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Abstract 

Objective. Autism spectrum disorders (ASD) have been associated with atypical cortical grey and 

subcortical white matter development. Neurodevelopmental theories postulate that a relation between 

cortical maturation and structural brain connectivity may exist. We therefore investigated the development 

of gyrification and white matter connectivity and their relationship in individuals with ASD and their 

typically developing peers.  

Method. T1- and diffusion-weighted images were acquired from a representative sample of 30 children 

and adolescents with ASD (aged 8 to 18 years), and 29 typically developing children matched for age, 

sex, hand preference, and socioeconomic status. The FreeSurfer suite was used to calculate cortical 

volume, surface area, and gyrification index. Measures of structural connectivity were estimated using 

probabilistic tractography and tract-based spatial statistics (TBSS). 

Results. Left prefrontal and parietal cortex showed a relative, age-dependent decrease in gyrification 

index in children and adolescents with ASD compared to typically developing controls. This result was 

replicated in an age and IQ-matched sample provided by the Autism Brain Imaging Data Exchange 

(ABIDE) initiative. Furthermore, tractography and TBSS showed a complementary pattern, where left 

prefrontal gyrification was negatively related to radial diffusivity in the forceps minor in participants with 

ASD.  

Conclusion. The present study builds on earlier findings of abnormal gyrification and structural 

connectivity in the prefrontal cortex in ASD. It provides a more comprehensive neurodevelopmental 

characterization of ASD, involving interdependent changes in microstructural white and cortical grey 

matter. The findings of related abnormal patterns of gyrification and white matter connectivity support the 

notion of the intertwined development of two major morphometric domains in ASD. 

Keywords: Autism spectrum disorders, gyrification index, structural connectivity, development, forceps 

minor 
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Introduction 

Autism spectrum disorders (ASD) are pervasive developmental disorders characterized 

by persistent deficits in social communication and social interaction and the presence of 

restricted, repetitive patterns of behavior, interests, or activities 1. The early onset of symptoms, 

typically well before the age of three, has been suggested to coincide with an overgrowth of 

cortical volume during the first years of life followed by a gradual decrease 2,3. This pattern 

appears not to be limited to specific brain areas, but to involve the entire cortex 4,5. Post mortem 

research of childhood ASD has shown an excess of neurons and disorganization in all cortical 

laminae of the prefrontal cortex (PFC), suggesting that increases in brain size have an early 

onset, possibly during prenatal neurodevelopment 6,7. 

The brain’s folding pattern is a strong marker of prenatal neurodevelopment 8. 

Gyrification commences in gestational week 16 and greatly intensifies during the third trimester 

when the brain folds in on itself, as cortical volume—mostly white matter (WM)—and surface 

area (SA) rapidly increase 9. To date, multiple theories have tried to explain the pattern of 

cortical folding. Tension-induced folding suggests that strongly interconnected regions pull 

towards each other and lead to the formation of gyri, whereas more sparsely connected fibers 

elongate to leave room for sulci 10. The “grey matter hypothesis” suggests that gyrification may 

be the result of cell proliferation in the outer subventricular zone during early gestation 11. This 

hypothesis is based on findings in transgenic mice, which showed increased cerebral cortical 

SA and human-like folds after controlling the cell cycle exit of neural precursors in the outer 

subventricular zone 12.  

Whole-brain studies have indeed shown a pattern of increased sulcal complexity 13 and 

differences in cortical shape 14 and sulcal pattern 15,16 in children and adolescents with ASD. 

However, two recent studies using 3D methodologies in ASD have reported conflicting results, 

with the first reporting increased gyrification in adolescents with ASD 17 and the second 

reporting decreased gyrification in a slightly younger sample 18. 
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Gyrification and white matter development seem inextricably tied 19, continuously 

remodeling the cortex throughout development 20. Schaer et al.18 interestingly showed a 

relationship between reduced gyrification index (GI) and reduced white matter connectivity in a 

small group of low-functioning children with ASD, where right prefrontal gyrification was 

positively correlated with the number of white matter fibers in ASD. This ties in with an ever-

growing body of literature reporting development changes in (interhemispheric) connectivity in 

ASD, especially in prefrontal tracts such as the forceps minor (reviewed in 21,22).  

However, considerable heterogeneity in symptom presentation and severity and the 

wide range of analysis methods used in these studies may have contributed to mixed reports on 

the relationship between gyrification and connectivity to date. In the current study, we set out to 

investigate the relationship between gyrification and white matter connectivity with a focus on 

age-related changes in a sample of children and adolescents with ASD. We specifically aimed 

at investigating the PFC given previous literature. We hypothesized that GI would be reduced in 

children and adolescents with ASD. Furthermore, we used an independent sample of high-

functioning children and adolescents with ASD from the Autism Brain Imaging Data Exchange 

(ABIDE) initiative to replicate our findings 23. We further hypothesized that this reduced cortical 

gyrification would be related to reduced connectivity, in line with earlier findings in a sample of 

lower functioning children with ASD and current neurodevelopmental theories.  
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Method  

 

Participants 

Thirty children and adolescents aged 8 to 18 years with ASD, as well as 29 typically developing 

controls, were recruited, matched for age, sex, hand preference, and socio-economic status 

(Table 1). Children and adolescents with ASD were recruited through family associations and 

the outpatient clinic of the Child and Adolescent Psychiatry Department at Hospital General 

Universitario Gregorio Marañon in Madrid, Spain (hereafter referred to as the Madrid sample) 24. 

Typically developing controls were recruited from the community at publicly funded schools with 

characteristics similar to those attended by participants with ASD and in the same geographic 

area 25. 

Children and adolescents with ASD were included if they fulfilled DSM-IV-TR criteria for 

pervasive developmental disorders at the time of assessment 26 and the Gillberg criteria 27 for 

Asperger syndrome. Board-certified child and adolescent psychiatrists with extensive 

experience in the field of ASD conducted all diagnostic assessments. Detailed information on 

the diagnostic assessments is given in Supplement 1 (available online). 

Exclusion criteria for all participants included intellectual disabilities per DSM-IV criteria 

26, any neurological disorder, history of head trauma with loss of consciousness, and other 

contraindications to magnetic resonance imaging (MRI) scanning. The institutional review board 

of the Hospital General Universitario Gregorio Marañon in Madrid approved the protocol and 

informed consent form. All parents or legal guardians gave written informed consent after 

receiving complete information about the study, and all participants provided assent. 

 

Demographic, Clinical and Cognitive Assessment 

For all participants, demographic data, including age, sex, ethnicity, parent and participant years 

of education, and socioeconomic status (SES)—assessed with the Hollingshead-Redlich 
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scale28—were recorded at inclusion (Table 1). Psychosocial functioning was assessed for all 

participants using the Children’s Global Assessment Scale (CGAS) 29,30. For the typically 

developing controls, an estimated IQ was calculated using the vocabulary and block-design 

tests of the Wechsler Intelligence Scale for Children (WISC-R31) for participants less than 16 

years of age, or the Wechsler Adult Intelligence Scale (WAIS-III: 32) for participants aged 16 

years or older. For the group with ASD, full-scale IQ was obtained using the WISC-R or WAIS-III 

depending on the age of the participant 33. As lower IQ may be considered typical of the ASD 

phenotype, IQ was not entered as a covariate in any of the designs to prevent partialling out 

variance that is potentially relevant to the disorder 34. Hand preference was assessed using item 

five of the Neurological Evaluation Scale (NES) 35, which evaluates hand preference during 

several activities such as writing, throwing a ball, or opening a jar.  

 

MRI Acquisition and Image Analyses 

All participants were scanned on a single Philips Intera 1.5T MRI scanner (Philips Medical 

Systems, The Netherlands). MRI acquisition parameters are described in Supplement 1 

(available online). 

 

Lobar SA and GI 

The FreeSurfer analysis suite (v5.3) was used to generate white and pial surfaces and an 

automated cortical lobar parcellation (prefrontal, parietal, temporal, and occipital) 36–38, not 

including the cingulate cortex, as this structure cannot be assigned to a single lobe. SA was 

calculated per lobe from the pial surface. Automated segmentation results were reviewed for 

quality and corrected by trained experts as necessary. GI was calculated per lobe, separately 

for the left and right hemispheres following the method by Su et al. 39 and is further explained in 

Supplement 1 and Figure S1 (available online). This method uses the standard definition for GI 

as formulated by Zilles et al 40: 
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  (1.0) 

 
 

Replication Sample 

The methods described earlier for measuring cortical volume, SA, and GI, in the Madrid sample 

were repeated in a similar, independent sample provided by the ABIDE initiative (Table 2) 23. A 

full description of data acquisition and inclusion of participants in this replication sample is given 

in Supplement 1 and Tables S2-4 (available online).    

 

Forceps Minor Tractography 

The forceps minor was chosen as region of interest based on previous literature showing 

reductions in anterior corpus callosum area in ASD 41,42. A detailed description of the diffusion 

tensor imaging (DTI) preprocessing and quality control can be found in Supplement 1 and Table 

S5 (available online). Anatomically constrained probabilistic diffusion tractography was carried 

out using the Tracts Constrained by UnderLying Anatomy (TRACULA) tool within FreeSurfer 43 

using default settings. Mean values of fractional anisotropy (FA), axial diffusivity (AD), and radial 

diffusivity (RD) of the forceps minor tract were provided by TRACULA (thresholding the pathway 

distribution at 20% of its maximum value for all participants). AD and RD values were multiplied 

by 100. Analyses run with FA, AD, and RD averaged from just the center of the forceps minor 

tract did not change the results in any meaningful way.  

 

Tract-Based Spatial Statistics 

Voxelwise statistical analyses of FA and RD data were carried out using Tract-Based 

Spatial Statistics (TBSS) 44 in FMRIB Software Library (FSL) 45. TBSS projects FA, AD, and RD 

 Lobei
Lobei

Lobei

Pial Surface Area
Gyrification Index

Hull Surface Area
=
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from all participants onto a mean tract skeleton before applying voxelwise cross-subject 

statistics. Individual measurements averaged over the largest clusters that showed a significant 

effect were extracted and plotted. 

 

Statistics 

Normality of the distribution and equality of variance between groups (homoscedasticity) 

was confirmed before all analyses. Between-group differences in demographic, clinical, 

cognitive, and whole-brain and lobe features (cortical volume, SA and GI) were assessed using 

Student’s t-tests for independent samples for continuous variables and Chi-square tests for 

categorical variables.  

For each lobe and the forceps minor, we used analysis of covariance (ANCOVA) to 

examine whether age differentially explained variance in SA, GI (for lobes), and mean FA, AD, 

and RD (for forceps minor) between groups. In each model, diagnosis was set as independent 

variable and age as covariate. Note that a significant main effect of diagnosis was not further 

explored if it was accompanied by a significant diagnosis x age interaction. Medication status 

did not show any significant effects and was thus not used as a covariate in the final analyses. 

TBSS voxelwise analyses for FA, AD, and RD were carried out across participants for 

each point of the common skeleton. We applied the same ANCOVA model as described above 

at each voxel of the skeleton. A permutation-based approach was performed to control for the 

family-wise error (FWE; 46), using threshold-free cluster enhancement (TFCE) and a number of 

permutations set at 5000 in FSL’s Randomise (FMRIB Software Library Randomise v2.9).  

The relationship between GI and connectivity was assessed using ANCOVA on the 

standardized residuals (corrected for age) of GI and the connectivity measures. Effect sizes are 

given as Cohen’s d. 
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Results 

 

GI and SA 

There was an interactive effect of diagnosis x age on left prefrontal and parietal GI, 

where participants with ASD show a relative decrease with age as compared to typically 

developing controls (Figure 1 and Figures S2-S5, available online). These results remained 

significant when two female participants were removed from the analyses. There was no main 

effect of diagnosis in the absence of a diagnosis x age interaction. Finally, there were no effects 

of whole-brain GI and SA (Table S1, available online) and SA per lobe (Figures S2-S5, available 

online).  

 

GI and SA: Replication in an Age and IQ-Matched Independent Sample 

As Figure 1 shows, the significant diagnosis x age interactions for the left prefrontal and 

parietal cortex GI were replicated in the ABIDE set. For SA there was no significant diagnosis x 

age interaction (left prefrontal: F=0.75, p=.39, d=0.17, left parietal: F=2.89, p=.09, d=0.34), nor a 

main effect of diagnosis alone (left prefrontal: F=0.43, p=.52, d=0.13, left parietal: F=2.28, 

p=.13, d=0.30).  

Furthermore, as the replication sample was not fully matched on verbal IQ (VIQ: Table 

2), the analyses were repeated in a slightly smaller but VIQ-matched subsample of 39 children 

with ASD and 56 typically developing children (Table S6, available online). In this subsample, 

the effect of the diagnosis x age interaction held for left prefrontal (F=3.83, p=.05, d=0.41), and 

parietal (F=4.59, p=.04, d=0.45) GI remained significant. 

As the participants from the replication sample included more females than the Madrid 

sample (Table 2), we assessed whether the interaction was still significant after controlling for 

sex and found left prefrontal GI is significant at the trend level (F=3.66, p=.059), and the left 

parietal GI remains significant (F=5.47, p=.02).  
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Forceps Minor Tractography and TBSS 

There was an effect of age (F=8.68, p<.01, d=0.79) and diagnosis x age (F=5.46, p=.02, 

d=0.63) on FA in the forceps minor in the Madrid sample. In addition, there were effects of age 

(F=6.40, p=.01, d=0.68), diagnosis (F=7.58, p=.01, d=0.74), and diagnosis x age (F=10.12, 

p<.01, d=0.86) on RD (Figure 2). There were no effects for AD. These findings were confirmed 

in the TBSS analyses (Figure 2), where we found a diagnosis x age interaction on FA and RD, 

but not on AD, within the same region (Montreal Neurological Institute [MNI] coordinates [mm] of 

the largest significant clusters: FA: x = 18, y = 17, z = 30; 2,581 voxels; RD: x = -18, y = 16, z = 

29; 2,653 voxels). Figure 2 shows that these clusters overlap with the forceps minor.  

 

The Relationship Between Forceps Minor Diffusion and Left Prefrontal Gyrification 

To assess the age-independent relation between prefrontal GI and forceps minor FA and 

RD in the Madrid sample, we first linearly regressed out the effect of age on the left prefrontal 

GI, forceps minor FA and RD, and tested for a diagnosis x FA/RD interaction on the left 

prefrontal GI. A significant diagnosis x RD interaction (F=6.15, p=.02, d=0.67) but no significant 

diagnosis x FA interaction (F=2.89, p=.1, d=0.46) (Figure 3) was found. Pearson’s correlations 

indeed showed RD and GI were significantly correlated in the group with ASD (r = -.50, p = .01), 

but not in the typically developing children (r = -.04, p = .84). 
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Discussion 

The current study shows age-related differences in gyrification in the left prefrontal and 

parietal cortex in a representative sample of children and adolescents with ASD, while there 

were no differences in cortical SA within the age range studied. These results were replicated in 

a larger age- and IQ-matched independent sample including high-functioning individuals with 

ASD from the ABIDE initiative 23. Furthermore, age-related differences were observed in anterior 

callosal forceps minor connectivity. These results suggest abnormalities in two major 

morphometric domains, which in addition seem negatively related in ASD. 

The reported age-related differences in left prefrontal and parietal gyrification in ASD 

may reflect abnormal cortical maturation during childhood and adolescence. It has been 

suggested that in typically developing individuals, gyrification peaks during or even before 

toddlerhood 47,48 followed by a decrease in adolescence and adulthood 49,50. Our results show 

that compared to typically developing children, this relative developmental decrease in 

gyrification may be more pronounced in individuals with ASD, and that it may follow a similar 

pattern as the possible progressive decrease in total brain volume that has been suggested in 

ASD 4.  

The age-related decrease of gyrification in children and adolescents with ASD converges 

with earlier findings in studies with similar age ranges 17,18,51. This suggests that differences in 

methodologies or group characteristics may indeed have contributed to inconsistencies with 

previous studies. However, the abnormal pattern of left prefrontal and parietal gyrification was 

observed both in low- and higher-functioning children and adolescents with ASD, indicating that 

on the regional level, gyrification is likely to be affected across different levels of IQ in individuals 

with ASD.  

 

Interestingly, there was no interaction between group and age for cortical SA. Given the 

strong relationship between SA and cortical volume 52, this may imply that within this age range, 
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cortical morphological complexity rather than brain size is more defining in the pathophysiology 

of ASD. This notion fits with recently reported differences in cortical shape complexity in ASD 

without differences in cortical SA 17,53.  

The forceps minor connects the medial and lateral parts of the PFC. In contrast with 

inconsistent findings of reduced gyrification in ASD, reduced interhemispheric connectivity—and 

specifically decreased forceps minor connectivity—has been reported consistently (for reviews 

see 21,22). While FA typically increases throughout development, 54,55 mostly peaking well into 

adulthood,56 the present study shows, in line with previous studies, that forceps minor 

development may not show these age-related gains in child and adolescent participants with 

ASD 57–59. On the behavioral level, reduced forceps minor connectivity has indeed been related 

to restricted and stereotyped behavior 18,42. The relevance of disruptions to the frontal-callosal 

forceps minor in ASD is further supported by findings from individuals with callosal agenesis 

(CA), a birth defect characterized by the complete or partial absence of corpus callosum. 

Individuals with CA experience autism-like symptoms such as impairments in social interaction 

and communication 60.  

Finally, left prefrontal gyrification and forceps minor connectivity showed a negative, age-

independent relation, suggesting a stable relationship between prefrontal gyrification and 

forceps minor radial diffusivity across childhood and adolescence in ASD. This relationship may 

reflect atypical neurodevelopmental processes that arise before childhood. Speculatively, at a 

young age, left prefrontal and parietal gyrification may even be increased in ASD. Such a 

relation could be hypothesized to be tied to the heightened presence of short-range intracortical 

white matter connections 10,53: Increased left prefrontal and parietal gyrification during early 

brain development may then reflect local overgrowth of short-range connectivity at the expense 

of decreased long-range (forceps minor) connectivity 18,53,61. This converges with the present 

understanding of ASD as a “disconnection syndrome,”62 where connections, especially within or 

between the prefrontal cortices, are compromised 21. When comparing the results from 
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tractography and TBSS, the group difference in FA appears to be driven primarily by a 

difference in RD. A change in RD, independent of axial diffusion, could indeed suggest 

myelination loss, or loss of axons in the forceps minor 63.  

Strengths of this study lie in the multimodal approach allowing for the microstructural and 

macrostructural neuroanatomical characterization of the disorder, and in the replication of the 

gyrification results in a larger, independent, yet similar sample of individuals. There are, 

however, also limitations that need to be taken into consideration. In the Madrid sample, no 

measure of full-scale IQ was available for typically developing participants. Previous studies 

have shown that in typically developing individuals, the two subtests we used provide a reliable 

estimate of IQ 33. Furthermore, even though IQ was not matched in the Madrid sample, parental 

education and SES (often used as an estimate of premorbid IQ in studies of other psychiatric 

disorders) did not differ significantly between the two groups. The similarity of the results in the 

IQ-matched replication sample further supports that differences in GI are likely present across a 

broad spectrum of ASD phenotypes. Further, due to the assessment of lobar GI, stretching over 

large patches of cortex, the regional correspondence with forceps minor connectivity may not be 

optimal. Even though the forceps minor branches out within the prefrontal cortex, more accurate 

spatial correspondence could potentially be achieved with local, vertex-wise GI metrics. 

However, such an approach would be more prone to partial volumning effects, which are 

minimized in the current study. Another limitation is the cross-sectional design of the study. 

Developmental studies will inarguably benefit from a longitudinal set-up to better deal with 

individual differences that are not adequately captured in cross-sectional designs. However, the 

results presented in the current study may provide a valuable framework for such future studies. 

In conclusion we found evidence for decreased gyrification in children and adolescents 

with ASD, which was related to developmental changes in forceps minor connectivity. These 

findings provide a more comprehensive neuroanatomical characterization of ASD involving 

related microstructural white matter and macrostructural cortical grey matter changes. Our 
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findings of related abnormal patterns of gyrification and white matter connectivity support the 

notion of the intertwined development of two major morphometric domains in individuals with 

ASD. 
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Table 1. Demographic and Clinical Characteristics of the Madrid Sample 

 ASD TDC   

(n = 30) (n = 29) P 

Age (yrs) mean (SD) [range]  12.7 (2.5) [8-18] 12.5 (2.8) [7-18] .79 

Sex (males/females) 29/1 28/1 .98 

Hand preference (right/left/ambidextrous)a 26/1/2 23/1/3 .86 
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Note: APS = Antipsychotic medication; ASD = autism spectrum disorders; CGAS = Children’s Global Assessment 
Scale; SD = standard deviation; TDC = typically developing children. 

a Information on hand preference was missing for 3 participants 
b Total IQ was estimated for typically developing participants. Verbal and performance IQ were not available for 
typically developing children; vocabulary and block design subtest scores are reported for purposes of comparison. 

 

 

Total IQb  mean (SD) [range] 91.8 (20.1) [53-134] 112.0 (13.4) [70-138] <.001*** 

Verbal IQ  mean (SD) [range] 93.7 (25.1) [51-139] -  

      Vocabulary  9.1 (4.3) 11.2 (2.9) .02 

Performance IQb  mean (SD) [range] 87.1 (22.0) [44-132] -  

      Block Design  8.2 (3.2) 11.5 (2.5) <.001*** 

Parental education (yrs) 14.2 (3.2) 14.0 (3.2) .62 

Participant Education (yrs) 6.8 (2.8) 7.8 (2.5) .19 

Socioeconomic status 3.5 (1.3) 3.8 (1.2) .46 

Clinical characterization    

CGAS 49.2 (12.7) 94.2 (4.1) <.001*** 

Gillberg total score  12.6 (3.1) -  

Medication - n (%)    

None 22 (73%)   

APS 8 (27%)   
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Table 2. Demographic and Clinical Characteristics of the ABIDE Replication Sample. 

 

Note: ADI-R = Autism Diagnostic Interview – Revised; ADOS = Autism Diagnostic Observation Schedule; APS = 
Antipsychotic medication; ASD = autism spectrum disorders; RRB = repetitive and ritualistic behavior; SD = standard 
deviation; TDC = typically developing children. 

 ASD TDC  

(n = 39) (n = 65) P 

Age (yrs) mean (SD) [range]  12.0 (2.6) [9-18] 12.8 (2.8) [8-18] .20 

Sex (males/females) 34/5 48/17 .14 

Total IQ  mean (SD) [range] 107 (15.8) [78-148] 111 (14) [80-138] .11 

  Verbal IQ  mean (SD) [range] 105 (15.4) [77-139] 112 (13.3) [80-143] .01** 

  Performance IQ  mean (SD) [range] 108 (16.3) [79-147] 109 (15) [67-137] .93 

Clinical characterization    

  ADI-R Social 18.9 (5.2) [7-27]   

  ADI-R Verbal 15.21 (4.2) [8-23]   

  ADI-R RRB 5.9 (2.9) [0-12]   

  ADI-R Onset 3.2 (1.2) [1-5]   

  ADOS Total 10.9 (3.9) [5-22]   

  ADOS Communication 3.4 (1.5) [1-8]   

  ADOS Social 7.5 (2.8) [2-14]   

  ADOS Stereotype Behavior 2.3 (1.3) [0-5]   

Medication - n (%)    

  None 32 (82%)   

APS -    

  Non-APS 7 (18%)   
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Figure 1: Age-related differences in left prefrontal (left) and parietal (right) gyrification index (GI) between 

participants with autism spectrum disorders (ASD) and typically developing controls (analysis of 

covariance [ANCOVA] with age as covariate). Note: A similar pattern was found in the replication sample 

from the Autism Brain Imaging Data Exchange (ABIDE) initiative (lower row).  

 

Figure 2: Age-related differences in fractional anisotropy (FA) and radial diffusivity (RD) in the forceps 

minor (left column) between participants with autism spectrum disorders (ASD) and typically developing 

controls. Note: These findings were confirmed by hypothesis-free voxel-wise tract-based spatial statistics 

showing local age-related group differences in the forceps minor (right column, after correction for 

multiple comparisons). For the largest FA and RD cluster, participants’ values were averaged over the 

voxels belonging to the cluster, multiplied by 100, and plotted against age. AD = axial diffusivity. 

 

Figure 3: The relationship between tractography-based fractional anisotropy (FA) and radial diffusivity 

(RD) measures of the forceps minor and left prefrontal gyrification index. Note: Participants with autism 

spectrum disorders (ASD) show a different relationship between forceps minor RD (right column), but not 

FA (left column), and the left prefrontal gyrification index compared to typically developing controls. Age 

was regressed out and the measurements were plotted as unstandardized residuals. The prefrontal 

gyrification index is defined as the ratio of the prefrontal pial surface area (yellow line) and the prefrontal 

hull surface area (red line).  
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Supplement 1 

Madrid Sample: Diagnostic Assessment 

Board-certified child and adolescent psychiatrists with extensive experience in the field of 

autism spectrum disorders (ASD) conducted all diagnostic assessments. They conducted a 

developmental, medical, and psychiatric interview with the parents and a child observation. 

They administered the Spanish-language version of the Schedule for Affective Disorders 

and Schizophrenia for School-Age Children–Present and Lifetime Version (K-SADS-PL)1 to 

rule out comorbid psychiatric disorders. In any doubtful case, a consensus agreement was 

sought with another of the evaluating child psychiatrists. If consensus was not reached, the 

ADOS-G (Autism Diagnostic Observation Schedule–Generic)2 was administered by 

experienced ADOS research-trained child psychiatrists (9 instances), one of them an 

ADOS trainer herself (M.P.). The final diagnosis was based on best clinical judgment taking 

into account all the available information.2,3  

The K-SADS was also administered to typically developing controls in order to rule 

out any psychiatric condition. It was administered individually to parents and children in 

separate interviews by trained and experienced psychiatrists. 

 

Replication Sample: Inclusion of the New York University (NYU) Langone Medical Center 

Sample 

The NYU Langone Medical Center sample is part of the Autism Brain Imaging Data 

Exchange (ABIDE4) repository (http://fcon_1000.projects.nitrc.org/indi/abide/). ABIDE is a 

grass-roots initiative providing previously collected magnetic resonance imaging (MRI) 

datasets and phenotypic information from individuals with ASD and age-matched typically 

developing controls to promote data sharing and discovery science in the broader scientific 

community. We selected this site within the ABIDE repository because it provided well-

distributed data along the developmental continuum from late childhood to early adulthood.  

All participants from the NYU Langone sample within the same age range as the 

Madrid sample were initially included in the replication dataset. Detailed information on 
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recruitment procedures, inclusion and exclusion criteria, and clinical and cognitive 

assessments for these participants is provided on the ABIDE website.4 Before starting, 

participants and their parents or legal guardians signed an informed consent document 

after receiving an explanation of the study procedures.  

 

Replication Sample: MRI Acquisition and Participant Exclusion 

All participants were scanned on the same 3T Siemens Allegra scanner. A T1-

weighted 3D volumetric image with a voxel size of 1.3x1.3x1.0 mm3 (TR = 2530 ms, TE = 

3.25 ms, flip angle = 7º) was acquired. As stated on the ABIDE website, the ABIDE dataset 

is distributed without any quality control; therefore, intensive empirical inspection was 

performed for each participant. This led to the exclusion of 29 participants, listed in Table 

S3 along with the reason for their exclusion. In total, 39 children with ASD and 65 typically 

developing children were included in the replication sample that was used for analysis. 

 

Replication Sample: Comparison of Excluded Participants and Remaining Participants 

We compared the excluded participants with the remaining participants and found 

no differences in demographic or cognitive measures (Table S4). From the remaining 

sample (n=156), we selected all participants within the same age-range as the Madrid 

sample, resulting in a final sample of 104 participants (39 participants with ASD, 65 typically 

developing controls).  

 

Madrid Sample: MRI Acquisition Parameters 

Three MRI scans were acquired sequentially: A T1-weighted 3D volumetric image 

consisting of 175 contiguous sagittal slices, with a voxel size of 1x0.94x0.94 mm3 

(repetition time (TR) = 25 ms, echo time (TE) = 9.2 ms, flip angle = 30º), a T2-weighted 

turbo spin echo scan, voxels size 1x1x3 mm3 (TR = 5809 ms, TE = 120 ms), and a diffusion 

tensor image (DTI) scan consisting of 60 axial slices with 15 directions, with a voxel size of 

1.75x1.75x2 mm3 (b0 = 800 ms, TR = 10927 ms, TE = 82 ms, flip angle = 90º). Both T1- 
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and T2-weighted images were used for clinical neurodiagnostic evaluation by an 

independent neuroradiologist. No participants showed clinically significant brain pathology. 

 
Madrid and Replication Sample: Surface Area and Gyrification Index 
 
Following the method by Su and colleagues,5 a 3D brain envelope was computed per lobe 

as follows: first, the cortical gyral parcellation of FreeSurfer’s ‘aparc+aseg’ volumetric image 

was relabeled prefrontal, parietal, temporal and occipital, in accordance with the surface-

based lobar parcellation. Second, the brain envelope was defined per hemisphere as the 

area of a smooth envelope that wrapped around the hemisphere but did not encroach into 

the sulci. In order to generate the envelope, a morphological isotropic closing of 6 mm was 

applied to the relabeled ‘aparc+aseg’ image to ensure smooth boundaries. Then, an 

unlabeled envelope was created using the marching cubes algorithm. Finally, the envelope 

was parcellated into lobes using the smoothed parcellated volumetric image and a nearest 

neighbor interpolation algorithm (Figure S1). This parcellation includes the insula but not 

the cingulate cortex, as this structure cannot be assigned to a single lobe. This also 

permitted quantification of the surface area (SA) of the brain envelope.6,7 The Matlab scripts 

used for generating the parcellated brain envelope can be found at:  

ftp://disco.hggm.es/jjanssen/adoles_surfgmdevelop/scripts/. 

 
 
Madrid-Sample: DTI Preprocessing and Data Quality Assessment 

In order to detect and correct any artifacts introduced during collection of the DTI scan, a 

quality control protocol was implemented. First, artifacts related to intensity were detected 

by computing the normalized correlation between intensity in successive slices across the 

diffusion volume. Any diffusion volumes containing one or more artifacts were excluded. 

Next, eddy-current and head motion correction was performed using FSL 

(www.fmrib.ox.ac.uk/fsl/) tools.8 Finally, machine-related (i.e., B0 field inhomogeneity) 

spatial distortions were corrected by warping each participant's T2-b0 image to the 

anatomical T2-weighted image of the same individual. This technique produces (a) a warp-
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field, which was applied to the participant's diffusion volumes and (b) a Jacobian map of the 

warp-field, which was multiplied with the participant's warped diffusion volumes in order to 

restore true image intensity after warping. To achieve high dimensional and robust warping, 

we computed large-deformation diffeomorphic mapping using the symmetric normalization 

(SyN) technique implemented in the Advance Normalization Tools (ANTS) software 

package (http://stnava.github.io/ANTs/).9 This warp-field was applied to the anterior-

posterior axis of the participant, i.e. the phase-encoding direction (y-coordinate), reducing 

the geometric distortion that was present along that axis, while preserving the signal in the 

other axes.  

Data quality was quantified using four different measures (average translation, 

average rotation, percentage bad slices, and average drop-out score). These four motion 

measures capture global frame-to-frame motion as well as the frequency and severity of 

rapid slice-to-slice motion.10 We compared these measures between groups and found only 

minor differences that did not reach statistical significance (Table S5).  
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Table S1. Whole-Brain Characteristics of the Madrid Sample 

 

Note: ASD = autism spectrum disorder; GI = gyrification index; TDC = typically developing children. 

aDifferences in whole-brain characteristics within the Madrid sample tested with Student’s t-tests.  

 ASD TDC   

(n = 30) (n = 29) P 

Whole-brain characteristicsa    

  Cortical volume (cm3) 528.5 (58.9) [414.7-642.4] 534.6 (45.8) [441.7-639.1] 0.54 

  Cortical surface area (cm2) 2111.4 (214.6) [1636.0-2475.5] 2175.2 (179.3) [1854.1-2565.4] 0.70 

  Whole brain GI 2.7 (0.2) [2.4-3.1] 2.8 (0.1) [2.6-3.1] 0.21 

      Prefrontal GI 2.9 (0.3) [2.4-3.7] 3.0 (0.3) [2.5-3.9] 0.11 

      Parietal GI 3.3 (0.2) [2.9-3.6] 3.3 (0.1) [3.1-3.5] 0.68 

      Temporal GI 2.7 (0.3) [2.3-3.5] 2.8 (0.3) [2.3-3.6] 0.31 

      Occipital GI 2.1 (0.2) [1.9-2.5] 2.1 (0.1) [1.7-2.4] 0.51 
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Table S2. Whole-Brain Characteristics of the Autism Brain Imaging Data Exchange (ABIDE) Replication Sample 

Note: ASD = autism spectrum disorder; GI = gyrification index; TDC = typically developing children. 

aDifferences in whole-brain characteristics within the replication sample tested with Student’s t-

tests.  

 ASD TDC  

(n = 39) (n = 65) P 

Whole-brain characteristicsa    

  Cortical volume (cm3) 565.3 (64.3) [433.4-712.9] 564 (54.6) [431.9-677.5] 0.91 

  Cortical surface area (cm2) 2156.3 (224.7) [1651.7-2659.1] 2175.2.9 (179.3) [1854.1-2565.4] 0.64 

  Whole-brain GI 2.8 (0.1) [2.6-3.0] 2.8 (0.1) [2.4-3.0] 0.99 

      Prefrontal GI 3.0 (0.1) [2.7-3.2] 3.0 (0.1) [2.6-3.2] 0.86 

      Parietal GI 3.6 (0.3) [3.1-4.1] 3.6 (0.3) [3.0-4.5] 0.98 

      Temporal GI 2.7 (0.2) [2.2-2.9] 2.6 (0.2) [2.0-3.1] 0.79 

      Occipital GI 1.8 (0.1) [1.6-2.0] 1.8 (0.1) [1.7-2.0] 0.68 
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Table S3. Excluded Participants From the Autism Brain Imaging Data Exchange (ABIDE) Sample 

 
 

ABIDE Code  Reason for Exclusion 

0050967   severe loss of signal in posterior part of the brain 

0050978   movement artifact in occipital part of the brain 

0050979   artifact in anterior frontal part of the brain 

0050982   artifact in the occipital part of the brain 

0050984   severe loss of signal in posterior part of the brain 

0050987   diffuse movement artifact 

0050988   severe loss of signal in posterior part of the brain 

0050989   artifact in inferior part of the brain 

0050998   diffuse movement artifact 

0051000   movement artifact in occipital lobe  

0051003   diffuse movement artifact 

0051016   foldover artifact 

0051024   incomplete image acquisition 

0051030   artifact in occipital lobe 

0051033   diffuse movement artifact 

0051034   artifact in occipital lobe  

0051064   movement artifact in occipital lobe 

0051070   diffuse artifact in medial part of the brain 

0051079   severe loss of signal in posterior part of the brain 

0051088   severe loss of signal in posterior part of the brain 

0051091   diffuse movement artifact 

0051099   artifact in posterior part of the brain 

0050953   asymetric lateral ventricles 

0050955   incomplete image acquisition 

0050960   severe loss of signal in posterior part of the brain  

0050961   artifact in occipital part of the brain 

0051042   incomplete image acquisition 

0051050   severe loss of signal in posterior part of the brain 
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Table S4. Comparison of the Excluded (Based on the Quality of the T1-Weighted Scan) and 

Remaining Participants of the Replication Sample. 

Note: SD = Standard Deviation. 

 

  

Remaining Participants Excluded  

(n = 156) (n = 29) P 

Age (yrs) mean (SD) [range]  15.5 (15.6) [7-32] 13.5 (8.3) [7-39] 0.12 

Sex (males/females) 125/31 22/6 0.8 

Hand preference (left/right) 13/138 5/23 0.15 

Estimated IQ 111 (14.1) [78-148] 111 (19) [76-142] 0.89 

  Verbal IQ 110 (13.9) [73-143] 108 (18.2) [74-141] 0.49 

  Performance IQ 109 (14.7) [67-147] 111 (19.1) [72-149] 0.64 
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Table S5. Between-Group Differences on the Four Measures of Diffusion Tensor Imaging Data Quality 

 
Note: ASD = autism spectrum disorder; SD = standard deviation; TDC = typically developing children. 

 
ASD 

(n = 30) 

TDC 

(n = 29) 
P 

    

Average translation mean (SD) 0.9512 (0.3212) 1.0791 (0.4608) 0.22 

Average rotation mean (SD) 0.0055 (0.0037) 0.0067 (0.0073) 0.43 

Percentage bad slices mean (SD) 0 0.0790 (0.3878) 0.28 

Average Dropout score mean (SD) 1 1.0065 (0.0307) 0.26 
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Table S6. Demographic, Clinical, and Whole-Brain Characteristics of the Autism Brain Imaging Data 
Exchange (ABIDE) Replication Sample, Matched on Verbal IQ 

 

 
Note: ADI-R = Autism Diagnostic Interview – Revised; ADOS = Autism Diagnostic Observation Schedule; 
APS = antipsychotic medication; ASD = autism spectrum disorder; GI = gyrification index; SD = standard 
deviation; TDC = typically developing children. 

 

 

 ASD TDC  

(n = 39) (n = 56) P 

Age (yrs) mean (SD) [range]  12.0 (2.6) [9-18] 12.7 (3.0) [8-18] 0.26 

Sex (males/females) 34/5 40/16 0.08 

Estimated IQ 107 (15.8) 110 (13.8)  0.36 

  Verbal IQ 105 (15.4) 110 (12.9)  0.08 

  Performance IQ 108 (16.3)  107 (15.3)  0.77 

Clinical characterization    

  ADI-R Social 18.9 (5.2) [7-27]   

  ADI-R Verbal 15.21 (4.2) [8-23]   

  ADI-R RRB 5.9 (2.9) [0-12]   

  ADI-R Onset 3.2 (1.2) [1-5]   

  ADOS Total 10.9 (3.9) [5-22]   

  ADOS Communication 3.4 (1.5) [1-8]   

  ADOS Social 7.5 (2.8) [2-14]   

  ADOS Stereotype 

Behavior 
2.3 (1.3) [0-5]   

Medication - n (%)    

  None 32 (82%)   

 APS -   

  Non-APS 7 (18%)   

Whole-brain characteristics     

  Cortical volume (cm3) 565.3 (64.3) [433.4-712.9] 560 (52.3) [458-668.7] 0.69 

  Cortical surface area (cm2) 2156.3 (224.7) [1651.7-2659.1] 2159.78 (170) [1855.1-2495.8] 0.95 

  Whole brain GI 2.8 (0.1) [2.6-3.0] 2.8 (0.1) [2.6-3.0] 0.98 

      Prefrontal GI 3.0 (0.1) [2.7-3.2] 3.0 (0.1) [2.7-3.2] 0.95 

      Parietal GI 3.6 (0.3) [3.1-4.1] 3.6 (0.3) [3.0-4.5] 0.88 

      Temporal GI 2.7 (0.2) [2.2-2.9] 2.7 (0.2) [2.3-3.1] 0.88 

      Occipital GI 1.8 (0.1) [1.6-2.0] 1.8 (0.1) [1.7-2.0] 0.77 
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