Uddin et al., 2011). Additionally, classification methods can investigate the relationship between 

symptom profiles and the key sets of brain voxels considered in the classification algorithm (Uddin et al., 

2011). These new methods may help to develop diagnostic biomarkers by identifying those brain regions 

providing the greatest information regarding group membership. 

On the other hand, further studies in well-defined and homogeneous patient populations sharing similar 

endophenotypes may better elucidate the pathophysiology and neurobiological underpinnings of ASD and 

its diagnostic subcategories (Frank & Pavlakis, 2001). Potential approaches to achieve this goal may 

include a) the development of a shared study scheme and a common ASD data system for different 

research groups, in order to provide comparable and reliable data; b) the design of prospective studies, 

with larger and more homogenous samples, including younger male and female naïve patients with ASD 

and well-matched healthy controls (i.e., gender-, age-, and IQ-matched); c) the supplementation of limited 

classification systems, such as the ICD-10 and DSM-IV, with gold-standard diagnostic assessments, such 

as the ADI-R and ADOS-G, that make it possible to score different psychopathological domains; and f) 

the enhancement of multidisciplinary research by combining neuroimaging data with clinical, 

neuropsychological, neuropathologic, neurochemical, and genetic data, not only in patients, but also in 

their relatives and healthy individuals (Anagnostou & Taylor, 2011; Davis et al., 2008; Hrdlicka et al., 

2005; Levy et al., 2009; Palmen & van Engeland, 2004; Peterson et al., 2006; Posey & McDougle, 2001; 

Schumann & Nordahl, 2011; Tan, Doke, Ashburner, Wood, & Frackowiak, 2010; van Kooten et al., 

2008; Wassink et al., 2007). 

4.4 Conclusions 

From the point of view of psychiatric taxonomy, Volkmar has already argued that the inclusion of a 

specific diagnosis, such as AS, within a nosological classification, “is only important if the use of the 

concept can be supported on the basis of some external validating factor” (Volkmar et al., 2000). For 
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example, specific clinical features have been used as arguments to justify maintaining AS in DSM-5 

(Ghaziuddin, 2010), such as the presence of ego-dystonic lack of reciprocal social interaction in patients 

with AS, which may increase the risk for emotional comorbidities such as depression (Ghaziuddin, 

Weidmer-Mikhail, & Ghaziuddin, 1998; Strang et al., 2012), higher in AS than in AD. This argument 

may be considered at least a clinical specifier, as it may be relevant for prognosis and for treatment plan 

designing.  However, it seems that brain structural data do not help resolve the controversy about whether 

or not to subsume DSM-IV categories under this new ASD diagnostic category proposed for DSM-5. 

There are two reasons for this: firstly, because the scarcity, inconsistency, and methodological limitations 

of sMRI studies on ASD preclude findings from this type of study from providing a rationale for this 

proposal; and, secondly, because the value of sMRI data in autism research, if any, may depend on its 

associations with autism symptomatology and underlying neuropathology, but this has not yet been 

demonstrated sufficiently. 

The fact that sMRI data do not help resolve this diagnostic controversy is not exclusive to ASD but 

applies to all psychiatric disease. For example, there is also a debate on whether autism and SLI are 

distinct disorders or should be considered similar categories within a “continuum,” as they share similar 

structural  language impairments  (i.e., autism is considered an “SLI  plus,” assuming that the only factor 

differentiating the disorders is the presence of  additional  impairments  in  autism) (Bishop, 2003, 

personnal communication). Here again, the lack of observed sMRI differences between SLI and ASD 

should play no role in determining whether or not the two disorders should be lumped together in a 

nosological classification. This controversy also occurs even with disorders from different nosological 

axes that are mutually exclusive but share similar diagnostic criteria, such as AS and Schizotypal 

Personality Disorder (SPD) (Esterberg, Trotman, Brasfield, Compton, & Walker, 2008; Hurst, Nelson-

Gray, Mitchell, & Kwapil, 2007). Here again, there are still no sMRI data for determining whether or not 

they should be considered similar disorders. 

In the end, the DSM-5 proposal has failed to be a neurobiological evidence-based classification system, as 

objective tools for assessing mental disorders have proven to be too rudimentary as compared with 

clinical methods for diagnosing patients and designing treatment plans. Therefore, future ASD research 

should be directed toward providing sensitive and specific biomarkers, which, in combination with 

behavioral tests, could easily lead to accurate and early diagnosis of the disorder.  In order to achieve this, 

a plausible option would be to create different diagnostic classifications for research and for clinical 
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purposes, and, within the former, to define different research categories grouped by spectra, dimensions, 

endophenotypes, or other grouping criteria that may vary for different research questions (Tuchman, 

2003), and that would be easier to change than clinical nosological classifications. Clinical classifications 

could then be modified when strong neurobiological evidence contradicts them. 
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